
Diploma Thesis

An Accurate and Efficient
Algorithm for Real-Time

Localisation of Photoswitchable
Fluorophores

Steve Wolter

Examiners: Prof. Dr. Franz Kummert
Prof. Dr. Markus Sauer

Supervisors: Dr. Mark Schüttpelz
Dr. Marko Tscherepanow

Submitted to the Faculty of Technology
Conducted at the Department of Physics

October 2008 to February 2009

Abstract

This work scrutinises the deconfinement problem of photoswitching microscopy.
The task of deconfinement is locating the sources of fluorophoric emission with
subpixel accuracy in large sequences of images, which are acquired by temporally
confining photoswitching microscopy.

The preceding work on this task is summarised and formulated with a stan-
dardised terminology. Then, the novel approach of motivational fitting is in-
troduced, which greatly reduces the number of nonlinear fit attempts that are
needed. A complete algorithmic concept and an implementation are given for this
approach, along with a visualisation based on weighted histogram equalisation.

The resulting implementation in C++ code is verified and used for extensive
testing of the chosen algorithms and of the important alternatives. Major parame-
ters are determined experimentally on both real and simulated data. Additionally,
it is proven that the deconfinement problem can be solved well within the real-
time domain for a wide range of acquisition speeds and parameter choices. This
includes the published parameters for the major temporally confining photoswitch-
ing microscopy methods.

This real-time capability alleviates the computational burden of temporally
confining photoswitching microscopy and can considerably aid wide-spread use
of these methods.

Contents

1 Introduction 1
1.1 Photoswitching microscopy overview . 1
1.2 Temporal confinement and deconfinement 2
1.3 Motivation for and goal of present work 3
1.4 Structure of this Thesis . 3

2 Theory of photoswitching microscopy 4
2.1 Microscopy . 4
2.2 Photoswitchable fluorophores . 6
2.3 Photoswitching microscopy . 9

3 Algorithmic theory 12
3.1 Image processing . 12
3.2 Levenberg-Marquardt parameter estimation 24
3.3 Elementary statistics . 27

4 Implementation of a deconfinement program 29
4.1 State of the Art . 29
4.2 Specification . 31
4.3 The rapidSTORM engine . 37
4.4 The rapidSTORM image construction 44
4.5 Guessing the spot standard deviation . 50

5 Experimental material and methods 52
5.1 dSTORM image acquisition process . 52
5.2 dSTORM stacks selected for testing . 54
5.3 Stochastically generating data sets . 54
5.4 Measuring error rates in candidate search stage 59
5.5 Computational hard- and software . 59

6 Results and discussion 60
6.1 Evaluation by comparison with Schüttpelz implementation 60
6.2 Candidate search . 61
6.3 Spot fitting and judging stage . 67
6.4 σ estimator . 75
6.5 Real-time computation . 77

ii

7 Conclusion and Outlook 78
7.1 Conclusion . 78
7.2 Outlook . 79

A Credits 80

B Proof of recursion formula for sum of squares 91

C Schematic overview over rapidSTORM system 92

D Tables 95

E Schüttpelz implementation 103

List of Figures

1.1 Microscope image of cells labelled with fluorescent dyes [41] 2
1.2 Comparison of conventional and photoswitching imaging 3

2.1 Besselian point spread function and Airy disc 5
2.2 Franck-Condon and Jablonski diagrams illustrating fluorescence . . . 7
2.3 Box model for Cy5 molecule . 8
2.4 Illustration of the emission profile for unresolved light sources 10
2.5 Principle of temporally confining photoswitching microscopy 11

3.1 Examples for structuring elements (SE) in matrix representation.
The circle indicates the origin. 17

3.2 Example for 1-dimensional fillhole transformation 19
3.3 Typical transfer functions . 21
3.4 Example histogram equalisation . 23

4.1 Typical dSTORM source image . 30
4.2 Illustration of the terminology used for deconfinement 32
4.3 Typical dSTORM image smoothed with Spalttiefpass 39
4.4 Example for a size-limited binary sorting tree 40
4.5 Candidate detection . 42
4.6 Comparison of histogram normalisation results for different weight

parameters . 46
4.7 Activity diagram of the rapidSTORM image viewer 49

5.1 Optical wide-field setup used for dSTORM 53
5.2 Histogram of camera background noise 55
5.3 Histogram of camera background noise, corrected for A/D converter

bias . 56
5.4 Stochastically generated input image . 59

6.1 Comparison of resulting images for specimen 1 61
6.2 Histogram of fit goodness by candidate quality 62
6.3 Error rates on generated samples by threshold 69

iii

6.4 Localisation amplitude histogram on real specimen and noise 69
6.5 Effects of varying spot fitting mask size on spot fitting and fit judging

error . 70
6.6 Change of localisation precision with threshold and noise 71
6.7 Spot time traces showing fluorophore drift 73
6.8 Average errors in σ estimation . 75
6.9 Number of localizations used for σ estimation 76

C.1 UML diagrams for parallelized rapidSTORM engine 93
C.2 Overview over the complete rapidSTORM system 94

List of Tables

4.1 Versions of libraries used in rapidSTORM v1.0 37

5.1 Real specimens used for rapidSTORM verification 54
5.2 Stochastically generated data sets . 58

6.1 Localisation statistics on real specimens by smoothing algorithm . . . 63
6.2 Localisation statistics on the generated specimens by smoothing al-

gorithm . 64
6.3 Localisation statistics for fillhole scheme on generated specimen . . . 66
6.4 Effects of smoothing mask size on spot and localisation error rates . . 68
6.5 Localisation precision of real quantum dot specimens 72
6.6 Comparison between fitting with fixed and variable σ parameter . . . 74
6.7 Comparison of computation and acquisition times 77

D.1 σ estimator error statistic for 5 kHz photon emittance rate 96
D.5 Effect of M0 on localization count and computation time 96
D.5 Effect of M0 on localization count and computation time 97
D.5 Effect of M0 on localization count and computation time 98
D.5 Effect of M0 on localization count and computation time 99
D.2 σ estimator error statistic for 10 kHz photon emittance rate 100
D.3 Spot finder statistics for erosion operator 101
D.4 Effects of smoothing mask size on spot and localization error rates . . 102

List of Algorithms

1 Non-maximum suppression . 20
2 Levenberg-Marquardt algorithm . 26
3 Basic deconfinement algorithm . 33
4 Motivationally thresholded deconfinement algorithm 34
5 Spot candidate search . 38
6 Spot fitting process . 42
7 Incremental update of target image . 48
8 σ estimation . 51

iv

Chapter 1

Introduction

I have seen the cultivated man craving for travel, and for success in
life, pent up in the drudgery of London work, and yet keeping his spirit
calm, and perhaps his morals all the more righteous, by spending over
his microscope evenings which would probably have been gradually
wasted at the theatre. — Charles Kingsley ([29, pg. 42])

1.1 Photoswitching microscopy overview

The optical microscope has been a core instrument of science for centuries. Be-
ginning with the first microscopes built by Galilei [5] and used by early scientists
such as Hooke, the microscope has helped revealing countless mysteries. For some
time, it was thought that the resolution achievable by microscopic instruments
would only be limited by the skill of microscope builders in choosing better and
more precise lenses [34, pg. 8].

In 1873, Abbe discovered that the resolution of the standard optical micro-
scope is limited by the laws of physics to roughly 200 nm for visible light. This
discovery and the unbowed desire for images of smaller and smaller particles have
motivated researchers to develop several methods which achieve higher resolu-
tion. Amongst these are prominent methods such as near-field microscopy, which
brings the objective very close to the sample to reduce interference, the phase con-
trast method, which exploits phase information from the light wave, or confocal
microscopy, which limits illumination to the focal area.

In the 1990’s, researches formulated a fundamentally new way to circumvent
Abbe’s diffraction-imposed resolution limit: Instead of finding ways to reduce
the apparent width of a point light source, they tried to differentiate between
close light sources in other ways. The resulting methods, which are summarised
under the term photoswitching microscopy [22] (or, by some authors, “far-field
nanoscopy”), enhance resolution by isolating these close light sources. Once iso-
lated, they can be localised with high precision – at least one order of magnitude
better than the classical diffraction limit [53]. This isolation is termed technically
as the confinement.

The confinement of light sources is achieved by using optically switchable fluor-

1

Figure 1.1: Microscope image of cells labelled with fluorescent dyes [41]

ophores1, i.e. molecules that can be switched between a fluorescent “bright” state
and a non-fluorescent “dark” state by irradiation with visible or ultra-violet light.
Typically, an optical switch absorbs radiation at three wavelengths: One activation
wavelength which switches it from the dark to the bright state, one deactivation
wavelength which reverses the process and one readout wavelength2 which excites
fluorescent behaviour if the switch is in the bright state. This switching property
can be employed to confine fluorophore emissions by activating only a subset of
the total fluorophores.

Photoswitching microscopy has important applications in biological research.
Already, “the three-dimensional organisation of distinct nuclear pore complex com-
ponents has been mapped, and protein clusters on individual synaptic vesicles
and in synaptic active zones” [33] have been resolved alongside with a multitude
of other phenomenons. Its advantages over other resolution-enhancing methods
are so striking that the Nature Methods journal made it its method of the year
2008 [11].

1.2 Temporal confinement and deconfinement

A major group of photoswitching microscopy methods consists of the temporally
confining methods, which irradiate the whole sample with a mixture of activat-
ing and deactivating light. This effectually activates only a small subset of the
total fluorophore population at any time, effectively confining the emissions of the
activated fluorophores. If a long sequence of fluorescence images with short expo-
sure times (“stack”) is taken, it is likely that each fluorophore will be visible on at
least one image in the stack: Fluorophores that were inseparable in space are now
separated in time.

To arrive at a target image, the confinement must be reversed. For temporally

1A fluorophore is a molecule that absorbs a photon at a short wavelength and subsequently emits
a photon of a longer wavelength (so, lower energy). Fluorophores are widely used in biological
applications to make cell structures visible, as seen in Figure 1.1

2This readout wavelength is not necessarily distinct from the deactivation wavelength, depending
on the method used.

2

(a) Signal averaged over 13 minutes. (b) Image enhanced by photoswitching
microscopy

Figure 1.2: Comparison of conventional and photoswitching imaging. Both pictures are
from the same source stack depicting fluorescing cell structures.

confining methods, this deconfinement process consists of extracting fluorophore
position information from a stack S and combining this information into a single
image that shows the fluorophores visible in S with enhanced resolution.

1.3 Motivation for and goal of present work

Traditionally, deconfinement had a high computational cost: The several thousand
images taken along the time axis must each be searched for fluorophore emissions
and the most likely source position of these emissions must be localised, taking
hours of computing time even for small stacks. This computational cost is greatly
hampering the practical applicability of temporally confining photoswitching mi-
croscopy since it delays experimental results and forces buffering of input data.
It is rather desirable to have a program that can perform this computation in real
time – that is, parallel to and faster than the single images of the stack are acquired.

Therefore, the goal of this work is to devise, develop and deploy a computer
program that can reliably perform the deconfinement operation in real time and
requires a minimum of user interaction and parameter choice.

1.4 Structure of this Thesis

This work is divided into the following chapters: The theoretical foundations in
physics and computer science will be outlined in Chapters 2 and 3, respectively.
Chapter 4 describes how I implemented the real-time computer program for de-
confinement, while Chapter 5 gives the experimental procedures used for testing
the program with real and simulated data. Chapter 6 is dedicated to an in-depth
discussion of the results of these tests, while Chapter 7 gives a conclusion of these
results and summarises the possibilities for further research.

3

Chapter 2

Theory of photoswitching
microscopy

Every theoretical explanation is
a reduction of the intuition.

– Peter Høeg ([23, pg. 46])

Software engineers emphasise, for good reason, the relationship between soft-
ware development and the operational domain. Therefore, this chapter gives an
overview over the theory of photoswitching microscopy, which is naturally di-
vided into three parts: Firstly the field of microscopy, secondly the field of pho-
toswitchable fluorophores, and thirdly the combination of both to photoswitching
microscopy.

2.1 Microscopy

I assume the reader is vaguely familiar with the classical optical microscope, the de-
tails of which may be found in [5]. Therefore, I will limit this topic to an overview
over the microscope types, the concept of a point spread function and the concept
of resolving power.

2.1.1 Typology of microscopes

Microscopes are typified [34, pg. 343] into those that operate within one wave-
length of the specimen (near-field) and those that operate from larger distances
(far-field). Amongst the far-field microscopes, there are two major concepts: Ei-
ther the whole specimen is illuminated continuously (wide-field) or the illumi-
nation is concentrated through the objective lens (confocal). The wide-field mi-
croscopy techniques that operate on an externally illuminated specimen are further
divided into bright-field microscopy, which uses all light captured, and dark-field
microscopy, which uses only diffracted light1. From the major types of near-field,

1Contrary to some wide-spread beliefs, dark-field microscopy resolution is limited by the same
factors as other far-field techniques are. According to [37], the term n sinθ , which will be introduced
as the numerical aperture in Section 2.1.3, for a dark-field microscope is smaller than 1.4. This is
impressive, but by no means revolutionary.

4

Figure 2.1: Besselian point spread function and Airy disc

confocal and wide-field microscopes, the wide-field microscope is the simplest,
oldest, cheapest and most widely applicable2; both the near-field and the confocal
microscope are more precise, but the near-field microscope is limited to the speci-
men surface [5] and the confocal microscope is limited by its very narrow field of
view, requiring a linewise scanning of a specimen to acquire an image.

2.1.2 The point spread function

To define the notion of “precision”, the concept of a point spread function (PSF)
is used. A PSF of an imaging device is the intensity distribution of the image
generated by a point light source viewed through this device.

The theoretical PSF of a wide-field microscope is called an Airy disc and given
by [20]:

I(r)∝
�

J1(r)
r

�2

, (2.1)

with I(r) denoting the intensity in distance r from the light source’s position on
the image plane and J1 denotes the Bessel function of the first kind and first order.
Figure 2.1 gives a graph of the resulting point spread function.

2.1.3 Resolving power

The problem of resolving power is defined by Smith, King and Wilkins [48] as
“the requirement to distinguish light by two similar point objects separated by a
small distance”. If the optical instrument is sufficient to meet this requirement
for a specimen, a clear image is attainable and the image or specimen is said to
be resolved; if not, distinct point objects will be blurred into a single image entity
and the image or specimen is said to be unresolved. The resolving power is the
prime limitation of optical microscopy for very small entities like the details of cell
organelles.

2The microscope you have seen in school was probably a wide-field microscope.

5

There are several criteria for resolving power, the most common of which is
the one proposed by Lord Rayleigh [5, pg. 333]. Two light sources are said to
be Rayleigh-resolved if the distance between the point sources is greater than the
distance between the principal maximum of the PSF and its first minimum. When
referring to some entity as “resolved”, I will use this criterion.

For a wide-field microscope and an incoherently lighted object (such as a fluo-
rescing sample), the resolving power Y is given by [5, pg. 419]:

Y ≈ 0.61
λ0

n sinθ
(2.2)

with Y denoting the minimum distance between resolved point light sources, λ0
being the light’s wavelength in vacuum, n denoting the refractive index of the lens
and θ standing for the angles the marginal rays form with the optical axis. For
typical parameters, this results in a resolution of λ/2≈ 0.2µm in lateral direction.

2.1.4 The Gaussian approximation to a Besselian PSF

In section 2.1.2 I have described how the PSF of a wide-field microscope is given
by a Bessel function. While the Bessel function is, mathematically speaking, a well-
behaved and well-assayed function, it is very hard to compute and it is very hard
to find parameters for a Bessel function that fits a given intensity profile [28].

This problem has been successfully [44] addressed using a Gaussian model
function that approximates the Besselian PSF, even when the intensity profile is
distorted by capturing it with a pixelated device. This result has been used and
verified by many researchers [53, 4] and is an important precondition for practical
deconfinement.

2.2 Photoswitchable fluorophores

2.2.1 Fluorescence

The phenomenon of fluorescence was discovered by Sir George G. Stokes [20]
in the 19th century and has become a widely used tool in the time hence. It
is characterised by the absorption of light followed within nanoseconds by the
emittance of light of a longer wavelength.

Fluorescence has its roots in the mechanics of molecular excitation. When
a system absorb or emit light, its quantum state changes from one energy level
to another, with the difference between the energy levels given by the energy of
the absorbed or emitted photon. Each energy level corresponds to at least one
combination of quantum numbers for the system, which are chosen along the sys-
tem’s degrees of freedom. Molecules possess three major types of degrees of free-
dom [47]: vibration, rotation and electron excitation. These groups correspond
to characteristic energies on different scales3 and thus give rise to a complex and
broad spectrum of energy levels.

3Typically, 1 to 10 eV for electron excitation, 10−3 eV for rotation and 10−1 eV for vibration.

6

(a) Franck-Condon diagram. Image
from [50]. The horizontal lines
show energy states for an electron
in a quantum well, with the form of
the standing wave indicated in or-
ange. A transition from the ground
state (E0, v′′ = 0) to a matching ex-
cited state by fluorophore immission
is shown, along with the following
emission with lower wavelength.

