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Introduction

For over 50 years the interacting particle systems (IPS) have been used to
describe various phenomena. The use of IPS was initially motivated by the
statistical physics, but soon it became clear that the list of possible appli-
cations is long, and includes such �elds as, for example, medicine (infection
spreading, tumour growth), economy (agent based models), sociology (be-
havioural systems) and ecology (population models). The latter being in
intensive development during last years. Historically, the theory of IPS arose
as a part of the probability theory and was initiated by works of F. Spitzer
and R. L. Dobrushin in the late 60's with the purpose to study the systems
with Gibbs states as equilibrium measures.

A typical IPS consists of a number (�nite or in�nite) of indistinguishable
particles located in some position space. Sometimes it is more appropriate
to use the term individuals instead of particles to describe the elements of
an IPS. Depending on the context, the position space of the particles can be
discrete or continuous. In the �rst case, one considers the so-called lattice
models, and the standard example of the space is Zd, although one can also
use more general structures such as, e.g., in�nite graphs. The lattice systems
turned out to be useful and provided the right description for many models
and applications (see for example [Lig85]). There are, however, situations
when the continuous position space is more appropriate or even necessary
in order to convey the nature of the considered problem. Thus in this case
the position space is assumed to be Rd or more generally, a Riemannian
manifold X (cf. [Kun99]). Many of the lattice models (or their analogues)
have been studied in the continuous space case: Glauber and Kawasaki dy-
namics (cf. [KLR07, FKKZ10, KL05, Ohl07]) and the contact model [KS06].
Also, several new models have been introduced, like for example systems
with competition [FKK09] or contact model with jumps [Str09].

We use the con�guration space analysis as framework for the study of
interacting particle systems in continuum throughout this thesis. Given a
Riemannian manifold X, the con�guration space ΓX over X is de�ned as
the space of all locally �nite subsets of X (we call the elements of Γ con�g-
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10 INTRODUCTION

urations). Thus, a con�guration γ ∈ Γ can be interpreted as an (in�nite)
population of individuals, or a cloud of particles which are indistinguishable
and there is at most one element of γ occupying a single site x ∈ X (there-
fore, Γ is called the simple con�guration space as opposed to the multiple
con�guration space Γ̈ where this restriction is absent). One can identify a
con�guration γ ∈ Γ with a positive Radon measure via γ =

∑
x∈γ δx, where

δx is the Dirac measure with the mass equal to the unity concentrated on
x ∈ X. That allows us to equip the con�guration space Γ with the vague
topology of the space of all Radon measures on X. The point processes, i.e.
the measures on Γ, are called the states of a given system. And whereas
Poisson measures describe the state of a system without interaction, Gibbs
measures are used to study models in which the particles interact via, for
example, a pair potential. For more detailed description of the con�gura-
tion spaces including, for example, the geometry of Γ, we refer to [Kun99],
[AKR98], [Kut03] and others.

Having in mind two-component systems, we introduce the two-compo-
nent con�guration space Γ2, which is de�ned as Γ2 := {(γ1, γ2) ∈ Γ+ × Γ− :
γ1 ∩ γ2 = ∅} ⊂ Γ× Γ, where Γ+ = Γ− = Γ. Nearly all notions and methods
used in the single component case can be naturally translated to the two-
component framework.

This thesis is devoted to the study of several new IPS models, mainly
inspired by the ecological applications. In the �rst two chapters, modi�ca-
tions of the contact process and the Glauber-type dynamics are considered.
These models are examples of spatial birth-and-death processes (see refer-
ences in the previous paragraph). Their dynamics is described by a heuristic
pre-generator, the action of which is de�ned by:

LF (γ) :=
∑
x∈γ

d(x, γ) [F (γ \ x)− F (γ)] +

∫
X

b(x, γ) [F (γ ∪ x)− F (γ)] dx

for γ ∈ Γ and an appropriate function F . The �rst part of the operator L
describes the "death" of elements of γ according to the death rate d(x, γ),
whereas the second part (birth rate) provides the mechanism of o�spring pro-
duction with the function b(x, γ) describing the rate at which new elements
appear, and their spatial distribution. Thus, the dynamics of a given sys-
tem is determined by its death and birth rates. However, if we consider for
example the evolution of a population of plants, it becomes clear, that the
cycle of life of particular individuals depends not only on their age and/or the
existing population, but also on a number of external factors such as avail-
ability of sun light, resources and diseases. In order to convey the additional
in�uence, we allow the functions b and d to be random, i.e. we consider the
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above-mentioned models in the random environment or, in other words, in
the heterogeneous landscape.

The second natural generalization is the introduction of another type of
population into the model, that is the study of two-component systems (see
[FKO10]). Having in mind biological applications, we can speak about the
symbiotic relation between two types of individuals. One of the possible in-
teraction is the predation, the illustration of which is the well known Lotka-
Volterra model (see [Lot25, Vol26]). In this thesis, however, we study another
example of symbiosis, namely the mutualistic model (in Chapter 4). The sys-
tem introduced in Chapter 5 can be considered as the two-component ana-
logue of the Glauber-type dynamics in continuum. The Markov pre-generator
of such two (or more) component dynamics should re�ect the evolution of
each populations in dependence on the other, thus the general form of the
informal pre-generator is given by

L := L1 + L2

where each of the operators L1, L2 describes the dynamics of one population,
taking into account the interaction between them.

This work deals with the following problems. First of all, we study the
existence of the evolution of states for a given model. For some particular
cases, this can be done using Markov processes corresponding to considered
generators. In our case, however, it is convenient to approach the problem
in terms of the evolution of corresponding correlation functions. We apply
this method to a number of models. In two last chapters we investigate,
additionally, the scaling limits for stochastic dynamics, namely the Vlasov-
type scaling of the microscopic state evolution to the mesoscopic dynamics,
and their convergence for given models.

Overview of the contents

We proceed now to the detailed description of the contents of this thesis.

Con�guration spaces

In Chapter 1 we recall some de�nitions and facts from the con�guration
spaces theory and the harmonic analysis on con�guration spaces. Through-
out this thesis we will assume, that the underlying space is the Euclidean
space Rd, although it is possible to extend the results to more general cases
like, for example, a Riemannian manifold or even more general topological
spaces.
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The introduction recalls the standard notation which will be used further
in this work. After that, we proceed to the de�nitions of the space of �nite
and simple con�gurations over Rd, Γ0 and Γ, resp.. Next, the topological
structures of both spaces are discussed. Whereas the topology of the space
Γ0 is inherited from the topology of the underlying space, the topology on Γ
is introduced using the interpretation of con�gurations as the integer-valued
Radon measures over Rd. Thus, we endow Γ with the vague topology of
the space of all Radon measures on Rd. Having introduced the topological
structure of above-mentioned spaces, we de�ne their corresponding Borel σ-
algebras and we proceed to the construction of measures on Γ0 and Γ. We
focus especially on two measures: Lebesgue-Poisson measure λzσ on Γ0 and
Poisson measure πzσ on Γ. We should mention, that the Poisson measure
corresponds to the interaction free systems. We also recall useful charac-
terization of the Poisson measure by its Laplace transform and the Minlos
lemma (Lemma 1.1), which is one of the main technical tools used in this
thesis.

In Section 1.3 we discuss the general framework of the harmonic analysis
on the con�guration spaces, using mainly [Kun99] and [KK02] as references.
First we introduce some classes of functions on Γ0 and Γ. Then we recollect
the de�nitions of the K-transform and the ?-convolution. The K-transform
maps the quasi-observables (the functions on Γ0) into functions on Γ (the
observables). It also has the property that K(G1 ? G2) = KG1 ·KG2, hence
it can be considered as the Fourier transform on the space of con�gurations.
The correlation measure on Γ0 is de�ned as the image of a probability mea-
sure on Γ (a state of the system) under the dual K-transform, K∗, with
respect to the duality∫

Γ

KG(γ)µ(dγ) =

∫
Γ0

G(η) (K∗µ) (dη).

Moreover, if the measure µ is locally absolutely continuous w.r.t. Poisson
measure, then the correlation measure K∗µ is absolutely continuous w.r.t.
the Lebesgue-Poisson measure on Γ0 and the corresponding Radon-Nikodym
derivative is the correlation function of measure µ as known from the statis-
tical physics.

Section 1.4 contains the de�nition of the two-component con�guration
space Γ2, which is de�ned as

Γ2 :=
{

(γ1, γ2) ∈ Γ+ × Γ− : γ1 ∩ γ2 = ∅
}
.

The basic de�nitions and properties are next derived as the straightforward
extensions of the proper notions from the single component space. Hence, the
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two-component K-transform and ?-convolution are de�ned and play similar
role as their one-component analogues in our considerations. Also the Minlos
lemma for the two-component case is introduced.

Next, we recall the general scheme of investigation for Markov evolu-
tions in con�guration spaces (see e.g. [FKO09]). The starting point is the
Kolmogorov equation for the observables on Γ, and the associated (dual)
Fokker-Planck equation for the evolution of states of the system. The tech-
nical di�culty with these two equations is due to the fact, that both of them
are in�nite-dimensional and until now, the tools for solving such problems are
not su�ciently developed. Therefore, using the K-transform we can "shift"
the problems to the �nite-dimensional context (of quasi-observables) and try
to approach it with classical methods. This gives the equation associated
to the symbol of the generator L de�ned by L̂ := K−1LK, corresponding to
the Kolmogorov equation. Also the evolution of correlation functions can be
derived and solved explicitly for many models.

We conclude Chapter 1 with the presentation of the Vlasov-type scaling
scheme as developed in [FKK10a]. After some historical remarks, we proceed
to the introduction of the general algorithm for scaling of a given system.
The starting point for the scaling is the Cauchy problem for the evolution
of correlation functions (which is associated to the dual of the symbol of
generator for the model). The general scheme consists of three steps:

1. scaling of the initial condition,

2. scaling of the generator,

3. renormalizing the scaled generator in a proper way.

After applying three above mentioned steps, we obtain the Cauchy problem
for the scaled correlation functions. Using classical theory we can prove that
the solutions of the rescaled equation converges to a correlation function of
some virtual interacting particle systems, and the Vlasov-type equation is
obtained as the �rst correlation function for this system.

Contact process in random environment

Chapter 2 is devoted to studies of modi�cations of the contact model in
continuum.

The contact model on the lattice was �rst introduced and studies by T.
E. Harris ([Har74]) and its name is due to the interpretation as a model for
infection spreading. Namely, given a con�guration γ = {0, 1}Zd , γ(x) = 1
means that the individual (Harris used the term creature) at site x ∈ Zd
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is infected; the case γ(x) = 0 means that the individual is healthy. During
the time evolution, healthy creatures can get infected with the rate which
is proportional to the number of infected neighbours. Note that a creature
can be infected only, if there is at least one infected individual on the neigh-
bouring sites. On the other hand, infected individuals will recover after an
exponentially distributed time.

In 2006, the continuous version of the contact process was constructed in
[KS06] and later some properties of this model were derived in [KKP08]. The
heuristic pre-generator of the contact model corresponding to the evolution
described in the previous paragraph is given by

LF (γ) =
∑
x∈γ

[F (γ \ x)− F (γ)] + λ
∑
y∈γ

∫
Rd
a(x− y) [F (γ \ x)− F (γ)] dx

and the dynamics has been constructed using the branching processes the-
ory for non-negative functions a ∈ L1+δ(Rd), and for a wide class of initial
con�gurations.

After the introduction, we recall the theory of the extended generator, as
used by [Dav93] and [MT93]. The application of the extended generator is
motivated by Lyapunov criteria for the regularity of Markov processes. The
standard (strong) generator of a given process usually does not include the
unbounded functions in its domain. A Lyapunov-type function, however, is
unbounded, and provides a simple and elegant way to prove, that the lifetime
of the process is in�nite. We also introduce the Lyapunov-type function Vβ

for the contact process, see (2.10).
In Section 2.2 we recall with details the construction of the contact model

in continuum, and apply the scheme presented in the previous section to
prove the regularity of the process. First, we construct the process on the
space of �nite con�gurations as a pure jump process with generator L (cf.
[GS74]). Then, using the branching property of the model, we can extend the
construction to the con�guration space Γ. However, if we want to prove that
the process is regular, we should restrict the class of initial con�gurations
to the space Γ∞ induced by the Lyapunov-type function Vβ. This is not a
signi�cant restriction, for the space Γ∞ is big enough to contain supports for a
large class of probability measures on Γ (cf. Remark 2.1 in [KS06]). Theorem
2.1 proves, that the contact process constructed previously is non-explosive.

Section 2.3 deals with the theory of Poisson random potentials. We brie�y
recall some basic estimates of the potential of the form

V (x, ω) :=

∫
Rd
ϕ(x− y)ω(dy)
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where ω is a realization of Poisson point process. Following [GKM00], we
derive some estimates on the V .

The rest of the chapter is devoted to studies of contact process in random
environment.

In Section 2.4 we introduce the contact model with random establishment.
Heuristically one can think of the heterogeneous landscape with areas, in
which the survival rate for the o�spring is small compared to other places.
Therefore, the pre-generator of this model is given by

Lω,bF (γ) =
∑
x∈γ

D−x F (γ) +
∑
y∈γ

κ
∫
Rd
a+(x− y)b(x, ω)D+

x F (γ)dx,

where

b(x, ω) = e−〈b
+(x−·),ω〉 = exp

(
−
∑
y∈ω

b+(x− y)

)
.

After explaining the motivation for such a model, the existence and regularity
of this process are proven in a way similar to the non-random case. Next,
using the harmonic analysis on the con�guration spaces from Chapter 1 we
derive the symbol of the generator Lω,b and its adjoint operator L∗ω,b. The
evolution of the correlation functions for the model is governed by the adjoint
operator. Using the structure of correlation functions we can apply this

operator to each component of the function kt :=
(
k

(n)
t

)
n∈N

, obtaining for

every n ∈ N the Cauchy problem of the form:

∂k
(n)
t

∂t
(x1, . . . , xn) = L̂∗nk

(n)
t (x1, . . . , xn) + f

(n)
t (x1, . . . , xn)

k
(n)
t (x1, . . . , xn)|t=0 := k

(n)
0 (x1, . . . , xn),

in some Banach space Xn. In Proposition 2.3, we give the explicit solution
to above mentioned Cauchy problem for each n ∈ N. Furthermore, assuming
that the initial condition satis�es the estimate k

(n)
0 ≤ n!Cn (where k

(n)
0 is the

n-th component of the correlation function k0 : Γ0 → Rd
+), we can prove an

estimate for the solution derived in the Proposition 2.3, see Proposition 2.4.
We conclude this section with the Lemma 2.3 which states, that the evolution
given by L∗ω,b preserves the correlation functions, i.e. if the initial condition
k0 is a correlation function for some measure µ0, then the solution kt is also
a correlation function for some µt. The proof is based on the veri�cation of
conditions derived by A. Lenard in [Len73]. The equation for the �rst and
the second correlation functions are derived explicitly.
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Another example of the contact process in random environment is studied
in Section 2.5. This is the contact process with random fecundity. Intuitively,
we deal with the situation where the rate of o�spring production is randomly
a�ected. Thus, the mechanism of evolution for this model is de�ned as
follows:

Lω,κF (γ) =
∑
x∈γ

D−x F (γ) +
∑
y∈γ

κ(y, ω)

∫
Rd
a+(x− y)D+

x F (γ)dx,

where

κ(y, ω) := exp

(
−
∑
x∈ω

φ(x− y)

)
for a positive function φ. The structure of this section is similar to the struc-
ture of the previous one. First, we construct the associated process as a
spatial branching process with killing, and using the Lyapunov-type function
Vβ we prove, that the process is regular. Later, the symbol of the genera-
tor Lω,κ and its adjoint L∗ω,κ are calculated, and we derive the evolution of
correlation functions in terms of a Cauchy problem associated to the adjoint
operator L̂∗ω,κ. Using the theory of evolution equations, the solution of this
equation is presented in Proposition 2.5. The a priori estimates for the so-
lution are proven in Proposition 2.6, assuming that the initial condition k

(n)
0

satis�es the bound k
(n)
0 ≤ n!Cn for some C > 0 and each n ∈ N. The rest of

this section is devoted to the proof of the fact, that the evolution given by
L∗ω,κ preserves the correlation functions (cf. Section 2.4).

We conclude this chapter with the description of the contact process with
random mortality. Here, the death rate of a particle is dependent on the
random in�uence. Thus, the Markov pre-generator of the model is given by:

Lω,mF (γ) =
∑
x∈γ

m(x, ω)D−x F (γ) + κ
∑
y∈γ

∫
Rd
a+(x− y)D+

x F (γ)dx,

wherem(x, ω) =
∑

x′∈ω ϕ(x−x′). Note that the methods used in two previous
sections cannot be applied in this case, and the question of the existence of
this process in Γ remains open. However, using the harmonic analysis on Γ we
are able to calculate the symbol of the generator Lω,m, and its dual operator
L∗ω,m. Again, the system of evolution equations for correlation function is
derived. Moreover, using the perturbation theory for linear operators, we
can solve the Cauchy problem for each of the components obtaining the
explicit form of the solution:

k
(n)
t (x1, . . . , xn) = etL̂

∗
nk

(n)
0 (x1, . . . , xn) +

∫ t

0

e(t−s)L∗nf (n)
s (x1, . . . , xn)ds.
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There are number of open questions arising from the analysis of three
models presented above. For example, the �rst correlation function for the
contact process with random mortality satis�es the equation

∂k
(1)
t

∂t
(x) = L1k

(1)
t (x)− V (x, ω)k

(1)
t (x)

which is nothing else but the evolution of a jumping particle among Poi-
sonnian obstacles. In the case of Brownian motion instead of jumps, this
equation is called the parabolic Anderson problem and has been widely stud-
ied for example by A. S. Sznitman, S. Molchanov, J. Gärtner, W. König et
al. (see e.g. [Szn06, Szn98, GKM00, ABMY00]).

Glauber-type dynamics in random environment

In the present chapter we apply the perturbation theory to construct a semi-
group associated to the symbol of the Glauber dynamics in the random en-
vironment.

In the introduction, we recall some known facts about the Glauber dy-
namics on the lattice and in the continuous space case. If we consider the
classical Ising model with the spin space S = {−1, 1}, then the Glauber dy-
namics of the systems means, that the particles placed on the sites x ∈ Zd
randomly change their spin value (it's called the spin-�ip dynamics). We refer
to [Lig85] for the detailed discussion of the Glauber dynamics on the lattice.
Also the continuous space analogue of the Glauber dynamics was constructed
in both equilibrium and non-equilibrium case (see e.g. [KL05, KKZ06]). The
Glauber-type dynamics in continuum is a process where the particles ran-
domly appear and disappear in the space.

In Section 3.1 we recollect some basic facts from the theory of Gibbs
measures associated to the pair potential φ. We remind the de�nitions of the
Hamiltonian Eφ, and the relative energy of interaction Eφ(x, γ) between a
particle located at site x ∈ Rd and the con�guration γ ∈ Γ. After some prepa-
rations, we recall the Dobrushin-Lanford-Ruelle (DLR) equation to de�ne the
Gibbs measure µ associated to the pair potential φ, inverse temperature β
and the parameter z > 0 (see De�nition 3.1).

Some classical facts from the perturbation theory are stated in Section
3.2. We focus here on the perturbation theory for holomorphic semigroups,
generated by operators belonging to the set H(ω, 0) (for ω > 0) of all closed
and densely de�ned operators T , the resolvent of which contains the sector

Sect(
π

2
+ ω) = {ζ ∈ C : |argζ| < π

2
+ ω} \ {0},
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and such that for any ε > 0

‖(T − ζ1)−1‖ ≤ Mε

|ζ|
,

and Mε does not depend on ζ. It is known, that every operator T ∈ H(ω, θ)
is the generator of a holomorphic semigroup (cf. Remark 3.1). We apply the
perturbation theory presented in this section to construct the semigroups
corresponding to the symbols of two pre-generators introduced in Section
3.3. The action of the �rst one is given by:

Lextω F (γ) :=
∑
x∈γ

D−x F (γ) + κ
∫
Rd
e−βE

φ(x,γ)D+
x F (γ)e−E

h(x,ω)dx,

with the external �eld interaction, and

LωF (γ) :=
∑
x∈γ

e−E
h(x,ω)D−x F (γ) + κ

∫
Rd
e−βE

φ(x,γ)e−E
h(x,ω)D+

x F (γ)dx

where we have random perturbation of the rates. Both of these operators
satisfy the detailed balance condition (cf. 3.14 and [Glo81]), hence they have
Gibbs states as symmetrizing measures. In the case of Lextω , it is Gibbs mea-
sure µ ∈ G(φ,κ, β) which is associated to the Lebesgue-Poisson measure with
the random intensity measure: σω(dx) := e−E

h(x,ω)dx, heuristically given by

λκ,ω =
∞∑
n=0

κn

n!
σ(n)
ω .

Whereas the symmetrizing measure for the operator Lω is just the Gibbs state
with the Lebesgue-Poisson measure as the reference measure (cf. Section
3.1). Next, the symbols of the two generators above are calculated using the
K-transform.

In Section 3.4 we construct semigroups associated to the symbols L̂extω

and L̂ω in the space

LC,β := L1
(
Γ0, C

|η|e−βE(η)λ(dη)
)
.

This is carried out using the perturbation methods introduced in the Section
3.2, and the constructed semigroups turn out to be holomorphic in the sector
| arg t| < ω for some ω > 0.
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Two-component ecological model

Chapter 4 deals with the two-component ecological model which is an ex-
ample of the process with mutualistic interaction between two populations.
After short introduction we proceed to the construction of the semigroup
associated to the symbol of the generator as in Chapter 3.

The mutual interaction between two populations of individuals means
that both of them contribute to the creation of new members of each popu-
lations but also have the in�uence on the death rate of existing individuals.
As mentioned before, the generator of such a process has the form

L = L1 + L2

and operators L1 and L2 are given as follows:

(L1F )(γ1, γ2) :=
∑
x∈γ1

d1(x, γ1 \ x, γ2)
[
F (γ1 \ x, γ2)− F (γ1, γ2)

]
+

∫
Rd
b1(x, γ1, γ2)

[
F (γ1 ∪ x, γ2)− F (γ1, γ2)

]
dx,

describes the evolution of the �rst population (type 1), and

(L2F )(γ1, γ2) :=
∑
y∈γ2

d2(y, γ1, γ2 \ y)
[
F (γ1, γ2 \ y)− F (γ1, γ2)

]
+

∫
Rd
b2(y, γ1, γ2)

[
F (γ1, γ2 ∪ y)− F (γ1, γ2)

]
dy.

characterizes the second population (type 2). The birth and death coe�cients
re�ect the mutualistic nature of the model thus they are given by:

d1(x, γ1, γ2) = m+ + A−1
∑
x′∈γ1

a−1 (x− x′) +B−1
∑
y∈γ2

b−1 (x− y),

b1(x, γ1, γ2) = A+
1

∑
x′∈γ1

a+
1 (x− x′) +B+

1

∑
y∈γ2

b+
1 (x− y),

d2(y, γ1, γ2) = m− + A−2
∑
y′∈γ2

a−2 (y − y′) +B−2
∑
x∈γ1

b−2 (y − x),

b2(y, γ1, γ2) = A−2
∑
y′∈γ2

a+
2 (y − y′) +B+

2

∑
x∈γ1

b+
2 (y − x).

Next, we calculate the symbol of the generator L, and in the series of propo-
sitions we show that one part of the symbol plays role of the leading operator,
and the rest is relatively bounded with respect to it. That allows us to apply
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the classical result (cf. Theorem 3.1) and to establish the existence of the
semigroup associated to the symbol L̂ in the space

LC := L1
(

Γ+
0 × Γ−0 , C

|η1|+|η2|λ(dη1)λ(dη2)
)
,

see Theorem 4.1.
In Section 4.3 we introduce the space of the so-called correlation func-

tions :

QC :=
{
k : Γ0 × Γ0 → R| k · C−(|η1|+|η2|) ∈ L∞(Γ0 × Γ0, λ

2)
}
.

and derive the dual of the operator L̂ in the space QC . Then the evolution of
the correlation functions is given in terms of the dual semigroup in the weak
sense, i.e. in the sense of the duality (4.19).

Finally, in the last section of this chapter we apply the Vlasov-type scaling
scheme introduced in Section 1.6 to the operator L. For ε > 0 we consider the
scaled operator Lε. The scaling is as follows: the birth coe�cients remain
unchanged and the death coe�cients of the operator L are scaled in the
following manner:

d1
ε(x, γ

1, γ2) = m+ + εA−1
∑
x′∈γ1

a−1 (x− x′) + εB−1
∑
y∈γ2

b−1 (x− y),

d2
ε(y, γ

1, γ2) = m− + εA−2
∑
y′∈γ2

a−2 (y − y′) + εB−2
∑
x∈γ1

b−2 (y − x).

Then, the form of the symbol L̂ε is obtained using the harmonic analysis,
and Theorem 4.2 shows that the scaled and renormalized symbol L̂ε,ren is

the generator of a holomorphic semigroup Ûε(t) in LC . In Theorem 4.4 we
prove the strong convergence of Ûε(t) to the semigroup ÛV (t) generated by
the pointwise limit of the operators L̂ε,ren (denoted by L̂V ). We conclude
this chapter with the derivation of the Vlasov-type equations for the model,
that is the system of two equations for the densities of both populations:

∂
∂t
ρ1
t (x) = −m+ρ1

t (x)

−A−1 ρ1
t (x)

(
a−1 ∗ ρ1

t

)
(x)−B−1 ρ1

t (x)
(
b−1 ∗ ρ2

t

)
(x)

+A+
1

(
a+

1 ∗ ρ1
t

)
(x) +B+

1

(
b+

1 ∗ ρ2
t

)
(x)

ρ1
t (x)|t=0 = ρ1

0(x),



INTRODUCTION 21

and 

∂
∂t
ρ2
t (y) = −m−ρ2

t (y)

−B−2 ρ2
t (y)

(
b−2 ∗ ρ1

t

)
(y)− A−2 ρ2

t (y)
(
a−2 ∗ ρ2

t

)
(y)

+A+
2

(
a+

2 ∗ ρ2
t

)
(y) +B+

2

(
b+

2 ∗ ρ1
t

)
(y)

ρ2
t (y)|t=0 = ρ2

0(y),

Note, that both densities depend on each other and that they cannot be
separated.

Potts-type model

The last chapter is devoted to the study of Potts-type model. Heuristically,
the system consists of two interacting clouds of particles. Note, that there is
no interaction between the particles of the same type, and the dynamics of
each cloud is of Glauber type, hence the form of the pre-generator:

LF (γ1, γ2) :=
∑
x∈γ1

D1−
x F (γ1, γ2) + κ

∫
Rd
e−βE

φ(x,γ2)D1+
x F (γ1, γ2)dx

+
∑
y∈γ2

D2−
y F (γ1, γ2) + κ

∫
Rd
e−βE

φ(y,γ1)D2+
y F (γ1, γ2)dy,

where D1−
x , D1+

x , D2−
x , D2+

x denote the corresponding gradients. In Section
5.2 we focus on the symbol of the generator L, and construct the associated
semigroup in the space LC introduced in the previous chapter. The form of
the symbol is derived in Proposition 5.1 and the next proposition shows, that
L̂ with its domain is a linear operator in LC . Next we use the approach de-
veloped in [FKKZ10] to construct the semigroup associated with the symbol.
In order to do that, for δ > 0 we introduce the approximation operator:

P̂δG(η1, η2) =
∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κ1δ)
|σ1|(κ2δ)

|σ2|

×
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−βE

φ(x′,σ2) − 1
)

×
∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−βE

φ(y′,σ1) − 1
)

× G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2),
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and show, that it is a contraction in LC (see Lemma 5.2). Then, after
establishing additional properties of P̂δ we can use Corollary 3.8 from [EK05]
(cf. Lemma 5.1) to show, that the closure of (L̂,L2C) generates a strongly
continuous contraction semigroup on LC (Theorem 5.1).

Finally, Section 5.2 is devoted to the Vlasov-type scaling of the considered
model. The proper scaling for this model yields the following form of the
scaled generator:

LεF (γ1, γ2) :=
∑
x∈γ1

D1−
x F (γ1, γ2) +

κ
ε

∫
Rd
e−εβE

φ(x,γ2)D1+
x F (γ1, γ2)dx

∑
y∈γ2

D2−
y F (γ1, γ2) +

κ
ε

∫
Rd
e−εβE

φ(y,γ1)D2+
y F (γ1, γ2)dy.

After calculating the symbol of Lε, we consider the scaled and renormalized
generator L̂ε,ren and its weak limit as ε ↓ 0 denoted by L̂V . Using the ap-
proximations introduced in Section 5.2 we are able to show, that the closures
of both operators generate contraction semigroups which we denote, respec-
tively, with Ûε,ren(t) and ÛV (see Theorem 5.2). As contrasted with the
previous chapter, in the case of the Potts-type model we focus on the con-
vergence of the dual semigroups (thus on the convergence of the solutions to
the corresponding Cauchy problems associated with the dual operators L̂∗ε,ren
and L̂∗V ). Unfortunately, even if Ûε,ren(t) and ÛV are strongly continuous,
the dual semigroups are not strongly continuous in the dual space QC . To
circumvent this problem, we consider these dual semigroups on a proper sub-
space of QC (see Theorem 5.3), in which they are strongly continuous and
their generators can be described in terms of the adjoint generators L̂∗ε,ren
and L̂∗V (cf. equations (5.38) to (5.41)). Theorem 5.4 states, that the dual
of the scaled semigroup (de�ned above) converges in QC to the correspond-
ing Vlasov semigroup. We conclude this chapter with the derivation of the
Vlasov-type equations for densities corresponding to both types of particles.
As result, we get the following Cauchy problem:

∂
∂t
ρ1
t (x) = −ρ1

t (x) + κe−β(ρ
2
t ∗φ)(x)

ρ1
t (x)|t=0 = ρ1

0(x),

∂
∂t
ρ2
t (y) = −ρ2

t (y) + κe−β(ρ
1
t ∗φ)(y)

ρ2
t (y)|t=0 = ρ2

0(y).

Note, that the corresponding densities evolve in dependence on each other
and cannot be separated. As in the previous chapter, we assume that the
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initial state of the system is a Poisson measure (not necessarily homoge-
neous). Then we have the chaos preservation property, i.e., the Poissonian
structure is preserved during the evolution and corresponding densities solve
the system of two equations above.
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Chapter 1

Con�guration spaces

We devote this chapter to recall some known facts from the theory of con�g-
uration spaces and to the introduction of the two-component con�guration
spaces.

One can de�ne the con�guration space over a general connected, oriented
Riemannian C∞-manifold X which we call the position space of the particles
(or individuals). The following notation will be used throughout this thesis:

O(X) : the family of all open subsets of X,

B(X) : the Borel σ-algebra on X,

Oc(X),Bc(X) : the family of open (Borel-measurable, resp.) sets in X

with compact closure,

B(X) : the family of all measurable bounded functions on X,

C0(X) : the set of all continuous functions with compact support.

In the present work we consider only the case where X = Rd, which is the
natural choice if one considers the ecological applications of the investigated
models. For more general theory of con�guration spaces we refer to [Kun99]
and [AKR98].

1.1 One-component con�guration spaces

Let n ∈ N ∪ {0} and Λ ∈ B(Rd), de�ne the space of n-point con�gurations
over Λ as follows:

Γ
(n)
0,Λ := {η ⊂ Λ : |η| = n}, Γ

(0)
0,Λ := {∅}, (1.1)

where |A| denotes the cardinality of the set A. We call the elements η ∈ Γ
(n)
0,Λ

con�gurations. Now let Y ∈ Bc(Λ) and denote by ηY := η ∩ Y . Introduce

25



26 CHAPTER 1. CONFIGURATION SPACES

also the mapping NY : Γ
(n)
0,Λ → N ∪ {0}, NY (η) = |ηY |, the number of the

points in the con�guration η in Y . The topological structure on Γ
(n)
0,Λ may be

de�ned using the symmetrizing mapping from

Λ̃n := {(x1, . . . , xn) ∈ Λn : xk 6= xj for k 6= j} (1.2)

onto Γ
(n)
0,Λ, de�ned as

symn
Λ : Λ̃n → Γ

(n)
0,Λ, (1.3)

symn
Λ(x1, . . . , xn) = {x1, . . . , xn}.

Denote with O(Γ
(n)

0,Rd) the topology on Γ
(n)

0,Rd generated by the map symn
Λ

and the corresponding Borel σ-algebra by B(Γ
(n)

0,Rd). It can be shown (see

e.g. [Len75]), that B(Γ
(n)

0,Rd) coincides with the σ-algebra generated by the
mappings NΛ, i.e.

B(Γ
(n)

0,Rd) = σ
(
NΛ| Λ ∈ Bc(Rd)

)
. (1.4)

Finally, de�ne the space of �nite con�gurations :

Γ0,Rd :=
⊔

n∈N∪{0}

Γ
(n)

0,Rd . (1.5)

It is equipped with the topology of disjoint union. In the sequel, we will
simply write Γ0 instead of Γ0,Rd .

The con�guration space Γ(:= ΓRd) is de�ned as the space of all locally
�nite subsets of Rd, i.e.:

Γ :=
{
γ ⊂ Rd : |γ ∩ Λ| <∞, for all Λ ∈ Bc(Rd)

}
. (1.6)

Using the representation

γ =
∑
x∈γ

δx

where δx is the Dirac measure with unit mass at x, we can consider the
con�guration space as the subset of the space of all positive Radon measures
on Rd - note that we do not allow more than one particle at the same site
x ∈ Rd, therefore we call the elements γ ∈ Γ simple con�gurations. We equip
Γ with the vague topology of the space M(Rd) of all Radon measures, i.e.
the weakest topology in which mappings

Γ 3 γ 7→ 〈f, γ〉 :=

∫
f(x)dγ(x) =

∑
x∈γ

f(x), f ∈ C0(Rd) (1.7)
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are continuous. In the following we will use the notation 〈f, γ〉 for all func-
tions f for which it makes sense.

One can show (see e.g. [Kut03]), that Γ equipped with the vague topology
can be metrized so that it becomes Polish space.

1.2 Measures on Γ0 and Γ

We will now recall the de�nitions of the Lebesgue-Poisson and the Poisson
measure on Γ in the free case (without interaction between particles). Fix a
non-atomic and locally �nite measure σ on Rd, we will call it the intensity
measure.

1.2.1 Lebesgue-Poisson and Poisson measure

Let n ∈ N. Recall the de�nition

(̃Rd)n :=
{

(x1, . . . , xn ∈
(
Rd
)n

: xk 6= xj for k 6= j
}
.

Consider the restriction of σ⊗n to the space
(

(̃Rd)n,B((̃Rd)n)
)
(note that

σ⊗n
(

(Rd)n \ (̃Rd)n
)

= 0) and denote by σ(n) := σ⊗n ◦ (symn)−1 the corre-

sponding measure on Γ
(n)
0 (with σ(0)({∅}) := 1).

De�ne the Lebesgue-Poisson measure on Γ0 as

λzσ :=
∞∑
n=0

zn

n!
σ(n) (1.8)

where z > 0 is called the activity parameter.

For Λ ∈ Bc(Rd) we have λzσ(Γ0,Λ) = ezσ(Λ), and if we will consider the
restriction of λzσ to a set Λ ∈ Bc(Rd) (which we also denote by λzσ), then we
can de�ne a probability measure on ΓΛ by

πΛ
zσ := e−zσ(Λ)λzσ. (1.9)

One can check, that the family
(
πΛ
zσ

)
Λ∈B(Rd)

is consistent (cf. [Kun99]). Thus,

by (a version of) Kolmogorov theorem there exists a measure πzσ on (Γ,B(Γ))
such that πΛ

zσ = πzσ ◦ p−1
Λ , where pΛ is a projection pΛ : Γ 7→ ΓΛ, pΛ(γ) = γΛ.

The measure πzσ is called the Poisson measure on (Γ,B(Γ)) with the intensity
measure zσ.
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Remark 1.1 ([Oli02]). One can also de�ne the Poisson measure on Γ by its
Laplace transform in the following way:∫

Γ

e〈f,γ〉πzσ(dγ) = ez
∫
Rd(ef(x)−1)σ(dx) (1.10)

for any in�nitely di�erentiable real-valued function f with compact support.

We say, that a given measure µ on (Γ,B(Γ)) has the correlation functions

kµ :=
(
k

(n)
µ

)
n∈N

, if for any n ∈ N there exists a non-negative, symmetric and

measurable function k
(n)
µ on (Rd)n such that∫

Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)µ(dγ) = (1.11)

1

n!

∫
(Rd)

n
f (n)(x1, . . . , xn)k(n)

µ (x1, . . . , xn)σ(dx1) · · ·σ(dxn),

for any measurable, symmetric function f (n).
The next lemma is one of the main technical tools in our considerations,

its proof can be found in [Oli02].

Lemma 1.1 (Minlos lemma). Let G : Γ0 7→ R, H : Γ0 × · · · × Γ0 7→ R be
positive and measurable, then for n ∈ N, n ≥ 2:∫

Γ0

· · ·
∫

Γ0

G(η1 ∪ . . . ∪ ηn)H(η1, . . . , ηn)λzσ(dη1) · · ·λzσ(dηn) (1.12)

=

∫
Γ0

G(η)
∑

(η1,...,ηn)∈P∅n(η)

H(η1, . . . , ηn)λzσ(dη),

where P∅n(η) denotes the family of all ordered partitions of η in n parts, which
may be empty.

From now on, �x the parameter z = 1 and let the measure σ be the
Lebesgue measure on Rd. In this case we will write λ instead of λzσ to
denote the Lebesgue-Poisson measure.

1.3 Harmonic analysis on con�guration spaces

We will recall some facts which will be used often in this thesis, for proofs
and more detailed description we refer e.g. to [FKO09, Oli02, Kun99, KK02].
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1.3.1 Functions on Γ0 and Γ

Let L0(Γ0) denote the set of all B(Γ0)-measurable real-valued functions on
Γ0, and let B(Γ0) ⊂ L0(Γ0) denote the set of those measurable functions
which are bounded.

De�nition 1.1. Denote with L0
ls(Γ0) the set of all measurable functions with

local support, i.e.: G ∈ L0
ls(Γ0) i� G ∈ L0(Γ0) and there exists Λ ∈ Bc(Rd)

such that G �Γ0\ΓΛ
= 0.

