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Introduction

For over 50 years the interacting particle systems (IPS) have been used to
describe various phenomena. The use of IPS was initially motivated by the
statistical physics, but soon it became clear that the list of possible appli-
cations is long, and includes such fields as, for example, medicine (infection
spreading, tumour growth), economy (agent based models), sociology (be-
havioural systems) and ecology (population models). The latter being in
intensive development during last years. Historically, the theory of IPS arose
as a part of the probability theory and was initiated by works of F. Spitzer
and R. L. Dobrushin in the late 60’s with the purpose to study the systems
with Gibbs states as equilibrium measures.

A typical IPS consists of a number (finite or infinite) of indistinguishable
particles located in some position space. Sometimes it is more appropriate
to use the term individuals instead of particles to describe the elements of
an IPS. Depending on the context, the position space of the particles can be
discrete or continuous. In the first case, one considers the so-called lattice
models, and the standard example of the space is Z?, although one can also
use more general structures such as, e.g., infinite graphs. The lattice systems
turned out to be useful and provided the right description for many models
and applications (see for example |Lig85|). There are, however, situations
when the continuous position space is more appropriate or even necessary
in order to convey the nature of the considered problem. Thus in this case
the position space is assumed to be RY or more generally, a Riemannian
manifold X (cf. [Kun99]). Many of the lattice models (or their analogues)
have been studied in the continuous space case: Glauber and Kawasaki dy-
namics (cf. [KLRO07, FKKZ10, KL05, Ohl07]) and the contact model [KS06|.
Also, several new models have been introduced, like for example systems
with competition [FKKO09| or contact model with jumps [Str09)].

We use the configuration space analysis as framework for the study of
interacting particle systems in continuum throughout this thesis. Given a
Riemannian manifold X, the configuration space I'x over X is defined as
the space of all locally finite subsets of X (we call the elements of I' config-
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10 INTRODUCTION

urations). Thus, a configuration v € I' can be interpreted as an (infinite)
population of individuals, or a cloud of particles which are indistinguishable
and there is at most one element of v occupying a single site 2z € X (there-
fore, I" is called the simple configuration space as opposed to the multiple
configuration space I' where this restriction is absent). One can identify a
configuration v € I" with a positive Radon measure via v = ZIEW 0z, Where
0, is the Dirac measure with the mass equal to the unity concentrated on
x € X. That allows us to equip the configuration space I' with the vague
topology of the space of all Radon measures on X. The point processes, i.e.
the measures on I', are called the states of a given system. And whereas
Poisson measures describe the state of a system without interaction, Gibbs
measures are used to study models in which the particles interact via, for
example, a pair potential. For more detailed description of the configura-
tion spaces including, for example, the geometry of I', we refer to [Kun99|,
[AKR9S8|, [Kut03] and others.

Having in mind two-component systems, we introduce the two-compo-
nent configuration space I'?, which is defined as I'? := {(y!,7?) e T x '™ :
Y'Ny? =0} CT xT, where '™ =T'" =T'. Nearly all notions and methods
used in the single component case can be naturally translated to the two-
component framework.

This thesis is devoted to the study of several new IPS models, mainly
inspired by the ecological applications. In the first two chapters, modifica-
tions of the contact process and the Glauber-type dynamics are considered.
These models are examples of spatial birth-and-death processes (see refer-
ences in the previous paragraph). Their dynamics is described by a heuristic
pre-generator, the action of which is defined by:

LF(y) = Y da,7) [F(y\ 2) — Fy)] + / bz, 7) [F(y U ) — F(3)] da

rey X

for v € I' and an appropriate function F. The first part of the operator L
describes the "death" of elements of v according to the death rate d(x,~),
whereas the second part (birth rate) provides the mechanism of offspring pro-
duction with the function b(x, ) describing the rate at which new elements
appear, and their spatial distribution. Thus, the dynamics of a given sys-
tem is determined by its death and birth rates. However, if we consider for
example the evolution of a population of plants, it becomes clear, that the
cycle of life of particular individuals depends not only on their age and/or the
existing population, but also on a number of external factors such as avail-
ability of sun light, resources and diseases. In order to convey the additional
influence, we allow the functions b and d to be random, i.e. we consider the
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above-mentioned models in the random enwvironment or, in other words, in
the heterogeneous landscape.

The second natural generalization is the introduction of another type of
population into the model, that is the study of two-component systems (see
[FKO10]). Having in mind biological applications, we can speak about the
symbiotic relation between two types of individuals. One of the possible in-
teraction is the predation, the illustration of which is the well known Lotka-
Volterra model (see [Lot25, Vol26]). In this thesis, however, we study another
example of symbiosis, namely the mutualistic model (in Chapter 4). The sys-
tem introduced in Chapter 5 can be considered as the two-component ana-
logue of the Glauber-type dynamics in continuum. The Markov pre-generator
of such two (or more) component dynamics should reflect the evolution of
each populations in dependence on the other, thus the general form of the
informal pre-generator is given by

L2:L1+L2

where each of the operators L, Ly describes the dynamics of one population,
taking into account the interaction between them.

This work deals with the following problems. First of all, we study the
existence of the evolution of states for a given model. For some particular
cases, this can be done using Markov processes corresponding to considered
generators. In our case, however, it is convenient to approach the problem
in terms of the evolution of corresponding correlation functions. We apply
this method to a number of models. In two last chapters we investigate,
additionally, the scaling limits for stochastic dynamics, namely the Vlasov-
type scaling of the microscopic state evolution to the mesoscopic dynamics,
and their convergence for given models.

Overview of the contents

We proceed now to the detailed description of the contents of this thesis.

Configuration spaces

In Chapter 1 we recall some definitions and facts from the configuration
spaces theory and the harmonic analysis on configuration spaces. Through-
out this thesis we will assume, that the underlying space is the Euclidean
space R?, although it is possible to extend the results to more general cases
like, for example, a Riemannian manifold or even more general topological
spaces.
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The introduction recalls the standard notation which will be used further
in this work. After that, we proceed to the definitions of the space of finite
and simple configurations over R? Ty and I', resp.. Next, the topological
structures of both spaces are discussed. Whereas the topology of the space
[y is inherited from the topology of the underlying space, the topology on I'
is introduced using the interpretation of configurations as the integer-valued
Radon measures over R%. Thus, we endow I' with the vague topology of
the space of all Radon measures on R%. Having introduced the topological
structure of above-mentioned spaces, we define their corresponding Borel o-
algebras and we proceed to the construction of measures on Iy and I'. We
focus especially on two measures: Lebesgue-Poisson measure A,, on 'y and
Poisson measure m,, on I'.  We should mention, that the Poisson measure
corresponds to the interaction free systems. We also recall useful charac-
terization of the Poisson measure by its Laplace transform and the Minlos
lemma (Lemma 1.1), which is one of the main technical tools used in this
thesis.

In Section 1.3 we discuss the general framework of the harmonic analysis
on the configuration spaces, using mainly [Kun99| and [KKO02| as references.
First we introduce some classes of functions on I'y and I". Then we recollect
the definitions of the K-transform and the x-convolution. The K-transform
maps the quasi-observables (the functions on I'y) into functions on I' (the
observables). It also has the property that K (G x G2) = KG1 - KG5, hence
it can be considered as the Fourier transform on the space of configurations.
The correlation measure on I'y is defined as the image of a probability mea-
sure on I' (a state of the system) under the dual K-transform, K*, with
respect to the duality

/F KG(y)u(dy) = / Gn) (5 1) (dn).

Moreover, if the measure p is locally absolutely continuous w.r.t. Poisson
measure, then the correlation measure K*pu is absolutely continuous w.r.t.
the Lebesgue-Poisson measure on I'y and the corresponding Radon-Nikodym
derivative is the correlation function of measure u as known from the statis-
tical physics.

Section 1.4 contains the definition of the two-component configuration
space I'?, which is defined as

I*:={(y", 7)) eTt* xI": 7'n+¥*=0}.

The basic definitions and properties are next derived as the straightforward
extensions of the proper notions from the single component space. Hence, the
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two-component K-transform and x-convolution are defined and play similar
role as their one-component analogues in our considerations. Also the Minlos
lemma for the two-component case is introduced.

Next, we recall the general scheme of investigation for Markov evolu-
tions in configuration spaces (see e.g. [FKOO09]). The starting point is the
Kolmogorov equation for the observables on I', and the associated (dual)
Fokker-Planck equation for the evolution of states of the system. The tech-
nical difficulty with these two equations is due to the fact, that both of them
are infinite-dimensional and until now, the tools for solving such problems are
not sufficiently developed. Therefore, using the K-transform we can "shift"
the problems to the finite-dimensional context (of quasi-observables) and try
to approach it with classical methods. This gives the equation associated
to the symbol of the generator L defined by L:= K~'LK, corresponding to
the Kolmogorov equation. Also the evolution of correlation functions can be
derived and solved explicitly for many models.

We conclude Chapter 1 with the presentation of the Vlasov-type scaling
scheme as developed in [FKK10a|. After some historical remarks, we proceed
to the introduction of the general algorithm for scaling of a given system.
The starting point for the scaling is the Cauchy problem for the evolution
of correlation functions (which is associated to the dual of the symbol of
generator for the model). The general scheme consists of three steps:

1. scaling of the initial condition,
2. scaling of the generator,
3. renormalizing the scaled generator in a proper way.

After applying three above mentioned steps, we obtain the Cauchy problem
for the scaled correlation functions. Using classical theory we can prove that
the solutions of the rescaled equation converges to a correlation function of
some virtual interacting particle systems, and the Vlasov-type equation is
obtained as the first correlation function for this system.

Contact process in random environment

Chapter 2 is devoted to studies of modifications of the contact model in
continuum.

The contact model on the lattice was first introduced and studies by T.
E. Harris ([Har74]) and its name is due to the interpretation as a model for
infection spreading. Namely, given a configuration v = {0, 1}2, v(z) = 1
means that the individual (Harris used the term creature) at site z € Z%



14 INTRODUCTION

is infected; the case v(x) = 0 means that the individual is healthy. During
the time evolution, healthy creatures can get infected with the rate which
is proportional to the number of infected neighbours. Note that a creature
can be infected only, if there is at least one infected individual on the neigh-
bouring sites. On the other hand, infected individuals will recover after an
exponentially distributed time.

In 2006, the continuous version of the contact process was constructed in
|KS06| and later some properties of this model were derived in [KKPO08|]. The
heuristic pre-generator of the contact model corresponding to the evolution
described in the previous paragraph is given by

LF() = [P0\ a) = FOI+AY [ ale =) [FO \ o) = P do

€Y yEY

and the dynamics has been constructed using the branching processes the-
ory for non-negative functions a € L'*?(R%), and for a wide class of initial
configurations.

After the introduction, we recall the theory of the extended generator, as
used by [Dav93| and [MT93]. The application of the extended generator is
motivated by Lyapunov criteria for the regularity of Markov processes. The
standard (strong) generator of a given process usually does not include the
unbounded functions in its domain. A Lyapunov-type function, however, is
unbounded, and provides a simple and elegant way to prove, that the lifetime
of the process is infinite. We also introduce the Lyapunov-type function Vg
for the contact process, see (2.10).

In Section 2.2 we recall with details the construction of the contact model
in continuum, and apply the scheme presented in the previous section to
prove the regularity of the process. First, we construct the process on the
space of finite configurations as a pure jump process with generator L (cf.
|GS74]). Then, using the branching property of the model, we can extend the
construction to the configuration space I'. However, if we want to prove that
the process is regular, we should restrict the class of initial configurations
to the space I', induced by the Lyapunov-type function V4. This is not a
significant restriction, for the space I' is big enough to contain supports for a
large class of probability measures on I' (cf. Remark 2.1 in [KS06]). Theorem
2.1 proves, that the contact process constructed previously is non-explosive.

Section 2.3 deals with the theory of Poisson random potentials. We briefly
recall some basic estimates of the potential of the form

Viww)i= [ ple = puldy
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where w is a realization of Poisson point process. Following [GKMO00|, we
derive some estimates on the V.

The rest of the chapter is devoted to studies of contact process in random
environment.

In Section 2.4 we introduce the contact model with random establishment.
Heuristically one can think of the heterogeneous landscape with areas, in
which the survival rate for the offspring is small compared to other places.
Therefore, the pre-generator of this model is given by

LopF(y) =Y DyF(y)+ Y = / )bz, w)DF F(v)dz,

TeY yeY

where

b(z,w) = e @ — exp ( Zb+ T — > :

Yyew

After explaining the motivation for such a model, the existence and regularity
of this process are proven in a way similar to the non-random case. Next,
using the harmonic analysis on the configuration spaces from Chapter 1 we
derive the symbol of the generator L, and its adjoint operator L, ,. The
evolution of the correlation functions for the model is governed by the adjoint
operator. Using the structure of correlation functions we can apply this

operator to each component of the function k; := <k§")> , obtaining for
neN

every n € N the Cauchy problem of the form:

Ok;" i o) o
g (X1, ..y xp) = Lok (1, xn) + f (21,0 )

k:t(”) (21, ..., Tn) im0 = k(()n)(xh cey T,

in some Banach space X,,. In Proposition 2.3, we give the explicit solution
to above mentioned Cauchy problem for each n € N. Furthermore, assumlng
that the initial condition satisfies the estimate k:(” < nlC™ (where k: ") is the
n-th component of the correlation function k, : Iy — R¢ 4), we can prove an
estimate for the solution derived in the Proposition 2.3, see Proposition 2.4.
We conclude this section with the Lemma 2.3 which states, that the evolution
given by L7 , preserves the correlation functions, i.e. if the initial condition
ko is a correlation function for some measure pg, then the solution k; is also
a correlation function for some y;. The proof is based on the verification of
conditions derived by A. Lenard in |[Len73]. The equation for the first and
the second correlation functions are derived explicitly.
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Another example of the contact process in random environment is studied
in Section 2.5. This is the contact process with random fecundity. Intuitively,
we deal with the situation where the rate of offspring production is randomly
affected. Thus, the mechanism of evolution for this model is defined as
follows:

LuiF () = S DrF() + 3 sy, w) / ot (z - y) DY F(7)dr,

d
z€y yey R

where

»(y,w) == exp (— > bz - y)>
TEW

for a positive function ¢. The structure of this section is similar to the struc-
ture of the previous one. First, we construct the associated process as a
spatial branching process with killing, and using the Lyapunov-type function
Vs we prove, that the process is regular. Later, the symbol of the genera-
tor L, and its adjoint L;, , are calculated, and we derive the evolution of
correlation functions in terms of a Cauchy problem associated to the adjoint
operator [A/;%. Using the theory of evolution equations, the solution of this
equation is presented in Proposition 2.5. The a priori estimates for the so-
lution are proven in Proposition 2.6, assuming that the initial condition k:[()n)
satisfies the bound k:(()n) < nlC™ for some C' > 0 and each n € N. The rest of
this section is devoted to the proof of the fact, that the evolution given by
L}, , preserves the correlation functions (cf. Section 2.4).

We conclude this chapter with the description of the contact process with
random mortality. Here, the death rate of a particle is dependent on the
random influence. Thus, the Markov pre-generator of the model is given by:

LonF () = Somla)D; )+ %Y [ a*(@=p)DIF)ds,

ey yeY

where m(z,w) = > o, @(x—2'). Note that the methods used in two previous
sections cannot be applied in this case, and the question of the existence of
this process in I' remains open. However, using the harmonic analysis on I we
are able to calculate the symbol of the generator L, ,,, and its dual operator
L} .- Again, the system of evolution equations for correlation function is
derived. Moreover, using the perturbation theory for linear operators, we
can solve the Cauchy problem for each of the components obtaining the
explicit form of the solution:

A t
k™ (1, ..., Tp) = etLrlk(()n) (X1, ..., Tpn) + / e f M (g xy,)ds.
0
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There are number of open questions arising from the analysis of three
models presented above. For example, the first correlation function for the
contact process with random mortality satisfies the equation

ok

_ 1) (1
o (@) = L'k (@) = V(2 w)ki (2)

which is nothing else but the evolution of a jumping particle among Poi-
sonnian obstacles. In the case of Brownian motion instead of jumps, this
equation is called the parabolic Anderson problem and has been widely stud-
ied for example by A. S. Sznitman, S. Molchanov, J. Girtner, W. Konig et
al. (see e.g. [Szn06, Szn98, GKMO00, ABMY00]).

Glauber-type dynamics in random environment

In the present chapter we apply the perturbation theory to construct a semi-
group associated to the symbol of the Glauber dynamics in the random en-
vironment.

In the introduction, we recall some known facts about the Glauber dy-
namics on the lattice and in the continuous space case. If we consider the
classical Ising model with the spin space S = {—1, 1}, then the Glauber dy-
namics of the systems means, that the particles placed on the sites = € Z?
randomly change their spin value (it’s called the spin-flip dynamics). We refer
to [Lig85| for the detailed discussion of the Glauber dynamics on the lattice.
Also the continuous space analogue of the Glauber dynamics was constructed
in both equilibrium and non-equilibrium case (see e.g. [KL05, KKZ06]). The
Glauber-type dynamics in continuum is a process where the particles ran-
domly appear and disappear in the space.

In Section 3.1 we recollect some basic facts from the theory of Gibbs
measures associated to the pair potential ¢. We remind the definitions of the
Hamiltonian E?, and the relative energy of interaction E?(z,7) between a
particle located at site # € R? and the configuration v € I'. After some prepa-
rations, we recall the Dobrushin-Lanford-Ruelle (DLR) equation to define the
Gibbs measure p associated to the pair potential ¢, inverse temperature 3
and the parameter z > 0 (see Definition 3.1).

Some classical facts from the perturbation theory are stated in Section
3.2. We focus here on the perturbation theory for holomorphic semigroups,
generated by operators belonging to the set H(w,0) (for w > 0) of all closed
and densely defined operators 7', the resolvent of which contains the sector

Sect(g tw)={CeC:|arg| < g +wh\ {0,
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and such that for any € > 0

M
T—C)Y < —
I =)™l < 277

and M. does not depend on (. It is known, that every operator T' € H(w, 6)
is the generator of a holomorphic semigroup (cf. Remark 3.1). We apply the
perturbation theory presented in this section to construct the semigroups
corresponding to the symbols of two pre-generators introduced in Section
3.3. The action of the first one is given by:

L) = XD P+ B D P e

d
ey R

with the external field interaction, and

L,F(y) = Z e’Eh(z’“)D;F(’y) + %/ e’ﬁm(‘m)e’Eh(x’“)DjF(fy)dx

rey R?
where we have random perturbation of the rates. Both of these operators
satisfy the detailed balance condition (cf. 3.14 and |Glo81]), hence they have
Gibbs states as symmetrizing measures. In the case of L™ it is Gibbs mea-
sure 1 € G(¢, s, B) which is associated to the Lebesgue-Poisson measure with
the random intensity measure: o, (dx) := e E" @@ dy, heuristically given by

Whereas the symmetrizing measure for the operator L, is just the Gibbs state
with the Lebesgue-Poisson measure as the reference measure (cf. Section
3.1). Next, the symbols of the two generators above are calculated using the
K-transform.

In Section 3.4 we construct semigroups associated to the symbols f)fft
and L, in the space

Lo = L' (Do, CMePEMX(dn)) .
This is carried out using the perturbation methods introduced in the Section

3.2, and the constructed semigroups turn out to be holomorphic in the sector
|argt| < w for some w > 0.
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Two-component ecological model

Chapter 4 deals with the two-component ecological model which is an ex-
ample of the process with mutualistic interaction between two populations.
After short introduction we proceed to the construction of the semigroup
associated to the symbol of the generator as in Chapter 3.

The mutual interaction between two populations of individuals means
that both of them contribute to the creation of new members of each popu-
lations but also have the influence on the death rate of existing individuals.
As mentioned before, the generator of such a process has the form

L =1L+ Ly

and operators L; and L, are given as follows:

(L'F)(' %) =) d' @y \20®) [F(y' \e,9%) = F(y',77)]

zeY!
+ / bz, 9?) [F(v U, ?) — F(y', 7)) da,
Rd
describes the evolution of the first population (type 1), and

(L’F)(,9%) =Y d* (.49 \v) [F( 2\ y) — F(4'.77)]

yey?

+ /152(3/,71772) [F(v', v Uy) = F(v',7%)] dy.
R(

characterizes the second population (type 2). The birth and death coefficients
reflect the mutualistic nature of the model thus they are given by:

d'(x,9,7") = mP+ A7 Y ar(z—a)+ By Y bi(z—vy),

$,€’Yl ye,yZ
V(x4 = AT DY af(w—a)+ B Y b (x—y),
2’ enl yen?
Py, )= mm+ A7 > aly—y)+ By > by (y—u),
yle,y2 xe,yl
Py ) = Ay > af(y—y)+ B> iy — ).
y’E'yQ IEG’Yl

Next, we calculate the symbol of the generator L, and in the series of propo-
sitions we show that one part of the symbol plays role of the leading operator,
and the rest is relatively bounded with respect to it. That allows us to apply
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the classical result (cf. Theorem 3.1) and to establish the existence of the

A

semigroup associated to the symbol L in the space
Lo= L' (rg x Fg,C'"1|+‘”2‘)\(dn1)/\(dn2)) ,

see Theorem 4.1.
In Section 4.3 we introduce the space of the so-called correlation func-
tions:

QC = {k’ . FO X FO — R| k- C—(|771|+‘772‘) € LOO(PO X FOa )\2)} .

and derive the dual of the operator L in the space Q. Then the evolution of
the correlation functions is given in terms of the dual semigroup in the weak
sense, i.e. in the sense of the duality (4.19).

Finally, in the last section of this chapter we apply the Vlasov-type scaling
scheme introduced in Section 1.6 to the operator L. For € > 0 we consider the
scaled operator L.. The scaling is as follows: the birth coefficients remain
unchanged and the death coefficients of the operator L are scaled in the
following manner:

iz, 4" =mt +eAT Y ay(w—a)+eBy > by (x—y),

x/e,yl ye,YQ
C(y, v ) =m +eA; Y ay(y—y)+eBy > by(y— ).
y/E’YZ xe,yl

Then, the form of the symbol L. is obtained using the harmonic analysis,
and Theorem 4.2 shows that the scaled and renormalized symbol [Ajegren is
the generator of a holomorphic semigroup U.(t) in L¢. In Theorem 4.4 we
prove the strong convergence of Ue(t) to the semigroup Uv(t) generated by
the pointwise limit of the operators f/wen (denoted by [:V) We conclude
this chapter with the derivation of the Viasov-type equations for the model,
that is the system of two equations for the densities of both populations:

( 2pi(x) = —mPpi(x)
— A7 pi(x) (a7 % pt) (x) — By pi(x) (by * p}) (2)

+ AL (af *pp) () + B (0 * p}) (v)

\ ptl(x)‘t=0 - p0<$),
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and

( 2piy) = —m piy)
— B; p}(y) (by * pt) (y) — A3 07 (y) (ag * p7) (v)

+ A3 (a % pf) (y) + By (b3 % p}) (y)

L i W)i=0 = P3(Y),

Note, that both densities depend on each other and that they cannot be
separated.

Potts-type model

The last chapter is devoted to the study of Potts-type model. Heuristically,
the system consists of two interacting clouds of particles. Note, that there is
no interaction between the particles of the same type, and the dynamics of
each cloud is of Glauber type, hence the form of the pre-generator:

= 3 DRGNP G
zey! R?
+ Z DX F )+ %/ 675E¢(y’71)D5+F(71,72)dy,
R4
yer?

where D=, DIt D2~ D2* denote the corresponding gradients. In Section
5.2 we focus on the symbol of the generator L, and construct the associated
semigroup in the space Lo introduced in the previous chapter. The form of
the symbol is derived in Proposition 5.1 and the next proposition shows, that
L with its domain is a linear operator in L. Next we use the approach de-
veloped in [FKKZ10] to construct the semigroup associated with the symbol.
In order to do that, for 6 > 0 we introduce the approximation operator:

(1 — §)lct I+t (5061 (326 1"
=2 >

¢tcnt ¢2an? To To

y He—ram(m,o?) H (6—5E¢<w',02>_1>
zed? z’ent\¢?

< [ T (6—6E¢<y',al>_1>
ye(? y'en?\¢?

x  G(Ctuch, Cud)Ada)N(do?),
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and show, that it is a contraction in Lo (see Lemma 5.2). Then, after
establishing additional properties of Ps we can use Corollary 3.8 from [EK05]
(cf. Lemma 5.1) to show, that the closure of (L, Loc) generates a strongly
continuous contraction semigroup on Lo (Theorem 5.1).

Finally, Section 5.2 is devoted to the Vlasov-type scaling of the considered
model. The proper scaling for this model yields the following form of the
scaled generator:

L.F(y',7%) = Y Dy F(v',7) + g /Rd e PP DI (4 4% da

zey!

> Dy F(, ) +§/Rd e I DI P (Y 4% dy.
yey?

After calculating the symbol of L., we consider the scaled and renormalized
generator LE ren and its weak limit as € | 0 denoted by Lv. Using the ap-
proximations introduced in Section 5.2 we are able to show, that the closures
of both operators generate contraction semigroups which we denote, respec-
tively, with U.,en(t) and UV (see Theorem 5.2). As contrasted with the
previous chapter, in the case of the Potts-type model we focus on the con-
vergence of the dual semigroups (thus on the convergence of the solutions to

the corresponding Cauchy problems associated with the dual operators LE ren

and LT/) Unfortunately, even if Uwen( ) and UY are strongly continuous,
the dual semigroups are not strongly continuous in the dual space Qc. To
circumvent this problem, we consider these dual semigroups on a proper sub-
space of Q¢ (see Theorem 5.3), in which they are strongly continuous and

their generators can be described in terms of the adjoint generators L: ren

and L#, (cf. equations (5.38) to (5.41)). Theorem 5.4 states, that the dual
of the scaled semigroup (defined above) converges in Q¢ to the correspond-
ing Vlasov semigroup. We conclude this chapter with the derivation of the
Vlasov-type equations for densities corresponding to both types of particles.
As result, we get the following Cauchy problem:

Dpl() = —ph(a) + e PeH)@
pi(@)]i=0 = po(),

_ 1,
Dp2y) = —piy) + se B(pt*d) ()

PiWli=o = i)
Note, that the corresponding densities evolve in dependence on each other
and cannot be separated. As in the previous chapter, we assume that the



INTRODUCTION 23

initial state of the system is a Poisson measure (not necessarily homoge-
neous). Then we have the chaos preservation property, i.e., the Poissonian
structure is preserved during the evolution and corresponding densities solve
the system of two equations above.
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Chapter 1

Configuration spaces

We devote this chapter to recall some known facts from the theory of config-
uration spaces and to the introduction of the two-component configuration
spaces.

One can define the configuration space over a general connected, oriented
Riemannian C°°-manifold X which we call the position space of the particles
(or individuals). The following notation will be used throughout this thesis:

O(X): the family of all open subsets of X,
B(X) :
O.(X),B.(X): the family of open (Borel-measurable, resp.) sets in X

with compact closure,

the Borel o-algebra on X,

B(X): the family of all measurable bounded functions on X,

Co(X) :  the set of all continuous functions with compact support.

In the present work we consider only the case where X = R¢, which is the
natural choice if one considers the ecological applications of the investigated
models. For more general theory of configuration spaces we refer to [Kun99|
and [AKR9S|.

1.1 One-component configuration spaces

Let n € NU{0} and A € B(R?), define the space of n-point configurations
over A as follows:

n 0
Dyl ={ncA: [g=n}, T\ :={0}, (1.1)
where |A| denotes the cardinality of the set A. We call the elements 7 € F((f/)\
configurations. Now let Y € B.(A) and denote by ny := n N Y. Introduce

25
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also the mapping Ny : Fgf/)\ — NU{0}, Ny(n) = |ny|, the number of the

points in the configuration n in Y. The topological structure on Féﬁi may be

defined using the symmetrizing mapping from
A= {(z,. .. xn) €A ay # x; for k # ) (1.2)

onto F((f/)\, defined as

sym} : AT — Fglj)\, (1.3)
Symx('rlu s ,.Z',,L) = {xl, e 7.Tn},

Denote with (’)(Fé’%d) the topology on F(()nléd generated by the map sym?}

and the corresponding Borel o-algebra by B(Fénﬂid). It can be shown (see

e.g. [Len75]), that BT

opa) coincides with the o-algebra generated by the
mappings Ny, i.e.