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

S0

S1

S2

Excitation
Fluorescence

Phosphorescence

Ground state

Excited states

Triplet
states

Vibrational relaxation

Intersystem
crossing

(b) Typical Jablonski diagram. The hor-
izontal lines show energy states for
an electron. The triplet states and in-
tersystem crossing are important for
understanding fluorescent behaviour,
but outside of the scope of this work.

Figure 2.2: Franck-Condon and Jablonski diagrams illustrating fluorescence. The arrows
indicate state transitions, visible transitions in the colour of the necessary
emission or immission, invisible transmissions in black.

Not all transitions from this spectrum are equally likely. The International
Union of Pure and Applied Chemistry’s (IUPAC) compendium of chemical technol-
ogy [36] states that “the Franck-Condon principle is the approximation that an
electronic transition is most likely to occur without changes in the positions of the
nuclei in the molecular entity and its environment.” Due to this principle, state
transitions induced by photons often happen to be so-called vibronic transitions,
which change both the vibration and the electronic excitation states of the affected
molecule. Figure 2.2(a) shows a Franck-Condon diagram illustrating the likely
transitions.

A ground-state molecule is thus likely to be excited both electronically and
vibrationally by an incoming photon. The vibrational excitation is subsequently
lost due to collisions with neighbouring molecules [47], resulting in a lower energy
of the photon that is emitted during the electronic de-excitation. This is illustrated
in Figure 2.2(a) by the gap q01 between the blue and the green transition.

This simple principle of vibronic excitation, vibrational relaxation by collision
and electronic relaxation by light emission can result in fairly complex pathways in
molecules with multiple likely transitions. A very useful tool in these cases is the
Jablonski diagram, which displays the energy levels and transitions in a molecule.
Figure 2.2(b) shows the Jablonski diagram for a typical fluorophore.

7

N N+

1

2

3

4

5

CH3

HOOC

−O3S S3O
−

CH3 H3C

CH3 H3C

Length of electron box

Figure 2.3: Box model for Cy5 molecule. The polymethine chain responsible for fluo-
rescence is displayed in green along with its terminating nitrogen atoms. The
blue lines display the free π electrons, and the red numbers show the 5 carbon
atoms that give Cy5 its name.

2.2.2 Molecular Photoswitches

Sauer [45] defines a photoswitch as a molecule that “exhibits two stable and selec-
tively addressable states, a fluorescent and a non-fluorescent, which can be con-
veyed into another in a reversible fashion upon irradiation with different wave-
lengths of light”.

Photoswitches have been subject to large scientific interest since Irie et al. syn-
thesised the first artificial photoswitch [25]. Researchers have identified several
different photoswitchable molecules, amongst them the green fluorescent protein
(GFP)-related Dronpa molecule [45] and the carbocyanine Cy5 [20], and have
successfully invoked photoswitching behaviour in organic fluorophores such as
Atto-Tec’s ATTO 655 [56].

My work has primarily been conducted with images of Cy5-labelled structures,
since these have been most readily available. The structure of this dye is sketched
in Figure 2.3. In its fluorescent state, Cy5 shows an absorption maximum at
649 nm and an emission maximum at 670 nm [19]. This behaviour can be ex-
plained by assuming that the polymethine chain in the molecule centre (displayed
in green) allows essentially free movement of the π electrons (displayed in blue)
along its axis. The nitrogen atoms at its end form the walls of a one-dimensional
box with a length of L = kb, where k is the number of chain bonds and b is the
length of a chain bond, which can be approximated by the length of a carbon-
carbon bond in benzene (139 nm). The energy levels of an electron in a box with
length L are given by

En =
n2h2

8me L2 , (2.3)

with me being the mass of an electron and h being Planck’s constant.
If there the number of atoms in the Cy5 chain bond is N , there are N/2 electrons

8

occupying the En states. Therefore, the highest occupied state is n1 = N/2 and
the lowest free state is n2 = N/2+ 1. The smallest possible energy change for a
transition is therefore

∆E = En2
− En1

=
h2(n2

2− n2
1)

8me L2 =
h2(N + 1)

8me L2 (2.4)

and thus the longest excitation wavelength is

λ=
c

∆E
=

8me L2

h2(N + 1)
c, (2.5)

where c is the speed of light in vacuum.
This formula predicts an excitation wavelength of 579 nm, 70 nm from the

measured value and a good guess for such a simple model.
Using radiation with 633 nm wavelength, Cy5 can be switched from its flu-

orescent state into a dark state showing no fluorescent behaviour and recovered
from the dark state by irradiation at around 337 nm [19]. Widengren and Schwille
suggested in [58] this behaviour is due to isomerisation and back-isomerisation of
the Cy5 molecule.

2.3 Photoswitching microscopy

The photoswitches described in section 2.2.2 can be used to overcome the reso-
lution limit seen in section 2.1.3. Suppose a sample with very fine structures is
prepared with switchable fluorophores. If these fluorophores are all emitting pho-
tons at a given time and the sample is viewed under an optical microscope, the
Airy disks generated by the fluorophores add up and generate a single region of
very high signal, making distinction of individual fluorophores impossible under
noisy conditions. Figure 2.4 illustrates this effect. This overlapping effect is due
to the wave nature of light and principally unavoidable in microscopes with finite
lens dimensions [5].

When using photoswitches as light source, this overlap can be avoided by deac-
tivating most fluorophores so that only a small subset of the available fluorophores
is measured, independently of the deactivated fluorophores. As seen in the intro-
duction, these methods are called photoswitching microscopy methods.

The members of the first and older group of photoswitching microscopy meth-
ods, the spatially confining methods, activate fluorophores based on their loca-
tions. These methods use a beam of deactivating light with a donut-shaped pro-
file, which is used to deactivate all fluorophores in a part of the sample except
those right in the centre of the donut. If the centre is small enough, it will contain
at most one fluorophore at any time, effectively confining the sample emission to
the emission of this fluorophore. To measure the emission of the whole specimen,
the donut-shaped beam is moved over it, the emission at each point is recorded
and combined by a computer into a result image. There are several methods that
use this principle, including stimulated emission depletion (STED), ground state
depletion (GSD) and saturated pattern emission microscopy (SPEM) [22].

9

Figure 2.4: Illustration of the emission profile for unresolved light sources. If interference
effects are neglected, the three arbitrarily chosen emissions in this image add
up to the combined intensity profile. The emissions become unresolvable.

The second and newer group of photoswitching microscopy methods consists
of the temporally confining methods. Those methods do not address the fluoro-
phores in a sample by their spatial positions, but rather stochastically by irradiating
the whole sample with weak or short-pulsed activating or deactivating light. The
low intensity or duration of the irradiation causes only a small subset of the to-
tal fluorophore population to be activated, effectively isolating the few activated
fluorophores. The exact position of an activated fluorophore can be deducted by
fitting a model of the point spread function to the spatial intensity profile of the
emission. These positions can be reassembled into a target image. Figure 2.5
shows a sketch of the process. Methods for temporally confining photoswitching
microscopy include:

• photoactivated localisation microscopy (PALM)[1], which employs succes-
sive phases consisting of a short activating laser pulse and passive detection
of the fluorophores activated by the pulse,

• stochastic optical reconstruction microscopy (STORM)[43], which employs
pairs of cyanine dyes that exhibit switching behaviour and irradiates these at
low activation and deactivation power to achieve stochastic switching, and

• direct stochastic optical reconstruction microscopy (dSTORM)[21], which
greatly simplifies STORM by using a single photoswitchable dye instead of
pairs.

Generally, the spatially confining methods have the advantage of large noise
tolerance [22], but the necessary beam shaping and targeted readout necessitates
elaborate optical setups. Also, the speed of acquisition is limited by the scanning

10

Fluorophore-
labeled sample

Fluorophores are unresolvable
if activated at the same time

Isolated emissions

Confination

Nanometer-precise
localisation

Reassembly into
target image

Fluorophore positions

High-resolution target image

Figure 2.5: Principle of temporally confining photoswitching microscopy. From top to
bottom, this figure shows the process of confinement and deconfinement. The
deconfinement is shown in two steps here, localisation and reassembly. The
columns show three different times during the acquisition, and the rays depict
fluorophore activity.

process: The optical switches must be affected by activating light, recover from
the dark state and emit a sufficient number of photons before the focus can be
moved on. While this time can be reduced by parallelizing the process with mul-
tiple readout beams, such an approach introduces even more optical complexity.
Additionally, fluorophores and biological samples are subject to high stress in the
readout process: When the front of the donut, its centre and its back are moved
over a fluorophore, it must be switched off, on and off again in very short time,
therefore at a very high rate and with a very high excitation intensity.

In contrast, temporally confining photoswitching microscopy can be performed
with standard wide-field microscopes [21]. Since these microscopes measure the
complete specimen all of the time, all fluorescence emissions can be captured,
requiring fewer switching cycles to achieve the same number of fluorophore local-
isations. However, temporally confining photoswitching microscopy methods do
not provide immediate information about the location of active fluorophores and
rely on computational methods to find these emissions in the acquired images,
giving rise to the deconfinement problem introduced in the introduction.

11

Chapter 3

Algorithmic theory

The Feynman Problem-Solving Algorithm:
1: write down the problem
2: think very hard
3: write down the answer

– Murray Gell-Mann ([16, pg. xii])

Computer science offers two fields of research particularly useful to the decon-
finement task: image processing and function minimization. While methods from
the former field are used to process the input and output images on a pixel basis,
the nonlinear parameter estimation from the second field provides the transition
from the low-resolution stack images to the high-resolution target image. In ad-
dition, the notation and well-known algorithms for elementary statistics will be
introduced.

There will occur some linear algebra in this chapter. I will denote vectors and
matrices by bold symbols (like x), using lowercase letters for vectors and uppercase
for matrices. Specific elements of vectors will be denoted by one or two indices:
xn is the n-th element of the vector x, and X jk is the element in the j-th row and
k-th column of the matrix X.

3.1 Image processing

This section will give an introduction to digital images and will then introduce the
two large classes of image operators, the kernel operators and the rank operators,
along with their members important to the deconfinement task.

3.1.1 Images in the space and frequency domains

In the field of computer science images are treated as a multidimensional spatial
intensity (or colour, if necessary) distribution. Therefore, a two-dimensional image
f is a function of R2 → R that defines the intensity of the image in every point of
the R2 plane.

12

The infinite dimension and precision of such an image are, due to technical and
physical limitations, impossible to acquire and to represent with current camera
and memory technologies. Therefore, a finite and rectangular section of R2 is
divided into equally sized rectangles and the values of the integrals of f over these
rectangles are stored into a matrix P. This matrix is the discrete version of an image
f used in computational image processing, and a single element of it is called a
picture voxel or, for short, pixel. I will denote the pixels of an image at the integer
position (x , y) as Px y , where 0 ≤ x < W and 0 ≤ y < H if P is a W × H matrix.
Pixels can take integer values between 0 and G; this maximum value G is called
the depth of an image.

3.1.2 The frequency domain

An image that is defined by a function giving its intensity at each point in space
is said to be in the spatial domain. There are alternate ways to specify an image,
and one of those is the specification of the image-defining function f by its Fourier
transform.1 For the two-dimensional image function f (x , y), the Fourier transform
F(u, v) is given by

F(u, v) =

∫ ∞

−∞

∫ ∞

−∞
f (x , y)exp

�

−2πi(ux + v y)
�

d x d y (3.1)

Almost all functions occuring in practice can be described completely by their
Fourier transforms [42, pg. 167]. This implies that the function f (x , y) carries
no more information than F(u, v); both are just different ways of representing
the same information. Since the parameters (u, v) of the Fourier transform are
the frequencies of the sine and cosine terms, the Fourier transform is commonly
called the frequency representation of the image, or the image is said to be in the
frequency domain if it is given by the terms F(u, v).

Of course the same restrictions that limit the treatment of images to matrices
apply to the Fourier transforms of images. Therefore, the infinite integral of equa-
tion 3.1 is in practise replaced by a finite sum and the Fourier transform of the
W ×H image P is given by T with

Tuv =
W−1
∑

x=0

H−1
∑

y=0

Px y exp
�

−2πi(
x

W
u+

y

H
v)
�

. (3.2)

Smoothing in the frequency domain

Several image operations that have a smoothing effect on the image, such as those
that will be given in the next sections, can be described very elegantly in frequency
space. Smoothing operations reach the smoothing effect by reducing the differ-
ences between adjacent pixels, but largely keeping the differences between pixels
that are far apart from each other. Therefore, the short-range (and thereby highly

1The Fourier transformation of a function f is the representation of f by an integral over sine and
cosine terms. The weight for each infinitesimal part of this integral is given by the Fourier transform
of f , which is usually denoted by F .

13

frequent) oscillations in the image are reduced and the long-range oscillations are
kept. In signal processing terminology, such a filter is called a low-pass filter, and
therefore smoothing filters are called low-pass filters in imaging terminology.

A low-pass filter can be useful to enhance the signal-to-noise ratio (SNR) of
images. In the common case of stochastically independent noise and comparatively
smooth signal, a suitably chosen low-pass filter will remove mostly noise [12] and
thereby improve the SNR.

As seen in subsection 3.1.2, the frequency and the spatial domain are equiv-
alent. Therefore, the low-pass filters in the frequency domain should be equiva-
lent to some operation in the spatial domain. According to the convolution theo-
rem [10], for filters working by point-wise multiplication in frequency space this
equivalent operation is the convolution. The convolution of the image matrix P
with some other matrix W is the scalar product of P with all possible translations
of W, with the result values of the scalar products forming the resulting image ma-
trix. If the matrix W has few non-zero elements, the convolution can be computed
efficiently and low-pass filtering can be achieved without transforming an image
into the frequency domain. This class of operations is commonly known as kernel
operations and introduced in the following section.

3.1.3 Kernel operators

Definition of kernel operators

A kernel operation [42] is an operation which replaces every pixel with a weighted
sum of the pixels in its neighbourhood, with the weights depending on the position
of the neighbour relative to the pixel that is to be replaced. The weights for this
operation are usually combined into a matrix W, which is called the kernel. If P
denotes the source image for a kernel operation and W the kernel matrix of width
2mx + 1 and height 2my + 1, the application of W to P will be defined as

KW(P)x y =
+mx
∑

i=−mx

+my
∑

j=−my

Wi j · Px+i,y+ j (3.3)

Naturally, the time complexity of applying a kernel operator of width mx and
height my to an image of width w and height h is O(w hmx my)2. Especially
for large kernel operators (such as those needed for strong smoothing), this is
a forbiddingly high computational cost for the real-time domain.

Separable kernel operators

If a kernel operator can be written as the tensor product3 ⊗ of two vectors, it
is called separable. The distinct advantage of separable kernel operators is the
replacability of the operator application by the application of the two producing

2The O notation gives the factors to which an algorithm’s asymptotic runtime is proportional to.
The asymptotic runtime is, informally, the runtime for very large values of all involved factors, thus
only considering the largest power for each factor involved.

3The tensor product of two vectors a and b is by definition a matrix A with the height of a and
the width of b and elements Ai j = ai · b j .

14

vectors. Thereby, computational complexity can be reduced from O(w hmx my) to
O(w h max{mx , my}).

Kernel operators for noise reduction

Kernel operators are of great use for noise reduction since they can be used to
implement the smoothing low-pass filters in the spatial domain, as I have explained
in section 3.1.2.

There are three major candidates for a kernel-based low-pass filter: The Spalt-
tiefpass4, the binomial and the Gaussian low-pass filter.

A Spalttiefpass is a local averaging mask. It can be realised as a kernel operator
whose kernel elements are all equal to a constant c. For example, a 3 by 5
Spalttiefpass is given by















1
1
1
1
1















⊗
�

1 1 1
�

=















1 1 1
1 1 1
1 1 1
1 1 1
1 1 1















. (3.4)

It’s name is derived from the similarity to looking at the local part of the
image through an ideal slit. In effect, the operator averages the local neigh-
bourhood of a pixel to produce the smoothed pixel value. However, the
Spalttiefpass is somewhat unusual in image processing due to the strong
blurring side-effect and the undesirable frequency domain effects [30, pg.
173][42, pg. 57].

On the computational side, the Spalttiefpass filter is unique in its property of
not only being separable, but even having constant elements in the separated
vectors. This fact permits implementation in O(w h) time.

The Gaussian low-pass filter is a kernel operator whose matrix values approxi-
mate a two-dimensional Gaussian function. Gaussian low-pass kernels are
implemented in three variants: as floating-point matrices, as integer matri-
ces or as separable integer matrices. While the floating-point matrices allow
the best approximation to the form of the Gaussian function, they carry the
large computational cost of floating-point arithmetic. Therefore, Russ [42,
pg. 57] uses integer matrices that are optimised to “approximate the smooth
analytical curve of the Gaussian, while generally keeping the total of the
weights smaller than some practical limit”. The results are matrices such as















1 2 3 2 1
2 7 11 7 2
3 11 17 11 3
2 7 11 7 2
1 2 3 2 1















. (3.5)

4Direct translation: “slit low-pass”

15

If some accuracy in this approximation is sacrificed, the matrices may be
made separable, as in















1
3
4
3
1















⊗
�

1 3 4 3 1
�

=















1 3 4 3 1
3 9 12 9 3
4 12 16 12 4
3 9 12 9 3
1 3 4 3 1















. (3.6)

The binomial low-pass filter is a separable kernel operator built from two vec-
tors with vector elements from the binomic series. It is useful since it offers
a quick way to produce approximations to Gaussian smoothing masks of a
given pixel size. It was not used in this work since its application has the
same computational complexity as a Gaussian, but the construction method
can only construct a number of discrete standard deviations which do not
necessarily resemble the PSF. Further details can be found in [30, pg. 173].