Denote with L0
bs(Γ0) the set of all measurable functions with bounded sup-

port, i.e. G ∈ L0
bs(Γ0) i� G ∈ L0(Γ0) and there exists Λ ∈ Bc(Rd) and N ∈ N,

such that G �
Γ0\

(
tNn=0Γ

(n)
Λ

)= 0.

We de�ne the family of bounded functions with local support Bls(Γ0) and
the family of bounded functions with bounded support Bbs(Γ0) in the similar
way.

Let for Λ ∈ Bc(Rd),

BΛ(Γ) := σ
(
NΛ′ : Λ′ ∈ Bc(Rd) with Λ′ ⊂ Λ

)
.

Denote by L0(Γ) the set of all B(Γ)-measurable functions, and de�ne the
σ-algebra of cylinder sets

Bcyl(Γ) :=
⋃

Λ∈Bc(Rd)

BΛ(Γ). (1.13)

A cylinder function F ∈ L0(Γ) is a function which is measurable w.r.t.
Bcyl(Γ). We will denote the set of all cylinder functions by FL0(Γ,B(Γ)).
In particular, F ∈ FL0(Γ,B(Γ)) means, that F is BΛ(Γ)-measurable for
some Λ ∈ Bc(Rd) and

F (γ) = F �ΓΛ
(γΛ). (1.14)

Let FCb = FCb(C0(Rd),Γ) denote the set of all bounded continuous
cylinder functions, i.e. those functions F on Γ which have the representation:

F (γ) = gF (〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)

for some N ∈ N, gF ∈ Cb(RN) and ϕ ∈ C0(Rd). Note, that this representa-
tion is not unique.

We will call the functions on Γ0 quasi-observables, and those on Γ observ-
ables.
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1.3.2 K-transform

The following mapping between quasi-observables and observables plays cru-
cial role in our further considerations. Its introduction was motivated by the
concepts of additive type observables from statistical mechanics, it was also
used by Lenard to de�ne the correlation functions, see e.g. [Len75, Bog46].
Let G ∈ L0

ls(Γ0), γ ∈ Γ and de�ne

KG(γ) :=
∑
ηbγ

G(η). (1.15)

Here and throughout this thesis, η b γ means, that η is a �nite subset of γ.
Note that this sum is well de�ned, because only �nite number of summands
is unequal to zero. Below we present some properties of the K-transform.
Their proofs can be found in [KK02].

Remark 1.2. The K-transform is linear and preserves positivity, it maps
L0
ls(Γ0) into FL0(Γ).

The K-transform is invertible, with the inverse de�ned by

K−1F (η) =
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0 (1.16)

for a cylindrical function F : Γ 7→ R.
Below we give an example of K-transform of the so called coherent state

eλ(f, ·) corresponding to a measurable function f : Rd 7→ R, i.e.

eλ(f, η) :=
∏
x∈η

f(x), η ∈ Γ0 (1.17)

and eλ(f, ∅) := 1. Assume now, that f has a compact support, then

(Keλ(f, ·)) (γ) =
∏
x∈γ

(1 + f(x)) , γ ∈ Γ. (1.18)

We de�ne now, for G1, G2 ∈ L0
ls(Γ0), the ?-convolution:

G1 ? G2(η) :=
∑

(η1,η2,η3)∈P∅3 (η)

G1(η1 ∪ η2) ·G2(η2 ∪ η3). (1.19)

One of the most important properties of the ?-convolution is stated in the
following remark, the proof of which can be found in [KK02]:

Remark 1.3. For G1, G2 ∈ L0
ls(Γ0) we have

K (G1 ? G2) (η) = KG1(η) ·KG2(η). (1.20)

Due to this property the K-transform is analogous to the (classical)
Fourier transform in the case of con�guration space analysis.
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1.3.3 Correlation measures

Using theK-transform, we can de�ne a measure on Γ0. Denote withM1
fm(Γ)

the set of all probability measures on Γ which have �nite local moments (of
all orders), that is ∫

Γ

|γΛ|nµ(dγ) <∞ (1.21)

for all Λ ∈ Bc(Rd) and all n ∈ N. Next, with Mlf (Γ0) denote the set of
all locally �nite measures on Γ0, i.e. ρ(Λ) < ∞ for all ρ ∈ Mlf (Γ0) and all
bounded sets Λ from B(Γ0).

Let now µ ∈ M1
fm(Γ) and de�ne the dual of K-transform (denoted by

K∗) as follows: ∫
Γ

KG(γ)µ(dγ) =

∫
Γ0

G(η) (K∗µ) (dη). (1.22)

We call ρµ := K∗µ, the correlation measure of the measure µ.

Remark 1.4. A useful example of such a dualism is given in [FKO09].
The correlation measure corresponding to the Poisson measure πzσ is the
Lebesque-Poisson measure λzσ.

Having de�ned the correlation measure, we can recall the important fact
about the extension of the K-transform de�ned in (1.15):

Theorem 1.1 ([KK02], Thm. 4.1). Let µ ∈ M1
fm(Γ) be given. For any

G ∈ L1(Γ0, ρµ) we de�ne

KG(γ) :=
∑
ηbγ

G(η), (1.23)

where the latter series is µ-a.s. absolutely convergent. Furthermore one can
show that KG ∈ L1(Γ, µ),

‖KG‖L1(µ) ≤ ‖K|G|‖L1(µ) = ‖G‖L1(ρµ) (1.24)

and ∫
Γ0

G(η)ρµ(dη) =

∫
Γ

KG(γ)µ(dγ). (1.25)
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We have already de�ned the correlation functions in (1.11). One can also
introduce them using K∗, if the measure µ and its correlation measure have
densities.

We say, that a measure µ ∈M1
fm(Γ) is locally absolutely continuous w.r.t.

measure πσ, i� for each Λ ∈ Bc(Rd), the measure µΛ := µ ◦ p−1
Λ is absolutely

continuous w.r.t. πΛ
σ := πσ ◦ p−1

Λ . In this case, ρµ = K∗µ is absolutely
continuous w.r.t. λσ and we have

kµ(η) =
dρµ
dλσ

(η).. (1.26)

As we will see later, the correlation functions are very useful to describe
the evolution of certain (Markov) processes on con�guration space.

1.4 Two-component con�guration space

Having in mind the motivation source of the considered models (e.g. ecologi-
cal applications) we introduce now the two-component con�guration space as
the Cartesian product of two identical copies of the space Γ (cf. [FKO10]).
Again, for the above mentioned reason, we distinguish the elements of each
of the two spaces as di�erent population types, i.e. Γ+ and Γ−, thus

Γ2 :=
{

(γ1, γ2) ∈ Γ+ × Γ− : γ1 ∩ γ2 = ∅
}
. (1.27)

Similarly we can de�ne the two-component space of �nite con�gurations :

Γ2
0 :=

{
(η1, η2) ∈ Γ+

0 × Γ−0 : η1 ∩ η2 = ∅
}
. (1.28)

The two-component spaces are equipped with the product topologies of the
(�nite) con�guration spaces, their structure is inherited from the underlying
one-component spaces. This applies also to the Lebesgue-Poisson and Poisson
measure, thus we can consider spaces (Γ2, πzσ ⊗ πzσ) and (Γ2

0, λzσ ⊗ λzσ).
In the following, we de�ne the two-component analogues of K-transform,

the ?-convolution and the Minlos lemma. Let G ∈ L0
ls(Γ

2
0) and de�ne

KG(γ1, γ2) :=
∑
η1bγ1

∑
η2bγ2

G(η1, η2), (γ1, γ2) ∈ Γ2. (1.29)

As in the one-component case it is invertible with the inverse given by

K−1F (η1, η2) =
∑
ξ1⊂η1

∑
ξ2⊂η2

(−1)|η
1\ξ1|+|η2\ξ2|F (ξ1, ξ2) (1.30)
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for F cylindrical and (η1, η2) ∈ Γ2
0.

Let η := (η1, η2) ∈ Γ2
0, then the ?-convolution is de�ned as

G1 ? G2(η) :=
∑

(η1
1 ,η

1
2 ,η

1
3)∈P∅3 (η1)

(η2
1 ,η

2
2 ,η

2
3)∈P∅3 (η2)

G1(η1
1 ∪ η1

2, η
2
1 ∪ η2

2)G2(η1
2 ∪ η1

3, η
2
2 ∪ η2

3), (1.31)

for G1, G2 ∈ L0
ls(Γ

2
0). As in the one-component case, the following property

holds:

Lemma 1.2. Let G1, G2 ∈ L0
ls(Γ

2
0), then

K(G1 ? G2)(η) = KG1(η) · KG2(η). (1.32)

Proof. Let G1, G2 ∈ L0
ls(Γ

2
0). Then we have

KG1(γ1, γ2) · KG2(γ1, γ2) =
∑
η1

1bγ
1

∑
η2

1bγ
2

G1(η1
1, η

2
1) ·

∑
η1

2bγ
1

∑
η2

2bγ
2

G2(η1
2, η

2
2)

and because of the assumptions about G1, G2 those sums are �nite, hence
the latter is equal to∑

η1
1bγ

1

∑
η1

2bγ
1

∑
η2

1bγ
2

∑
η2

2bγ
2

G1(η1
1, η

2
1) ·G2(η1

2, η
2
2).

For i = 1, 2, we can decompose γi into four sets: ξi1 := ηi1 \ ηi2, ξi2 := ηi2 \ ηi1,
ξi3 := ηi1 ∩ ηi2 and ξi4 := γi \ (ηi1 ∪ ηi2). Then we obtain∑

(ξ1
1 ,ξ

1
2 ,ξ

1
3 ,ξ

1
4)∈P∅4 (γ1)

(ξ2
1 ,ξ

2
2 ,ξ

2
3 ,ξ

2
4)∈P∅4 (γ2)

G1(ξ1
1 ∪ ξ1

3 , ξ
2
1 ∪ ξ2

3) ·G2(ξ1
2 ∪ ξ1

3 , ξ
2
2 ∪ ξ2

3)

but this is the same as∑
ξ1
4bγ

1

∑
ξ2
4bγ

2

∑
(ξ1

1 ,ξ
1
2 ,ξ

1
3)∈P∅3 (γ1\ξ1

4)

(ξ2
1 ,ξ

2
2 ,ξ

2
3)∈P∅3 (γ2\ξ2

4)

G1(ξ1
1 ∪ ξ1

3 , ξ
2
1 ∪ ξ2

3) ·G2(ξ1
2 ∪ ξ1

3 , ξ
2
2 ∪ ξ2

3)

which is equal to∑
ξ1
4bγ

1

∑
ξ2
4bγ

2

(G1 ? G2) (γ1 \ ξ1
4 , γ

2 \ ξ2
4) = K (G1 ? G2) (γ1, γ2).
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Denote now

eλ(f, g, η
1, η2) := eλ(f, η

1)eλ(g, η
2), (1.33)

then for f, g ∈ L1(Γ2
0, ρµ) we have(

Keλ(f, g, ·1, ·2)
)

(γ1, γ2) =
∏
x∈γ1

(1 + f(x))
∏
y∈γ2

(1 + g(y)) (1.34)

We will also need the Minlos lemma in the two-dimensional case:

Lemma 1.3. Let n ≥ 1, and for each i = 1, . . . , n, ηi = (η1
i , η

2
i ) ∈ Γ2

0. Let
λ2 := λ⊗ λ be the product measure on (Γ2

0,B(Γ2
0)). Then∫

Γ2
0

dλ2(η1) . . .

∫
Γ2

0

dλ2(ηn)G(η1
1 ∪ . . . ∪ η1

n, η
2
1 ∪ . . . ∪ η2

n)H(η1, . . . , ηn)

=

∫
Γ2

0

dλ2(η)G(η)
∑

(η1
1 ,...,η

1
n)∈P∅n(η1)

(η2
1 ,...,η

2
n)∈P∅n(η2)

H((η1
1, η

2
1), . . . , (η1

n, η
2
n)),

for all functions G,H for which both sides of the equality make sense.

The de�nitions introduced in this section can be further generalized to
systems which consist of more than two populations, i.e. we can de�ne the
multicomponent con�guration spaces in a similar way.

1.5 Markov evolutions in CS

In this section we present the general investigation scheme for the in�nite
particle systems, using the framework of the con�guration spaces analysis
(see e.g. [KK02, FKK09, Str09, FKO09, FKO10]). As we mentioned before,
the functions F on Γ are called observables. The measure µ on Γ will be
then the state of a system. Note, that the number of particles (individuals)
of the system is in�nite. This fact is the source of many technical di�culties,
as well as of some interesting questions. We will denote by 〈·, ·〉 the expected
value of an observable F w.r.t. to the state µ:

〈F, µ〉 =

∫
Γ

F (γ)µ(dγ). (1.35)

Let L denote the heuristic (Markov) pre-generator which describes the
in�nitesimal behaviour of a given model. The mechanism of evolution of the
system is determined by the action of L. Having in mind applications, the
possible events include:
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• birth,

• death,

• jump,

• di�usion (motion)

of a particle (or site x ∈ Rd) during the in�nitesimal time interval [t, t+ dt].
Because of the very complex structure of the space Γ, it is often di�cult to
give precise description of the operator L, i.e. to specify its domain and thus
to consider L as a generator of a strongly continuous contraction semigroup
associated with a Markov process using the standard methods (as in, e.g.
[MR92]). We will use di�erent approach to the problem. If LF is (at least)
point-wisely well de�ned for a function F ∈ FCb, then we can write the
so-called Kolmogorov equation for observables

∂

∂t
Ft = LFt. (1.36)

The equation for the associated state µt would be the dual Kolmogorov equa-
tion (or Fokker-Planck equation)

∂

∂t
µt = L∗µt, (1.37)

where L∗ is the adjoint of the operator L with respect to the duality (1.35).
In this situation, we are still in the in�nite-dimensional context, which makes
it complicated to even formulate the problem rigorously. However, using the
tools presented earlier in this chapter, we can rewrite in�nite dimensional
evolutional equation as an in�nite system of �nite dimensional equations,
namely as an evolutional equations of quasi-observables. De�ne the symbol
L̂ of the operator L, L̂ := K−1LK. Using the symbol we can obtain the
equation for quasi-observables corresponding to the Kolmogorov equation:

∂

∂t
Gt = L̂Gt. (1.38)

We can, again, deduce the dual equation on correlation functions

∂

∂t
kt = L̂∗kt, (1.39)

where the operator L̂∗ is de�ned via the duality

〈L̂G, k〉 =

∫
Γ0

L̂G(η)k(η)λzσ(dη) =

∫
Γ0

G(η)L̂∗k(η)λzσ(dη) = 〈G, L̂∗k〉.

(1.40)
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In order to do this, we should assure that the corresponding correlation
measure ρµ is absolutely continuous w.r.t. the Lebesgue-Poisson measure
λzσ for every time t ≥ 0. We should also mention that the solution to the
equation (1.40) is not necessary a correlation function associated to some
measure. There exist, however, conditions which assure the existence of such
a measure (see, e.g. [BKKL99, Len73]).

To summarize this section, let us present the latter considerations on the
diagram ([FKO09]):

-�

6

-�

?
G

F µ

ρµ

〈F, µ〉 =

∫
Γ

F (γ)dµ(γ)

〈G, ρµ〉 =

∫
Γ0

G(η)dρµ(η)

K K∗

1.6 Vlasov type scaling

The Vlasov equation was introduced by A. Vlasov in 1938 in the context of
plasma physics, to describe the evolution of density of plasma particles with
long-range interaction (see [Vla68] for English translation). It also plays an
important role in the stellar dynamics (see e.g. [Spo80]). Later development
and applications of Vlasov scaling are due to the works of Braun and Hepp
([BH77]), Dobrushin ([Dob79]) and Kozlov ([Koz08]).

The Vlasov equation can be obtained by a proper scaling of a system. In
this work we study a type of Vlasov scaling for two-component interacting
particle systems. However, as it was mentioned in [FKK10a], the methods
used by the authors above cannot be simply used in our case (one of the
reasons for that is for example lack of the description of a given model in
terms of a stochastic di�erential equation describing the evolution), therefore
we will recall here the Vlasov-type scaling scheme developed in [FKK10a].
The description presented here is general and does not contain all technical
details needed to properly formulate the statements. Those details are model-
dependent thus we will give them later in the proper chapters.
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In the previous section we have presented the general scheme to obtain
the evolution of correlation functions for a given system. The starting point
was a Markov pre-generator L and the equation (1.36). Then, using the K-
transform we could derive the evolution equation for the system of correlation
functions (1.39) corresponding to the states (µt)t≥0. Note, that depending
on the considered model we will later specify the formal conditions for such
an evolution to exist. Usually, the Vlasov scaling is realized in terms of
correlation functions, thus our starting point is the following Cauchy problem:

∂
∂t
kt = L̂∗kt

kt|t=0 = k0.
(1.41)

Recall that if L̂∗ generates a semigroup Û∗(t) in some space then the solution
to (1.41) is given by kt = Û∗(t)k0, t ≥ 0.

The general scheme of Vlasov type scaling introduced in [FKK10a] is as
follows:

Step 1. We scale the initial function k0 with ε > 0 in such a way, that
k

(ε)
0 (η) ∼ ε−|η|r0(η), ε → 0, η ∈ Γ0 and the function r0 is indepen-
dent of ε. The choice of this initial density r0 is usually motivated
by the considered model. As it will become clear later, the function
r0(η) := eλ(ρ0, η) plays essential role in our considerations, moreover
we expect that the scaled dynamics preserves the factorized form of
such initial density r0, i.e. rt(η) = eλ(ρt, η) for some ρt, and

∂

∂t
ρt(x) = v(ρt)(x), (1.42)

which is the Vlasov-type equation in our case. Although the equation
(1.41) is linear, the equation (1.42) can be much more complicated
(it is usually not linear any more).

Step 2. Now we should scale the generator L̂∗ in a proper way. Again,
the exact form of this scaling depends deeply on particular models.
After scaling, we obtain a generator L̂∗ε and the evolution equation

∂
∂t
k

(ε)
t = L̂∗εk

(ε)
t

k
(ε)
t |t=0 = k

(ε)
0 .

(1.43)

The idea of the scaling of the generator is very much related to the
next Step.
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Step 3. We impose that the scaled evolution preserves the order of singu-
larity in ε, hence we need to renormalize k

(ε)
t setting k

(ε)
t,ren(η) :=

ε|η|k
(ε)
t (η), η ∈ Γ0 so that

k
(ε)
t,ren(η)→ rt(η), ε→ 0. (1.44)

As result, we consider the renormalized version of the operator L̂∗ε,

L̂∗ε,ren := e|η|L̂∗εe
−|η|

and thus the equation (1.43) becomes
∂
∂t
k

(ε)
t,ren = L̂∗ε,renk

(ε)
t,ren

k
(ε)
t,ren|t=0 = k

(ε)
0,ren.

(1.45)

Hence, informally, letting ε tend to 0 we are looking for the solution
of the following equation 

∂
∂t
rt = LV rt

rt|t=0 = r0.
(1.46)

The natural candidate for the operator LV is the pointwise limit
of operators L̂∗ε,ren. The Vlasov equation (1.42) can be deduced
heuristically from the equation (1.43), which is the analogue of
the BBGKY hierarchy in the case of Hamiltonian systems (see e.g.
[Spo80]).

This type of scaling has been studied e.g. in the case of individual based
models with competition ([FKK10c]) and Glauber-type dynamics in contin-
uum ([FKK10d]). In what follows, we will present the results of the Vlasov-
type scaling for the following two-component systems: ecological model and
the Glauber-Potts model.



Chapter 2

Continuous contact model in

random environment

2.1 Introduction

In this chapter we study the modi�ed version of the contact model in contin-
uum introduced in [KS06] and later on investigated for example in [KKP08]
and [Str09]. We consider three versions of the contact model in random envi-
ronment which can be described as random fecundity, random establishment
and random mortality. Before proceeding to the construction and investiga-
tion of the above-mentioned models, we recall some useful facts known from
the theory of stability for Markov processes.

2.1.1 Extended generator

In the standard theory of Markov processes, the latter are characterized in
terms of the associated semigroup or the strong generator together with its
domain (see e.g. [MR92]). In the classical case, the domain typically consists
(for example) of bounded functions with some additional properties. The use
of unbounded functions is in general problematic. In this case, in order to
show regularity of the considered models, we are compelled to work with
functions which are not necessarily bounded (i.e. we should 'include' those
functions into the domain of the generator of the process). To do so, we will
use the so-called extended generator of the process. More detailed description
of the theory presented here can be found e.g. in [MT93] and [Dav93].

LetXt be a time-homogeneous Markov process with state space (S,B(S)).
We assume that S is a Borel space with the Borel σ-algebra B(S). Denote
by D(A) the set of all functions V : S×R+∪{0} → R for which there exists

39
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a measurable function U : S × R+ ∪ {0} → R such that

Ex [V (Xt, t)] = V (x, 0) + Ex

[∫ t

0

U(Xs, s)ds

]
(2.1)

and ∫ t

0

Ex [|U(Xs, s)|] ds <∞ (2.2)

for all x ∈ S, t > 0. We callA de�ned byAV := U , the extended generator of
the process Xt. In the next subsection we describe one of the possible ways
of determining whether a given function is in the domain of the extended
generator.

2.1.2 Truncation of the process Xt

Let (Om)m∈N be a family of open pre-compact sets in S, such that S =
⋃
mO

m

and Om ⊂ Om+1 for any m ∈ N. Let Tm be the �rst-entrance time of the
process Xt to the set (Om)c = S \Om.
Denote by ζ the lifetime of the process, i.e.,

ζ := lim
m→∞

Tm.

We introduce the truncations of Xt in the following way:

Xm
t :=

{
Xt, t < Tm

4m, t ≥ Tm

where 4m ∈ (Om)c is called the cemetery or the graveyard state.
Now let Am denote the extended generator of the truncated process Xm

t , and
de�ne the domain of its weak in�nitesimal generator (denoted by D(Ãm)) as
the set of all measurable functions W : S → R such that the pointwise limit

ÃmW (x) := lim
h→0

Ex [W (Xm
h )]−W (x)

h
(2.3)

exists for x ∈ S and satis�es

lim
h→0

Ex
[
ÃmW (Xm

h )
]

= ÃmW (x). (2.4)

In addition, if the following holds

sup
x∈C

∣∣∣ÃmW (x)
∣∣∣ <∞ (2.5)

for any compact set C ⊂ S, then D(Ãm) ⊂ D(Am) (see [Kus67]).
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2.1.3 Lyapunov-type function for the process

Let β > 0 and x, y ∈ Rd. De�ne

eβ(x) := e−β|x| (2.6)

and

Ψβ(x, y) := eβ(x)eβ(y)
|x− y|+ 1

|x− y|
1{x 6=y}(x, y). (2.7)

Now for γ ∈ Γ de�ne the following functions:

Lβ(γ) :=
∑
x∈γ

eβ(x) = 〈eβ, γ〉 , (2.8)

and

Eβ(γ) :=
∑
{x,y}⊂γ

Ψβ(x, y) =
1

2

∫
Rd

∫
Rd

Ψβ(x, y)γ(dx)γ(dy). (2.9)

Finally, let

Vβ(γ) := Eβ(γ) + Lβ(γ). (2.10)

In the sequel, function Vβ will play role of the Lyapunov function for the
contact process. It can be shown, that the sets

{γ ∈ Γ|Vβ(γ) ≤ C}

are precompact in Γ for every C > 0 (see e.g. [KKP08]).
Introduce the spaces induced by the function Vβ:

Γβ := {γ ∈ Γ : Vβ(γ) <∞} (2.11)

and

Γ∞ :=
⋃
β>0

Γβ. (2.12)

Remark 2.1 (cf. Remark 2.1 in [KS06]). Note, that µ(Γ∞) = 1 for all
probability measures µ on B(Γ) which have second local moment �nite, i.e.∫

Λ

|γΛ|2µ(dγ) <∞

for all compact sets Λ ⊂ Rd.
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2.2 Contact process in continuum

In this section we recall the construction of the contact process in continuum
as in [KS06]. Using the framework introduced in the previous sections we
show, that the lifetime of the process is equal to in�nity, i.e., the explosion
does not occur.

The heuristic pre-generator of the contact process has the following form:

LF (γ) =
∑
x∈γ

D−x F (γ) + κ
∑
y∈γ

∫
Rd
a(x− y)D+

x F (γ)dx (2.13)

where

D−x F (γ) := F (γ \ x)− F (γ), D+
x F (γ) := F (γ ∪ x)− F (γ).

The operator (2.13) is well de�ned e.g. for cylinder functions F almost surely
w.r.t. the appropriate measure on Γ, see [FKO09]. Throughout this chapter
we assume that a ∈ L∞(Rd) and that a has bounded support, i.e. there
exists a R > 0 such that supp a ⊂ BR(0).

2.2.1 Construction of the process

We construct the contact process as a spatial branching process with killing
in the space Rd. In order to do so note, that for any η ∈ Γ0 we can rewrite
pre-generator L as follows:

LF (η) = λ(η)

∫
Γ0

(F (η′)− F (η))Q(η, dη′) (2.14)

with λ(η) = |η|(1 + κ), and

Q(η, dη′) =
1

λ(η)

[∑
x∈η

δη\x(dη
′) + κ

∑
y∈η

∫
Rd
a(x− y)δη∪x(dη

′)dx

]
. (2.15)

From the theory of pure jump processes follows, that there exists a jump pro-
cess (Ω,F , (Ft)t≥0, (X

η
t )t≥0,Pη) starting from η ∈ Γ0 with lifetime ζ(ω). Such

a process can be constructed by means of the associated Markov chain and
the sequence of the stopping times, see e.g. [GS74, EK05]. As it was shown
in [FM04], the lifetime of this process (starting from �nite con�guration) is
in�nite.

Having constructed the contact process for a given �nite con�guration
η, let us proceed to the construction of the process starting with any initial
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con�guration γ ∈ Γβ. Denote by γn := γ ∩B(0, n) ∈ Γ0, n ∈ N and consider
the non-decreasing sequence of Markov processes ((Xγn

t )t≥0) de�ned on joint
probability space, with the property

∀n∈N,t≥0 Xγn
t ⊂ X

γn+1

t a.s. (2.16)

Such birth-and-death processes with the �nite initial con�guration were con-
structed for example in [FM04] using Poisson stochastic equations. Because

of the additive structure of the operator L, Xγn
t andX

γn+1\γn
t are independent

Markov processes withXγn
t ∩X

γn+1\γn
t = ∅ a.s., henceXγn+1

t = Xγn
t ∪X

γn+1\γn
t

a.s. and we can introduce the limiting process

Xγ
t (ω) =

(⋃
n∈N

Xγn
t

)
(ω) (2.17)

with the lifetime ζ(ω). For more detailed discussion see e.g. [AN72] and
[Isc86].

2.2.2 Regularity of the process

In what follows we will show that the lifetime of the process Xt constructed
in the previous section is almost surely in�nite.

Take γ ∈ Γ∞. That means that there exists β > 0 such that γ ∈ Γβ.
From now on we will �x β and consider Xt with the initial con�guration γ,
i.e. with probability one we have that X0 = γ.

Set Om := {γ ∈ Γβ : Vβ(γ) ≤ m}. Then obviously Om ↑ Γβ and each set
Om is relatively compact. Note, that the sets Om, m ∈ N depend on β, but
this is �xed here so we omit this dependence in the notation.

Recall the truncated process de�ned above, Xm
t with the initial con�gu-

ration γm := γ ∩Om and its extended generator Lm. For functions F in the
domain of the extended generator D(L) we clearly have LmF (γ) = LF (γ)
for all γ ∈ Om.

Proposition 2.1. For every m ∈ N, there exists Cm > 0 such that the
following holds:

sup
η∈Om

|LmVβ(η)| ≤ Cm <∞ (2.18)

for all β > 0.
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Proof. Let η ∈ Om and recall that LmF (γ) = LF (γ) on Om. First let us
estimate

|LmLβ(η)| =

∣∣∣∣∣∣
∑
x∈η

∑
y∈η\x

eβ(y)−
∑
y∈η

eβ(y)


+ κ

∑
y∈η

∫
Rd
a(x− y)

(∑
y∈η∪x

eβ(y)−
∑
y∈η

eβ(y)

)
dx

∣∣∣∣∣
=

∣∣∣∣∣−∑
x∈η

eβ(x) + κ
∑
y∈η

∫
Rd
a(x− y)eβ(x)dx

∣∣∣∣∣
≤ |Lβ(η)|+

∣∣∣∣∣C1κ
∑
y∈η

eβ(y)

∣∣∣∣∣ = (κC1 + 1)Lβ(η)

where we have used the fact, that function a has bounded support. Hence,
we obtain

sup
η∈Om

|LmLβ(η)| ≤ (κC1 + 1) sup
η∈Om

Lβ(η) ≤ (κC1 + 1)m <∞

because of the de�nition of Om. Next

∣∣LmEβ(η)
∣∣ =

∣∣∣∣∣∣
∑
x∈η

 ∑
{z1,z2}⊂η\x

Ψβ(z1, z2)−
∑

{z1,z2}⊂η

Ψβ(z1, z2)


+κ

∑
y∈η

∫
Rd
a(x− y)

 ∑
{z1,z2}⊂η∪x

Ψβ(z1, z2)−
∑

{z1,z2}⊂η

Ψβ(z1, z2)

 dx

∣∣∣∣∣∣
and this is equal to∣∣∣∣∣−2Eβ(η) + κ

∑
y∈η

∑
z∈η

∫
Rd
a(x− y)Ψβ(x, z)dx

∣∣∣∣∣ .
Using the de�nition of Ψβ and the properties of a there exists a constant C2

such that the latter can be estimated by

|2Eβ(η)|+ C2κ

∣∣∣∣∣∑
y∈η

∑
z∈η

eβ(y)eβ(z)

∫
BR(0)

dx

|x− (z + y)|

∣∣∣∣∣
but the integral above is uniformly bounded when d ≥ 2, thus∣∣LmEβ(η)

∣∣ ≤ |2Eβ(η)|+ C3κ

∣∣∣∣∣∑
y∈η

∑
z∈η

eβ(y)eβ(z)

∣∣∣∣∣
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for some C3 > 0. Note that∑
y∈η

∑
z∈η

eβ(y)eβ(z) = 2
∑
{y,z}⊂η

eβ(y)eβ(z) +
∑
x∈η

e−2β|x| ≤ 2Eβ(η) + Lβ(η)

which gives

sup
η∈Om

∣∣LmEβ(η)
∣∣ ≤ sup

η∈Om
[κC3Lβ(η) + 4κC3Eβ(η)]

≤ max{κC3, 4κC3} sup
η∈Om

Vβ(η)

≤ max{κC3, 4κC3}m <∞.

Thus, there exists a constant Cm > 0 such that

sup
η∈Om

|LmVβ(η)| ≤ Cm <∞

for every β > 0 and m ∈ N. That concludes the proof.

Hence the condition (2.5) is ful�lled and we have the following

Corollary 2.1. For every β > 0 and m ∈ N function Vβ is in the domain
of the extended generator Lm.

Notice that from the proof of Proposition 2.1 we can conclude:

Corollary 2.2. There exists a constant C > 0 such that for every m ∈ N
and every γ ∈ Om the following inequality holds:

LmVβ(γ) ≤ CVβ(γ). (2.19)

Finally we are able to show the following

Theorem 2.1. Contact process (Xγ
t ) is non-explosive for each γ ∈ Γ∞, i.e.

ζ =∞ with probability one.

This result is a direct consequence of Theorem 2.1. in [MT93]:

Theorem 2.2 ([MT93]). If (Xγ
t )t≥0 is a right process and (2.19) is satis�ed,

then

1. ζ =∞, so that (Xγ
t )t≥0 is non-explosive.
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2. There exists an a.s. �nite random variable D̃ such that

Vβ(Xγ
t ) ≤ D̃ect, 0 ≤ t <∞ (2.20)

The random variable D̃ satis�es the bound

Pγ(D̃ ≥ a) ≤ Vβ(γ)

a
, a > 0, γ ∈ Γ∞

3. The expectation E(Vβ(Xγ
t )) is �nite for each γ and t, and the following

bound holds
E(Vβ(Xγ

t )) ≤ ectVβ(γ).

2.3 Properties of the random potential

Before considering the contact process in random environment we will intro-
duce the random potential and show some of its properties.

We investigate the random potential corresponding to Poisson random
�eld ω, and the potential function ϕ. There exist also other possibilities for
realization of the random in�uence in our model, for example the Gaussian
potential (see e.g. [GKM00]), but we will be focused only on the Poissonian
case.

In the following, we denote by P and 〈·〉 the probability and the expec-
tation value with respect to the law of Poisson point process with intensity
parameter λ. That is, the probability of the number of points of ω in a set
A ∈ B(Rd), Nω(A) is given by Poisson distribution

P [Nω(A) = k] =
(λ|A|)k

k!
e−λ|A|.

We consider the random potential which, for a �xed ω, has the following
form:

V (x) := V (x, ω) =

∫
Rd
ϕ(x− y)ω(dy), (2.21)

for x ∈ Rd. Let r > 0 and de�ne Qr := [−r, r]d. We impose the following
assumptions on the function ϕ:

• ϕ ≥ 0 and ϕ is a continuous even function with compact support, i.e.
there exists R > 0 such that ϕ(x− y) = 0 if |x− y| > R,

• ϕ(0) > ϕ(x) for all x ∈ Rd, and ϕ(0) > 0.
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Denote by ϕ̂(x) = maxy∈Q1 |ϕ(x − y)|. It is clear that ϕ̂(y) = 0 for all
y ∈ Qc

R+1, and ϕ̂(x) < ϕ(0) for all x ∈ QR+1. The following lemma describes
the behaviour of V (x) in the unit cube:

Lemma 2.1. For all α > 1

P

(
max
x∈Q1

|V (x)| > α

)
≤ e−Cα logα (2.22)

where C > 0 is independent of α.

Proof. Using Cherno�'s inequality and the explicit form of the moment gen-
erating function for Poisson measure, we obtain for all β > 0

P

(
max
x∈Q1

|V (x)| > α

)
≤ P

(∫
Rd
ϕ̂(x)ω(dx) > α

)
≤ e−αβ

〈
eβ
∫
Rd ϕ̂(x)ω(dx)

〉
but this is equal to

e−αβ exp

[
λ

∫
Rd

(
eβϕ̂(x) − 1

)
dx

]
= e−αβ exp

[
λ

∫
Rd

∫ β

0

erϕ̂(x)ϕ̂(x)drdx

]
≤ e−αβ exp

[
λβeβϕ(0)

∫
Rd
ϕ̂(x)dx

]
≤ exp

[
−αβ + λβeβϕ(0)ϕ(0)|QR+1|

]
.

now let β = logα
ϕ(0)

, then the last line is equal to

exp

[
−α logα

ϕ(0)
(1 + ϕ(0)λ|QR+1|)

]
, (2.23)

thus we have obtained (2.22).

Using this lemma we are able to show that the potential V is bounded
almost surely in the cube of size L.

Lemma 2.2. With probability one, we have

max
x∈QL

|V (x)| ≤ C
logL

log logL
(2.24)

for L large enough.
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Proof. Let α > 1 and Ln = 2n for some n ∈ N. Using the translation
invariance of the Poisson measure and Lemma 2.1 we obtain

P

(
max
x∈QLn

|V (x)| > α

)
≤ 2ndP

(
max
x∈Q1

|V (x)| > α

)
≤ 2nde−Cα logα.

Let now α = n
logn

. The application of the �rst Borel-Cantelli lemma for the
sequence Ln will give us the required result.

We proceed now to the contact process in random environment.

2.4 Contact model with random establishment

2.4.1 Introduction

In this section the contact model with random spatial o�spring distribution
is studied. The birth rate in this case will be random, and has the follow-
ing form: b(x, γ) =

∑
y∈γ a(x − y)b(x, ω). We assume that ω is a (�xed)

realisation of the Poisson point process. This additional factor has an in�u-
ence on the location for the newly created individuals, i.e. the presence of
many points of ω in the area makes it unattractive and the probability that
a "parent" will send its o�spring to that area is relatively small. Thus the
heuristic pre-generator of the contact process with random establishment has
the following form:

Lω,bF (γ) =
∑
x∈γ

D−x F (γ) +
∑
y∈γ

κ
∫
Rd
a+(x− y)b(x, ω)D+

x F (γ)dx, (2.25)

and the random function b has the following form

b(x, ω) = e−〈b
+(x−·),ω〉 = exp

(
−
∑
y∈ω

b+(x− y)

)
for a non-negative function b+ with compact support.

2.4.2 Existence and regularity

The process can be constructed similarly to the classical case, as a branching
process with killing. Notice also, that for each β > 0 and m ∈ N, there exists
a constant Cm such that∣∣∣∣ sup

γ∈Om
Lω,bVβ(γ)

∣∣∣∣ ≤ Cm <∞. (2.26)



2.4. CONTACT MODEL WITH RANDOM ESTABLISHMENT 49

To see this, take γ ∈ Om and calculate:

|Lω,bLβ(γ)| =

∣∣∣∣∣∣
∑
x∈γ

∑
y∈γ\x

eβ(y)−
∑
y∈γ

eβ(y)


+ κ

∑
y∈γ

∫
Rd
a+(x− y)b(x, ω)

( ∑
y∈γ∪x

eβ(y)−
∑
y∈γ

eβ(y)

)
dx

∣∣∣∣∣
=

∣∣∣∣∣−∑
x∈γ

eβ(x) + κ
∑
y∈γ

∫
Rd
a+(x− y)eβ(x)b(x, ω)dx

∣∣∣∣∣
≤ Lβ(γ) + C1

∑
y∈γ

eβ(y)

∫
BR(0)

b(x+ y, ω)dx

≤ (1 + C1|BR(0)|)Lβ(γ) < (1 + C1|BR(0)|)m

where |BR(0)| denotes the volume of the ball BR(0) in Rd. Similarly

|LEβ(γ)| =

∣∣∣∣∣∣−
∑
x∈γ

∑
y∈γ\x

Ψβ(x, y) + κ
∑
y∈γ

∑
z∈γ

∫
Rd
a+(x− y)b(x, ω)Ψβ(x, z)dx

∣∣∣∣∣∣
≤ Eβ(γ) + κ

∑
y∈γ

∑
z∈γ

eβ(z)

∫
Rd
a+(x− y)eβ(x)b(x, ω)

1 + |x− z|
|x− z|

1{x 6=z}dx

= Eβ(γ) + κ
∑
y∈γ

∑
z∈γ

eβ(y)eβ(z)

∫
Rd
a+(x)eβ(x)b(x− y, ω)

1 + |x− y − z|
|x− y − z|

dx

≤ Eβ(γ) + Aκ
∑
y∈γ

∑
z∈γ

eβ(y)eβ(z)

(∫
BR(0)

b(x, ω)
1

|x− y − z|
dx+ |BR(0)|

)
≤ Eβ(γ) + C1 (2Eβ(γ) + Lβ(γ)) ≤ C2Vβ(γ) ≤ C2m.