BI{)) =0 (Nal A€B(RY). (1.4)
Finally, define the space of finite configurations :
Toze = | | Tl (1.5)
neNU{0}

It is equipped with the topology of disjoint union. In the sequel, we will
simply write Iy instead of Iy ga.

The configuration space I'(:= I'ga) is defined as the space of all locally
finite subsets of R?, i.e.:

Fi={yCR: |yNA|<oo,forall A€ B.(R}. (1.6)

Using the representation

Y= 0

ey

where 0, is the Dirac measure with unit mass at z, we can consider the
configuration space as the subset of the space of all positive Radon measures
on R? - note that we do not allow more than one particle at the same site
x € R?, therefore we call the elements v € ' simple configurations. We equip
' with the vague topology of the space M(R?) of all Radon measures, i.e.
the weakest topology in which mappings

'S (fi7) = / f@)di() =3 f@), feCo®Y)  (17)

ey
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are continuous. In the following we will use the notation (f,~) for all func-
tions f for which it makes sense.

One can show (see e.g. [Kut03]), that I" equipped with the vague topology
can be metrized so that it becomes Polish space.

1.2 Measures on [y and I

We will now recall the definitions of the Lebesgue-Poisson and the Poisson
measure on ' in the free case (without interaction between particles). Fix a
non-atomic and locally finite measure ¢ on R?, we will call it the intensity
measure.

1.2.1 Lebesgue-Poisson and Poisson measure

Let n € N. Recall the definition

(TREF:: {(21,...,2, € (R 2y # for k #j}.

—_—

Consider the restriction of o®" to the space ((Rd)",B((Rd)")> (note that

o®n ((Rd)" \@) = 0) and denote by o™ := g®" o (sym™) " the corre-

sponding measure on I (with o© ({0}) := 1).

Define the Lebesque-Poisson measure on I'y as

[e.9]

Ao = Y o™ (1.8)

|

“— nl
where z > 0 is called the activity parameter.
For A € B.(R?) we have A.,(Tox) = €™ and if we will consider the
restriction of ., to a set A € B.(R?) (which we also denote by \.,), then we

can define a probability measure on I"y by
,ﬂ_A — efza(A))\

zo * zO*

(1.9)

One can check, that the family (WQU)MB(W) is consistent (cf. [Kun99|). Thus,
by (a version of) Kolmogorov theorem there exists a measure 7., on (I', B(T"))
such that 72 = 7., opy!, where py is a projection pa : T+ T's, pa(7y) = 7.
The measure 7, is called the Poisson measure on (I', B(I")) with the intensity
measure zo.
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Remark 1.1 ([Oli02]). One can also define the Poisson measure on I' by its
Laplace transform in the following way:

/ UM, (dy) = e Jea (e =1)o(da) (1.10)
r

for any infinitely differentiable real-valued function f with compact support.

We say, that a given measure p on (I, B(I")) has the correlation functions

k, = (kff”) , if for any n € N there exists a non-negative, symmetric and
neN

measurable function k(" on (R?)" such that

/ Z f(”)(xl,...,xn),u(dv) = (1.11)
T

Llyeeey In } Cvy

1

m ( d)n f(n) (3717 e ;xn)klgn) (le’ e ,l‘n)o'(dxl) . O-(dxn)7
: R

for any measurable, symmetric function f.
The next lemma is one of the main technical tools in our considerations,
its proof can be found in [Oli02].

Lemma 1.1 (Minlos lemma). Let G : Iy — R, H : Ty x --- x Iy = R be
positive and measurable, then forn € N, n > 2:

/ o [ G U oUn ) H(My - n) Aso (dm) - -+ Ao (dngy) (1.12)
Lo Lo

_ / G Y HOnesma) Ao (dn),

(1151 )EPL ()

where PY(n) denotes the family of all ordered partitions of n in n parts, which
may be empty.

From now on, fix the parameter z = 1 and let the measure o be the
Lebesgue measure on RY. In this case we will write A instead of )., to
denote the Lebesgue-Poisson measure.

1.3 Harmonic analysis on configuration spaces

We will recall some facts which will be used often in this thesis, for proofs
and more detailed description we refer e.g. to [FKO09, Oli02, Kun99, KK02|.
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1.3.1 Functions on I'y and T

Let L°(Ty) denote the set of all B(T'y)-measurable real-valued functions on
Ty, and let B(Ty) C L°(Ty) denote the set of those measurable functions
which are bounded.

Definition 1.1. Denote with L2 (Ty) the set of all measurable functions with
local support, i.e.: G € L)(Ty) iff G € L%(Ty) and there exists A € B.(R?)
such that G [r,\r,= 0.

Denote with LY (Ty) the set of all measurable functions with bounded sup-
port, i.e. G € LY (Ty) iff G € L°(Ty) and there exists A € B.(R?) and N € N,

such that G [F0\<UN:0F§\")): 0.

We define the family of bounded functions with local support Bis(Tg) and
the family of bounded functions with bounded support Bys(Tg) in the similar
way.

Let for A € B.(R?),
BA(D) := 0 (N : A € B(R?) with A’ C A).

Denote by L°(T) the set of all B(T')-measurable functions, and define the
o-algebra of cylinder sets

By = | BaI). (1.13)

AeB(R9)

A cylinder function F € LYT) is a function which is measurable w.r.t.
B.,u(T). We will denote the set of all cylinder functions by FLY(T, B(T)).
In particular, F € FL°T,B(T)) means, that F' is Ba(T)-measurable for
some A € B.(R?) and

F(v) = F Ir, (7a)- (1.14)

Let FC, = FCy(Co(R?),T) denote the set of all bounded continuous
cylinder functions, i.e. those functions F' on I' which have the representation:

F(y) = gr ({g1,7)s -+, {on,7))

for some N € N, gr € Cp(RY) and ¢ € Cy(R?Y). Note, that this representa-
tion is not unique.

We will call the functions on I'g quasi-observables, and those on I' observ-
ables.
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1.3.2 K-transform

The following mapping between quasi-observables and observables plays cru-
cial role in our further considerations. Its introduction was motivated by the
concepts of additive type observables from statistical mechanics, it was also
used by Lenard to define the correlation functions, see e.g. [Len75, Bog46|.
Let G € L).(Ty), v € I' and define

KG(y) =) G(n). (1.15)

ney

Here and throughout this thesis, n € v means, that n is a finite subset of ~.
Note that this sum is well defined, because only finite number of summands
is unequal to zero. Below we present some properties of the K-transform.
Their proofs can be found in [KK02].

Remark 1.2. The K-transform is linear and preserves positivity, it maps
LY.(Ty) into FLO(T).
The K-transform is invertible, with the inverse defined by
K™'F(n) = (-1)™F(E), nely (1.16)
£Cn

for a cylindrical function F': " — R.
Below we give an example of K-transform of the so called coherent state
ex(f, ) corresponding to a measurable function f: R?+— R, i.e.

ex(f,m) =[] f(z), neTo (1.17)

and e)(f,0) := 1. Assume now, that f has a compact support, then

(Kea(f.)) () =[]0+ f@@)), ~el. (1.18)
rey
We define now, for G1, G € L{.(Ty), the x-convolution:
Gl * Gg(n) = Z Gl(T]l U 772) : GQ(T]Q U 775) (119)

(11,m2.m3)€PL (1)

One of the most important properties of the x-convolution is stated in the
following remark, the proof of which can be found in [KK02]:

Remark 1.3. For G1,G5 € L).(T'y) we have
K (G1xG3) (n) = KGi(n) - KGa(n). (1.20)

Due to this property the K-transform is analogous to the (classical)
Fourier transform in the case of configuration space analysis.
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1.3.3 Correlation measures

Using the K-transform, we can define a measure on T'y. Denote with M (T)
the set of all probability measures on I' which have finite local moments (of
all orders), that is

/§\7A¢"u<dv» <o (1.21)

for all A € B.(RY) and all n € N. Next, with M,;(I'y) denote the set of
all locally finite measures on Ty, i.e. p(A) < oo for all p € M(T'y) and all
bounded sets A from B(I'y).

Let now u € ML (T') and define the dual of K-transform (denoted by
K*) as follows:

ﬂmemwzﬁewmmmm. (1.22)

We call p,, := K*u, the correlation measure of the measure p.

Remark 1.4. A useful example of such a dualism is given in [FKOO09].
The correlation measure corresponding to the Poisson measure m,, s the
Lebesque-Poisson measure A, .

Having defined the correlation measure, we can recall the important fact
about the extension of the K-transform defined in (1.15):

Theorem 1.1 ([KK02|, Thm. 4.1). Let p € ML (T') be given. For any
G € LY(To, p,) we define

KG(v):=) G(n), (1.23)

ney

where the latter series is p-a.s. absolutely convergent. Furthermore one can
show that KG € L'(T, ),

IKG 1wy < IKIG Lty = 1Gll L1, (1.24)

and

/F G(n)pu(dn) :/FKG(V)M(dV)- (1.25)
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We have already defined the correlation functions in (1.11). One can also
introduce them using K*, if the measure p and its correlation measure have
densities.

We say, that a measure u € M (T') is locally absolutely continuous w.r.t.
measure 7,, iff for each A € B.(R?), the measure p* := p o p,* is absolutely
continuous w.r.t. 7& := 7, o p,'. In this case, p, = K*u is absolutely

continuous w.r.t. A, and we have

dp
k = —E(n).. 1.26
As we will see later, the correlation functions are very useful to describe
the evolution of certain (Markov) processes on configuration space.

1.4 Two-component configuration space

Having in mind the motivation source of the considered models (e.g. ecologi-
cal applications) we introduce now the two-component configuration space as
the Cartesian product of two identical copies of the space I' (cf. |[FKO10]).
Again, for the above mentioned reason, we distinguish the elements of each
of the two spaces as different population types, i.e. I't and I'~, thus

I*:={(v, 7)) eTt* xI": 7'n+¥*=0}. (1.27)
Similarly we can define the two-component space of finite configurations:
0ge={("' n*) ey xTyg: n'ny’=0}. (1.28)

The two-component spaces are equipped with the product topologies of the
(finite) configuration spaces, their structure is inherited from the underlying
one-component spaces. This applies also to the Lebesgue-Poisson and Poisson
measure, thus we can consider spaces (I'?, 7,, ® 7,,) and (T2, \,; ® \.).

In the following, we define the two-component analogues of K-transform,
the x-convolution and the Minlos lemma. Let G € LY (T'2) and define

S

KG(', ) = > > G'n?), (7% eT™ (1.29)

eyl n2ey?
As in the one-component case it is invertible with the inverse given by

K Fm' ) =) D (—)memEipet, ¢2) (1.30)

gtent g2cn?
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for F' cylindrical and (n',n?) € T2
Let 1 := (n',n?) € I'Z, then the x-convolution is defined as

GixGa(n) = > Gilni Ung,nf Um3)Ga(ns Ung,n3 Un3), (1.31)

(i msmd)eP(nt)
(n?m3.m3)ePL (n?)

for G1,Gy € LY.(T'%). As in the one-component case, the following property
holds:

Lemma 1.2. Let Gy, Gy € LY. (T?), then

K(G1*Ga)(n) = KGi(n) - KGa(n). (1.32)

Proof. Let Gy, Gq € LY. (T'23). Then we have
KGi(v',7%) - KGo(v', ") = D D Gilnt,md) - D> D Galmy,m3)
niey! nfey? ST

and because of the assumptions about G, Gy those sums are finite, hence
the latter is equal to

Yo > > Gt - Galny, ).

n €yt nyeyt niey? niey?

For i = 1,2, we can decompose 7 into four sets: & :=ni \ ns, & =i \ i,

&i=ninnyand & :=~"\ (ni Uni). Then we obtain

> Gi(& U&, EFUE) - Ga(§ U &, & UE)
(e1.€3.63.DePI(vh)
(£3.63.82.6HePl(v?)

but this is the same as
> > GiUE,EUE) Ga(HUE GEUE)

giev! &8y (¢4.65.60)ePl(v!\¢h)
(€2,62,62)ePI(2\€3)

which is equal to

DY (GixGa) (&N E) = K (GrxGa) (v1,77).

flet Eiey?
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Denote now

6,\(fa9a771>772) = 6,\(f, 771)@\(97772)7 (133)

then for f,g € L' (I'3, p,) we have

(Kea(fr9,-,-%) (512" = [T+ f@@) [T +a(v) (1.34)

zey! yey?
We will also need the Minlos lemma in the two-dimensional case:

Lemma 1.3. Let n > 1, and for each i =1,....n, n; = (n},n?) € T2 Let
A=A ® A be the product measure on (T3, B(T'2)). Then

/ () ... / NG U U R U U H )
1—‘0 l—‘0

- [wom Y Hh ) ),
o (1) EPD (')
(02,13 EPA (n%)

for all functions G, H for which both sides of the equality make sense.

The definitions introduced in this section can be further generalized to
systems which consist of more than two populations, i.e. we can define the
multicomponent configuration spaces in a similar way.

1.5 Markov evolutions in CS

In this section we present the general investigation scheme for the infinite
particle systems, using the framework of the configuration spaces analysis
(see e.g. [KKO02, FKKO09, Str09, FKO09, FKO10]). As we mentioned before,
the functions F' on I' are called observables. The measure p on I' will be
then the state of a system. Note, that the number of particles (individuals)
of the system is infinite. This fact is the source of many technical difficulties,
as well as of some interesting questions. We will denote by (-, -) the expected
value of an observable F' w.r.t. to the state yu:

(Fyp) = /FF(V)M(CW)- (1.35)

Let L denote the heuristic (Markov) pre-generator which describes the
infinitesimal behaviour of a given model. The mechanism of evolution of the
system is determined by the action of L. Having in mind applications, the
possible events include:
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e birth,
e death,
® jump,
e diffusion (motion)

of a particle (or site z € R?) during the infinitesimal time interval [t,¢ + dt].
Because of the very complex structure of the space I', it is often difficult to
give precise description of the operator L, i.e. to specify its domain and thus
to consider L as a generator of a strongly continuous contraction semigroup
associated with a Markov process using the standard methods (as in, e.g.
[MR92]). We will use different approach to the problem. If LF is (at least)
point-wisely well defined for a function F' € FC), then we can write the
so-called Kolmogorov equation for observables

8
5 Ft = LF. (1.36)

The equation for the associated state u; would be the dual Kolmogorov equa-
tion (or Fokker-Planck equation)

8
at!

where L* is the adjoint of the operator L with respect to the duality (1.35).
In this situation, we are still in the infinite-dimensional context, which makes
it complicated to even formulate the problem rigorously. However, using the
tools presented earlier in this chapter, we can rewrite infinite dimensional
evolutional equation as an infinite system of finite dimensional equations,
namely as an evolutional equations of quasi-observables. Define the symbol
L of the operator L, L := K 'LK. Using the symbol we can obtain the
equation for quasi-observables corresponding to the Kolmogorov equation:

= L*u, (1.37)

0 A
aGt LG,. (1.38)
We can, again, deduce the dual equation on correlation functions
0 -
akt L*k’t, (]‘39)
where the operator L* is defined via the duality
(160 = | LGkmAaldn) = [ GEL k(A0 (dn) = (G. L'R).
To T'o

(1.40)
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In order to do this, we should assure that the corresponding correlation
measure p, is absolutely continuous w.r.t. the Lebesgue-Poisson measure
.o for every time ¢ > 0. We should also mention that the solution to the
equation (1.40) is not necessary a correlation function associated to some
measure. There exist, however, conditions which assure the existence of such
a measure (see, e.g. [BKKL99, Len73]).

To summarize this section, let us present the latter considerations on the
diagram (|[FKO09]):

(F.p) = /F F(y)du(7)

F L
K K*
G Pu
(G, pu) = A G(n)dp.(n)

1.6 Vlasov type scaling

The Vlasov equation was introduced by A. Vlasov in 1938 in the context of
plasma physics, to describe the evolution of density of plasma particles with
long-range interaction (see [V1a68] for English translation). It also plays an
important role in the stellar dynamics (see e.g. [Spo80]). Later development
and applications of Vlasov scaling are due to the works of Braun and Hepp
(|BH77]), Dobrushin ([Dob79]) and Kozlov (|[Koz08]).

The Vlasov equation can be obtained by a proper scaling of a system. In
this work we study a type of Vlasov scaling for two-component interacting
particle systems. However, as it was mentioned in [FKK10a], the methods
used by the authors above cannot be simply used in our case (one of the
reasons for that is for example lack of the description of a given model in
terms of a stochastic differential equation describing the evolution), therefore
we will recall here the Vlasov-type scaling scheme developed in [FKK10a).
The description presented here is general and does not contain all technical
details needed to properly formulate the statements. Those details are model-
dependent thus we will give them later in the proper chapters.
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In the previous section we have presented the general scheme to obtain
the evolution of correlation functions for a given system. The starting point
was a Markov pre-generator L and the equation (1.36). Then, using the K-
transform we could derive the evolution equation for the system of correlation
functions (1.39) corresponding to the states (u:)i>0. Note, that depending
on the considered model we will later specify the formal conditions for such
an evolution to exist. Usually, the Vlasov scaling is realized in terms of
correlation functions, thus our starting point is the following Cauchy problem:

%kt - i*k’t ( )
1.41
kt’t:O = k0~

Recall that if L* generates a semigroup U (t) in some space then the solution
to (1.41) is given by k; = U*(t)ko, t > 0.

The general scheme of Vlasov type scaling introduced in [FKK10a] is as
follows:

Step 1. We scale the initial function kg with € > 0 in such a way, that
k((f)(n) ~ e 1Mro(n), e = 0, n € Ty and the function 7y is indepen-
dent of . The choice of this initial density ry is usually motivated
by the considered model. As it will become clear later, the function
ro(n) := ex(po, n) plays essential role in our considerations, moreover
we expect that the scaled dynamics preserves the factorized form of
such initial density ro, i.e. 7(n) = ex(ps,n) for some p;, and

2 oila) = v(p)(@), (1.42)

which is the Viasov-type equation in our case. Although the equation
(1.41) is linear, the equation (1.42) can be much more complicated
(it is usually not linear any more).

Step 2. Now we should scale the generator L* in a proper way. Again,
the exact form of this scaling depends deeply on particular models.
After scaling, we obtain a generator L and the evolution equation

ol ) 7 %1.(€)
&kt(g = LektE

(1.43)
kim0 = k.

The idea of the scaling of the generator is very much related to the
next Step.
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Step 3. We impose that the scaled evolution preserves the order of singu-
larity in e, hence we need to renormalize k' setting k=, () =

t,ren
Mk (n), n € Ty so that
ki en(m) = 1i(n), & 0. (1.44)
As result, we consider the renormalized version of the operator ﬁ:,
ﬁ: ron 1= elnlﬁze—\n\

and thus the equation (1.43) becomes

01) _fr 1
DR =Lk

t,ren e,ren'vVt,ren
(1.45)
ké,gr)en t=0 — k(()?‘en

Hence, informally, letting ¢ tend to 0 we are looking for the solution
of the following equation

%Tt = LVTt
(1.46)

Tt|t:0 =To.

The natural candidate for the operator LY is the pointwise limit
of operators [A/:Jen. The Vlasov equation (1.42) can be deduced
heuristically from the equation (1.43), which is the analogue of
the BBGKY hierarchy in the case of Hamiltonian systems (see e.g.

[Spo80]).

This type of scaling has been studied e.g. in the case of individual based
models with competition ([FKK10c|) and Glauber-type dynamics in contin-
uum (|[FKK10d]). In what follows, we will present the results of the Vlasov-
type scaling for the following two-component systems: ecological model and
the Glauber-Potts model.



Chapter 2

Continuous contact model 1n
random environment

2.1 Introduction

In this chapter we study the modified version of the contact model in contin-
uum introduced in [KS06| and later on investigated for example in [KKPOS|
and [Str09]. We consider three versions of the contact model in random envi-
ronment which can be described as random fecundity, random establishment
and random mortality. Before proceeding to the construction and investiga-
tion of the above-mentioned models, we recall some useful facts known from
the theory of stability for Markov processes.

2.1.1 Extended generator

In the standard theory of Markov processes, the latter are characterized in
terms of the associated semigroup or the strong generator together with its
domain (see e.g. [MR92]). In the classical case, the domain typically consists
(for example) of bounded functions with some additional properties. The use
of unbounded functions is in general problematic. In this case, in order to
show regularity of the considered models, we are compelled to work with
functions which are not necessarily bounded (i.e. we should ’include’ those
functions into the domain of the generator of the process). To do so, we will
use the so-called extended generator of the process. More detailed description
of the theory presented here can be found e.g. in [MT93| and [Dav93|.

Let X; be a time-homogeneous Markov process with state space (S, B(.5)).
We assume that S is a Borel space with the Borel o-algebra B(S). Denote
by D(A) the set of all functions V' : S x R, U{0} — R for which there exists

39
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a measurable function U : S x R, U{0} — R such that
t
E.[V(X,t)] =V(z,0)+ E, {/ U(Xs, s)ds] (2.1)
0
and
t
/ B, [[U(X,, )| ds < o (2.2)
0

forallxz € S, t > 0. We call A defined by AV := U, the extended generator of
the process X;. In the next subsection we describe one of the possible ways
of determining whether a given function is in the domain of the extended
generator.

2.1.2 Truncation of the process X,

Let (O™),,cy be a family of open pre-compact sets in S, such that S = (J,, O™
and O™ C O™*! for any m € N. Let T™ be the first-entrance time of the
process X; to the set (O™)¢ =S\ O™.
Denote by ( the lifetime of the process, i.e.,

¢ := lim T™.

m—0oQ
We introduce the truncations of X; in the following way:

m . X t<Tm
X '_{Am, > T

where A, € (O™)° is called the cemetery or the graveyard state.

Now let A,, denote the extended generator of the truncated process X", and
define the domain of its weak infinitesimal generator (denoted by D(A,,)) as
the set of all measurable functions W : .S — R such that the pointwise limit

E, W(X5)] — W(z)

A, W (z) == flgno - (2.3)
exists for x € S and satisfies
lim B, | AW (X7")| = AW (). (2.4)
h—0
In addition, if the following holds
sup flmW(x)‘ < 00 (2.5)

zeC

for any compact set C' C S, then D(A,,) C D(A,,) (see [Kus67]).
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2.1.3 Lyapunov-type function for the process
Let 3> 0 and z,y € R% Define

and
[z —y[+1

Wg(r,y) = 65(95)65(3/)|—

Tipzpn(,y). 2.7
z—y (o9} (T, Y) (2.7)

Now for v € I' define the following functions:

Zeg 65, > ; (28)

xey
and
Bo(y) = 3 Walr,y) = / / Vale, )y (do)y(dy).  (2.9)
{z,y}Cvy Re /R

Finally, let

V() := Eg(7) + Lg () (2.10)

In the sequel, function Vg will play role of the Lyapunov function for the
contact process. It can be shown, that the sets

{yelVs(y) <C}

are precompact in I' for every C' > 0 (see e.g. [KKP0§]).
Introduce the spaces induced by the function Vpg:

Ig:={yel': Vz(y) <oo} (2.11)
and
T = JT5. (2.12)
B>0

Remark 2.1 (c¢f. Remark 2.1 in [KS06|). Note, that p(I'ss) = 1 for all
probability measures p on B(I') which have second local moment finite, i.e.

/|'7A| p(dy) <

for all compact sets A C R
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2.2 Contact process in continuum

In this section we recall the construction of the contact process in continuum
as in [KS06]. Using the framework introduced in the previous sections we
show, that the lifetime of the process is equal to infinity, i.e., the explosion
does not occur.

The heuristic pre-generator of the contact process has the following form:

=> D, F(y +%Z/ a(z — y) D F(~)dx (2.13)

zEY yey

where

Dy F(y):=F(y\z) = F(v), DyF(y) := F(yUz) — F().

The operator (2.13) is well defined e.g. for cylinder functions F' almost surely
w.r.t. the appropriate measure on I', see [FKO09|. Throughout this chapter
we assume that a € L>®°(RY) and that a has bounded support, i.e. there
exists a R > 0 such that supp a C Bg(0).

2.2.1 Construction of the process

We construct the contact process as a spatial branching process with killing
in the space R In order to do so note, that for any n € I'y we can rewrite
pre-generator L as follows:

LF(n) = (1) / (F() — Fn)) Q. dif) (2.14)

with A(n) = |n|(1 + »), and

Q(n,dn’) = [Z&M dn') +%Z/ a(x — y)0yue(d)dz | . (2.15)

TEN yen

From the theory of pure jump processes follows, that there exists a jump pro-
cess (Q, F, (Fi)iz0, (X{)i>0, Py) starting from n € T’y with lifetime (w). Such
a process can be constructed by means of the associated Markov chain and
the sequence of the stopping times, see e.g. [GS74, EK05]. As it was shown
in [FMO04], the lifetime of this process (starting from finite configuration) is
infinite.

Having constructed the contact process for a given finite configuration
7, let us proceed to the construction of the process starting with any initial
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configuration v € I'3. Denote by v, := N B(0,n) € I'y, n € N and consider
the non-decreasing sequence of Markov processes ((X;"):>0) defined on joint
probability space, with the property

Viengso X" C X" aus. (2.16)

Such birth-and-death processes with the finite initial configuration were con-
structed for example in [FMO04| using Poisson stochastic equations. Because
of the additive structure of the operator L, X, and Xg”'“\% are independent
Markov processes with X" NX;"'\"" = () a.s., hence X" = X UX, "\

a.s. and we can introduce the limiting process

X7 (w) = (U Xz") ® (2.17)

with the lifetime ((w). For more detailed discussion see e.g. [ANT2]| and
[Isc86].

2.2.2 Regularity of the process

In what follows we will show that the lifetime of the process X; constructed
in the previous section is almost surely infinite.

Take v € I'y,. That means that there exists 5 > 0 such that v € I's.
From now on we will fix 5 and consider X; with the initial configuration -,
i.e. with probability one we have that X, = .

Set O™ :={y € '3 : Vg(v) < m}. Then obviously O™ 1 I's and each set
O™ is relatively compact. Note, that the sets O™, m € N depend on (3, but
this is fixed here so we omit this dependence in the notation.

Recall the truncated process defined above, X" with the initial configu-
ration 7 := v N O™ and its extended generator L,,. For functions F' in the
domain of the extended generator D(L) we clearly have L, F(y) = LF(v)
for all v € O™.

Proposition 2.1. For every m € N, there exists C,, > 0 such that the
following holds:

sup |L,,Vg(n)| < Cp < 00 (2.18)

neom

for all B > 0.
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Proof. Let n € O™ and recall that L,,F'(y) = LF(y) on O™. First let us
estimate

LuLs(ml = (> | D esly) =D esw)

z€n \yen\z yen
+ %Z/ ( es(y) —Z%(zﬁ) dx
yen yenUz yeNn
‘ Ze@ +%Z/ a(z —y)eg(x)dx
zen yen
< |Lg(n)| + |Croe Y esly)| = (3Ch + 1) Lg(n)
yeEn

where we have used the fact, that function a has bounded support. Hence,
we obtain

sup |LnLs(n)| < (5Cy + 1) sup Lg(n) < (#Cy +1)m < 0o
neorn 77607”

because of the definition of O™. Next

‘LmEB(U)’: Z Z U521, 22) — Z U521, 22)

z€n \{z1,22}Cn\z {z1,22}Cn

—i—%Z/ alr —vy Z Us(21, 22) Z Us(21,292) | dx

yeN {z1,22}CnUz {z1,22}Cn

and this is equal to

—2E3(n +%ZZ/ a(zx —y)Vs(z, z)dz

yen z€n

Using the definition of W4z and the properties of a there exists a constant Cs
such that the latter can be estimated by

dz
>0 es®)es(2) /BR(0> lz = (E+yl

yen zEN

12E3(n)| + Cas¢

but the integral above is uniformly bounded when d > 2, thus

> esles(z)

yeEn z2€n

| LmEs(n)| < 12E5(n)| + Csse
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for some C3 > 0. Note that

D eses(z) =2 Y esy)es(z) + Y e > < 2Es(n) + Ls(n)

YyeEN 2€N {y,z}Cn TEN

which gives
sup |LnEs(n)| < sup [5CsLg(n) + 42C3E4(n)]

7]€O7n 77607"
< max{#C3,42Cs5} sup Vg(n)
neom
< max{»#Cj3, 45Cs}m < oo.
Thus, there exists a constant C), > 0 such that

sup |L,,Vs(n)| < Cp, < 00
neom

for every § > 0 and m € N. That concludes the proof. ]
Hence the condition (2.5) is fulfilled and we have the following

Corollary 2.1. For every > 0 and m € N function Vg is in the domain
of the extended generator L,,.