3.1.4 Rank operators

The class of rank operators is the second important class of elementary image
transformations. Rank operators are not expressed algebraically, but rather by
constructing a set of pixels, ordering this set and then taking a pixel with a given
rank in that ordered set. Therefore, the basic operations of the class on images F
and G are identical to the basic set operations: the union F∪G, intersection F∩G
and complementation C(F) [49, pg. 26]. In grey scale images, these operations
translate naturally into the point-wise maximum F ∨ G, the point-wise minimum
F∧G and subtraction from maximum image F̄, respectively. It is important to note
that these operations are made on a pixel-by-pixel basis, not on the image as a
whole.

Structuring elements

Central to many rank operations is the concept of a structuring element (SE), de-
noted by the letter B. A SE is a set of translation vectors that is used to establish a
neighbourhood relation on the pixels. Therefore, a structuring element is also said
to connect two pixel positions a and b if it contains a vector v such that a+ v = b.
The translation of all pixels in an image F by some vector a is called the transla-
tion and denoted by Fa. A structuring element can be denoted using a matrix M
and a vector o (called the origin), where the matrix element Mi j is 1 if the vec-
tor (i j)− o is in the structuring element. Figure 3.1 shows some structuring
elements.

The applications of set operations are manifold and even a rudimentary over-
view over their uses would exceed the boundaries of this work. Therefore, only
the definition is given for most operators here.

16

1 1 1
1 1j 1
1 1 1

(a) SE for 8-neighbourhood

0 1 0
1 1j 1
0 1 0

(b) SE for 4-neighbourhood

0 1 0
0 1j 1
0 0 0

(c) SE for corner detection

Figure 3.1: Examples for structuring elements (SE) in matrix representation. The circle
indicates the origin.

Dilation and Erosion

The dilation δB(F) is defined as the maximum of the pixels connected by a SE B:

δB(F) =
∨

b∈B

Fb (3.7)

The dilation enlarges all features in the image in the directions given by the SE. It
can be used to join segments of broken features.

On the other hand, the erosion εB(F) is defined as the corresponding minimum:

εB(F) =
∧

b∈B

Fb (3.8)

The erosion shrinks all features in the image, eliminating completely structures
unable to cover the SE. This property can be useful to detect elements of a given
size and form by using a carefully chosen structuring element.

The structuring elements for dilation and erosion are often square elements of
a specified width. For these elements, a shorthand notation is useful:

δ(m)(F) = δB(F) with B = {b|∀i :−m≤ bi ≤ m} (3.9)

For example, the SE for δ(1) is the 8-neighbourhood seen in Figure 3.1(a): the
set of vectors that connect a pixel with the 8 pixels neighbouring it horizontally,
vertically and diagonally.

Geodesic dilation and erosion

Geodesic transformations are transformations that are not defined by an input
image and a SE, but rather on two distinct input images, one called the marker
F and one called the mask G. While this seems to be a very restricted class of
operations at first glance, an efficient choice of marker and mask images yields a
great number of interesting transformations.

The geodesic dilation of size 1 is denoted as δ(1)G (F) and “defined as the point-
wise minimum between the mask image and the elementary dilation δ(1) of the
marker image”[49, pg. 184]:

δ
(1)
G (F) = δ

(1)(F)∧G. (3.10)

Dilations of larger sizes are produced by repeated applications of the elementary
dilation:

δ
(i)
G (F) = δ

(1)[δ(i−1)
G (F)]∧G. (3.11)

The geodesic erosion is, mutatis mutandis, defined identically.

17

Opening and closing

While an erosion is a useful tool for erasing all elements smaller than a given SE
B from an image, it has the side-effect of reducing the size of all structures in the
image. However, if an dilation with a SE B̂ equal to the reflection of B across
the coordinate origin is performed on the eroded image, structures that survived
the erosion are grown by approximately the same amount they were reduced in
erosion. This combined process – erosion followed by a dilation with the reflected
structuring element – is called an opening and is a widely used operator in image
processing. If a dilation is performed first and then an erosion, the transformation
is called a closing.

Median smoothing

The median operator MB(F) is defined as the median of all pixels connected by the
SE B:

MB(F) =med{Fb|b ∈ B}, (3.12)

where the med operator denotes the median operator, which chooses the smallest
value greater than half of the elements of a set. Effectively, this operator smooths
the image by removing extreme pixel values. It is valued in image processing for
it’s edge-preserving properties [42, pg. 66].

Morphological reconstruction

The morphological reconstruction by dilation is defined as the iteration of the
geodesic dilation until the marker image converges:5

RδG(F) = δ
(i)
G (F) with δ(i)G (F) = δ

(i+1)
G (F). (3.13)

The morphological reconstruction by erosion RεG(F) is defined analogously.

Fillhole transformation

One specific application of morphological reconstruction by erosion is the fillhole
transformation, which is used to fill all local minimums from an image that are
not connected to the image border [49, pg. 208]. Mathematically, the fillhole
transformation FILL(F) is defined as

FILL(F) = RεF(F
m) with Fm

x y =

¨

Fx y if (x , y) lies on the border of F
G otherwise

(3.14)

The fillhole transformation can be understood by considering how the mostly
maximum marker image is slowly eroded from the sides. An example is shown in
Figure 3.2.

5Convergence is guaranteed by the nature of the transformation [49, pg. 190].

18

Figure 3.2: Example for 1-dimensional fillhole transformation. The mask image is the
input image to the fillhole transformation, the marker in the converged state
the output. Each iteration is an application of geodesic erosion.

3.1.5 Non-maximum suppression

The term of non-maximum suppression (NMS) is a difficult term in computer sci-
ence since different algorithms solving different problems have been named with
it. Canny used the term NMS for a part of his edge detection algorithm [8], where
he applies NMS to an edge-thinning operation. I will neither use this algorithm nor
this meaning of NMS. Neubeck [38] and others use the term for a morphological
operator: this operator selects all pixels strictly greater than all other pixels con-
nected to them by a given SE. For clarification, I will call this operation exclusive
NMS. If the “strictly greater” condition for exclusive NMS is relaxed to greater or
equal, an operation I will call inclusive NMS is obtained. The difference is subtle,
but has far-reaching implications on very homogeneous images; while exclusive
NMS will find no maximums in a region of constant intensity, inclusive NMS will
declare all pixels as maximums.

Neubeck and van Gool [38] have scrutinised fast implementations for exclusive
NMS with rectangular structuring elements of width 2mx + 1 and height 2my + 1.
According to their results, a fast and simple implementation of NMS utilises the
fact that maximum pixels must be maximum pixels within a rectangle of width
mx + 1 and height my + 1 regardless of the alignment of that rectangle relative to
the pixel. Therefore, NMS computation can be sped up by dividing the image into
rectangles of width mx + 1 and my + 1, computing the candidates in these blocks
and comparing only these candidates against the pixels in neighbouring blocks.

19

Algorithm 1 Non-maximum suppression
Require: Image of dimensions WxH
Require: Block size m

for all (wb, hb) with n · (m+ 1) = wb and m · (m+ 1) = hb do
Find maximum pixel p in the block wb ≤ x ≤ wb +m and hb ≤ y ≤ hb +m, if
any
if p exists and is maximal in its δ(m) neighbourhood then

Add p to maximum list
end if

end for

The resulting algorithm is shown as algorithm 1; the Neubeck algorithm runs in
O(W H) time for a W ×H image, regardless of mask size.

If the algorithm is adapted for inclusive NMS, however, multiple maximums
can occur within a structuring element. This worsens the worst case complexity
(which occurs for regions with constant pixel values) to O(W H mx my) for a W×H
image, which is identical to the naïve implementation.

The inclusive NMS operation can also be implemented by comparing the source
image with its dilation by the SE. Basically, any pixel that is left unchanged by
dilation is not connected to any pixel greater than it and therefore an inclusive
maximum. Since the dilation is a semi-group operation, it can be implemented in
O(W H) according to an algorithm by Gil and Werman [15].

3.1.6 Intensity transfer function transformations

An intensity transfer function is a function that maps intensity values onto intensity
values, such as those functions shown in Figure 3.3. An intensity transfer function
T can be used to define an image transformation that replaces every pixel value
v by the result of T (v). Formally, the transformation T (P) of the image P by the
intensity transfer function T (v) is therefore defined as

(T (P))x y = T (Px y). (3.15)

Histogram function

Intensity transfer functions can be used to define an important tool for image anal-
ysis: the intensity histogram function h(P, v), which gives the number of pixels in
an image P whose intensity is equal to a value v. The histogram function is often
supplemented with the cumulative histogram function

hC(P, v) =
v
∑

i=0

h(P, i), (3.16)

which gives the number of pixels with a intensity less or equal to v.
The histogram function h can be used to analyse how well an image uses the

available range of intensity. A range of intensity values with continuously high

20

Figure 3.3: Typical transfer functions. The functions transform the abscissa grey values to
the values on the ordinate. The transfer functions shown here are static and
used in some fields of image processing; for example, the logarithmic transfer
function might be used to add contrast to the very dark regions of an image.

values of h can be interpreted as an overused section of the histogram. Such an
overused section represents many pixels in the image that are hard to discern from
each other because of their small difference in intensity. On the other hand, a range
of values in the histogram with continuously low values of h indicates a range of
little-used intensity values and thus a waste of dynamic range in the image pixels.

Contrast stretching

When one or both ends of the dynamic range of an image are not used, the contrast
is suboptimal. By scaling the intensity values, a higher contrast can be achieved
without loss of information. Suppose the low end and the high end of the used
histogram range for an image P are given by the quantities Il and Ih, respectively,
with

Il(P) = max
0≤v≤G

{v|∀w < v : h(P, v) = 0} (3.17)

Ih(P) = max
0≤v≤G

{v|∀w > v : h(P, v) = 0} (3.18)

Then, the contrast stretching operation is defined as the application of the transfer
function TS with

TS(P, v) =
�

v − Il(P)
Ih(P)− Il(P)

G
�

. (3.19)

Histogram equalisation

When contrast is to be emphasised over the absolute ratios between pixel intensity
levels, the underutilisation of histogram values can be addressed by using the tech-
nique of histogram equalization: the intensity values of the image are reassigned

21

in such a way that the peaks in the intensity distribution are spread out over the
whole intensity scale and intensities with small histogram values are merged. If
the histogram equalisation is realized as an intensity transfer function, large peaks
in the histogram will still be large peaks in the histogram of the equalised image,
but the histogram equalisation spaces high peaks far apart from each other in the
target histogram to optimise contrast.

The intensity transfer function for histogram equalisation THE replaces each
intensity value by the quotient of the the number of pixels with intensity values
smaller or equal than it to the total number of pixels. Formally, the intensity trans-
fer function for histogram equalisation of an image P is given by

THE(P, v) =
�

hC(P, v)
hC(P, G)

G
�

, (3.20)

where b·c is the Iverson floor function giving the largest integer not larger than its
argument. Please note that this makes the output of the histogram equalisation
dependent on the source image in two ways: Firstly, the source image is used to
define the transfer function, and secondly, it is used as a source image transformed
by that transfer function.

An example for a histogram equalisation with good results can be seen in Fig-
ure 3.4. You will notice that the overall contrast was enhanced at the cost of new
and false visual similarities; the river to the right is now inseparable from the sand-
bank around it. The similarity is due to the merging of different intensity levels
with few pixels to a single, stronger level. It is a danger endemic to histogram
equalisation and addressed by the weighted method that is following.

Weighted histogram equalisation

The simple histogram equalisation ensures an approximate equidistribution of val-
ues over the histogram. In other terms, the same “share” of the intensity “space”
is given to each pixel. However, it is not always desirable to act in such radical
fashion when the few pixels in the little-used intensity levels convey important
information. In these cases, a more conservative approach is needed: The well-
used intensity levels should be expanded, but not too much, ideally according to a
parameter that weighs between equalisation and conservation.

This can be accomplished by introducing a weight parameter r into the his-
togram equalisation formula [30, pg. 130][27]. Let

hw(P, v, r) = (h(P, v))r (3.21)

be the weighted histogram function and

hC ,w(P, v, r) =
v
∑

i=0

hw(P, i, r) (3.22)

the cumulative weighted histogram function. Then, the weighted histogram equal-
isation transfer function TW HE is defined by

TW HE(P, v, r) =

�

hC ,w(P, v, r)

hC ,w(P, G, r)
G

�

(3.23)

22

(a) Faded Image

0 50 100 150 200 250

(b) Histogram and cumulated hist.

(c) Image after histogram equalisation

0 50 100 150 200 250

(d) Equalised histogram and cumulated
hist.

Figure 3.4: Example histogram equalisation. Image from [17]. The histogram is displayed
in red, the cumulated histogram in black. The equalised histogram points out
how the strong peaks in the histogram are spaced out to enhance the contrast.

and the weighted histogram equalisation operation heqw as

heqw(P, r)x y = TW HE(P,Px y , r). (3.24)

To understand the effects of different choices for r, a different perspective on
the results of the weighted histogram function hw(P, v, r) is useful. It is obvious
that the term hC ,w(P, G) normalises the sum of all hw terms to 1. This allows to
interpret these terms as weights that the source intensity levels v have in the target
intensity space: High values of hw will result in a sharp rise in hC ,w and thereby
in a sharp rise in the target intensity, thus allocating a greater part of the possible
target intensity levels to a source intensity level. Adjusting the weight parameter
r changes the balance between the source intensity levels with many pixels and
those with few pixels.

A choice of r = 0 results in identical weights for all intensity levels regardless
of pixel count; thus, no re-weighting occurs at all and the identity transform is
performed. Obviously, choosing r = 1 yields the simple histogram equalisation,
where the relative weight of a intensity level is equal to its pixel count. If 0< r < 1
is chosen, the weight of intensity level rises with its pixel count, but sublinearly.
This is the weaker form of histogram equalisation desired. For the effects of r > 1
or r < 0, please refer to [27].

23

3.2 Levenberg-Marquardt parameter estimation

One of the most fruitful approaches in science is the reduction of observed data by
the use of a mathematical “model” for the data: an abstract and mathematical de-
scription of a complex system. Many of the successful models offer parameters that
must be adjusted to accurately explain and predict the observations for a specific
situation. While the ideal choice of these parameters is often difficult and a highly
heuristic process, there exist several methods that provide numerical support to
the researcher. Amongst these, the Levenberg-Marquardt method has “become the
standard of nonlinear least-squares routines” [39, pg. 683] and is therefore used
in this work.

Generally, the nonlinear least-squares (NLLS) parameter estimation problem is
formulated by:

1. A parameter vector a, which contains the parameter choices for the model
function.

2. A model function y(x;a), which computes the model prediction for an input
x given the parameters a.

3. A vector of measured data points D with Di = (xi ,yi ,σi), where the xi are the
measurement positions, the yi the measurements and σi the measurement
standard deviations.

Given these definitions, the aim of NLLS parameter estimation is to find a vec-
tor a such that the merit function

χ2 (a) =
∑

i

�

yi − y(xi;a)
σi

�2

(3.25)

is minimal [39, pg. 682]. To achieve this goal, its gradient vector

β =−
1

2
∇χ2 (a) ⇔ β j =−

∂ χ2 (a)
2∂ a j

(3.26)

and its curvature matrix

C=
∇⊗∇

2
χ2 (a) ⇔ C jk =

∂ 2χ2 (a)
2∂ a j∂ ak

(3.27)

can be utilised to iteratively improve an initial guess for the minimum. In the
following, this initial guess for the minimum of χ2 (a) will be denoted with a0, the
current guess with ai , the improved guess based on ai with ai+1 and the step from
the current to the improved guess with δi = ai+1− ai .

3.2.1 Minimum search by quadratic approximation

Let ai be a guess for the minimum of χ2 (a). If it is sufficiently close to a minimum,
the merit function will be approximated by a quadratic form [39, pg. 681]

χ2 (a)≈Q i(a) = γ− 2βi
�

a− ai
�

+
�

a− ai
�

Ci
�

a− ai
�

, (3.28)

24

where βi and Ci denote gradient and curvature matrix at ai . The minimum of the
quadratic approximation is the best guess for the minimum of χ2 (a) and there-
fore used as ai+1. Since the derivative at an extremum is 0, the minimum of this
quadratic approximation is given by

0 = ∇Q i(ai+1)
= −2βi + 2Ci ·

�

ai+1− ai
�

⇔ δi = C−1
i βi

⇔ Ciδi = βi .

(3.29)

Equation 3.29 is a set of linear equations and can be solved easily since the gradient
vector and curvature matrix can be derived from the known form of the model
function.