Thus, the function Vβ is in the domain of the extended generator Lmω,b for
every m (see Corollary 2.1). Moreover, it follows from the latter calculation,
that for each γ ∈ Om we have

Lω,bVβ(γ) ≤ CVβ(γ)

for some C > 0. This together with Theorem 2.2 gives the regularity of the
process associated with the operator Lω,b.

2.4.3 The symbol of the generator

We now apply the scheme introduced in Chapter 1 to derive the corre-
sponding evolution of correlation functions for the considered system. In
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the �rst step, we calculate the symbol L̂ω,b of the operator (2.25). Recall

that L̂ω,b := K−1Lω,bK, then:

L̂ω,bG(η) =− |η|G(η) + κ
∫
Rd
b(x, ω)

∑
y∈η

a+(x− y)G(η \ y ∪ x)dx (2.27)

+ κ
∫
Rd
b(x, ω)

∑
y∈η

a+(x− y)G(η ∪ x)dx.

To show the latter fact, we will calculate the symbol directly. The de�nition
of L̂ω,b yields: L̂G(η) = I1(η) + I2(η) where

I1(η) := K−1

(∑
x∈·

[KG(· \ x)−KG(·)]

)
(η)

= K−1

−∑
x∈·

∑
ξ⊂·\x

G(ξ ∪ x)

 (η)

= −
∑
ζ⊂η

(−1)|η\ζ|
∑
x∈ζ

∑
ξ∈ζ\x

G(ξ ∪ x)(η)

= −
∑
ζ⊂η

(−1)|η\ζ|
∑
x∈ζ

KG(· ∪ x)(ζ \ x)

= −
∑
x∈η

∑
ζ⊂η\x

(−1)|η\(ζ∪x)|KG(· ∪ x)(ζ)

= −
∑
x∈η

K−1 (KG(· ∪ x)(η \ x)) = −|η|G(η),

and

I2(η) := K−1

(
κ
∫
Rd

∑
y∈·

a+(x− y)b(x, ω) [KG(· ∪ x)−KG(·)] dx

)
(η)

=κ
∑
ζ⊂η

(−1)|η\ζ|
∫
Rd
b(x, ω)

∑
y∈ζ

a+(x− y)
∑
ξ⊂ζ

G(ξ ∪ x)dx

=κ
∑
ζ⊂η

(−1)|η\ζ|
∫
Rd
b(x, ω)K(a+(x− ·)1|·|=1)(ζ) ·KG(· ∪ x)(ζ)dx

=κ
∫
Rd
b(x, ω)[a+(x− ·)1|·|=1 ? G(· ∪ x)](ζ)dx

=κ
∫
Rd
b(x, ω)

∑
(η1,η2,η3)∈P3

∅ (η)

a+(x− ·)1|·|=1(η1 ∪ η2)G(· ∪ x)(η2 ∪ η3)dx.
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The latter sum has only two non-zero terms, that is: η1 = ∅ and |η2| = 1 or
η2 = ∅ and |η1| = 1 thus we obtain

I2(η) = κ
∫
Rd
b(x, ω)

∑
y∈η

a+(x− y)G(η \ y ∪ x)dx

+ κ
∫
Rd
b(x, ω)

∑
y∈η

a+(x− y)G(η ∪ x)dx,

and hence the symbol L̂ω,b is given as above.

2.4.4 The adjoint operator

We will show now, that the adjoint operator L̂∗ω,b w.r.t. the relation (1.40)
has the following form:

L̂∗k(η) =− |η|k(η) + κ
∑
x∈η

k(η \ x)
∑
y∈η\x

a+(x− y)b(x, ω) (2.28)

+ κ
∑
x∈η

∫
Rd
a+(x− y)b(x, ω)k((η \ x) ∪ y)dy.

It is easy to see that,∫
Γ0

I1(η)k(η)λ(dη) =−
∫

Γ0

|η|G(η)k(η)λ(dη)

=

∫
Γ0

G(η) (−|η|k(η))λ(dη).

This identity gives us the �rst part of the formula. Now∫
Γ0

I2(η)k(η)λ(dη) = J1 + J2

where

J1 := κ
∫

Γ0

∫
Rd

∑
y∈η

a+(x− y)b(x, ω)G((η \ y) ∪ x)dxk(η)λ(dη),

J2 := κ
∫

Γ0

∫
Rd
G(η ∪ x)

∑
y∈η

a+(x− y)b(x, ω)dxk(η)λ(dη).
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We will rewrite two expressions above using Lemma 1.1. We start with J1:

J1 = κ
∫

Γ0

∫
Rd
k(η ∪ y)

(∫
Rd
a+(x− y)b(x, ω)G(η ∪ x)dx

)
dyλ(dη)

= κ
∫

Γ0

∫
Rd
G(η ∪ x)

(∫
Rd
a+(x− y)b(x, ω)k(η ∪ y)dy

)
dxλ(dη)

=

∫
Γ0

G(η)

(
κ
∑
x∈η

∫
Rd
a+(x− y)b(x, ω)k((η \ x) ∪ y)dy

)
λ(dη)

similarly in the case of J2 after applying Lemma 1.1 we get

J2 =

∫
Γ0

G(η)

κ
∑
x∈η

k(η \ x)
∑
y∈η\x

a+(x− y)b(x, ω)

λ(dη)

which gives us precisely (2.28).

2.4.5 Time evolution of the correlation functions

Having calculated the symbol L̂ω,b, we proceed to the evolution equations
associated with this operator. The starting point for our consideration will
be the following equation:

∂kt
∂t

(η) = L̂∗ω,bkt(η) =− |η|kt(η) + κ
∑
x∈η

kt(η \ x)
∑
y∈η\x

a+(x− y)b(x, ω)

+ κ
∑
x∈η

∫
Rd
a+(x− y)b(x, ω)kt((η \ x) ∪ y)dy.

Below we will give formal meaning to this equation. First note, that one can
rewrite the latter equation component-wise taking into account the structure
of correlation functions:

∂k
(n)
t

∂t
(x1, . . . , xn) = −nk(n)

t (x1, . . . , xn)

+ κ
n∑
i=1

k
(n−1)
t (x1, . . . , x̌i, . . . , xn)

∑
j:j 6=i

a+(xi − xj)b(xi, ω)

+
n∑
i=1

κ
∫
Rd
a+(xi − y)b(xi, ω)k

(n)
t (x1, . . . , xi−1, y, . . . , xn)dy

= L̂∗nk
(n)
t (x1, . . . , xn) + f

(n)
t (x1, . . . , xn)
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where, for n ≥ 1

L̂∗nk
(n)
t (x1, . . . , xn) = −nk(n)

t (x1, . . . , xn)

+
n∑
i=1

κ
∫
Rd
a+(xi − y)b(xi, ω)k

(n)
t (x1, . . . , xi−1, y, . . . , xn)dy

and

f
(n)
t (x1, . . . , xn) = κ

n∑
i=1

k
(n−1)
t (x1, . . . , x̌i, . . . , xn)

∑
j:j 6=i

a+(xi − xj)b(xi, ω),

with f
(1)
t ≡ 0. Recall, that every function k(n) is symmetric and de�ned on

(̃Rd)n or, by construction on (Rd)n putting k(n) ≡ 0 on (̃Rd)n
c

. Hence, for
each n ∈ N, we consider a linear Cauchy problem in some Banach space Xn

given by
∂k

(n)
t

∂t
(x1, . . . , xn) = L̂∗nk

(n)
t (x1, . . . , xn) + f

(n)
t (x1, . . . , xn),

k
(n)
t (x1, . . . , xn)|t=0 = k

(n)
0 (x1, . . . , xn).

(2.29)

Notice also, that we can rewrite operator L̂∗n in the following way

L̂∗nk
(n)
t (x1, . . . , xn) =

(
κ〈a+〉

n∑
i=1

b(xi, ω)− n

)
k

(n)
t (x1, . . . , xn)

+
n∑
i=1

Liωk
(n)
t (x1, . . . , xn),

where

Liωk
(n)(x1, . . . , xn) = κb(xi, ω)

×
∫
Rd
a+(xi − y)

[
k(n)(x1, . . . , xi−1, y, . . . , xn)− k(n)(x1, . . . , xn)

]
dy

is a generator of Markov jump process with random jump intensity.
Now set Xn := Bb((Rd)n), the space of real valued bounded functions on Rd

with the supremum norm. Notice that for k ∈ Xn:∣∣∣L̂∗nk(x1, . . . , xn)
∣∣∣ =

∣∣∣∣∣− nk(x1, . . . , xn)

+ κ
n∑
i=1

b(xi, ω)

∫
Rd
a+(xi − y)k(x1, . . . , xi−1, y, . . . , xn)dy

∣∣∣∣∣
≤ n (1 + κ〈a〉) ‖k‖Xn <∞.

From this we can conclude:
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Proposition 2.2. The operator L̂∗n is bounded in Xn. Moreover, Liω is a
generator of a contraction semigroup in Xn.

Thus, we also have the following

Proposition 2.3. For each n ∈ N the solution to the Cauchy problem (2.29)
in the space Xn is given by:

k
(n)
t (x1, . . . , xn) = etL̂

∗
nk0(x1, . . . , xn) +

∫ t

0

e(t−s)L̂∗nf (n)
s (x1, . . . , xn)ds. (2.30)

Proof. The statement follows from the classical theory, see e.g. [IK02].

We can a priori estimate the solution (2.30). Let

κ(t) := max
{

1,κ,κe−t(κ〈a
+〉−1)

}
.

Proposition 2.4. Let a+ ∈ L1(Rd)∩L∞(Rd) be even, positive function and
recall that A := ‖a+‖∞. Let C > 0 be a constant independent of n such that

k
(n)
0 (x1, . . . , xn) ≤ n!Cn (2.31)

for all (x1, . . . , xn) ∈
(
Rd
)n
. Then for all n ∈ N and t ≥ 0 the following

inequality holds:

k
(n)
t (x1, . . . , xn) ≤ κ(t)n(1 + A)nen(〈a

+〉κ−1)t (C + t)n n! (2.32)

for all (x1, . . . , xn) ∈
(
Rd
)n
.

Proof. We will argue by induction. For n = 1 we have:

k
(1)
t (x) = et(κ〈a

+〉−1)etL
1
ωk

(1)
0 (x) ≤ et(κ〈a

+〉−1)C

and (2.32) is satis�ed. Now assume that (2.32) holds for n − 1, then using
(2.30) we obtain:

k
(n)
t (x1, . . . , xn) = et(κ〈a

+〉
∑n
i=1 b(xi,ω)−n)

(
n⊗
i=1

etL
i
ω

)
k

(n)
0 (x1, . . . , xn)

+ κet(κ〈a
+〉
∑n
i=1 b(xi,ω)−n)

∫ t

0

e−s(κ〈a
+〉
∑n
i=1 b(xi,ω)−n)

×

(
n⊗
i=1

e(t−s)Liω

)
n∑
i=1

b(xi, ω)k(n−1)
s (x1, . . . , x̌i, . . . , xn)

×
∑
j:j 6=i

a+(xi − xj)ds.
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Using (2.31) and (2.32) for n− 1 we obtain

k
(n)
t (x1, . . . , xn) ≤ et(κ〈a

+〉−1)nCnn!

+ κet(κ〈a
+〉−1)n

∫ t

0

e−s(κ〈a
+〉−1)nn(n− 1)

×
[
κ(s)n−1(1 + A)ne(n−1)(κ〈a+〉−1)s(n− 1)!(C + s)n−1

]
ds

≤ et(κ〈a
+〉−1)nCnn!

+ κet(κ〈a
+〉−1)nn(1 + A)nκ(t)n−1n!

×
∫ t

0

e−s(κ〈a
+〉−1)(C + s)n−1ds.

Note that for 0 ≤ s ≤ t we have 1 ≤ κe−s(κ〈a
+〉−1) ≤ κ(s) ≤ κ(t) thus

k
(n)
t (x1, . . . , xn) ≤ et(κ〈a

+〉−1)n(1 + A)nκ(t)nn!

(
Cn + n

∫ t

0

(C + s)n−1ds

)
and the assertion is proved.

Let the initial condition
(
k

(n)
0

)
n∈N

in (2.29) be a system of correlation

functions, i.e., there exists a measure µ0 ∈ M1
fm(Γ) (locally absolutely con-

tinuous w.r.t. the Poisson measure on Γ) the correlation functions of which

are exactly
(
k

(n)
0

)
n∈N

(see e.g. [KK02] and Section 1.2). Natural question

arises: does the time evolution of
(
k

(n)
0

)
n∈N

preserves this property? In

other words, is
(
k

(n)
t

)
n∈N

a system of correlation functions of some measure

µt ∈M1
fm(Γ) for each t > 0? One of the possible ways to assure that the so-

lution of (2.29) is a correlation function is the result of A. Lenard ([Len73]).

Namely, let ρ ∈ M(Γ0) be a locally �nite and normalized (i.e. ρ(Γ
(0)
0 ) = 1)

measure with corresponding system of correlation functions
(
k

(n)
t

)
n∈N

. Then

ρ is a correlation function of some measure µ ∈M1
fm(Γ) if the following con-

ditions are satis�ed:

(P) For any G ∈ Bbs(Γ0) such that KG ≥ 0:∫
Γ0

G(η)ρ(dη) ≥ 0. (2.33)
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(M) For any bounded set Λ ⊂ Rd and j ≥ 0:

∞∑
n=0

(
mΛ
n+j

)− 1
n = +∞, (2.34)

where

mΛ
n :=

1

n!

∫
Λ

· · ·
∫

Λ

k(n)(x1, . . . , xn)dx1 · · · dxn.

Remark 2.2. Condition (P) is called Lenard positivity and provides the
existence of the measure µ above, whereas (M) is called themoment growth
condition and ensures the uniqueness of such measure (see e.g. [Len73,
KK02]).

We have also the following remark (cf. Proposition 2.4):

Remark 2.3. Condition (M) is satis�ed in particular for a system of func-
tions

(
k(n)
)
n∈N such that for all n ∈ N the following inequality

k(n)(x1, . . . , xn) ≤ Cnn!

holds for some constant C > 0 independent of n, and all (x1, . . . , xn) ∈
(
Rd
)n
.

We will now show that the latter conditions are ful�lled in the case of
considered model.

Lemma 2.3. Let a+ be as in Proposition 2.4. Then the solution of (2.29)
satis�es condition (P).

Proof. By the de�nition of correlation measure we have to show the following
for all G ∈ Bbs(Γ0) with KG ≥ 0:

∞∑
n=0

1

n!

∫
Rd
· · ·
∫
Rd
G(n)(x1, . . . , xn)k

(n)
t (x1, . . . , xn)dx1 · · · dxn ≥ 0 (2.35)

Let µ0 ∈M1
fm(Γ) have the correlation measure which is absolutely continu-

ous w.r.t. the Lebesgue-Poisson measure (that is the case if for example µ0

is locally absolutely continuous w.r.t. the Poisson measure on Γ) and such
that its correlation functions

(
k(n)
)
n∈N are bounded.

De�ne for n ∈ N, β > 0:

F (n)(γ) :=
∑

{x1,...,xn}⊂γ

e−β|x1| · · · e−β|xn|
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for γ ∈ Γ with |γ| ≥ n, and F (n)(γ) = 0 otherwise. Note that for the measure
µ0 as above we have∫

Γ

F (n)(γ)µ0(dγ) = (2.36)

1

n!

∫
Rd
· · ·
∫
Rd
e−β|x1| · · · e−β|xn|k(n)(x1, . . . , xn)dx1 · · · dxn <∞.

As it was shown before in this section, there exists a Markov process Xγ
t

associated to the generator Lω,b and such that Xγ
t ∈ Γβ almost surely for all

t ≥ 0. For n ≥ 2 we have

Lω,bF
n(γ) =

∑
x∈γ

(
F (n)(γ \ x)− F (n)(γ)

)
+ κ

∑
y∈γ

∫
Rd
a+(y − x)b(x, ω)

(
F (n)(γ ∪ x)− F (n)(γ)

)
dx

=− F (n)(γ)

+ κ
∑
y∈γ

∑
{x1,...,xn}⊂γ

e−β|x1| · · · e−β|x1|
∫
Rd
a+(y − x)b(x, ω)e−β|x|dx

≤− F (n)(γ) + κ〈a+〉
∑
y∈γ

∑
{x1,...,xn}⊂γ

e−β|y|e−β|x1| · · · e−β|x1|

≤
(
κ〈a+〉 − 1

)
F (n)(γ) + κ〈a+〉F (n−1)(γ).

Now let

F(N)(γ) :=
N∑
n=1

F (n)(γ),

and from the previous calculation follows that there exists C > 0 such that

Lω,bF(N)(γ) ≤ CF(N)(γ). (2.37)

As in the construction of the classical contact model ([KS06]), the Markov
property together with the Gronwall inequality give us then:

E
[
F(N)(Xγ

t )
]
≤ F(N)(γ)eCt. (2.38)

Recall from Section 1.5 that the evolution of the initial measure (state) µ0

associated to the process Xγ
t is given by the dual operator L∗ω,b (with respect

to duality (1.35)), i.e.:

∂

∂t
µt = L∗ω,bµt,

µt|t=0 = µ0.
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Let (µt)t≥0 denote the evolution of µ0 given by the equation above. If for every
t ≥ 0, µt ∈ M1

fm(Γ), then the Markov evolution of correlation measures ρt
corresponding to µt exists inMlf (Γ0) and (2.35) will follow trivially because
of the Markov property of the corresponding semigroup.
For the function F(N) and a bounded set Λ ⊂ Rd we have (see [KKP08,
Str09]):

F(N)(γ) ≥ F(N)(γΛ) =
N∑
n=1

∑
{x1,...,xn}⊂γΛ

e−β|x1| · · · e−β|xn|

≥
N∑
n=1

(
min
x∈Λ

e−β|x|
)n(|γΛ|

n

)
.

In the case |γΛ| ≤ N we obtain

F(N)(γ) ≥
(

1 + min
x∈Λ

e−β|x|
)|γΛ|

− 1,

and for |γΛ| > N , using Sterling's formula:

F(N)(γ) ≥
(

min
x∈Λ

e−β|x|
)N

CN |γΛ|N

with 0 < CN < 1
NN . Thus∫

Γ

|γΛ|Nµt(dγ) =

∫
|γΛ|≤N

|γΛ|Nµt(dγ) +

∫
|γΛ|>N

|γΛ|Nµt(dγ)

≤ NN +

(
min
x∈Λ

e−β|x|
)−N

C−1
N

∫
Γ

E
[
F(N)(Xγ

t )
]
µ0(dγ)

≤ NN +

(
min
x∈Λ

e−β|x|
)−N

C−1
N eCt

∫
Γ

F(N)(γ)µ0(dγ)

< +∞

because (2.36). Hence for all t ≥ 0, µt ∈ M1
fm(Γ) and taking into account

previous considerations, (2.35) holds.

2.4.6 1st and 2nd correlation functions

We will now derive the equations for the �rst and the second correlation func-
tions. The �rst correlation function is the solution to the following equation:

∂k
(1)
t

∂t
(x) = L1

ωk
(1)
t (x)− V (x, ω)k

(1)
t (x)
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where

V (x, ω)f(x) = (1− κb(x, ω)) f(x).

For the second correlation function, equation is as follows

∂k
(2)
t

∂t
(x1, x2) = (2− κb(x1, ω)− κb(x2, ω)) k

(2)
t (x1, x2)

+ L1
ωk

(2)
t (x1, x2) + L2

ωk
(2)
t (x1, x2)

+ κk(1)
t (x2)a+(x1 − x2)b(x1, ω)

+ κk(1)
t (x1)a+(x2 − x1)b(x2, ω).

2.5 Contact process with random fecundity

2.5.1 Introduction

Let us now consider another modi�cation of the classical contact process in
continuum. Namely, we allow the rate of o�spring production to be random,
i.e. we replace the constant parameter κ in the second part of the operator
(2.13) with a random function x 7→ κ(x, ω). This can be considered as the
random in�uence on the fecundity of members of population � the o�spring
production rate can change depending on the presence of random factors.

Taking into account the discussion above, the mechanism of evolution
for the contact process with random fecundity is described by the following
heuristic formula:

Lω,κF (γ) =
∑
x∈γ

D−x F (γ) +
∑
y∈γ

κ(y, ω)

∫
Rd
a+(x− y)D+

x F (γ)dx, (2.39)

where

κ(y, ω) := exp

(
−
∑
x∈ω

φ(x− y)

)
(2.40)

for a positive function φ. Recall, that ω is a realization of Poisson point
process. Furthermore we assume, that the function φ has bounded support,
so that κ(y, ω) > 0 for all y ∈ Rd and almost all ω.

2.5.2 Construction, regularity

The construction of the process can be carried out as in the classical case,
just notice that for all x ∈ Rd we have κ(x, ω) ≤ 1 and thus the birth part
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of Lω,κ is bounded by the birth part of the operator L de�ned in (2.13). In
order to show the regularity of it, let us show that condition (2.5) is ful�lled
and thus the function Vβ is in the domain of the extended generator Lω,κ.
We start with the estimation:

|Lω,κLβ(γ)| =

∣∣∣∣∣∣
∑
x∈γ

∑
y∈γ\x

eβ(y)−
∑
y∈γ

eβ(y)


+
∑
y∈γ

κ(y, ω)

∫
Rd
a+(x− y)

( ∑
y∈γ∪x

eβ(y)−
∑
y∈γ

eβ(y)

)
dx

∣∣∣∣∣
=

∣∣∣∣∣−∑
x∈γ

eβ(x) +
∑
y∈γ

κ(y, ω)

∫
Rd
a+(x− y)eβ(x)dx

∣∣∣∣∣
≤ Lβ(γ) + C1

∑
y∈γ

eβ(y)

≤ (1 + C1)Lβ(γ)

and

|Lω,κEβ(γ)| =

∣∣∣∣∣− ∑
x∈γ

∑
y∈γ\x

Ψβ(x, y)

+
∑
y∈γ

κ(y, ω)
∑
z∈γ

∫
Rd
a+(x− y)Ψβ(x, z)dx

∣∣∣∣∣
≤ 2Eβ(γ) + C1

∑
y∈γ

∑
z∈γ

eβ(y)eβ(z) ≤ C2Vβ(γ).

Hence we have obtained, that for everym ∈ N there exists a constant Cm > 0
such that:

sup
γ∈Om

|Lω,κVβ(γ)| ≤ Cm <∞. (2.41)

Moreover, we have the following inequality

Lω,κVβ(γ) ≤ CVβ(γ) (2.42)

for some C > 0 and all γ ∈ Om for m ∈ N. Thus, using Theorem 2.2 we
obtain the following

Corollary 2.3. The contact process associated with Lω,κ is regular.
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2.5.3 The symbol of the generator

The direct calculation yields the following form of the symbol:

L̂ω,κG(η) =− |η|G(η) +

∫
Rd

∑
y∈η

κ(y, ω)a+(x− y)G(η \ y ∪ x)dx

+

∫
Rd

∑
y∈η

κ(y, ω)a+(x− y)G(η ∪ x)dx

As in the previous case we have

L̂ω,κG(η) = I1(η) + I2(η), (2.43)

and because the �rst part has been calculated in the previous section, we will
only show the second part. Notice that∑

y∈η

κ(y, ω)a+(x− y) = K(κ(·, ω)a+(x− ·)1|·|=1)(η),

and thus we obtain

I2(η) = K−1

(∫
Rd

∑
y∈·

κ(y, ω)a+(x− y)
∑
ξ⊂·

G(ξ ∪ x)dx

)
(η)

=
∑
ζ⊂η

(−1)|η\ζ|
∫
Rd

∑
y∈ζ

κ(y, ω)a+(x− y)
∑
ξ⊂ζ

G(ξ ∪ x)dx.

Next, using the de�nition of the K-transform the latter is equal to∑
ζ⊂η

(−1)|η\ζ|
∫
Rd
K(κ(·, ω)a+(x− ·)1|·|=1)(ζ) ·KG(· ∪ x)(ζ)dx

=

∫
Rd

[κ(·, ω)a+(x− ·)1|·|=1 ? G(· ∪ x)](ζ)dx

=

∫
Rd

∑
(η1,η2,η3)∈P3

∅ (η)

κ(·, ω)a+(x− ·)1|·|=1(η1 ∪ η2)G(· ∪ x)(η2 ∪ η3)dx

and because this sum has only two non-zero cases, i.e. η1 = ∅ and |η2| = 1
or η2 = ∅ and |η1| = 1 we obtain

I2(η) =

∫
Rd

∑
y∈η

κ(y, ω)a+(x− y)G(η \ y ∪ x)dx

+

∫
Rd

∑
y∈η

κ(y, ω)a+(x− y)G(η ∪ x)dx,

and hence the symbol L̂ω,κ is given as above.
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2.5.4 The adjoint operator

The calculation of the adjoint operator L̂∗ω,κ gives the following form of the
adjoint operator:

L̂∗ω,κk(η) = −|η|k(η)+
∑
x∈η

k(η \ x)
∑
y∈η\x

κ(y, ω)a+(x− y) (2.44)

+
∑
x∈η

∫
Rd

κ(y, ω)a+(x− y)k((η \ x) ∪ y)dy

Because the death part of the generator Lω,κ is identical to the death part
of Lω,b we will focus on the birth part of Lω,κ. Recall I2(η) from (2.43). The
de�nition of the adjoint generator yields:∫

Γ0

I2(η)k(η)λ(dη) = J1 + J2

where

J1 :=

∫
Γ0

∫
Rd

∑
y∈η

κ(y, ω)a+(x− y)G((η \ y) ∪ x)dxk(η)λ(dη),

and

J2 :=

∫
Γ0

∫
Rd
G(η ∪ x)

∑
y∈η

κ(y, ω)a+(x− y)dxk(η)λ(dη).

Using Minlos Lemma we obtain

J1 =

∫
Γ0

∫
Rd
k(η ∪ y)

(∫
Rd

κ(y, ω)a+(x− y)G(η ∪ x)dx

)
dyλ(dη)

=

∫
Γ0

∫
Rd
G(η ∪ x)

(∫
Rd

κ(y, ω)a+(x− y)k(η ∪ y)dy

)
dxλ(dη)

=

∫
Γ0

G(η)

(∑
x∈η

∫
Rd

κ(y, ω)a+(x− y)k((η \ x) ∪ y)dx

)
λ(dη).

And similarly in the case of J2 we get

J2 =

∫
Γ0

G(η)

∑
x∈η

k(η \ x)
∑
y∈η\x

κ(y, ω)a+(x− y)

λ(dη)

which gives us the formula (2.44).
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2.5.5 Time evolution of the correlation function

We proceed to the evolution equations associated with the operator L̂∗ω,κ.
For a function k : Γ0 × Rd

+ → 0, kt(η) := k(t, η) it has the following form:

∂kt
∂t

(η) = L̂∗ω,κkt(η) =− |η|kt(η) +
∑
x∈η

kt(η \ x)
∑
y∈η\x

κ(y, ω)a+(x− y)

(2.45)

+
∑
x∈η

∫
Rd

κ(y, ω)a+(x− y)kt((η \ x) ∪ y)dy.

Using the hierarchical structure of the functions on Γ0, we can rewrite the
equation above component-wisely as a system of equations. For n ∈ N,
the n-th component of the correlation function kt(η) satis�es the following
equation:

∂k
(n)
t

∂t
(x1, . . . , xn) = −nk(n)

t (x1, . . . , xn)

+
n∑
i=1

k
(n−1)
t (x1, . . . , x̌i, . . . , xn)

∑
j:j 6=i

κ(xj, ω)a+(xi − xj)

+
n∑
i=1

∫
Rd

κ(y, ω)a+(xi − y)k
(n)
t (x1, . . . , xi−1, y, . . . , xn)dy

= L̂∗nk
(n)
t (x1, . . . , xn) + f

(n)
t (x1, . . . , xn)

where, for n ≥ 1

L̂∗nk
(n)
t (x1, . . . , xn) = −nk(n)

t (x1, . . . , xn)

+
n∑
i=1

∫
Rd

κ(y, ω)a+(xi − y)k
(n)
t (x1, . . . , xi−1, y, . . . , xn)dy

with f
(1)
t ≡ 0, and

f
(n)
t (x1, . . . , xn) =

n∑
i=1

k
(n−1)
t (x1, . . . , x̌i, . . . , xn)

∑
j:j 6=i

κ(xj, ω)a+(xi − xj),

for n ≥ 2. To give meaning to (2.45) for each n ∈ N we consider a linear
Cauchy problem given by

∂
∂t
k

(n)
t (x1, . . . , xn) = L̂∗nk

(n)
t (x1, . . . , xn) + f

(n)
t (x1, . . . , xn)

k
(n)
t (x1, . . . , xn)|t=0 = k

(n)
0 (x1, . . . , xn),

(2.46)
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in some Banach space, which will be de�ned later.
Notice also, that we can rewrite operator L̂∗n in the following way

L̂∗nk
(n)
t (x1, . . . , xn) =

(
n∑
i=1

∫
Rd

κ(y, ω)a+(xi − y)dy − n

)
k

(n)
t (x1, . . . , xn)

+
n∑
i=1

Liωk
(n)
t (x1, . . . , xn),

where

Liωk
(n)(x1, . . . , xn)

=

∫
Rd
a+(xi − y)

[
k(n)(x1, . . . , xi−1, y, . . . , xn)− k(n)(x1, . . . , xn)

]
κ(y, ω)dy

is a generator of Markov jump process. To see that, let

λa+,κ(x, ω) :=

∫
Rd
a+(x− y)κ(y, ω)dy.

Then 0 < λa+,κ(x, ω) ≤ 1 for all x ∈ Rd and a.a. ω. Moreover

Liωk
(n)(x1, . . . , xn) = λa+,κ(xi, ω)

×
∫
Rd

a+(xi − y)κ(y, ω)

λa+,κ(xi, ω)

[
k(n)(. . . , xi−1, y, . . .)− k(n)(x1, . . . , xn)

]
dy.

Now set Xn := Bb

(
(Rd)n

)
and notice that for k ∈ Xn:

∣∣∣L̂∗nk(x1, . . . , xn)
∣∣∣ =

∣∣∣∣∣− nk(x1, . . . , xn)

+
n∑
i=1

∫
Rd

κ(y, ω)a+(xi − y)k(x1, . . . , xi−1, y, . . . , xn)dy

∣∣∣∣∣
≤ n (1 + 〈a〉) ‖k‖Xn <∞.

Then from the classical result we can derive:

Proposition 2.5. For each n ∈ N the solution to the Cauchy problem (2.46)
in the space Xn is given by:

k
(n)
t (x1, . . . , xn) = etL̂

∗
nk0(x1, . . . , xn) +

∫ t

0

e(t−s)L̂∗nf (n)
s (x1, . . . , xn)ds. (2.47)
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Proof. See the proof of Proposition 2.3.

Similarly to the continuous contact model in continuum considered by
Kondratiev and Skorokhod in [KS06] we can introduce some a priori esti-
mates for the solution (2.47) as in [KKP08]. Recall that A := supx∈Rd |a+(x)|.

Proposition 2.6. Assume that there exists a constant C > 0 such that for
all (x1, . . . , xn) ∈ Rdn and all n ∈ N we have:

k
(n)
0 (x1, . . . , xn) ≤ n!Cn. (2.48)

Then for every t ≥ 0,

k
(n)
t (x1, . . . , xn) ≤

(
1 ∨ e−(〈a+〉−1)t

)n
(1 + A)nen(〈a

+〉−1)t (C + t)n n! (2.49)

for (x1, . . . , xn) ∈
(
Rd
)n

and all n ∈ N.

Proof. The proof uses induction over the number of particles n. Let us �rst
calculate the recurrent bound on the function k

(n)
t assuming (2.48). Note

that for all (x1, . . . , xn) ∈
(
Rd
)n
:

n∑
i=1

∫
Rd
a+(xi − y)κ(y, ω)dy − n ≤

n∑
i=1

∫
Rd
a+(xi − y)dy − n ≤ n

(
〈a+〉 − 1

)
.

Thus, using (2.47), we obtain:

k
(n)
t (x1, . . . , xn) ≤ et(〈a

+〉−1)nn!Cn

+ et(〈a
+〉−1)n

∫ t

0

e−s(〈a
+〉−1)n

×

[
n∑
i=1

k(n−1)
s (x1, . . . , xn)

∑
j:i 6=j

κ(xj, ω)a+(xi − xj)

]
ds

≤ et(〈a
+〉−1)nn!Cn

+ et(〈a
+〉−1)n(n− 1)(1 + A)

×
∫ t

0

e−s(〈a
+〉−1)n

n∑
i=1

k(n−1)
s (x1, . . . , xn)ds.

Let now n = 1. Then from the latter calculation we get

k
(1)
t (x1, . . . , xn) ≤ et(〈a

+〉−1)C
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hence the inequality (2.49) is trivially satis�ed.
Assume now, that (2.49) holds for n− 1. Then

k
(n)
t (x1, . . . , xn) ≤ et(〈a

+〉−1)nn!Cn

+ et(〈a
+〉−1)n(n− 1)(1 + A)

×
∫ t

0

e−s(〈a
+〉−1)nn

(
1 ∨ e−(〈a+〉−1)t

)n−1

× (1 + A)n−1e(n−1)(〈a+〉−1)s (C + s)n−1 (n− 1)!ds

≤ et(〈a
+〉−1)nn!Cn

+ et(〈a
+〉−1)nn(1 + A)nn!

(
1 ∨ e−(〈a+〉−1)s

)n−1

×
∫ t

0

e−s(〈a
+〉−1) (C + s)n−1 ds

but for 0 ≤ s ≤ t we have

e−s(〈a
+〉−1) ≤

(
1 ∨ e−(〈a+〉−1)t

)
thus

k
(n)
t (x1, . . . , xn) ≤ et(〈a

+〉−1)nn!
(

1 ∨ e−(〈a+〉−1)s
)n

(1 + A)n

×
[
Cn + n

∫ t

0

(C + s)n−1 ds

]
and the expression in last bracket is equal to (C + t)n.
This concludes the proof.

2.5.6 Preservation of correlation functions

Recall from the previous Section that even if the initial condition in (2.46) is
a correlation function for some measure µ0 ∈M1

fm(Γ) then the preservation
of this property in time is a non-trivial question. Fortunately also in the case
of the contact process with random fecundity something akin to the Lemma
2.3 holds and we can use Lenard's criterion to show that the evolution given
by L̂∗ω,κ preserves the correlation functions. Because the proof is almost
identical to the proof of Lemma 2.3, we will omit most of it here, leaving just
the calculations which di�er from those mentioned above. Recall conditions
(M) and (P) de�ned in (2.33) and (2.34) resp. Then condition (M) is
satis�ed if (2.48) holds (c.f. Remark 2.3). It remains to show that the
condition (P) is satis�ed in the case of considered model. As we mentioned
before, we have the following
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Lemma 2.4. For a+ ∈ L∞(Rd) ∩ L1(Rd) the solution of (2.46) satis�es
condition (P).

Proof. The proof of this Lemma is analogous to the one of Lemma 2.7 hence
we present here only the parts which are directly connected to this speci�c
model.
Recall the function de�ned for n ∈ N, β > 0 as:

F (n)(γ) :=
∑

{x1,...,xn}⊂γ

e−β|x1| · · · e−β|xn|

for γ ∈ Γ with |γ| ≥ n, and F (n)(γ) = 0 otherwise. And note that for n ≥ 2
we have

Lω,κF
n(γ) =

∑
x∈γ

(
F (n)(γ \ x)− F (n)(γ)

)
+
∑
y∈γ

κ(y, ω)

∫
Rd
a+(y − x)

(
F (n)(γ ∪ x)− F (n)(γ)

)
dx

=− F (n)(γ)

+
∑
y∈γ

κ(y, ω)
∑

{x1,...,xn}⊂γ

e−β|x1| · · · e−β|x1|
∫
Rd
a+(y − x)e−β|x|dx

≤− F (n)(γ) + 〈a+〉
∑
y∈γ

∑
{x1,...,xn}⊂γ

e−β|y|e−β|x1| · · · e−β|x1|

≤
(
〈a+〉 − 1

)
F (n)(γ) + 〈a+〉F (n−1)(γ).

This gives an estimate for the function

F(N)(γ) :=
N∑
n=1

F (n)(γ),

that is there exists C > 0 such that

Lω,κF(N)(γ) ≤ CF(N)(γ).

The Markov property together with the Gronwall inequality give us then

E
[
F(N)(Xγ

t )
]
≤ F(N)(γ)eCt. (2.50)

The rest of the proof is the same as in Lemma 2.3 hence we omit it here.
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2.5.7 Equations for the �rst and second

correlation functions

The evolution of the �rst and second correlation functions has the following
form:

∂k
(1)
t

∂t
(x) = L1

ωk
(1)(x)− V (x, ω)k

(1)
t (x) (2.51)

where

V (x, ω)f(x) =
(
1−

〈
κ(·, ω)a+(x− ·)

〉)
f(x), (2.52)

and

∂k
(2)
t

∂t
(x1, x2) =

(
2−

(〈
κ(·, ω)a+(x1 − ·)

〉
+
〈
κ(·, ω)a+(x2 − ·)

〉))
k

(2)
t (x1, x2)

+ L1
ωk

(2)
t (x1, x2) + L2

ωk
(2)
t (x1, x2)

+ k
(1)
t (x2)κ(x2, ω)a+(x1 − x2)

+ k
(1)
t (x1)κ(x1, ω)a+(x2 − x1).

The analysis of those equations and their long time asymptotic are missing
and pose non-trivial open problems.

2.6 Contact process with random mortality

2.6.1 Introduction

The third model studied in this chapter is the contact process with random
mortality rate. The random in�uence of the environment contributes to the
constant rate of death (equal to 1) in terms of a random positive function
m(x, ω) of the form m(x, ω) :=

∑
x′∈ω ϕ(x− x′). Unfortunately the methods

used before cannot be applied to construct the process and until now we are
not able to show rigorously that the process exists in Γ (or in the subset of
Γ). The technical reason for that is the unboundedness of the death rate.
We proceed now to the description of the model.