Notice that from the proof of Proposition 2.1 we can conclude:

Corollary 2.2. There exists a constant C' > 0 such that for every m € N
and every v € O™ the following inequality holds:

L Vg(v) < CVg(7). (2.19)
Finally we are able to show the following

Theorem 2.1. Contact process (X,') is non-explosive for each v € T, i.e.
(¢ = oo with probability one.

This result is a direct consequence of Theorem 2.1. in [MT93]:

Theorem 2.2 ([MT93]). If (X, )i>0 is a right process and (2.19) is satisfied,
then

1. ( =00, so that (X )i>o is non-explosive.
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2. There exists an a.s. finite random variable D such that
V3(X]) < De, 0<t< oo (2.20)

The random variable D satisfies the bound

P’y(jj > CL) < Vﬁ(V)

a>0,vel's

— Y

a

3. The expectation E(Vz(X)")) is finite for each v and t, and the following
bound holds
E(Vs(X{)) < e V(7).

2.3 Properties of the random potential

Before considering the contact process in random environment we will intro-
duce the random potential and show some of its properties.

We investigate the random potential corresponding to Poisson random
field w, and the potential function . There exist also other possibilities for
realization of the random influence in our model, for example the Gaussian
potential (see e.g. [GKMO00]), but we will be focused only on the Poissonian
case.

In the following, we denote by P and (-) the probability and the expec-
tation value with respect to the law of Poisson point process with intensity
parameter \. That is, the probability of the number of points of w in a set
A € B(RY), N,(A) is given by Poisson distribution

P[N,(A) =k = (Mki!')ke*lf".

We consider the random potential which, for a fixed w, has the following
form:

Vie) = View) = [ ol = uldy) (2.21)
R
for € R% Let r > 0 and define Q, := [—r,7]°. We impose the following

assumptions on the function ¢:

e © > 0 and ¢ is a continuous even function with compact support, i.e.
there exists R > 0 such that p(z —y) =0if |z — y| > R,

e 0(0) > p(x) for all z € R?, and ¢(0) > 0.
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Denote by ¢(x) = maxyeq, |p(xr — y)|. It is clear that ¢(y) = 0 for all
y € Q%yq, and @(x) < p(0) for all x € Qp41. The following lemma describes
the behaviour of V(z) in the unit cube:

Lemma 2.1. For all o > 1

r€Q1

P (max V()| > a) < g Calsa (2.22)

where C' > 0 1s independent of «.

Proof. Using Chernoft’s inequality and the explicit form of the moment gen-
erating function for Poisson measure, we obtain for all 5§ > 0

P (Hé%X V(2)] > a) < P ( /R pla)w(dn) > a)

< o <€6 Jea @(x)w(dw)>

but this is equal to

. s
e P exp [/\/ (65“’(“) -1) d:c] = e Pexp [A/ / ewu)g&(w)drda:}
Rd Re Jo
e P exp {)\665“’(0) /d @(m)dm}
R

< exp [—aB + ABe™Vp(0)|Qrl] -

IA

now let g = E(goc)“, then the last line is equal to

alog o

(0)
thus we have obtained (2.22). O

exp |- <1+so<o>A|@RH|>}7 (2.23)

Using this lemma we are able to show that the potential V' is bounded
almost surely in the cube of size L.

Lemma 2.2. With probability one, we have

log L
max |V (z)| < C—2

— 2.24
zeQr — loglog L ( )

for L large enough.
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Proof. Let « > 1 and L, = 2" for some n € N. Using the translation
invariance of the Poisson measure and Lemma 2.1 we obtain

P (max V()| > a) < 2mp (maxyV( )| > a)

x€Qr, T€EQ1
< 2nd670a loga.

Let now a = log” The application of the first Borel-Cantelli lemma for the
sequence L, will give us the required result. O]

We proceed now to the contact process in random environment.

2.4 Contact model with random establishment

2.4.1 Introduction

In this section the contact model with random spatial offspring distribution
is studied. The birth rate in this case will be random, and has the follow-
ing form: b(x,7) = >, a(z — y)b(r,w). We assume that w is a (fixed)
realisation of the Poisson point process. This additional factor has an influ-
ence on the location for the newly created individuals, i.e. the presence of
many points of w in the area makes it unattractive and the probability that
a "parent" will send its offspring to that area is relatively small. Thus the
heuristic pre-generator of the contact process with random establishment has
the following form:

LooF(y ZDF +Z/ (z — y)b(z,w) DI F(y)dz, (2.25)

and the random function b has the following form

b(z,w) = e @9 — oxp ( Zlﬁ T — )

Yyew

for a non-negative function bt with compact support.

2.4.2 Existence and regularity

The process can be constructed similarly to the classical case, as a branching
process with killing. Notice also, that for each § > 0 and m € N, there exists
a constant C,, such that

sup Lw7bV5(’y)‘ <, < oo. (2.26)

’YEO"L
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To see this, take v € O™ and calculate:

LoslsMl = D | D esly) =D esly)

€y \yey\z yeEY
+ %Z/ (x —y)b(x,w) <Z eg(y)—Zeg(y)> dx
yey yeyUz yey
= | 265 —i—%Z/ (x —y)ep(x)b(z,w)dx
zey yey
< Lg(7)+C1 > esly / b(z +y,w)dx
yey (0)

< (L4 CiBr(0)]) Lg(y) < (1 + C1[Br(0)[) m
where |Br(0)| denotes the volume of the ball Br(0) in R¢. Similarly

|LEs(y Z Z Us(x,y —i—%ZZ/ (x —y)b(z,w)Vg(x, 2)dz

ey yey\z yEy 27
1 _
< Eﬂ +%2265 / a* x_y)el?(x)b(xaw)wl{w#z}dx
yey z€y |I |
¥ 1+ |z —y— 2|
=Es(7) + 7)Y es(wles(z) | a* (2)es(@)ble —y,w) iz
YEY zEY \x—y—z|
1
< Es(y) + A%Z Z es(y)es(z (/ b(r,w)———dx + ]BR(())O
YyEY zE€Y r(0) |[E —Yy— Z|

< Es(y) + G (2Es(7) +Ls(7)) < C2Vs(7) < Com,

Thus, the function Vg is in the domain of the extended generator Ly, for
every m (see Corollary 2.1). Moreover, it follows from the latter calculation,
that for each v € O™ we have

LopVs(y) < CVps(y)

for some C' > 0. This together with Theorem 2.2 gives the regularity of the
process associated with the operator L, .

2.4.3 The symbol of the generator

We now apply the scheme introduced in Chapter 1 to derive the corre-
sponding evolution of correlation functions for the considered system. In
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the first step, we calculate the symbol f/w,b of the operator (2.25). Recall
that Ly := K~ 'L, K, then:

LsGn) = = nlGn) + 2 [ blo) 3o (0 = )Gl \yUa)ds (227)

yen
+ %/ b(z,w) Z at(x —y)G(nUz)dz.
R yen

'To show the latter fact, we will calculate the symbol directly. The definition
of L, vields: LG(n) = I(n) + I2(n) where

L(n) = K (Z [KG(-\OC)—KG(-)]> (n)

e

; ( >3 6 w)

xE EC\zm

_ _Z(_ In\CIZ Z (EUuz)(n

¢Cn z€C £eC\z
= =) ()MIY KG(Uz)(¢\ )

¢Cn (456
_ Z Z (_1)|n\(<Ux)IKg(. Uz)(()

zEN (Cn\z
= =Y K '(KG(Uz)(n\z)) =—[nG»n).

and

In) =K~ (K/Rd Y at(z—y)b(z,w) [KG(-Uz) — KG(-)] dx) (n)
—%Z 1)l / T,w) Z at(z —y) Z G Uz)dr

¢Cn yed £c¢
S0 [ b (o = ) ©) - KGC V)
(Cn

:%/Rd b(z,w)[a™(x — )1 =1 x» G(- Uz)](()dx
:%/Rd b(z,w) Z at(z — )Lz (m Une)G(- Uz)(ne Uns)da.

(n1,m2,m3)EPG (n)
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The latter sum has only two non-zero terms, that is: 7 = () and || = 1 or
ne = ) and |n;| = 1 thus we obtain

12(77):%/ waa r—y)G(n\yUzx)dx
yen
—l—%/ T, W Za r—1y)G(nUx)de,

yen

and hence the symbol [A/wvb is given as above.

2.4.4 The adjoint operator

We will show now, that the adjoint operator L 5p Wr.t. the relation (1.40)
has the following form:

Lk(n) = — [nlk(n) + Y _k(n\2) Y a'(x - y)b(z,w) (2.28)

Ten yeN\z

+%Z/ W\ 2) Uy)dy

xen

It is easy to see that,

/F L k() A(dn) = — / 0| G (mk(n)A(dn)
_ / G(n) (—|nlk(n)) Mdn).

This identity gives us the first part of the formula. Now

/F L(km)Mdn) = Ji + Jy
where

JI::%/ 30" = bl )G\ 9) U ok,

yen

Jo = %/FO /]Rd nUx at(x — y)b(z,w)dzk(n)\(dn).

yen
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We will rewrite two expressions above using Lemma 1.1. We start with J;:

hes [ [ ko) ([t = mieiGnapte ) dnaian)
— [ [ ctum ([ o= mbtadttn Uy ) doatan)

- [ e (%z/ (2 = )bl )b\ >Uy>dy> A(d)

xren
similarly in the case of Jy after applying Lemma 1.1 we get

)= / ) SR\ 2) Y @t (@ - y)bla,w) | Aldn)

zen yeEN\z

which gives us precisely (2.28).

2.4.5 Time evolution of the correlation functions

Having calculated the symbol [:%b, we proceed to the evolution equations
associated with this operator. The starting point for our consideration will
be the following equation:

Ok

5 M = Lt k() = = Inlke(n) + 32 ) ki(n\ ) Y at(z —y)b(e,w)
Ten yen\z
03 [ = btk \ ) Ui

Below we will give formal meaning to this equation. First note, that one can
rewrite the latter equation component-wise taking into account the structure
of correlation functions:

k™
ot

(T1,. .. x,) = —nkt(n)(xl, cey Ty

(n—1)
+%E k (T1, ..o, T, E at(x; — x;)b(xi, w)

JijFi
+ Z 4 a+(xi - y>b(‘r17 W)kwgn)(xla e Li—1,Y, - - 7xn)dy
=1 /R

= [A/;‘lk’in)(a:l, cey ) F ft(n)(arl, ey Ty)
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where, for n > 1

Liki™ (2, . ) = —nki™ (2, ... x)

+ Z %/ a’+<xi - y)b(xla w)kt(n)<x17 e Ti—1,Y, - - 7xn)dy
=1 /R
and

FM @y, w,) = %Z KD (e, d L a) Z at(z; — x)b(w;, w),
i=1 jiji
with ft(l) = 0. Recall, that every function k™ is symmetrlc and defined on

(R4)™ or, by construction on (R?)" putting £™ = 0 on (Rd) . Hence, for
each n € N, we consider a linear Cauchy problem in some Banach space X,
given by

(n) . .
8%; (x1,...,x,) = L;k,g )(xl,...,xn)—l—ft( )(xl,...,xn),
(2.29)
@y, a)hee = K (@, 2).

Notice also, that we can rewrite operator lALjiL in the following way

Lok (@1, @) = <%<a+> > b(ai,w) — n) K (... 2)
+ZL1 n 1131,..., n)7

where

LLE™ (zy, .. x) = 2b(x;,w)

X / at(z; —vy) [k:(")(xl, Ty Yy ) — K (@, ,xn)] dy
Rd

is a generator of Markov jump process with random jump intensity.
Now set X,, := By((R%)"), the space of real valued bounded functions on R?
with the supremum norm. Notice that for k € X,,:

Ank(l'l, Ce ,fL’n)

—nk(xy,...,z,)

+ %Zb(xz,w) Cl+<£L‘,L' - y)k(xb ey L1, Y, - 7$n>dy
i=1 Re

< n(1+ x(a)) ||k||x» < oc.

From this we can conclude:
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Proposition 2.2. The operator [A/;‘ib is bounded in X,. Moreover, L' is a
generator of a contraction semigroup in X,,.

Thus, we also have the following

Proposition 2.3. For each n € N the solution to the Cauchy problem (2.29)
wn the space X, is given by:

. t .
kt(")(xl, coxn) = etk (. m,) / e M (o xy)ds. (2.30)
0

Proof. The statement follows from the classical theory, see e.g. [IK02|. O

We can a priori estimate the solution (2.30). Let
2(t) := max {1, 7, %e_t<”<“+>_1)} .

Proposition 2.4. Let a™ € L*(RY) N L>®(RY) be even, positive function and
recall that A = ||a™||. Let C' > 0 be a constant independent of n such that

k:(()n) (x1,...,x,) < nIC" (2.31)

for all (z1,...,2,) € (Rd)n. Then for alln € N and t > 0 the following
inequality holds:

K (21, an) < se()(1 4+ A)rer(@=10C )" (2.32)
for all (xq,...,2,) € (Rd)n.
Proof. We will argue by induction. For n = 1 we have:
kY (z) = et(%<a+>—1)etLikél)(x) < el -D o

and (2.32) is satisfied. Now assume that (2.32) holds for n — 1, then using
(2.30) we obtain:

k;t(") (X1, ..., 2p) = et (e iy bleiw) <® et ) (X1, ..., Ty)

t
+%6t(;4<a+)z?:1b(xi,w)n)/ e—s(%<a+>zz L b(iw)—n)
0

n
X<®€tSL>§ b, )k Dz, Ey . T)
=1
XE x; —x;)d

Jij#i
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Using (2.31) and (2.32) for n — 1 we obtain

kt(n) (xla ce ,xn) S et(%<a+>_1)ncnn!

t
+%et(%(a+>1)n/ efs(VL(a"")fl)nn(n_ 1)
0

X [l (14 Al DA (1O )7 ds

< 6t(%<a+>—1)ncnn!

+ %et(”<a+>71)"n(1 + A)"3e(t)" !

t
></ 6_5(”<a+>_1)(0+5)"71d5.
0
Note that for 0 < s <t we have 1 < se—s(#ah)-1) < 5(s) < x(t) thus

t
B (@) < @D AY ()l ((Jn +n / (C+ s)”_1d5>
0
and the assertion is proved. 0

Let the initial condition (k;(()n)) in (2.29) be a system of correlation
neN

functions, i.e., there exists a measure g € M¥% (T') (locally absolutely con-
tinuous w.r.t. the Poisson measure on I') the correlation functions of which

are exactly (k:(()")> (see e.g. |[KKO02| and Section 1.2). Natural question
neN

arises: does the time evolution of (ké")> preserves this property? In
neN

other words, is <kt(n)) a system of correlation functions of some measure
neN

py € M3, (T') for each t > 07 One of the possible ways to assure that the so-
lution of (2.29) is a correlation function is the result of A. Lenard ([LenT73]).

Namely, let p € M(Ty) be a locally finite and normalized (i.e. p(F(()O)) =1)

measure with corresponding system of correlation functions (l@@) . Then
neN

p is a correlation function of some measure y € ML (T) if the following con-
ditions are satisfied:

(P) For any G € Bys(T'y) such that KG > 0:

/F G(n)p(dn) = 0. (2.33)
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M) For any bounded set A C R% and j > 0:
( y j

e e}

] (mh ;) " = +oo, (2.34)

3=

n+j
n

where

1
mﬁ ::—/~--/k:(")(xl,...,xn)dxl-~-dmn.
n! Ja A

Remark 2.2. Condition (P) is called Lenard positivity and provides the
existence of the measure p above, whereas (M) is called the moment growth

condition and ensures the uniqueness of such measure (see e.g. [LenT73,
KK02|).

We have also the following remark (cf. Proposition 2.4):

Remark 2.3. Condition (M) is satisfied in particular for a system of func-
lions (k(”))neN such that for all n € N the following inequality

K (xy, ... 2,) < C™nl

holds for some constant C > 0 independent of n, and all (xq,...,x,) € (Rd)n.

We will now show that the latter conditions are fulfilled in the case of
considered model.

Lemma 2.3. Let a™ be as in Proposition 2.4. Then the solution of (2.29)
satisfies condition (P).

Proof. By the definition of correlation measure we have to show the following
for all G € Bys(I'y) with KG > 0:

o0 1 "
Zﬁ/ G(”)(xl,...,:cn)klg )(xl,...,xn)dxl---d:cnzO (2.35)
n—0 . R4 R4

Let po € M3, (') have the correlation measure which is absolutely continu-
ous w.r.t. the Lebesgue-Poisson measure (that is the case if for example pyg
is locally absolutely continuous w.r.t. the Poisson measure on I') and such
that its correlation functions (k("))neN are bounded.

Define for n € N, g > 0:

FO(y) = Y eflml el
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for v € T with |y| > n, and F(™(y) = 0 otherwise. Note that for the measure
o as above we have

/F FO) (ol dy) = (2.36)

1
—/ / e Pleal o= Blanlp ™) (g 2y )day - - - day, < 0.
n! Rd R4

As it was shown before in this section, there exists a Markov process X
associated to the generator L, , and such that X' € I's almost surely for all
t > 0. For n > 2 we have

LopF™(7) =Y (F™(y\z) = F™(v))

+ %Z Z e Plail. .. e=Planl / ot (y — 2)b(z,w)e Pl dy
Rd

yey {21, xn}Cy

< — FM(5) 4 s(a*) Z Z e Plle=Blzl .. o=Blzi

yeY {21, xn }Cy

< (se(a*™) = 1) F™(y) + s¢(a™) F V().
Now let

and from the previous calculation follows that there exists C' > 0 such that
Lo FN () < CFM(y). (2.37)

As in the construction of the classical contact model ([KS06]), the Markov
property together with the Gronwall inequality give us then:

E [FM(X])] < FM(5)e. (2.38)
Recall from Section 1.5 that the evolution of the initial measure (state) pqg
associated to the process X, is given by the dual operator Ly, (with respect
to duality (1.35)), i.e.:
0 ;
Eut = Lw,bﬂt;
,Ut’t:O = Mo-
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Let (11),~, denote the evolution of y given by the equation above. If for every
t>0, u € M, (T), then the Markov evolution of correlation measures p;
corresponding to p; exists in M, ¢(T'g) and (2.35) will follow trivially because
of the Markov property of the corresponding semigroup.

For the function F™Y) and a bounded set A C R? we have (see [KKPO0S,
Str09]):

FM () > F™ () Z S el

n=1 {$1 ~~~~~ In}C'YA

£ () ()

In the case |ya| < N we obtain
7N
FM (4) > (1 + min e_ﬁ‘ﬂ) -1,
xEA
and for |y5| > N, using Sterling’s formula:

N
FM(y) > (mme—mr') Cvlyal¥

TEA

with 0 < Cy < 5. Thus

/ sl ¥ () = / ¥ s () + / al¥ ()
r [val<N [yal>N

-N
< v (mipe ) o [BFOCO] ol
r

TEA

<V (mipe ) Cite [ FV Gty
T

TEA

< 4+ o0

because (2.36). Hence for all t > 0, uy € M7, (T) and taking into account
previous considerations, (2.35) holds. O

2.4.6 1st and 2nd correlation functions

We will now derive the equations for the first and the second correlation func-
tions. The first correlation function is the solution to the following equation:
ok

ot

(x) = Lk (@) — V (2, w)k (2)
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where
Viz,w)f(z) = (1= xb(z,w)) f(z).
For the second correlation function, equation is as follows

ok
ot

(21, m9) = (2 — 2¢b(x1,w) — 2¢b(x9,w)) kt(z) (21, x2)

+ LAk (21, 20) + L2EP (21, 22)
+ %k’gl)(l’g)aJr(fﬂl — .I'Q)b(l'l, W)
+ %k,gl)(:vl)a*(xg — x1)b(9, w).

2.5 Contact process with random fecundity

2.5.1 Introduction

Let us now consider another modification of the classical contact process in
continuum. Namely, we allow the rate of offspring production to be random,
i.e. we replace the constant parameter s in the second part of the operator
(2.13) with a random function = + s(x,w). This can be considered as the
random influence on the fecundity of members of population — the offspring
production rate can change depending on the presence of random factors.

Taking into account the discussion above, the mechanism of evolution
for the contact process with random fecundity is described by the following
heuristic formula:

L, ..F(y Z D_F(v)+ Z (Y, w / at(x —y)DIF(y)dz, (2.39)
z€Y yey

where
#(y,w) 1= exp ( Zgb T — ) (2.40)

for a positive function ¢. Recall, that w is a realization of Poisson point
process. Furthermore we assume, that the function ¢ has bounded support,
so that s(y,w) > 0 for all y € R? and almost all w

2.5.2 Construction, regularity

The construction of the process can be carried out as in the classical case,
just notice that for all z € R? we have »(x,w) < 1 and thus the birth part
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of L, . is bounded by the birth part of the operator L defined in (2.13). In
order to show the regularity of it, let us show that condition (2.5) is fulfilled
and thus the function Vg is in the domain of the extended generator L, ...
We start with the estimation:

Lo s = Do D esly) =D esly)

r€y \yev\z yey

+ st [ (3 ot oot

yeY yeyUz yeY

- e)+ X # ) [ 0o - peatorts

d
TEY yey R

< Lg(1)+C1 > _esy)

yey

(1+C1)Lg(v)

IN

and

| Lo Es(7)] :‘ = > ) Us(ay)

z€Y yer\z
+ Z sy, w) Z/ at(x —y)Vs(z, 2)dz
yey zey /R
< 2Es(7) + Cr Y > esp(yes(z) < CrVa(v).
yEy z€Ev

Hence we have obtained, that for every m € N there exists a constant C},, > 0
such that:

sup |Ly, V(7)) < Cp, < o00. (2.41)

»YEO"L

Moreover, we have the following inequality
LysVs(y) < CVg(7) (2.42)

for some C' > 0 and all v € O™ for m € N. Thus, using Theorem 2.2 we
obtain the following

Corollary 2.3. The contact process assoctated with L, .. is regular.
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2.5.3 The symbol of the generator
The direct calculation yields the following form of the symbol:

LunGln) = = lGn) + [ |3 ) (@ = )G\ y Ui

yen

+ /R Y x(y.w)at(z — y)G(nU z)de

yen

As in the previous case we have

LoG(n) = Li(n) + L(n), (2.43)

and because the first part has been calculated in the previous section, we will
only show the second part. Notice that

> rly.wat (@ —y) = K(oe(w)at (@ =)Lz (),

yen

and thus we obtain

Ln) =K' (/ D s(yw)at(x—y)> GEU x)dx> (n)
R ye. ¢c
= 3 (e /Rd S sy, w)at (@ —y) 3 G(E Un)da.

¢Cn yeQ £CC

Next, using the definition of the K-transform the latter is equal to

D DM K (e, w)at (= )1=0) () - KG(- U z)(¢)da

d
¢Cn R

_ / (el w)at (@ = )Ly # Gl U )] (Q)da

— [ Y @ = )l Um)GE U)o U
(m1,m2,m3)€P; (1)

and because this sum has only two non-zero cases, i.e. 71 = () and || = 1
or 2 = ) and || = 1 we obtain

B(n) = [ |37 y)a’ (o = )G\ y U)ds

yen

+ /Rd Z u(y,w)a™ (z — y)G(n U z)dz,

yen

and hence the symbol fJW{ is given as above.
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2.5.4 The adjoint operator

The calculation of the adjoint operator f/:;% gives the following form of the
adjoint operator:

Ly, k(n) = =nlk(m)+Y _k(n\z) Y x(y,w)a™(z —y) (2.44)

z€n yeEN\z

3 [ e @ k(' x) Uy

xen

Because the death part of the generator L, is identical to the death part
of L, we will focus on the birth part of L, .. Recall I5(n) from (2.43). The
definition of the adjoint generator yields:

/F L kmA(dn) = J + J,
where

D= [ S p)at e = )Gl \ ) Ua)dsk)A)
and
Boim [ Gnua) Y sty w)a (@ - p)dsk (A

Using Minlos Lemma we obtain

S :/ro /Rd k(nUy) (/Rd sy, w)a” (x = y)G(n U w)dl‘) dyA(dn)
= [ [ o ([ #tront e = ki ) dextan

:/F G(n) (Z /Rd sy, w)a” (z = y)k((n\ x) U y)dfv> Aldn).

xren

And similarly in the case of J; we get

Jo= [ ) [ S kn\a) 3 spwla’ o =) | M)

zen yeEN\z

which gives us the formula (2.44).
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2.5.5 Time evolution of the correlation function

We proceed to the evolution equations associated with the operator ﬁ;%.
For a function k : [y x RY — 0, k(n) := k(t,n) it has the following form:

Ok

= (1) = LE ko) == Inlku(n) + > k(n \ @) Y se(y, w)a™ (x = )
Ten yen\z
(2.45)
+ /Rd w(y,w)at (x —y)k((n\ ) Uy)dy.

TEN

Using the hierarchical structure of the functions on I'g, we can rewrite the
equation above component-wisely as a system of equations. For n € N,
the n-th component of the correlation function k;(n) satisfies the following
equation:

oK™
ot

(T1,...,x,) = —nk‘t(n)(xl, cey Ty

+ Zkt(nil)(xl, e ,iLV’,L', . ,l’n) Z %(%j,W)G/Jr({L'i — l‘J)
=1

Jig#
+ Z/ %(y7 W)(l+($i - y)klgn)(xh ey Li—1,Y, - 7xn>dy

= DR )+ f ()
where, for n > 1

Lik™ (2, ) = —nki (21, ... 2)

+ 3 sy w)at (@ — )k (@ win Y ) dy
i=1 /R?

t(n)(xl, ey Tp) = Zkt(n_l)(xl, ce Ty, Ty Z s(zj w)a® (z; — x;),
i=1

Jig#
for n > 2. To give meaning to (2.45) for each n € N we consider a linear
Cauchy problem given by

kM (zy, . w) = Lk (@ w) + £ (@ 1)
(2.46)
klgn)(x].?"'axn)‘tzo - kén)(x]_,...7$n)7
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in some Banach space, which will be defined later.
Notice also, that we can rewrite operator L in the following way

Lok (@, @) = <§:A;%@¢mf@n—yMy—n>@“ubuwxm
=1

+ Z Lok (1, 2),
i=1

where
L™ (2, ..., 2)

=/tﬁ@rw»Mwum”wﬁqywnwm—kwwh”w%ﬂ%@wmy
Rd

is a generator of Markov jump process. To see that, let

Aot oo (T, w) = /Rd at(x —y)x(y,w)dy.

Then 0 < Mg+ ,.(z,w) <1 for all x € R? and a.a. w. Moreover
LEE™ (21,00 20) = At (i, w)

(. —
X / o’ (zi —y)(y,w) [k‘(”)(. T Yy ) — K™ (@, ,T,)] dy.
Rd

)\(L*,%(xiv (U)

Now set X,, := B, ((Rd)”) and notice that for k € X,,:

Lik(xy, ... xn)

= ‘—nk(xl,...,xn)

+ Z/ %<yﬂw)a+('xi_y)k(xla"‘»xi—layw'wxn)dy
i—1 JR?
< n(l+{a))|klxn < occ.
Then from the classical result we can derive:

Proposition 2.5. For each n € N the solution to the Cauchy problem (2.46)
in the space X,, is given by:

. t .
B (1, ) = eFiko(ay, .. ) + / e n g () )ds. (2.47)
0
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Proof. See the proof of Proposition 2.3. O]

Similarly to the continuous contact model in continuum considered by
Kondratiev and Skorokhod in [KS06] we can introduce some a priori esti-
mates for the solution (2.47) as in [KKPO08|. Recall that A := sup,cga |a™ ().