3.2.2 Minimum search by gradient descent

Alternatively to the quadratic approximation, one can iteratively follow the steep-
est descent of the gradient. While gradient descent has many variations, in the
context of the Levenberg-Marquardt method the iteration step δi is proportional to
the gradient steepness. The proportionality factor is the inverse of a unit-less num-
ber λ, which is to be chosen by the experimenter. Therefore, the gradient descent
gives an iteration step of

δi = λ
−1βi . (3.30)

However, this equation must be flawed, since the units of measurement6 of the
k-th element in this vector is given by

�

�

δi
�

k

�

=
h

�

λ−1βi

�

k

i

=
�

�

ai
�

k

�−1
6=
�

�

ai
�

k

�

. (3.31)

Obviously, since in δi should be added to ai , they must possess the same units.
This problem may be addressed [39, pg. 683] by including a factor with units

of
�

�

ai
�

k

�2
into equation 3.30; this condition is fulfilled by the inverses of the

diagonal elements of C. Therefore, the k-th element of the shift vector for steepest
descent is given by:

�

δi
�

k =

�

βi
�

k

λ
�

Ci
�

kk
⇔ λ

�

Ci
�

kk
�

δi
�

k =
�

βi
�

k (3.32)

3.2.3 Critical comparison of these methods

It is to be expected that both the quadratic approximation and the steepest gradient
descent methods will find a minimum of χ2 if supplied with a good initial guess.
The two methods differ chiefly in three respects: flexibility, speed and stability.

Regarding flexibility, the steepest descent method is evidently preferable since
the size of the step can be adjusted by a parameter. In an alternative interpretation,

6The units of measurement denote the physical units of the quantities dealt with, such as a metre
when fitting the position of an object. The [·] notation is used to denote the units used. The [A]
operation returns the unit the quantity A is measured in; for example, if t denotes the time, [t]
might be seconds (s) or years (a).

25

this parameter gives the extent of our trust in the local gradient. For well-behaved
model functions, this trust may be large and the steps towards the minimum may
be large; if, however, the model function changes rapidly, the steps must be chosen
small. On the other hand, the steepest descent method is very reliant on a good
choice of this parameter and can run into numerous problems when this parameter
happens to be wrong, such as slow convergence, oscillations around a minimum
and blockage by saddle points.

Regarding speed and stability, the quadratic approximation has a clear advan-
tage. Normally, the computationally costly part of NLLS approximation is the re-
computation of χ2 and its derivatives after each step; minimisation of step num-
ber is therefore the prime speed-regarding characteristic of a NLLS scheme. The
quadratic approximation can be expected to use fewer steps because of its utilisa-
tion of second-order derivatives. In addition, the quadratic approximation needs
no parameters and is therefore not prone to wrong parameter choices.

Algorithm 2 Levenberg-Marquardt algorithm

Require: Model function χ2 with partial derivatives
Require: Initial parameter guess a

1: Compute χ2(a)
2: Pick a small initial value for λ ([39] suggests 10−3)
3: while Approximation is not satisfactory do
4: Solve linear equation system (3.34) for δ
5: Compute χ2(a+ δ)
6: if χ2(a+ δ)< χ2(a) then
7: a← a+ δ
8: λ← λ/10

9: else
10: λ← 10 ·λ
11: end if
12: end while

3.2.4 The Levenberg-Marquardt scheme

The two schemes of quadratic approximation and steepest gradient descent both
have unique advantages that complement each other. Levenberg and Marquardt
realised that these advantages can both be utilised at the same time when using a
mixture of both schemes. To achieve this, the equations 3.29 and 3.32 are com-
bined by forming the new matrix C′i with

�

C′i
�

jk
=
�

Ci
�

jk ·
¨

1+λ if j = k
1 otherwise

(3.33)

and result in
C′iδi = βi . (3.34)

The form of C′ depends on the choice of λ; obviously, if λ is large, C′ is dominated
by the diagonal entries and its effects closely resemble a steepest descent method.

26

For small λ, the method resembles the quadratic approximation. According to
these similarities, λ should be lowered when the function seems well-behaved and
the expected convergence is encountered (indicating usefulness of the quadratic
approximation) and should be raised otherwise.

The recommended Levenberg-Marquardt recipe [39, pg. 684] is shown as
algorithm 2.

3.3 Elementary statistics

Suppose a number of observations N for some arbitrary quantity has been made,
and let xn be the outcome of the n-th observation. I will call this vector of all
observations the sample. Then, the mean or arithmetic average x of the sample is
defined as [6]

x=
1

N

∑

n
xn. (3.35)

The mean characterises the sample by giving its typical value, not regarding vari-
ations. To characterise the magnitude of these variations from the mean, there
are three useful quantities which are derived from each other. First, the sum of
squared deviations M2 is defined as M2(x) =

∑

n(xn − x)2. To make this quantity
independent of the number of samples, the sample variance Var(x) is used [6] with

Var(x) =
M2(x)
N − 1

=
1

N − 1

∑

n
(xn− x)2. (3.36)

The sample variance can be normalised to the units of x by taking the square root;
this quantity is called the standard deviation (SD), denoted by σ(x) and given by

σ(x) =
p

Var(x) (3.37)

3.3.1 Incremental computation of mean and variance

West et al. [32] have developed a recursive computation scheme to quickly com-
pute the mean and the variance of a sample provided that mean and variance of
a subset are already known. Suppose that a sample x with N observations and
known mean x and sum of squared deviations M2(x) is given and should be ex-
tended by an observation o to the sample y. The mean y of the extended sample
can be computed by

y=
1

N + 1

�

o+
∑

n
xn

�

=
o+ N · x

N + 1
=

o− x

N + 1
+ x, (3.38)

and the sum of squared deviations M2 can be computed by

M2(y) = (o− y)2+
N
∑

n=1

(xn− y)2 = M2(x) + (o− y)(o− x). (3.39)

The proof for equation 3.39 can be found in the appendix on page B.

27

3.3.2 Confidence intervals

Suppose all observations in a sample are stochastically independent and are nor-
mally distributed. It is easy to compute the statistical mean for these observations,
as I have shown in the previous subsections. Nonetheless, it is not safe to draw con-
clusions regarding the stochastic mean from these observations, that is, the mean
value of the normal distribution underlying these observations.

What can be concluded from the sample is an interval that is likely to con-
tain the stochastic mean. This interval is called the confidence interval and can,
according to [6], be computed for a sample x of size n by the expression

x± tα/2;n−1
σ(x)
p

n
. (3.40)

α denotes the probability that the interval does not contain the true mean. In
other words, if 100 samples are drawn and confidence intervals are computed
from them, 100 · α of these confidence intervals will not contain the stochastic
mean. The values of tα/2;n−1 arise as percentile points of the t distribution with
n− 1 degrees of freedom [6, pg. 116].

3.3.3 Classification errors

A classificator is a function G(x) which maps vectors x from a space of patterns C
into a finite and discrete space of symbolsΩ. The classical example of a classificator
is Cinderella’s flock of pigeons, which discerned between lentil and ash particles
(patterns) by sorting them into bowl or crop (two symbols).

For a given symbol c, a pattern x and a classificator G, statisticians distinguish
two kinds of errors in a classification process: If G(x) = c even though x should not
be classified as c, there is a type I error, also termed false positive (FP). If G(x) 6= c
even though x should be classified as c, a type II error, also termed false negative
(FN), is present. For a good positive or negative classification, I will use the terms
true positive (TP) and true negative (TN), respectively.

28

Chapter 4

Implementation of a
deconfinement program

What I cannot create, I do not under-
stand.

– Richard Feynman ([18])

The operations compiled in Chapter 3 outline the basic building blocks for
deconfinement, but they lack the glue of an encompassing algorithm. Since this
overall algorithm is too large to be proven theoretically and since the deconfine-
ment is a pressing computational task in contemporary physics, implementing the
aforementioned algorithms in computer-executable code was made a major part
of this work. In this chapter, I will elaborate about the sources for as well as the
methods and results of this implementation.

The implementation project was named rapidSTORM, which is an acronym
for the rapid yet accurate program implementing the direct stochastical optical
reconstruction microscopy. For ease of reference, I will use this acronym in the
following.

This chapter will be divided into four sections: Firstly, I will summarise the
state of the art in deconfinement. In the specification, I will exhibit the targets
and the means for rapidSTORM implementation along with the global decon-
finement algorithm that will be used and extended. The third section will contain
information about the subalgorithms needed for the deconfinement. The fourth
section will be dedicated to the parallelisation and streaming of the data transfer
for localisations.

4.1 State of the Art

Several working groups have published pieces of their deconfinement schemes, but
there is little comprehensive information.

The most extensive published work known to me and directly related to de-
confinement is the U.S. patent 20080182336[59]. In this document, Zhuang et
al. dedicated several paragraphs to their deconfinement algorithm. Unfortunately,

29

Figure 4.1: Typical dSTORM source image. This is image 34 of the stack that will be
labeled as specimen 1. The fluorescent spots show different intensities and
forms; note the blurry residual in the upper right corner, probably some out-
of-focus fluorophore, and the strange structure in the lower right corner. The
distance between pixels in the object plane was estimated to 71 nm.

no indication was given of either the run-time characteristics or of the false posi-
tive rate achieved with the implementation. It is extremely unlikely that Zhuang
et al. achieved real-time performance since their algorithm performs the compu-
tationally expensive task of fitting the Gaussian error function to the fluorescent
spots.

While aiming at fluorophore tracing rather than super-resolution, Thomann
has done significant research in the issue in his doctoral thesis [52]. His sug-
gested algorithm for fluorophore detection and localisation is very sophisticated
and seems to yield excellent results; however, real-time performance is proba-
bly lost in the preprocessing stage [52, pg. 54] due to a complex spot detection
algorithm using local grey value curvatures and a dynamic threshold based on
histogram curvature.

I have had the opportunity to have access to prior work in this field by Schütt-
pelz, who implemented deconfinement in a MATLAB script [46]. This script is
unpublished, but included in this print as Appendix E. It did not achieve real-
time performance, but rather required several hours of computation time for input
stacks acquired in 13 minutes.

Further prior work concerning deconfinement is mentioned in some articles
concerning different super-resolution techniques. Amongst these are articles from
Bates et al. [2] and Betzig et al. [3] which exhibit interesting ideas in deconfine-
ment, but do not elaborate them due to the physical focus of these papers.

The other scientific research groups working on photoswitching microscopy
did not include much useful information regarding the deconfinement process into

30

their recent articles [22, and research referenced therein].
Some useful input can be gained from the research in the field of spot ar-

ray imaging [7], which faces basically the same problem of finding and judging
point light sources. However, spot array imaging is a task significantly different
from deconfinement because of different goals; while spot array imaging aims at
classification of the spots found on a regular lattice and has no need of a precise
localisation, deconfinement needs to detect the exact position of the fluorescent
spots.

Last but not least, the scientific field of deconvolution treats the same issues as
deconfinement does. However, even Jansson stresses in his related book [26, pg.
30] that “fitting methods”, such as the one we are about to implement, have “great
value, where applicable.”1 Since the value of fitting methods in deconfinement has
been demonstrated by Thompson [53] and others, I have decided to trust in this
authority and not explored the ideas stemming from deconvolution in this work.

4.2 Specification

4.2.1 Terminology for deconfinement

To my knowledge, none of the relevant papers have established a clear naming
scheme for the deconfinement process. Given the importance of the topic, I will
propose such a scheme here.

The process of deconfinement operates on a source stack (the sequence of flu-
orescence images received from the camera), which consists of source images. The
deconfinement process has the goal of creating a super-resoluted target image
where, ideally, every visible fluorophore in the sample will be shown at its likely
position relative to the other fluorophores. It is important to note that this target
images displays the positions of the fluorophore emissions, not their brightnesses
or other characteristics.

A group of relatively2 bright pixels is called a spot. For this work, a spot can
and will simply be represented by a vector giving its centre. A spot that is likely
to be a fluorophore emission is called a candidate spot (or, in the following, simply
candidate).3 Spots that were really generated by fluorophores are called true spots,
those generated by noise false spots. The quality of a spot is the relative potential
of a spot to be a true spot: a spot with higher quality is more likely to be true than
one with a lower quality, but the quality is not required to be a probability for spot
truth.

If a Gaussian intensity profile is fitted to a spot, the resulting set of parameters
is called a fit. If a fit is judged by some set of criteria, it can come out to be good
(if it is thought to belong to a true spot) or bad (otherwise). Good fits are also
called localisations; this term also denotes the fluorophore position given in the
parameter of a good fit. Figure 4.2 illustrates these terms.

1Fitting methods are, in this context, “applicable” if a model is known, which is the case in
deconfinement.

2Relatively might be relative towards the surrounding area or towards the whole image.
3Thomann calls these “potential spots”.

31

Image
Matrix of pixel val-
ues indicating inten-
sity of captured radi-
ation

23 42 22 . . .

15 28 14 . . .

12 19 11 . . .

16 16 17 . . .

10 16 28 . . .

9 20 33 . . .
...

...
...

. . .

Candidate
Pixel position
(x0, y0) where a flu-
orophore emission
is presumed and
pixel value Q of the
smoothed image at
the position (candi-
date quality). The
candidate is used to
decide which pixels
are fitted.

x0 = 3
y0 = 6
Q = 19

Fit
A fit is a set of
parameters for a
Gaussian function.
This Gaussian func-
tion approximates
the image pixels
close to a candidate
position and gives
the emission posi-
tion with subpixel
accuracy.

x0 = 3.2
y0 = 5.8
A = 30.7
B = 10

Localisation
Position where a
true spot is thought
to be. Localisations
are annotated with
the fit amplitude
and the number of
the source image.

x0 = 3.2
y0 = 5.8

A = 30.7
Ino = 25

Candidate search Spot fitting Fit judging

Figure 4.2: Illustration of the terminology used for deconfinement. Each box shows an
interdemiate step in the deconfination process. The paramaters A and B for the
fit denote the amplitude of the Gaussian model and the estimated background
signal.

The standard deviation(s) of a Gaussian intensity profile that approximates the
PSF will simply be called the standard deviation σ in this chapter. I will assume a
correlation of 0 between the X and the Y axis; this leaves two independent values
σx and σy . This simplification is not necessarily true, but close enough to the real
data encountered in direct stochastic optical reconstruction microscopy (dSTORM)
stacks. It was made to simplify the computation of the mask sizes that will be
introduced in this chapter.

4.2.2 The deconfinement algorithm

The basic approach for deconfinement (or part of that approach) has been hinted
at by Thompson, Zhuang et al. and Schüttpelz, but never been formalised. To
achieve comparability of approaches, I deem it important to catch up on this issue
and present my formalisation of their algorithm in Algorithm 3.

While this algorithm illustrates the basic idea of a realistic deconfinement
scheme – namely, filtering the source image for promising candidates and then
judging these spots –, it relies on the existence of an absolute criterion for the
identification of candidates. This criterion is hard to find, as you will see in sec-
tion 6.2.1; it is easier to compare two candidates to see which one is more likely to
be a true spot. This is exemplified in the existing methods for candidate inspection:
Thompson uses all pixels exceeding a threshold and Schüttpelz uses all pixels that
additionally are H-maximums4 of a given height. Comparison of candidates in this
schemes simply means comparing the pixel value at the centre of the spot, while
the choice of a threshold must be done by hand. Hence, I propose to improve the

4H-maximums are local maximums that fulfill a height condition. For details, see [49] or equa-
tion 4.1.

32

Algorithm 3 Basic deconfinement algorithm
Require: Source stack S
Ensure: Output is a target image for S

1: Create empty list of localisations t
2: for all source images I in S do
3: Find set of spot candidates C in I
4: for all spots s in C do
5: Fit PSF to s resulting in fit as
6: Evaluate likelihood of as describing to a true spot
7: if as likely describes a true spot then
8: Insert localisation as into t
9: end if

10: end for
11: end for
12: Insert dot for each element in t into new image D
13: return D

deconfinement algorithm by

• choosing a low threshold for candidateness,

• sorting the found candidates by decreasing quality and

• fitting the candidates in this list sequentially until

• a sequential number of fits equal to a motivation parameter M0 fails.

If the truth of a spot corresponds well to its quality, this method will find all true
spots.

Furthermore, the result list t filled in lines 1 to 11 is far more flexible than
a result image and can be evaluated in wholly different ways – for example, his-
tograms of localisation counts along an arbitrary axis or time-resolved traces of
spot localisations. Hence, I propose to let the deconfinement algorithm return the
localisation list and defer the image assembly into a later step.

The new algorithm is formalised as Algorithm 4.

4.2.3 Secondary implementation goals

The primary goal of this work is, naturally, to implement Algorithm 4. However, I
have identified several secondary objectives.

Firstly, the implementation should be easily extensible and maintainable. The
super-resolution microscopy techniques are still in their infancy, and further in-
sights and resulting computational adjustments are to be expected. A well-defined
API will greatly facilitate extension, and a well-defined internal structure will fa-
cilitate refactoring.