Let ω be a realization of the homogeneous Poisson point process on Rd

with the intensity measure being Lebesgue measure on Rd and let ϕ : Rd →
Rd be non-negative, even and continuous function such that∫

Rd
ϕ(x)dx <∞. (2.53)
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De�ne now for x ∈ Rd

m(x, ω) =

∫
Rd
ϕ(x− y)ω(dy). (2.54)

Condition (2.53) assures, that m(x, ω) is well de�ned for each x ∈ Rd and
almost all ω (see e.g. [Kal10]). The mechanism of evolution for the contact
process with random mortality is then given by

Lω,mF (γ) =
∑
x∈γ

m(x, ω)D−x F (γ) + κ
∑
y∈γ

∫
Rd
a+(x− y)D+

x F (γ)dx. (2.55)

We assume that the function a+ is continuous and has bounded support,
denote with A the maximum of the function a+.

As we mentioned before, the construction and the regularity of this model
are still open problems. On the other hand, we are able to derive the equation
for the evolution of correlation functions in some Banach space. The remain-
ing part of this chapter is devoted to the latter problem. We will start with
the calculation of the symbol of generator Lω. Recall that L̂ω := K−1LωK,
then we have the following

Lemma 2.5. The symbol of the generator Lω is given by

L̂ω,mG(η) =−
∑
x∈η

m(x, ω)G(η) + κ
∫
Rd

∑
y∈η

a+(x− y)G(η \ y ∪ x)dx (2.56)

+ κ
∫
Rd

∑
y∈η

a+(x− y)G(η ∪ x)dx.

Proof. From direct calculation follows that L̂ωG(η) = I1(η) + I2(η), where

I1(η) := K−1

(∑
x∈·

m(x, ω) [KG(· \ x)−KG(·)]

)
(η)

= K−1

−∑
x∈·

m(x, ω)
∑
ξ⊂·\x

G(ξ ∪ x)

 (η)

= −
∑
ζ⊂η

(−1)|η\ζ|
∑
x∈ζ

∑
ξ∈ζ\x

m(x, ω)G(ξ ∪ x)(η)

= −
∑
ζ⊂η

(−1)|η\ζ|
∑
x∈ζ

m(x, ω)KG(· ∪ x)(ζ \ x)

= −
∑
x∈η

m(x, ω)
∑
ζ⊂η\x

(−1)|η\(ζ∪x)|KG(· ∪ x)(ζ) = −
∑
x∈η

m(x, ω)G(η),
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I2(η) := K−1

(
κ
∫
Rd

∑
y∈·

a+(x− y) [KG(· ∪ x)−KG(·)] dx

)
(η)

= κ
∑
ζ⊂η

(−1)|η\ζ|
∫
Rd

∑
y∈ζ

a+(x− y)
∑
ξ⊂ζ

G(ξ ∪ x)dx

= κ
∑
ζ⊂η

(−1)|η\ζ|
∫
Rd
K(a+(x− ·)1|·|=1)(ζ) ·KG(· ∪ x)(ζ)dx

= κ
∫
Rd

∑
(η1,η2,η3)∈P3

∅ (η)

a+(x− ·)1|·|=1(η1 ∪ η2)G(· ∪ x)(η2 ∪ η3)dx.

Notice, that the latter sum has only two non-zero cases, i.e. η1 = ∅ and
|η2| = 1 or η2 = ∅ and |η1| = 1 thus we obtain

I2(η) = κ
∫
Rd

∑
y∈η

a+(x− y)G(η \ y ∪ x)dx+ κ
∫
Rd

∑
y∈η

a+(x− y)G(η ∪ x)dx,

and hence the symbol L̂ω,m is given as above.

2.6.2 The adjoint operator

Recall from Section 1.5 the duality relation:∫
Γ0

L̂G(η)k(η)λ(dη) =

∫
Γ0

G(η)L̂∗k(η)λ(dη)

with respect to which we de�ne the adjoint of the operator Lω,m. In our case,

the adjoint operator L̂∗ω,m has the form:

L̂∗ω,mk(η) =−
∑
x∈η

m(x, ω)k(η) + κ
∑
x∈η

k(η \ x)
∑
y∈η\x

a+(x− y) (2.57)

+ κ
∑
x∈η

∫
Rd
a+(x− y)k((η \ x) ∪ y)dy.

Consider �rst∫
Γ0

I1(η)k(η)λ(dη) = −
∫

Γ0

∑
x∈η

m(x, ω)G(η)k(η)λ(dη)

=

∫
Γ0

G(η)

(
−
∑
x∈η

m(x, ω)k(η)

)
λ(dη)
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which gives us the �rst part of the formula. Now∫
Γ0

I2(η)k(η)λ(dη) = J1 + J2

where

J1 := κ
∫

Γ0

∫
Rd

∑
y∈η

a+(x− y)G((η \ y) ∪ x)dxk(η)λ(dη),

J2 := κ
∫

Γ0

∫
Rd
G(η ∪ x)

∑
y∈η

a+(x− y)dxk(η)λ(dη).

We will calculate two expressions above using Lemma 1.1. We start with J1:

J1 = κ
∫

Γ0

∫
Rd
k(η ∪ y)

(∫
Rd
a+(x− y)G(η ∪ x)dx

)
dyλ(dη)

= κ
∫

Γ0

∫
Rd
G(η ∪ x)

(∫
Rd
a+(x− y)k(η ∪ y)dy

)
dxλ(dη)

= κ
∫

Γ0

G(η)

(∑
x∈η

∫
Rd
a+(x− y)k((η \ x) ∪ y)dx

)
λ(dη)

and similarly in the case of J2:

J2 = κ
∫

Γ0

G(η)

∑
x∈η

k(η \ x)
∑
y∈η\x

a+(x− y)

λ(dη)

which gives us the formula (2.57).

2.6.3 Time evolution of the correlation function

We proceed to the evolution equations associated with the operator L̂∗ω. It
has the following form

∂kt
∂t

(η) = L̂∗ωkt(η) =−
∑
x∈η

m(x, ω)kt(η) + κ
∑
x∈η

kt(η \ x)
∑
y∈η\x

a+(x− y)

(2.58)

+ κ
∑
x∈η

∫
Rd
a+(x− y)kt((η \ x) ∪ y)dy
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Knowing the hierarchical structure of the functions on Γ0 we can rewrite
the equation above component-wisely as a system of equations, namely for
n ∈ N:

∂k
(n)
t

∂t
(x1, . . . , xn) = −

n∑
i=1

m(xi, ω)k
(n)
t (x1, . . . , xn)

+ κ
n∑
i=1

k
(n−1)
t (x1, . . . , x̌i, . . . , xn)

∑
j:j 6=i

a+(xi − xj)

+ κ
n∑
i=1

∫
Rd
a+(xi − y)k

(n)
t (x1, . . . , xi−1, y, . . . , xn)dy

= L̂∗nk
(n)
t (x1, . . . , xn) + f

(n)
t (x1, . . . , xn)

where, for n ≥ 1

L̂∗nk
(n)
t (x1, . . . , xn) = −

n∑
i=1

m(xi, ω)k
(n)
t (x1, . . . , xn)

+ κ
n∑
i=1

∫
Rd
a+(xi − y)k

(n)
t (x1, . . . , xi−1, y, . . . , xn)dy

and

f
(n)
t (x1, . . . , xn) = κ

n∑
i=1

k
(n−1)
t (x1, . . . , x̌i, . . . , xn)

∑
j:j 6=i

a+(xi − xj), n ≥ 2

with f
(1)
t ≡ 0. So, for each n ∈ N, we consider a linear Cauchy problem in

some Banach space Xn:

∂k
(n)
t

∂t
(x1, . . . , xn) = L̂∗nk

(n)
t (x1, . . . , xn) + f

(n)
t (x1, . . . , xn) (2.59)

k
(n)
t (x1, . . . , xn)|t=0 := k

(n)
0 (x1, . . . , xn).

Notice also, that we can rewrite operator L̂∗n in the following way

L̂∗nk
(n)
t (x1, . . . , xn) = (nκ −

n∑
i=1

m(xi, ω))k
(n)
t (x1, . . . , xn)

+
n∑
i=1

Lik
(n)
t (x1, . . . , xn),



2.6. CONTACT PROCESS WITH RANDOM MORTALITY 73

where

Lik(n)(x1, . . . , xn) =

κ
∫
Rd
a+(xi − y)

[
k(n)(x1, . . . , xi−1, y, . . . , xn)− k(n)(x1, . . . , xn)

]
dy

is the pure jump Markov process generator with jumps distribution a+ and
intensity κ, see e.g. [EK05, Kal10, GS74].

De�ne now for M, ζ ∈ R the space G(M, ζ) as the space of all operators
T on some Banach space X such that:

1. domain D(L) is dense in X,

2. semi-in�nite interval ξ > ζ belongs to the resolvent set of −T and let∥∥∥(T + ξ)−k
∥∥∥ ≤M (ξ − ζ)−k , k = 1, 2 . . . . (2.60)

Then we have the following (see [Kat95]):

Theorem 2.3. Let T ∈ G(M,β) and let f(t) be continuously di�erentiable
for t ≥ 0 and let U(t) = etT . For any u0 ∈ D(T ), the u(t) given by

u(t) = U(t)u0 +

∫ t

0

U(t− s)f(s)ds, u0 = u(0)

is continuously di�erentiable for t ≥ 0 and is a solution of

du/dt = Tu+ f(t), t > 0

with the initial value u(0) = u0.

Thus to obtain the solution to the Cauchy problem (2.59) we should show
that the operator L̂∗n is in G(M,β) for all n ∈ N and some M,β ∈ R. From
now on, set Xn := L1

(
(Rd)n, dx⊗n

)
and de�ne

Mn
ωk(x1, . . . , xn) := −

n∑
i=1

m(xi, ω)k(x1, . . . , xn)

together with the domainD(Mn
ω ) = C0((Rd)n). Remark, that for ψ ∈ D(Mn

ω )
with supp ψ =: Λ, we have

E

[∫
(Rd)n

|Mn
· ψ(x1, . . . , xn)| dx1 · · · dxn

]

≤ E

[
n∑
i=1

∫
(Rd)n

m(xi, ·)|ψ(x1, . . . , xn)|dx1 · · · dxn

]

=
n∑
i=1

∫
Λ

∫
Rd
ϕ(xi − y)dy|ψ(x1, . . . , xn)|dxi · · · dxn <∞.
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This implies, that for ψ ∈ D(Mn
ω ), ‖Mn

ωψ‖Xn <∞, for almost all ω. Because
C0((Rd)n) is dense in Xn, it is easy to see that Mn

ω ∈ G(1, 0). Furthermore,
we have for k ∈ Cc((Rd)n):∥∥∥∥∥κ

n∑
i=1

∫
Rd
a+(xi − y)k(x1, . . . , xi−1, y, . . . , xn)dy

∥∥∥∥∥
Xn

≤ nκA|suppa+|‖k‖Xn

hence the operator L∗n−Mn
ω is bounded in Xn. Thus, from the Theorem 2.1

in [Kat95] follows, that L∗n ∈ G(1, nκ〈a+〉) and we can apply Theorem 2.3.
As result we obtain:

Corollary 2.4. For each n ∈ N and almost all ω, the solution of the Cauchy
problem (2.59) is given by:

k
(n)
t (x1, . . . , xn) = etL̂

∗
nk

(n)
0 (x1, . . . , xn) +

∫ t

0

e(t−s)L̂∗nf (n)
s (x1, . . . , xn)ds.

(2.61)

Let us write explicitly the equations for the �rst and second correlation
functions. The evolution of the �rst correlation function describes the evo-
lution of the density for the process. It has the following form:

∂k
(1)
t

∂t
(x) = L1k

(1)
t (x)− V (x, ω)k

(1)
t (x) (2.62)

where
V (x, ω)f(x) = (m(x, ω)− κ)f(x). (2.63)

For the second correlation function, equation is as follows:

∂k
(2)
t

∂t
(x1, x2) = (2κ −m(x1, ω)−m(x2, ω))k

(2)
t (x1, x2)

+ L1k
(2)
t (x1, x2) + L2k

(2)
t (x1, x2)

+ κ
(
k

(1)
t (x2)a+(x1 − x2) + k

(1)
t (x1)a+(x2 − x1)

)
.



Chapter 3

Glauber-type dynamics in

random environment

This chapter is devoted to the study of the Glauber dynamics in random envi-
ronment. Let us recall, that Glauber dynamics has been extensively studied
in the case of the lattice spin systems (see e.g. [BMP04] and [Lig85]). The
Glauber dynamics for such systems can be interpreted as, for example, the
spin-�ip of particles or, in the case of lattice gas models, the dynamics in
which particles randomly appear and disappear from the sites of the lat-
tice. In this work we are concerned with the continuous space models. The
Glauber dynamics in our case is a special case of spatial birth and death
processes which have Gibbs measure as stationary one. The general form of
the Markov pre-generator for such processes is given by:

LF (γ) =
∑
x∈γ

d(x, γ) [F (γ \ x)− F (γ)] +

∫
Rd
b(x, γ) [F (γ ∪ x)− F (γ)] dx.

(3.1)

The equilibrium Glauber dynamics for the continuous systems was con-
structed in [KL05]. The existence of the corresponding non-equilibrium dy-
namics was shown in [KKZ06]. In the present thesis, we consider the modi-
�cation of the classical Glauber dynamics in which a random �eld in�uences
the birth and/or the death mechanisms. Depending on the type of in�uence,
we consider two di�erent modi�cations of the GD and using perturbation
theory we show the existence of the corresponding evolutions on the level of
quasi-observables.

75
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3.1 Gibbs measures

For the completeness of this thesis we will shortly recall the basic de�nitions
from the theory of Gibbs measures, although that is not the main subject of
this chapter. Gibbs measures play a signi�cant role in the studies of Glauber
dynamics: in the equilibrium case it is the stationary measure for the process
(see for example [KLR07]). For more detailed and general discussion of Gibbs
measures we refer to [Geo88, Tek10, Kun99].

Introduce the pair potential, that is a Borel measurable, even function
φ : Rd → R ∪ {∞}. We assume, that it satis�es the following conditions (cf.
[KKZ06]):

(I) (Integrability) For any β > 0,

C(β) :=

∫
Rd
|1− exp(−βφ(x))|dx < +∞. (3.2)

(P) (Positivity) φ(x) > 0 for all x ∈ Rd.

De�ne the Hamiltonian (or the energy of con�guration η ∈ Γ0, |η| ≥ 2)
corresponding to the potential φ as

Eφ(η) :=
∑
{x,y}⊂η

φ(x− y). (3.3)

Next, the relative energy of interaction is de�ned for γ ∈ Γ and x ∈ Rd \ γ
in the following way:

Eφ(x, γ) :=


∑

y∈γ φ(x− y), if
∑

y∈γ |φ(x− y)| <∞,

+∞, otherwise.
(3.4)

Let now ω be �xed realization of a spatial point process (for example
Poisson PP in Rd) and assume that function h : Rd → R is non-negative.
The in�uence of the random environment on the dynamics is realized in terms
of the interaction energy corresponding to a potential function h, namely:

Eh(x, ω) :=
∑
x′∈ω

h(x− x′) ≤ ∞, x ∈ Rd. (3.5)

For a given set Λ ∈ Bb(Rd) de�ne the Hamiltonian Eφ
Λ : ΓΛ → R by

Eφ
Λ(η) =

∑
{x,y}⊂η

φ(x− y), η ∈ ΓΛ, |η| ≥ 2. (3.6)
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The interaction energy between η ∈ ΓΛ and γ̄Λc := γ̄ ∩ Λc, γ̄ ∈ Γ is de�ned
as follows:

WΛ(η|γ̄) =
∑

x∈η,y∈γ̄Λc

φ(x− y). (3.7)

Finally, let β > 0 and

EΛ(η|γ̄) := EΛ(η) +WΛ(η|γ̄). (3.8)

The partition function is de�ned by:

ZΛ(γ̄) :=

∫
ΓΛ

e−βEΛ(η|γ̄)λz(dη). (3.9)

Let now Λ ∈ Bb(Rd), β > 0 and γ̄ ∈ Γ. The �nite volume Gibbs measure on
the space ΓΛ with the boundary condition γ̄ is given as:

PΛ,γ̄(dη) =
1

ZΛ(γ̄)
e−βEΛ(η|γ̄)λz(dη),

and for γ̄ = ∅ we set PΛ,∅ =: PΛ.

Let {πΛ} denote the speci�cation associated with z and the Hamiltonian
Eφ, that is:

πΛ,γ̄(A) =

∫
A′
PΛ,γ̄(dη) (3.10)

where A′ = {η ∈ ΓΛ : η ∪ γ̄Λc ∈ A}, A ∈ B(Γ), γ̄ ∈ Γ.

De�nition 3.1. A Gibbs measure for Eφ and z is any probability measure µ
on Γ, for which the following holds:

µ(πΛ,γ̄(A)) = µ(A)

for any A ∈ B(Γ) and every Λ ∈ Bb(Rd). This identity is called the Dobrushin-
Lanford-Ruelle (DLR) equation (cf. [Geo88]).

We will denote the set of all Gibbs measures corresponding to the poten-
tial φ, parameter z > 0 and inverse temperature β > 0 by G(φ, z, β). This
set is not empty for any potential φ satisfying the conditions (I) and (P) (see
[Kun99]).
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3.2 Perturbation theory

In this section we will recall some classical results which will be used in the
sequel.

For ω > 0, introduce the set H(ω, 0) of all closed and densely de�ned
operators T , the resolvent of which contains the sector

Sect(
π

2
+ ω) =

{
ζ ∈ C : |argζ| < π

2
+ ω

}
\ {0},

and such that for any ε > 0

‖(T − ζ1)−1‖ ≤ Mε

|ζ|
, (3.11)

and Mε doesn't depend on ζ.

Remark 3.1. Any operator T ∈ H(ω, θ) is a generator of a semigroup U(t)
homolorphic in the sector | arg t| < ω and (at least) quasi-bounded, i.e.

‖U(t)‖ ≤ Aeθt

for some A > 0 and | arg t| ≤ ω − ε, see e.g. [Kat95, KKZ06].

The next theorem turns out to be a useful tool in our considerations:

Theorem 3.1 ([Kat95], Thm. 2.4). For any T ∈ H(ω, θ) and ε > 0, there
exist positive constants γ, δ with the following properties. If A is relatively
bounded with respect to T so that

‖Au‖ ≤ a‖u‖+ b‖Tu‖, u ∈ D(T ) ⊂ D(A), (3.12)

with a < δ, b < δ, then T + A ∈ H(ω − ε, γ). If, in particular, θ = 0 and
a = 0, then T + A ∈ H(ω − ε, 0).

3.3 Pre-generators of Glauber type dynamics

in RE

We study two types of random modi�cations of the Glauber dynamics con-
structed in [KKZ06] in which random birth and/or death rates are allowed.

The Markov pre-generator for the �rst model is as follows:

Lextω F (γ) :=
∑
x∈γ

D−x F (γ) + κ
∫
Rd
e−βE

φ(x,γ)D+
x F (γ)e−E

h(x,ω)dx, (3.13)
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This model can be interpreted as birth and death dynamics in Γ with the
death rate d(x, γ) = 1, the birth rate b(x, γ) = e−E

φ(x,γ) and the stationary
Gibbs measure with the random intensity z := z(x,κ, ω) = κe−Eh(x,ω). In-
deed, the coe�cients b and d in this case satisfy the detailed balance condition,
i.e.

b(x, γ) = d(x, γ)e−E
φ(x,γ). (3.14)

As result, the symmetrizing (and thus invariant) measure for this process
will be a Gibbs state µ ∈ G(φ, z, β) associated with the Lebesgue-Poisson
measure with the random intensity measure: σω,κ(dx) := z(x,κ, ω)dx, that
is

λκ,ω =
∞∑
n=0

1

n!
σ(n)
ω,κ.

See [Glo81] for the proof of the latter statement.

The second model includes the same kind of random interaction in
the death and the birth mechanisms of the system, i.e. the corresponding
pre-generator has form:

LωF (γ) :=
∑
x∈γ

e−E
h(x,ω)D−x F (γ) + κ

∫
Rd
e−βE

φ(x,γ)e−E
h(x,ω)D+

x F (γ)dx,

(3.15)

We assume, that the function h : Rd → R is measurable and satis�es (2.53) so
that Eh(x, ω) is almost surely �nite. Also in this case, condition (3.14) holds
and the Gibbs measure (with the Lebesgue-Poisson measure λz as reference
measure) is again the symmetrizing measure for this model.

We proceed now to the construction of semigroups associated with the
symbols of the operators de�ned above.

3.3.1 Symbols of the generators

Let us start with calculation of the symbols corresponding to the operators
Lextω and Lω respectively.

Proposition 3.1. The symbol of the operator Lextω is given by:

L̂extω G(η) = Lext0 G(η) + Lext1 G(η), G ∈ Bbs(Γ0), (3.16)
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where

Lext0 G(η) := − |η|G(η),

Lext1 G(η) := κ
∑
ξ⊂η

∫
Rd
G(ξ ∪ x)

∏
y∈η\ξ

(
e−βφ(x−y) − 1

)
e−βE

φ(x,ξ)e−E
h(x,ω)dx.

Proof. We will start with the �rst part:

Lext0 G(η) := K−1

(∑
x∈·

[KG(· \ x)−KG(·)]

)
(η)

= K−1

−∑
x∈·

∑
ξ⊂·\x

G(ξ ∪ x)

 (η)

= −
∑
ζ⊂η

(−1)|η\ζ|
∑
x∈ζ

∑
ξ∈ζ\x

G(ξ ∪ x)

= −
∑
ζ⊂η

(−1)|η\ζ|
∑
x∈ζ

KG(· ∪ x)(ζ \ x)

= −
∑
x∈η

∑
ζ⊂η\x

(−1)|η\(ζ∪x)|KG(· ∪ x)(ζ) = −|η|G(η).

As for the second part, note that

e−βE
φ(x,γ) =

∏
y∈γ

e−βφ(x−y) = Keλ
(
e−βφ(x−·) − 1

)
(γ),

then

Lext1 G(η) = K−1

(
κ
∫
Rd
e−βE

φ(x,·) [KG(· ∪ x)−KG(·)] e−Eh(x,ω)dx

)
(η)

= κK−1

(∫
Rd
e−βE

φ(x,·)

[∑
ξ⊂·

G(ξ ∪ x)

]
e−E

h(x,ω)dx

)
(η)

= κK−1

(∫
Rd
Keλ(e

−βφ(x−·) − 1) ·KG(· ∪ x)e−E
h(x,ω)dx

)
(η)

= κ
∫
Rd

[
eλ(e

−βφ(x−·) − 1) ? G(· ∪ x)
]

(η)e−E
h(x,ω)dx

= κ
∑
ξ⊂η

∫
Rd
G(ξ ∪ x)

∏
y∈η\ξ

(
e−βφ(x−y) − 1

)
e−βE

φ(x,ξ)e−E
h(x,ω)dx.
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With a slight modi�cation of the calculations above we get similar result
in the case of Lω.

Proposition 3.2. The symbol of the operator Lω is given as follows:

L̂ωG(η) = L0G(η) + L1G(η), G ∈ Bbs(Γ0),

where

L0G(η) := −

(∑
x∈η

e−E
h(x,ω)

)
G(η),

L1G(η) := κ
∑
ξ⊂η

∫
Rd
G(ξ ∪ x)

∏
y∈η\ξ

(
e−βφ(x−y) − 1

)
e−βE

φ(x,ξ)e−E
h(x,ω)dx.

3.4 Construction of the associated semigroups

Using results from Section 3.2 we construct two semigroups corresponding to
the operators L̂extω and L̂ω derived above.

First, for C > 0, β > 0 introduce the space

LC,β := L1
(
Γ0, C

|η|e−βE(η)λ(dη)
)

(3.17)

together with the norm de�ned for G ∈ LC,β by

‖G‖C :=

∫
Γ0

|G(η)|e−βE(η)C |η|λ(dη). (3.18)

Proposition 3.3. For any C > 0, β > 0, the operator

Lext0 G(η) = −|η|G(η)

with D(Lext0 ) = {G ∈ LC,β : |η|G(η) ∈ LC,β}, is the generator of a contrac-
tion semigroup on LC,β. Moreover, Lext0 ∈ H(θ, 0).

Proof. Fix ω ∈
(
0, π

2

)
and take ζ ∈ Sect(π

2
+ω). The operator Lext0 is densely

de�ned in LC,β. On the other hand for ζ ∈ Sect
(
π
2

+ ω
)
we have ||η|+ ζ| > 0

for all η ∈ Γ0 and thus the operator

(
Lext0 − ζ1

)−1
G(η) = − 1

|η|+ ζ
G(η)
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is well de�ned for every G ∈ LC . It remains to prove the inequality (3.11).
Let Reζ ≥ 0 then obviously∥∥∥(Lext0 − ζ1

)−1
G
∥∥∥
LC

=

∥∥∥∥ 1

|η|+ ζ
|G|
∥∥∥∥
LC

≤ 1

|ζ|
‖G‖LC .

In the case of Reζ < 0 notice, that

||η|+ ζ| ≥ |Imζ| ≥ |ζ| cosω,

thus ∥∥∥(Lext0 − ζ1
)−1

G
∥∥∥
LC
≤ 1

|ζ| cosω
‖G‖LC .

Summarizing, we get∥∥∥(Lext0 − ζ1
)−1

G
∥∥∥
LC
≤ max

{
1

|ζ|
,

1

|ζ| cosω

}
.

The statement follows now from the Hille-Yosida theorem (see e.g. [Paz83,
Kat95]).

We can prove similar result also for the operator L0.

Proposition 3.4. Let any C > 0, β > 0. Then the operator

L0G(η) = −

(∑
x∈η

e−E
h(x,ω)

)
G(η)

together with its domain de�ned as D(L0) = {G ∈ LC,β : L0G(η) ∈ LC,β},
generates a contraction semigroup on LC,β. Furthermore L0 ∈ H(θ, 0).

Proof. See the proof of Proposition 3.3.

In order to apply Theorem 3.1 we need to show that operators Lext1 and
L1 are relatively bounded with respect to Lext0 and L0, respectively. Indeed,
we have the following results:

Proposition 3.5. Consider the operator

Lext1 G(η) = κ
∑
ξ⊂η

∫
Rd
G(ξ ∪ x)

∏
y∈η\ξ

(
e−βφ(x−y) − 1

)
e−βE

φ(x,ξ)e−E
h(x,ω)dx

with the domain D(Lext1 ) := D(Lext0 ). Then, for all κ, C, β > 0 and G ∈
D(L0) the following inequality holds:

‖Lext1 G‖C ≤ κC−1eCC(β)‖Lext0 G‖C. (3.19)
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Proof. De�ne

K(x, η) :=
∏
y∈η

(
e−βφ(x−y) − 1

)
for x ∈ Rd, η ∈ Γ0. Then for G ∈ D(Lext1 ) the norm ‖Lext1 G‖C is equal to

κ
∫

Γ0

∣∣∣∣∣∑
ξ⊂η

∫
Rd
G(ξ ∪ x)K(x, η \ ξ)e−βEφ(x,ξ)e−E

h(x,ω)dx

∣∣∣∣∣C |η|e−βEφ(η)λ(dη).

This can be estimated from above by

κ
∫

Γ0

∑
ξ⊂η

∫
Rd
|G(ξ ∪ x)|K(x, η \ ξ)e−βEφ(x,ξ)e−E

h(x,ω)dxC |η|e−βE
φ(η)λ(dη)

and using Minlos lemma, the latter is equal to

κ
∫

Γ0

∫
Γ0

∫
Rd
|G(ξ ∪ x)|K(x, η)e−βE

φ(x,ξ)e−E
h(x,ω)

× C |η∪ξ|e−βE
φ(η∪ξ)dxλ(dξ)λ(dη).

Using Minlos lemma again we obtain

κ
∫

Γ0

∫
Γ0

∑
x∈ξ

|G(ξ)|K(x, η)e−βE
φ(x,ξ\x)e−E

h(x,ω) (3.20)

× C |η∪ξ\x|e−βE
φ(η∪ξ\x)λ(dξ)λ(dη).

Now notice that

Eφ(x, ξ \ x) = Eφ(ξ)− Eφ(ξ \ x),

and because φ > 0 we can bound (3.20) by

κC−1

∫
Γ0

|G(ξ)|e−βEφ(ξ)C |ξ|
∑
x∈ξ

e−E
h(x,ω)

∫
Γ0

K(x, η)C |η|λ(dη)λ(dξ).

Finally, using the fact that h > 0 we can bound the latter by

κC−1eCC(β)

∫
Γ0

||ξ|G(ξ)| e−βEφ(ξ)C |ξ|λ(dξ),

hence we obtain
‖Lext1 G‖C ≤ κC−1eCC(β)‖Lext0 G‖C .
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Similar calculation of the norm ‖L1G‖C yields that

κ
∫

Γ0

∣∣∣∣∣∑
ξ⊂η

∫
Rd
G(ξ ∪ x)K(x, η \ ξ)e−βEφ(x,ξ)e−E

h(x,ω)dx

∣∣∣∣∣C |η|e−βEφ(η)λ(dη)

is bounded by

κC−1

∫
Γ0

|G(ξ)|e−βEφ(ξ)C |ξ|
∑
x∈ξ

e−E
h(x,ω)

∫
Γ0

K(x, η)C |η|λ(dη)λ(dξ).

This is equal to

κC−1eCC(β)

∫
Γ0

∣∣∣∣∣∑
x∈ξ

e−E
h(x,ω)G(ξ)

∣∣∣∣∣ e−βEφ(ξ)C |ξ|λ(dξ),

and we obtain the following

Corollary 3.1. De�ne the operator

L1G(η) = κ
∑
ξ⊂η

∫
Rd
G(ξ ∪ x)

∏
y∈η\ξ

(
e−βφ(x−y) − 1

)
e−βE

φ(x,ξ)e−E
h(x,ω)dx

together with its domain D(L1) := D(L0). Then, for all κ, C, β > 0 and
G ∈ D(L0) the following inequality holds:

‖L1G‖C ≤ κC−1eCC(β)‖L0G‖C. (3.21)

Proposition 3.3 together with Proposition 3.5 and Corollary 3.1 give us
the following result:

Theorem 3.2. Let C > 0, then for any κ, β > 0 which satisfy the following
inequality:

2κC−1eCC(β) < 1,

and for almost all ω we have:

• the operator
(
L̂extω , D(Lext0 )

)
is the generator of a holomorphic semi-

group Û ext
ω (t) in LC,β, and also

•
(
L̂ω, D(L0)

)
generates a holomorphic semigroup which we denote by

Ûω(t) in LC,β.
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3.5 Evolution of the correlation functions

Fix now κ, C and β in such way, that the assumptions of Theorem 3.2 are
satis�ed. De�ne the Banach space

QC,β :=
{
k : Γ0 → R : k(·)C−|·|eβEφ(·) ∈ L∞(Γ0, λ)

}
dual to the space LC,β with respect to the duality de�ned by:

〈〈
G, k

〉〉
:=

∫
Γ0

G(η)k(η)λ(dη) (3.22)

for G ∈ LC,β and k ∈ QC,β. This duality is well de�ned since∫
Γ0

G(η)k(η)λ(dη) =

∫
Γ0

G(η)C |η|e−E
φ(η)k(η)C−|η|eE

φ(η)λ(dη)

≤‖k‖QC,β‖G‖LC,β <∞.

Having constructed the semigroups on the space LC,β and using the du-
ality de�ned above, we can determine the corresponding dual semigroups

on QC,β. Namely, recall the semigroups generated by
(
L̂extω , D(Lext0 )

)
and(

L̂ω, D(L0)
)
, that is Û ext

ω (t) and Ûω(t), respectively. One can easily show

that these two semigroups determine their duals via (3.22), i.e.:〈〈
Û ext
ω (t)G, k

〉〉
=
〈〈
G, (Û ext

ω )∗(t)k
〉〉

and 〈〈
Ûω(t)G, k

〉〉
=
〈〈
G, (Ûω)∗(t)k

〉〉
.

Now assume that function k0 ∈ QC,β is a correlation function of some prob-
ability measure µ0 (with �nite local moments) on Γ. Then we can check (see
[FKKZ10] and [KKZ06]), that the evolution given by (Û ext

ω )∗(t) preserves this
property, i.e. there exists a measure µt ∈ M1

fm(Γ) having kt := (Û ext
ω )∗(t)k0

as correlation function.
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Chapter 4

Two-component ecological model

4.1 Introduction

This chapter is devoted to the study of two-component ecological process
in continuum. The introduction of such model is motivated by various bi-
ological applications in which di�erent types of particles represent distinct
populations of individuals. The structure of the chapter is as follows: �rst we
construct a semigroup associated to the symbol of the pre-generator of the
process in some functional space over Γ0 (i.e. evolution of quasi-observables),
together with the evolution (in weak sense) of the correlation functions. Next,
we scale the model in the way introduced in Section 1.6 and show the strong
convergence of the rescaled semigroup.

4.2 Construction of the semigroup in Γ0

In the considered model the interaction between two types of individuals is
of mutual type. That is, the birth and death rates of each type depend on
both populations. Thus, the evolution of one population can in�uence the
expansion and the reduction of the other. This model can be considered as
the extension of the so-called Bolker, Pacala, Dieckmann and Law model of
plant competition (see [BP, DL02]).

4.2.1 The mechanism of the evolution

The Markov pre-generator of a two-component birth and death process con-
sist of two parts. Recall from Section 1.4, that the elements of two-component
con�guration space Γ2 are denoted by (γ1, γ2) and although each of the com-
ponents belongs to Γ, we make the distinction between them in order to em-
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phasize di�erent types of the populations. Thus, the Markov pre-generator
has the following form:

L = L1 + L2, (4.1)

in which

(L1F )(γ1, γ2) :=
∑
x∈γ1

d1(x, γ1 \ x, γ2)
[
F (γ1 \ x, γ2)− F (γ1, γ2)

]
(4.2)

+

∫
Rd
b1(x, γ1, γ2)

[
F (γ1 ∪ x, γ2)− F (γ1, γ2)

]
dx,

describes the evolution of the �rst population (type 1), and

(L2F )(γ1, γ2) :=
∑
y∈γ2

d2(y, γ1, γ2 \ y)
[
F (γ1, γ2 \ y)− F (γ1, γ2)

]
(4.3)

+

∫
Rd
b2(y, γ1, γ2)

[
F (γ1, γ2 ∪ y)− F (γ1, γ2)

]
dy.

characterizes the second population (type 2). In this particular case, taking
into account the mutual relation between two types of individuals, birth and
death rates are de�ned as follows:

d1(x, γ1, γ2) = m+ + A−1
∑
x′∈γ1

a−1 (x− x′) +B−1
∑
y∈γ2

b−1 (x− y),

b1(x, γ1, γ2) = A+
1

∑
x′∈γ1

a+
1 (x− x′) +B+

1

∑
y∈γ2

b+
1 (x− y),

d2(y, γ1, γ2) = m− + A−2
∑
y′∈γ2

a−2 (y − y′) +B−2
∑
x∈γ1

b−2 (y − x),

b2(y, γ1, γ2) = A+
2

∑
y′∈γ2

a+
2 (y − y′) +B+

2

∑
x∈γ1

b+
2 (y − x).

We assume that all functions a#
i , b

#
i are probability densities, andA#

i , B
#
i > 0

for # ∈ {+,−}, i = 1, 2.

4.2.2 The symbol of L

Recall that the K-transform plays the role of Fourier transform in the con�g-
uration space analysis. The symbol of the Markov pre-generator L is de�ned
as its K-image. Namely

L̂G := K−1LKG

for measurable functions G on the space of �nite con�gurations Γ2
0. Below

we show the explicit form of L̂.
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Proposition 4.1. The symbol of the generator (4.1) is given by:

L̂G(η1, η2) = −
(
m+|η1|+m−|η2|

)
G(η1, η2)

−
∑
x∈η1

A−1 ∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)

G(η1, η2)

−
∑
y∈η2

A−2 ∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)

G(η1, η2)

−
∑
x∈η1

A−1 ∑
x′∈η1\x

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (y − x)

G(η1 \ x, η2)

−
∑
y∈η2

B−1 ∑
x∈η1

b−1 (x− y) + A−2
∑

y′∈η2\y

a−2 (y − y′)

G(η1, η2 \ y)

+

∫
Rd

A+
1

∑
x′∈η1

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

G(η1 ∪ x, η2)dx

+

∫
Rd

A+
2

∑
y′∈η2

a+
2 (y − y′) +B+

2

∑
x∈η1

b+
2 (y − x)

G(η1, η2 ∪ y)dy

+ A+
1

∫
Rd

∑
x′∈η1

a+
1 (x− x′)G(η1 \ x′ ∪ x, η2)dx

+ B+
1

∫
Rd

∑
y∈η2

b+
1 (x− y)G(η1 ∪ x, η2 \ y)dx

+ A+
2

∫
Rd

∑
y′∈η2

a+
2 (y − y′)G(η1, η2 \ y′ ∪ y)dy

+ B+
2

∫
Rd

∑
x∈η1

b+
2 (y − x)G(η1 \ x, η2 ∪ y)dy,

for all functions G ∈ Bbs(Γ
2
0) and (η1, η2) ∈ Γ2

0.

Proof. First of all we simplify the form of the operator L. Note that we can
rewrite the birth and death coe�cients using K-transform:

bi(x, γ1, γ2) = KBi
x(γ

1, γ2), (4.4)

di(x, γ1, γ2) = KDi
x(γ

1, γ2)
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for i = 1, 2, where

D1
x(γ

1, γ2) = eλ(0, 0, γ
1, γ2)m+ + A−1 eλ(0, γ

2)1{|γ1|=1}(γ
1)〈a−1 (x− ·), γ1〉

+ B−1 eλ(0, γ
1)1{|γ2|=1}(γ

2)〈b−1 (x− ·), γ2〉,
B1
x(γ

1, γ2) = A+
1 eλ(0, γ

2)1{|γ1|=1}(γ
2)〈a+

1 (x− ·), γ1〉
+ B+

1 1{|γ2|=1}(γ
2)eλ(0, γ

1)〈b+
1 (x− ·), γ2〉,

and

D2
y(γ

1, γ2) = eλ(0, 0, γ
1, γ2)m− + A−2 eλ(0, γ

1)1{|γ2|=1}(γ
2)〈a−2 (y − ·), γ2〉

+ B−2 eλ(0, γ
2)1{|γ1|=1}(γ

1)〈b−2 (y − ·), γ1〉,
B2
y(γ

1, γ2) = A+
2 eλ(0, γ

1)1{|γ2|=1}(γ
2)〈a+

2 (y − ·), γ2〉
+ B+

2 eλ(0, γ
1)1{|γ1|=1}(γ

1)〈b+
2 (y − ·), γ1〉.