Proposition 2.6. Assume that there exists a constant C' > 0 such that for
all (xq,...,2,) € R™ and all n € N we have:

kén) (x1,...,2,) < nIC™. (2.48)
Then for every t > 0,
" (w1, ) < (1 Ve‘(<“+>‘1)t>n( + A=t Ll (2.49)

for (z1,...,2,) € (R))" and alln € N.

Proof. The proof uses induction over the number of particles n. Let us first
calculate the recurrent bound on the function k™ assuming (2.48). Note
that for all (zy,...,2,) € (R?)":

Z/Rd »(y, w dy—n<2/ y)dy —n <n({a*)-1).

Thus, using (2.47), we obtain:

" (.. a,) < et =)y om

X [Z KD (xy, . ) Z sz w)a® (z; — x;)| ds
i=1 jiij

< etlla=1)np 1 om
+ e @ )n — 1) (1 + A)

t n
X / ¢—s((ah)=1)n Z KD (2, ... 2,)ds.
0 i=1

Let now n = 1. Then from the latter calculation we get

/{t(l)(ml, coyTy) < et@h-1) o
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hence the inequality (2.49) is trivially satisfied.
Assume now, that (2.49) holds for n — 1. Then

/ﬂgn) (51317 o 71:”) < et(<a+>—1)nnlcn
+etl@n=Dney 1)1 + 4)
t .
> / 6—3((&*)—1)71” <1 v/ e—((a*)—l)t) !
0
x (1 + A=t D(@H=1)s (0 4 "1 (1 — 1)1ds
S et((cﬁ')fl)nnlon
b Ot 4 Ay (1 e (00
t
X / e=s(tat)- )(C+s)n71 ds
0

but for 0 < s <t we have
o—s((ah)-1) < (1 \/67<(a+)71)t>

thus
kt(n)(xl, cey ) < el (et )=1)ny) (1 Ve (1+A)"
{C"—i—n C+sn1d8]
0
and the expression in last bracket is equal to (C' +¢)".
This concludes the proof. O

2.5.6 Preservation of correlation functions

Recall from the previous Section that even if the initial condition in (2.46) is
a correlation function for some measure po € M}, (') then the preservation
of this property in time is a non-trivial question. Fortunately also in the case
of the contact process with random fecundity something akin to the Lemma
2.3 holds and we can use Lenard’s criterion to show that the evolution given
by IAJZ% preserves the correlation functions. Because the proof is almost
identical to the proof of Lemma 2.3, we will omit most of it here, leaving just
the calculations which differ from those mentioned above. Recall conditions
(M) and (P) defined in (2.33) and (2.34) resp. Then condition (M) is
satisfied if (2.48) holds (c.f. Remark 2.3). It remains to show that the
condition (P) is satisfied in the case of considered model. As we mentioned
before, we have the following
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Lemma 2.4. For a* € L®(R?Y) N LY(RY) the solution of (2.46) satisfies
condition (P).

Proof. The proof of this Lemma is analogous to the one of Lemma 2.7 hence
we present here only the parts which are directly connected to this specific
model.

Recall the function defined for n € N, § > 0 as:

F(”) (/7) — Z 6—5|$1| e 6—5|$n|

for v € T with |y| > n, and F™(y) = 0 otherwise. And note that for n > 2
we have

Loy F"(7) =) (F™(y\ z) = F™ (7))

ey
+ 3 pw) [ty =) (PO U0 - FO0) do
Rd
yey
=—F"(y)
LY w3 el / o (y — z)ePldy
yeEy {z1,...,xn }Cv Re

< — F(H)W) + (a™) Z Z e BlYlg=Bla1l | | o—Blail

yey {z1,..,@n }Cy

< ((@*) = 1) () + (") F ().

This gives an estimate for the function

that is there exists C' > 0 such that
Ly, FM () < CFM ().
The Markov property together with the Gronwall inequality give us then
E [F™M(X))] < F™(5)e", (2.50)

The rest of the proof is the same as in Lemma 2.3 hence we omit it here. [J
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2.5.7 Equations for the first and second
correlation functions

The evolution of the first and second correlation functions has the following
form:

a?;) (x) = LLEW (z) — V(z, w)k{”(z) (2.51)
where
Viz,w)f(z) = (1 — <%(-,w)a+(x — )>) f(x), (2.52)
and
(%(2)
T ) = 2= (el ow)a* (@1 =) + (o w)a* (22— ))) K (01,22

(-
+ L. §2 (x1,22) + sz( )(:1:1,3:2)

+ ki () (w2, w)a" (w1 — )

k(l)(xl)%(xl, w)a™ (zs — 17).

The analysis of those equations and their long time asymptotic are missing
and pose non-trivial open problems.

2.6 Contact process with random mortality

2.6.1 Introduction

The third model studied in this chapter is the contact process with random
mortality rate. The random influence of the environment contributes to the
constant rate of death (equal to 1) in terms of a random positive function
m(z,w) of the form m(z,w) := > . @(x —2'). Unfortunately the methods
used before cannot be applied to construct the process and until now we are
not able to show rigorously that the process exists in I" (or in the subset of
['). The technical reason for that is the unboundedness of the death rate.
We proceed now to the description of the model.

Let w be a realization of the homogeneous Poisson point process on R?
with the intensity measure being Lebesgue measure on R? and let ¢ : R? —
R? be non-negative, even and continuous function such that

/Rd o(x)dr < oco. (2.53)
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Define now for = € R4
m(r,w) = /d p(r — y)w(dy). (2.54)
R

Condition (2.53) assures, that m(z,w) is well defined for each x € R? and
almost all w (see e.g. [Kall0]). The mechanism of evolution for the contact
process with random mortality is then given by

LomF(7) =Y m(z,w)D; F(y +%Z/ y)DF F(y)dz.  (2.55)

zEY yeyY

We assume that the function a® is continuous and has bounded support,
denote with A the maximum of the function a™.

As we mentioned before, the construction and the regularity of this model
are still open problems. On the other hand, we are able to derive the equation
for the evolution of correlation functions in some Banach space. The remain-
ing part of this chapter is devoted to the latter problem. We will start with
the calculation of the symbol of generator L. Recall that ﬁw =K 'L K,
then we have the following

Lemma 2.5. The symbol of the generator L, is given by

—Zm(w,w +%/ Za r—y)G(n\yUzx)dr (2.56)

z€n yEen

+%/ Za r—y)G(nUx)dx.

yen

Proof. From direct calculation follows that L,G(n) = I(n) 4 I»(n), where

Li(n) =K~ <Z m(z,w) [KG(-\ x) - KG(')]) (n)

xe-

= mew ZG&Um (n)

EC\z
:_Z(_ \H\C\Zmew (EUz)(n)
¢Cn ze( £eC\z
= = > (=1)"MIY “m(r,w)KG(-Uz)((\ z)

¢Cn z€(

_ Zm(x’w) Z 1)|n\ CUw)IKG Zm z,w)

xTEN ¢Cn\z TEN
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L) = K (% / dzm_y)[m.w)_KG<.>]dz> )
= %Z |”\C|/ Za r—y ZGSUJJ

¢Cn yeEC £C¢
= > ()N [ K(ate — ) Lm)(Q) - KG(- U)(Q)da
¢Cn

= %/ Z at(z — )Lz (m Une)G(- Uz)(ne Uns)da.

(n1,m2,m3)EPF (n)

Notice, that the latter sum has only two non-zero cases, i.e. 17, = () and
Ine] =1 or np = 0 and |n;| = 1 thus we obtain

—%/Z (x—y n\ydex—l—%/Z (x —y)G(n U x)de,
Yyen YEN

and hence the symbol ﬁ%m is given as above. O]

2.6.2 The adjoint operator
Recall from Section 1.5 the duality relation:
[ Le@kmran = [ GoL ki
Ty T'o

with respect to which we define the adjoint of the operator L, ,,. In our case,
the adjoint operator L7, , has the form:

=S k() + 23 km\2) Y at@—y)  (257)

zen z€n yEN\z
—i—%Z/ (x —y)k((n\ x) Uy)dy.
xren
Counsider first
| narexan = = [ Y miz )Gk
0 0 TEN
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which gives us the first part of the formula. Now

/F L kmAdn) = T, + Jy

where

o= e[S e\ Uk,

yen

= / / (1U2) S a* (@ — y)dek(m)A(dn).

yen

We will calculate two expressions above using Lemma 1.1. We start with J;:

no= e[ [ ko) ([ o= neouais ) dnsian)
= %/FO /Rd G(nUz) (/Rd a*(:r—y)k(nUy)dy) da(dn)
- / (Z/ (& — )k((n\ >Uy>dx>A<dn>

xen

and similarly in the case of Js:
JF%/ )Y ok \2) D at(xz—y) | Adn)
Ten yen\z

which gives us the formula (2.57).

2.6.3 Time evolution of the correlation function

We proceed to the evolution equations associated with the operator I:Z It
has the following form

%() Lik(n) ==Y m(z,w)k(n) + 32y _ kn\z) Y a'(z—y)

zen TEN yeEN\z

+%Z/ (z = y)k((n\ z) Uy)dy

(2.58)
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Knowing the hierarchical structure of the functions on I'y we can rewrite
the equation above component-wisely as a system of equations, namely for
n € N:

k"
ot

(T1,...,2,) = — Zm(xi,w)kgn)(xl, ey T
i=1

+ %Zkt("fl)(a:l, e Ty Th) Z at(x; — ;)
i=1

JijFi
+ %Z/ a’+(xi_y)kt(n)(‘rlu'"7$i717y7"'7xn)dy
i—1 JR?
= liflkfn)(a:l, cey ) F ft(n)(:vl, ey Ty)

where, for n > 1

f/;kén)(xl, ce ) = — Zm(mi,w)kgn)(xl, ey Ty)

and

ftn)(xl, ceyTy) = %Zk:t(n_l)(ml, ey Ty Tp) Z at(z; —xj),n>2
i=1

JigF

with ft(l) = 0. So, for each n € N, we consider a linear Cauchy problem in
some Banach space X,,:

8k(n) R . .
att (‘le---axn) = L:;klg )(Il'l,...,l'n)—f—ft( )(Zlfl,...,l'n) (259)
kt(n)(an, cosTp)|=0 = k:[()n) (X1, ..y Tp).

Notice also, that we can rewrite operator [:; in the following way
[A/flkin) (T1,...,2,) = (nsx— Z m(x;, w))k’t(n)(xl, ey Ty)
i=1

+ Z LEM™ (21, ... 2),
i=1
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where

LE™ (2, ..., 2,) =
%/ at(z; —vy) [k:(”)(xl, e T, Yy Ty) — k;(”)(xl, . ,xn)] dy
Rd

is the pure jump Markov process generator with jumps distribution a® and
intensity s, see e.g. [EK05, Kall0, GS74].

Define now for M,( € R the space G(M, () as the space of all operators
T on some Banach space X such that:

1. domain D(L) is dense in X,
2. semi-infinite interval ¢ > ¢ belongs to the resolvent set of —7" and let

|r+o | <mE-0™ k=12 (2.60)

Then we have the following (see [Kat95]):

Theorem 2.3. Let T € G(M, 5) and let f(t) be continuously differentiable
Jort >0 and let U(t) = €T, For any ug € D(T), the u(t) given by

t
u(t) = U(t)ug +/ Ut —s)f(s)ds, up=u(0)
0
s continuously differentiable for t > 0 and is a solution of
du/dt =Tu+ f(t), t>0
with the initial value u(0) = wy.

Thus to obtain the solution to the Cauchy problem (2.59) we should show
that the operator L is in G(M, ) for all n € N and some M, 3 € R. From
now on, set X,, := L' ((RY)",dz®") and define

MDk(xq,. ..z, Zm i, w)k(xy, ..., z,)

together with the domain D(M") = C’O((Rd) ). Remark, that for ¢y € D(M")
with supp ¥ =: A, we have

/(d) |M,”@Z)(x1,...,mn)|dx1~--dxn]
R n
Z/ m(xi, )|(z, ... x,)|dey - - - day,
Rd)n
= Z// y)dyl(zy, ..., x,)|dz; -+ - dx, < 0.
R4

E
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This implies, that for ¢» € D(M?2), ||M2¢||x, < oo, for almost all w. Because
Co((R?)™) is dense in X,,, it is easy to see that M" € G(1,0). Furthermore,
we have for k € C.((R)"):

< nscAlsuppa” |||k x,

%Z /]Rd CL+(,I‘7; - y)k<xla e Li—1,Y, - - an)dy
i=1

Xn

hence the operator L — M is bounded in X,,. Thus, from the Theorem 2.1
in [Kat95] follows, that LY € G(1,n3(a™)) and we can apply Theorem 2.3.
As result we obtain:

Corollary 2.4. For each n € N and almost all w, the solution of the Cauchy
problem (2.59) is given by:
A t A~
(. wn) = ek (2, ) + / et gy xy)ds.
0
(2.61)
Let us write explicitly the equations for the first and second correlation

functions. The evolution of the first correlation function describes the evo-
lution of the density for the process. It has the following form:

ok (1)
T () = Lk, ' (z) = V(z,w)k, ' (x) (2.62)
where
V(z,w)f(x) = (m(x,w) — ) f(z). (2.63)

For the second correlation function, equation is as follows:

(2)
ak—t(xl, x9) = (22¢ — m(x1,w) — m(z2, w))kg) (21, 22)

ot
+ Lll{?EQ) (J]l, IL‘Q) + L2k'§2) (fL’l, l’g)

+ (kgl)(:pg)aJ“(xl — 23) + kM (z)at (g — x1)> .



Chapter 3

Glauber-type dynamics in
random environment

This chapter is devoted to the study of the Glauber dynamics in random envi-
ronment. Let us recall, that Glauber dynamics has been extensively studied
in the case of the lattice spin systems (see e.g. [BMP04] and [Lig85|). The
Glauber dynamics for such systems can be interpreted as, for example, the
spin-flip of particles or, in the case of lattice gas models, the dynamics in
which particles randomly appear and disappear from the sites of the lat-
tice. In this work we are concerned with the continuous space models. The
Glauber dynamics in our case is a special case of spatial birth and death
processes which have Gibbs measure as stationary one. The general form of
the Markov pre-generator for such processes is given by:

LF(y) =) d(z,7) [F(y\z) = F(7)] + / b(x,7) [F(yUz) — F(y)] dw.

d
ey R

(3.1)

The equilibrium Glauber dynamics for the continuous systems was con-
structed in [KLO5|. The existence of the corresponding non-equilibrium dy-
namics was shown in [KKZ06|. In the present thesis, we consider the modi-
fication of the classical Glauber dynamics in which a random field influences
the birth and/or the death mechanisms. Depending on the type of influence,
we consider two different modifications of the GD and using perturbation
theory we show the existence of the corresponding evolutions on the level of
quasi-observables.
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3.1 Gibbs measures

For the completeness of this thesis we will shortly recall the basic definitions
from the theory of Gibbs measures, although that is not the main subject of
this chapter. Gibbs measures play a significant role in the studies of Glauber
dynamics: in the equilibrium case it is the stationary measure for the process
(see for example [KLRO7]). For more detailed and general discussion of Gibbs
measures we refer to |Geo88, Tek10, Kun99).

Introduce the pair potential, that is a Borel measurable, even function
¢ : RY — RU{occ}. We assume, that it satisfies the following conditions (cf.
|KKZ06]):

(I) (Integrability) For any 8 > 0,
c(8) ;:/ 11— exp(—Be(z))|dz < +oo. (3.2)
Rd

(P) (Positivity) ¢(z) > 0 for all x € R<.

Define the Hamiltonian (or the energy of configuration n € Ty, |n| > 2)
corresponding to the potential ¢ as

B = 3 e —y). (3.3)

{zy}Cn

Next, the relative energy of interaction is defined for v € ' and z € R\ v
in the following way:

Zyey @(.CL' - y)> if Zye'y |¢(3j - y)| < 00,
E%(z,7) = (3.4)
400, otherwise.

Let now w be fixed realization of a spatial point process (for example
Poisson PP in R?) and assume that function h : R? — R is non-negative.
The influence of the random environment on the dynamics is realized in terms
of the interaction energy corresponding to a potential function h, namely:

EM"z,w) = Z hiz —2') < oo, z€R% (3.5)

T’ Ew

For a given set A € B,(R?) define the Hamiltonian EY : T'y — R by

E{(m)= > dlx—y),nely, |n|>2 (3.6)

{z,y}Cn
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The interaction energy between n € I'y and Ape := YN A5 € T' is defined
as follows:

Wa(nl7) = Z dz —y). (3.7)
Finally, let 5 > 0 and
Ex(nl7) = En(n) + Wa(n]7). (3.8)

The partition function is defined by:
Za3) = [ B a) 39)
Ta

Let now A € By(R%), 8> 0 and 4 € I'. The finite volume Gibbs measure on
the space I'y with the boundary condition ¥ is given as:

Pr~(dn) = e PEACIM N (dn),

Zx(7)
and for 7 = () we set Py g =: Pj.

Let {ma} denote the specification associated with z and the Hamiltonian
E?, that is:

masld) = [ Paslan) (3.10)

where A" ={neTy: nU. € A}, A€ B(I'), 7 € T.

Definition 3.1. A Gibbs measure for E® and z is any probability measure
on I', for which the following holds:

for any A € B(T) and every A € By(R?). This identity is called the Dobrushin-
Lanford-Ruelle (DLR) equation (cf. [Geo88]).

We will denote the set of all Gibbs measures corresponding to the poten-
tial ¢, parameter z > 0 and inverse temperature 5 > 0 by G(¢, 2z, 3). This
set is not empty for any potential ¢ satisfying the conditions (I) and (P) (see
[Kun99)).
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3.2 Perturbation theory

In this section we will recall some classical results which will be used in the
sequel.

For w > 0, introduce the set H(w,0) of all closed and densely defined
operators T', the resolvent of which contains the sector

Sect(g +w) = {C € C: |argC| < g +w} \ {0},

and such that for any € > 0
M,

(T —¢)7| < ik

(3.11)

and M. doesn’t depend on (.

Remark 3.1. Any operator T € H(w,0) is a generator of a semigroup U (t)
homolorphic in the sector |argt| < w and (at least) quasi-bounded, i.e.

U@ < Ae™
for some A >0 and |argt| <w — ¢, see e.g. [Kat95, KKZ06].

The next theorem turns out to be a useful tool in our considerations:

Theorem 3.1 ([Kat95|, Thm. 2.4). For any T € H(w,0) and € > 0, there
exist positive constants v, with the following properties. If A is relatively
bounded with respect to T' so that

[Aul| < allull +bl|Tull, we D(T) C D(A), (3.12)

with a < 0, b < 6, then T + A € H(w — &,7). If, in particular, 6 = 0 and
a=0, then T+ A€ H(w—¢,0).

3.3 Pre-generators of Glauber type dynamics
in RE

We study two types of random modifications of the Glauber dynamics con-
structed in [KKZ06| in which random birth and/or death rates are allowed.
The Markov pre-generator for the first model is as follows:

BP0 = YD F0) 4o [ PP EIDIF)e P s (313)

d
xey R
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This model can be interpreted as birth and death dynamics in I' with the
death rate d(z,v) = 1, the birth rate b(z,v) = e 2@ and the stationary
Gibbs measure with the random intensity z := z(z, s¢,w) = se ") In-
deed, the coefficients b and d in this case satisfy the detailed balance condition,
ie.

b, ) = d(x,y)e ", (3.14)

As result, the symmetrizing (and thus invariant) measure for this process
will be a Gibbs state u € G(¢, z, 5) associated with the Lebesgue-Poisson
measure with the random intensity measure: o, . (dx) := z(z, 7, w)dx, that
is

00 1 .
)\%’w = Z 505172(‘

n=0

See [Glo81]| for the proof of the latter statement.

The second model includes the same kind of random interaction in
the death and the birth mechanisms of the system, i.e. the corresponding
pre-generator has form:

LF() = Y e 0D, F () 4 [ o8B0 B DR,

d
xey R

(3.15)

We assume, that the function h : R? — R is measurable and satisfies (2.53) so
that E"(z,w) is almost surely finite. Also in this case, condition (3.14) holds
and the Gibbs measure (with the Lebesgue-Poisson measure A, as reference
measure) is again the symmetrizing measure for this model.

We proceed now to the construction of semigroups associated with the
symbols of the operators defined above.

3.3.1 Symbols of the generators

Let us start with calculation of the symbols corresponding to the operators
Lt and L, respectively.

Proposition 3.1. The symbol of the operator L is given by:

LG () = LE'G(n) + L§™G(n), G € Bys(To), (3.16)
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where
L§*G(n) == — InlG(n),
Li"'G(n) == %Z/ (EUx) ( —holmy) 1) e PP (@8 =M @) gy

£Cn yeEN\E

Proof. We will start with the first part:

Lg'Gln) == K (Z [KG(-\ ) - KG(-)]) (n)
— K (Z 3 aeu x>) (n)

TE€ EC\x
_ _Z(_ |77\C\ZZ (EUx)
¢Cn ze( £eQ\z
= =Y (D)"Y KG(ux)(¢\ )
¢Cn ze(C
= =30 3 (—)NPIRG( U ) (C) = ~InlG).
€N (Cn\z

As for the second part, note that

6_BE¢(:B"V) _ He—5¢(f—y) = Ke, (e—6¢>(z—-) - 1) (7)7

yeY

then

LGl = K ([ P (K6 Ua) — KGO s ) (1)
= xK! (/ —PE(x ZGSUx h“”“dw) (n)
(

Key(e#@=) —1). KG(- U x)eEh(x’w)d:L’) (n)

= K !
Rd

B %/ [ex(e7#=) — 1)« G(- U )] (n)e ™" @)dy

§Cn yen\£
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With a slight modification of the calculations above we get similar result
in the case of L.

Proposition 3.2. The symbol of the operator L, is given as follows:

L,G(n) = LoG(n) + LiG(n), G € Bys(To),

where
LoG(n) == — (Z 6_Eh(“)> G(n),
xeN
LG — ~B(a=9) _ 1) ¢=BE* @) ~E"ww) gy
1G(n) %Z/RdG(SUx)H(e )e e dx
£Cn yeN\E

3.4 Construction of the associated semigroups

Using results from Section 3.2 we construct two semigroups corresponding to
the operators L¢* and L, derived above.
First, for C' > 0, 8 > 0 introduce the space

Lo = L' (Lo, CMePEMX(dn)) (3.17)

together with the norm defined for G € L s by
IGlle= | IGmle =0 Cxan). .19
To

Proposition 3.3. For any C' >0, 8 > 0, the operator

L§"G(n) = =|nlG(n)

with D(L§™) = {G € Leg: [n|G(n) € Log}, is the generator of a contrac-
tion semigroup on Lo . Moreover, L™ € H(6,0).

Proof. Fix w € (0, %) and take ¢ € Sect(5+w). The operator L§* is densely
defined in L¢ 5. On the other hand for ¢ € Sect (% +w) we have ||n] +¢| > 0
for all n € I'y and thus the operator

1
| +¢

(Lgt —¢1) ™ G(n) = G(n)
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is well defined for every G € L. It remains to prove the inequality (3.11).
Let Re¢ > 0 then obviously

e

—|l——1c
HWH’C’ | c

T Gllee

In the case of Re( < 0 notice, that
[Inl + ¢l = [Im¢] = [¢] cosw,

thus
1

\C\cosw

1
max{|<| |<|cosw}

The statement follows now from the Hille-Yosida theorem (see e.g. [Paz83,
Kat95)). O

H Lext C-ﬂ

1G]l e

Summarizing, we get

H(Lext ¢1)”

We can prove similar result also for the operator Ly.

Proposition 3.4. Let any C' >0, 8 > 0. Then the operator

LoGi(n) = (Z e‘E”“'*“)) G(n)

TEN

together with its domain defined as D(Ly) = {G € Lcg: LoG(n) € Lo},

generates a contraction semigroup on Lo . Furthermore Ly € H(0,0).

Proof. See the proof of Proposition 3.3. O

In order to apply Theorem 3.1 we need to show that operators L{** and
L are relatively bounded with respect to LE* and Ly, respectively. Indeed,
we have the following results:

Proposition 3.5. Consider the operator
LY G(n) = %Z/ (EUx) ( —Aela—y) _ 1) e PEY &) o= B (o) gy
yEN\§

with the domain D(L") := D(L§™). Then, for all »,C,5 > 0 and G €
D(Ly) the following inequality holds:

IS Glle < 5071 D LGl (3.19)
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Proof. Define
K(z,n) = H (e_ﬂ¢($_y) — 1)

yen
for v € R% n € ['y. Then for G € D(L5*) the norm || L$*'G||¢ is equal to

”/FOZ

£Cn

/ GE U)K (x,n\ e M e dy| CIle PP W\ (dn).
Rd

This can be estimated from above by

“J

and using Minlos lemma, the latter is equal to

%/ / |G(5UI)IIC(x,n)@—ﬁE¢(w,£)e—Eh(x,w)
Iy JTo JRE
s CIEle=0B2 0108 g X (d€) A(dn).

/lG&Uw)IIC(l" 0\ e A quCinle=PE W \ (dp)

Oéc

Using Minlos lemma again we obtain

> / / Y IG(Q)|K(w, p)e PE i\ =E o) (3.20)
I'g JTo

el
% (OIMUE\z| ,—BE? (nUg\w) \ A(dEYN(dn).

Now notice that

and because ¢ > 0 we can bound (3.20) by
#C |Gl PEHOCKTY e / K () CIA(dn)A(dE).
I =, I
Finally, using the fact that h > 0 we can bound the latter by
2C71eCCO) [ IE|G ()] e PO CHRINdg),
Lo

hence we obtain
IL5"Glle < 3C~ P LE" G .
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Similar calculation of the norm ||L;G||¢ yields that

”/FOZ

§Cn

Clnle—BE¢(n))\(dn)

/ GEU)K(a,n\ E)e PP @0 E @) gy
R4

is bounded by

2O |G()k PERO N -Ehwa/ K(x,n)C"X\(dn)\(dE).

rel To

This is equal to

L O-1eCC0) /
s >

el

e—Eh(LW)G(é)i 6_5E¢(5)C‘5|A(d5),

and we obtain the following
Corollary 3.1. Define the operator
= %Z / (EUx) ( —pole—u) _ 1) o BE® (2.8 o= E"(w.w)
£Cn yeN\§

together with its domain D(Ly) := D(Ly). Then, for all »,C,5 > 0 and
G € D(Ly) the following inequality holds:

|1 L1G|¢ < 2C1eCCB)|| LG (3.21)

Proposition 3.3 together with Proposition 3.5 and Corollary 3.1 give us
the following result:

Theorem 3.2. Let C > 0, then for any s, 5 > 0 which satisfy the following
inequality:
2:C 1P < 1,

and for almost all w we have:

e the operator ([:ij’jt,D(LSxt)> is the generator of a holomorphic semi-
group U (t) in Leg, and also

° ([A/w,D(LO)) generates a holomorphic semigroup which we denote by
Uy (t) in Log.
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3.5 Evolution of the correlation functions

Fix now s, C' and § in such way, that the assumptions of Theorem 3.2 are
satisfied. Define the Banach space

Qe = {k Ty = R:  k()CHSEO ¢ LOO(FO,A)}
dual to the space L¢3 with respect to the duality defined by:
((G.k)) = | Glpk(m)A(dn) (3.22)
To
for G € Lo and k € Q¢ g. This duality is well defined since

GmkmAdn) = | G(n)CMe= Bk (n)C~M e ™ )\(dn)

Lo To
<IHloesCllee, < oo

Having constructed the semigroups on the space Lc s and using the du-
ality defined above, we can determine the corresponding dual semigroups

on Qcps. Namely, recall the semigroups generated by (ii””ﬂD(LS”)) and
(f/w,D(LO)), that is U'(t) and U,(t), respectively. One can easily show

that these two semigroups determine their duals via (3.22), i.e.:

(UG, kY) = (G, (TS (£)k))

and

(U)G, k) = ((G. (U) (k).