Secondly, the implementation must be portable and possess a graphical user
interface. Computers running Microsoft Windows are as commonplace in the lab

33

Algorithm 4 Motivationally thresholded deconfinement algorithm
Require: Source stack S
Require: Spot standard deviation σ
Ensure: Output is a list of localisations in S

1: Create empty list of localisations t
2: for all source images I in S do
3: Construct list of candidates C in I
4: Sort C by decreasing quality
5: M ← M0
6: while spots remain in C and M > 0 do
7: Fit PSF to first element in C resulting in fit as
8: Evaluate likelihood of as describing a true spot
9: if as likely describes a true spot then

10: Insert localisation as into t
11: M ← M0
12: else
13: M ← M − 1
14: end if
15: Remove first element from C
16: end while
17: end for
18: return t

environment as personnel inexperienced with command line interfaces is. An eas-
ily ported and used implementation will facilitate broad use of the rapidSTORM
system.

Thirdly, the rapidSTORM implementation should be as fast as possible while
not sacrificing accuracy. The huge amounts of data, both present and planned for
the foreseeable future, processed in rapidSTORM applications justifies consider-
able work on implementation speed.

Fourthly, on-line acquisition of image data directly from the camera is necessary
and useful. By this mean, the experimental procedure can be simplified greatly and
the buffering of acquired data on storage media can be avoided.

Fifthly, the rapidSTORM program should make good use of the current
and probably future trend towards multi-core processors. Therefore, good multi-
threaded performance is required.

4.2.4 Choice of implementation language

While there are many programming languages available which are capable of solv-
ing the deconfinement problem, maintainability and extensibility dictate that a
widely used language should be used. In computational physics, the languages
commonly used include FORTRAN, C, C++, Java, MATLAB and LabView. I have
decided to use C++ for the rapidSTORM project; in the following, I will give
a comparative analysis of the other programming languages with respect to the
deconfinement problem.

34

The core competence of FORTRAN is its set of extremely efficient basic lin-
ear algebra subprograms. However, the operations used in rapidSTORM make
little use of these subprograms, and in addition, the GNU Scientific Library[13]
supplies a very fast linear algebra library for C/C++. Thus, this project can not
utilise FORTRAN’s strength; therefore, I decided that C/C++’s better library and
toolchain support makes it the better choice.

Pure C is compiled to very fast code, has excellent library support for numerical
and scientific applications and is amongst the languages with the best development
tool support. However, it does not support object-oriented design, aggravating
both extensible and maintainable design. Using C++ could alleviate these prob-
lems while keeping C’s advantages.

MATLAB and LabView are interpreted languages widely used in the natural sci-
ences. While they allow rapid development, their interpreters lack the advanced
features of the more developed compilers used for C, C++ or Java such as type
checking. This severely hampers stability; thus, I decided against using these lan-
guages.

Last but not least, Java must be considered for a project of this size. On the
one hand, Java’s ability to generate intermediate and machine-independent byte
code is of little use for the rapidSTORM project since the distance between its
development and deployment sites is negligible. On the other hand, byte code
interpretation carries a high computational cost. This cost motivated me to decide
against using Java in the core rapidSTORM code, even though it is used for the
graphical user interface.

For these reasons, I chose to implement rapidSTORM in C++.

4.2.5 Supporting libraries

The implementation of the rapidSTORM is a software engineering task, and
the prime difficulty in software engineering is complexity. The staple tool used
to address this difficulty is modularisation: The division of a large programs into
small and easily testable units.

• A general-purpose, cross-platform image processing and viewing library.
Amongst the many choices available, I have decided to use the CImg library
by David Tschumperlé. This C++ template library has the distinct advantage
of being easily adapted to all data types, allowing the dSTORM process to
save memory by using pixels of 2 byte size and still use the full power of an
imaging library.

• The GNU Scientific Library (GSL) [13] that provides a range of functions
useful for scientific research. It is used in rapidSTORM for statistical
(mean, variance), stochastic (random number generation) and data fitting
purposes.

• A basic multithreading library. The pthread library is the established so-
lution for this problem.

To achieve exception safety, a C++ interface to the pthread library is de-
sirable. While the GNU Common C++ library offers this functionality, it’s

35

mutual exclusion locking proved to be faulty in the Microsoft Windows im-
plementation; thus, I reimplemented the public interface of the GNU Com-
mon C++’s threading module using the pthread library.

• A configuration parameter library. Such a library should offer management
and end-user-friendly display of program input parameters such as an input
file, an amplitude threshold or the choice of the A/D converter to use on
the camera. Kevin Pulo’s simparm library [40] provides such functions,
but was in an early alpha phase at the beginning of the rapidSTORM
project. The improved and tested version of the library is packaged with
the rapidSTORM code and documented in the appendix.

• A library to read the SIF image format. The software that comes with the
Andor Technology cameras used for dSTORM uses this format for storing
source stacks. While Andor Systems thankfully provided code to read some
versions of the format, it had no defined user interface, proved to be prone
to buffer overflows and was incompatible with newer versions of the file
format. For this reason, I extended this code into the readsif library.

• A high-level wrapper around the camera driver provided by Andor Tech-
nology. This module is called AndorCamera and provides a simparm-
compatible configuration interface to Andor cameras and an automated im-
age acquisition.

The Andor camera module, while scientifically trivial, has been one of the
most challenging aspects of the rapidSTORM system. The problems in
its implementation have been caused by particularly bad incompatibilities
in the software development kit provided by Andor Technologies for its sci-
entific cameras. While the details of these bugs are not inside the scope of
this work, their magnitude must be stated to explain the copious amount of
code and work in the Andor camera module. This magnitude is probably
exemplified best by the unorthodox combination of calling convention and
name wrangling used by the functions in the Andor software development
kit, which causes them to overwrite the calling function’s memory and to
depend on a pre-initialised stack space when called by code compiled by the
mingw compiler.

• A library for fast non-linear fitting of an exponential function to data points
on a 2-dimensional lattice. The GNU Scientific Library provides an imple-
mentation of the Levenberg-Marquardt algorithm for non-linear fitting; thus,
the task of the library is to provide a concise C++ interface and a fitting
function for the GSL implementation. This library is called fit++.

• The CImgBuffer library used for combining and configuring the differ-
ent image acquisition methods, for buffering real-time acquisitions and for
coordinating concurrent access. This library combines the readsif and
AndorCamera libraries into a common interface.

Table 4.1 shows the versions of the used libraries.

36

Library Linux Windows
CImg 128 129
GSL 1.8 1.8
pthread NTPL 2.7 pthreads-w32 2.8.0
simparm 0.02 0.02
readsif 1.0 1.0
AndorCamera 1.0 1.0

Table 4.1: Versions of libraries used in rapidSTORM v1.0

While the CImg, GSL and pthread libraries were usable out of the box, I
would like to stress that simparm and readsif were in alpha state and the
interesting part of the GNU Common C++ version was incompatible to MS Win-
dows so that a copious amount of work was necessary to debug and integrate these
libraries. This work is not documented further, but the resulting code can be found
in the main rapidSTORM distribution and my share of the code can be deter-
mined by comparing these libraries with the original code, both of which are pack-
aged with this thesis. To give a rough estimate of it, roughly 7200 lines of C and
C++ code were involved, most of which needed change or were added. I have im-
plemented the CImgBuffer, AndorCamera and libfit++ libraries from
scratch, totalling more than 4600 lines of C and C++ code.

4.3 The rapidSTORM engine

The rapidSTORM engine is the module that implements Algorithm 4 and con-
verts a source stack to a set of localisations. Therefore it is the by far most impor-
tant and computation-intensive part of the rapidSTORM project – typical source
stacks for dSTORM are often in excess of 10 gigabytes5 and must be processed in
a matter of minutes to stay real-time. This fact makes it crucial to design the data
structures and control flow in a very efficient and overhead-minimising way.

The global structure of the rapidSTORM engine is oriented at Algorithm 4.
We see four basic tasks in this algorithm:

1. Line 3, the candidate search, reduces the source image to a set of candidates.

2. Line 4 sorts these candidates. While sorting itself is well-studied in computer
science, the sorting algorithm can be optimised for this specific case.

3. Line 7 is called the spot fitting stage, which reduces a spot to a fit.

4. Line 8 is the fit judging stage, which decides whether the spot for a given fit
was true or not.

5. The other lines are simple control code. They can be implemented in C++
code almost on a line-by-line basis.

5Even though the storage of a complete source stack can be avoided by on-line computation, the
sheer amount of data is nonetheless a problem.

37

Algorithm 5 Spot candidate search
Require: Source image I
Require: Suitable data structure C for candidate storage and sorting

1: Smooth I with a Spalttiefpass of size 2msσ+ 1 to obtain IS
2: Find local maximums of IS by using Neubeck’s NMSalgorithm (see 3.1.5) with

multiple maximums of the same height allowed and filter size 2msσ+ 1
3: for all local maximums m of IS do
4: Insert the candidate (sm, pm) into C with sm being the grey scale value of the

maximum and pm being its position
5: end for
6: return C

The fit judging can be implemented by a simple thresholding of the fit’s ampli-
tude parameter since this value corresponds directly to the suspected number of
photons in the fit and false positives should decrease exponentially with it. This
leaves items 1-3 for inspection; in the following, I shall propose subalgorithms for
these.

4.3.1 Candidate search

The candidate search algorithm has the task of reducing a source image of 104

to 106 pixels to a small number of spot candidates which should contain all true
spots of the image. The central challenge for this stage is the severe restriction of
its run-time performance. If the candidate search for a typical image of 256x256
pixels is to be performed in 1 ms, a processor clocked at 2 GHz will have only
300 cycles available for each pixel.

It is obvious that careful algorithm design is needed to perform this task in ade-
quate time. However, the existing work has focused little on this aspect. Schüttpelz
used the morphological operator

HMAXh(f) = Rδf (f − h) (4.1)

followed by thresholding all image pixels and fitting once for each connected re-
gion, while Thompson thresholded the unmodified image. Both of these methods
have the disadvantage of being very sensitive to single strong pixels, which are a
common product of the noise encountered in deconfinement. Only Thomann has
given the subject further consideration in [52, pg. 59]: he smoothes the image
with a Gaussian low-pass filter and considers the local maximums of the smoothed
image. The quality of a maximum in Thomann’s scheme is given by

Ī · det(H), (4.2)

where Ī denotes the average intensity of a window of large width (5 times the PSF’s
standard deviation) around the maximum and H denotes the local Hessian matrix.
Maximum pixels are considered candidates if their quality exceeds a threshold
chosen dynamically from the cumulative quality histogram. According to him, this
method is “very sensitive” to spot truth, but I assessed it to be computationally very

38

Figure 4.3: Typical dSTORM image smoothed with Spalttiefpass. Note that both images
have been contrast-stretched independently; the right image has a lower dy-
namic range. Note how the fluorescent spots in the top left corner became
more prominent and how noise maximums vanished mostly, but also how the
position of the bottom left spot was blurred.

expensive because of the computation of a Hessian matrix and its determinant.
Unfortunately, the scope of my work did not allow to check this assessment.

To find a method less complex than Thomann’s, but retaining some of its sen-
sitivity, I have to stress the importance of variance reduction. As you will see in
Chapter 6, the primary problem of the candidate search is not to find the spots – in
a noiseless environment, they could easily be found by searching local maximums
–, but rather to suppress the noise that obscures these spots. For this purpose
the Spalttiefpass is, according to Klette and Zamperoni[30], superior to the other
smoothing filters, especially to the Gaussian filter used by Thomann.

Therefore, I propose to simplify Thomann’s candidate search

• by dropping the Hessian matrix,

• by merging the averaging used to compute Ī into the averaging used to
smooth the image and

• by replacing the Gaussian low-pass filter with a Spalttiefpass filter.

Every local maximum pixel is considered a candidate with a quality equal to the
maximum’s intensity. In the implementation, I used Neubeck’s fast NMS algorithm
introduced on page 19, but modified it slightly to allow inclusive NMS. The result-
ing algorithm is formalised as Algorithm 5.

This algorithm sets the mask sizes for the Spalttiefpass and the NMS propor-
tional to the PSF SD. This choice is motivated by the need to include all strong
spot pixels, but as few noise pixels as possible. I therefore deem that the correct
choice of a filter size should roughly be equal to the spot size and thus proportional
to the PSF SD. Formally, this consideration translates into a kernel with constant
elements and a rectangular SE, both with a width of 2msσx + 1 and a height of
2msσy + 1, where ms is a constant and will be determined experimentally.

39

8

5 10

3 9 12

1 4

4 3

3 0 1 1

1
1

0 0 0 0

0 0 0 0

Figure 4.4: Example for a size-limited binary sorting tree. The numbers in the boxes
denote integers sorted in this tree, while the numbers below the boxes show
the subtree counts, i.e. the number of elements in the respective subtree.

4.3.2 Candidate sorting

Algorithm 5 requires a suitable data structure for storing and sorting the found
candidates. Ordinarily, this would indicate a list or vector structure and the usual
sorting algorithms.

However, the nature of the problem can be used to reduce the time and space
complexity. You will see in Chapter 6 that a well-chosen motivation parameter M0
will decrease the number of candidates actually fitted to a small fraction of the
number of candidates. Thus, the time spent in storing and sorting the tail of the
candidate list will be wasted, since these candidates will most likely not be fitted.

In addition, it happens that the smoothed image of a spot has a broad local
maximum spreading over several pixels. While inclusive NMS finds multiple max-
imums for this spot, there should be only one candidate.

To address these optimisation issues I have devised a size-limited merging bi-
nary sorting tree. This data structure is a binary sorting tree with two special
properties: a size limitation that avoids storing and sorting irrelevant elements
and a merging property that will combine equal elements into a single node.

A size-limited tree is a binary sorting tree that stores only the n smallest ele-
ments from the input, with n being a parameter of the data structure. The size
limitation is implemented by storing the number of elements included in each sub-
tree of a node together with the link to that node (this number is termed the subtree
count). An example of such a tree is shown in figure 4.4.

When the tree is descended to find an insertion position for a new element, the
number of elements smaller than the current element are computed and checked
against n. This computation is performed by summing the subtree counts for the

40

left branch for all nodes at which the right branch was chosen. If this number is
greater than n, the element which is to be inserted can be dropped safely since
there are at least n elements in the tree smaller than it. For example, consider
the tree in figure 4.4: If the number 11 is to be inserted, the insertion code will
traverse through the nodes 8, 10 and 12. If the size limit is smaller or equal to
5 (4 nodes on the left-hand side plus the 8-node), the insertion process can be
aborted after comparing with the 8-node; if the limit is smaller or equal to 7, after
comparing with the 10-node.

The merging property means that a user-supplied merge function is used to
merge an element that should be inserted but is equal to an element already found
in the tree. This, if combined with a suitable ordering relation, allows quick detec-
tion of maximums stretching over several pixels.

To achieve this effect, the ordering relation for maximum pixels representing
spots is defined as the function

o(x1, y1, s1, x2, y2, s2) =































−1 if s1 > s2
1 if s2 < s1
−1 if s1 = s2 ∧ x1� x2
1 if s1 = s2 ∧∧x1� x2
−1 if s1 = s2 ∧ x1 ≈ x2 ∧ y1� y2
1 if s1 = s2 ∧ x1 ≈ x2 ∧ y1� y2
0 otherwise

, (4.3)

with x1 � x2 ⇔ |x1 − x2| ≥ msσx ∧ x1 < x2 and equivalent definitions for �
and ≈. This function judges a maximum with the coordinates x1, y1 and strength
s1 to be smaller, equal or greater than a second maximum with x2, y2, s2 if the
result of the ordering function o(x1, y1, s1, x2, y2, s2) is smaller, equal or greater to
0, respectively. o will place maximums with large intensities first in an ordered list;
if two maximums have the same intensity, the X coordinate is used to clarify the
situation; if the comparison is unclear, the Y coordinate is used. If the intensities
and coordinates match closely for two candidates, it is assumed that they belong to
the same peak and are thus equal. Please note that the primary ordering relation
is reversed from the intuitively found ordering and that the X axis is the preferred
ordering axis. The NMS algorithm suggests this ordering since it operates row-wise
and finds maximums with low Y coordinate first, a procedure which would result
in a structural bias towards the top part of the image if not corrected with this
ordering relation.

To make best use of the size-limited tree, the size limit must be chosen as small
as possible. This is easily effected by choosing an arbitrary and small limit and
raising this limit every time more elements are requested from the tree than are
present within the limit. Evidently, this requires a recomputation of the NMS.

4.3.3 Candidate fitting algorithm

When it comes to spot fitting, Schüttpelz, Thomann, Thompson and Betzig agree
in fitting the candidate spots with Gaussian functions, which is not surprising con-
sidering that Cheezum et al. found this method to be superior [9]. Zhuang et al.

41

Figure 4.5: Candidate detection. Good fits are shown in green, bad fits are shown in yel-
low and candidates that were present in the size-limited tree, but not fitted,
are shown in cyan.

diverge by using the Gaussian error function; this choice is logically consistent6,
but neither computationally desirable nor supported by published research. The
only disagreement amongst the researchers using the Gaussian model persists in
the number of free parameters: While Schüttpelz does a full Gaussian fit, including
standard deviation parameters, Thomann and Betzig use a fixed standard devia-
tion, and Thompson does not elaborate on this issue (even though he stated that
he knew the standard deviation, thus making fixed SD fitting likely).