Now denote the gradients with

D1−
x F (γ1, γ2) = F (γ1 \ x, γ2)− F (γ1, γ2),

D1+
x F (γ1, γ2) = F (γ1 ∪ x, γ2)− F (γ1, γ2),

D2−
x F (γ1, γ2) = F (γ1, γ2 \ x)− F (γ1, γ2),

D2+
x F (γ1, γ2) = F (γ1, γ2 ∪ x)− F (γ1, γ2).

Using this notation, we can rewrite the pre-generator L in more compact
form:

LF (γ1, γ2) =
∑
x∈γ1

KD+
x (γ1, γ2)D1−

x F (γ1, γ2)

+

∫
Rd
KB+

x (γ1, γ2)D1+
x F (γ1, γ2)dx

+
∑
y∈γ2

KD−y F (γ1, γ2)D2−
x F (γ1, γ2)

+

∫
Rd
KB−y (γ1, γ2)D2−

y F (γ1, γ2)dy.

Below we show how to calculate the symbol for the �rst part of the pre-
generator L1, which describes the birth and death of particles in the popu-



4.2. CONSTRUCTION OF THE SEMIGROUP IN Γ0 91

lation γ1. Let us start with

D1−
x KG(γ1, γ2) = KG(γ1 \ x, γ2)−KG(γ1, γ2)

=
∑

η1bγ1\x

∑
η2bγ2

G(η1, η2)−
∑
η1bγ1

∑
η2bγ2

G(η1, η2)

=
∑
η2bγ2

 ∑
η1bγ1\x

G(η1, η2)−
∑
η1bγ1

G(η1, η2)


= −

∑
η2bγ2

∑
η1bγ1\x

G(η1 ∪ x, η2)

= − KG(· ∪ x, ·)(γ1 \ x, γ2),

and

D1+
x KG(γ1, γ2) = KG(γ1 ∪ x, γ2)−KG(γ1, γ2)

=
∑

η1bγ1∪x

∑
η2bγ2

G(η1, η2)−
∑
η1bγ1

∑
η2bγ2

G(η1, η2)

=
∑
η2bγ2

∑
η1bγ1

G(η1 ∪ x, η2)

= KG(· ∪ x, ·)(γ1, γ2).

Hence for the pre-generator L1 we have

L1KG(γ1, γ2) = −
∑
x∈γ1

KD1
x(γ

1 \ x, γ2) (KG(· ∪ x, ·)) (γ1 \ x, γ2)

+

∫
Rd
KB1

x(γ
1, γ2) (KG(· ∪ x, ·)) (γ1, γ2)dx

= −
∑
x∈γ1

K
[
D1
x ? G(· ∪ x, ·)

]
(γ1 \ x, γ2)

+

∫
Rd
K
[
B1
x ? G(· ∪ x, ·)

]
(γ1, γ2)dx.

Applying K−1 to the object above we obtain the symbol of L1:

L̂1G(η1, η2) = K−1L+KG(η1, η2)

= −
∑
x∈γ1

[
D1
x ? G(· ∪ x, ·)

]
(η1 \ x, η2)

+

∫
Rd

[
B1
x ? G(· ∪ x, ·)

]
(η1, η2)dx.
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It remains to determine the values of two convolutions above. In order to
make the calculation more readable, below we use the notation:∑

:=
∑

(η1
1 ,η

1
2 ,η

1
3)∈P∅3 (η1)

(η2
1 ,η

2
2 ,η

2
3)∈P∅3 (η2)

.

Then we have[
D1
x?G(· ∪ x, ·)

]
(η1, η2)

= m+
∑

eλ(0, η
1
1 ∪ η1

2)eλ(0, η
2
1 ∪ η2

2)G(η1
2 ∪ η1

3 ∪ x, η2
2 ∪ η2

3)

+ A+
1

∑
eλ(0, η

2
1 ∪ η2

2)1{|η1
1∪η1

2 |=1}(η
1
1 ∪ η1

2)〈a+
1 (x− ·), η1

1 ∪ η1
2〉

×G(η1
2 ∪ η1

3 ∪ x, η2
2 ∪ η2

3)

+ B−1
∑

eλ(0, η
1
1 ∪ η1

2)1{|η2
1∪η2

2 |=1}(η
2
1 ∪ η2

2)〈b−1 (x− ·), η2
1 ∪ η2

2〉

×G(η1
2 ∪ η1

3 ∪ x, η2
2 ∪ η2

3),

using the properties of the coherent states and those of the indicator function
we notice, that in fact many of the terms in the three sums above vanish,
and the rest is equal to[

D1
x ? G(· ∪ x, ·)

]
(η1, η2) = m+G(η1 ∪ x, η2)

+ A+
1

∑
x′∈η1

a+
1 (x− x′)G(η1 ∪ x, η2)

+ A+
1

∑
x′∈η1

a+
1 (x− x′)G(η1 \ x′ ∪ x, η2)

+B−1
∑
y∈η2

b−1 (x− y)G(η1 ∪ x, η2)

+B−1
∑
y∈η2

b−1 (x− y)G(η1 ∪ x, η2 \ y).

Similarly we can calculate[
B1
x?G(· ∪ x, ·)

]
(η1, η2) =

= A+
1

∑
eλ(0, η

2
1 ∪ η2

2)1{|η1
1∪η1

2 |=1}(η
1
1 ∪ η1

2)〈a+
1 (x− ·), η1

1 ∪ η1
2〉

×G(η1
2 ∪ η1

3 ∪ x, η2
2 ∪ η2

3)

+ B+
1

∑
1{|η2

1∪η2
2 |=1}(η

2
1 ∪ η2

2)(η2
1 ∪ η2

2)〈b+
1 (x− ·), η2

1 ∪ η2
2〉

× eλ(0, η1
1 ∪ η1

2)G(η1
2 ∪ η1

3 ∪ x, η2
2 ∪ η2

3)
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which gives

A+
1

∑
x′∈η1

a+
1 (x− x′)G(η1 ∪ x, η2) + A+

1

∑
x′∈η1

a+
1 (x− x′)G(η1 \ x′ ∪ x, η2)

+ B+
1

∑
y∈η2

b+
1 (x− y)G(η1 ∪ x, η2) +B+

1

∑
y∈η2

b+
1 (x− y)G(η1 ∪ x, η2 \ y).

The symbol of L2 can be calculated analogously. Summing this up, we obtain
the form of the symbol L̂.

Remark 4.1. Note, that we are given the family of generators depending on
parameters m+,m−, A−1 , A

−
2 , A

+
1 , A

+
2 , B

−
1 , B

−
2 , B

+
1 , B

+
2 > 0, so formally

L̂ := L̂(m+,m−, A−1 , A
−
2 , A

+
1 , A

+
2 , B

−
1 , B

−
2 , B

+
1 , B

+
2 ).

Throughout the rest of this chapter we write simply L̂ when it doesn't lead to
confusion.

4.2.3 Semigroup associated to L̂

We proceed now to the construction of the semigroup associated to L̂ using
the method which was applied in Chapter 3. Let C > 0 and recall the
de�nition of the space

LC := L1
(

Γ+
0 × Γ−0 , C

|η1|+|η2|λ(dη1)λ(dη2)
)
, (4.5)

‖ · ‖C =
∫

Γ2
0
| · |C |η1|+|η2|λ(dη1)λ(dη2). Then we have the following:

Proposition 4.2. For every C > 0, m+,m− > 0, the operator

L0G(η1, η2) :=−
(
m+|η1|+m−|η2|

)
G(η1, η2)

−
∑
x∈η1

A−1 ∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)

G(η1, η2)

−
∑
y∈η2

A−2 ∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)

G(η1, η2)

with
D(L0) := {G ∈ LC : L0G ∈ LC}

is the generator of a contraction semigroup on LC. Moreover, L0 ∈ H(ω, 0)
for all ω ∈

(
0, π

2

)
. See Section 3.2 for the corresponding de�nitions.
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Proof. Fix ω ∈
(
0, π

2

)
and take ζ ∈ Sect(π

2
+ ω). Denote with

Ξ(η1, η2) := m+|η1|+m−|η2|

+
∑
x∈η1

A−1 ∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)


+
∑
y∈η2

A−2 ∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)

 .
Then 0 ≤ Ξ(η1, η2) < +∞ for all (η1, η2) ∈ Γ2

0 and

L0G(η1, η2) = −Ξ(η1, η2)G(η1, η2).

It is easy to see that the operator (L0, D(L0)) is densely de�ned in LC .
On the other hand for ζ ∈ Sect

(
π
2

+ ω
)
we have |Ξ(η1, η2) + ζ| > 0 for

all (η1, η2) ∈ Γ2
0 and thus the operator

(L0 − ζ1)−1G = − 1

Ξ(η1, η2) + ζ
G(η1, η2)

is well de�ned for every G ∈ LC . It remains us to prove the inequality (3.11).
Let Reζ ≥ 0 then obviously∥∥(L0 − ζ1)−1G

∥∥
LC

=

∥∥∥∥ 1

|Ξ(η1, η2) + ζ|
|G|
∥∥∥∥
LC

≤ 1

|ζ|
‖G‖LC .

In the case of Reζ < 0 notice, that∣∣Ξ(η2, η2) + ζ
∣∣ > |Imζ| > |ζ| cosω,

thus ∥∥(L0 − ζ1)−1G
∥∥
LC
≤ 1

|ζ| cosω
‖G‖LC .

Summarizing, we get∥∥(L0 − ζ1)−1G
∥∥
LC
≤ max

{
1

|ζ|
,

1

|ζ| cosω

}
.

The statement follows now from the Hille-Yosida theorem (see e.g. [Paz83,
Kat95]).
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Below we prove a series of technical propositions showing that the re-
maining part of the operator L̂ is relatively bounded with respect to L0. We
will sometimes write η := (η1, η2) to make the text more readable.

Proposition 4.3. De�ne

L1G(η) := −
∑
x∈η1

A−1 ∑
x′∈η1\x

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (x− y)

G(η1 \ x, η2)

with D(L1) = D(L0), then, for any A−1 , B
−
2 , C > 0 such that the following

hold:

C
[
A−1 |η1|+B−2 |η2|

]
≤ δ1

( (
m+|η1|+m−|η2|

)
+
∑
x∈η1

[
A−1

∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)
]

+
∑
y∈η2

[
A−2

∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)
])

for some δ1 > 0 and all (η1, η2) ∈ Γ2
0, the following inequality is ful�lled:

‖L1G‖C ≤ δ1‖L0G‖C. (4.6)

Proof. Let G ∈ D(L1) and C > 0, then

‖L1G‖C =

∫
Γ2

0

∣∣∣∣∣∑
x∈η1

A−1 ∑
x′∈η1\x

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (x− y)


×G(η1 \ x, η2)

∣∣∣∣∣ C |η1|+|η2|λ(dη1)λ(dη2).

Using Lemma 1.3 we can estimate the latter by∫
Γ−0

∫
Γ+

0

∫
Rd
dx

[
A−1

∑
x′∈η1

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (x− y)

]
×
∣∣G(η1, η2)

∣∣C |η1|+|η2|+1λ(dη1)λ(dη2).
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Hence

‖L0G‖C ≤ C

∫
Γ−0

∫
Γ+

0

[
A−1 |η1|+B−2 |η2|

]
|G(η1, η2)|C |η1|+|η2|λ(dη1)λdη2

≤ δ1‖L0G‖C .

Remark 4.2. In particular, the following estimate is also true:

‖L1G‖C ≤ C

[
A−1
m+

+
B−2
m−

]
‖L0G‖C.

Due to a similar structure of the operator L2 de�ned below, we will omit
the proof of the next proposition for it's analogous to the proof of the Propo-
sition 4.3.

Proposition 4.4. Let

L2G(η) := −
∑
y∈η2

A−2 ∑
y′∈η2\y

a−2 (y − y′) +B−1
∑
x∈η1

b−1 (y − x)

G(η1, η2 \ y)

with D(L2) := D(L0). Then, if for A−2 , B
−
1 > 0 and for C > 0 there exists

δ2 > 0 such that,

C
[
A−2 |η2|+B−1 |η1|

]
≤ δ2

( (
m+|η1|+m−|η2|

)
+
∑
x∈η1

[
A−1

∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)
]

+
∑
y∈η2

[
A−2

∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)
])

for all (η1, η2) ∈ Γ2
0, then

‖L2G‖C ≤ δ2‖L0G‖C. (4.7)

Remark 4.3. As in the case of L1, the following inequality holds:

‖L2G‖C ≤ C

[
A−2
m−

+
B−1
m+

]
‖L0G‖C.
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Two next proposition give the bounds of two other parts of the operator L̂
relatively with respect to the operator L0. Due to the same reasons as in the
previous case, we will give proof for only �rst of the following propositions
and we will omit the proof of the second one.

Proposition 4.5. De�ne

L3G(η1, η2) :=

∫
Rd

A+
1

∑
x′∈η1

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

G(η1 ∪ x, η2)dx

and D(L3) := D(L0). Then, for all functions a+
1 and b+

1 , and all C > 0 for
which the following estimate

1

C

∑
x∈η1

[
A+

1

∑
x′∈η1\x

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

]

≤ δ3

( (
m+|η1|+m−|η2|

)
+
∑
x∈η1

[
A−1

∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)
]

+
∑
y∈η2

[
A−2

∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)
])

holds with some δ3 > 0, we have

‖L3G‖C ≤ δ3‖L0G‖C. (4.8)

Proof. Using properties of the modulus and Minlos Lemma, we obtain

‖L3G‖C =

∫
Γ2

0

∫
Rd

A+
1

∑
x′∈η1

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)


× |G(η1 ∪ x, η2)|C |η1|+|η2|dxλ(dη1)λ(dη2)

=

∫
Γ−0

λ(dη2)

∫
Γ+

0

λ(dη1)C |η
1|+|η2|−1|G(η1, η2)|

×
∑
x∈η1

A+
1

∑
x′∈η1\x

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)


and using the assumptions, we obtain

‖L3G‖C ≤ δ3‖L0G‖C .
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Proposition 4.6. De�ne

L4G(η1, η2) :=

∫
Rd

A+
2

∑
y′∈η2

a+
2 (y − y′) +B+

2

∑
x∈η1

b+
2 (y − x)

G(η1, η2 ∪ y)dy

with D(L4) = D(L0). Then, for all functions a+
2 , b

+
2 and all C > 0 ful�lling

1

C

∑
y∈η2

[
A+

2

∑
y′∈η2\y

a+
2 (y − y′) +B+

2

∑
x∈η1

b+
2 (y − x)

]

≤ δ4

( (
m+|η1|+m−|η2|

)
+
∑
x∈η1

[
A−1

∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)
]

+
∑
y∈η2

[
A−2

∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)
])

for some δ4 > 0 the following inequality holds:

‖L4G‖C ≤ δ4‖L0G‖C. (4.9)

Last four operators are of slightly di�erent nature. They are however also
relatively bounded with respect to L0.

Proposition 4.7. Let C > 0 and de�ne

L5G(η1, η2) := A+
1

∑
x′∈η1

∫
Rd
a+

1 (x− x′)G(η1 \ x′ ∪ x, η2)dx

with D(L5) := D(L0). Then for any A+
1 > 0, such that the following estimate

A+
1 |η1| ≤ δ5

( (
m+|η1|+m−|η2|

)
+
∑
x∈η1

[
A−1

∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)
]

+
∑
y∈η2

[
A−2

∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)
])

holds with some δ5 > 0 for all (η1, η2) ∈ Γ2
0, the following inequality holds

‖L5G‖C ≤ δ5‖L0G‖C. (4.10)
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Proof. The norm ‖L5G‖C is equal to

A+
1

∫
Γ2

0

∑
x′∈η1

∫
Rd
a+

1 (x− x′)|G(η1 \ x′ ∪ x, η2)|C |η1|+|η2|dxλ(dη1)λ(dη2)

= A+
1

∫
Γ2

0

∫
Rd

∫
Rd
a+

1 (x− x′)|G(η1 ∪ x, η2)dxdx′|C |η1|+|η2|+1λ(dη1)λ(dη2)

= A+
1

∫
Γ2

0

∑
x∈η1

∫
Rd
a+

1 (x− x′)dx′|G(η1, η2)|C |η1|+|η2|λ(dη1)λ(dη2)

= A+
1

∫
Γ2

0

|η1||G(η1, η2)|C |η1|+|η2|λ(dη1)λ(dη2) ≤ δ5‖L0G‖C .

Proposition 4.8. De�ne

L6G(η1, η2) := B+
1

∑
y∈η2

∫
Rd
b+

1 (x− y)G(η1 ∪ x, η2 \ y)dx

with D(L6) := D(L0). Then, for all B+
1 > 0 for which there exists δ6 > 0

such that for every pair (η1, η2) ∈ Γ2
0:

B+
1 |η1| ≤ δ6

( (
m+|η1|+m−|η2|

)
+
∑
x∈η1

[
A−1

∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)
]

+
∑
y∈η2

[
A−2

∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)
])

we have the following estimate

‖L6G‖C ≤ δ6‖L0G‖C. (4.11)

Proof. We can calculate the norm ‖L6G‖C :

B+
1

∫
Γ0

∫
Γ0

∑
y∈η2

∫
Rd
b+

1 (x− y)|G(η1 ∪ x, η2 \ y)|C |η1|+|η2|dxλdη1λdη2

= B+
1

∫
Γ0

∫
Γ0

∫
Rd

∫
Rd
b+

1 (x− y)|G(η1 ∪ x, η2)|C |η1|+|η2|+1dxdyλ(dη1)λ(dη2)

= B+
1

∫
Γ0

∫
Γ0

∫
Rd

∑
x∈η1

b+
1 (x− y)|G(η1, η2)|C |η1|+|η2|dyλ(dη1)λ(dη2)

= B+
1

∫
Γ0

∫
Γ0

|η1||G(η1, η2)|C |η1|+|η2|λ(dη1)λ(dη2) ≤ δ6‖L0G‖C .
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Proposition 4.9. De�ne

L7G(η1, η2) := A+
2

∑
y′∈η2

∫
Rd
a+

2 (y − y′)G(η1, η2 \ y′ ∪ y)dy

with D(L7) := D(L0). Then for any A+
2 > 0, such that the following estimate

A+
2 |η2| ≤ δ7

( (
m+|η1|+m−|η2|

)
+
∑
x∈η1

[
A−1

∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)
]

+
∑
y∈η2

[
A−2

∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)
])

holds with some δ7 > 0 for all (η1, η2) ∈ Γ2
0, the following inequality holds

‖L7G‖C ≤ δ7‖L0G‖C (4.12)

for all C > 0.

The proof of this proposition is analogous to the case of L5 in Proposition
4.7. Hence we omit it here.

Proposition 4.10. De�ne

L8G(η1, η2) := B+
2

∑
x∈η1

∫
Rd
b+

2 (x− y)G(η1 \ x, η2 ∪ y)dy

with D(L8) := D(L0). Then for any B+
2 > 0, such that the following estimate

B+
2 |η2| ≤ δ8

( (
m+|η1|+m−|η2|

)
+
∑
x∈η1

[
A−1

∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)
]

+
∑
y∈η2

[
A−2

∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)
])

holds with some δ8 > 0 for all (η1, η2) ∈ Γ2
0, the following inequality holds

‖L8G‖C ≤ δ8‖L0G‖C (4.13)

for all C > 0.
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Proof. As in previous cases, we calculate the norm ‖L8G‖C :

B+
2

∫
Γ0

∫
Γ0

∑
x∈η1

∫
Rd
b+

2 (x− y)|G(η1 \ x, η2 ∪ y)|dyC |η1|+|η2|λ(dη1)λ(dη2)

= B+
2

∫
Γ0

∫
Γ0

∑
x∈η1

∑
y∈η2

b+
2 (x− y)|G(η1 \ x, η2)|C |η1|+|η2|−1λ(dη1)λ(dη2)

= B+
2

∫
Γ0

∫
Γ0

∑
y∈η2

∫
Rd
b+

2 (x− y)|G(η1, η2)|dxC |η1|+|η2|λ(dη1)λ(dη2)

= B+
2

∫
Γ0

∫
Γ0

|η2||G(η1, η2)|C |η1|+|η2|λ(dη1)λ(dη2)

≤ δ8‖L0G‖C .

Denote now for η := (η1, η2) ∈ Γ0 × Γ0:

Υ(η) :=
(
C
[
A−1 +B−1

]
+ A+

1 +B+
1

)
|η1|+

(
C
[
A−2 +B−2

]
+ A+

2 +B+
2

)
|η2|

+
1

C

∑
x∈η1

[
A+

1

∑
x′∈η1\x

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

]

+
1

C

∑
y∈η2

[
A+

2

∑
y′∈η2\y

a+
2 (y − y′) +B+

2

∑
x∈η1

b+
2 (y − x)

]

Putting together previous results we get the relative bound of the operator
L̂− L0 in terms of the L0:

Corollary 4.1. Let

Υ(η1, η2) ≤ δ
(
m+|η1|+m−|η2|

)
(4.14)

+
∑
x∈η1

[
A−1

∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)
]

+
∑
y∈η2

[
A−2

∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)

For some δ > 0 and all (η1, η2) ∈ Γ0 × Γ0. Then the following inequality
holds: ∥∥∥∥∥

8∑
i=1

LiG

∥∥∥∥∥
C

≤ δ‖L0G‖C,

for all G ∈ D(L0).
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Now we are ready to prove one of the main results of this chapter, that
is the existence of the semigroup associated with the generator L̂.

Theorem 4.1. If (4.14) holds, then the operator L̂ is the generator of a
holomorphic semigroup on LC which we will denote Û(t), t ≥ 0.

Proof. Proposition 4.2 together with Corollary 4.1 show that the operator L̂
veri�es the assumptions of the Theorem 3.1 and thus the statement of the
Theorem follows now trivially.

Remark 4.4. From the proof of the Theorem 2.4 in [Kat95] one can conclude
that in fact the δ can be chosen to be equal to 1

2
. See also [KKZ06].

Having constructed the semigroup Û(t) acting on quasi-observables we
proceed to the description of the evolution of the system of correlation func-
tions associated with our model.

4.3 The evolution of correlation functions

From now on, we �x the parameters of our system: m+,m−, A−1 , A
−
2 , A

+
1 ,

A+
2 , B

−
1 , B

−
2 , B

+
1 , B

+
2 > 0, as well as C > 0 such that the operator L̂ ful�ls

the conditions of Theorem 4.1 and thus generates a holomorphic semigroup
Û(t) on LC .

4.3.1 Space QC

Consider the space QC of the so-called correlation functions de�ned as

QC :=
{
k : Γ0 × Γ0 → R| k(·1, ·2) · C−(|·1|+|·2|) ∈ L∞(Γ0 × Γ0, λ⊗ λ)

}
.

(4.15)

It is a Banach space with the norm

‖k‖ := ess sup
∣∣∣k(η1, η2)C−(|η1|+|η2|)

∣∣∣ , (4.16)

where the ess sup is calculated with respect to the measure λ⊗2. Note, that
any function k ∈ QC satis�es the bound

|k(η1, η2)| ≤ C1C
(|η1|+|η2|) (4.17)

for λ⊗2-a.a. (η1, η2) ∈ Γ2
0 and for some C1 > 0.
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De�ne now following duality between LC and QC :

〈〈G, k〉〉 :=

∫
Γ2

0

G(η1, η2) · k(η1, η2)λ(dη1)λ(dη2) (4.18)

for G ∈ LC and k ∈ QC . The duality (4.18) is well de�ned since G ∈ LC ,
G(·1, ·2)C |·

1|+|·2| ∈ L1(Γ2
0, λ
⊗2) and additionally (4.17) holds.

4.3.2 The dual of the operator L̂

With help of the duality (4.18) one can de�ne the dual operator L̂∗ to the
generator L̂ (c.f. Chapter 1, Section 1.5), namely∫

Γ2
0

L̂G · kdλ⊗2 =

∫
Γ2

0

G · L̂∗kdλ⊗2. (4.19)

Using the fact that
L̂ = L0 + . . .+ L8

where the operators Li, i = 0...8 were de�ned in the previous section, we
calculate the dual operator L̂∗ as the sum of the respective duals of operators
L1, . . . , L8 in the series of lemmas.

Lemma 4.1. The operator L0 is "self-dual", hence L∗0 = L0.

We skip the proof for L0 is just the multiplication operator.

Lemma 4.2. The operator adjoint to the operator de�ned by

L1G(η) = −
∑
x∈η1

A−1 ∑
x′∈η1\x

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (x− y)

G(η1 \ x, η2)

with respect to the duality (4.18) has the following form

L∗1k(η) = −
∫
Rd

A−1 ∑
x′∈η1

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (x− y)

 k(η1 ∪ x, η2)dx.

Proof. By the de�nition and using the Minlos lemma, we have

−
∫

Γ2
0

∑
x∈η1

A−1 ∑
x′∈η1

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (x− y)

G(η1 \ x, η2)

× k(η1, η2)λ2(dη1, dη2)

=−
∫

Γ2
0

∫
Rd

A−1 ∑
x′∈η1

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (x− y)

 k(η1 ∪ x, η2)dx

×G(η1, η2)λ2(dη1, dη2).
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In the similar way we can obtain the following

Lemma 4.3. The operator adjoint to the operator de�ned by

L2G(η) = −
∑
y∈η2

A−2 ∑
y′∈η2\y

a−2 (y − y′) +B−1
∑
x∈η1

b−1 (y − x)

G(η1, η2 \ y)

with respect to the duality (4.18) has the following form

L∗2k(η) = −
∫
Rd

A−2 ∑
y′∈η2

a−2 (y − y′) +B−1
∑
x∈η1

b−1 (y − x)

 k(η1, η2 ∪ y)dy.

Lemma 4.4. The adjoint of the operator

L3G(η1, η2) =

∫
Rd

A+
1

∑
x′∈η1

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

G(η1 ∪ x, η2)dx

with respect to the duality (4.18) has the following form

L∗3k(η1, η2) =
∑
x∈η1

A+
1

∑
x′∈η1\x

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

 k(η1 \ x, η2).

Proof. The direct calculation yields

∫
Γ2

0

∫
Rd

A+
1

∑
x′∈η1

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

G(η1 ∪ x, η2)dx

× k(η1, η2)λ2(dη1, dη2)

=

∫
Γ2

0

∑
x∈η1

A+
1

∑
x′∈η1

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

 k(η1 \ x, η2)dx

× G(η1, η2)λ2(dη1, dη2).
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Lemma 4.5. The operator adjoint to the operator de�ned by

L4G(η1, η2) =

∫
Rd

A+
2

∑
y′∈η2

a+
2 (y − y′) +B+

2

∑
x∈η1

b+
2 (y − x)

G(η1, η2 ∪ y)dy

with respect to the duality (4.18) is as follows

L∗4k(η1, η2) =
∑
y∈η2

A+
2

∑
y′∈η2\y

a+
2 (y − y′) +B+

2

∑
x∈η1

b+
1 (y − x)

 k(η1, η2 \ y).

Again, the proof is similar to the previous case and we omit it here.

Lemma 4.6. The operator adjoint to the operator

L5G(η1, η2) = A+
1

∑
x′∈η1

∫
Rd
a+

1 (x− x′)G(η1 \ x′ ∪ x, η2)dx

with respect to the duality (4.18) has the following form

L∗5k(η1, η2) = A+
1

∑
x∈η1

∫
Rd
a+

1 (x− x′)k(η1 ∪ x′ \ x, η2)dx′.

Proof. Using the de�nition we obtain

A+
1

∫
Γ2

0

∫
Rd

∑
x′∈η1

a+
1 (x− x′)G(η1 \ x′ ∪ x, η2)dxk(η1, η2)λ2(dη1, dη2)

= A+
1

∫
Γ2

0

∫
Rd

∫
Rd
a+

1 (x− x′)G(η1 ∪ x, η2)k(η1 ∪ x′, η2)dx′dxλ2(dη1, dη2)

= A+
1

∫
Γ2

0

G(η1, η2)
∑
x∈η1

∫
Rd
a+

1 (x− x′)k(η1 ∪ x′ \ x, η2)dx′λ2(dη1, dη2).

Lemma 4.7. The adjoint with respect to the duality (4.18) of the operator
de�ned by

L6G(η1, η2) = B+
1

∑
y∈η2

∫
Rd
b+

1 (x− y)G(η1 ∪ x, η2 \ y)dx

is given by

L∗6k(η1, η2) = B+
1

∑
x∈η1

∫
Rd
b+

1 (x− y)k(η1 \ x, η2 ∪ y)dy.
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Proof. Applying the de�nition of duality and using Minlos lemma we obtain

B+
1

∫
Γ2

0

∑
y∈η2

∫
Rd
b+

1 (x− y)G(η1 ∪ x, η2 \ y)dxk(η1, η2)λ2(dη1, dη2)

=B+
1

∫
Γ2

0

∫
Rd

∫
Rd
b+

1 (x− y)G(η1 ∪ x, η2)k(η1, η2 ∪ y)dxdyλ2(dη1, dη2)

=B+
1

∫
Γ2

0

G(η1, η2)
∑
x∈η2

∫
Rd
b+

1 (x− y)k(η1 \ x, η2 ∪ y)dyλ2(dη1, dη2).

Lemma 4.8. De�ne

L7G(η1, η2) = A+
2

∑
y′∈η2

∫
Rd
a+

2 (y − y′)G(η1, η2 \ y′ ∪ y)dy.

Then the adjoint of the operator L7 with respect to the duality (4.18) has the
following form

L∗7k(η1, η2) = A+
2

∑
y∈η2

∫
Rd
a+

2 (y − y′)k(η1, η2 ∪ y′ \ y)dy′.

Proof. The proof is similar to the case of L∗5.

The calculation of the adjoint of operator L8 is similar to the proof of
Lemma 4.7. Thus the next statement will be given without proof.

Lemma 4.9. Let the operator L8 be de�ned by

L8G(η1, η2) := B+
2

∑
x∈η1

∫
Rd
b+

2 (x− y)G(η1 \ x, η2 ∪ y)dy.

Then the adjoint of L8 in the space QC with respect to the duality (4.18) is
as follows:

L∗8k(η1, η2) = B+
2

∑
y∈η2

∫
Rd
b+

2 (y − x)k(η1 ∪ x, η2 \ y)dx.
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Taking into account all previous calculations we can derive the form of the
adjoint operator L̂∗ with respect to the duality (4.18):

L̂∗k(η1, η2) = −
(
m+|η1|+m−|η2|

)
k(η1, η2) (4.20)

−
∑
x∈η1

A−1 ∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)

 k(η1, η2)

−
∑
y∈η2

A−2 ∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)

 k(η1, η2)

−
∫
Rd

A−1 ∑
x′∈η1

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (x− y)

 k(η1 ∪ x, η2)dx

−
∫
Rd

A−2 ∑
y′∈η2

a−2 (y − y′) +B−1
∑
x∈η1

b−1 (y − x)

 k(η1, η2 ∪ y)dy

+
∑
x∈η1

A+
1

∑
x′∈η1\x

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

 k(η1 \ x, η2)

+
∑
y∈η2

A+
2

∑
y′∈η2\y

a+
2 (y − y′) +B+

2

∑
x∈η1

b+
1 (y − x)

 k(η1, η2 \ y)

+ A+
1

∑
x∈η1

∫
Rd
a+

1 (x− x′)k(η1 ∪ x′ \ x, η2)dx′

+B+
1

∑
x∈η1

∫
Rd
b+

1 (x− y)k(η1 \ x, η2 ∪ y)dy

+ A+
2

∑
y∈η2

∫
Rd
a+

2 (y − y′)k(η1, η2 ∪ y′ \ y)dy′

+B+
2

∑
y∈η2

∫
Rd
b+

2 (y − x)k(η1 ∪ x, η2 \ y)dx.

for k ∈ QC .
The duality (4.18) determines a semigroup, which we will denote Û(t)∗,

i.e. 〈〈
Û(t)G, k

〉〉
=
〈〈
G, Û∗(t)k

〉〉
.

The question arises: assume we start from a proper state of the system
µ0 which has the correlation function kµ0 , is then kt := Û∗(t)kµ0 also a
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correlation function for some measure µt? Existence of such a measure is
sometimes very di�cult to prove and in this chapter we don't investigate
this problem in details. For more information and some technical tools we
refer e.g. to [KK02], and for the application of such a framework, see e.g.
[KKZ06] or [KL05] in the case of Glauber dynamics.

4.4 Vlasov-type scaling for the model

The general scheme of Vlasov scaling was introduced in Chapter 1. In this
section we apply this scheme to our model giving the formal meaning to the
considerations from Section 1.6. More precisely, we scale the pre-generator L
introduced in (4.1) obtaining an operator Lε and then we calculate its symbol
L̂ε. Next, we show the strong convergence of the associated semigroup to the
Vlasov semigroup ÛV (t). Finally we derive a Vlasov-type equation for the
two-component ecological model and give its mild solution.

4.4.1 Scaling of the operator L and its symbol

The Markov birth-and-death pre-generator L can be represented as a sum of
two operators. The �rst one, L+, corresponds to the birth of the individuals
in the system whereas the second one, L− describes the death of individuals.
As it was stated in [FKK10a], the right Vlasov scaling for L has the following
form:

Lε := L−(d1
ε, d

2
ε) + ε−1L+(b1

ε, b
2
ε) (4.21)

where d1
ε, d

2
ε, b

1
ε, b

2
ε are some scalings of the rates d1, d2, b1, b2 which will

be described later. An additional increasing of the intensity of birth is used
to preserve the in�uence of the birth part in the limiting Vlasov hierarchy.
Moreover, the real necessity of the factor ε−1 in (4.21) will become clear a
posteriori.

Recall, that the Markov pre-generator in our case has the form L =
L1 + L2. Let ε > 0. We de�ne the scaled operator Lε as L

1
ε + L2

ε, where

(L1
εF )(γ1, γ2) :=

∑
x∈γ1

d1
ε(x, γ

1 \ x, γ2)
[
F (γ1 \ x, γ2)− F (γ1, γ2)

]
(4.22)

+ ε−1

∫
Rd
b1
ε(x, γ

1, γ2)
[
F (γ1 ∪ x, γ2)− F (γ1, γ2)

]
dx,



4.4. VLASOV-TYPE SCALING FOR THE MODEL 109

and

(L2
εF )(γ1, γ2) :=

∑
y∈γ2

d2
ε(y, γ

1, γ2 \ y)
[
F (γ1, γ2 \ y)− F (γ1, γ2)

]
(4.23)

+ ε−1

∫
Rd
b2
ε(y, γ

1, γ2)
[
F (γ1, γ2 ∪ y)− F (γ1, γ2)

]
dy.

The proper scaling of coe�cients is making all interactions in the system
weaker and has the following form:

d1
ε(x, γ

1, γ2) = m+ + εA−1
∑
x′∈γ1

a−1 (x− x′) + εB−1
∑
y∈γ2

b−1 (x− y),

d2
ε(y, γ

1, γ2) = m− + εA−2
∑
y′∈γ2

a−2 (y − y′) + εB−2
∑
x∈γ1

b−2 (y − x),

b1
ε(x, γ

1, γ2) = εA+
1

∑
x′∈γ1

a+
1 (x− x′) + εB+

1

∑
y∈γ2

b+
1 (x− y),

b2
ε(y, γ

1, γ2) = εA−2
∑
y′∈γ2

a+
2 (y − y′) + εB+

2

∑
x∈γ1

b+
2 (y − x).

E�ectively, the part of L which corresponds to the birth is not changing in
the considered system. As in the previous section, we prove that for all ε > 0,
the symbol of the operator Lε generates a holomorphic semigroup in LC . For
ε > 0 recall the following renormalization:

RεG(η)(η1, η2) = ε|η
1|+|η2|G(η1, η2) (4.24)

for (η1, η2) ∈ Γ2
0. Below we give the form of the symbol L̂ε and the renor-

malized operator L̂ε,ren := R−1
ε L̂εRε = Rε−1L̂εRε.

For any ε > 0, the symbol of the operator Lε is given by

L̂εG(η1,η2) = −
(
m+|η1|+m−|η2|

)
G(η1, η2)

−
∑
x∈η1

εA−1 ∑
x′∈η1\x

a−1 (x− x′) + εB−1
∑
y∈η2

b−1 (x− y)

G(η1, η2)

−
∑
y∈η2

εA−2 ∑
y′∈η2\y

a−2 (y − y′) + εB−2
∑
x∈η1

b−2 (y − x)

G(η1, η2)

−
∑
x∈η1

εA−1 ∑
x′∈η1\x

a−1 (x− x′) + εB−2
∑
y∈η2

b−2 (y − x)

G(η1 \ x, η2)

+ . . .
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. . .−
∑
y∈η2

εB−1 ∑
x∈η1

b−1 (x− y) + εA−2
∑

y′∈η2\y

a−2 (y − y′)

G(η1, η2 \ y)

+

∫
Rd

A+
1

∑
x′∈η1

a+
1 (x− x′) + A+

1

∑
y∈η2

b+
1 (x− y)

G(η1 ∪ x, η2)dx

+

∫
Rd

A+
2

∑
y′∈η2

a+
2 (y − y′) +B+

2

∑
x∈η1

b+
2 (y − x)

G(η1, η2 ∪ y)dy

+ A+
1

∫
Rd

∑
x′∈η1

a+
1 (x− x′)G(η1 \ x′ ∪ x, η2)dx

+B+
1

∫
Rd

∑
y∈η2

b+
1 (x− y)G(η1 ∪ x, η2 \ y)dx

+ A+
2

∫
Rd

∑
y′∈η2

a+
2 (y − y′)G(η1, η2 \ y′ ∪ y)dy

+B+
2

∫
Rd

∑
x∈η1

b+
2 (y − x)G(η1 \ x, η2 ∪ y)dy

for G ∈ L0
ls(Γ

2
0) and (η1, η2) ∈ Γ2

0. Next, we renormalise "line by line" the
operator above obtaining for any ε > 0 (recall η = (η1, η2)):

L̂ε,ren =
7∑
i=1

Ei + ε
4∑
j=1

Fj (4.25)

where

E1G(η) :=−
(
m+|η1|+m−|η2|

)
G(η1, η2)

E2G(η) :=−
∑
x∈η1

A−1 ∑
x′∈η1\x

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (y − x)

G(η1 \ x, η2)

E3G(η) :=−
∑
y∈η2

A−2 ∑
y′∈η2\y

a−2 (y − y′) +B−1
∑
x∈η1

b−1 (x− y)

G(η1, η2 \ y)

E4G(η) := A+
1

∫
Rd

∑
x′∈η1

a+
1 (x− x′)G(η1 \ x′ ∪ x, η2)dx
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and

E5G(η) := B+
1

∫
Rd

∑
y∈η2

b+
1 (x− y)G(η1 ∪ x, η2 \ y)dx

E6G(η) :=A+
2

∫
Rd

∑
y′∈η2

a+
2 (y − y′)G(η1, η2 \ y′ ∪ y)dy

E7G(η) :=B+
2

∫
Rd

∑
x∈η1

b+
2 (y − x)G(η1 \ x, η2 ∪ y)dy

F1G(η) :=−
∑
x∈η1

A−1 ∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)

G(η1, η2)

F2G(η) :=−
∑
y∈η2

A−2 ∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)

G(η1, η2)

F3G(η) :=

∫
Rd

A+
1

∑
x′∈η1

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

G(η1 ∪ x, η2)dx

F4G(η) :=

∫
Rd

A+
2

∑
y′∈η2

a+
2 (y − y′) +B+

2

∑
x∈η1

b+
2 (y − x)

G(η1, η2 ∪ y)dy.