Now assume that function ky € Q¢ s is a correlation function of some prob-
ability measure po (with finite local moments) on I'. Then we can check (see
[FKKZ10| and [KKZ06]), that the evolution given by (U¢**)*(t) preserves this
property, i.e. there exists a measure y; € MY (T) having k, := (U)*(t)ko
as correlation function.
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Chapter 4

Two-component ecological model

4.1 Introduction

This chapter is devoted to the study of two-component ecological process
in continuum. The introduction of such model is motivated by various bi-
ological applications in which different types of particles represent distinct
populations of individuals. The structure of the chapter is as follows: first we
construct a semigroup associated to the symbol of the pre-generator of the
process in some functional space over Iy (i.e. evolution of quasi-observables),
together with the evolution (in weak sense) of the correlation functions. Next,
we scale the model in the way introduced in Section 1.6 and show the strong
convergence of the rescaled semigroup.

4.2 Construction of the semigroup in [,

In the considered model the interaction between two types of individuals is
of mutual type. That is, the birth and death rates of each type depend on
both populations. Thus, the evolution of one population can influence the
expansion and the reduction of the other. This model can be considered as
the extension of the so-called Bolker, Pacala, Dieckmann and Law model of
plant competition (see [BP, DL02|).

4.2.1 The mechanism of the evolution

The Markov pre-generator of a two-component birth and death process con-
sist of two parts. Recall from Section 1.4, that the elements of two-component
configuration space I'? are denoted by (v!,7?) and although each of the com-
ponents belongs to I', we make the distinction between them in order to em-
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phasize different types of the populations. Thus, the Markov pre-generator
has the following form:
L=L"'41L% (4.1)

in which

(L'F)( =Y d'(z,y'\z,9°) [F(Y' \2,7°) = F(+'.9%)] (42)

ze'y
+ / b (x99 [F(v' U, v?) = F(y',7%)] da,
R4
describes the evolution of the first population (type 1), and

(L’F)(v', 7% =Yy, 7" 7"\ ) [F( A2 \y) = F(v'.7%)] (4.3)

yer?
+ /d V(y,7" ") [F(v'2° Uy) — F(y' 7)) d.
R
characterizes the second population (type 2). In this particular case, taking

into account the mutual relation between two types of individuals, birth and
death rates are defined as follows:

d'(1,9',7°) = m'+ A7 Y ay(w—a')+ By Y br(z—y)

z'eyt yey?
b (x, vt 4% = ATZ (x — ) B+Zb+x—
z’'eyt yey?
Cyy' ") = m + A7 ) aly—y)+ By Y by —
y’€72 CEE’YI
Vv ) = A5 afy—y)+BF > by — ).
y/€72 1’6"/1

We assume that all functions a?*, b are probability densities, and A* B¥ > 0
for # e {+,—-},i=1,2.

4.2.2 The symbol of L

Recall that the K-transform plays the role of Fourier transform in the config-
uration space analysis. The symbol of the Markov pre-generator L is defined
as its K-image. Namely

LG =K 'LKG

for measurable functions G' on the space of finite configurations T'j. Below
we show the explicit form of L.
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Proposition 4.1. The symbol of the generator (4.1) is given by:
LG',n*) = = (m* o' | +m” %)) G(' )

= > 1A Y ar(@—a)+ B Y bz —y) | GOt

zent | z'ent\z yen?

—ZA Y. aly—y)+ By Y bhy—2)| Gn'n’)
y6772 | vent\y zent

- Z AT Z aj (x — ') + By Z by ( n'\ z,n?)

zent | z'ent\z yen?

= B bhi@—yn)+A Y aly—y)| Gt \y)

yen? | xent y'en?\y

+/ AfZaf(x—x')JrBbef(x—y) G(n' Uz, n?*)dx

pa L @ent yen?

+/ AP afy—y)+ BF Y by —x) | Gt n’ Uy)dy

ra L yen? zen!

+A+/ Zalx—x (n*\ 2’ Uz,n?)dw

z’'enl

+ B / Zb+x— (n* Uz,n*\ y)dx

yen?

+A+/ > af(y— )G n* \y Uy)dy

y'€n?

+ B /z:bJr —2)G(n" \ x,n* Uy)dy,

zent

for all functions G € Bys(T3) and (n',n*) € TZ.

Proof. First of all we simplify the form of the operator L. Note that we can
rewrite the birth and death coefficients using C-transform:

V(v, v ") = KBL(v', %), (4.4)
d'(z,v",v*) = KDL(v",7*)
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for i = 1,2, where

D:}:(Pylaf};) = e/\(070771772)m+ +A1_e)\<0’7 )]1{\7 1= 1}(’}/1)<CL1_(£E - ')771>
+ Brea(0,9") L2213 (72 by (=), 7%,

B,(v',7*) = Afex(0,7*) gy =1y (V) (af (z —),7")
+ B L2z (77)ea (0,4 (b (z — ), 7%,

and

D:(v',7%) = ex(0,0,9%9)m™ + Az ea(0,9") 2=y (v7)as (y — -),7%)
+ By ex(0,7%)Lgpr =3 (7)) (b5 (y — ), v,

By, = Afexa(0,9)gz—y(V) (a3 (y — ), 7%
+ Biex(0,7") Ly =iy (V)05 (y — ), 7).

Now denote the gradients with

D, F(4',9*) = F(3' \2,7*) = F(+", %),
Dy F(v',7%) = F(y' Uz, v*) — F(7'. 7%,
DZF(y',7%) = F(v',7* \z) = F(', %),
DX*F(y',7%) = F(v',v*Uz) — F(7',7%)

Using this notation, we can rewrite the pre-generator L in more compact
form:

LF(y',7*) =Y KD} (v',4*) DY F(y',~%)

zEVl
+ / KBf (' v*) D" F(v', 4% da
Rd

+ Y KD, F(y',v*)Di F(y', %)

yev?

+ /Rd KB, (v',7*)D2" F(v',7%)dy.

Below we show how to calculate the symbol for the first part of the pre-
generator Li, which describes the birth and death of particles in the popu-



4.2. CONSTRUCTION OF THE SEMIGROUP IN T 91

lation 7!. Let us start with
D,mKG(y',7*) = KG(y' \ 2, 7%) — /CG(vl )

2. 2 G0 =) ) G

nteyl\zn2ey? nleyl n2ey?
=Y | Y cn') - D> Gt
n?ey? |ntey\z nleyt

-3 Y awun

eyt ntey\z

= - ICG( Uz, )(71 \.I‘,’}/Q),
and

D*RG(y',7?) = KG(y' U ,4%) = KG(+',77)

= > D> G =D > Gt

nleyluz n2eq? nley! n2eq?

= > > Gl'uwzy)

7]2@72 771@'71

= KG(-Uz, )y,

Hence for the pre-generator L; we have

L'KG(Y'\ 7)) = = > KDY\ 2,7 (KG(-Ux,) (' \ z,9%)

zeq!

5 KB,(v',7*) (KG(-U,-)) (v}, 7*)dx

- _ ZIC[D;*G(-ny)] (v'\ z,7%)

$E’Yl
+ / K [ByxG(-Uz,-)] (v',7%)dz.
Rd
Applying K1 to the object above we obtain the symbol of L'
L'G(n',n°) = KT'LYKG (0", n?)
= - Z [D;*G( Uz, )} (771 \%772)

zeyt

+ /Rd [B; *G(- Uz, )} (n',n*)dz.
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It remains to determine the values of two convolutions above. In order to
make the calculation more readable, below we use the notation:

Y- ¥

(n}nymi)ePL(nh)
(n?m3.m3)EPL(n?)

Then we have
DG U, )| (')
=m" ) " ex(0,n1 Uny)ea(0,m7 Un3)G(ny Uni Uz, m3 Un3)
+ AT en(0,nf Und) Lgion—n (m Ums){af (z —-),m1 Uny)
x Gy Ung U, Ung)
+ By > ex(0,m1 Umy) Loy (07 Und) by (z — ), nf U )
X G(n Ung Uz, Ung),

using the properties of the coherent states and those of the indicator function
we notice, that in fact many of the terms in the three sums above vanish,
and the rest is equal to

Dl xG(-Uz, )| (0", n*) =m*G(n' Uz,n?)

+AT Y af (@ —2)Gn' Uz, )

z'ent

+AT Y af (@ —2)G(n' \ &' Uz, )

z'ent

+ By > b (x—y)G(n' Uz, n?)

yen?

+Br Y bi(z—y)Gn' vz’ \y).

yen?

Similarly we can calculate
[BAG( Uz, )| o) =
X Gy Unz Uz, Uns)
+ BIY  Lgpugien (07 Un3) (7 Unp) (0 (x — ), 7 Un3)
x ex(0,m1 Ung)G (g Ung Uz, n; Un3)
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which gives

ALY e (@ —a)Gn' Ve, n®) + AL Y af (v = 2)G(n' \ @' U, )

m/enl m/enl

+ BE Y b (@ —y)G0t Uz n®) + BE Y b (@ —y)Gnt Uz.n*\ y).

yen? yen?

The symbol of Ly can be calculated analogously. Summing this up, we obtain
the form of the symbol L. ]

Remark 4.1. Note, that we are given the family of generators depending on
parameters m* m=, A7, Ay, Af, AS, By, By, B, By >0, so formally

I: = [A/(m—i_,m_aAl_aAQ_aAi—vAg_vB1_7B2_7B;—’B;)'

Throughout the rest of this chapter we write simply L when it doesn’t lead to
confusion.

4.2.3 Semigroup associated to L

We proceed now to the construction of the semigroup associated to L using
the method which was applied in Chapter 3. Let C' > 0 and recall the
definition of the space

Lo =L} (rg x Iy, C'"1'+'"2'/\(dn1)>\(d772)> : (4.5)
|- llc = frg |- |C P IN (At YA (dn?). Then we have the following:

Proposition 4.2. For every C > 0, m*,m~ > 0, the operator

LoG(n',n?) == — (m*|n'| + m~|n*|) G(n', n*)
=) AT Y ar(@—a)+ By Y bi(x—y)| G, )
zent L z'ent\z yen?
=Y A7 D asy—y)+ By Y byy—ax)| Gn',n?)
yen? | y'en?\y zent
with

D(Lo) = {G € 'CC : L()G € ;CC’}

is the generator of a contraction semigroup on L. Moreover, Ly € H(w,0)
for all w € (O, g) See Section 3.2 for the corresponding definitions.
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Proof. Fix w € (0,%) and take ¢ € Sect(3 + w). Denote with

72

2, = mTnt+m |’
+Z AT Z al_(x—x’)—l—Bl_Zbl_(x—y)
zent L z'ent\z yen?
+> A7 > ay(y—y)+ By Y by
yen? y'en?\y zent

Then 0 < =(n*,n?) < +oo for all (n',n?) € ' and
LoG(n',n*) = =Z(n",n*)G (0", 77°).

It is easy to see that the operator (Lo, D(Lg)) is densely defined in L.
On the other hand for ¢ € Sect (3 +w) we have |=(n*, n?) + ¢| > 0 for
all (n',n?) € T'? and thus the operator
1

Lo—QU)7'C = g Gl

o=l 2" n?) +¢ o)
is well defined for every G € L. It remains us to prove the inequality (3.11).
Let Re( > 0 then obviously

1
:(nl n?) +C||
HGHEC

H(LO —¢1)” G”z;c

Gl
L

|C |
In the case of Re( < 0 notice, that

2%, n?) +¢| > [Im(| > [¢| cosw,

thus

1

(Lo = C1) " G, < Cleosw

1G] e-

Summarizing, we get

1
(20—l maX{|<| r<|cosw}

The statement follows now from the Hille-Yosida theorem (see e.g. [Paz83,
Kat95]). O
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Below we prove a series of technical propositions showing that the re-
maining part of the operator L is relatively bounded with respect to Ly. We
will sometimes write 1 := (n',7?) to make the text more readable.

Proposition 4.3. Define
LiGn) ==Y |AT Y aj(w—a)+By Y by(z—y)| Gln' \a,n)
zent z'enl\z yeN?

with D(Ly) = D(Ly), then, for any A7, By ,C > 0 such that the following
hold:

C AT+ Bal?] < & (mt 'l +m )

+Z [Al_ Z al_(x—x')—i—Bbef(x_y)}

zent z'ent\x yen?
3[4 Y wa-v) B Y by - )]
yen? y'en?\y zEn?

for some 01 > 0 and all (n',n?) € T3, the following inequality is fulfilled:
I1L1Glle < 01| LoGllc- (4.6)
Proof. Let G € D(L,) and C' > 0, then

LGl = /
F2

0

SIAT DY ai(@—a)+ By Y by(x—y)

zen! z'ent\z yen?

xG(n' \ )| CIHIEIN(dy )\ (dif?).

Using Lemma 1.3 we can estimate the latter by

/rg/rg/ugddx A;Za;(az—x’)JrB;Zb;(a;—y)]

z/ 6771 y€n2

x |Gt n?)| O @A (dn?).
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Hence

oGl < [ [ [ATW 1+ BE1?] 60" i '

< 61| LoGllc-

Remark 4.2. In particular, the following estimate is also true:
AT By
ILGle <€ [ 2+ Z2] Gl
m m

Due to a similar structure of the operator Lo defined below, we will omit
the proof of the next proposition for it’s analogous to the proof of the Propo-
sition 4.3.

Proposition 4.4. Let
LoG(n) ==Y A7 Y ayly—y)+Br > bily—a)| Gn'.n’\y)
yen? y'en?\y z€n!

with D(Ly) := D(Ly). Then, if for Ay, By > 0 and for C' > 0 there exists
09 > 0 such that,

Claz P+ Brin] < &( (mtn'l+m )

+Z [Al— Z al‘(a:—x')%—Bl_be(if—y)}

zent z'ent\z yen?
3 Y wl-y) B Y by - ))
yen? y'en?\y z€n!
for all (nt,n?) € T2, then
0
| L2G | < 02| LoG|c- (4.7)

Remark 4.3. As in the case of Ly, the following inequality holds:

A BT
HMQMSCL1+—ﬂH%®b
m m
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Two next proposition give the bounds of two other parts of the operator L
relatively with respect to the operator Ly. Due to the same reasons as in the
previous case, we will give proof for only first of the following propositions
and we will omit the proof of the second one.

Proposition 4.5. Define

LG ) = [ | AF Y afte o)+ BE Y bile )| Gl Uaf)da
JU'E?]l y€n2

and D(L3) := D(Ly). Then, for all functions af and bf, and all C > 0 for
which the following estimate

X |4 X atten )8 D)

zent x’ent\z yen?

< & ((m I+ m™In?)

_|_Z [A; Z af(:v—x')%—Bbef(w_y)}

zent z'en\z yen?
3[4 Y a-y)+ B > b))
yen? y'en?\y wen!

holds with some 63 > 0, we have
| LsGllc < 03| LoGl|c- (4.8)

Proof. Using properties of the modulus and Minlos Lemma, we obtain

maGle = [ [ [T X at—a)+ 50 Ybita—)
0

z'ent yen?2

X |G(n' U, n®)|C Tl d (dy )\ (dif?)
= [ Aty [ e G )
r e

0 0

X Z Af Z ai“(x—x')—f—Bbef(m—y)
zent z'enl\z yen?

and using the assumptions, we obtain

[1L3Glle < d3]| LoGlle-
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Proposition 4.6. Define

L.G(n',n%) r:/ AF Y af(y—y)+ B35 Y biy—a)| Gi'n* Uy)dy

d
R y’€772 1‘6771

with D(Ly) = D(Ly). Then, for all functions a3, by and all C > 0 fulfilling

=53

yen?

A5 > a?(y—y’)+B§sz+(y—x)]

y'en?\y zent

< 54((m+\n1| +m”n’])

+Z [Al_ Z af(x—x')%—Bbef(f—y)}

zent z'ent\z yEN?
3[4 Y a-y)+ B Y by a))
yen? y'en?\y zent

for some o4 > 0 the following inequality holds:
[L4Glle < 04l LoGllc- (4.9)

Last four operators are of slightly different nature. They are however also
relatively bounded with respect to Ly.

Proposition 4.7. Let C' > 0 and define

LG ) = A7 Y [ ai o= )60t \ ' U

x’'ent

with D(Ls) := D(Ly). Then for any AT > 0, such that the following estimate
ALl < ds((m* 0|+ m 1)

3[4 Y ar@—a)+ BT Y b= )]

zent z'ent\z yen?
3[4 Y ay-y)+ B > b))
yen? y'en?\y zent

holds with some 05 > 0 for all (n',n*) € T3, the following inequality holds

|LsGllc < 851Gl (4.10)
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Proof. The norm || Ls;G||¢ is equal to

A+/ Z/ ot (z — )G\ & Uz, )| da\ (dy ) A (d?)

0x€17

:AT/ / / af (z — 2)|G(n' U, p*)dada!|CM TN (dnt) A (dn?)
F2 R4 JR4

= A7 /F2 > /Rd af (x — o' )da'|G(n", )| CP T IN(dn" ) A (dn?)

0 genl

= AT/ MG (0, )| O I A YA (dn?) < 85| LoGl -
r3

Proposition 4.8. Define
LG ) = B Y [ b= )Gl U \y)da

with D(Lg) := D(Ly). Then, for all B > 0 for which there exists g > 0
such that for every pair (n*,n?) € TZ:
B < b6 (m* '] +m 7))

—|—Z [Al_ Z al_(x—x/)%—Bbel_(x_y)}

zent z'en\x yen?
+3 4 Y ww-v) B> b))
yen? y'en?\y zen?

we have the following estimate
1L6Gllc < b6/l LoGl|c:- (4.11)

Proof. We can calculate the norm || LgG||c:

Bf/ / Z/ b (¢ = )|G(n" U, n® \ )| C" 1l dardn! A

o JTo en2 R4

:B?/ / / / bz — y)|G (' Uz, 1?)|C P g dy A(dnt) A (dip?)
Iy JTog JRE JRE

_B+/ / /dzb+  — )Gt )CT P A (d )\ (di)
I'op JT9 JR

:Br/r r [ 1G (" )| CP IR )M () < b6l Lol
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Proposition 4.9. Define

L:G(n A*Z/azy y)Gn'n* \y' Uy)dy

y'€n?

with D(Lz) := D(Ly). Then for any A5 > 0, such that the following estimate
Aflr < o (m* It 4+ m )

-|—Z [Al_ Z af(:p—wl)-FBbel_(x_y)}

zent z'ent\z yen?
3[4 Y vy B > b))
yen? y'en?\y zent

holds with some 67 > 0 for all (n',n*) € T3, the following inequality holds
| L7Glle < 67||LoGllc (4.12)

for all C' > 0.

The proof of this proposition is analogous to the case of L5 in Proposition
4.7. Hence we omit it here.

Proposition 4.10. Define

LsG(n',n?) —B+Z/ by (x —y)G(n' \ z,1° Uy)dy

zent

with D(Lg) := D(Ly). Then for any By > 0, such that the following estimate
Bl < s (mt ol +m” )

+Z [A; Z af(x—x')—i—Bbef(x_y)]

zent z'ent\z yeNn?
3[4 Y a-y)+ B > by -a))
yen? y'en?\y zent

holds with some dg > 0 for all (n',n*) € T3, the following inequality holds
[LsGllc < ]| LoGllc (4.13)

for all C' > 0.
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Proof. As in previous cases, we calculate the norm || LsG||¢:

By S b5z —yIGHt\ 2 n? Uy)ldyC TN (Rt A(dn?)
To FOZ‘Enl R4

_ B} / 0 / 303 B = )i IO )

zent yen?

=t [ [ 3] b 6 e )
0 0y6n2

=B / . ?(|G (i, )| C N (')A (dn?)

< 6s]| LoG ||

Denote now for i := (n',n?) € Ty x Ty:
T(n) :=(C [A] + By + AT + BY)In'| + (C [A; + By | + A} + BY) ||

1
+5 Af Z af(a:—x')—i—Bbef(x—y)
zenl L z'enl\z yen?
, _
SOV R RS W]
yen? L yen?\y zent

Putting together previous results we get the relative bound of the operator
L — Ly in terms of the Lg:

Corollary 4.1. Let

T(n'n?) < s(m*n'|+m™ %) (4.14)
+Z [Af Z af(:v—f)—i—Bbef(x—y)]
zent ' ent\z yeN?
3[4 Y ww-v)+ B> by —a)
yen? y'e€n?\y zent

For some 6 > 0 and all (n',n*) € Ty x Tg. Then the following inequality
holds:

< 0| LoGlie

8
Z LG
=1

c
for all G € D(Ly).
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Now we are ready to prove one of the main results of this chapter, that
is the existence of the semigroup associated with the generator L.

Theorem 4.1. If (4.14) holds, then the operator [2 is the generator of a
holomorphic semigroup on Lo which we will denote U(t),t > 0.

Proof. Proposition 4.2 together with Corollary 4.1 show that the operator L
verifies the assumptions of the Theorem 3.1 and thus the statement of the
Theorem follows now trivially. ]

Remark 4.4. From the proof of the Theorem 2.4 in [Kat95] one can conclude
that in fact the & can be chosen to be equal to 3. See also [KKZ06].

Having constructed the semigroup U (t) acting on quasi-observables we
proceed to the description of the evolution of the system of correlation func-
tions associated with our model.

4.3 The evolution of correlation functions

From now on, we fix the parameters of our system: m*™ m~ A], A5, Af,
Af.By,By,Bif,Bf >0, as well as C > 0 such that the operator L fulfils
the conditions of Theorem 4.1 and thus generates a holomorphic semigroup
U(t) on Le.

4.3.1 Space Q¢

Consider the space Q¢ of the so-called correlation functions defined as

Q= {k 1 Do x Lo = R| k(-,-2) - 0D € L2(Dy x Ty, A @ A>}-
(4.15)

It is a Banach space with the norm
]| == ess sup |k(n',n*)C D] (4.16)

where the ess sup is calculated with respect to the measure A®2. Note, that
any function k € Q¢ satisfies the bound

lk(n', n?)| < C,C/ ') (4.17)

for A*2-a.a. (n',n?) € T'2 and for some C; > 0.
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Define now following duality between Lo and Q¢:

(G = [ GOM) K PN N@) (@)

0
for G € Lo and k € Q. The duality (4.18) is well defined since G € L,
G(1, )M e LY(T2, A%?) and additionally (4.17) holds.

4.3.2 The dual of the operator L

With help of the duality (4.18) one can define the dual operator L* to the
generator L (c.f. Chapter 1, Section 1.5), namely

/ LG - kd)®? = | G- L*kd\®2. (4.19)
g I3
Using the fact that )

L - LO + e + Lg

where the operators L;, ¢ = 0...8 were defined in the previous section, we
calculate the dual operator L* as the sum of the respective duals of operators
L1, ..., Lg in the series of lemmas.

Lemma 4.1. The operator Ly is "self-dual”, hence Lj = L.
We skip the proof for Ly is just the multiplication operator.
Lemma 4.2. The operator adjoint to the operator defined by

LiGm) ==Y |AT Y ai(w—a)+ By Y by(z—y)| Gn' \a,n’)

zen! z'ent\z yen?

with respect to the duality (4.18) has the following form

sk = - [ (47 X arw =)+ By Yt —) | ko' U,

$/€771 y6772

Proof. By the definition and using the Minlos lemma, we have

‘/HZ Ay Y ap(z—a)+ By Y by (z—y) | G\ wp)

0 zent z'ent yen?

x k(n',n*)N*(dn', dn?)

:—/FQ/Rd AIZ(L;(Z‘-m’)_i_B;Zb;(x_y) k(771Ux,772)dx

a'ent yen?

x G(n',n*)N*(dn', dn?).
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O
In the similar way we can obtain the following

Lemma 4.3. The operator adjoint to the operator defined by

LGn) ==Y |Ay Y ag(y—y)+Br Y bily—a)| Gn'\y)

yen? y'en?\y zent

with respect to the duality (4.18) has the following form

Lék‘(n)z—/ A7 > ay(y—y)+Br Y bi(y—=) | k(n',n* Uy)dy.

Yy E’r] :cen

Lemma 4.4. The adjoint of the operator

LsG(n',n?) = /d Af Z (x — ')+ B Z by (x — G(n' Ux,n?)dx
R

x’ent yen?

with respect to the duality (4.18) has the following form

Lik(n'n*) =Y |AT D af(w—a)+ B ) bf(x—y)| k(n' \ =, n%).

zen! z'ent\z yen?

Proof. The direct calculation yields

// AJr a1 r—2a +B+Zb+x— y)| G(n' Uz,n*)dx

F2 Rd x 677 y€77

x k(n', )N (dn', dn?)

:/Z AF S af e —a)+ B S b (e —y) | Rt \ o) da

rz v€n a'ent yen?

x G(n', )N (dn', dn?).
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Lemma 4.5. The operator adjoint to the operator defined by

LG't) = [ 145 Y air—) + B Y b =) | GOl Uiy

y/ 6772 xenl

with respect to the duality (4.18) is as follows

Lik(n' ' n*) =Y A3 > af(y—y)+B5 D _ bi(y—2)| k(n',n* \ y).

yen? y'en?\y zen!
Again, the proof is similar to the previous case and we omit it here.
Lemma 4.6. The operator adjoint to the operator
LsG(n',n?) A+Z/ (x — 2" )G(n' \ 2’ Uz,n?)dx
x GT]
with respect to the duality (4.18) has the following form
Lik(n',n?) A+Z/ (x — 2)k(n' U\ 2,1%)da’
:EGW
Proof. Using the definition we obtain

a5 [ 32 a6\ Uy ) ')

/61

= Af/ / / af (x — 2 )G(n' Uz, n*)k(n' U, n?)da'dzX*(dn', dn?)
2 JRd JRA

A / Gt ) Y / af (@ — k(0" U’ \ ) da! X2y, dip?).
1'\2 xe'r]l Rd

0

]

Lemma 4.7. The adjoint with respect to the duality (4.18) of the operator
defined by

LeG(n*. %) B*Z/ b (x —y)G(n' Uz, n* \ y)da
yen?
s given by

Lik(n',n?) B+Z/b+f— k(n' \ z,n” Uy)dy.

zent
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Proof. Applying the definition of duality and using Minlos lemma we obtain

Bf [ Y| b= y)Gw' U \y)dak(n', )\ (dy', dn?)
Rd

062

ZBT///bT(x—y)G(nlUw,nz)k’(nl,nzUy)dfvdykz(dnl,dﬁ)
F2 R4 JRE

ZBT/ (n',m° Z/ bf (z = y)k(n' \ z,n* Uy)dy *(dn', dn?).

zEN?

Lemma 4.8. Define

LG, ) A+Z/a2y V)G P\ y Uy)dy.

y'en?

Then the adjoint of the operator L; with respect to the duality (4.18) has the
following form

Lik(n', ) A*Z/ af (y =y )k(n', 0> Uy \ y)dy

yen?

Proof. The proof is similar to the case of L. n

The calculation of the adjoint of operator Lg is similar to the proof of
Lemma 4.7. Thus the next statement will be given without proof.

Lemma 4.9. Let the operator Lg be defined by
LsG(n B+Z/b+x— G(n* \ z,n* Uy)dy.
zent

Then the adjoint of Lg in the space Qc with respect to the duality (4.18) is
as follows:

Lik(n*,n?) B*Z/ k(n' Uz,n\ y)da

yen?
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Taking into account all previous calculations we can derive the form of the

adjoint operator L* with respect to the duality (4.18):
Lk(n',n*) = — (m*|n'| +m~[?]) k(n', )

=D AT D (e —a)+Br ) bile—y)

zenl | z'ent\z yen?
Y Y w8 Yk
yen? y'en?\y zenl

—/Rd AT D ar(w =)+ By ) by (z—y)

x/enl y6772
- / A7 ay(y—y)+Br Y bi(y—uw)
R yen men

2 |AT D afe—a)+ B Y b —y)

zent | z'ent\z yen?

+Z AS Z as (y —y) B+Zb+ — )

yen? | yen\y zent
—l—AJrZ/al k(' ua'\ x,n*)dx
x€77
+B+Z/b+x— n'\ z,n* Uy)dy
1677
+A+Z/ af (y — ")k, n* Uy \ y)dy'
yen?
BJFZ/b+ —2)k(n* Uz, n?\ y)dx
yen?

for k € Oc¢.