I expect a fixed SD to be less susceptible to fit to random noise with a strong
amplitude, since it has fewer dimensions of play available to do so. While the
SD needed to fit a Besselian PSF (possibly distorted by acquisition system imper-
fections) might differ slightly depending on the amplitude of the signal, I deem
the smaller noise susceptibility less important, motivating the choice of fixed SD
parameters for fitting.

Algorithm 6 Spot fitting process
Require: Position p in image I

1: if p is closer to the image border than 2m fσ then
2: return Invalid fit
3: else
4: Cut window W of width 4m fσ+ 1 around p
5: Fit model function φ to the pixels in w using initial guess x0 = xp, y0 =

yp, A= A′, B = B′ resulting in parameter vector ap.
6: return Fit ap.
7: end if

After deciding what model to fit, it has to be decided which pixels to fit the
model to. It is obvious that computational speed requires the number of pixels to fit

6As I have elaborated in section 3.1, pixel values in an image are local integrals of the intensity
distribution. Therefore, if the PSF is approximated by a Gaussian function, the pixel values should
be approximated by the local integrals of a Gaussian function.

42

the model to should be kept as small as possible. It is also necessary to include not
only fit as many spot pixels as feasible, but also some surrounding noise pixels, to
arrive at a precise estimate for the spot location and strength. Again, this motivates
a mask size proportional to the PSF SD, with a proportionality factor m f that is to
be determined experimentally.

For implementing the actual spot fitting procedure, I used the GSL implemen-
tation of the Levenberg-Marquardt algorithm. The model function was set to a
Gaussian PSF in two dimensions with fixed standard deviations σx and σy and
free parameters for the subpixel-precise centre (x0, y0), amplitude A and and an
additive constant B as given by

φ(x0, y0, A, B) =
A

2πσxσy
exp

−
(x − x0)2

2σ2
x
−
(y − y0)2

2σ2
y

!

+ B. (4.4)

This function has the advantage of having analytically computable derivatives
whose values can be computed from the function value with a small number of
multiplications. In explicit form, these derivatives are:

∂ φ

∂ x0
=

x − x0

σ2
x
φ,

∂ φ

∂ y0
=

y − y0

σ2
y
φ,

∂ φ

∂ A
=

1

A
φ,

∂ φ

∂ B
= 1 (4.5)

It is crucial to note that these derivatives must be used explicitly in the fitting
process. There are NLLS fitting routines that will compute the derivatives of the
model function internally and numerically, which is inherently costly.

The initial guess for the fitting coordinates is a Gaussian centred at the candi-
date spot’s centre position (xp, yp). The upper left pixel of the fitting window is
taken as an estimate of the background value B′, and the initial amplitude A′ is
chosen such that φ(px , py , A′, B′) is equal to the pixel value at p.

Subsequently, this initial guess is iteratively improved using the Levenberg-
Marquardt routine. Once the fit has converged, which is according to [39] indi-
cated by a drop in the residues that is below a given threshold, fitting is aborted
and the current parameters form the fit.

The GSL implementation circumvents the need for the Hessian matrix [13]
and the second-order derivatives. Therefore, these first-order derivatives are suffi-
cient and I have implement the spot fitting as shown in Algorithm 6.

4.3.4 Concurrent streaming of localisations

Streaming

Algorithm 4 returns the full list of localisations after processing the whole source
stack. This buffering of results is for many applications unnecessary, is wasting
storage space and delaying feedback and can be eliminated by an event-driven
approach.

This idea can be realised using the publisher/subscriber software design pat-
tern [14, pg. 287]: Algorithm 4 is changed to publish events about the start,
the end or the restart of the deconfinement process and to publish one event per
source image containing the localisations in that image. Any module that processes

43

localisations can receive the events by registering with the localisation publisher
and providing a method for processing localisations. To implement this scheme,
line 18 is erased, and between lines 16 and 17 the lines

1: Publish new localisation event with elements t
2: Erase all elements from t

are inserted. A static view on the resulting system is given in the appendix in
Figure C.1(a) and supplemented with a dynamic view in Figure C.1(b).

Parallelization

Given the current trend to multi-core hardware, it is important to consider oppor-
tunities for concurrency in algorithm 4. Naturally, the loop iterating over all images
in line 2 provides such an opportunity if the publishing interface is implemented
with concurrency in mind.

Another chance for concurrency opens in the loop iterating over the spots in
line 6. However, parallelizing the algorithm in the image loop is preferable to par-
allelization in the candidate loop since the former is outermost and thus requires
less communication between the concurrent threads.

4.4 The rapidSTORM image construction

The rapidSTORM engine I have developed and described in the last section re-
duces a source stack to a set of localisations, which are basically pairs of coor-
dinates in R2. This is not the desired form of microscopy results: Scientists are
used to and existing scientific methods process images7, and images are discrete
matrices with values in a given range. Therefore, the localisation set should be
converted to an image showing the localisation positions with a precision that con-
veys a good visual impression of the real precision attained with photoswitching
microscopy.

For this problem, Schüttpelz has employed a simple, yet effective algorithm
that histogramised the found localisations in bins 1/10 pixels wide and high8 and
projected the histogram results on a colour axis ranging from black over red to
white. The parameters for this projection were hand-chosen. Zhuang et al. seem to
have used a similar algorithm, even though they do not state it explicitly. Betzig et
al. sum the values of Gaussian functions, which are centred at the likely emission
position and has a standard deviation equal to the uncertainty estimated by the
NLLS fitting method, and most likely project the results on some colour axis.

These methods have a common theme: They construct an intermediate im-
age D′ with undefined dynamic range from the input set of localisations L and
then map the received dynamic range into an intensity or colour space to ob-
tain the final image D. I term these two distinct process pixelisation stage and
normalisation stage, respectively. Both of these images have a spatial resolution
significantly higher than that of the source image to reflect and accommodate the

7Not to mention the strong bias of scientific magazines to colourful images instead of several
dozen pages of coordinates.

8In computer science terms, Schüttpelz used a nearest-neighbour algorithm.

44

super-resolution precision. I will denote this resolution enhancement factor by Re,
and a typical choice is 10.

4.4.1 Algorithm for pixelisation stage

While I did not use Betzig’s more involved Gaussian spread method because of the
uncertainty in the SD estimation done by the NLLS fitting [39], Schüttpelz’ simpler
method seems to be prone to discretization errors. I deem a linear interpolation
of a target image from the localisations distributed in R2 a workable compromise
because it honours the exact fit position while not introducing computational over-
head or more parameters for the method.

Therefore, I propose the following pixelisation formula for generating the pix-
elated image:

D′x0,y0
(L) =

∑

l∈L

w(Re · x(l)− x0) ·w(Re · y(l)− y0), (4.6)

where x(l) is the X coordinate for the localisation l in the coordinates of the source
stack, y(l) the respective Y coordinate and w is the weight function given by

w(x) =

¨

1− |x | if − 1≤ x ≤ 1
0 otherwise

. (4.7)

It is obvious that this function approaches the Schüttpelz pixelisation scheme when
all localisations are very close to target pixel positions. Furthermore, the contribu-
tion of a single localisation to the target image is always 1 and it only affects the
four pixels surrounding the localisation.

4.4.2 Algorithm for normalisation stage

The pixelisation stage yields a pixelated image with non-negative real numbers as
pixel values. In order to obtain a normal digital image, the normalisation stage
needs to specify a way to transform these real values into integer values within a
given range.

The trivial approach to this problem would be a linear transformation, where
the target image is computed as

Dx y =











G

max
a,b

D′ab
D′x y











, (4.8)

with b·c denoting the Iverson floor function, which gives the largest integer not
larger than its argument. However, this method yields bad results if a small num-
ber of fluorophores are localised very often, which is commonplace in dSTORM
practise. In this case, the localisations of these fluorophores culminate in few pix-
els with very high pixel values, thus ousting all other localisations into the very
low grey levels which are almost indiscernible from the background. Thus, this
method is suboptimal.

45

(a) Almost unnormalised (r = 0.1) (b) Completely normalised (r = 1)

(c) Mildly normalised (r = 0.5)

Figure 4.6: Comparison of histogram normalisation results for different weight parame-
ters. The image shown here is the result image of specimen 1 and shows
microtubuli. These result images were all constructed by the rapidSTORM
image construction, but differ in the weight parameter used for histogram
normalisation.

46

Schüttpelz has improved this method by introducing a hand-chosen threshold
M for the linear transformation:

Dx ,y =min

























G

min
�

M , max
a,b

D′a,b

�D′x ,y















, G











. (4.9)

Although this method worked fairly well in practise, it has principally the same
limitations as the linear transformation, namely a suboptimal image contrast.

As explained in section 3.1.6, a useful tool for image contrast optimisation is
the histogram equalisation. However, the histogram equalisation method is incom-
patible with the input to the normalisation stage: The former operates on discrete,
equidistant values, while the latter consists of pixels with real values.

I addressed this incompatibility by using the transformation from equation 4.8
before applying the histogram equalisation. I minimised the information loss by
linearly transforming D′ according to equation 4.8 into a high-depth image D′′

with, for example, 16 bits per pixel. D′′ is then transformed into D′′′ by a weighted
histogram equalisation of all non-zero pixels. The weight factor is user-configured
with a first estimate of r = 0.25; by this method, the microscope operator can eas-
ily choose a contrast level that pronounces the important structures in the image.
Finally, D is computed from D′′′ by linearly scaling the intensity range to the range
allowed for D; if this scaling is reflected in the choice of G in equation 3.23, the
intermediate image D′′′ can be omitted.

In mathematical terms, let B denote the depth enhancement factor that D′′ has
over D′′′. Then the above algorithm is equivalent to computing

D=
1

B
heqw



















BG

max
a,b

D′ab
D′











, r









. (4.10)

4.4.3 Incremental computation

In the laboratory, getting feedback from the super-resolution imaging process as
early as possible is highly desirable. Errors can be discovered and corrected faster
if intermediate images from the deconfinement process could be displayed parallel
to the acquisition and computation process.

A naïve implementation of the algorithms developed in sections 4.4.1 and 4.4.2
for parallel viewing of the deconfinement results is infeasible. At least two com-
plete passes over D′ are needed to compute D (one pass for the histogram, one
pass for the result image), while D′ and D regularly have megapixel dimensions
due to the resolution enhancement.9 Consequently, if a parallel viewing is possible
at all, it must be achieved by an iterative algorithm.

9To give an example, the cameras used for the dSTORM method have detectors 1024 pixels wide
and high, and dSTORM realises Re factors of 10. This gives D′ and D dimensions of 10240x10240
pixels.

47

A data structure for an iterative algorithm should store sufficient intermediate
results of equations 3.23, 4.6 and 4.10 that will be updated iteratively. I chose to
store

• D′, D′′ and D

• the maximum MD′ =maxx ,y D′x y ,

• the discretization factor M ′D′ that stores the (possibly obsolete) value of MD′

between recomputations of D′′,

• the histogram vector h with hv = hw(D′′, v, r),

• the transfer vector t storing the weighted histogram equalization (WHE)
transfer function used for the last recomputation of D. After recomputation
of D, tv = TW HE(D′′, v, r) is ensured.

When a new localisation l is incrementally added to these data structures, the
operations given in algorithm 7 suffice to update these structures.

Algorithm 7 Incremental update of target image
Require: D, D′, D′′, MD′ , M ′D′ ,h, t as defined in text and in consistent state
Require: New localisation l

1: Increase the 4 pixels surrounding l according to equation 4.6
2: for all increased pixels (x , y) do
3: MD′ ←max

¦

MD′ ,D
′
x y

©

4: oldValue← D′′x y

5: newValue←
�

BG
M ′

D′
D′x y

�

6: D′′x y ← newValue
7: if oldValue and newValue differ then
8: Decrement holdValue and increment hnewValue
9: Dx y = tnewValue

10: end if
11: end for

It is obvious that algorithm 7 performs the update of almost all data structures
used in O(1) time and space. However, it does not update M ′D′ and t and avoids
this update for good reason: Since any change to M ′D′ forces a rediscretization of
D′′ and any change to t forces a recomputation of D to ensure consistency, these
operations are expensive and should be delayed as long as possible.

To achieve this aim, I have introduced the thresholds for the errors in dis-
cretization, in the histogram equalisation transfer function and in the histogram
equalisation operation.

The error in discretization can be controlled with a threshold for the quotient
MD′/M ′

D′
of the actual and the used maximum value. It is checked in line 3 and, if

it is exceeded, M ′D′ is set to MD′ and D′′ is recomputed form D′ by D′′ = D′/MD′ . I
have used a value of 1.1 for this threshold.

48

Call from
publisher

Increase T ′

x,y

Update M ′

T ′

T ′′

x,y ←

⌊

T ′

x,y/MT ′

⌋

Update H′′(T ′′

x,y)
Increase HR dirtiness

Tx,y ← HU (T ′

x,y)

[pixel (x,y) left to update]

[all pixels updated]

M′

T ′/MT ′

exceeds
threshold?

[no]

[yes]

[no] T ′′

x,y

changed?

[yes]

 Display T

MT ′ ←M ′

T ′

T ′′
←

⌊

T ′/MT ′

⌋

H′′
← H(T ′′)

HR ← hW (T ′′)

HR and HU

differ?

HU ← HR

Tx,y ← HU (T ′′

x,y)

HR dirty?

[no]

[no]

[yes]

M′

T ′/MT ′

exceeds
threshold?

[yes]

[no]

[yes]

Publisher thread Viewer thread

Wait for GUI event

Figure 4.7: Activity diagram of the rapidSTORM image viewer. On the left side, the
steps necessary for an incremental update of the viewport window are shown.
On the right side, the steps taken for a complete recomputation are visible
together with the thresholds that control them. The mutual exclusion locks
ensuring data integrity are not shown for the sake of clarity.

The histogram equalisation transfer function can be controlled by counting the
number of changes in the histogram in line 8. Once a threshold is exceeded, an
updated transfer vector t′ is computed from the current histogram. I have used a
value of 100 for this threshold.

The error in the histogram equalisation operation can be controlled by compar-
ing the results of the updated transfer vector t′ with t when the former is computed.
If |ti − t′i| exceeds a given threshold for any i, t is set to t′ and D is recomputed
from D′′ as in line 9; if the threshold is not exceeded, t′ is discarded. I have used a
value of 5 for this threshold.

I have chosen these values of all these parameters arbitrarily and not scruti-
nised the effects of different choices.

4.4.4 Concurrent and event-driven computation

While the algorithm exposed in the last subsection has a very low average time
complexity, its worst case complexity is high – if M ′D′ must be changed, a full
recomputation of D′′, t and D is likely. This computation takes a long time, and
since the incremental update given by Algorithm 7 is naturally executed in the
context of the method called by the engine publishing interface, a recomputation
will block the localisation publishment and thus the computations of other engine
threads. This suggests the number of recomputations should be kept minimal,
which can be achieved by recomputing D′′, t and D only if needed by the graphical

49

interface.
For these reasons an extra thread is spawned that waits for events from the

graphical interface or a user-defined timeout. When any of these events happens,
the thresholds defined in the last subsection are checked, any necessary of the re-
computations defined there performed and the resulting target image is displayed.
The code called by the localisation publisher only performs the incremental up-
dates given by Algorithm 7. Thereby, real-time localisation computation is not
hindered unnecessarily by the displaying process while the localisations are still
visualised concurrently to the computation process. Figure 4.7 provides a visual
representation of the image construction’s dynamic behaviour.

4.5 Guessing the spot standard deviation

In section 4.2, you have noticed that the deconfinement algorithm not only takes a
source stack as an input, but also the spot standard deviation σ. Under lab condi-
tions σ is not always known and especially not known exactly since minor changes
to the experimental setup can introduce subtle changes in σ; consequently, an
algorithm for guessing this parameter from a source stack would ease lab use.

I developed such an algorithm, formalised as Algorithm 8. To understand its
principle, suppose a set of spots Sσ is given that contains mostly true spots. Then,
determining the values ofσx andσy could be done by simply fitting the spots in Sσ
with free standard deviation parameters and averaging the results. Unfortunately,
this simple approach raises a bootstrapping problem: To construct Sσ, a judgement
of spots is needed; to judge spots, σ needs to be known; and to know σ, Sσ needs
to be constructed.

This bootstrapping cycle can be broken if a good initial guess σ0 for σ can
be provided. This assumption is most reasonable since Thompson [53] has found
a range of standard deviations to yield optimal deconfinement precisions, which
experimenters make sure to reach. The good initial guess σ0 can be used to run
the deconfinement routine, and the spots found in that process can be used to find
an improved guess for σ that is termed σ1. This process is iterated for each guess
σi until σ j is found with σ j+1 ≈ σ j .