We consider maximal domain for L̂ε,ren de�ned as

D(L̂ε,ren) := {G ∈ LC | L̂ε,renG ∈ LC} (4.26)

for ε > 0, and

D(L̂ren) := {G ∈ LC |
(
m+| ·1 |+m−| ·2 |

)
G(·1, ·2) ∈ LC} (4.27)

in the case when ε = 0.

Remark 4.5. It is easy to see that D(L̂ε,ren) ⊂ D(L̂ren).

Similarly to the unscaled case (cf. Theorem 4.1), operator L̂ε,ren with the
domain de�ned above generates a semigroup in LC :

Theorem 4.2. For all m#, A#
i , B

#
i , # ∈ {+,−}, i = 1, 2 such that the

following assumptions hold for all (η1, η2) ∈ Γ0 × Γ0:

1. there exists ϑ1 > 0 such that[
C
(
A−1 +B−1

)
+ A+

1 +B+
1

]
|η1|

+
[
C
(
B−2 + A−2

)
+ A+

2 +B+
2

]
|η2| ≤ ϑ1

(
m+|η1|+m−|η2|

)
,
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2. there exists ϑ2 > 0 such that

ε

C

∑
x∈η1

[
A+

1

∑
x′∈η1\x

a+
1 (x− x′) +B+

1

∑
y∈η2

b+
1 (x− y)

]
+

ε

C

∑
y∈η2

[
A+

2

∑
y′∈η2\y

a+
2 (y − y′) +B+

2

∑
x∈η1

b+
2 (y − x)

]
≤ ϑ2

( (
m+|η1|+m−|η2|

)
+ ε

∑
x∈η1

[
A−1

∑
x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y)
]

+ ε
∑
y∈η2

[
A−2

∑
y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x)
])

,

3. and additionally the following holds for some δ > 0:

ϑ1 + ϑ2 ≤ 1− δ.

Then, for every ε > 0,
(
L̂ε,ren, D(L̂ε,ren

)
generates a holomorphic semigroup

Ûε(t), t ≥ 0 in LC and moreover L̂ε,ren ∈ H(ω) for all ω ∈ (0, π
2
).

Proof. Proof is very similar to the unscaled case (Theorem 4.1). Note only
the following facts:

1. operator E1 + ε(F1 + F2) with domain D(L̂ε,ren) is the generator of a
contraction semigroup on LC and belongs to H(ω) for all ω ∈ (0, π

2
),

2. operator L̂ren,ε − (E1 + ε(F1 + F2)) with the same domain is relatively
bounded with respect to the operator E1 + ε(F1 + F2).

Hence the operator L̂ε,ren ful�ls the assumptions of the Theorem 3.1 and the
statement follows trivially.

Summarizing, we have constructed holomorphic semigroup Ûε(t) on LC
which is generated by the operator L̂ε,ren. The next problem is to examine
the behaviour of aforementioned semigroup as ε→ 0.

4.4.2 Convergence of the rescaled semigroup

The natural candidate for the limiting operator (as ε tends to 0) is the
pointwise limit of the operator L̂ε,ren which we denote by L̂V , i.e.

lim
ε→0

L̂ε,renG(η1, η2) =: L̂VG(η1, η2) = E1G(η1, η2) +
7∑
i=2

EiG(η1, η2) (4.28)
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for all (η1, η2) ∈ Γ2
0. De�ne the domain D(L̂V ) as

D(L̂V ) := {G ∈ LC |
(
m+| ·1 |+m−| ·2 |

)
G(·1, ·2) ∈ LC}.

Proceeding in the same manner as previously we immediately get the follow-
ing

Corollary 4.2. Under the assumption (1) of Theorem 4.2, L̂V generates a
holomorphic semigroup ÛV (t), t ≥ 0 on LC.

The question remains, whether the semigroup Ût,ε converges strongly to

ÛV
t as ε → 0. One of the possible ways to answer this question, is to show

the convergence of the corresponding resolvents as in the following theorem:

Theorem 4.3 (see e.g. [Kat95], Chap. IX, Thm. 2.16). Let T and Tn,
n = 1, 2, . . . generate quasi-bounded semigroups UT (t), UTn(t) respectively.
If there exists β > 0 and λ : Reλ > β such that

(Tn − λ1)−1 s−→ (T − λ1)−1, (4.29)

then

UTn(t)
s−→ UT (t) (4.30)

uniformly in any �nite interval of t ≥ 0. Conversely, if (4.30) holds for all t
such that 0 ≤ t ≤ b, b > 0, then (4.29) holds for every λ with Reλ > β.

It is enough to assure the condition (4.29). Using the results from [FKK10c],
one can show that the following conditions are su�cient for equation (4.29)
to be satis�ed:

A1 For any ε ≥ 0 the operator (L̂ε,ren, D(L̂ε,ren)) can be represented as

L̂ε,ren := A1(ε) + A2(ε),

where D(A1(ε)) = D(A2(ε)) := D(L̂ε,ren).

A2 There exists β > 0 and λ > β such that

1. λ belongs to the resolvent set of A1(ε) for any ε ≥ 0 and

(A1(ε)− λ1)−1 s−→ (A1(0)− λ1)−1, ε→ 0,

2.

sup
ε>0

∥∥(A1(ε)− λ1)−1
∥∥
C
≤
∥∥(A1(0)− λ1)−1

∥∥
C
,
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3. for any ε ≥ 0 ∥∥A2(ε)(A1(ε)− λ1)−1
∥∥
C
< 1,

4. (A2(ε)(A1(ε)− λ1)−1 + 1)
−1

converges strongly to the operator
(A2(0)(A1(0)− λ1)−1 + 1)

−1
as ε→ 0.

We are now ready to state the main result of this section:

Theorem 4.4. Ûε(t) converges strongly to ÛV (t) as ε → 0 on any �nite
interval of time, provided that the conditions (1)-(3) of Theorem 4.2 are
satis�ed.

Proof. We will prove, that L̂ε,ren ful�ls the conditions A1 and A2 stated
above.
A1. Denote

Ψ1(x, η1, η2) := A−1
∑

x′∈η1\x

a−1 (x− x′) +B−1
∑
y∈η2

b−1 (x− y) (4.31)

Ψ2(y, η1, η2) := A−2
∑

y′∈η2\y

a−2 (y − y′) +B−2
∑
x∈η1

b−2 (y − x) (4.32)

and for ε ≥ 0, de�ne

A1(ε)G(η1, η2) := −
(
m+|η1|+m−|η2|

)
G(η1, η2)

− ε

∑
x∈η1

Ψ1(x, η1, η2) +
∑
y∈η2

Ψ2(y, η1, η2)

G(η1, η2)

with D(A1(ε)) := D(L̂ren,ε) and

A2(ε) = L̂ε,ren − A1(ε) (4.33)

with D(A2(ε)) := D(A1(ε)). Note A2(0) = L̂V − A1(0). It's obvious, that
the assumption A1 is satis�ed.
A2-(1). Let G ∈ LC and λ > 0, then the calculation of the norm∥∥(A1(ε)− λ1)−1G− (A1(0)− λ1)−1G

∥∥
C

(4.34)

yields∫
Γ2

0

∣∣∣∣∣ 1

m+|η1|+m−|η2|+ ε
(∑

x∈η1 Ψ1(x, η1, η2) +
∑

y∈η2 Ψ2(y, η1, η2)
)

+ λ

+
1

−(m+|η1|+m−|η2|+ λ)

∣∣∣∣∣|G(η1, η2)|C |η1|+|η2|λ2(dη1, dη2)
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which we shortly write as∫
Γ2

0

|F (ε, η1, η2)G(η1, η2)|C |η1|+|η2|λ2(dη1, dη2)

where

F (ε, η1, η2) :=
ε
(∑

x∈η1 Ψ1(x, η1, η2) +
∑

y∈η2 Ψ2(y, η1, η2)
)

(m+|η1|+m−|η2|+ λ)

× 1

m+|η1|+m−|η2|+ ε

(∑
x∈η1

Ψ1(x, η1, η2) +
∑
y∈η2

Ψ2(y, η1, η2)

)
+ λ

and since 0 < F ≤ 1
λ
and limε→0 F (ε, η1, η2) = 0 for all (η1, η2) ∈ Γ2

0 the
condition A2-(1) holds.
A2-(2). Let G ∈ LC , λ > 0. Then the norm∥∥A1(ε)− λ1)−1

∥∥
C

(4.35)

is equal to∫
Γ0×Γ0

∣∣∣∣∣ 1

m+|η1|+m−|η2|+ ε
(∑

x∈η1 Ψ1(x, η1, η2) +
∑

y∈η2 Ψ2(y, η1, η2)
)

+ λ

∣∣∣∣∣
×|G(η1, η2)|C |η1|+|η2|λ2(dη1, dη2)

and we obviously have∥∥A1(ε)− λ1)−1
∥∥
C
≤

∫
Γ2

0

|G(η1, η2)|
|m+|η1|+m−|η2|+ λ|

C |η
1|+|η2|λ2(dη1, dη2)

=
∥∥A1(0)− λ1)−1

∥∥
C
,

hence the condition A2-(2) holds.
A3-(3). Let λ > 0. To show that∥∥A2(ε)(A1(ε)− λ1)−1

∥∥
C
< 1, (4.36)

notice �rst, that from the assumptions of the Theorem 4.2 we obtain that
for every ε > 0

‖A2(ε)‖C ≤ (ϑ1 + ϑ2) ‖A1(ε)‖C , (4.37)
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and for every λ > 0 the following inequality holds:

‖A1(ε)‖C ≤ ‖A1(ε)− λ1‖C . (4.38)

Using the latter facts, we obtain∥∥A2(ε)(A1(ε)− λ1)−1
∥∥
C
≤ (ϑ1 + ϑ2)

∥∥A1(ε)(A1(ε)− λ1)−1
∥∥
C

≤ (ϑ1 + ϑ2) < 1.

A2-(4). We will show that (A2(ε)(A1(ε)− λ1)−1 + 1)
−1

converges strongly
to the operator (A2(0)(A1(0)− λ1)−1 + 1)

−1
as ε→ 0. First denote with

Cε := A2(ε)(A1(ε)− λ1)−1,

and

Q :=
(
A2(0)(A1(0)− λ1)−1 + 1

)−1
.

Note that the condition A2-(4) is equivalent to (Cε + 1)−1 s−→ Q, as ε → 0,
but

(Cε + 1)−1 −Q = (Cε + 1)−1(Q−1 − Cε − 1)Q

= (Cε + 1)−1
(
A2(0)(A1(0)− λ)−1 − Cε

) (
A2(0)(A1(0)− λ)−1 + 1

)−1

and ‖Cε + 1‖C < 1
δ
(assumption A2-(3)). Hence it is su�cient to show that

A2(ε)(A1(ε)− λ1)−1 s−→ (A2(0)(A1(0)− λ1)−1 (4.39)

as ε→ 0. Now set A1 := A1(0) and A2 := A2(0). It is clear, that

A2(ε) = A2 + εB2

for every ε > 0. The convergence of (4.39) is then equivalent to

A2(A1(ε)− λ1)−1 s−→ A2(A1 − λ1)−1, and

εB2(A1(ε)− λ1)−1 s−→ 0, as ε→ 0.

First, because D(A1(ε)) ⊂ D(A1) = D(A2), the following identity is true:

A2(A1(ε)− λ1)−1 = A2(A1 − λ1)−1(A1 − λ1)(A1(ε)− λ1)−1,

and we need to show that

(A1 − λ1)(A1(ε)− λ1)−1 s−→ 1.
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Take G ∈ LC , then ‖ ((A1 − λ1)(A1(ε)− λ1)−1 − 1)G‖C is equal to

∫
Γ2

0

∣∣∣∣∣ m+|η1|+m−|η2|+ λ

m+|η1|+m−|η2|+ ε
(∑

x∈η1 Ψ1(x, η1, η2) +
∑

y∈η2 Ψ2(y, η1, η2)
)

+ λ

−1

∣∣∣∣∣|G(η1, η2)|C |η1|+|η2|λ2(dη1, dη2)

and hence to

∫
Γ2

0

∣∣∣∣∣ ε
(∑

x∈η1 Ψ1(x, η1, η2) +
∑

y∈η2 Ψ2(y, η1, η2)
)

m+|η1|+m−|η2|+ ε
(∑

x∈η1 Ψ1(x, η1, η2) +
∑

y∈η2 Ψ2(y, η1, η2)
)

+ λ

∣∣∣∣∣
×|G(η1, η2)|C |η1|+|η2|λ2(dη1, dη2)

which converges to 0 when ε→ 0. On the other hand, we have

‖εB2G‖C ≤ ϑ2‖A1(ε)G‖C

for all G ∈ LC , hence

∥∥εB2(A1(ε)− λ1)−1G
∥∥
C
≤ εϑ2

∥∥A1(ε)(A1(ε)− λ1)−1G
∥∥
C

≤ εϑ2

∥∥A1(ε)(A1(ε)− λ1)−1
∥∥ ‖G‖C

≤ εϑ2 ‖G‖C → 0, ε→ 0.

Thus we have proved that all the assumptions A1 and A2 are ful�lled. The
assertion of the Theorem 4.4 follows now from the Theorem 3.1. in [FKK10c].

4.4.3 Vlasov-type equation for the model

We will now derive a type of the Vlasov equation for the scaling realized
above. The dual Vlasov operator in the sense of duality given in the previous
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section (see (4.19)) can be easily calculated:

V̂ ∗k(η) = −
(
m+|η1|+m−|η2|

)
k(η1, η2)

−
∫
Rd

A−1 ∑
x′∈η1

a−1 (x− x′) +B−2
∑
y∈η2

b−2 (x− y)

 k(η1 ∪ x, η2)dx

−
∫
Rd

A−2 ∑
y′∈η2

a−2 (y − y′) +B−1
∑
x∈η1

b−1 (y − x)

 k(η1, η2 ∪ y)dy

+ A+
1

∑
x∈η1

∫
Rd
a+

1 (x− x′)k(η1 ∪ x′ \ x, η2)dx′

+B+
1

∑
x∈η1

∫
Rd
b+

1 (x− y)k(η1 \ x, η2 ∪ y)dy

+ A+
2

∑
y∈η2

∫
Rd
a+

2 (y − y′)k(η1, η2 ∪ y′ \ y)dy′

+B+
2

∑
y∈η2

∫
Rd
b+

2 (y − x)k(η1 ∪ x, η2 \ y)dx.

We consider now the Cauchy problem associated with the generator de�ned
above, i.e.: 

∂
∂t
kt = V̂ ∗kt,

kt|t=0 = k0.
(4.40)

Assume that

k0(η1, η2) = eλ(ρ
1
0, η

1) · eλ(ρ2
0, η

2)

and ρ1
0, ρ

2
0 are measurable functions on Rd such that the following two con-

ditions hold:

ess sup
x∈Rd

|ρ1
0(x)| ≤ C, and ess sup

y∈Rd
|ρ2

0(y)| ≤ C.

Then the Cauchy problem (4.40) has a mild solution

kt(η
1, η2) = eλ(ρ

1
t , η

1) · eλ(ρ2
t , η

2) ∈ QC
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where ρ1
t and ρ

2
t are solutions to the following equations (provided they exist):

∂
∂t
ρ1
t (x) = −m+ρ1

t (x)

−A−1 ρ1
t (x)

(
a−1 ∗ ρ1

t

)
(x)−B−1 ρ1

t (x)
(
b−1 ∗ ρ2

t

)
(x)

+A+
1

(
a+

1 ∗ ρ1
t

)
(x) +B+

1

(
b+

1 ∗ ρ2
t

)
(x)

ρ1
t (x)|t=0 = ρ1

0(x),

and 

∂
∂t
ρ2
t (y) = −m−ρ2

t (y)

−B−2 ρ2
t (y)

(
b−2 ∗ ρ1

t

)
(y)− A−2 ρ2

t (y)
(
a−2 ∗ ρ2

t

)
(y)

+A+
2

(
a+

2 ∗ ρ2
t

)
(y) +B+

2

(
b+

2 ∗ ρ1
t

)
(y)

ρ2
t (y)|t=0 = ρ2

0(y).

To see that, let kt(η
1, η2) := eλ(ρ

1
t , η

1)eλ(ρ
2, η2). Then ∂

∂t
kt(η

1, η2) becomes:∑
x∈η1

∂

∂t
ρ1
t (x)eλ(ρ

1
t , η

1 \ x)eλ(ρ
2
t , η

2) +
∑
y∈η2

∂

∂t
ρ2
t (y)eλ(ρ

2
t , η

2 \ y)eλ(ρ
1
t , η

1).

On the other hand, equation (4.40) yields:

∂

∂t
kt(η

1,η2) = −
(
m+|η1|+m−|η2|

)
eλ(ρ

1
t , η

1)eλ(ρ
2, η2)

− eλ(ρ1
t , η

1)eλ(ρ
2, η2)

A−1 ∑
x′∈η1

(a−1 ∗ ρ1
t )(x

′) +B−2
∑
y∈η2

(b−2 ∗ ρ1
t )(y)


− eλ(ρ1

t , η
1)eλ(ρ

2, η2)

A−2 ∑
y′∈η2

(a−2 ∗ ρ2
t )(y

′) +B−1
∑
x∈η1

(b−1 ∗ ρ2
t )(x)


+ A+

1 eλ(ρ
2, η2)

∑
x∈η1

eλ(ρ
1
t , η

1 \ x)(a+
1 ∗ ρ1

t )(x)

+B+
1 eλ(ρ

2
t , η

2)
∑
x∈η1

eλ(ρ
1
t , η

1 \ x)(b+
1 ∗ ρ2

t )(x)

+ A+
2 eλ(ρ

1
t , η

1)
∑
y∈η2

eλ(ρ
2
t , η

2 \ y)(a+
2 ∗ ρ2

t )(y)

+B+
2 eλ(ρ

1
t , η

1)
∑
y∈η2

eλ(ρ
2
t , η

2 \ y)(b+
2 ∗ ρ1

t )(y).
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Easy calculation shows that (4.40) is satis�ed if only ρ1
t and ρ

2
t satisfy two

equations above.
Thus we have obtained the Vlasov type equation for the associated density

(and �rst correlation function). Note, that the densities of two population are
dependent and one can not separate them in general. We also have the chaos
preservation property of the Vlasov operator, i.e. it preserves the product
form of the initial condition k0.



Chapter 5

Potts-type model

5.1 Introduction

In this chapter, we prove the existence of a strongly continuous contrac-
tion semigroup associated with the symbol of the pre-generator of the two-
component analogue of the Glauber dynamics, which we will call the Potts-
type model with two types of particles (see e.g. [FKO10]). We also derive a
Vlasov-type equation for the process.

De�ne the interaction energy as

Eφ(x, γ) :=
∑
y∈γ

φ(x− y) (≤ ∞) (5.1)

for a positive function φ : Rd → R. The pre-generator of Potts-type model
is given as follows:

LF (γ1, γ2) :=
∑
x∈γ1

D1−
x F (γ1, γ2) + κ

∫
Rd
e−βE

φ(x,γ2)D1+
x F (γ1, γ2)dx (5.2)

+
∑
y∈γ2

D2−
y F (γ1, γ2) + κ

∫
Rd
e−βE

φ(y,γ1)D2+
y F (γ1, γ2)dy,

for κ > 0. Recall the notation:

D1−
x F (γ1, γ2) =F (γ1 \ x, γ2)− F (γ1, γ2),

D1+
x F (γ1, γ2) =F (γ1 ∪ x, γ2)− F (γ1, γ2),

D2−
x F (γ1, γ2) =F (γ1, γ2 \ x)− F (γ1, γ2),

D2+
x F (γ1, γ2) =F (γ1, γ2 ∪ x)− F (γ1, γ2).

121
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Heuristically it means that while the particles in each population die inde-
pendently of each other, the appearance of a new particle depends not only
on its population but also on the particles of the other type.

Throughout this chapter we will always assume that the potential φ sat-
is�es

φ(x) ≥ 0, x ∈ Rd. (5.3)

Moreover, the following condition holds:

Φ :=

∫
Rd
φ(x)dx < +∞. (5.4)

Note, that (5.4) implies

C(β) :=

∫
Rd

(
e−βφ(x) − 1

)
dx <∞. (5.5)

5.2 Construction of the process on Γ2
0

Using the approximation methods (see e.g. [FKKZ10]), we will construct the
semigroup associated to the symbol of the operator L on the linear space
introduced in the previous chapter, namely the space LC which is de�ned as

LC = L1
(

Γ0 × Γ0, C
(|η1|+η2|)λ(dη1)λ(dη2)

)
for C > 0 and equipped with the norm

‖G‖C :=

∫
Γ2

0

∣∣G(η1, η2)
∣∣C(|η1|+|η2|)λ(dη1)λ(dη2).

5.2.1 Symbol of the generator L

Notice, that to calculate the symbol for Glauber-Potts model we use the one-
dimensional K-transform instead of its multicomponent analogue K. The
reason for that is that the birth coe�cients are in fact images of certain
functions under K-transform. The details will be given below. Recall also,
that we write η = (η1, η2) if it does not lead to confusion.
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Proposition 5.1. The symbol of the operator L, i.e. L̂ := K−1LK, has the
following form

L̂G(η) =− (|η1|+ |η2|)G(η1, η2)

+ κ
∑
ξ2⊂η2

∫
Rd
G(η1 ∪ x, ξ2)eλ(e

−βφ(x−·) − 1, η2 \ ξ2)e−βE
φ(x,ξ2)dx

+ κ
∑
ξ1⊂η1

∫
Rd
G(ξ1, η2 ∪ y)eλ(e

−βφ(y−·) − 1, η1 \ ξ1)e−βE
φ(y,ξ1)dy.

Proof. We will calculate the components of the symbol. Denote

L1
0G(η1, η2) := K−1

(∑
x∈·1

D1−
x KG(·1, ·2)

)
(η1, η2).

Then, we have

L1
0G(η1, η2) = K−1

(∑
x∈·1

[
KG(·1 \ x, ·2)−KG(·1, ·2)

])
(η1, η2)

= K−1

∑
x∈·1

 ∑
ξ1⊂·1\x

G(ξ1, ·2)−
∑
ξ1⊂·1

G(ξ1, ·2)

 (η1, η2)

= K−1

−∑
x∈·1

∑
ξ1⊂·1\x

G(ξ1 ∪ x, ·2)

 (η1, η2)

= −
∑
ζ1⊂η1

(−1)|η
1\ζ1|

∑
x∈ζ1

∑
ξ1∈ζ1\x

G(ξ1 ∪ x, η2)

= −
∑
ζ1⊂η1

(−1)|η
1\ζ1|

∑
x∈ζ1

KG(· ∪ x, η2)(ζ1 \ x)

= −
∑
x∈η1

∑
ζ1⊂η1\x

(−1)|η
1\(ζ1∪x)|KG(· ∪ x)(ζ1)

= − |η1|G(η1, η2).

In the case of L2
0G(η1, η2) := K−1

(∑
y∈·2 D

2−
y KG(·1, ·2)

)
(η1, η2) the similar

calculation yields L2
0G(η1, η2) := −|η2|G(η1, η2).

Before we will calculate the second part,de�ne

L1
1G(η1, η2) := K−1

[
κ
∫
Rd
e−βE

φ(x,·2)D1+
x KG(·1, ·2)dx

]
(η1, η2)
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and notice that for η ∈ Γ0, x ∈ Rd:

e−βE
φ(x,η) =

∏
y∈η

e−βφ(x−y) = Keλ
(
e−βφ(x−·) − 1

)
(η), (5.6)

then, using (5.6), we can calculate

L1
1G(η) = κK−1

(∫
Rd
e−βE

φ(x,·2)
[
KG(·1 ∪ x, ·2)−KG(·1, ·2)

]
dx

)
(η1, η2)

= κK−1

∫
Rd
K
∏
y∈·2

(e−βφ(x−y) − 1) ·KG(·1 ∪ x, ·2)dx

 (η1, η2)

= κK−1

∫
Rd
K

∏
y∈·2

(e−βφ(x−y) − 1) ? G(·1 ∪ x, ·2)

 dx
 (η1, η2)

= κ
∫
Rd

∏
y∈·2

(e−βφ(x−y) − 1) ? G(·1 ∪ x, ·2)

 (η1, η2)dx

= κ
∑
ξ2⊂η2

∫
Rd
G(η1 ∪ x, ξ2)

∏
y∈η2\ξ2

(
e−βφ(x−y) − 1

)
e−βE

φ(x,ξ2)dx.

The analogous calculation can be done for the operator de�ned as

L2
1G(η1, η2) := K−1

[
κ
∫
Rd
e−βE

φ(x,·1)D2+
x KG(·1, ·2)dy

]
(η1, η2),

giving

L2
1G(η1, η2) = κ

∑
ξ1⊂η1

∫
Rd
G(ξ1, η2 ∪ y)eλ(e

−βφ(y−·) − 1, η1 \ ξ1)e−βE
φ(y,ξ1)dy

Clearly L̂ = L0 +L1, where L# = L1
# +L2

#, # ∈ {0, 1} thus the Proposition
is proven.

To give the proper meaning to the operator L̂, we de�ne the domain of L̂ by

D(L̂) := L2C ⊂ LC

for C > 0. Notice that the embedding L2C ⊂ LC is dense. In the sequel the
following property of L̂ will be useful:

Proposition 5.2. Operator (L̂,D(L̂)) de�nes a linear operator in LC.
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Proof. It is obvious that L̂ is linear, hence we should prove that for G ∈ L2C

we have ‖L̂G‖2C <∞. Let G ∈ L2C and denote

L0G(η1, η2) := − (|η1|+ |η2|)G(η1, η2),

L1G(η1, η2) := κ
∑
ξ2⊂η2

∫
Rd
G(η1 ∪ x, ξ2)eλ(e

−βφ(x−·), η2 \ ξ2)e−βE
φ(x,ξ2)dx,

L2G(η1, η2) := κ
∑
ξ1⊂η1

∫
Rd
G(ξ1, η2 ∪ y)eλ(e

−βφ(y−·), η1 \ ξ1)e−βE
φ(y,ξ1)dy.

Clearly L̂ = L0 + L1 + L2. And we have for L0:

L0G(η1, η2) =

∫
Γ0×Γ0

(
|η1|+ |η2|

) ∣∣G(η1, η2)
∣∣C(|η1|+|η2|)λ(dη1)λ(dη2)

≤
∫

Γ0×Γ0

2(|η1|+|η2|) ∣∣G(η1, η2)
∣∣C(|η1|+|η2|)λ(dη1)λ(dη2)

= ‖G‖2C <∞.

It remains to prove, that ‖L1G‖C < ∞ and ‖L2G‖C < ∞. But due to the
similarity of two operators, we only prove the �rst inequality. Using Minlos
lemma we can calculate ‖L1G‖C as follows:

‖L1G‖C = κ
∫

Γ0

∫
Γ0

∑
ξ2⊂η2

∫
Rd

∣∣G(η1 ∪ x, ξ2)
∣∣ eλ(e−βφ(x−·) − 1, η2 \ ξ2)

× e−βEφ(x,ξ2)C |η
1|+|η2|λ(dη1)λ(dη2)

= κ
∫

Γ0

∫
Γ0

∫
Γ0

∫
Rd

∣∣G(η1 ∪ x, ξ2)
∣∣ eλ(e−βφ(x−·) − 1, η2)

× e−βEφ(x,ξ2)C |η
1|+|η2|+|ξ2|λ(dξ2)λ(dη1)λ(dη2)

= κ
∫

Γ0

∫
Γ0

∫
Γ0

∑
x∈η1

∣∣G(η1, ξ2)
∣∣ eλ(e−βφ(x−·) − 1, η2)

× e−βEφ(x,ξ2)C |η
1|+|η2|+|ξ2|−1λ(dη1)λ(dξ2)λ(dη2)

=
κ
C
eCC(β)

∫
Γ0

∫
Γ0

|G(η1, ξ2)|
∑
x∈η1

e−βE
φ(x,ξ2)C |η

1|+|ξ2|λ(dξ2)λ(dη1)

≤ κ
C
eCC(β)

∫
Γ0

∫
Γ0

|G(η1, ξ2)||η1|C |η1|+|ξ2|λ(dξ2)λ(dη1)

≤ κ
C
eCC(β)

∫
Γ0

∫
Γ0

|G(η1, ξ2)|2|η1|C |η
1|+|ξ2|λ(dξ2)λ(dη1)

≤ κ
C
eCC(β)‖G‖2C <∞.
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Putting this up together we obtain

‖L̂G‖C ≤ ‖L0G‖C + ‖L1G‖C + ‖L2G‖C
≤

(
1 +

κ
C
eCC(β) +

κ
C
eCC(β)

)
‖G‖2C <∞

for all G ∈ L2C .

5.2.2 Approximation operator and its symbol

Let δ ∈ (0, 1) be �xed, Λ ∈ Bb(Rd) and de�ne the following linear operator
on F ∈ Fcyl(Γ0 × Γ0):

(PΛ
δ F )(γ1, γ2) :=

∑
η1⊂γ1

∑
η2⊂γ2

δ|η
1|+|η2|(1− δ)|γ1\η1|+|γ2\η2| (ΞΛ

δ (γ1, γ2)
)−1

×
∫
ΓΛ

∫
ΓΛ

(κδ)|ω1|(κδ)|ω2|
∏
x∈ω1

e−βE
φ(x,γ2)

∏
y∈ω2

e−βE
φ(y,γ1)

× F ((γ1 \ η1) ∪ ω1, (γ2 \ η2) ∪ ω2)λ(dω1)λ(dω2),

where

ΞΛ
δ (γ1, γ2) :=

∫
ΓΛ

∫
ΓΛ

(κδ)|ω1|(κδ)|ω2|

×
∏
x∈ω1

e−βE
φ(x,γ2)

∏
y∈ω2

e−βE
φ(y,γ1)λ(dω1)λ(dω2).

The operator PΛ
δ can be considered as the transition operator of a discrete-

time Markov chain, the continuous version of which is the process with the
evolution de�ned by (5.2). In other words, the probability of transition from
the state (γ1, γ2) to ((γ1 \ η1) ∪ ω1, (γ2 \ η2) ∪ ω2) after time δ is equal to:(

ΞΛ
δ (γ1, γ2)

)−1
δ|η

1|+|η2|(1− δ)|γ1\η1|+|γ2\η2|(κδ)|ω1|

× (κδ)|ω2|
∏
x∈ω1

e−βE
φ(x,γ2)

∏
y∈ω2

e−βE
φ(y,γ1).

Before we proceed to the construction of the process, let us remind that the
2-dimensional analog of the K-transform is de�ned as:

KG(γ1, γ2) :=
∑
η1bγ1

∑
η2bγ2

G(η1, η2),
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together with its inverse:

K−1F (η1, η2) =
∑
ξ1⊂η1

∑
ξ2⊂η2

(−1)|η
1\ξ1|+|η2\ξ2|F (ξ1, ξ2).

Next proposition allows us to rewrite the operator PΛ
δ in a more friendly

form.

Proposition 5.3. Operator PΛ
δ de�ned above has the following representa-

tion:

PΛ
δ F (γ1, γ2) =

∑
ζ1⊂γ1

∑
ζ2⊂γ2

(1− δ)|ζ1|+|ζ2|

×
∫

ΓΛ

∫
ΓΛ

(κδ)|σ1|(κδ)|σ2|
∏
x∈σ1

e−βE
φ(x,γ2)

∏
y∈σ2

e−βE
φ(y,γ1)

× K−1F (ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2).

Proof. Let G = K−1F . We can rewrite the operator PΛ
δ in the following way:

PΛ
δ F (γ1, γ2) =

(
ΞΛ
δ (γ1, γ2)

)−1
∫
ΓΛ

∫
ΓΛ

(κδ)|ω1|(κδ)|ω2|

×
∏
x∈ω1

e−βE
φ(x,γ2)

∏
y∈ω2

e−βE
φ(y,γ1)

×
∑
η1⊂γ1

δ|γ
1\η1|(1− δ)|η1|

∑
η2⊂γ2

δ|γ
2\η2|(1− δ)|η2|

× F (η1 ∪ ω1, η2 ∪ ω2)λ(dω1)λ(dω2).

Now, using the fact that F = KG, the expression∑
η1⊂γ1

δ|γ
1\η1|(1− δ)|η1|

∑
η2⊂γ2

δ|γ
2\η2|(1− δ)|η2|F (η1 ∪ ω1, η2 ∪ ω2)

is equal to∑
η1⊂γ1

δ|γ
1\η1|(1− δ)|η1|

∑
η2⊂γ2

δ|γ
2\η2|(1− δ)|η2|

∑
ζ1⊂η1∪ω1

∑
ζ2⊂η2∪ω2

G(ζ1, ζ2).

Using basic set-theoretical facts, we can rewrite the latter as follows:∑
η1⊂γ1

δ|γ
1\η1|(1− δ)|η1|

∑
η2⊂γ2

δ|γ
2\η2|(1− δ)|η2|

×
∑
ζ1⊂η1

∑
σ1⊂ω1

∑
ζ2⊂η2

∑
σ2⊂ω2

G(ζ1 ∪ σ1, ζ2 ∪ σ2)
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and then∑
ζ1⊂η1

∑
σ1⊂ω1

∑
ζ2⊂η2

∑
σ2⊂ω2

G(ζ1 ∪ σ1, ζ2 ∪ σ2)

×
∑

α1⊂γ1\ζ1

δ|γ
1\(α1∪ζ1)|(1− δ)|α1∪ζ1|

∑
α2⊂γ2\ζ2

δ|γ
2\(α2∪ζ2)|(1− δ)|α2∪ζ2|.

The latter is equal to∑
ζ1⊂η1

∑
σ1⊂ω1

∑
ζ2⊂η2

∑
σ2⊂ω2

G(ζ1 ∪ σ1, ζ2 ∪ σ2)(1− δ)|ζ1|(1− δ)|ζ2|

×
∑

α1⊂γ1\ζ1

δ|(γ
1\ζ1)\α1|(1− δ)|α1|

∑
α2⊂γ2\ζ2

δ|(γ
2\ζ2)\α2|(1− δ)|α2|.

Notice, that by the binomial formula, the two sums in the second line of the
latter expression are equal to 1 each, hence

PΛ
δ F (γ1, γ2) =

(
ΞΛ
δ (γ1, γ2)

)−1
∑
ζ1⊂γ1

∑
ζ2⊂γ2

(1− δ)|ζ1|+|ζ2|

×
∫
ΓΛ

∫
ΓΛ

(κδ)|ω1|(κδ)|ω2|
∏
x∈ω1

e−βE
φ(x,γ2)

∏
y∈ω2

e−βE
φ(y,γ1)

×
∑
σ1⊂ω1

∑
σ2⊂ω2

G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dω1)λ(dω2).

Using the Minlos lemma, we obtain

PΛ
δ F (γ1, γ2) =

(
ΞΛ
δ (γ1, γ2)

)−1
∑
ζ1⊂γ1

∑
ζ2⊂γ2

(1− δ)|ζ1|+|ζ2|

×
∫
ΓΛ

∫
ΓΛ

∫
ΓΛ

∫
ΓΛ

(κδ)|ω1|+|σ1|(κδ)|ω2|+|σ2|

×
∏

x∈ω1∪σ1

e−βE
φ(x,γ2)

∏
y∈ω2∪σ2

e−βE
φ(y,γ1)

× G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dω1)λ(dσ1)λ(dω2)λ(dσ2).

Using the de�nition of ΞΛ
δ (γ1, γ2) and the fact that G = K−1F , the statement

of the proposition is proven.

Denote the symbol of the operator PΛ
δ with P̂Λ

δ (:= K−1PΛ
δ K). Using

Proposition 5.3 we can easily calculate the form of the symbol.
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Proposition 5.4. The symbol of the operator P̂Λ
δ is given as

P̂Λ
δ G(η1, η2) =

∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫
ΓΛ

∫
ΓΛ

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−βE

φ(x′,σ2) − 1
)

×
∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−βE

φ(y′,σ1) − 1
)

× G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2)

for all functions G ∈ Bls(Γ
2
0).

Proof. Using Proposition 5.3 and the de�nition of K−1, we obtain:

P̂Λ
δ G(η1, η2) =

∑
ξ1⊂η1

∑
ξ2⊂η2

(−1)|η
1\ξ1|+|η2\ξ2|

∑
ζ1⊂ξ1

∑
ζ2⊂ξ2

(1− δ)|ζ1|+|ζ2|

×
∫
ΓΛ

∫
ΓΛ

(κδ)|σ1|(κδ)|σ2|
∏
x∈σ1

e−βE
φ(x,ξ2)

∏
y∈σ2

e−βE
φ(y,ξ1)

× G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2)

=
∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|

×
∑

ξ1⊂η1\ζ1

∑
ξ2⊂η2\ζ2

(−1)|η
1\(ζ1∪ξ1)|+|η2\(ζ2∪ξ2)|

×
∫
ΓΛ

∫
ΓΛ

(κδ)|σ1|(κδ)|σ2|
∏
x∈σ1

e−βE
φ(x,ζ2∪ξ2)

×
∏
y∈σ2

e−βE
φ(y,ζ1∪ξ1)G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2).