(4.20)

k(n',n?)

k(n',n?)

k(n' Uz,n’)dz

k(n',n* Uy)dy

k(n' \ =,m%)

k(n',n* \ y)

The duality (4.18) determines a semigroup, which we will denote U(t)*,

1.e.

(O0G.K)) = (6.0 (k).

The question arises: assume we start from a proper state of the system

to which has the correlation function k,,

is then k; =

U*(t)k,, also a
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correlation function for some measure p;? Existence of such a measure is
sometimes very difficult to prove and in this chapter we don’t investigate
this problem in details. For more information and some technical tools we
refer e.g. to [KKO02|, and for the application of such a framework, see e.g.
|[KKZ06] or [KL05| in the case of Glauber dynamics.

4.4 Vlasov-type scaling for the model

The general scheme of Vlasov scaling was introduced in Chapter 1. In this
section we apply this scheme to our model giving the formal meaning to the
considerations from Section 1.6. More precisely, we scale the pre-generator L
introduced in (4.1) obtaining an operator L. and then we calculate its symbol
L.. Next, we show the strong convergence of the associated semigroup to the
Vlasov semigroup U V(t). Finally we derive a Vlasov-type equation for the
two-component ecological model and give its mild solution.

4.4.1 Scaling of the operator L and its symbol

The Markov birth-and-death pre-generator L can be represented as a sum of
two operators. The first one, L™, corresponds to the birth of the individuals
in the system whereas the second one, L~ describes the death of individuals.
As it was stated in [FKK10al, the right Vlasov scaling for L has the following
form:

Lo =L (d},d?) +&'LT(bl,02) (4.21)
where d!, d?, bl, b? are some scalings of the rates d', d?, b', b* which will
be described later. An additional increasing of the intensity of birth is used
to preserve the influence of the birth part in the limiting Vlasov hierarchy.
Moreover, the real necessity of the factor e™! in (4.21) will become clear a
posteriori.

Recall, that the Markov pre-generator in our case has the form L =
L'+ L2 Let e > 0. We define the scaled operator L. as L! + L?, where

(LIF)(y %) =) di e,y \ 2, 7?) [F(y \ 2,7 — F(v. %] (4.22)

xeyL

+ ¢! /Rd bz, 7% [F(v' Uz, +?) — F(v', %)) da,



4.4. VLASOV-TYPE SCALING FOR THE MODEL 109

and

(LZF)(Y',9%) =Y d2(y. 47" \ o) [F( 2 \y) = F(v'. 7)) (4.23)

VE'Y
+ ! /d V2(y, 7", 7?) [F(v',7* Uy) — F(v', )] dy.
R

The proper scaling of coefficients is making all interactions in the system
weaker and has the following form:

di(z AP =m"+eAr > ay(w—a)+eBr Y by (z—y),

-'ZZIE’YI ye,yQ
C(y, ') =m”+ed; > ag(y—y)+eBy Y by —
y’E’yQ xe,yl
b (w7 7?) = eAT Y af(w—a) +eBf > b (x —y),
I/E’Yl yE’YQ
2(y. 7" 7") = Ay > as(y—y)+eB Y b5y — ).
yle,YQ wG’Yl

Effectively, the part of L which corresponds to the birth is not changing in
the considered system. As in the previous section, we prove that for all e > 0,
the symbol of the operator L. generates a holomorphic semigroup in L. For
e > 0 recall the following renormalization:

R.G(n)(n*,n?) = MGt 12 (4.24)

for (n',n?) € T2. Below we give the form of the symbol L. and the renor-
malized operator L. e, := R-'L.R. = Re-1L.R..
For any € > 0, the symbol of the operator L. is given by

L.G(' ) = — (m*n'| +m~[n?) G(n*,n?)

=Y AT Y ai(@—a)+eBr Y bi(w—y)| G0
:cenl i z'ent\z y€en?

=3 1Ay D asy—y)+eBy Y b(y—a)| Gn'in?)
yen? y'en?\y zent

—Z eAT Z aj (x —a')+eBy Zbg —a)| G(n' \ 2,1?)
zent | z'ent\z yen?
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yen? zent y'en?\y
+/d AT af(w—a)) + AT bz —y)
R z'ent yen?

o
Rd

AT af(y—y)+ B Y by —a)

y'€n?

:E€17

+A+/Za1x—x (n'\ 2’ Uz, n*)dx

—l—Bf/ Zb*a:—

CCET]

yen?

(' Ux,n® \ y)dz

+A+/ > afly—y)G'n’ \y Uy)dy

—l—B;/ Zb+ — )

y'en?

zent

n\x,n’ Uy)dy

) redy Y a(y—y)| G0'n’\y)

G(n' Uz,n’)de

G(n',n* Uy)dy

for G € LY,(T2) and (n',n*) € T'2. Next, we renormalise "line by line" the
operator above obtaining for any € > 0 (recall n = (n*,n?)):

where

E\G(n) :

Le,ren -

7 4

SEeey

i=1 j=1

F.

J

— (m +|771|er’\772!) G(n',n*)

AT Z ap (x —a —|—32sz

z'ent\z yen?

y'en?\y zen!

yen? |
—A+/Za1x—x (n'\ 2’ Ux,n*)dx

z'ent

A ) aly—y)+Br Y bi(z—y)

(4.25)

—z)| Gn' \ =, )

G(n',n* \y)
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and
_B+ b+ _ 2
/Rdz (x = y)G(n' Uz, 0\ y)dz
yEn?
A*/Zazy y)Gn'n* \ ¥ Uy)dy
y'en?
E.G / > by —2)Gn' \ 2,0 Uy)dy
J;E?]
PG =- > A7 > aj(@—a)+ By Y b(z—y)| Gn',n?)
zent | z'ent\z yEn?
FG(n) = — Z A7 Y ay—y)+ By > by (y—x)| Gn'n?)
yen? | yen\y zent
RGm) = | |Af — )+ B b (@ —y)| GOt Uz, p?)d
6= [ |41 X ate=a) 4 BE S bt a )| Gl P

F,G(n) 22/ AP af(y—y)+BF Y by —=)| Gn',n* Uy)dy.
Rd

y/€n2 xenl

We consider maximal domain for I:wen defined as
D(Leyen) :={G € Le| LeyenG € L} (4.26)
for e > 0, and
D(Lyey) :={G € Lo| (mT|1 [+m7|2])G(1,?) € Lo} (4.27)
in the case when ¢ = 0.
Remark 4.5. It is easy to see that D(I:g,ren) C D(f/ren).

Similarly to the unscaled case (cf. Theorem 4.1), operator Ziwen with the
domain defined above generates a semigroup in L¢:

Theorem 4.2. For all m#, A¥, B¥, # e {+, =}, i = 1,2 such that the
following assumptions hold for all (n*,n?) € Ty x Ty:

1. there exists ¥4 > 0 such that
[C (AT + By) + A + Bf]|n']
+ [C(By +43) + A + By | < 01 (m™[n' [ +m~[n%]),
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2. there exists v > 0 such that

%Z [Af Z af(x—x')—i—Bbef(x_y)]

xent z'ent\z yeNn?
€

CEY Y w5 Y b - )
yen? y'en?\y zen!

< O (m* 0|+ m )

reX [ar Y arle—a)+ BT Y b )]

zent z'ent\z yen?
o> [Ar Y a-y) B Y by —a)]),
yen? y'en?\y zent

3. and additionally the following holds for some 6 > 0:
95 <1 —0.

Then, for everye > 0, ([A/&,.en, D(I:s,rm) generates a holomorphic semigroup
U.(t),t > 0 in Lo and moreover Le yon € H(w) for all w € (0, 7).
Proof. Proof is very similar to the unscaled case (Theorem 4.1). Note only

the following facts:

1. operator By + e(Fy + Fy) with domain D(L. ) is the generator of a
contraction semigroup on Lo and belongs to H(w) for all w € (0, §),

2. operator I:Tm,s — (E1 + ¢(Fy + F3)) with the same domain is relatively
bounded with respect to the operator E; + e(F} + F3).

Hence the operator zwm fulfils the assumptions of the Theorem 3.1 and the
statement follows trivially. m

Summarizing, we have constructed holomorphic semigroup Ue(t) on Lc
which is generated by the operator L. ,.,. The next problem is to examine
the behaviour of aforementioned semigroup as € — 0.

4.4.2 Convergence of the rescaled semigroup

The natural candidate for the limiting operator (as ¢ tends to 0) is the
pointwise limit of the operator LE ren Which we denote by LV ie.

7
lims LeenG(n', %) = LY GO i1°) = BXG(n',0*) + ) BG(n',n*) - (4.28)

E—r -
=2
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for all (n',7n?) € I'2. Define the domain D(L") as
D(LY):={G € Lc| (m™|-' |+m~|-*|)G(-},-?) € L}

Proceeding in the same manner as previously we immediately get the follow-
ing

Corollary 4.2. Under the assumption (1) of Theorem 4.2, LV generates a
holomorphic semigroup UV (t),t > 0 on L.

The question remains, whether the semigroup Um converges strongly to
UY as ¢ — 0. One of the possible ways to answer this question, is to show
the convergence of the corresponding resolvents as in the following theorem:

Theorem 4.3 (see e.g. [Kat95], Chap. IX, Thm. 2.16). Let T and T,,
n = 1,2,... generate quasi-bounded semigroups UT(t), Ul (t) respectively.
If there exists > 0 and X\ : ReX > [ such that

(T, = A1)t 2 (T — A1), (4.29)
then
U (t) = U (t) (4.30)

uniformly in any finite interval of t > 0. Conversely, if (4.30) holds for all t
such that 0 <t <b,b> 0, then (4.29) holds for every A with Re\ > 3.

It is enough to assure the condition (4.29). Using the results from [FKK10c],
one can show that the following conditions are sufficient for equation (4.29)
to be satisfied:

~

A1 For any £ > 0 the operator (L. en, D(Leyen)) can be represented as
f)wen = Ay (e) + Ax(e),
where D(A;(g)) = D(Ay(€)) :== D(Leren)-
A2 There exists § > 0 and A > (8 such that
1. X belongs to the resolvent set of A;(g) for any € > 0 and

(A1(e) = A1)1 3 (A1(0) = A1) 1 e — 0,

oup [(43(2) A1) < [(4300) = A
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3. for any € > 0
|A2(e)(Ar(e) = A1) M|, < 1,
4. (Ay(e)(Ai(e) — A1)t + 1)~ converges strongly to the operator
(A2(0)(A1(0) = AL) ' +1) ' ase — 0.
We are now ready to state the main result of this section:

Theorem 4.4. Ua(t) converges strongly to Uv(t) as € — 0 on any finite
interval of time, provided that the conditions (1)-(3) of Theorem 4.2 are
satisfied.

Proof. We will prove, that I:E,Ten fulfils the conditions Al and A2 stated
above.

Al. Denote
Uy(e,n' )= A7 D ar(w—a)+Br Y bi(w—y)  (431)
z'ent\z yeEN?
Uy ' n?) = Ay > as(y—y)+B; > byly—=x) (432
y'en?\y zent
and for € > 0, define
A(e)Gnhn?) = — (mT It +m7n?]) Gt )

— e[ > W' )+ D ey n?) | Gtn?)

xent yen?
with D(A;(€)) := D(Lyen.) and
Ag(€) = Leyen — A1(e) (4.33)

with D(Ay(e)) := D(A;(¢)). Note Ay(0) = LY — A;(0). It’s obvious, that
the assumption A1 is satisfied.
A2-(1). Let G € L& and A > 0, then the calculation of the norm

[(A1(e) = AL)T'G — (A1(0) — A1) "G, (4.34)
yields
/ 1
f ImE It A+ m |0 +e (Zml Uiz, ' n?) + X e Yaly, ' 772)) +A
1

G (0, )| C TN (dnt, d?)

+
—(mFnt +m=|n?| + A)
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which we shortly write as

/IF(E,nl,UQ)G(nﬂnZ)IC'"1'+'"2'A2(dn17d?f)
r3

where
r 1 92 € (Z:cé’r]l \Ill(x7 7717 772) + Zy€n2 \IIQ(y7 7717 772)>

e,n, =

&) G T+ e T )

1
X
m*nt| +m=|n?| + e (Z Uy (z,nhn?) + > ‘Ifz(y,nl,WQ)) + A
zen! yen?

and since 0 < F < 1 and lim._,o F(e,n",7?) = 0 for all (p',7?) € I'§ the
condition A2-(1) holds.
A2-(2). Let G € L&, A > 0. Then the norm

|A1(e) = AD) 7|, (4.35)
is equal to

/

FO XFO

1
]+ ]+ (e Wi 72) + 3 e oy, 12)) + A

|G 0", )| O HTIN (', dn?)
and we obviously have

e a1 <

I

= 40 = a0,

|G(n', n?)]
[mF |+ m=|n? + Al

C\nl\HnQ\)\?(dnl’ an)

hence the condition A2-(2) holds.
A3-(3). Let A > 0. To show that

| A2(e)(Ar(e) = A1) M|, < 1, (4.36)

notice first, that from the assumptions of the Theorem 4.2 we obtain that
for every ¢ > 0

[Aa(e)llo < (D +92) |Ar(e) (4.37)
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and for every A > 0 the following inequality holds:
[Ar(e)lle < [|A1(e) = ALflc. (4.38)

Using the latter facts, we obtain

HA2(€) ( ) )\1]_ IHC < 191 + 192) HA1(6)<A1(6) — A:H')_IHC

A2-(4). We will show that (Ax(e)(A ( ) — /\IL) + 1)~ converges strongly
to the operator (A;(0)(A4;1(0) — A1) + 1)~ as € — 0. First denote with

C. := Ay(e)(Ay(e) — A1)
and
Q = (Ax(0)(A;(0) = A1) + 1) "

Note that the condition A2-(4) is equivalent to (C. +1)"' 3 @Q, as ¢ — 0,
but

C.or) 't —Q=(C.+1)HQ'-C. - 1Q
= (C-+ 1) (A2(0)(A1(0) = N) 7! = C.) (A2(0)(A1(0) = A) "+ 1)

-1

and [|C. + 1]|¢ < 5 (assumption A2-(3)). Hence it is sufficient to show that
Aa(E)(Ar(e) — ML) 5 (A5(0)(4 (0) — ALY (4.39)
as € = 0. Now set A; := A;(0) and Ay := A5(0). It is clear, that
As(e) = Ay + By
for every € > 0. The convergence of (4.39) is then equivalent to

AQ(Al(E) — )\]].)_1 g AQ(Al — /\I].)_17 and
eBy(Ay(e) = A1) 20, as e — 0.

First, because D(A;(e)) C D(A;) = D(As,), the following identity is true:
Ag(Ar(e) = A1) = Ay(A; — A1) 1A — A1) (Ar(e) — A1)
and we need to show that

(A = A1)(Ay(e) = A1) S 1.
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Take G € L¢, then || ((A; — A1)(Ai(e) — A1)~ — 1) G|¢ is equal to

mF ' +m”n? + A
m*ntf +m~|n*| + ¢ <ern1 i@, 0", %) + 2 yepe Yoy, 0, 772)) +A

1[Gt ) |CITHTEIN (gt di?)

and hence to

/Fg

€ (Zx@yl \Ijl(x7 ?717 772> + 23;6772 ‘IIQ(yv 7717 772))

m+’771| + m7|772’ +e (ernl 1111(33'7 nla 772) + Zy€n2 \IIZ(ya 7717 772)> + A
x|G(n", )| CP TN (', di?)

which converges to 0 when ¢ — 0. On the other hand, we have
leB2Gllc < Ua[|Ai(e)Gle
for all G € L, hence

||€BQ(A1(€) — A]l)_lGHC S 5792 “Al(S)(Al(c‘:) — A]l)_lGHC
< ety HAl(g)(Al(g) - Ml)_lH 1G]l
< ey ||Gllo = 0, —=0.

N

Thus we have proved that all the assumptions A1 and A2 are fulfilled. The
assertion of the Theorem 4.4 follows now from the Theorem 3.1. in [FKK10¢]|.
]

4.4.3 Vlasov-type equation for the model

We will now derive a type of the Vlasov equation for the scaling realized
above. The dual Vlasov operator in the sense of duality given in the previous
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section (see (4.19)) can be easily calculated:

Vik(n) = — (m* ' | +m~ i) k(o' 1)
—/ AT Zal r—1')+ By Zb r—1y) | k(n' Uz, n?)de
z'ent yen?
—/ A7 ay(y—y)+Br Y bi(y k(n',n* Uy)dy
y'en? zent
+A+Z/ (x —2k(n' U\ z,n)dx
:E€77
+B+Z/b+x— n'\ x,n* Uy)dy
$€77
+A+Z/ az (y — v )k(n', 0> Uy \ y)dy
yen?
B+Z/ bl (y — 2)k(n* Ux,n?\ y)do
yen?

We consider now the Cauchy problem associated with the generator defined
above, i.e.:

ke =V, a0
4.40
kt‘t:O = ko-

Assume that

ko(n',n?) = ex(pg,n") - ex(pg, n°)

and pg, p? are measurable functions on R? such that the following two con-
ditions hold:

ess sup |pp(7)] < C, and  ess sup|pi(y)| < C.
z€R4 yeRd

Then the Cauchy problem (4.40) has a mild solution

k(n',n?) = ex(pr,n') - ex(p},n*) € Qc
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where p! and p? are solutions to the following equations (provided they exist):

(

Soi(x) = —m*p(x)
— Ay pi(x) (ay * pi) (z) — By pi(x) (by * p7) (2)
%—f4f’(af’* p})(aﬁ +—Z3f’(bf’* pf)(zﬂ

L or(@)|i=0 = ppla),
and

2piy) = —m piy)
— By pi(y) (by * pt) (y) — Ay pi(y) (a5 * pi) (y)

+ AJ (a3 *p}) (y) + B3 (b3 *pt) (y)

L 2iW)li=0 = P5(Y).
To see that, let ki(n', n?) := ex(p}, n')ex(p?, n2).TFhen_é%k%(n1,n2) becomes

19,
> piPt@eleln' \)ealpi,n) + Z el n” \ vex(pr,n').
zent yen?
On the other hand, equation (4.40) yields:
0 .
Spkem'm’) = = (m '+ m”|n*]) exter, n')ea(o®, n’)

—ex(pr ' ea(p® n®) | AT Y (ay = pi)(a') + By Y (by * p})(y)

z’'ent yen?

—ex(prnea(p® n*) | A7 Y (ag = p))(y) + By Y (by * p})(x)

y'en? zent

+ Afen(p®, %) Y elpt.n' \ x)(af = p}) ()

zen!

+ Bfex(p}, ") D exlptn' \ )(bf * p}) ()

zent

+ Afex(prn') Y exlpf,m* \ y)(ag * o) (y)

yen?

+ Bfex(pr,n') D ex(pr.n* \y)(03 * p}) (v).

yen?
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Easy calculation shows that (4.40) is satisfied if only p! and p? satisfy two
equations above.

Thus we have obtained the Vlasov type equation for the associated density
(and first correlation function). Note, that the densities of two population are
dependent and one can not separate them in general. We also have the chaos
preservation property of the Vlasov operator, i.e. it preserves the product
form of the initial condition k.



Chapter 5

Potts-type model

5.1 Introduction

In this chapter, we prove the existence of a strongly continuous contrac-
tion semigroup associated with the symbol of the pre-generator of the two-
component analogue of the Glauber dynamics, which we will call the Potts-
type model with two types of particles (see e.g. [FKO10]). We also derive a
Vlasov-type equation for the process.

Define the interaction energy as

= ¢z —y) (< 00) (5.1)

yeY

for a positive function ¢ : R? — R. The pre-generator of Potts-type model
is given as follows:

=S DI A [ PP e (52)
xG'y Rd
+ ZD2 -I—%/ e‘ﬁm(ml)D?F(vl,72)dy,
Rd
yey?

for ¢ > 0. Recall the notation:
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Heuristically it means that while the particles in each population die inde-
pendently of each other, the appearance of a new particle depends not only
on its population but also on the particles of the other type.

Throughout this chapter we will always assume that the potential ¢ sat-
isfies

o(x) >0, =R (5.3)

Moreover, the following condition holds:
¢ := | o¢(z)dr < +oc. (5.4)
Rd
Note, that (5.4) implies

c(p) = / (7@ — 1) dr < cc. (5.5)

R4
5.2 Construction of the process on [}
Using the approximation methods (see e.g. [FKKZ10]), we will construct the

semigroup associated to the symbol of the operator L on the linear space
introduced in the previous chapter, namely the space Lo which is defined as

Lo=L' (ro x Ty, CW‘+"2|>A(dn1)A(dn2)>

for C' > 0 and equipped with the norm

HGHC e / ‘G(Ul,?72)‘ C(‘"l‘ﬂm‘))\(dnl)/\(dn?),
r3

5.2.1 Symbol of the generator L

Notice, that to calculate the symbol for Glauber-Potts model we use the one-
dimensional K-transform instead of its multicomponent analogue . The
reason for that is that the birth coefficients are in fact images of certain
functions under K-transform. The details will be given below. Recall also,
that we write n = (n',n?) if it does not lead to confusion.
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Proposition 5.1. The symbol of the operator L, i.e. L:= K7 'LK, has the
following form
LG(n) = = (In'[ + NG (" )
) / (1" Uz, €)ex(e ) — 1,92\ €2)e PE" @) gy
£2Cn?

+%Z/RdG<€,n2uweA< BO=) _ 1\ €)ePE gy,

gtent

Proof. We will calculate the components of the symbol. Denote

Ltl)G(nlvHQ) =K (Z Dglc_KG('la 2)) (771’772)‘

ze-d

Then, we have

LG(n',n*) = K~ Z[KG(-I\%-Q)—KG(-I,-Q)O(7717772)

ze-l

= KDY ae =Y e | o)

xe,l £1C'l\$ é‘lc‘l

= K'Y Y GEuz, )| ma)

zelglc\z

- — Z (=1)7"\¢ Z Z G(E Uz, )

¢tent ze¢t ete¢t\z

= Y ()P KGC U )\ o)

¢lent re(l

= — Z Z DU G- U 3)(¢Y)

zenl (1cnt\z

= —n'|G(n" 7).

In the case of LG(n',n?) .= K} (Zyeg DX KG(, 2)) (n',n?) the similar

calculation yields L2G(nt, n?) := —|n?|G(n', n?).
Before we will calculate the second part,define

LiGn',n*) =K' {%/Rd 6‘5E¢(x"2)Di+KG(-1,-Q)dﬂf} (', 7°)
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and notice that for n € Iy, € R%:

o BE® (@) _ =[[e " = Key (770 — 1) (), (5.6)

yen

then, using (5.6), we can calculate
LKXWZZMKA(/R5ﬂm@ﬁWKG(”km2%—KGCR%}W>Ofm%
R4

= K™ /KH ) — 1) KG(H U, )de | (0! 0p?)
Rd

ye-?

et [ KT =15 G U)o | (0o

ye-?
s [ | TTE ™ = 1) x G e )| (e
Rd 2
ye-
£2cn? 316772\62

The analogous calculation can be done for the operator defined as

L6 7) = K [ [ DG 2y ')
R
giving
LiG(n* —%Z/ (€ Uylea(e P00 — 1 7t \ gh)e PE gy
grant

Clearly L = Lo + Ly, where Ly = Ly + L%, # € {0,1} thus the Proposition
is proven. 0

To give the proper meaning to the operator j}, we define the domain of L by
D(L) := Loc C L

for C' > 0. Notice tha‘g the embedding Loc C L is dense. In the sequel the
following property of L will be useful:

Proposition 5.2. Operator (L, D(L)) defines a linear operator in L.
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Proof. 1t is obvious that L is linear, hence we should prove that for G € Lac
we have ||LG|l2c < 0o. Let G € Lo¢ and denote

LoG(n',n*) = — (In'[ + I*NG (0", n*),

L) = e X [ Gl U e (e e
£2Cn?

LG (', n?) —%Z/ L Uylea(e W) pt\ ¢he P gy,
Elcl

Clearly L = Lo+ Ly + Ly. And we have for Lo:
LoG(n',n?) = / (In'l + 1) |G(n', )| OO N (dnt) A(dn?)
FoXFo

< / o(In* [+1n°]) |G(7)1,772)| C(|"1|+‘”2‘))\(dn1))\(dn2)
- FOXFQ
= ||Gl|2c < o0.

It remains to prove, that ||L1G||c¢ < oo and [|L:G||c < co. But due to the
similarity of two operators, we only prove the first inequality. Using Minlos
lemma we can calculate ||L;G||c as follows:

Gl = [ [ 3 [ 160 Ua ) ene ) — 1 €
o JT
x e PEC @) o I\ (dn" Y\ (dn?)

= [ [ [ 6w on e e - 1

o~ BB @) ol [+ |+\£2|)\(d§2))\(dn1))\(dn2)

o[ [ [ Sl e -1

xen 1
X BB IR HIE1 ) (ant) A (d€2) A (di?)

% 2
= Zeoew [ [ 160, €] 3 e o I g ')
T'o JTg

zen!

O§2C2

IN

x 1 2
5e00<ﬁ> | [ 16 elinticn <@ ')
I'o 4T

aeow / G, )2 1IN A ')
g JTo

fadelelC)

C

IN

IN

|G||2c < o0.
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Putting this up together we obtain

HﬁGHC < | LoGlle + | LiGlle + || LGle
< <1 + geCC(B) + g600(5)> |Gllac < 00

for all G € Loc. O

5.2.2 Approximation operator and its symbol

Let § € (0,1) be fixed, A € By(RY) and define the following linear operator
on F € }lm(rb X Foy

(PAF)(/ %) = S0 S0 i1 — g)h R (24 (41 42))

ntCyl n2CH2
_BE® _BE®(y~1
//%5|w (seb) 1 T 2%t T oo
IV rew! yEw?

X F((Y"\n")Uw', (* \ n?) Uw?)A(dw' ) A(dw?),

= [ [0 )

T'p Ta
X H e PE?(@?) H “PEY D )\ (dw') M (dw?).

rEw! YyEw?

where

The operator P2 can be considered as the transition operator of a discrete-
time Markov chain, the continuous version of which is the process with the
evolution defined by (5.2). In other words, the probability of transition from
the state (v',7%) to (' \ n') Uw!, (* \ n*) Uw?) after time 4 is equal to:

Y

(2 (v, 72)>_1 gt Tl (1 — )Pt (sl

% (%5)\w2| H e BE?(77) H e BE? (")

TE€wW! yEw?

Before we proceed to the construction of the process, let us remind that the
2-dimensional analog of the K-transform is defined as:

h-3 ¥

,r]1 @71 ,,72 @72



5.2. CONSTRUCTION OF THE PROCESS ON T3 127

together with its inverse:
KFntn?) Z Z In \Ell+|n2\52|F(51’52).
gent £2Cn?

Next proposition allows us to rewrite the operator P in a more friendly
form.

Proposition 5.3. Operator P} defined above has the following representa-

tion:
PR Z Z 1 — §)IHeE
¢ty ¢2cy?
(58)17"1 (5¢8)1”] —BE?(z?) e BE®(yh)
< [ e [T T

z€ol yEo?

x  K'F(tuet, G uo®)Ndot)M\(do?).

Proof. Let G = K~'F. We can rewrite the operator P in the following way:

PAF(y AP = (59(71,72))_1//(%5)'“’1'(%5)""2'

Tx Ta
% H e PE?(x7?) H e BE?(y")
rEWw! yEw?
% Z ghi\tl(q — gy’ Z S\l — §) 7]
ntcyt n?Cy?

x  F(n'Uw',n? Uw?)A(dw')A(dw?).
Now, using the fact that F' = KG, the expression

Z ghi\ntl(q — g’ Z SV — 8 F(t U Wt n? U w?)

T]lc,-yl 772C'Y2
is equal to
Z ghi\l(1 — gy’ Z SPAPI (1 — g’ Z Z
nl C'Yl 772C"/2 Cl Cnluwl CZCnQUWQ

Using basic set-theoretical facts, we can rewrite the latter as follows:

Z5lv\n|1_ 8! 25\72\77\1_ 5\

ntcyt n2Cr?2

XZZZZCUUCUJ)

¢lcnt olcw! (2cn? o2Cw?
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and then

2. 2. 2 2 Gudtud

¢lcnt olcw?! (2Cn? o2Cw?