Straightforward implementation of this scheme would lead to an increase in
algorithm run-time by a factor of j and require buffering of all image data. These
costs can be circumvented if the computation with the current guess is aborted
when it becomes clear that σi+1 will differ significantly from σi . In mathemati-
cal terms, a maximum error ∆σ is chosen. After fitting a small set of spots Sσ,
the 90% confidence interval (estimated by assuming the elements of Sσ to be nor-
mally and independently distributed, a belief that is supported by the success of the
estimation method) for Sσ is computed. If the confidence interval is contained in
σi±∆σ, σi+1 ≈ σi is assumed and the σ estimation process is considered success-
ful. If the confidence interval is disjunct from the interval σi±∆σ/2, 10 the current

10The non-rejection interval width is chosen differently from the acceptation interval width to
avoid analysis paralysis in border cases. Suppose both intervals equal and σi+1 = σi +∆Σ; then,
neither acceptation nor rejection could occur because the confidence intervals stays half in and half
out of the acceptation and rejection zone.

50

Algorithm 8 σ estimation
Require: Initial guess σi
Require: Tolerated σ error ∆σ
Require: Random number X with 0≤ X < 1

1: Acceptance interval IA = [σ0−∆σ,σ0+∆σ]
2: Non-rejection interval IR = [σ0− ∆σ/2,σ0+ ∆σ/2]
3: n← 0, nc ← 23+ b100 · X c
4: Initialise estimates for mean and variance of σ according to West on-line com-

putation scheme[32]
5: while no definitive result was found do
6: while n< nc do
7: Take next localisation l
8: if Amplitude is at least 25% of the maximum amplitude encountered and

σ differs from σ0 by no more than a factor of 2 then
9: Fit spot around l with free deviation to get l ′

10: if l ′ is reasonably close to l then
11: Update means and variances with new measurement σ(l)
12: Increment n
13: end if
14: end if
15: end while
16: nc ← n+ 1
17: Compute 90% confidence interval IC(σ) for mean of σ as t0.1,n−1

p

Var(σ)/n

18: if IC ⊂ IA then
19: Accept σi and break loop
20: else if IC ∩ IR =∅ then
21: σi ← σ
22: Restart rapidSTORM engine and σ estimation, keeping the current nc
23: end if
24: end while

guess σi is assumed to be wrong. In this case, the current mean of Sσ is chosen as
σi+1, all results accumulated so far are discarded and the rapidSTORM engine is
restarted. Since there is a 10% probability for the confidence interval being wrong,
the next sample is required to be strictly greater than the current to avoid loops
with wrong estimates for σ. If neither of the two conditions is true, the sample Sσ
is enlarged.

This method works well in most cases, but is prone to errors when localisations
with very small photon counts or spots generated by multiple active fluorophores
are included. It is therefore necessary to impose limiting conditions on the am-
plitudes and standard deviations of the used localisations, which are shown in
Algorithm 8.

51

Chapter 5

Experimental material and
methods

The success of any experimental testing critically depends on a good choice of
experimental objects. In this case, the objects are source stacks and should span
the space of data encountered in photoswitching microscopy as well as provide
some way to check deconfinement results against a ground truth.

The first demand could be fulfilled with a range of source stacks from different
photoswitching microscopy methods. Unfortunately, I had only data for dSTORM
available and was therefore limited to testing with this technique, even though
I expect data from STORM or PALM to yield qualitatively similar results. To test
dSTORM, a small number of source stacks suffices since dSTORM source stacks are
basically noise and spots of different photon counts and the same underlying PSF;
therefore, the variation in the input data stems from the SNR and the PSF standard
deviation, and the SNRvaries wildly in a single source stack because fluorophore
activity differs in strength and duration.

The second demand, the availability of ground truth, is harder to meet: By de-
sign, photoswitching microscopy measures the position of objects with a precision
unattainable by classical microscopy. This problem will be addressed in this section
by not only testing with a careful choice of real source stacks, but additionally with
source stacks generated stochastically.

5.1 dSTORM image acquisition process

While details may differ, all real specimens were prepared using the dSTORM pho-
toswitching microscopy method. A typical dSTORM work-flow has been described
in [56] as follows:

“African green monkey kidney COS-7 cells were plated in LabTek 8-well
chambered coverglass [. . .]. Microtubules were stained with mouse
monoclonal anti-β-tubulin antibodies [. . .]. Subsequently, cells were
stained for 60 min with [fluorophore-]labeled goat anti-mouse F(ab′)2
fragments [. . .].

52

Figure 5.1: Optical wide-field setup used for dSTORM

“[. . .] Fluorescence imaging was performed on an Olympus IX-71 ap-
plying an objective-type total internal reflection fluorescence (TIRF)
configuration equipped with an oil-immersion objective ([60×, NA
1.45]) and was described earlier. The 647 nm laser beam of an argon-
krypton laser [. . .] was selected by an acousto-optical transmission
filter (AOTF) and coupled into the microscope objective by a poly-
chromic beam-splitter (532/647 [. . .]). Fluorescence light was spec-
trally filtered [. . .] and imaged on an EMCCD camera [. . .]. Addi-
tional lenses were used to achieve a final imaging magnification of
225, i.e., a pixel size of 70 nm. [. . .] Photoswitching microscopy was
performed with a laser power of 22–40 mW. Typically, 8000–16000
images were recorded at a frame rate of 10–100 Hz corresponding to
measurement times of 80 seconds to 26.7 minutes.”

An Andor Technologies camera used for dSTORM measures pixel values that
are not scaled to some arbitrary interval, but reflect the number of counts received
from the A/D converter. I will term that unit A/D count (ADC). According to the
specification sheet for this camera [51, pg. 49], roughly 16 ADCs are emitted for
each photon that immissions on the detector at the amplification level of 200 used
for specimen 1.

53

No. Dye Excit. Integration Source image Pixel Number of
power time dimensions size source images
(mW) (ms) (pixels) (nm)

1 Cy5 25 50 128x128 71 8000
2 Cy5 30 10 128x128 85 20000
3 Atto520 50 50 128x128 85 8000
4 QDot655 - 100 512x512 85 500
5 QDot655 - 1 128x128 85 1000
6 QDot655 - 1000 128x128 85 600
7 Cy5 30 50 256x256 85 10000
8 Cy5 20 100 128x128 71 8000

Table 5.1: Real specimens used for rapidSTORM verification. Specimen 1 was selected
for its high amount of noise, specimen 2 and 8 for their long aquisition and
integration times, specimen 3 for the use of an Atto520 dye, and specimen 7
for its large images. Specimens 4–6 were selected to allow localisation precision
measurements with reliable statistics, since quantum dots show very strong and
reliable fluorescence behaviour.

5.2 dSTORM stacks selected for testing

In Table 5.1, I have compiled a small number of real input images which should
span the specimen space. To achieve this aim, I have selected source images with
well-separated quantum dots (no. 4-6) and from real biological samples, with
different integration times and excitation powers to show different SNRs and with
different source stack lengths to demonstrate the limits (or rather, lack of limits)
of rapidSTORM image processing in the face of gigabytes of data. Additionally,
specimen 1 shows fluorophore activity apart from the focal plane that acts as non-
independent noise.

5.3 Stochastically generating data sets

As elaborated in the introduction to this section, ground truth data for testing a
rapidSTORM-driven system is hard to get, but essential to valid testing. In a
normal laboratory, no specimen can be produced so precisely that the errors in
the deconfinement process clearly surpass the errors in the production process;
and comparably exact measurement methods capable of verifying the results of
deconfinement are rare and expensive. Therefore, a stochastic simulation system
capable of producing realistic source stacks is the only cheap, practical and flexible
way to provide a source stack together with ground truth data about the true
fluorophore positions and emissions.

To produce such data, I defined both the qualitative and the quantitative char-
acteristics of the signal and the noise and then sampled random data from the GSL
Mersenne Twister [35] random number generator with these characteristics and a
random seed of 42. Since the noise can be scrutinised independently of the signal,
but not vice versa, I started by modelling the noise.

54

Figure 5.2: Histogram of camera background noise. The short-range oscillation distorting
the upper graph becomes clear in the close-up view. This behaviour cannot be
explained physically and can be attributed to camera quirks.

5.3.1 Noise model

Thompson[53] identified two principal sources of noise for nanometer-accurate
localisation of fluorescent probes: The background noise due to thermal electron
noise and stray photons as well as the pixelisation noise due to the limited resolu-
tion of a CCD. The pixelisation noise is modelled more easily in conjunction with
the signal modelling and will be delayed; therefore, the aim of this subsection is to
characterise and quantify the pure background noise that occurs even in absence
of fluorophore emissions.

The quantification of background noise depends on a number of factors too
large to exhaustively consider in this work. Thompson[53] alone lists four com-
mon sources of background noise: “readout error, dark current noise, extraneous
fluorescence in the microscope [. . .] and cellular auto-fluorescence.”

For this reason I decided to use descriptive statistics for the reproduction of
camera noise. I did this by reducing the real specimens to noise by pruning ev-
ery pixel closer than 10 pixels to any localisation. The resulting pixels were his-
togramised and fitted with a normal distribution, a weighted mean between a
normal and a Gamma distribution and finally used unsmoothed as a probability
distribution. Figure 5.2 shows a characteristic section of the result for specimen 1.

The bottom part of Figure 5.2 shows how the real noise was overlaid by a
short-range oscillation distorting the likelihoods of measured pixel values, proba-
bly stemming from the A/D converter. I have corrected this oscillation by rounding
each value down to the next lower multiple of the oscillation period, in this case

55

Figure 5.3: Histogram of camera background noise, corrected for A/D converter bias.
Note the systematic underestimation of the number of high pixel values that
is exhibited by the normal distribution.

8. Effectively, this means that all values in an oscillation period were accumulated
to suppress the noise.

The results of this operation are pictured in figure 5.3. Additionally, this figure
contains (scaled) graphs of the two probability density function (PDF)s used to
model the data.

The first PDF is a normal distribution that was fitted to the data set 1 yielding
parameters of mean µ = 2817.4 and SD σ = 127.4. It is important to note that
this distribution, although a good first estimate, fails to explain the high-value tail
of the histogram. Assuming a normal distribution of pixel intensity, the probability
of encountering a pixel with A/D count 4000 is extremely low; however, the actual
number measured is 293 pixels. This severe underestimation of the probability of
high pixel values would introduce a high error into the prediction of regions with
noise-induced strong signal, which are the most likely candidates for FPs.

I addressed this issue by assuming that only a part of the noise can be at-
tributed to normally-distributed noise, while the other part stems from a Gamma
distribution.1 In explicit terms the PDF for this combined approach is:

ΥW,µ,σ,x0,θ (x) = W
1

σ
p

2π
e−

(x−µ)2

2σ2 + (1−W)γ1,θ (x − x0) (5.1)

γk,θ (x) = xk−1 e−
x
θ

θ kΓ(k)
(5.2)

1The Gamma distribution[6, pg. 108] is the generalisation of the Poisson distribution for non-
discrete values of the input parameter. It is used here to approximate the Poisson-distributed noise
stemming from stray photons with a continuously distributed parameter.

56

W denotes a weighting factor between 0 and 1 and Γ denotes the Gamma
function found in [6]. The resulting PDF Υ was fitted to the data set 1 resulting in
the following parameters:

W µ σ x0 θ

0.96 2734.6 104.6 2582.6 119.7

Υ approximates the data significantly better, with a prediction of 278 pixels for
an A/D count of 4000 (with 293 pixels being the measured number). Additionally,
the absolute fit residues are reduced from 5.5 to 2.2 billion A/D counts. Therefore,
I deem the Υ approximation better than the Gaussian one.

The fit residues of the Υ distribution are, however, still 2.2 billion A/D counts
large; such a large error will have a statistical impact. This statistical impact must
be weighted against the flexibility inherent in parametrised functional approxima-
tions to the noise profile. Therefore, I will use both the Υ distribution and a prob-
ability distribution derived directly from the noise data. This direct PDF derived
from a source stack S is given by

D(x) =

∑

I∈S

h(I, x)

Number of pixels in S
, (5.3)

where h denotes the histogram function.

5.3.2 Modelling fluorophores

In section 2.2.2, you have seen that molecular photoswitches have different energy
states. It is therefore natural to model a fluorophore as a continuous-time Markov
process2. For a simplified model, I have introduced two fluorophore states, one
fluorescent, one dark, which are decaying into each other with expected lifetimes
of 2 seconds for the dark state and 0.1 seconds for the bright state. The fluorescent
state emits photons at a constant rate, which is varied in the experiments within
the limits of the Cy5 emission rate found by Heilemann et al. [19] (5–10 kHz).
The PSF for the model fluorophores was taken to be a pixel-integrated Besselian3

with independent scaling for the X and Y coordinates, resulting in an intensity
distribution of

I(x , y) =

�

J1(x/sx + y/sy)

x/sx + y/sy

�2

(5.4)

with sx and sy denoting the spatial scaling factors. The product of the fluorophore
emission rate, the time spent in the on state in a given frame and the normed value

2That is, a fluorophore is in one of n states and has in each infinitesimal time unit a certain
probability of changing its state. The probabilities of changing from one state to the other are fixed.
An example for such a process is given by radioactive atoms, which can be intact or decayed and
have a certain probability of changing from intact to decayed in each time unit, resulting in the
characteristic exponential decay process.

3Please note that the Bessel function is computationally feasible here because the fluorophore
position is known. This allows to compute the PSF values only once at the start of the simulation.

57

Spec. no. Size Noise source Photon rate Fl. pattern # Fl.
9 256 px Spec. 1 10 kHz random 100

10 256 px Spec. 1 10 kHz lattice 100
11 64 px Spec. 1 10 kHz lattice 1000
12 256 px Spec. 1 5 kHz random 100
13 256 px Υ 8 kHz random 100
14 256 px Υ′a 10 kHz random 100
15 256 px Υ′′b 10 kHz random 100
16 256 px Spec. 3 8 kHz random 100
17 256 px Spec. 4 8 kHz random 100
18 256 px Spec. 8 8 kHz random 100

aΥ distribution with σ = 209.2,θ = 168.8, which generates twice as much variance in the pixel
intensities as the original does.

bΥ distribution with σ = 54.7,θ = 84.6, which generates half of the variance in the pixel inten-
sities compared to the original.

Table 5.2: Stochastically generated data sets. The data sets were compiled to span a range
of different noise distributions, the range of Cy5 photon emittance rates as well
as different fluorophore distribution patterns and densities.

of the PSF gave an expected number of photons for each pixel, which was variated
with a Poisson distribution.

This fluorophore model and its results were neither checked against the mea-
sured specimens in this work nor were real fluorophore characteristics modelled
precisely. This was not only due to a lack of time, but also due to the irrelevance
of the concrete parameters used. It is obvious that many sets of parameters will
yield fluorescent spots with a range of different SNR values, and for the compar-
ison of algorithms, the precise distribution is irrelevant. It will, however, become
important for the precise analysis that is to come in future work.

For the experiments, model fluorophores with an average time to deactivation
of 0.1 seconds, an average time to activation of 2 seconds and with Bessel function
scaling factors of 2.31 (best fitted with a Gaussian with SD 1.8) were used.

5.3.3 Fluorophore distribution pattern

Fluorophores were distributed across the surface of an imaginary, square object
slide of given size, either randomly or in a square lattice pattern. For the random
pattern, a X and a Y coordinate were chosen independently and randomly. For
the lattice pattern, the fluorophores were placed in an equidistant pattern with the
outer fluorophores having 4 pixels of space towards the border.

5.3.4 Specimens generated

Table 5.2 lists the parameters for data sets generated stochastically. I have selected
the noise from specimen 1 for its high level of background noise and contrasted
it with the lower levels of noise from specimens 3, 4 and 8. To demonstrate the
viability of this method, Figure 5.4 shows a typical image from specimen 10.

58

Figure 5.4: Stochastically generated input image. The generated image (left) was cap-
tured from the generated data for specimen 10 and is compared, for refer-
ence, with the typical rapidSTORM image (right). Note that the differing
background intensity levels are due to contrast stretching.

5.4 Measuring error rates in candidate search stage

The error rates in the candidate search stage were measured by pairing, for each
image, the active fluorophores and the candidates/localisations (called objects in
this paragraph). The fluorophore and the object with the lowest distance was
paired first, both were removed from their respective set, and the next pair was
paired. This means that each fluorophore and each object was paired to at most
one object from the other category. Fluorophores and objects that differed more
than half the width of the NMS mask size in X or Y direction were not paired. From
these pairings, only the candidates were counted that did not have M0 consecu-
tive unpaired candidates in front of them. This restriction simulates the effects of
dynamical thresholding.

The TP count is given by the number of fluorophores correctly paired; the FP
count as the number of candidates/localisations not paired with any fluorophore;
and the FN count as the number of fluorophores not paired with any candidate/lo-
calisation.

5.5 Computational hard- and software

The tests were conducted on an Intel E6550 processor with two cores each clocked
at 2.33 GHz. The compiler was the g++ in Debian 4.3.1-9 version, optimising with
the O3 flag. Computation times were measured by the GNU time utility, version
1.7, and by the clock() function offered by GNU.

59

Chapter 6

Results and discussion

Beware of bugs in the above code; I have
only proven it correct, not tested it.