Now, having in mind the de�nition of Eφ(x, γ), we can calculate:

∏
x∈σ1

e−βE
φ(x,ζ2∪ξ2) =

∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈ξ2

e−βE
φ(y′,σ1), and

∏
y∈σ2

e−βE
φ(y,ζ1∪ξ1) =

∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈ξ1

e−βE
φ(x′,σ2),
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which gives us

P̂Λ
δ G(η1, η2) =

∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|

×
∫
ΓΛ

∫
ΓΛ

(κδ)|σ1|(κδ)|σ2|
∑

ξ1⊂η1\ζ1

ξ2⊂η2\ζ2

(−1)|(η
1\ζ1)\ξ1|+|(η2\ζ2)\ξ2|

×
∏
x′∈ξ1

e−βE
φ(x′,σ2)

∏
y′∈ξ2

e−βE
φ(y′,σ1)

∏
y∈ζ2

e−βE
φ(y,σ1)

×
∏
x∈ζ1

e−βE
φ(x,σ2)G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2).

The third line of the latter expression is by de�nition equal to(
K−1

∏
x′∈·1

e−βE
φ(x′,σ2)

∏
y′∈·2

e−βE
φ(y′,σ1)

 (η1 \ ζ1, η2 \ ζ2)

=
∏

x′∈η1\ζ1

(
e−βE

φ(x′,σ2) − 1
) ∏
y′∈η2\ζ2

(
e−βE

φ(y′,σ1) − 1
)
,

thus the symbol of the operator PΛ
δ has the form:

P̂Λ
δ G(η1, η2) =

∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫
ΓΛ

∫
ΓΛ

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−βE

φ(x′,σ2) − 1
)

×
∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−βE

φ(y′,σ1) − 1
)

× G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2).

5.2.3 Construction of the semigroup

We now proceed to the construction of the semigroup associated with the
operator L̂. In what follows we introduce the approximation operator PΛ

δ in
the similar way to the one presented in [FKKZ10]. Later we show that the
under certain assumptions on the coe�cients κ and C the approximation
operator converges to L̂ and from this we can conclude some facts about the
generated semigroup.

The main result of this part is the following
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Theorem 5.1. Let

κ ≤ min
{

2Ce−2CC(β), Ce−CC(β)
}
, (5.7)

then (L̂,L2C) is a closable linear operator in LC and its closure generates a
strongly continuous contraction semigroup Ût on LC.

The proof of the Theorem 5.1 is based on the following result:

Lemma 5.1 ([EK05], Corollary 3.8). Let A be linear operator on Banach
space L with D(A) dense in L, and let ‖ · ‖D(A) be a norm on D(A) with
respect to which D(A) is a Banach space. For n ∈ N let Tn be a linear ‖ · ‖L-
contraction on L such that Tn : D(A) → D(A), and de�ne An = n(Tn − 1).
Suppose there exist ω ≥ 0 and a sequence {εn} ⊂ (0,+∞) tending to zero
such that for n ∈ N

‖(An − A)f‖L ≤ εn‖f‖D(A), f ∈ D(A), (5.8)

and
‖Tn|D(A)‖ ≤ 1 +

ω

n
. (5.9)

Then A is closable and the closure of A generates a strongly continuous
contraction semigroup on L.

By analogy to the operator P̂Λ
δ , we can de�ne a linear operator on LC by:

P̂δG(η1, η2) =
∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2| (5.10)

×
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−βE

φ(x′,σ2) − 1
)

×
∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−βE

φ(y′,σ1) − 1
)

× G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2),

for G ∈ LC . Notice, that for every (η1, η2) ∈ Γ2
0, P̂δG(η1, η2) < +∞.

We will now prove a series of Lemmas, which we will later use in the proof
of the Theorem 5.1.

Lemma 5.2. Let κ, β and C satisfy

κeCC(β) ≤ C. (5.11)

Then P̂δ is a LC-contraction, i.e. for G ∈ LC we have

‖P̂δG‖C ≤ ‖G‖C. (5.12)
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Proof. Let G ∈ LC , then

‖P̂δG‖C =

∫
Γ2

0

∣∣∣∣∣ ∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−βE

φ(x′,σ2) − 1
)

×
∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−βE

φ(y′,σ1) − 1
)

× G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2)

∣∣∣∣∣C |η1|+|η2|λ(dη1)λ(dη2).

Using modulus properties and the fact, that φ > 0 the latter can be estimated
by ∫

Γ2
0

∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏

x′∈η1\ζ1

∣∣∣e−βEφ(x′,σ2) − 1
∣∣∣ ∏
y′∈η2\ζ2

∣∣∣e−βEφ(y′,σ1) − 1
∣∣∣

×
∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)

∣∣λ(dσ1)λ(dσ2)C |η
1|+|η2|λ(dη1)λ(dη2).

Using Minlos lemma, this is equal to∫
Γ2

0

∫
Γ0

∫
Γ0

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x′∈η1

∣∣∣e−βEφ(x′,σ2) − 1
∣∣∣ ∏
y′∈η2

∣∣∣e−βEφ(y′,σ1) − 1
∣∣∣C |η1∪ζ1|+|η2∪ζ2|

×
∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)

∣∣λ(dσ1)λ(dσ2)λ(dζ1)λ(dζ2)λ(dη1)λ(dη2),

thus

‖P̂δG‖C ≤
∫
Γ2

0

∫
Γ0

∫
Γ0

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x′∈η1

∣∣∣e−βEφ(x′,σ2) − 1
∣∣∣ ∏
y′∈η2

∣∣∣e−βEφ(y′,σ1) − 1
∣∣∣

× C |η1|+|ζ1|+|η2|+|ζ2|

×
∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)

∣∣λ(dσ1)λ(dσ2)λ(dζ1)λ(dζ2)λ(dη1)λ(dη2).
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But this is equal to∫
Γ0

∫
Γ0

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

× exp

{
C

∫
Rd

(
1− e−βEφ(x′,σ2)

)
dx′
}

× exp

{
C

∫
Rd

(
1− e−βEφ(y′,σ1)

)
dy′
}

× C |ζ1|+|ζ2| ∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)
∣∣λ(dσ1)λ(dσ2)λ(dζ1)λ(dζ2).

It can be shown (see e.g. [FKKZ10]), that(
1− e−βEφ(x,σ)

)
≤
∑
y∈σ

(
1− e−βφ(x−y)

)
for φ > 0, β > 0 and σ ∈ Γ0, x /∈ σ, hence

‖P̂δG‖C ≤
∫
Γ0

∫
Γ0

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|e|σ
1|CC(β)(κδ)|σ2|e|σ

2|CC(β)

× C |ζ1|+|ζ2| ∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)
∣∣λ(dσ1)λ(dσ2)λ(dζ1)λ(dζ2)

=

∫
Γ0

∫
Γ0

∑
σ1⊂ζ1

(
(1− δ)C

)|ζ1\σ1| (
κδeCC(β)

)|σ1|

×
∑
σ2⊂ζ2

(
(1− δ)C

)|ζ2\σ2| (
κδeCC(β)

)|σ2|

×
∣∣G(ζ1, ζ2)

∣∣λ(dζ1)λ(dζ2)

=

∫
Γ0

∫
Γ0

(
(1− δ)C + κδeCC(β)

)|ζ1| (
(1− δ)C + κδeCC(β)

)|ζ2|

×
∣∣G(ζ1, ζ2)

∣∣λ(dζ1)λ(dζ2).

Using the assumptions we �nally obtain the contraction property:

‖P̂δG‖C ≤
∫
Γ0

∫
Γ0

∣∣G(ζ1, ζ2)
∣∣C |ζ1|+|ζ2|λ(dζ1)λ(dζ2) = ‖G‖C .

Next proposition shows, that the in�nitesimal generator of P̂δ approxi-
mates L̂ in LC .
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Proposition 5.5. Let L̂δ := 1
δ

(
P̂δ − 1

)
and let the assumptions of Lemma

5.2 be ful�lled. Then for G ∈ LC and every δ ∈ (0, 1) the following inequality
holds: ∥∥∥(L̂δ − L̂)G∥∥∥

C
≤ 4δ‖G‖2C. (5.13)

Proof. Let G ∈ LC and recall that L̂ = L0 + L1, where

L0G(η1, η2) = − (|η1|+ |η2|)G(η1, η2),

L1G(η1, η2) =κ
∑
ξ2⊂η2

∫
Rd
G(η1 ∪ x, ξ2)eλ(e

−βφ(x−·) − 1, η2 \ ξ2)e−βE
φ(x,ξ2)dx

+κ
∑
ξ1⊂η1

∫
Rd
G(ξ1, η2 ∪ y)eλ(e

−βφ(y−·) − 1, η1 \ ξ1)e−βE
φ(y,ξ1)dy.

We can also rewrite the operator P̂δ as the sum of the following operators:

P̂
(0)
δ G(η1, η2) = (1− δ)|η1|+|η2|G(η1, η2),

P̂
(1)
δ G(η1, η2) = κδ

∑
ζ1⊂η1

(1− δ)|ζ1|+|η2|
∫
Rd

∏
x∈ζ1

e−βφ(x−y)

×
∏

x′∈η1\ζ1

(
e−βφ(x′−y) − 1

)
G(ζ1, η2 ∪ y)dy

+ κδ
∑
ζ2⊂η2

(1− δ)|η1|+|ζ2|
∫
Rd

∏
y∈ζ2

e−βφ(y−x)

×
∏

y′∈η2\ζ2

(
e−βφ(y′−x) − 1

)
G(η1 ∪ x, ζ2)dx,

and

P̂
(≥2)
δ G(η1, η2) = P̂δ −

(
P̂

(0)
δ + P̂

(1)
δ

)
=
∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

1{|σ1|+|σ2|≥2}(κδ)|σ
1|(κδ)|σ2|

×
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−βE

φ(x′,σ2) − 1
)

×
∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−βE

φ(y′,σ1) − 1
)

×G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2).
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Using this notation the inequality (5.13) becomes∥∥∥∥∥(L̂δ−L̂)G
∥∥∥∥∥
C

=

∥∥∥∥1

δ

(
P̂δ − 1

)
G− L̂G

∥∥∥∥
C

(5.14)

≤
∥∥∥∥1

δ

(
P̂

(0)
δ G−G

)
− L0G

∥∥∥∥
C

+

∥∥∥∥1

δ
P̂

(1)
δ G− L1G

∥∥∥∥
C

+
1

δ

∥∥∥P̂ (≥2)
δ G

∥∥∥
C
.

We begin with the �rst part of the latter inequality which is equal to∥∥∥∥∥1

δ

(
P̂

(0)
δ G−G

)
− L0G

∥∥∥∥∥
C

=

∫
Γ0

∫
Γ0

∣∣∣∣∣
[

1

δ

(
(1− δ)|η1|+|η2| − 1

)
+ |η1|+ |η2|

]

×G(η1, η2)

∣∣∣∣∣C |η1|+|η2|λ(dη1)λ(dη2),

but for (η1, η2) ∈ Γ0 × Γ0 we have[
1

δ

(
(1− δ)|η1|+|η2| − 1

)
+ |η1|+ |η2|

]

=
1

δ

[ |η1|+|η2|∑
k=0

(
|η1|+ |η2|

k

)
(−1)kδk − 1 + δ

(
|η1|+ |η2|

) ]

=
1

δ

|η1|+|η2|∑
k=2

(
|η1|+ |η2|

k

)
(−1)kδk

= δ

|η1|+|η2|∑
k=2

(
|η1|+ |η2|

k

)
(−1)kδk−2

which can be estimated from above by

δ

|η1|+|η2|∑
k=2

(
|η1|+ |η2|

k

)
< δ2|η

1|+|η2|.

From this, we immediately get∥∥∥∥∥1

δ

(
P̂

(0)
δ G−G

)
− L0G

∥∥∥∥∥
C

≤ δ‖G‖2C . (5.15)
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Using the properties of modulus function and Minlos lemma we can estimate
the second term of the right hand side of (5.14) in the following way:∥∥∥∥∥1

δ
P̂

(1)
δ G− L1G

∥∥∥∥∥
C

≤ κ
∫

Γ0

∫
Γ0

∑
ζ1⊂η1

∣∣∣1− (1− δ)|ζ1|+|η2|
∣∣∣ ∫

Rd

∏
x∈ζ1

e−βφ(x−y)

×
∏

x′∈η1\ζ1

∣∣∣e−βφ(x′−y) − 1
∣∣∣ |G(ζ1, η2 ∪ y)|dyC |η1|+|η2|λ(dη1)λ(dη2)

+ κ
∫

Γ0

∫
Γ0

∑
ζ2⊂η2

∣∣∣1− (1− δ)|ζ2|+|η1|
∣∣∣ ∫

Rd

∏
y∈ζ2

e−βφ(y−x)

×
∏

y′∈η2\ζ2

∣∣∣e−βφ(y′−x) − 1
∣∣∣ |G(η1 ∪ x, ζ2)|dxC |η1|+|η2|λ(dη1)λ(dη2).

Because of the structure of the expression above, we estimate only the �rst
term (two �rst lines). Thus

κ
∫

Γ0

∫
Γ0

∑
ζ1⊂η1

∣∣∣1− (1− δ)|ζ1|+|η2|
∣∣∣ ∫

Rd

∏
x∈ζ1

e−βφ(x−y)

×
∏

x′∈η1\ζ1

∣∣∣e−βφ(x′−y) − 1
∣∣∣ |G(ζ1, η2 ∪ y)|dyC |η1|+|η2|λ(dη1)λ(dη2)

can be estimated from above by

κ
∫

Γ0

∫
Γ0

∫
Γ0

∣∣∣1− (1− δ)|ζ1|+|η2|
∣∣∣ ∫

Rd

∏
x′∈η1

∣∣∣e−βφ(x′−y) − 1
∣∣∣ |G(ζ1, η2 ∪ y)|dy

× C |η1|+|η2|+|ζ1|λ(dζ1)λ(dη1)λ(dη2)

which is, by Minlos lemma equal to:

κ
C
eCC(β)

∫
Γ0

∫
Γ0

|η2|
∣∣∣1− (1− δ)|ζ1|+|η2|−1

∣∣∣ |G(ζ1, η2)|C |η2|+|ζ1|λ(dζ1)λ(dη2).

Now notice, that for δ ∈ (0, 1), n,m ∈ N, n,m ≥ 1

1− (1− δ)n = δ
n−1∑
k=0

(1− δ)k ≤ δn,

and

(n+m− 1)m ≤ 2n+m,
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hence we obtain that the latter expression can be estimated from above by

δ
κ
C
eCC(β)

∫
Γ0

∫
Γ0

2|η
2|+|ζ1||G(ζ1, η2)|C |η2|+|ζ1|λ(dζ1)λ(dη2).

We can proceed in the same way with the second part of P̂
(1)
δ , and using the

assumption (5.11) we �nally get∥∥∥∥∥1

δ
P̂

(1)
δ G− L1G

∥∥∥∥∥
C

≤ 2δ‖G‖2C . (5.16)

It remains to show that 1
δ

∥∥∥P̂ (≥2)
δ G

∥∥∥
C
≤ δ‖G‖2C , but

1

δ

∥∥∥P̂ (≥2)
δ G

∥∥∥
C

=

∫
Γ0

∫
Γ0

∣∣∣∣∣ ∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫

Γ0

∫
Γ0

1{|σ1|+|σ2|≥2}

× δ|σ1|+|σ2|−1
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−βE

φ(x′,σ2) − 1
)

×
∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−βE

φ(y′,σ1) − 1
)
κ|σ1|κ|σ2|

×G(ζ1 ∪ σ1, ζ2 ∪ σ2)C |η
1|+|η2|

∣∣∣∣∣λ(dσ1)λ(dσ2)λ(dη1)λ(dη2)

≤ δ

∫
Γ0

∫
Γ0

∫
Γ0

∫
Γ0

|1− δ||ζ
1|+|ζ2|

∫
Γ0

∫
Γ0

κ|σ1|κ|σ2|

×
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈η1

∣∣∣e−βEφ(x′,σ2) − 1
∣∣∣

×
∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈η2

∣∣∣e−βEφ(y′,σ1) − 1
∣∣∣ ∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)

∣∣
× C |η1|+|η2|+|ζ1|+|ζ2|λ(dσ1)λ(dη1)λ(dη2)λ(dσ2)λ(dζ1)λ(dζ2)

which is equal to

δ

∫
Γ0

∫
Γ0

|1− δ||ζ
1|+|ζ2|

∫
Γ0

∫
Γ0

[
κeCC(β)

]|σ1| [κeCC(β)
]|σ2|

×
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
y∈ζ2

e−βE
φ(y,σ1)

∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)
∣∣

× C |ζ1|+|ζ2|λ(dσ1)λ(dσ2)λ(dζ1)λ(dζ2).
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Using Minlos lemma and the fact that for φ > 0, e−βE
φ(x,σ) < 1 for all

x ∈ Rd, σ ∈ Γ0 we can estimate the latter from above by

δ

∫
Γ0

∫
Γ0

∑
σ1⊂ζ1

[C(1− δ)]|ζ
1\σ1| [κeCC(β)

]|σ1|

×
∑
σ2⊂ζ2

[C(1− δ)]ζ
2\σ2 [

κeCC(β)
]|σ2| ∣∣G(ζ1, ζ2)

∣∣λ(dζ1)λ(dζ2)

but this is the same as

δ

∫
Γ0

∫
Γ0

[
C(1− δ) + κeCC(β)

]|ζ1|

×
[
C(1− δ) + κeCC(β)

]|ζ2| ∣∣G(ζ1, ζ2)
∣∣λ(dζ1)λ(dζ2)

and because of the assumption (5.11) we �nally obtain

1

δ

∥∥∥P̂ (≥2)
δ G

∥∥∥
C
≤ δ

∫
Γ0

∫
Γ0

[(2− δ)C]|ζ
1|+|ζ2| ∣∣G(ζ1, ζ2)

∣∣λ(dζ1)λ(dζ2)

≤ δ

∫
Γ0

∫
Γ0

[2C]|ζ
1|+|ζ2| ∣∣G(ζ1, ζ2)

∣∣λ(dζ1)λ(dζ2) (5.17)

= δ‖G‖2C .

Putting together the last inequality with the inequalities (5.15) and (5.16)
we obtain (5.13) and the Proposition is proven.

Now we proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. As we mentioned before, we will use Lemma 5.1 to
show that the operator L̂ generates a strongly continuous contraction semi-
group on LC . To check the assumptions of Lemma 5.1, set A := L̂, L := LC ,
D(A) := L2C , n = 1

δ
, Tn := P̂δ (which gives us An = L̂δ) and εn = 1

4n
= δ

4
.

First, using Proposition 5.2 and Lemma 5.2 we see, that (L̂,L2C) de�nes
a linear operator on LC and that P̂δ is a LC-contraction. Moreover, putting
2C instead of C in the Lemma 5.2, we obtain that for G ∈ L2C , P̂δG ∈ L2C

and additionally (5.9) is ful�lled with ω = 0. Finally, using Proposition 5.5
we obtain (5.8), thus all the assumptions of Lemma 5.1 are satis�ed.

Using additionally [EK05, Theorem 6.5] we can obtain the following

Corollary 5.1. Assume that the conditions of the Theorem 5.1 hold, then(
P̂ 1
n

)[nt]

G→ ÛtG, n→∞

for every G ∈ LC and all t ≥ 0 uniformly on bounded intervals.
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5.3 Vlasov-type scaling

We devote this section to the Vlasov type scaling of the pre-generator L
associated to the Glauber-Potts model. As in previous chapter, we show that
the scaled operator is also related to a semigroup on Γ2

0 but in this case we
mainly focus on the evolution of correlation functions for the associated state
directly, i.e. we show that the respective semigroups converge in the space of
correlation functions which we will de�ne later. This is stronger compared
to the previous chapter where the evolution of the system of correlation
functions was de�ned only in the weak sense (i.e. with respect to the duality
between LC and QC).

5.3.1 Scaled operator L̂ε,ren and Vlasov operator L̂V

Let ε > 0, then the proper scaling of the generator L de�ned in (5.2) is as
follows:

LεF (γ1, γ2) :=
∑
x∈γ1

D1−
x F (γ1, γ2) +

κ
ε

∫
Rd
e−εβE

φ(x,γ2)D1+
x F (γ1, γ2)dx

(5.18)

+
∑
y∈γ2

D2−
y F (γ1, γ2) +

κ
ε

∫
Rd
e−εβE

φ(y,γ1)D2+
y F (γ1, γ2)dy.

The symbol L̂ε can be calculated in the exactly same way as L̂ so we omit its
calculation here. Recall the following renormalization mapping of functions
on Γ0 × Γ0:

(RεG) (η1, η2) := ε|η
1|+|η2|G(η1, η2), ε > 0, (5.19)

with R−1
ε = Rε−1 , and the de�nition of the renormalized operator:

L̂ε,renG(η1, η2) := Rε−1K−1LεKRε (5.20)

be the renormalized symbol of the operator Lε. For L̂ε,ren we have the fol-
lowing:

Lemma 5.3. For every G ∈ Bbs(Γ
2
0) the operator

L̂ε,renG(η1, η2) = −
(
|η1|+ |η2|

)
G(η1, η2)

+ κ
∑
ξ2⊂η2

∫
Rd
G(η1 ∪ x, ξ2)

∏
y∈ξ2

e−εβφ(x−y)
∏

y′∈η2\ξ2

(
e−εβφ(x−y′) − 1

ε

)
dx

+ κ
∑
ξ1⊂η1

∫
Rd
G(ξ1, η2 ∪ y)

∏
x∈ξ1

e−εβφ(y−x)
∏

x′∈η1\ξ1

(
e−εβφ(y−x′) − 1

ε

)
dy
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together with the domain D(L̂ε,ren) := L2C (dense in LC) de�nes a linear
operator in LC.

Before we prove the Lemma let us introduce the following notation:

L0G(η1, η2) := −
(
|η1|+ |η2|

)
G(η1, η2),

L1,εG(η1, η2) := κ
∑
ξ2⊂η2

∫
Rd
G(η1 ∪ x, ξ2)

∏
y∈ξ2

e−εβφ(x−y)

×
∏

y′∈η2\ξ2

(
e−εβφ(x−y′) − 1

ε

)
dx,

L2,εG(η1, η2) := κ
∑
ξ1⊂η1

∫
Rd
G(ξ1, η2 ∪ y)

∏
x∈ξ1

e−εβφ(y−x)

×
∏

x′∈η1\ξ1

(
e−εβφ(y−x′) − 1

ε

)
dy.

It is clear that L̂ε,ren = L0 + L1,ε + L2,ε and we will use this notation hence-
forth.

Proof. Take G ∈ L2C , then clearly

‖L̂ε,ren‖C ≤ ‖L0G‖C + ‖L1,εG‖C + ‖L2,εG‖C . (5.21)

Similarly as in the proof of the Proposition 5.2, we can calculate the LC-
norm of L̂ε,ren, and because ‖L0G‖C < ‖G‖2C (see the proof of the above-
mentioned Proposition) it is su�cient to estimate the norm of L1,εG (also,
because of the symmetry, L2,εG) hence:

‖L1,εG‖C =

∫
Γ0

∫
Γ0

∣∣∣∣∣κ ∑
ξ2⊂η2

∫
Rd
G(η1 ∪ x, ξ2)

∏
y∈ξ2

e−εβφ(x−y)

×
∏

y′∈η2\ξ2

(
e−εβφ(x−y′) − 1

ε

)
dx

∣∣∣∣∣C |η1|+|η2|λ(dη1)λ(dη2)

≤ κ
∫

Γ0

∫
Γ0

∑
ξ2⊂η2

∫
Rd
|G(η1 ∪ x, ξ2)|

∏
y∈η2\ξ2

|βφ(x− y)| dx

× C |η1|+|η2|λ(dη1)λ(dη2),
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where we have used the fact that 1−e−φ ≤ φ for φ ≥ 0. Using Minlos lemma,
we can estimate the latter by

κ
∫

Γ0

∫
Γ0

∫
Γ0

∫
Rd
|G(η1 ∪ x, ξ2)|

∏
y∈η2

|βφ(x− y)| dx

× C |η1|+|η2|+|ξ2|λ(dξ2)λ(dη1)λ(dη2)

and this is equal to

κeβCΦ

∫
Γ0

∫
Γ0

∫
Rd
|G(η1 ∪ x, ξ2)|dxC |η1|+|ξ2|λ(dξ2)λ(dη1).

Using Minlos lemma again, we �nally obtain

‖L1,εG‖C ≤
κ
C
eβCΦ

∫
Γ0

∫
Γ0

|η1||G(η1, ξ2)|C |η1|+|ξ2|λ(dξ2)λ(dη1)

≤ κ
C
eβCΦ

∫
Γ0

∫
Γ0

2|η
1||G(η1, ξ2)|C |η1|+|ξ2|λ(dξ2)λ(dη1)

≤ κ
C
eβCΦ‖G‖2C <∞.

As result we get

‖L̂ε,ren‖C ≤
(

1 +
κ
C
eβCΦ +

κ
C
eβCΦ

)
‖G‖2C ,

and as it was mentioned before, L2C is densely embedded in LC .

The natural candidate for the Vlasov generator is the pointwise limit of
L̂ε,ren as ε tends to 0. We will denote it with L̂V and it is easy to see that

L̂VG(η1, η2) =−
(
|η1|+ |η2|

)
G(η1, η2) (5.22)

+ κ
∑
ξ2⊂η2

∫
Rd
G(η1 ∪ x, ξ2)(−β)|η

2\ξ2|
∏

y∈η2\ξ2

φ(x− y)dx

+ κ
∑
ξ1⊂η1

∫
Rd
G(ξ1, η2 ∪ y)(−β)|η

1\ξ1|
∏

x2∈η1\ξ1

φ(y − x)dy.

5.3.2 Semigroups associated with L̂ε,ren and L̂V

In this part we prove, that both L̂ε,ren and L̂
V are closable and their closures

generate strongly continuous contraction semigroups, which will be denoted
Ûε,ren(t) and ÛV (t) respectively. To do this, we apply the similar method
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to the one used in the previous section, namely the approximation by linear
contraction operators and the use of the Lemma 5.1. Let now δ ∈ R+ be
�xed and de�ne the approximation operators:

P̂ε,δG(η1, η2) =
∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫

Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

e−εβE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−εβE

φ(x′,σ2) − 1

ε

)

×
∏
y∈ζ2

e−εβE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−εβE

φ(y′,σ1) − 1

ε

)
×G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2)

and

Q̂δG(η1, η2) =
∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫

Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

(
−βEφ(x, σ2)

) ∏
y∈ζ2

(
−βEφ(y, σ1)

)
×G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2).

Next we derive some properties of the two operators de�ned above.

Lemma 5.4. Assume, that κeβCΦ ≤ C. Then both P̂ε,δ and Q̂δ are linear
LC-contractions.

Proof. Let G ∈ LC , then

‖P̂ε,δG‖C =

∫
Γ0

∫
Γ0

∣∣∣∣∣ ∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−εβE

φ(x′,σ2) − 1

ε

)

×
∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−εβE

φ(y′,σ1) − 1

ε

)

× G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2)

∣∣∣∣∣C |η1|+|η2|λ(dη1)λ(dη2).
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This can be estimated by∫
Γ0

∫
Γ0

∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

e−βE
φ(x,σ2)

∏
x′∈η1\ζ1

∣∣∣∣∣e−εβE
φ(x′,σ2) − 1

ε

∣∣∣∣∣
×

∏
y∈ζ2

e−βE
φ(y,σ1)

∏
y′∈η2\ζ2

∣∣∣∣∣e−εβE
φ(y′,σ1) − 1

ε

∣∣∣∣∣
×

∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)
∣∣λ(dσ1)λ(dσ2)C |η

1|+|η2|λ(dη1)λ(dη2)

and further by∫
Γ0

∫
Γ0

∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏

x′∈η1\ζ1

∣∣βEφ(x′, σ2)
∣∣ ∏
y′∈η2\ζ2

∣∣βEφ(y′, σ1)
∣∣

×
∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)

∣∣λ(dσ1)λ(dσ2)C |η
1|+|η2|λ(dη1)λ(dη2).

The latter is equal to∫
Γ0

∫
Γ0

∫
Γ0

∫
Γ0

(1− δ)|ζ1|+|ζ2|
∫
Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x′∈η1

∣∣βEφ(x′, σ2)
∣∣ ∏
y′∈η2

∣∣βEφ(y′, σ1)
∣∣ ∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)

∣∣
× λ(dσ1)λ(dσ2)C |η

1∪ζ1|+|η2∪ζ2|λ(dζ1)λ(dζ2)λ(dη1)λ(dη2)

and it can be estimated from above by∫
Γ0

∫
Γ0

(1− δ)|ζ1|+|ζ2|
∫

Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|eβCΦ|σ1|eβCΦ|σ2|

×
∣∣G(ζ1 ∪ σ1, ζ2 ∪ σ2)

∣∣C |ζ1|+|ζ2|λ(dσ1)λ(dσ2)λ(dζ1)λ(dζ2).

Using Minlos lemma together with the assumptions we obtain:

‖P̂ε,δG‖C ≤
∫

Γ0

∫
Γ0

[
C(1− δ) + κδeβCΦ

]|ζ1| [
C(1− δ) + κδeβCΦ

]|ζ2|

×
∣∣G(ζ1, ζ2)

∣∣λ(dζ1)λ(dζ2)

≤
∫

Γ0

∫
Γ0

∣∣G(ζ1, ζ2)
∣∣C |ζ1|+|ζ2|λ(dζ1)λ(dζ2) = ‖G‖C .
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But because for every σ1, σ2, ζ1, ζ2 ∈ Γ0 we have∣∣∣∣∣ ∏
x∈ζ1

(
−βEφ(x, σ2)

) ∏
y∈ζ2

(
−βEφ(y, σ1)

) ∣∣∣∣∣ ≤∏
x∈ζ1

∣∣βEφ(x, σ2)
∣∣ ∏
y∈ζ2

∣∣βEφ(y, σ1)
∣∣ ,

we can conclude that also

‖Q̂δG‖C ≤ ‖G‖C
for all G ∈ LC .

Now de�ne for δ ∈ (0, 1)

L̂εδ :=
1

δ

(
P̂ε,δ − 1

)
, L̂Vδ :=

1

δ

(
Q̂δ − 1

)
.

We will now show that L̂εδ and L̂Vδ approximate operators L̂ε,ren and L̂V

respectively.

Proposition 5.6. Under the assumptions of the previous Lemma and for
every δ ∈ (0, 1), G ∈ LC the following inequalities hold:

‖
(
L̂εδ − L̂ε,ren

)
G‖C ≤ 4δ‖G‖2C (5.23)

and

‖
(
L̂Vδ − L̂V

)
G‖C ≤ 4δ‖G‖2C. (5.24)

Proof. We will omit the proof for it is analogue to the proof of Proposition
5.5.

The next theorem follows from Theorem 5.1. Its proof is, with small
modi�cations of notation, the same hence we omit it here.

Theorem 5.2. Let

κ ≤ min
{

2Ce−2βCΦ, Ce−βCΦ
}
, (5.25)

Then the operators
(
L̂ε,ren,L2C)

)
and

(
L̂V ,L2C)

)
are closable. Their clo-

sures
(
L̂ε,ren, D(L̂ε)

)
and

(
L̂V , D(L̂V )

)
resp. generate strongly continuous

contraction semigroups Ûε,ren(t) and ÛV (t) (resp.) on LC and for G ∈ LC,
ε > 0 we have:(

P̂ ε
1
n
G
)[nt]

→ Ûε,ren(t)G, Q̂
[nt]
1
n

G→ ÛV (t)G (5.26)

as n→∞ for all t ≥ 0 uniformly on any bounded interval.
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Now one can ask, whether the associated semigroups converge provided
the convergence of their generators. Given previous results we could expect
that the answer is positive. However, the main point of interest for us is the
evolution of the system of correlation functions for the Glauber-Potts type
dynamic, which is governed by the "dual" operators to the ones de�ned in
this section. In the next part we will give a proper meaning to the notion of
"duality" we have in mind.

5.3.3 Dual semigroups

Denote with λC(dη1, dη2) := C |η
1|+|η2|λ(dη1)λ(dη2) and consider the dual

space to the space LC , namely (LC)′ = L∞ (Γ0 × Γ0, λC). Recall the de�ni-
tion of the space

QC :=
{
k : Γ2

0 → R : esssup(η1,η2)∈Γ0×Γ0

∣∣∣k(η1, η2)C−(|η1|+|η2|)
∣∣∣ <∞}

equipped with the norm

‖k‖QC :=
∥∥∥C−(|·1|+|·2|)k(·1, ·2)

∥∥∥
L∞(Γ0×Γ0,λ⊗λ)

.

Recall also, that for every k ∈ QC we have |k(η1, η2)| ≤ ‖k‖QCC |η
1|+|η2| for

λ ⊗ λ-a.a. (η1, η2) ∈ Γ0 × Γ0. Furthermore, the space QC is isometrically
isomorphic to (LC)′ given the isomophism

RCk(η1, η2) := C |η
1|+|η2|k(η1, η2), k ∈ (LC)′. (5.27)

Hence, we can de�ne the duality between (LC)′ and QC with help of the
following relation:

〈〈G, k〉〉 =

∫
Γ0

∫
Γ0

k(η1, η2)G(η1, η2)λ(dη1)λ(dη2) (5.28)

where G ∈ LC and k ∈ QC , and∣∣〈〈G, k〉〉∣∣ ≤ ‖G‖C‖k‖QC . (5.29)

Notice that for every function k ∈ QC , we have∣∣k(η1, η2)
∣∣ ≤ ‖k‖QCC |η1|+|η2| (5.30)

for λ⊗ λ-a.e. (η1, η2) ∈ Γ0 × Γ0.

Let
(
L̂∗ε,ren, D(L̂∗ε)

)
and

(
L̂∗V , D(L̂∗V )

)
be the images of the duals (in the

standard sense) of the operators
(
L̂ε,ren, D(L̂ε)

)
and

(
L̂V , D(L̂V )

)
, resp.
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under the isometry RC . As it was shown in [FKK10b], for a given operator
L̂, the L̂∗ is the dual of L̂ with respect to the duality de�ned in (5.28). We
will use this fact to prove the following

Proposition 5.7. Let k ∈ QC, then

L̂∗ε,renk(η1, η2) = −
(
|η1|+ |η2|

)
k(η1, η2)

+ κ
∑
x∈η1

∫
Γ0

k(η1 \ x, η2 ∪ ξ2)
∏
y∈η2

e−εβφ(x−y)
∏
y′∈ξ2

(
e−εβφ(x−y′) − 1

ε

)
λ(dξ2)

+ κ
∑
y∈η2

∫
Γ0

k(η1 ∪ ξ1, η2 \ y)
∏
x∈η1

e−εβφ(y−x)
∏
x′∈ξ1

(
e−εβφ(y−x′) − 1

ε

)
λ(dξ1)

and

L̂∗V k(η1, η2) =−
(
|η1|+ |η2|

)
k(η1, η2)

+ κ
∑
x∈η1

∫
Γ0

k(η1 \ x, η2 ∪ ξ2)
∏
y∈ξ2

(−βφ(x− y))λ(dξ2)

+ κ
∑
y∈η2

∫
Γ0

k(η1 ∪ ξ1, η2 \ y)
∏
x∈ξ1

(−βφ(y − x))λ(dξ1).

Moreover, for any α ∈ (0, 1), ε > 0 and for all k ∈ QαC:

L̂∗ε,renk ∈ QC , L̂∗V k ∈ QC. (5.31)

Proof. As we mentioned before, we will use the duality (5.28) to calculate
the dual operators. Recall, that L̂ε,ren = L0 + L1,ε + L2,ε (cf. Lemma 5.3).
Let G ∈ LC , k ∈ QC , then〈〈

L̂ε,renG, k
〉〉

=
〈〈

(L0 + L1,ε + L2,ε)G, k
〉〉

=
〈〈
G,
(
L∗0 + L∗1,ε + L∗2,ε

)
k
〉〉
.

It is clear, that L∗0 = L0, so we proceed to L∗1,ε. We have

〈〈
L1,εG, k

〉〉
= κ

∫
Γ0

∫
Γ0

∑
ξ2⊂η2

∫
Rd
G(η1 ∪ x, ξ2)

∏
y∈ξ2

e−εβφ(x−y)

×
∏

y′∈η2\ξ2

(
e−εβφ(x−y′) − 1

ε

)
dxk(η1, η2)λ(dη1)λ(dη2)
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which can be rewritten as

κ
∫

Γ0

∫
Γ0

∫
Γ0

∫
Rd
G(η1 ∪ x, ξ2)

∏
y∈ξ2

e−εβφ(x−y)

×
∏
y′∈η2

(
e−εβφ(x−y′) − 1

ε

)
dxk(η1, η2 ∪ ξ2)λ(dξ2)λ(dη1)λ(dη2)

= κ
∫

Γ0

∫
Γ0

G(η1, ξ2)
∑
x∈η1

∫
Γ0

k(η1 \ x, η2 ∪ ξ2)

×
∏
y∈ξ2

e−εβφ(x−y)
∏
y′∈η2

(
e−εβφ(x−y′) − 1

ε

)
λ(dη2)λ(dξ2)λ(dη1)

=
〈〈
G,L∗1,εk

〉〉
.

In the case of L2,ε we proceed in the same way. Hence we have obtained the

form of L̂∗ε,ren. Sending ε→ 0, we also get L̂∗V .
Using the fact that for a ∈ (0, 1) and all x ∈ R we have xax ≤ − 1

ln a
, we

obtain ∣∣∣C−(|η1|+|η2|)L∗0k(η1, η2)
∣∣∣ ≤ − 1

lnα
‖k‖QαC .

Similarly,∣∣∣∣C−(|η1|+|η2|)L∗1,εk(η1, η2)

∣∣∣∣ =

∣∣∣∣∣C−(|η1|+|η2|)κ
∑
x∈η1

∫
Γ0

k(η1 \ x, η2 ∪ ξ2)

×
∏
y∈η2

e−εβφ(x−y)
∏
y′∈ξ2

(
e−εβφ(x−y′) − 1

ε

)
λ(dξ2)

∣∣∣∣∣
can be estimated from above by

κ
C |η1|+|η2|‖k‖QαC

∑
x∈η1

∫
Γ0

(αC)|η
1|−1+|η2|+|ξ2|

∏
y′∈ξ2

∣∣∣∣e−εβφ(x−y′) − 1

ε

∣∣∣∣λ(dξ2),

which can be further estimated by

κ‖k‖QαC
αC

α|η
1|
∑
x∈η1

∫
Γ0

(αC)|ξ
2|
∏
y′∈ξ2

|βφ(x− y′)|λ(dξ2).