% Z ghivetuchiq — g)letuct] Z SANePU) (g g)le?uel,

alCyI\(! a2Cr?\(2
The latter is equal to

Z Z Z Z ¢ty CUU)(1—5)|<1|(1_5)\<2\

¢lent olcw! (2Cn? o2Cw?

x % SN gyl §T 0T (g gyl

alcyI\¢! a2Cry2\(2

Notice, that by the binomial formula, the two sums in the second line of the
latter expression are equal to 1 each, hence

PR AR = (R0 ) T Y Y (g

Cteyt ¢2cry?

/ / (520)" (38| T e 7E%w™ T e-o8* ")

FA FA CL’ELUI y€w2

XYY G Ut P Uo)A(dw' )\ (dw?).

olcw! o2Cw?
Using the Minlos lemma, we obtain

PAF(Y, %) = (E2(NA%)7 STO% (1)

Cl C’Yl CQC’YQ

////<”5)|WI'+”I'(%5)'W+|o—2|

PATATA T
_BE® (.2 _BEb (Al
< II e~ BE?(x7) || e~ PE (YY)
rcwlUol yEw2Uo?

x  G(CtUot, CUHAdwh)AN(do ) A(dw?)A(da?).

Using the definition of (7!, ~?) and the fact that G = K~'F, the statement
of the proposition is proven. ]

Denote the symbol of the operator P2 with PA(:= K~'PAK). Using
Proposition 5.3 we can easily calculate the form of the symbol.
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Proposition 5.4. The symbol of the operator P({\ 1S glven as

PAGOP ) = 3 37 (=0l [ [ et et

¢tent ¢2cn? Ty T'p

y H o —BE?(2,0%) H (e—m(x',o?) _ 1)
ze¢t a’ent\¢?t

< T[T (6—5E¢(y/,01) _ 1)
y€e¢? y'en?\¢?

x  G(C'Uot, CUo?)\(dot)A(do?)
for all functions G € Bs(T'3).

Proof. Using Proposition 5.3 and the definition of X~!, we obtain:

Pg\G(nl,nQ) = Z Z (—1) |77 \EHHIn*\é?| Z Z \g1|+\<2

glant £2an? ¢tcet ¢2ce?
// (520)/2'1(320)/2") T e 7€) T e e
Ty Ta z€ol! yEo?

x  G(Ctuch, U Adat)\(do?)

Y (1 gy

¢tent ¢2cn?

xS (@)

Erant\¢t £2Cn\¢?

// (526)17"| (520 12") T e e

Iy Ty r€ol
x ] ePE @Gt Ut P U o)A (dot)A(do®).
yco?

Now, having in mind the definition of E¢(x, ), we can calculate:

H e_ﬁE¢(x7C2U£2) — H e—ﬁE¢(y7Ul) H e—ﬁEd)(y/,O'l), and

zeol ye(? y'eg?

H 6_6E¢(y7<1U§1) — H 6—5E¢(£B,0'2) H e—ﬁE¢($/,02)7

yEo? ze(?! ' egl
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which gives us

G 7) 77 Z Z IC I-+1¢2

¢rtant ¢2cn?
//(%5)01l(%5)02| 37— I
i o
x H o BE? (2! 0?) H e BEC(W o) H e~ BE®(y.0!)
z'egl y €€2 yec?
x [ e @G (¢ Uat, P U o) M(do)A(do?).
z€eCt

The third line of the latter expression is by definition equal to

(K—l H e—,@E¢(x’,a2) H e—BE¢(y’,ol) (771 \ Cla 7,’2 \ CQ)

x’6~1 y/e,Q
= 11 (e—ﬁmzo‘z)_l) I1 (e—ﬁmy’,al)_l),
x’ent\¢? y'€n?\¢2

thus the symbol of the operator Py has the form:

PGt =3 Y (- o) |+|<2//%5 ) ()l

¢taent ¢2an? Ty T'a

» He—ﬁmx,a?) H (e—ﬂm(zaa?)_l)
ze¢t ' ent\¢!

% He—ﬁmy,al) H (e—ﬁmycal)_l)
y€e(? y'en?\¢2

x  G(tuct, Cua®)Adat)\(do?).

5.2.3 Construction of the semigroup

We now proceed to the construction of the semigroup associated with the
operator L. In what follows we introduce the approximation operator P2 in
the similar way to the one presented in [FKKZ10]. Later we show that the
under certain assumptions on the coefficients s and C' the approximation
operator converges to L and from this we can conclude some facts about the
generated semigroup.

The main result of this part is the following
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Theorem 5.1. Let
s < min {2Ce 290 Cem @00 (5.7)

then (f/,ﬁgc) s a closable linear operator in Lo and its closure generates a
strongly continuous contraction semigroup Uy on L¢.

The proof of the Theorem 5.1 is based on the following result:

Lemma 5.1 (|[EK05|, Corollary 3.8). Let A be linear operator on Banach
space L with D(A) dense in L, and let || - ||pcay be a norm on D(A) with
respect to which D(A) is a Banach space. Forn € N let T, be a linear || - |-
contraction on L such that T,, : D(A) — D(A), and define A, = n(T, —1).
Suppose there exist w > 0 and a sequence {e,} C (0,400) tending to zero
such that for n € N

[(An = A flle < enllfllpey, [ € D(A), (5.8)

and N
[ Tnlpeayll <1+ o (5.9)

Then A is closable and the closure of A generates a strongly continuous
contraction semigroup on L.

By analogy to the operator ]55’\, we can define a linear operator on Lo by:

GO = 32 S =0 [ [ )t a0

¢tant ¢2an? T'o To

y H o—BE? (2,0%) H (6—6E¢(x',02> _ 1)
ze(! ' ent\¢!

< L™ 1 <e—ﬁE¢(y’701) _ 1)
ye¢? y'en?\¢?

x  G(tuch, CUa®)Adot)\(do?),

for G € L. Notice, that for every (n',n?) € 2, B;G(n',n?) < +oc.
We will now prove a series of Lemmas, which we will later use in the proof
of the Theorem 5.1.

Lemma 5.2. Let s, 3 and C' satisfy
2P < C. (5.11)

Then Ps is a Lc-contraction, i.e. for G € Lo we have

15Gle < |Gl (5.12)
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Proof. Let G € L, then

HPaGHC :/ Z Z (1 _5)<1+<2//(%5)|gl|(%5)|g2

rz |¢ient ¢an? Ty To

< T[] (6—5E¢<w',02> _ 1)
ze(! a’ent\¢t

< L@ 1 (6—/3E¢(y’,al) _ 1)
yee? y'EN\¢?

x Gt UG, U)o )MN(do?) |CTIHIFIN(dn YA (dn?).

Using modulus properties and the fact, that ¢ > 0 the latter can be estimated
by

[ 5 5 4= [ [

F(Z) C1C771 C2C772 T'o To
< I ‘efam(xao—?) _ 1‘ I1 )e—ﬁmyao—l) 1
x/enl\cl y/€n2\c2

x |Gt U, U] A(dah)A(do?)CIHITIN At A (dn?).
Using Minlos lemma, this is equal to

///<1_5)<1+I<2//(%5)”1|(%5)I02|

Iz I'o I'o To Ty

% H o BE (@0 _ H ‘e—ﬁE“ﬁ(yCUW _ 1‘ Ot U+
xlenl y/€n2

x |G(¢M U, U o?)| Mdah)A(do?)A(dCHA(C) AN (dn' ) A(dn?),

thus

Hp(sGHc < ///(1_5)|<1+|<2|//(%5)all(%5)02|
Iz I'o I'o I'g I'o
X H 6_6E¢(m/702) _ 1 H 6_5E¢(y/’0—1) _ 1

xlenl y/e,rIQ
w O HICH 2 +IC

x |G(¢CtUat, P Ua®)| Ada)A(do?)MdCM)A(dC)A(dn ) A (dn?).
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But this is equal to

[ Ja=oee [ [ )i

Fo Fo F0 F0

X exp {C/ (1 _ e*/BE‘i’(a:”g?)) dx’}
R4

X exp {C/ (1 _ 6*5E¢(y’701)) dy’}
R4

x CICHICH G U at, U )| A(doh )M da?)A(dCHN(AC?).
It can be shown (see e.g. [FKKZ10]), that
(1 _ 6—5E¢(I70)> < Z (1 _ e—ﬁaﬁ(ﬂﬁ—y))
yeo
for >0, 8> 0and o € I'y, z ¢ o, hence

I1B,Glle < //(1_5)<l+<2//(%5)|al|e|al|cc<ﬁ>(%5)|02e|a2cc<5>

Fo Fo 1—‘0 1—‘0

x CIUHCT G U, (2 U o%)| Ada ) A(do?) A (dCH)A(dC?)

= // 3 ((1—5)0)'C1\Ul(%5eCC<ﬁ>)”1'

Fo Fo ol Ccl

" Z ((1—5)0)@\02' (%5600(’8))|U
02C(?

x |G(CH, )| AdCHANAC?)

I'g I'o

x |G ¢ AdCHA(C?).

Using the assumptions we finally obtain the contraction property:

al

155G e < //\G(C1,§2)|C<1|+<2)\(dgl)/\(dCQ):]|G||C.

Ty Lo
O

Next proposition shows, that the infinitesimal generator of P approxi-
mates L in L¢.
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Proposition 5.5. Let Ls = % (155 — ]l) and let the assumptions of Lemma

5.2 be fulfilled. Then for G € Lo and every § € (0,1) the following inequality
holds:

H (1) GHC < 49[|Glzc- (5.13)

Proof. Let G € L and recall that L= Lo + Ly, where

LoG(n'. %) = = (In'| + n*NG(n', n?),
LiG(n',n%) %Z/ (0t Uz, )ex(e P00 — 1 2\ €2)e PP @8 gy
&2cn?
+%Z/ (€7 Uyeale ™00 — 1yt \ €)e PP 0D dy,
glant

We can also rewrite the operator Ps as the sum of the following operators:
FVG' ') = (1= )Gt ),

PG ) =5 3 (1-6 |C1|+77/ I ¢

¢tent ze¢t
X H (e‘ﬂqﬁ(w v 1) G(¢tn* Uy)dy
a’'ent\¢!
£ 3 (1 g / ]
¢2Cn? ye¢?
X H (e’ﬁd’(y - _ 1) G(n' Uz, (Hdx
Y En>\¢?

and

PG ) = P5—<p5() + )>

Z Z IC [+1¢3| //1{|01+|02|>2} »8)1° (%5)\a2|

¢tent ¢2cn? To To
y H o~ BE?(@,0%) H <e—5E¢<xcaQ> _ 1)
ze(? z'ent\¢?
< [T e @) T <€—ﬂE¢<y’,ol> _ 1)
ye¢? y'en?\¢?

x G(Ct Uot, P UaP)A(dah)\(do?).
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Using this notation the inequality (5.13) becomes

= (Pg - 1) G- LG (5.14)

(z‘S_E)G 5

-

C

Ll a2
- |p= GH
5H 0 c

< H% (PG - G) - LG

1
- ’ PG - LGl +
0 C

C

We begin with the first part of the latter inequality which is equal to

N

1 /-
Hg (A6 -G) - LG [ 87— 1) + '] + |

x G(nt, ) |[C N At A (dn?),

but for (n',n?) € Ty x Ty we have

[%((1 _ gy g

In*[+|n?| 1 2
_ %[ ) ('77 ‘Z‘” ’>(_1)k5k’—1+5(Inll+ln2|)]
1|771|+|772| 1 4 |2 -
! ; (In | kln |>(_1) 5

_ 5'”57 | (| 7|+ I |>(_1)k5“

which can be estimated from above by

In*|+n?|
5 Z (| 0|+ [ ’) solm 1+l

From this, we immediately get

+ '+ ||

< 6[|Gl[2c- (5.15)
c

I (-0 -1
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Using the properties of modulus function and Minlos lemma we can estimate
the second term of the right hand side of (5.14) in the following way:

1~
SP§1>G—LlG
<%// |<|+|n|/ —Bo(e—y)
o JTo clopt Re H
< I \e-m = 11 G(¢ Uy>rdy0'" HIN(dn)A(d)
z’ent\¢!
Fo X Rd

0 C2C 2
X H )e‘ﬁd)(y —o) _ 1’ |G(n* U, )|al:z:C’|77 I (dn" YA (dn?).
y'en?\¢?
Because of the structure of the expression above, we estimate only the first
term (two first hnes) Thus

5)C ] / Bé(a—y)
NP> it

0 Clc 1 ECI

> H ’e—&b(ﬂc’—y) _ 1’ |G(¢t,n? U y)]dyC"”l|+|”2|)\(d771))\(d772)
55/6771\(1

can be estimated from above by

1 — (1= §)

%/FO/FO/FO /Rd,H‘BMy LG n? Uy)ldy

% O+ |)\(dC1))\(d771)/\(d172)

which is, by Minlos lemma equal to:

%CC //
I'g JTg

Now notice, that for § € (0,1), n,m € N, n,m > 1

)|C1|+\77 -1

(G(¢H ) [C1HICINAC A (drr?).

3
—_

I—(1=8"=6) (1-6)"<dn,
0

e
Il

and

(n+m—1)m < 2",
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hence we obtain that the latter expression can be estimated from above by
§Z ccCB) / / AP G (¢t p?) |[CTIHICIN () M (dnp?).
C Iy JT

We can proceed in the same way with the second part of 155(1), and using the
assumption (5.11) we finally get

1~
~pPVG - .G

5 < 20]|Gll2c- (5.16)

C

P;Z”GHC < 5[|Glac, but

It remains to show that %
1 2
Z Z (1 - 5)IC e I/ / ]1{\01|+|02\22}
o Jro

155(22)6‘“ - / /
¢ Lo JTo Clent ¢2on?

x S T e #2ee® T <6—6E¢(m/,02) _ 1)

ze¢! z'ent\¢!

< [[ e ] <6—ﬁE¢<y’,ol> _ 1) Prawte

yEeC? y'en?\¢?

1
)

x G(CtUat, CU )OI XN (do YA (do®) A(dnP) A (dn?)

< 5/// |1_5|'<1'+'<2'//%|01%02l
T'g JTg JTg JT9 ro Jro

< TT =« I ‘e*BE‘ﬁ(w’,ch) —1

zect z'ent
X H 6—ﬂE¢(y,al) H ‘e_ﬁE(b(y/’Ul) — ].) ‘G(Cl U 017 CQ U 02)‘
ye¢? y'en?

x O HPIHICIHCIN (dae )M dn YA (d?) A (do?) A(dCHMC?)

which is equal to

5 / 11— o< e / / (0] 7[00
T'o JIg ro Jro

_BE (5,07 _BE?(y.0!
xHeﬁE(v )HeﬁE(y, )‘G(CIUUI,C2UO'2)|
zect yec?

x CIHICIN (Ao ) Mda?) A (dCHA(dC?).
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Using Minlos lemma and the fact that for ¢ > 0, e PE (@) < 1 for all
r € R? 0 € Ty we can estimate the latter from above by

/F /F )N [eeco®]
0 T 1@1

Z C\a [ elelt; }Ia\‘ C C |)\dC d§2)

o2C¢?

but this is the same as

T ] o
T'g JTo

% [C(1 = 6) + 2e°7@] | G(¢?, ¢2)] MdCHA(C?)

and because of the assumption (5.11) we finally obtain
% Hp(s(22)GHC < §/F /F [(2 _ 5) C]\C1\+|C2\ ‘G(Cla <2)| )\(dcl))\<d<2)
<5 [ [ 2O)HGE NN (57
Lo J T

= 0[|Gll2c-
Putting together the last inequality with the inequalities (5.15) and (5.16)
we obtain (5.13) and the Proposition is proven. O

Now we proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. As we mentioned before, we will use Lemma 5.1 to
show that the operator L generates a strongly continuous contraction semi-
group on L. To check the assumptions of Lemma 5.1, set A := f/, L:=Le¢,
D(A) :=Lyc, n = %, T, = P (which gives us A, = ﬁg) and g, = ﬁ = %.
First, using Proposition 5.2 and Lemma 5.2 we see, that (f), Loc) defines
a linear operator on Lo and that Py is a Lo-contraction. Moreover, putting
2C instead of (' in the Lemma 5.2, we obtain that for G € Lo¢, BG € Lo
and additionally (5.9) is fulfilled with w = 0. Finally, using Proposition 5.5
we obtain (5.8), thus all the assumptions of Lemma 5.1 are satisfied. ]

Using additionally [EK05, Theorem 6.5 we can obtain the following
Corollary 5.1. Assume that the conditions of the Theorem 5.1 hold, then

A\ [nt] N
<P;> G—-UG, n— o

for every G € Le and all t > 0 uniformly on bounded intervals.
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5.3 Vlasov-type scaling

We devote this section to the Vlasov type scaling of the pre-generator L
associated to the Glauber-Potts model. As in previous chapter, we show that
the scaled operator is also related to a semigroup on I's but in this case we
mainly focus on the evolution of correlation functions for the associated state
directly, i.e. we show that the respective semigroups converge in the space of
correlation functions which we will define later. This is stronger compared
to the previous chapter where the evolution of the system of correlation
functions was defined only in the weak sense (i.e. with respect to the duality
between Lo and Q¢).

5.3.1 Scaled operator f)wen and Vlasov operator LV

Let ¢ > 0, then the proper scaling of the generator L defined in (5.2) is as
follows:

L.F(y, 7)== Y DI F('.7) +§ 5 e PP DI F(y %) da
zey!
(5.18)
_ Vel _cBE® 1
+> DX F(y, ) + ;/de PECWAD D2R (4 A2 dy.
yeY? R

The symbol L. can be calculated in the exactly same way as L so we omit its
calculation here. Recall the following renormalization mapping of functions
on FO X Foi

(RG) (n', ) == " HG(" %), >0, (5.19)
with R-! = R.-1, and the definition of the renormalized operator:
LerenG(nt,0?) := R K 'L.KR. (5.20)

be the renormalized symbol of the operator L.. For j}wm we have the fol-
lowing;:

Lemma 5.3. For every G € By, (T'2) the operator
LeyenG (' 0%) = = (I'] + |n°[) G(n', )

+%Z/ G(n' Uz, &) He’gﬁ‘ﬁ(‘”y H

£2cn? yeeg? y'en?\&2

T Z / LnPuy) H o—eBo(y—2) H (e€5¢(y€r’) _ 1) 0

gtent zeg! z'ent\¢l
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together with the domain D(Le,en) = Loc (dense in L¢) defines a linear
operator in L¢.

Before we prove the Lemma let us introduce the following notation:

LG n?) = — (0" +n*]) G, n?),
Ll,gG(n17n2) = X Z / G 77 Ux f H e*&ﬁqﬁm y)
grcn? yee?
—eBo(z—y') _ 1
<11 (f ) as
y'EN?\2
L27EG(7717772> = 4 Z / 77 Uy H 6—85(]5(3/—&,’)
glent zcg!
,55¢(y7x/) o 1
X H <€ )dy.
z'ent\g! <

It is clear that [A/wen = Lo+ L1+ Ly and we will use this notation hence-
forth.

Proof. Take G € Lo¢, then clearly
1 Zerenlle < 1LoGlle + 1L1:Gllo + | L2-Gllo- (5.21)

Similarly as in the proof of the Proposition 5.2, we can calculate the Lco-
norm of L yen, and because || LGl < ||Gll2c (see the proof of the above-
mentioned Proposition) it is sufficient to estimate the norm of L, .G (also,
because of the symmetry, L, .G) hence:

|L150Hc—//
To J T

[ ot ume) JL ey

2 yeé'Q
—eBo(z—y') _ 1
x H ( ) da| "IN )A(drp)
y'En>\¢? c

/IGn 0n &) [[ 186 —v)lda
052c2 y€n2\£2

x CIM I\ (dn)A(dn?),

N>



5.3. VLASOV-TYPE SCALING 141

where we have used the fact that 1 —e=? < ¢ for ¢ > 0. Using Minlos lemma,
we can estimate the latter by

A [ [ ea e T 180 - v)lds
Iy JTo JTo JRE s
% O ‘”’72‘+|§2|>\(d£2))\(dn1))\(dn2)
and this is equal to
mm/ / (G U, €3)]dxCh HEIN (dg?)A(dn').
o JTo JRA
Using Minlos lemma again, we finally obtain
LiGle < Ze [ [ plicet et e xag )
¢ o JTo

il Bch/ / gln* ‘]G (n*, & )’CVI |+|52|)\(d£) (dﬁ)
I'o JTo

< ZeBC) Qo0 < o0

QlN

As result we get
~ ya Ve,
Ierenlle < (14267 + ZeP) | Gllac,

and as it was mentioned before, Lo¢ is densely embedded in L¢. ]

The natural candidate for the Vlasov generator is the pointwise limit of
L en as € tends to 0. We will denote it with LV and it is easy to see that

LYG(n' ) == (In'| + [n*l) G(n". n*) (5.22)
—I—%Z/ (n' Uz, &) (=)l H o(r —vy)
&2Cn? yen?\&2
+%Z/G 2 Uy)(—B)m e H oy — )
gtent x2ent\¢!

5.3.2 Semigroups associated with ﬁmen and LV

In this part we prove, that both [A/E ren and LV are closable and their closures
generate strongly continuous contraction semigroups, which will be denoted
Uwen( ) and Uv(t ) respectively. To do this, we apply the similar method
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to the one used in the previous section, namely the approximation by linear
contraction operators and the use of the Lemma 5.1. Let now § € R, be
fixed and define the approximation operators:

PsG' ')y = 3, Y (1-6 C1*'42/ /(%5)lal(%5)|02|

¢tcnt ¢2en?
— (2! 52
P e—EBE(2'0%) _ 1
I 11
zect z'ent\¢l €
—_eBE® "1
e ] (e BE?(y o) _ 1)
ye¢? y'en>\¢? c

x G(¢tUat, P Uo?)A(dot )M\ (do?)

and

_ IC I+1¢3 5\01| 5\02|
Z Z (1 /FO/FO o (5

¢tent ¢2en?
x [ (=8E%(x,0) [] (-BE°(y,0"))
ze¢t y€e¢?

x G(Ct Uot, U (dah)A(do?).
Next we derive some properties of the two operators defined above.

Lemma 5.4. Assume, that xe’® < C. Then both p&(s and Q(s are linear
Lc-contractions.

Proof. Let G € L¢, then

HPgaGHc—// Z Z (1-9 |< I+ //%(5 |0 (56) %I

¢tent ¢2an? o To
_ Eqb /, 2
X H efﬂE‘f’(x,aQ) H (6 HET — 1)
zeCl z'Ent\¢! €
7EBE¢(y/7UI) J—
< JLe™ @ 1 (e 1)
ye¢? y'En?\¢? c

X G(CM UG, CCUH)Ada A (do?) |CT I IN AN (dn?).
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This can be estimated by

/FO /FOGZ Z(1—5)|<1+|<2|//(%5)al|(%5)02|

cnt ¢2cn? Iy To

675ﬁE¢’ (z',0%) _ 1

< e ]
9

rect 2 eni\¢!

oeBEYW oY) _ |

5 He—ﬂE"’(y,Ul) H
€

ye¢? y'en?\¢?

x |G(¢MUe!, ¢ Ua?)| Mdah)A(de®)CI TN (dn" ) A (dn?)

and further by

/F/r Z Z(1—5)|<1|+|<2|//(%5)01|(%5>Uz|

0 ¢lept ¢2cn? o To
< ]I 1BE°@.0”)| ] 1BE°W. o)
50/6771\(1 y’6772\(2

x |Gt U, U )| A(dat) A (do?)C TN dnt YA (di?).

The latter is equal to

/F /r /r /r(1_5)K1MCQ|//(”@"’1'(%5)'0%

Lo To

X H |BE? (', 0”)] H |BE®(y,o")||G(¢t U, P U?)

CC'ET]I y/€n2

x A(do YA (do?) OIS HITUEN (dc YN (A A (dn ) Mdn?)
and it can be estimated from above by
/ / (1 — )<+l / / (58) 17" (50817 1P ! | ACo%]
I'g JTg T'o JTo
x |G(¢M U at, U o?)| CICHCIN Aot )N (da?) N (dCHA(AC?).
Using Minlos lemma together with the assumptions we obtain:
||pe,5G||C S/ / [C’(l _ 5) _}_%(563041 ¢t [0(1 _ 5) + %566(1@}\(2\
Iy JTo
x |G(¢! ) AdCHAAC?)
< [ [ l6t.)] ¢ RN = |6l
Ty JT
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But because for every o', 0%, (!, (? € I'y we have

] (-8E*(z,0®) ] (-8E*(y.0") | <

zed! y€eC?
11 I8E?@,0®)| T ] |8E%(y, 0",

ze¢t &

we can conclude that also
1QsGlc < ||Glle
for all G € L. O
Now define for § € (0,1)

(
EEZ:%(P€75—1>, ﬁ};::%(@(;_]l)'

We will now show that LS and LY approximate operators L. e, and LV
respectively.

Proposition 5.6. Under the assumptions of the previous Lemma and for
every § € (0,1), G € L¢ the following inequalities hold:

I (£5 = Leren) Gllo < 46]Gllac (5.23)
and
| (2 = £¥) Gllo < 48]Glac: (5.24)

Proof. We will omit the proof for it is analogue to the proof of Proposition
5.5. m

The next theorem follows from Theorem 5.1. Its proof is, with small
modifications of notation, the same hence we omit it here.

Theorem 5.2. Let
s < min {2Ce 27C? Ce PP} (5.25)

Then the operators (izaren,ﬁgc)) and <ﬁv,£20)> are closable. Their clo-
sures (I:wen,D([:a)) and (ﬁV,D(ﬁV)> resp. generate strongly continuous
contraction semigroups U yen(t) and UV (t) (resp.) on L and for G € Le,
e > 0 we have:

. [nt] . R R
(Pj G) S Uen )G, OG0V (1)G (5.26)

n

as n — oo for all t > 0 uniformly on any bounded interval.
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Now one can ask, whether the associated semigroups converge provided
the convergence of their generators. Given previous results we could expect
that the answer is positive. However, the main point of interest for us is the
evolution of the system of correlation functions for the Glauber-Potts type
dynamic, which is governed by the "dual" operators to the ones defined in
this section. In the next part we will give a proper meaning to the notion of
"duality" we have in mind.

5.3.3 Dual semigroups

Denote with Ao(dn', dn?) := CI"'H7IX(dn")\(dn?) and consider the dual
space to the space Lo, namely (Lo) = L™ (Ty x T'g, Ac). Recall the defini-
tion of the space

<o)

k(n', n2)c—(|n1|+|n2|)

Qe = {k :TF =R esssupg 2yerxry
equipped with the norm

IMloe = [Jo~ (" Ma(r,2)| .

Lo (Do xTo, A®N)

Recall also, that for every k € Q¢ we have |k(n',1?)| < ||k||o.C" 1+ for
A® Maa. (nt,n?) € Ty x Ty. Furthermore, the space Q¢ is isometrically
isomorphic to (L¢)" given the isomophism

Rek(n',n?) == C" Pkt n?), k€ (L)' (5.27)

Hence, we can define the duality between (Lo)" and Q¢ with help of the
following relation:

e A AL GO RN BCED
where G € Lo and k € Q¢, and
[((G.B))| < Gllcllk] oc- (5-29)
Notice that for every function k € Q¢, we have
k(' )] < |[k]| oo C 1+ (5.30)

for A ®@ A-a.e. (n',n%) € Ty x .
Let (ﬁ* D(ﬁ;)) and (E*V, D(ﬁ%})) be the images of the duals (in the

e,ren’

standard sense) of the operators (ﬁwen,D(fF)) and (ﬁV,D(ﬁV)>, resp.
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under the isometry Rc. As it was shown in [FKK10b], for a given operator
L, the L* is the dual of L with respect to the duality defined in (5.28). We
will use this fact to prove the following
Proposition 5.7. Let k € Qc, then

Lz enk (it n®) = = (In*| + 1]) k(n*, 1)

+%Z/ (n* \ z,n* U &) Heaﬁ‘“y)n

() e

zent yen? y'e€?
—eB(y—a') _ 1
#x X [ hauet v [T I (¢ ) e
yEeN? zent z'egl <
and

Lyk(n',n*) == (In'| + [n*]) k(n*, n%)
12y / o\ P U ) T (~Bola — 1) A(de?)

zent yee?

+%2/ (et \y) TT (~86ly — =) Mdgh).

yen? zegl
Moreover, for any a € (0,1), € > 0 and for all k € Qu¢:

L,k € Qo,  Lik € Qc. (5.31)

g,ren

Proof. As we mentioned before, we will use the duality (5.28) to calculate
the dual operators. Recall, that L. ,., = Lo+ L1, + Ly (cf. Lemma 5.3).
Let G € L, k € Q¢, then

({LerenG k)Y = (((Lo+ Lis + Lo.) G, k)) = ((G, (Ly + Li . + L} ) k)).

It is clear, that Lg = Lo, so we proceed to L7 .. We have

<<L1,EG,k>>:%/F /FE/ (0 U, ¢2) [ e

yee?

—efd(z—y’) _
<1 (f ) dokta’ A

y'en?\&2
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which can be rewritten as

/// G77U:1:§ Hegﬁd’my)
To JTo JTy JRE

yeg?
e—eBoa—y") _
<1 (* ) dek(n' 5 U AN N )
= /F/F (n',€%) Z/F (0" \ @,n° UE?)
= e—eBo(z—y") _ 1
< [Tee 1] ( - )A(dnwdém(dnl)
yeg? y'€n?

= (G, k).

In the case of Ly, we proceed in the same way. Hence we have obtained the

form of L: ren- Sending € — 0, we also get f/*v
Using the fact that for a € (0,1) and all x € R we have za” < —m, we
obtain

(M) gl 2 ‘ <L
c 1) €~ o

Similarly,

'C_(MIHMQDLiak(nl,n2) =

Inl+n%2/ (n \x,nQUSQ)

mEn

—eBo(z—y') _ 1
% —cBé(z—y) € 2
IIe 11 - AdE?)

yen? y'eg?
can be estimated from above by
e—EBo(z—y") _q
It |=1+[n?]+1€?| 2

Cln* |+‘77 ‘H ||Qac Z/ OCC ! ! H e ‘)\(df );

zen! y'eg?
which can be further estimated by
||k
1 ||Qac InIZ/ (aC) €2 H |Bé(z — )| M(dE?).
zent y'eg?

The last expression is equal to

%HkHQaC 1) |0t aBCP
. Inla™le
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thus we obtain

~(In* [+In? kllo
' l,e (77 1 ) — aC 111 o € ( )
In the same manner we can estimate
~(In* kllo
' 2,6 (77 ? 77 ) — O{C ].n a € ? ( )
thus (5.31) is proven for E:,ren‘ Because it holds for all non-negative €, we can

let ¢ — 0 obtaining the similar result for [2;‘,, which concludes the proof. [

Recall that if (5.25) hold then (ﬁwen,D(ﬁe)> and (ﬁv, D(f/v)) generate

strongly continuous contraction semigroups Us ,en(t) and UV (t) (resp.) on
Le respectively (cf. Theorem 5.2). Let now U, (t) and Uy (t) be the

e,ren

respective dual semigroups and denote with (A];Ten(t) and Uy (t) their images

under the isometry Rc and ([:*E,Ten,D(f,:)> and (ﬁV,D(f}*V)) are their
weak*-generators (in the weak*-lim sense), see e.g. |[Nee92|.

Unfortunately, the strong continuity of U e,(t) and UV (t) (resp.) on
Lc is not sufficient to assure that the corresponding *-semigroups will be
strongly continuous, they are weak*-continuous though.

The short procedure which we will introduce now is valid for both U* (t)

and U7 (t), hence for the simplicity we will use an abstract Co-semigroup T'(t)
on some space X. For more details, see [Nee92, Section 1.3].
Define the semigroup dual of X w.r.t. T(t) as

X© .— {x* cX*: 1%1 |T*(t)x* — z*|| = 0} . (5.34)

It is 7*(t)-invariant and if A* is the weak*-generator of T*(¢), then X© =
D(A*). Now consider T(t), the restriction of T*(¢) to the subspace X©,
then from the definition (5.34) it is clear that T®(t) is a strongly continuous
semigroup on X®. Let A® be its generator. We have the following description

of A® in terms of A*:
Theorem 5.3 ([Nee92], Theorem 1.3.3). A® is a part of A* in X©, that is

D(A®):={z e D(A"): A'ze X}
Az = A*z, 1z € D(A).
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Applying this scheme to the semigroups U. ,,(t) and UV (t) and their
(t) and
U2 (t) acting on the (respectively invariant) subspaces of Qc. Let o € (0,1),
then

corresponding duals, we obtain strongly continuous semigroups Ue

e,ren

Q. C (ﬂ D(ﬁ;,ren)> ND(L). (5.35)

e>0

Next proposition shows that the space Q,¢ is a good candidate to work with
when considering Vlasov scaling.

Proposition 5.8 ([FKK10b|). Assume that (5.25) holds, then there exists a
constant o = ag(s, 6, C), ap € (0,1) such that for all o € (aw, 1) the space
Quc is UZ(t) and UL, (t)-invariant for all € > 0.

e,ren

Proof. By (5.25) we have
»#[P < min {C/B(I)e_cﬂq), 205@6_206(1)} ,

using this and the fact that the function f(z) = ze™" increases on (0, 1) from
0 to e7! we have »3® < e~!. This implies, that the equation f(z) = »x3®
has exactly two roots, say 0 < z1 < 1 < x9 < 4+00. Using (5.25) again, we
obtain z; < CBd < 208 < x,.

If CpP > 1, we set ap := max %70;5@’ %} < 1 which gives us CP <
20C6P and 21 < 1 < aCpP. In the case when z; < CFP < 1 we set
Qp = max{%, C"”—ﬁl@, %} < 1. That gives CBP < 2aC (P and x; < aCBP.
Then, for all o € (g, 1) we have

r1 < aCpd < CBP < 200D < 2CHP < x4 (5.36)
and 1 < aC < C < 2aC < 2C, thus the following inclusion hold:
ﬁg(j C ﬁgac C ,CC C ﬁac. (537)

A

Setting aC' in the place of C'in Theorem 5.2 we obtain, that (Le yen, Loac) and
(f/V, Lonc) are closable in L, and their closures generate strongly cqntinuous
contraction semigroups on L,c. We will denote these semigroups U, c ren(t)
and Uay(t) respectively. First observe that, for G € L¢, Uv(t)G, Uay(t)G €
L.c and

Oy ()G — Uy G O.v()G — Oa

oS “Uv(t)G - @Esg]G

+|
aC

< HUV(t)G . Q(?]GHC + ‘ U.v(0)G — O a

aC

— 0,
aC
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as & | 0, hence Uy(t)G(n) = UyyG(n) for A ® A-a.a. n € Ty which also
means, that Uv(t)G = AayG in Lo. Now let k € Q,c, then

({Uar (G, k)) = (G, Usy (Dk))

where by construction [A];,Vk € Quc. But G € Lo, k € Q¢ implies

{Uay ()G, kY) = ((Ov(t)G, k)) = (G, T3 (1)k))

thus U;7V(t)k = U (t)k € Que. We can proceed similarly with Ug‘ren(t)

We can conclude the proof using (5.35) and the fact, that U2(t) and

Ue (t) are restrictions of the corresponding *-semigroups. 0

g,ren

Let us summarize. From now on we will fix a € (g, 1); then by the
previous considerations the restrictions Ug?‘en( ), US*(t) of the correspond-
ing strongly continuous ®-semigroups onto the (invariant) space Q¢ are
themselves strongly continuous contraction semigroups. Obviously we have
Uee, (k= Uz, (O, UP*(t)k = Uy (t)k for all k € Quc and e > 0. More-
over, their corresponding generators L?f‘en, LSO‘ can be described in terms of
*-generators as follows:

D(L2e ) = {k € Quc|L?, ik € Q_ac} , (5.38)
D(Ly™) = { € Quc|Lik € Q_ao} : (5.39)
and it holds:
Lo k=L, .k for ke D(L2,) (5.40)
and
L% = Lk, for k € D(LY%), (5.41)

for every € > 0.
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5.3.4 Convergence of the semigroups

In what follows we prove several useful lemmas which we will use in the proof
of the main result of this part. Recall the approximation operators

€5G77 %) Z Z (1-46 |Cl|+42/ /(%5)al|(%5>g2|

¢tent ¢2an?
_ D (z! o2
e o e—EBE('0%) _q
e Tl
$€Cl $/€7]1\Cl €
_eBE® / 1
<« T 1] (6 R - 1)
yee? y'En>\¢? c

x Gt U, P Uo?)A(dot )M\ (do?)

and

QG2 =3 3 (1= §)l e /F/F (520)7 (326)"

¢tent ¢2cn?
x 1] (=8E%(x,0) [] (-BE°(y,0"))
ze¢t ye(?

x G(Ct Uah, U (do')A(do?).

Denote with 15;5, Q§ their respective duals (with respect to the duality
(5.28)). Because the duality preserves norm, the *-operators are also lin-
ear contractions in Q¢. In the following we will show some properties of
these operators. First we calculate the explicit form of P 2 s and Q5

Lemma 5.5. For 6 > 0 and € > 0 the dual operators ]5;5, Q; have the
following form:

p Z Z ST I (5519 (50810

olcnl o2cn?

x [ e I =o'

2’ ent\ol ¥ E€n2\o2

/ / efsﬁE‘ﬁ(x,o'Q) -1 H efsﬁE‘é(y,al) -1
To JTo rect € 3
X

y€eC?

k(' \ o) uch, (n®\ o) U¢®) Ad¢HA(dC?)



152 CHAPTER 5. POTTS-TYPE MODEL

and
Z Z §) 7\ I\ (51 107
<[ / L) T (o2 .0h)
E(("\ o) Ut (n*\ o®) U ) MdChAdC?)
for k € Quc.

Proof. Let G € Lo and k € Q,¢, then standard calculation yields:

<<P55G k)) /ro /FOG 2 5)<1+|<2/F0 /FO(%6)|U1(%5>|02|

- ﬁE¢($,70'2) —
X H o—BE? (2,0%) H <€ : 1)
19

zecl zent\¢l
_eBE® (4 o
orer 1 e—EBE?(y'0t) _ 1
XHesﬁE(yﬁ) H (
19
ye¢? y'en?\¢?

x G(Ct Uat, CUaH)Nda )A(do?)k(n', n*)M(dn' )X (dn?).

But using Lemma 1.3 we obtain

/F/r/r/p(l_(s)ClMQ/F/F(%5)”1'(%6)"2|

—BE (2 o
x T == ] <€ ) - 1)
£

ze¢t z'ent
—86E¢(y/,0'1) —_
x [T e 1] (e 1
15
ye¢? y'en?

x G(Ctuat, CUa®)k(n' U, n* u?)
x A(do" ) A(do®)A(dCH)N(AC)A(dn*)Mdn?),
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and this is equal to

/FO /FOG(Q1 ) > D> / /FO §)ISNT HEN (5 5) 10 55)lo”!

olc¢l o2c(?
—_eBE® (2! .02
< I e« I (6 P —1>
ze(M\ol z'ent <
_eBE®
X H —aBE¢(yal) H ( PEN ) 1)
y€C2\o? y'en?

k(M \a)un', (C\a*)u ) A(dn )M (dn®)A(dC)A(dC?).

One can easily deduce the form of P; s from the expression above. We can
obtain Q§ by letting ¢ — 0. O

Next we show, that the space Q. is P ~ s and Q5 -invariant.
Lemma 5.6. Let k € Qu¢, then for all a € (ap, 1)
Prsk € Quc (5.42)
and
Qik € Quc. (5.43)

Proof. We will start by proving (5.43). Given k € Q,c we can do the fol-
lowing estimation:

(a0 (| @3k’ )

< (aC)m ] Z Z §) I\t I+ \o?|

olcnt o2Cn?

X (%5)"1|(%(5)‘72|/F H (BE?(z,0%)) H (BE®(y,0"))

To Ecl y€C2
< [k ((n" \ o) Ut (9 \ o) U )| MdCHAAC?).
By (5.30), this is less or equal than

k|| 0,0 (2C ~(In"[+17°1) Z Z ST NG (5510 (50610

olcnl o2Cn?

<!, /FO IT (550 T] (5520

ze¢t ye¢?

x (a0)IM AT 5 @ A de?)
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and this can be further estimated from above by

1]l gue (aC)~ (In*+1m?1) Z Z [aC(1 In \ot[+[n*\o?| <%5)\01|(%5)\02|
olcnl o2cn?
< [ [ T1 (@CsE%(a,0) ] (aCoE?(.0) MdcAC?)
o JTo ze¢l yec2

which is equal to

IIkJHQQC(aC)*(‘”I‘*'"Q') Z [aC(1 — 6]\ (5¢8)l | gaCBal|

olcn!

X Z [aC(1 |77 \o? ‘( 5)'”2|eo‘cﬁ‘b“’2|.

o2Cn?

Next, (5.36) yields

_ aCpP
[aC(l ) + e } <1
alC -

thus
(@) |Qik(n' )| < Kl

Because of the continuity of Q;, the latter holds also for k € Q,¢, hence
Qac 1s Qj-invariant. We can proceed in exactly the same way with P’; and
conclude the proof. O

From now on, we will consider the restrictions of P s and Q(; onto the
subspace Q,c, while preserving the latter notation. Denote D, the core of
the generator Lee je. D, := {k: € Qac|f/:7renk S QaC} and with Dy, the

g,ren?

core of the operator L%O‘, that is Dy := {k: € QaC|i/*vk € Qac}.

Proposition 5.9. For every € > 0 the following holds:

1/~
lim ||~ (p;5 . 1) k— L k|| =0, keD. (5.44)
510 (|0 ’ o
C
and
lim <Q5 - ]1) k— L2k =0, keDy. (5.45)
010 Qc
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Proof. The proof is similar to the one of Proposition 5.5, but for the com-
pleteness of this thesis we will present it here in details.
To prove (5.44), let k € D, and set

A o
5’5(0)]“(771,772) = (1= 0)"HITIR(nt, n?),
Wkt ) = 0y (L= o) T et

zent y' en?
e—EBo(y—z) _ 1
X / 11 (—> k(n' \ z,n” U*)A(dC?)
o 2 €
ye(
+ %0 Z<1 — )t H e—cBo('—y)
yen? o' ent
X / 1T <—> k(U n? \ y)AdCh)
o rect €
and let
PrPk(nt ) = (155,5 - P - 155,5)) k(n',n%)
then
1 * T Oo
g ( ed 1- Ls,ren) k (546)
Qc

e,ren

1 ¥ ¥ ¥ -
= H_(P 75(0)—|-P’5(1)—|-P€7’5(2)—L®a )/{I

Qc

First note, that for n > 0 and § € (0,1) we have (|JFKK10d])

1—(1—=9)" n(n —1)
<n-— <
0<n 5 <9 7

and thus

¢ (D ‘% (=87 — 1) b, o2) + ('] + 2D o)

(1— 5)\n1\+\n2\ —1
d

1 2
< [kl guead™ T + ']+ [y’

5 1 2
< Skl guea™ =7 (' + %)) ('l + 0’ = 1),
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and the function a”z(x — 1) is bounded for > 0. Next

ey |1 .
D | POk’ ) = (L85, + (' + o)) ) k(0" n?)
< D3 )1 — (=g I et
rent y'en?
eBely—z) _ |
[T = It U G
o yec?
+ D § ‘1 e _5)\772\—1‘ [] e
yen? z’enl
e—eBd(x—y)

xﬁ I

0 :EECl

‘WHLM 7\ ) A

which, using similar arguments as before, can be estimated by

1— (1=t
6

8|1k oue =(In*1+1n?1) Z

mEnl

x[:IIway—xﬂmcwwﬂﬂfwﬁuu&>

ye¢?

— (1 —¢)lI1
J

1
+ 5||k||gacc—(\nl\+ln2l)% Z

yen?

/ H 1B6(x — y)| (aC)M HICHTI=1 N (gt

0 ze¢t

Finally we obtain

J

50 CHkHQac%@'” Tt (' = 1) (In'] - 2) e

5
+ 5 CHkHQacm'" 2| (jn?] = 1) (1] - 2) 29"
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which tends to 0 as 6 | 0. It remains to estimate

1 2 1 1 1 2\ 52 1 2
=(n*[+n"h = — s\ I+ \e| o] o
PHIPDZ] ST ST (1= ) () 2d)

UlCﬂl 0'2C772

lot[>2 |o?]>2
% H o—BE?(2',0%) H e—BE? (Y 0t
LE/GT]I\O'l ylen2\0-2
/ / < e—eBE? (z,0%) _ 1) H <6€BE“’(y,ol) _ 1)
To JTo zecl yec2 €

(' \ o) Ut (n\ o) UC?) AdCH)A(dC?) .

But this less or equal than

[remta 2 L Z Z )N I (50819 (54817

O'C’I7 O’CT]

|ot|>2 |o2|>2
<[] T o220 ] 152°(0.0°
Lo JTo zect yec?

(@ C) 11 HHIC P10 1671 (1) A (d ),

and further (w.l.o.g. assuming that § < 1) we can estimate the latter by

1 2 1 1\ -1 %(5 o
In[+In* — — S\ \el aCpP
[kllg,cal” 172 37 (1= 8)l (ac )

01C771
|ot>2

Y

gl

lo
X Z (1 — )\ (%e“cﬁq’) .

JZCUQ
lo?[>2

But as in [FKK10d|, this is less or equal to

6||llguca™ o' (1| = 1) & | (In*| = 1)

Summing up previous considerations, we obtain (5.44). Because the proof of
(5.45) is completely analogous, we will omit it here. O

The proof of next lemma can be found e.g. in [FKK10d|.
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Lemma 5.7. Let X be a Banach space with a norm ||| x; A and B be linear
contraction mappings on X. Let Y with a norm || - ||y be a Banach subspace
of X such that Y is invariant w.r.t. B. Suppose also that there exists ¢ > 0
such that for any f €Y

|Af = Bfllx <cllflly- (5.47)
Then, for any m € N and for any f € Y
[A™f = B" fl|x < cm||fly- (5.48)

Now we proceed to the main result of this part, namely we show the
convergence in Q¢ norm of the scaled semigroup to the corresponding Vlasov
semigroup.

Theorem 5.4. Let (5.25) hold and let

¢ = sup ¢(z) < 400, (5.49)

zcRd

then for any o € (ap, 1) and k € Qu¢

0o )k — U&a(t)k‘

e,ren

(5.50)

lim
e—0

= 0.
Qc

Proof. Let k € Q,c and recall the approximation operators ]5;5 and Q;.
Using previous reslts and Corollary 5.1, we have

(15;5) 0% 0k and <Q§>m k— U9()k (5.51)

e,ren

in the space Q,¢ with the || - ||o. norm. Hence, using the triangle inequality
we can write

|

k

. A\ 3]
< |z on - (£2)"

0ee (#)k — Uga(t)k‘

e,ren

Qc Qc

o (@) kv

) @)

and because the two first terms on the right hand side tend to 0 as ¢ | 0, it
remains only to show, that

)" @0)"

Qc

k —0 (5.52)

Qc
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as ¢ — 0. Using Lemma 5.7 the latter can be deduced from the fact that for
every €, 6 > 0 there exists ¢ > 0, such that

|22
But for any n',n?, ¢t 2 €Ty

[ o= [ e

sk — Qik

i < edc||kllg,e- (5.53)

z'ent\ol y'en?\o?
—eﬂE¢(za ) 1 e—s,BEd’(y,ol) -1
X
zed! ye¢?
- H (_5E¢<:E7 02)) H (_BEd)(yv Ul))
ze¢! yec?

= [1BE(z,0*) || (BE®(y,0"))

zeC! yec?
% H e*EﬁE@(wl,O‘z) H 6*813E¢(yl:0'1)

2/ ent\ol y'en?\o?

1— —eBE®(x,02) 1— —eBE%(y,01)
X H ¢ 3 5 H ¢ 3 - —1f.
sect efE?(x,02?) ! eBE?(y,ol)

Using the fact that for aj € [0, 1] we have
L= JJaw <> (1—ax)
k k

we can estimate the latter expression by:

[[BE(,0%) [ (BE*(y,0"))

ze(t ye¢?

X Z <1 — 6_56E¢(5’3'702)> + Z (1 — 6_55E¢(9'701)>
a/ent\o! y'en?\o?
1—e —eBE®(x,02) 1 o e—eﬁE¢(y,01)
2|1 +> |1
BBz, 0”) By, ")

ze(l! ye(?
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Next, because 1 —e™® < a, a > 0, this is less or equal than

[T BE(,0%) [ (BE?(y,0"))

ze(! y€eC?

X Z (55E¢(x’,02))+ Z (€5E¢(?//701)>

z'enl\ol y'en?\o?
;91 1:“,5'2
1 678,8E¢(I,0'2) 1 —eBE?(y,0")
+ Z (1 efE?(x,0?) + Z ! efE?(y, o)
ze¢t y€e¢?
;gg ';g4
Hence the norm
D* ke — Qk
‘ &9 Q6 Qc

can be estimated by

() SN (12 )1 ()7 (1= )N (o)l

olcn! o2cn?

/r /p [T (BE?(x,0%) [](BE®(y.0") [Sy + S2+ S5+ Sil

0 ecl yECQ

|k (" \ e ) U (" \ 0®) U ¢ [ MdCHA(dC?).

and further by

o [ #6
a1+ |Hk|| oC Z Z In\ <E)

olcn! o2Cn?

o]

(1— §)7\" (%) -
(5.54)

/F / (aBCE(w,0%) TL(@BCE(y.01)) 3 SMACIAGCR)

0 GCI y€<2

Using linearity of integral it is enough to estimate each of the four terms
above.
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Thus, starting with S; we get:

o [ #6
o+ ‘||k:|| . Z Z \n\ (E)

olcnt o2Cn?

o] %l

lo
_ ‘772\0.2| %5
(1-2) (_a C)

/FO/F [ [ (@BCE?(z,0%) [ (aBCE*(y,0"))

0 ECI yGCQ

x> (eBEC(,0%)) MdCHA(dC),

z'ent\ol

but this is equal to

o ([ 56
LRl Z S (1- g (:_C)

olcnl o2cn?

lot|

02|
_ o2\e?| [ 20
(1- ) (a C)

x ePC2I0%| LopCPlo | Z (eBE?(2',0%)).

z'ent\o!
Using (5.25) and (5.36) we can estimate the latter by
g o'l 2 0’2 0'2
c00 e 32 3 (1=8) 57 1= ) g |
olcnt o2Cn?

Let [n'| =n and |n?| = m, then

g 0'1 0’2 0'2
Z |77\01| |77\ \5| \Z |02| |77\ | slo®l

- (n S CETEd f ()i -arts
- om0 i i
— (11— 8)dn(n ~2) s

X 5mi§:l (m(T 1—_1);)!1‘ (1= )4

< (1-19)0*n(n —2)m < oo.

Note also, that the case i = 2 (i.e. with Sy) can be estimated in the same
manner. Thus the terms containing S; and Sy in (5.54) can be estimated by

e(1 =) B0l kllaca™ I (| P17 + [0 ) < eoA|klac (5.55)
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with Ay = Bésup, ey [@™™ (n®m 4+ nm?)]. We proceed now to the esti-
mation of terms which include S; and S,. For the case i = 3 we have:

o 76 2\ 52 76 o]
Al oo Z 3 (1) <E> (1= 5) |(E>

olcn! o2Cn?

X/r/r H(BE¢($,02))H(aﬁC’E¢(y,al))

o]

zect ye¢C?
—56E¢(:va ) | . )
x 2; 56 B on ) (O IMACHMC).

By Minlos lemma this is equal to

o 70 o' 2\ 52 20
e 33 (1 - ) (E) (1= 6 (E)

olcnl o2cn?

Y / / / [1 BB 0%) [ (@BCE(y, ")

z'eClux yeC?

a2

L LT oY (O A A
X - 55E¢(l‘,0‘2) (a ) (O[ )x<§)(C)
and because (see [FKK10d|)

1 — e—aBE¢’(:s,cr2)

e (1_ =BE(z,07) )§5(5E¢<$702>) :

the latter expression can be estimated by:

o P o] 2\ 52 0 lo
e 33 (1 g (E) (1— 5) |(E>

Cl"/:]/ro/ gl (BE*(2',0° I;(OZBCE%,JU)

x (BE(xz,0%))* (aC)<' (aC)dzA(d¢NdC?)

al

and further by

1 1 2 2 5 |0-2‘
PP ke Y3 =8 0 s (2] e

olcnl o2Cn?

/F / [ (BB, 0%) (BE*(z,0%)* (aC) <" (aC)da(dcY).

IECI
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The integral in the last expression can be calculated:

/F / [ (BB, 0%) (3E*(z,0%)* (aC) < (aC)da(dCY)

/e(l

/Z (BE(x,0)° T[ (BE*(,0%) (aC)INdCY)

O ze(t z'e¢t\z

< 53l0*) / S (5 ,0%) T[] (BE,0%) (aC)<IAdCY)

0 zect z'e¢\x

—aﬁCqﬁ]az]/ / (BE(x,0%)) dz [ (BE®(2/,0?)) (aC)<'IA(dC")

z'e¢t
_ 015205|0'2|26a50©|0 |

thus the value of (5.56) is less or equal to

ca?Coal” T |[koe Y (1= 0) gl S (1 — g) T gl g2

olcn! o2Cn?

(5.57)

Finally, let us estimate the second sum in the latter expression (let |n?| = n):

n

2\ 62| ¢|o2 n! n—
Z (1_5)|7l\ \5| ||0-2|2: ka‘2(l—5) k5k

02Cn? k=1
- n! n—k ¢k

= k(1—0)""%s

£ (n—k)!(k — 1)! (

“ n!

— 1_ 5 (n—l)—(k—l) 5k—1

on 2 ((n—1)— (k- )k — 1)! (1-9)

! (n—1)!

o 2 - i (n—1)—k ¢k
_5n§ m— ,k!(1 5) b
< on? < o0.

The similar calculation for the part with S, allows us to estimate the S3+ .S,
by:

802 O3| klaca™ T (10t + 1%12) < edAs|k]lac (5.58)

with 4y := af2Cgsup,, ey @™ (n? + m?)].



164 CHAPTER 5. POTTS-TYPE MODEL

Summing up the previous considerations, we obtain:

|

and thus (5.53) is fulfilled. Using Lemma 5.7 we get (5.52) and (5.50) follows,
and the corresponding scaled semigroup converges in Q¢ to the semigroup
associated to the virtual system, U7 (¢).

Plsk — Qsk

o <ed (A1 V Ad) |kl oue (5.59)
C

]

5.3.5 Vlasov-type equation for the model

To conclude this chapter, we will derive the Vlasov-type equation for the
Glauber-Potts model.

Theorem 5.5. Assume (5.25) and let functions p} and p3 € B(R? x R?) be
such that there exists some « € (g, 1) for which the following holds:

ess sup(, ,yeraxra 0o, y)| < aC,i=1,2
and assume that
ko(n',m%) = ex(po,n') - ex(pg, n?).

Then the Cauchy problem

(5.60)
ko = ex(po)

is well defined in Qu.c and its mild solution k; = U‘(})a(t)ko € Q,c has the

form k:(n',n?) = ex(pt,nYex(p?,n?) where p}, p? satisfy the following equa-
tions:

GPl) = —pile) e PN

and
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Proof. Using the assumptions and properties of Uﬁ?a (t) it is obvious that &k, =
U&“(t) € Q.c and that it is strongly differentiable with respect to the norm
in Q,c. The equations for p; and p? can be deduced by inserting k:(n', n?) =
ex(pi,n')ex(p?,n?) into the equation (5.60), similarly as in Section 4.4. Note
also, that k; € Q,c means that

€SS SUP (5 1)) cRd xR |pe(,y)| < aC.
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