The last expression is equal to

κ‖k‖QαC
αC

|η1|α|η1|eαβCΦ
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thus we obtain ∣∣∣∣C−(|η1|+|η2|)L∗1,εk(η1, η2)

∣∣∣∣ ≤ −κ‖k‖QαC
αC lnα

eαβCΦ. (5.32)

In the same manner we can estimate∣∣∣∣C−(|η1|+|η2|)L∗2,εk(η1, η2)

∣∣∣∣ ≤ −κ‖k‖QαC
αC lnα

eαβCΦ, (5.33)

thus (5.31) is proven for L̂∗ε,ren. Because it holds for all non-negative ε, we can

let ε→ 0 obtaining the similar result for L̂∗V , which concludes the proof.

Recall that if (5.25) hold then
(
L̂ε,ren, D(L̂ε)

)
and

(
L̂V , D(L̂V )

)
generate

strongly continuous contraction semigroups Ûε,ren(t) and ÛV (t) (resp.) on

LC respectively (cf. Theorem 5.2). Let now Û
′
ε,ren(t) and Û

′
V (t) be the

respective dual semigroups and denote with Û∗ε,ren(t) and Û∗V (t) their images

under the isometry RC and
(
L̂∗ε,ren, D(L̂∗ε)

)
and

(
L̂V , D(L̂∗V )

)
are their

weak∗-generators (in the weak∗- lim sense), see e.g. [Nee92].
Unfortunately, the strong continuity of Ûε,ren(t) and ÛV (t) (resp.) on

LC is not su�cient to assure that the corresponding ∗-semigroups will be
strongly continuous, they are weak∗-continuous though.

The short procedure which we will introduce now is valid for both Û∗ε,ren(t)

and Û∗V (t), hence for the simplicity we will use an abstract C0-semigroup T (t)
on some space X. For more details, see [Nee92, Section 1.3].

De�ne the semigroup dual of X w.r.t. T (t) as

X� :=

{
x∗ ∈ X∗ : lim

t↓0
‖T ∗(t)x∗ − x∗‖ = 0

}
. (5.34)

It is T ∗(t)-invariant and if A∗ is the weak∗-generator of T ∗(t), then X� =
D(A∗). Now consider T�(t), the restriction of T ∗(t) to the subspace X�,
then from the de�nition (5.34) it is clear that T�(t) is a strongly continuous
semigroup onX�. Let A� be its generator. We have the following description
of A� in terms of A∗:

Theorem 5.3 ([Nee92],Theorem 1.3.3). A� is a part of A∗ in X�, that is

D(A�) :=
{
x ∈ D(A∗) : A∗x ∈ X�

}
A�x := A∗x, x ∈ D(A�).
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Applying this scheme to the semigroups Ûε,ren(t) and ÛV (t) and their

corresponding duals, we obtain strongly continuous semigroups Û�ε,ren(t) and

Û�V (t) acting on the (respectively invariant) subspaces of QC . Let α ∈ (0, 1),
then

QαC ⊂

(⋂
ε>0

D(L̂∗ε,ren)

)
∩D(L̂∗V ). (5.35)

Next proposition shows that the space QαC is a good candidate to work with
when considering Vlasov scaling.

Proposition 5.8 ([FKK10b]). Assume that (5.25) holds, then there exists a
constant α0 := α0(κ, φ, C), α0 ∈ (0, 1) such that for all α ∈ (α0, 1) the space
QαC is Û�V (t) and Û�ε,ren(t)-invariant for all ε > 0.

Proof. By (5.25) we have

κβΦ ≤ min
{
CβΦe−CβΦ, 2CβΦe−2CβΦ

}
,

using this and the fact that the function f(x) = xe−x increases on (0, 1) from
0 to e−1 we have κβΦ < e−1. This implies, that the equation f(x) = κβΦ
has exactly two roots, say 0 ≤ x1 < 1 < x2 < +∞. Using (5.25) again, we
obtain x1 < CβΦ < 2CβΦ < x2.

If CβΦ > 1, we set α0 := max
{

1
2
, 1
CβΦ

, 1
C

}
< 1 which gives us CβΦ <

2αCβΦ and x1 < 1 < αCβΦ. In the case when x1 < CβΦ ≤ 1 we set

α0 := max
{

1
2
, x1

CβΦ
, 1
C

}
< 1. That gives CβΦ < 2αCβΦ and x1 < αCβΦ.

Then, for all α ∈ (α0, 1) we have

x1 < αCβΦ < CβΦ < 2αCβΦ < 2CβΦ < x2 (5.36)

and 1 < αC < C < 2αC < 2C, thus the following inclusion hold:

L2C ⊂ L2αC ⊂ LC ⊂ LαC . (5.37)

Setting αC in the place of C in Theorem 5.2 we obtain, that (L̂ε,ren,L2αC) and

(L̂V ,L2αC) are closable in LαC and their closures generate strongly continuous
contraction semigroups on LαC . We will denote these semigroups Ûα,ε,ren(t)

and Ûα,V (t) respectively. First observe that, for G ∈ LC , ÛV (t)G, Ûα,V (t)G ∈
LαC and∥∥∥ÛV (t)G− Ûα,VG

∥∥∥
αC
≤
∥∥∥ÛV (t)G− Q̂[ t

δ
]

δ G
∥∥∥
αC

+
∥∥∥Ûα,V (t)G− Q̂[ t

δ
]

δ G
∥∥∥
αC

≤
∥∥∥ÛV (t)G− Q̂[ t

δ
]

δ G
∥∥∥
C

+
∥∥∥Ûα,V (t)G− Q̂[ t

δ
]

δ G
∥∥∥
αC
−→ 0,
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as δ ↓ 0, hence ÛV (t)G(η) = Ûα,VG(η) for λ ⊗ λ-a.a. η ∈ Γ0 which also

means, that ÛV (t)G = Ûα,VG in LC . Now let k ∈ QαC , then

〈〈
Ûα,V (t)G, k

〉〉
=
〈〈
G, Û∗α,V (t)k

〉〉
where by construction Û∗α,V k ∈ QαC . But G ∈ LC , k ∈ QC implies

〈〈
Ûα,V (t)G, k

〉〉
=
〈〈
ÛV (t)G, k

〉〉
=
〈〈
G, Û∗V (t)k

〉〉
thus Û∗α,V (t)k = Û∗V (t)k ∈ QαC . We can proceed similarly with Û∗ε,ren(t).

We can conclude the proof using (5.35) and the fact, that Û�V (t) and

Û�ε,ren(t) are restrictions of the corresponding ∗-semigroups.

Let us summarize. From now on we will �x α ∈ (α0, 1); then by the
previous considerations the restrictions Û�αε,ren(t), Û�αV (t) of the correspond-

ing strongly continuous �-semigroups onto the (invariant) space QαC are
themselves strongly continuous contraction semigroups. Obviously we have
Û�αε,ren(t)k = Û∗ε,ren(t)k, Û�αV (t)k = Û∗V (t)k for all k ∈ QαC and ε > 0. More-

over, their corresponding generators L̂�αε,ren, L̂
�α
V can be described in terms of

∗-generators as follows:

D(L̂�αε,ren) =
{
k ∈ QαC |L̂∗ε,renk ∈ QαC

}
, (5.38)

D(L̂�αV ) =
{
k ∈ QαC |L̂∗V k ∈ QαC

}
, (5.39)

and it holds:

L̂�αε,renk = L̂∗ε,renk, for k ∈ D(L̂�αε,ren) (5.40)

and

L̂�αV k = L̂∗V k, for k ∈ D(L̂�αV ), (5.41)

for every ε > 0.
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5.3.4 Convergence of the semigroups

In what follows we prove several useful lemmas which we will use in the proof
of the main result of this part. Recall the approximation operators

P̂ε,δG(η1, η2) =
∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫

Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

e−εβE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−εβE

φ(x′,σ2) − 1

ε

)

×
∏
y∈ζ2

e−εβE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−εβE

φ(y′,σ1) − 1

ε

)
×G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2)

and

Q̂δG(η1, η2) =
∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫

Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

(
−βEφ(x, σ2)

) ∏
y∈ζ2

(
−βEφ(y, σ1)

)
×G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2).

Denote with P̂ ∗ε,δ, Q̂
∗
δ their respective duals (with respect to the duality

(5.28)). Because the duality preserves norm, the ∗-operators are also lin-
ear contractions in QC . In the following we will show some properties of
these operators. First we calculate the explicit form of P̂ ∗ε,δ and Q̂

∗
δ .

Lemma 5.5. For δ > 0 and ε > 0 the dual operators P̂ ∗ε,δ, Q̂
∗
δ have the

following form:

P̂ ∗ε,δk(η1, η2) =
∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η1\σ1|+|η2\σ2|(κδ)|σ1|(κδ)|σ2|

×
∏

x′∈η1\σ1

e−εβE
φ(x′,σ2)

∏
y′∈η2\σ2

e−εβE
φ(y′,σ1)

×
∫

Γ0

∫
Γ0

∏
x∈ζ1

(
e−εβE

φ(x,σ2) − 1

ε

)∏
y∈ζ2

(
e−εβE

φ(y,σ1) − 1

ε

)
× k

((
η1 \ σ1

)
∪ ζ1,

(
η2 \ σ2

)
∪ ζ2

)
λ(dζ1)λ(dζ2)
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and

Q̂∗δk(η1, η2) =
∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η1\σ1|+|η2\σ2|(κδ)|σ1|(κδ)|σ2|

×
∫

Γ0

∫
Γ0

∏
x∈ζ1

(
−βEφ(x, σ2)

) ∏
y∈ζ2

(
−βEφ(y, σ1)

)
× k

((
η1 \ σ1

)
∪ ζ1,

(
η2 \ σ2

)
∪ ζ2

)
λ(dζ1)λ(dζ2)

for k ∈ QαC.

Proof. Let G ∈ LαC and k ∈ QαC , then standard calculation yields:

〈〈
P̂ε,δG, k

〉〉
=

∫
Γ0

∫
Γ0

∑
ζ1⊂η1

∑
ζ2⊂η2

(1− δ)|ζ1|+|ζ2|
∫

Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

e−εβE
φ(x,σ2)

∏
x′∈η1\ζ1

(
e−εβE

φ(x′,σ2) − 1

ε

)

×
∏
y∈ζ2

e−εβE
φ(y,σ1)

∏
y′∈η2\ζ2

(
e−εβE

φ(y′,σ1) − 1

ε

)
×G(ζ1 ∪ σ1, ζ2 ∪ σ2)λ(dσ1)λ(dσ2)k(η1, η2)λ(dη1)λ(dη2).

But using Lemma 1.3 we obtain

∫
Γ0

∫
Γ0

∫
Γ0

∫
Γ0

(1− δ)|ζ1|+|ζ2|
∫

Γ0

∫
Γ0

(κδ)|σ1|(κδ)|σ2|

×
∏
x∈ζ1

e−εβE
φ(x,σ2)

∏
x′∈η1

(
e−εβE

φ(x′,σ2) − 1

ε

)

×
∏
y∈ζ2

e−εβE
φ(y,σ1)

∏
y′∈η2

(
e−εβE

φ(y′,σ1) − 1

ε

)
×G(ζ1 ∪ σ1, ζ2 ∪ σ2)k(η1 ∪ ζ1, η2 ∪ ζ2)

× λ(dσ1)λ(dσ2)λ(dζ1)λ(dζ2)λ(dη1)λ(dη2),
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and this is equal to∫
Γ0

∫
Γ0

G
(
ζ1, ζ2

) ∑
σ1⊂ζ1

∑
σ2⊂ζ2

∫
Γ0

∫
Γ0

(1− δ)|ζ1\σ1|+|ζ2\σ2|(κδ)|σ1|(κδ)|σ2|

×
∏

x∈ζ1\σ1

e−εβE
φ(x,σ2)

∏
x′∈η1

(
e−εβE

φ(x′,σ2) − 1

ε

)

×
∏

y∈ζ2\σ2

e−εβE
φ(y,σ1)

∏
y′∈η2

(
e−εβE

φ(y′,σ1) − 1

ε

)
× k

((
ζ1 \ σ1

)
∪ η1,

(
ζ2 \ σ2

)
∪ η2

)
λ(dη1)λ(dη2)λ(dζ1)λ(dζ2).

One can easily deduce the form of P̂ ∗ε,δ from the expression above. We can

obtain Q̂∗δ by letting ε→ 0.

Next we show, that the space QαC is P̂ ∗ε,δ and Q̂
∗
δ-invariant.

Lemma 5.6. Let k ∈ QαC, then for all α ∈ (α0, 1)

P̂ ∗ε,δk ∈ QαC (5.42)

and

Q̂∗δk ∈ QαC. (5.43)

Proof. We will start by proving (5.43). Given k ∈ QαC we can do the fol-
lowing estimation:

(αC)−(|η1|+|η2|)
∣∣∣Q̂∗δk(η1, η2)

∣∣∣
≤ (αC)|η

1|+|η2|
∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η1\σ1|+|η2\σ2|

× (κδ)|σ1|(κδ)|σ2|
∫

Γ0

∫
Γ0

∏
x∈ζ1

(
βEφ(x, σ2)

) ∏
y∈ζ2

(
βEφ(y, σ1)

)
×
∣∣k ((η1 \ σ1

)
∪ ζ1,

(
η2 \ σ2

)
∪ ζ2

)∣∣λ(dζ1)λ(dζ2).

By (5.30), this is less or equal than

‖k‖QαC (αC)−(|η1|+|η2|)
∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η1\σ1|+|η2\σ2|(κδ)|σ1|(κδ)|σ2|

×
∫

Γ0

∫
Γ0

∏
x∈ζ1

(
βEφ(x, σ2)

) ∏
y∈ζ2

(
βEφ(y, σ1)

)
× (αC)|η1\σ1∪ζ1|+|η2\σ2∪ζ2|λ(dζ1)λ(dζ2)
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and this can be further estimated from above by

‖k‖QαC (αC)−(|η1|+|η2|)
∑
σ1⊂η1

∑
σ2⊂η2

[αC(1− δ]|η
1\σ1|+|η2\σ2| (κδ)|σ1|(κδ)|σ2|

×
∫

Γ0

∫
Γ0

∏
x∈ζ1

(
αCβEφ(x, σ2)

) ∏
y∈ζ2

(
αCβEφ(y, σ1)

)
λ(dζ1)λ(dζ2)

which is equal to

‖k‖QαC (αC)−(|η1|+|η2|)
∑
σ1⊂η1

[αC(1− δ]|η
1\σ1| (κδ)|σ1|eαCβΦ|σ1|

×
∑
σ2⊂η2

[αC(1− δ]|η
2\σ2| (κδ)|σ2|eαCβΦ|σ2|.

Next, (5.36) yields [
αC(1− δ) + κδeαCβΦ

αC

]
≤ 1,

thus

(αC)−(|η1|+|η2|)
∣∣∣Q̂∗δk(η1, η2)

∣∣∣ ≤ ‖k‖QαC .
Because of the continuity of Q̂∗δ , the latter holds also for k ∈ QαC , hence
QαC is Q̂∗δ-invariant. We can proceed in exactly the same way with P̂ ∗ε,δ and
conclude the proof.

From now on, we will consider the restrictions of P̂ ∗ε,δ and Q̂∗δ onto the

subspace QαC , while preserving the latter notation. Denote Dε the core of

the generator L̂�αε,ren, i.e. Dε :=
{
k ∈ QαC |L̂∗ε,renk ∈ QαC

}
and with DV , the

core of the operator L̂�αV , that is DV :=
{
k ∈ QαC |L̂∗V k ∈ QαC

}
.

Proposition 5.9. For every ε > 0 the following holds:

lim
δ↓0

∥∥∥∥1

δ

(
P̂ ∗ε,δ − 1

)
k − L̂�αε,renk

∥∥∥∥
QC

= 0, k ∈ Dε (5.44)

and

lim
δ↓0

∥∥∥∥1

δ

(
Q̂∗δ − 1

)
k − L̂�αV k

∥∥∥∥
QC

= 0, k ∈ DV . (5.45)
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Proof. The proof is similar to the one of Proposition 5.5, but for the com-
pleteness of this thesis we will present it here in details.

To prove (5.44), let k ∈ Dε and set

P̂
∗,(0)
ε,δ k(η1, η2) := (1− δ)|η1|+|η2|k(η1, η2),

P̂
∗,(1)
ε,δ k(η1, η2) := κδ

∑
x∈η1

(1− δ)|η1|−1
∏
y′∈η2

e−εβφ(y′−x)

×
∫

Γ0

∏
y∈ζ2

(
e−εβφ(y−x) − 1

ε

)
k(η1 \ x, η2 ∪ ζ2)λ(dζ2)

+ κδ
∑
y∈η2

(1− δ)|η2|−1
∏
x′∈η1

e−εβφ(x′−y)

×
∫

Γ0

∏
x∈ζ1

(
e−εβφ(y−x) − 1

ε

)
k(η1 ∪ ζ1, η2 \ y)λ(dζ1)

and let

P̂
∗,(2)
ε,δ k(η1, η2) :=

(
P̂ ∗ε,δ − P̂

∗,(0)
ε,δ − P̂

∗,(1)
ε,δ

)
k(η1, η2).

then∥∥∥∥∥1

δ

(
P̂ ∗ε,δ − 1− L̂�αε,ren

)
k

∥∥∥∥∥
QC

(5.46)

=

∥∥∥∥1

δ

(
P̂
∗,(0)
ε,δ + P̂

∗,(1)
ε,δ + P̂

∗,(2)
ε,δ − L̂

�α
ε,ren

)
k

∥∥∥∥
QC

.

First note, that for n ≥ 0 and δ ∈ (0, 1) we have ([FKK10d])

0 ≤ n− 1− (1− δ)n

δ
≤ δ

n(n− 1)

2
,

and thus

C−(|η1|+|η2|)
∣∣∣∣1δ ((1− δ)|η1|+|η2| − 1

)
k(η1, η2) + (|η1|+ |η2|)k(η1, η2)

∣∣∣∣
≤ ‖k‖QαCα|η

1|+|η2|

∣∣∣∣∣(1− δ)|η
1|+|η2| − 1

δ
+ |η1|+ |η2|

∣∣∣∣∣
≤ δ

2
‖k‖QαCα|η

1|+|η2| (|η1|+ |η2|
) (
|η1|+ |η2| − 1

)
,
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and the function αxx(x− 1) is bounded for x > 0. Next

C−(|η1|+|η2|)
∣∣∣∣1δ P̂ ∗,(1)

ε,δ k(η1, η2)−
(
L̂�αε,ren + (|η1|+ |η2|)

)
k(η1, η2)

∣∣∣∣
≤ C−(|η1|+|η2|)κ

∑
x∈η1

∣∣∣1− (1− δ)|η1|−1
∣∣∣ ∏
y′∈η2

e−εβφ(y′−x)

×
∫

Γ0

∏
y∈ζ2

∣∣∣∣e−εβφ(y−x) − 1

ε

∣∣∣∣ |k(η1 \ x, η2 ∪ ζ2)|λ(dζ2)

+ C−(|η1|+|η2|)κ
∑
y∈η2

∣∣∣1− (1− δ)|η2|−1
∣∣∣ ∏
x′∈η1

e−εβφ(x′−y)

×
∫

Γ0

∏
x∈ζ1

∣∣∣∣e−εβφ(x−y) − 1

ε

∣∣∣∣ |k(η1 ∪ ζ1, η2 \ y)|λ(dζ1)

which, using similar arguments as before, can be estimated by

δ‖k‖QαCC−(|η1|+|η2|)κ
∑
x∈η1

∣∣∣∣∣1− (1− δ)|η1|−1

δ

∣∣∣∣∣
×
∫

Γ0

∏
y∈ζ2

|βφ(y − x)| (αC)|η
1|−|1|+|η2|+|ζ2|λ(dζ2)

+ δ‖k‖QαCC−(|η1|+|η2|)κ
∑
y∈η2

∣∣∣∣∣1− (1− δ)|η2|−1

δ

∣∣∣∣∣
×
∫

Γ0

∏
x∈ζ1

|βφ(x− y)| (αC)|η
1|+|ζ1|+|η2|−1λ(dζ1).

Finally we obtain

δ

2αC
‖k‖QαCκα|η

1|+|η2||η1|
(
|η1| − 1

) (
|η1| − 2

)
eαCβΦ

+
δ

2αC
‖k‖QαCκα|η

1|+|η2||η2|
(
|η2| − 1

) (
|η2| − 2

)
eαCβΦ
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which tends to 0 as δ ↓ 0. It remains to estimate

C−(|η1|+|η2|) 1

δ

∣∣∣ ∑
σ1⊂η1

|σ1|≥2

∑
σ2⊂η2

|σ2|≥2

(1− δ)|η1\σ1|+|η2\σ2|(κδ)|σ1|(κδ)|σ2|

×
∏

x′∈η1\σ1

e−εβE
φ(x′,σ2)

∏
y′∈η2\σ2

e−εβE
φ(y′,σ1)

×
∫

Γ0

∫
Γ0

∏
x∈ζ1

(
e−εβE

φ(x,σ2) − 1

ε

)∏
y∈ζ2

(
e−εβE

φ(y,σ1) − 1

ε

)
×k
(
(η1 \ σ1) ∪ ζ1, (η2 \ σ2) ∪ ζ2

)
λ(dζ1)λ(dζ2)

∣∣∣.
But this less or equal than

‖k‖QαCC−(|η1|+|η2|) 1

δ

∑
σ1⊂η1

|σ1|≥2

∑
σ2⊂η2

|σ2|≥2

(1− δ)|η1\σ1|+|η2\σ2|(κδ)|σ1|(κδ)|σ2|

×
∫

Γ0

∫
Γ0

∏
x∈ζ1

∣∣βEφ(x, σ2)
∣∣ ∏
y∈ζ2

∣∣βEφ(y, σ1)
∣∣

×(αC)|η
1|−|σ1|+|ζ1|+|η2|−|σ2|+|ζ2|λ(dζ1)λ(dζ2),

and further (w.l.o.g. assuming that δ < 1) we can estimate the latter by

‖k‖QαCα|η
1|+|η2| 1

δ2

∑
σ1⊂η1

|σ1|≥2

(1− δ)|η1\σ1|
(
κδ
αC

eαCβΦ

)|σ1|

×
∑
σ2⊂η2

|σ2|≥2

(1− δ)|η2\σ2|
(
κδ
αC

eαCβΦ

)|σ2|

.

But as in [FKK10d], this is less or equal to

δ‖k‖QαCα|η
1||η1|

(
|η1| − 1

)
α|η

2||η2|
(
|η2| − 1

)
.

Summing up previous considerations, we obtain (5.44). Because the proof of
(5.45) is completely analogous, we will omit it here.

The proof of next lemma can be found e.g. in [FKK10d].
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Lemma 5.7. Let X be a Banach space with a norm ‖·‖X ; A and B be linear
contraction mappings on X. Let Y with a norm ‖ · ‖Y be a Banach subspace
of X such that Y is invariant w.r.t. B. Suppose also that there exists c > 0
such that for any f ∈ Y

‖Af −Bf‖X ≤ c‖f‖Y . (5.47)

Then, for any m ∈ N and for any f ∈ Y

‖Amf −Bmf‖X ≤ cm‖f‖Y . (5.48)

Now we proceed to the main result of this part, namely we show the
convergence in QC norm of the scaled semigroup to the corresponding Vlasov
semigroup.

Theorem 5.4. Let (5.25) hold and let

φ := sup
x∈Rd

φ(x) < +∞, (5.49)

then for any α ∈ (α0, 1) and k ∈ QαC

lim
ε→0

∥∥∥Û�αε,ren(t)k − Û�αV (t)k
∥∥∥
QC

= 0. (5.50)

Proof. Let k ∈ QαC and recall the approximation operators P̂ ∗ε,δ and Q̂∗δ .
Using previous reslts and Corollary 5.1, we have(

P̂ ∗ε,δ

)[ t
δ

]

k → Û�αε,ren(t)k and
(
Q̂∗δ

)[ t
δ

]

k → Û�αV (t)k (5.51)

in the space QαC with the ‖ · ‖QC norm. Hence, using the triangle inequality
we can write∥∥∥Û�αε,ren(t)k − Û�αV (t)k

∥∥∥
QC
≤
∥∥∥∥Û�αε,ren(t)k −

(
P̂ ∗ε,δ

)[ t
δ

]

k

∥∥∥∥
QC

+

∥∥∥∥(Q̂∗δ)[ t
δ

]

k − Û�αV (t)k

∥∥∥∥
QC

+

∥∥∥∥(P̂ ∗ε,δ)[ t
δ

]

k −
(
Q̂∗δ

)[ t
δ

]

k

∥∥∥∥
QC

and because the two �rst terms on the right hand side tend to 0 as δ ↓ 0, it
remains only to show, that∥∥∥∥(P̂ ∗ε,δ)[ t

δ
]

k −
(
Q̂∗δ

)[ t
δ

]

k

∥∥∥∥
QC
→ 0 (5.52)
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as ε→ 0. Using Lemma 5.7 the latter can be deduced from the fact that for
every ε, δ > 0 there exists c > 0, such that∥∥∥P̂ ∗ε,δk − Q̂∗δk∥∥∥QC ≤ εδc‖k‖QαC . (5.53)

But for any η1, η2, ζ1, ζ2 ∈ Γ0∣∣∣∣∣ ∏
x′∈η1\σ1

e−εβE
φ(x′,σ2)

∏
y′∈η2\σ2

e−εβE
φ(y′,σ1)

×
∏
x∈ζ1

(
e−εβE

φ(x,σ2) − 1

ε

)∏
y∈ζ2

(
e−εβE

φ(y,σ1) − 1

ε

)

−
∏
x∈ζ1

(−βEφ(x, σ2))
∏
y∈ζ2

(−βEφ(y, σ1))

∣∣∣∣∣
=
∏
x∈ζ1

(βEφ(x, σ2))
∏
y∈ζ2

(βEφ(y, σ1))

×

∣∣∣∣∣ ∏
x′∈η1\σ1

e−εβE
φ(x′,σ2)

∏
y′∈η2\σ2

e−εβE
φ(y′,σ1)

×
∏
x∈ζ1

(
1− e−εβEφ(x,σ2)

εβEφ(x, σ2)

)∏
y∈ζ2

(
1− e−εβEφ(y,σ1)

εβEφ(y, σ1)

)
− 1

∣∣∣∣∣.
Using the fact that for ak ∈ [0, 1] we have

1−
∏
k

ak ≤
∑
k

(1− ak)

we can estimate the latter expression by:∏
x∈ζ1

(βEφ(x, σ2))
∏
y∈ζ2

(βEφ(y, σ1))

×

 ∑
x′∈η1\σ1

(
1− e−εβEφ(x′,σ2)

)
+

∑
y′∈η2\σ2

(
1− e−εβEφ(y′,σ1)

)

+
∑
x∈ζ1

(
1− 1− e−εβEφ(x,σ2)

εβEφ(x, σ2)

)
+
∑
y∈ζ2

(
1− 1− e−εβEφ(y,σ1)

εβEφ(y, σ1)

) .
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Next, because 1− e−a < a, a > 0, this is less or equal than∏
x∈ζ1

(βEφ(x, σ2))
∏
y∈ζ2

(βEφ(y, σ1))

×


∑

x′∈η1\σ1

(
εβEφ(x′, σ2)

)
︸ ︷︷ ︸

:=S1

+
∑

y′∈η2\σ2

(
εβEφ(y′, σ1)

)
︸ ︷︷ ︸

:=S2

+
∑
x∈ζ1

(
1− 1− e−εβEφ(x,σ2)

εβEφ(x, σ2)

)
︸ ︷︷ ︸

:=S3

+
∑
y∈ζ2

(
1− 1− e−εβEφ(y,σ1)

εβEφ(y, σ1)

)
︸ ︷︷ ︸

:=S4

 .

Hence the norm ∥∥∥P̂ ∗ε,δk − Q̂∗δk∥∥∥QC
can be estimated by

C−(|η1|+|η2|)
∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η
1\σ1| (κδ)|σ

1| (1− δ)|η
2\σ2| (κδ)|σ

2|

×
∫

Γ0

∫
Γ0

∏
x∈ζ1

(βEφ(x, σ2))
∏
y∈ζ2

(βEφ(y, σ1)) [S1 + S2 + S3 + S4]

×
∣∣k ((η1 \ σ1) ∪ ζ1, (η2 \ σ2) ∪ ζ2

)∣∣λ(dζ1)λ(dζ2).

and further by

α|η
1|+|η2|‖k‖αC

∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η
1\σ1|

(
κδ
αC

)|σ1|

(1− δ)|η
2\σ2|

(
κδ
αC

)|σ2|

(5.54)

×
∫

Γ0

∫
Γ0

∏
x∈ζ1

(αβCEφ(x, σ2))
∏
y∈ζ2

(αβCEφ(y, σ1))
4∑
i=1

Siλ(dζ1)λ(dζ2).

Using linearity of integral it is enough to estimate each of the four terms
above.
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Thus, starting with S1 we get:

α|η
1|+|η2|‖k‖αC

∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η
1\σ1|

(
κδ
αC

)|σ1|

(1− δ)|η
2\σ2|

(
κδ
αC

)|σ2|

×
∫

Γ0

∫
Γ0

∏
x∈ζ1

(αβCEφ(x, σ2))
∏
y∈ζ2

(αβCEφ(y, σ1))

×
∑

x′∈η1\σ1

(
εβEφ(x′, σ2)

)
λ(dζ1)λ(dζ2),

but this is equal to

α|η
1|+|η2|‖k‖αC

∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η
1\σ1|

(
κδ
αC

)|σ1|

(1− δ)|η
2\σ2|

(
κδ
αC

)|σ2|

× eαβCΦ|σ2|eαβCΦ|σ1|
∑

x′∈η1\σ1

(
εβEφ(x′, σ2)

)
.

Using (5.25) and (5.36) we can estimate the latter by

εβφα|η
1|+|η2|‖k‖αC

∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η
1\σ1| δ|σ

1| (1− δ)|η
2\σ2| δ|σ

2||η1 \ σ1||σ2|.

Let |η1| = n and |η2| = m, then∑
σ1⊂η1

|η1\σ1| (1− δ)|η
1\σ1| δ|σ

1|
∑
σ2⊂η2

|σ2| (1− δ)|η
2\σ2| δ|σ

2|

=
n−1∑
k=1

(
n

n− k

)
(n− k) (1− δ)n−k δk

m∑
l=1

(
m

l

)
l (1− δ)m−l δl

=
n−1∑
k=1

n!

(n− k − 1)!k!
(1− δ)n−k δk

m∑
l=1

m!

(m− l)!(l − 1)!
(1− δ)m−l δl

= (1− δ)δn(n− 2)
n−2∑
k=0

(n− 2)!

(n− 2− k)!(k + 1)!
(1− δ)n−2−k δk

× δm
m−1∑
l=0

(m− 1)!

(m− 1− l)!l!
(1− δ)m−1−l δl

≤ (1− δ)δ2n(n− 2)m <∞.

Note also, that the case i = 2 (i.e. with S2) can be estimated in the same
manner. Thus the terms containing S1 and S2 in (5.54) can be estimated by

ε(1− δ)δ2βφ‖k‖αCα|η
1|+|η2| (|η1|2|η2|+ |η1||η2|2

)
< εδA1‖k‖αC (5.55)
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with A1 := βφ supn,m∈N [αn+m (n2m+ nm2)]. We proceed now to the esti-
mation of terms which include S3 and S4. For the case i = 3 we have:

α|η
1|+|η2|‖k‖αC

∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η
1\σ1|

(
κδ
αC

)|σ1|

(1− δ)|η
2\σ2|

(
κδ
αC

)|σ2|

×
∫

Γ0

∫
Γ0

∏
x∈ζ1

(βEφ(x, σ2))
∏
y∈ζ2

(αβCEφ(y, σ1))

×
∑
x∈ζ1

(
1− 1− e−εβEφ(x,σ2)

εβEφ(x, σ2)

)
(αC)|ζ

1|λ(dζ1)λ(dζ2).

By Minlos lemma this is equal to

α|η
1|+|η2|‖k‖αC

∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η
1\σ1|

(
κδ
αC

)|σ1|

(1− δ)|η
2\σ2|

(
κδ
αC

)|σ2|

×
∫

Γ0

∫
Γ0

∫
Rd

∏
x′∈ζ1∪x

(βEφ(x′, σ2))
∏
y∈ζ2

(αβCEφ(y, σ1))

×

(
1− 1− e−εβEφ(x,σ2)

εβEφ(x, σ2)

)
(αC)|ζ

1|(αC)dxλ(dζ1)λ(dζ2)

and because (see [FKK10d])

βEφ(x, σ2)

(
1− 1− e−εβEφ(x,σ2)

εβEφ(x, σ2)

)
≤ ε

(
βEφ(x, σ2)

)2
,

the latter expression can be estimated by:

εα|η
1|+|η2|‖k‖αC

∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η
1\σ1|

(
κδ
αC

)|σ1|

(1− δ)|η
2\σ2|

(
κδ
αC

)|σ2|

×
∫

Γ0

∫
Γ0

∫
Rd

∏
x′∈ζ1

(βEφ(x′, σ2))
∏
y∈ζ2

(αβCEφ(y, σ1))

×
(
βEφ(x, σ2)

)2
(αC)|ζ

1|(αC)dxλ(dζ1)λ(dζ2)

and further by

εα|η
1|+|η2|‖k‖αC

∑
σ1⊂η1

∑
σ2⊂η2

(1− δ)|η
1\σ1| δ|σ

1| (1− δ)|η
2\σ2|

(
κδ
αC

)|σ2|

(5.56)

×
∫

Γ0

∫
Rd

∏
x′∈ζ1

(βEφ(x′, σ2))
(
βEφ(x, σ2)

)2
(αC)|ζ

1|(αC)dxλ(dζ1).
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The integral in the last expression can be calculated:∫
Γ0

∫
Rd

∏
x′∈ζ1

(βEφ(x′, σ2))
(
βEφ(x, σ2)

)2
(αC)|ζ

1|(αC)dxλ(dζ1)

=

∫
Γ0

∑
x∈ζ1

(
βEφ(x, σ2)

)2
∏

x′∈ζ1\x

(
βEφ(x′, σ2)

)
(αC)|ζ

1|λ(dζ1)

≤ βφ|σ2|
∫

Γ0

∑
x∈ζ1

(
βEφ(x, σ2)

) ∏
x′∈ζ1\x

(
βEφ(x′, σ2)

)
(αC)|ζ

1|λ(dζ1)

= αβCφ|σ2|
∫

Γ0

∫
Rd

(
βEφ(x, σ2)

)
dx
∏
x′∈ζ1

(
βEφ(x′, σ2)

)
(αC)|ζ

1|λ(dζ1)

= αβ2Cφ|σ2|2eαβCΦ|σ2|

thus the value of (5.56) is less or equal to

εαβ2Cφα|η
1|+|η2|‖k‖αC

∑
σ1⊂η1

(1− δ)|η
1\σ1| δ|σ

1|
∑
σ2⊂η2

(1− δ)|η
2\σ2| δ|σ

2||σ2|2.

(5.57)

Finally, let us estimate the second sum in the latter expression (let |η2| = n):

∑
σ2⊂η2

(1− δ)|η
2\σ2|δ|σ

2||σ2|2 =
n∑
k=1

n!

(n− k)!k!
k2 (1− δ)n−k δk

=
n∑
k=1

n!

(n− k)!(k − 1)!
k (1− δ)n−k δk

= δn
n∑
k=1

n!

((n− 1)− (k − 1))!(k − 1)!
(1− δ)(n−1)−(k−1) δk−1

= δn2

n−1∑
k=0

(n− 1)!

((n− 1)− k)!k!
(1− δ)(n−1)−k δk

≤ δn2 <∞.

The similar calculation for the part with S4 allows us to estimate the S3 +S4

by:

εδαβ2Cφ‖k‖αCα|η
1|+|η2| (|η1|2 + |η2|2

)
≤ εδA2‖k‖αC (5.58)

with A2 := αβ2Cφ supn,m∈N [αn+m (n2 +m2)].
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Summing up the previous considerations, we obtain:∥∥∥P̂ ∗ε,δk − Q̂∗δk∥∥∥QC ≤ εδ (A1 ∨ A2) ‖k‖QαC (5.59)

and thus (5.53) is ful�lled. Using Lemma 5.7 we get (5.52) and (5.50) follows,
and the corresponding scaled semigroup converges in QC to the semigroup
associated to the virtual system, Û�αV (t).

5.3.5 Vlasov-type equation for the model

To conclude this chapter, we will derive the Vlasov-type equation for the
Glauber-Potts model.

Theorem 5.5. Assume (5.25) and let functions ρ1
0 and ρ2

0 ∈ B(Rd × Rd) be
such that there exists some α ∈ (α0, 1) for which the following holds:

ess sup(x,y)∈Rd×Rd |ρi0(x, y)| ≤ αC, i = 1, 2

and assume that

k0(η1, η2) = eλ(ρ
1
0, η

1) · eλ(ρ2
0, η

2).

Then the Cauchy problem 
∂
∂t
kt = L̂∗V kt,

k0 = eλ(ρ0)
(5.60)

is well de�ned in QαC and its mild solution kt = Û�αV (t)k0 ∈ QαC has the
form kt(η

1, η2) = eλ(ρ
1
t , η

1)eλ(ρ
2
t , η

2) where ρ1
t , ρ

2
t satisfy the following equa-

tions: 
∂
∂t
ρ1
t (x) = −ρ1

t (x) + κe−β(ρ
2
t ∗φ)(x)

ρ1
t (x)|t=0 = ρ1

0(x),

and 
∂
∂t
ρ2
t (y) = −ρ2

t (y) + κe−β(ρ
1
t ∗φ)(y)

ρ2
t (y)|t=0 = ρ2

0(y),
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Proof. Using the assumptions and properties of Û�αV (t) it is obvious that kt =

Û�αV (t) ∈ QαC and that it is strongly di�erentiable with respect to the norm
in QαC . The equations for ρ1

t and ρ
2
t can be deduced by inserting kt(η

1, η2) =
eλ(ρ

1
t , η

1)eλ(ρ
2
t , η

2) into the equation (5.60), similarly as in Section 4.4. Note
also, that kt ∈ QαC means that

ess sup(x,y)∈Rd×Rd |ρt(x, y)| ≤ αC.
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