– Donald Knuth ([31, pg. 5])

In Chapter 4, I have made many choices in algorithms and parameters that
were neither obvious nor proven. Most of these choices can not be supported by
traditional algorithmic theory, because all competing algorithms share the same
complexity class or even, in some cases, the algorithm optimal in average run-
time and space is inferior in real-time space and time complexity. Hence, I have
checked most choices experimentally against a range of conceivable alternatives.
This approach is, naturally, not exhaustive, but nevertheless a good indicator for
the correctness of the involved methods and for the important qualities of the
involved algorithms.

This chapter is divided into five sections: Comparing the implementation with
the reference Schüttpelz implementation, checking the candidate search algorithm,
checking the spot fitter algorithm, checking the σ estimation and evaluating the
real-time capability of the system.

6.1 Evaluation by comparison with Schüttpelz imple-
mentation

The first and easiest test for a new software system is comparison of its results with
existing systems. For this reason, I have tried to check the rapidSTORM results
on specimen 1 with the results of the pre-existing dSTORM computation method.

To correlate the results, I have paired the localisations found by both methods
with the pairing method described in section 5.4, allowing a maximum distance of
1 between the respective coordinates. From the total localisation count of 86839
for rapidSTORM and 104256 for the Schüttpelz implementation, 62110 locali-
sations matched with an average Euclidean distance of 0.16 pixels, corresponding
to 0.16 nm. These numbers do not account for spots fitted multiple times by the
Schüttpelz implementation or for localization attempts rejected due to the ampli-
tude threshold.

60

(a) rapidSTORM (b) Reference

Figure 6.1: Comparison of resulting images for specimen 1

The deviation in spot fitting and fit judging exhibited by these results is con-
siderable. However, a lack of ground truth precludes any conclusion towards the
correctness of either the rapidSTORM or the Schüttpelz results.

Comparing the images generated by both methods, similarity of the structures
can be discerned despite different techniques for localisation visualisation. Fig-
ure 6.1 shows matching parts of the result images.1

6.2 Candidate search

The following principal questions with respect to the candidate search stage will
be answered in this section: Firstly, is a dynamic threshold necessary? Secondly,
which of several proposed smoothing algorithms is superior for this task? Thirdly,
which of the two NMS operations introduced is superior? Fourthly, can kernel
smoothing and a NMS compete with morphological operators such as reconstruc-
tion by erosion? And fifthly, what are the ideal parameters for the chosen method?

6.2.1 Necessity of dynamic threshold

Figure 6.2 shows the histogram of good and bad fit counts by candidate quality2,
measured on specimen 9. While the quality proves to be a good predictor of fit
truth, it also becomes clear that any threshold choice must be made very precisely
to separate true and false spots.

1Please note that the image taken from the Schüttpelz implementation was just meant as a first
impression and would have been refined for further work or publication. This is not a comparison
of imaging techniques, just of the structures that were recognised.

2The spot quality was defined in Chapter 4 as the value of the smoothed image at the candidate
spot position.

61

Figure 6.2: Histogram of fit goodness by candidate quality. The scale is chosen differently
for good and bad fits to emphasise the principal problem of bad seperability.

6.2.2 Smoothing operations

I have compared three important smoothing methods: Smoothing by Spalttiefpass,
smoothing by median and smoothing by a Gaussian kernel. I have chosen these
methods since the Spalttiefpass is one of the fastest smoothing filters available,
median smoothing might be useful for shot noise (which might be dominant in
input stacks due to the influence of photon shot noise) and a Gaussian kernel due
to the high similarity of its weights to the intensity distribution of true spots. The
masks were all sized at 2msσ+1, and the Gaussian mask was weighted according
to a Gaussian with SD σ to ideally match true spots.

In terms of theoretical execution speed, the Spalttiefpass and the Gaussian ker-
nel can be expected to be very fast due to their decomposability, with the median
filter able to match these speeds with a fast implementation [24]. In speed mea-
surements on a randomly generated 128x128 image, the pure smoothing times
were 0.2, 0.6 and 2.0 ms per image, respectively; the high computation time for
the median filter probably stems from inefficient implementation.3

On the real specimens, the results of the smoothing filters are very hard to
judge. Due to the lack of ground truth there is only one benchmark: The number
of localisations found exceeding a certain threshold. Table 6.1 summarises the
localisation counts and computation times for the real specimens with different
amplitude thresholds for fit judging. It is obvious in these data that the median

3I have made no effort to speed up the median filter due to mediocre candidate search perfor-
mance.

62

Sp. θA Spalttiefpass Median Gaussian
no. (ADC) # loc. t (s) # loc. t (s) # loc. t (s)
1 1000 160455 81.16 118876 315.67 425069 152.02

4000 79300 46.36 75479 294.69 86949 47.73
9000 52747 37.39 50885 280.70 55715 38.16

2 300 34621 37.74 29198 647.10 67928 53.45
600 21089 33.24 21144 620.71 21028 37.23

1200 17597 33.50 17708 636.51 17491 37.39
3 300 28176 30.08 18082 267.05 145556 61.14

600 5390 21.48 4629 283.50 11035 22.68
1200 2158 14.22 1983 289.07 2445 16.54

4 1000 15733 10.19 15575 277.32 16372 16.30
4000 14652 9.65 14799 285.20 15075 15.76
9000 13437 9.22 13592 287.85 13838 15.33

5 300 3479 2.37 3374 32.28 3499 2.33
600 2258 2.15 2253 31.90 2262 2.30

1200 1508 1.90 1509 31.64 1505 2.07
6 1000 2462 5.14 2486 35.66 3223 9.76

4000 2196 5.12 2204 39.90 2237 5.55
9000 2175 5.20 2176 35.06 2187 5.58

7 1000 12019 34.19 10712 1248.22 14930 43.76
4000 6128 31.74 6282 1261.53 6276 42.32
9000 10 17.37 11 252.53 9 37.69

8 1000 78848 63.19 67087 558.51 201709 106.90
4000 50310 52.22 47698 516.65 62274 44.18
9000 25766 32.81 27953 272.92 30459 42.08

Table 6.1: Localisation statistics on real specimens by smoothing algorithm. θA gives the
amplitude threshold used for computation, and # loc. the number of localisa-
tions found in the specimen. The time given here is the processor time used
by the rapidSTORM process and includes both startup, candidate search and
spot fitting times. Therefore, the computation time listed is not a function of
the number of localisations, but includes other influences such as stack size.

method is far inferior to the two other methods. It is also obvious that the Gaussian
method mostly causes more localisations than the Spalttiefpass does; however,
this effect is mostly visible for the low thresholds, where it is unclear whether the
additional spots are merely false positives.

On the stochastically generated sets, crucial ground truth information is avail-
able, since the positions of active fluorophores are known. In Table 6.2, I have
compared the Spalttiefpass and the Gaussian using different statistics. This table
lists not only the candidate statistics, which give the quality of a smoothing method
assuming the spot fitting and judging stage to be perfect, but also the localisation
statistics, which show the quality of cooperation with the real version of that stage.

It becomes clear that the Gaussian kernel is equivalent or slightly superior to
the Spalttiefpass if a large amplitude threshold makes false positives in the candi-
date judging procedure unlikely. However, if the amplitude threshold was chosen

63

candidates
localisations

Sp.
θ

A
(A

D
C

)
Spalttiefpass

G
aussian

Spalttiefpass
G

aussian
no.

TPi
FPi

FN
i

TPi
FPi

FN
i

TPi
FPi

TPi
FPi

9
1000

6.156
3.503

3.301
6.134

3.812
3.198

6.386
7.573

7.539
423.893

2000
6.179

3.504
3.278

6.123
3.804

3.209
6.290

2.763
7.073

69.679
3000

6.179
3.504

3.278
6.134

3.812
3.198

6.098
0.960

6.520
13.668

4000
6.080

3.479
3.276

6.134
3.812

3.198
5.678

0.402
5.928

4.210
9000

6.124
3.496

3.238
6.117

3.856
3.269

3.515
0.008

3.419
0.054

10
1000

5.770
3.483

3.670
5.589

3.747
3.900

5.973
7.335

6.856
350.375

4000
5.739

3.473
3.745

5.484
3.723

3.870
5.294

0.395
5.352

3.584
9000

5.772
3.484

3.668
5.586

3.821
3.854

3.206
0.009

3.136
0.059

11
1000

13.627
1.126

80.350
16.224

0.165
77.846

13.832
0.318

16.233
0.149

4000
13.627

1.126
80.350

16.471
0.174

77.598
13.734

0.284
16.284

0.116
9000

13.677
1.121

80.396
17.957

0.183
76.046

12.867
0.219

15.593
0.078

12
1000

4.368
4.047

5.065
4.426

4.120
5.032

5.126
20.022

6.778
419.621

4000
4.420

3.726
4.994

4.542
4.011

4.794
3.775

0.390
4.367

4.133
9000

4.357
3.712

5.048
4.439

4.118
4.934

0.054
0.003

0.334
0.047

13
1000

5.595
3.369

3.814
5.600

3.387
3.809

5.851
13.517

6.706
394.745

4000
5.641

3.356
3.832

5.643
3.402

3.766
4.847

0.054
4.808

0.372
9000

5.592
3.368

3.817
5.595

3.388
3.784

2.390
0.0

2.357
0.000

16
1000

6.745
3.184

2.731
6.740

3.174
2.736

6.722
2.014

6.940
26.177

4000
6.745

3.184
2.731

6.740
3.174

2.736
4.780

0.000
4.736

0.000
9000

6.686
3.188

2.702
6.689

3.193
2.699

2.365
0.0

2.359
0.0

17
1000

7.207
3.090

2.184
7.213

3.083
2.178

6.838
0.001

6.780
0.001

4000
7.207

3.090
2.184

7.212
3.083

2.179
4.637

0.000
4.628

0.000
9000

7.207
3.090

2.184
7.212

3.083
2.179

2.283
0.0

2.281
0.0

18
1000

6.279
3.256

3.093
6.348

3.220
3.024

6.392
7.198

6.835
112.876

4000
6.279

3.256
3.093

6.347
3.224

3.026
4.750

0.000
4.648

0.000
9000

6.279
3.256

3.093
6.339

3.220
3.033

2.218
0.0

2.195
0.0

Table
6.2:

Localisation
statistics

on
the

generated
specim

ens
by

sm
oothing

algorithm
.
θ

A
gives

the
am

plitude
threshold

used
for

com
putation,and

TPi,
FPiand

FN
igive

the
true

positive,false
positive

and
false

negative
count

per
im

age,respectively.
A

s
defined

in
section

4.2.1,the
candidates

show
n

here
are

the
potential

spot
locations

w
here

fitting
com

m
enced,

w
hile

the
localisations

are
presum

ed
fluorophore

locations.
The

localisation
count

surpasses
the

candidate
count

because
of

the
different

counting
m

ethods
described

in
section

5.4.

64

small, the Gaussian kernel’s bias towards strong, single pixels (due to the strong
weight for the central pixels) causes a large amount of false localisations. The spot
finder statistics show that these false localisations were not due to a bad candidate
search, but rather due to a high false positive rate in the spot fitter. This is not
surprising when considering that the Gaussian mask has a larger weight for the
centre pixel than the Spalttiefpass and thus gives a higher weight to single strong
pixels than the Spalttiefpass does. In the spot fitting stage, a single strong pixel
with surrounding noise is likely to cause a false positive4, thereby raising the false
positive rate. I consider this effect the cause of the high false positive rate.

Special attention should be directed towards specimen 11, which showed an
extremely high spot density in the images. In this case, it can be seen how the
smaller smearing effect of the Gaussian function (compared to the Spalttiefpass)
results in a drastically better candidate recognition for very close fluorophores.

Since low threshold values are very likely to occur under lab conditions5, the
false positive sensitivity of the Gaussian mask is a major issue. For this reason, I
deem the Spalttiefpass to be preferable for practical use, with the Gaussian smooth-
ing having good future applications if the amplitude threshold can be determined
automatically and better experimental techniques can raise spot densities.

6.2.3 Non-maximum suppression comparison

In Chapter 3, two principal approaches to the inclusive NMS have been presented:
Firstly, the extension of Neubeck’s algorithm for exclusive NMS, and secondly, com-
paring the image with its dilation.

The comparison between these methods was done by implementing both and
comparing on specimens 1 and 4 at an amplitude threshold of 4000. These two
specimens were selected to represent both high and low noise conditions. The
Neubeck implementation performed better on both specimens, resulting in a total
computation time of 46.4 seconds on specimen 1 and 10.6 seconds on specimen 4.
The dilation version took 50.9 and 17.7 seconds, respectively.

6.2.4 Morphological operators for spot finding

Since I assume the Gaussian to be inferior due to its vulnerability to single pixel
noise, I have tested morphological form operators, which are very tolerant to such
noise. The first is a simple erosion with a structuring element msσ pixels wide,
thereby half as large as the usual SE and half as large as the usual spot centre.

Considering more advanced morphological operators, I implemented a fillhole
scheme proposed by Marko Tscherepanow that uses morphological reconstruction.
First, a fillhole transformation (see 3.1.4) was performed on the source image to
suppress the noise minimums; secondly, a large (rectangular mask 25 pixels wide)
opening produced a background image, which was subtracted from the result of

4Any fit attempt that uses a low amplitude to fit to a single strong pixel will have very high
residues due to the large error for the single strong pixel. Therefore, single strong pixels tend to
cause higher amplitudes in the fit results, generating false positives.

5After all, every experimenter has the desire to squeeze every localisation possible from his or her
sample.

65

candidates
localisations

Sp.
θ

A
STP

Erosion
Fillhole

STP
Erosion

Fillhole
no.

(A
D

C
)

TPi
FPi

FN
i

TPi
FPi

FN
i

TPi
FPi

FN
i

TPi
FPi

TPi
FPi

TPi
FPi

9
1000

6.16
3.50

3.30
5.73

3.37
3.70

5.75
3.40

3.68
6.39

7.57
6.31

28.85
6.28

20.16
2000

6.18
3.50

3.28
5.73

3.37
3.70

5.77
3.40

3.68
6.29

2.76
5.95

4.28
5.97

3.45
3000

6.18
3.50

3.28
5.72

3.39
3.72

5.74
3.43

3.63
6.10

0.96
5.68

0.47
5.70

0.43
4000

6.08
3.48

3.28
5.71

3.38
3.68

5.74
3.43

3.63
5.68

0.40
5.47

0.06
5.48

0.05
9000

6.12
3.50

3.24
5.67

3.39
3.70

5.71
3.43

3.66
3.52

0.01
3.46

0.00
3.46

0.00
10

1000
5.77

3.48
3.67

5.34
3.37

4.11
5.39

3.40
4.06

5.97
7.33

5.91
28.57

5.92
20.06

4000
5.74

3.47
3.75

5.36
3.38

4.12
5.39

3.40
4.09

5.29
0.40

5.11
0.06

5.13
0.05

9000
5.77

3.48
3.67

5.38
3.37

4.06
5.39

3.40
4.09

3.21
0.01

3.23
0.0

3.15
0.00

11
1000

13.63
1.13

80.35
27.69

2.98
66.29

26.54
4.31

67.52
13.83

0.32
20.10

0.16
19.76

0.16
4000

13.63
1.13

80.35
27.69

2.98
66.29

26.52
4.30

67.54
13.73

0.28
19.34

0.12
19.05

0.14
9000

13.68
1.12

80.40
27.78

2.97
66.69

26.50
4.27

67.43
12.87

0.22
16.36

0.09
16.30

0.10
12

1000
4.37

4.05
5.06

3.69
3.54

5.64
3.76

3.60
5.57

5.13
20.02

4.64
31.19

4.57
20.73

4000
4.42

3.73
4.99

3.77
3.56

5.68
3.81

3.60
5.60

3.78
0.39

3.37
0.06

3.37
0.05

9000
4.36

3.71
5.05

3.70
3.63

5.62
3.75

3.65
5.57

0.05
0.00

0.00
0.00

0.00
0.00

13
1000

5.59
3.37

3.81
4.87

3.41
4.60

4.94
3.45

4.53
5.85

13.52
5.54

31.53
5.53

21.21
4000

5.64
3.36

3.83
4.82

3.40
4.59

4.88
3.44

4.53
4.85

0.05
4.53

0.02
4.58

0.02
9000

5.59
3.37

3.82
4.82

3.41
4.56

4.80
3.44

4.50
2.39

0.0
2.42

0.00
2.41

0.0
16

1000
6.75

3.18
2.73

6.98
3.27

2.50
6.94

3.29
2.54

6.72
2.01

6.89
1.11

6.88
1.18

4000
6.75

3.18
2.73

6.98
3.27

2.50
6.94

3.29
2.54

4.78
0.00

4.87
0.00

4.87
0.00

9000
6.69

3.19
2.70

6.92
3.26

2.47
6.88

3.29
2.51

2.37
0.0

2.41
0.0

2.41
0.0

17
1000

7.21
3.09

2.18
6.93

3.18
2.47

6.95
3.16

2.44
6.84

0.00
6.82

0.00
6.84

0.00
4000

7.21
3.09

2.18
6.93

3.18
2.47

6.95
3.16

2.44
4.64

0.00
4.74

0.00
4.75

0.00
9000

7.21
3.09

2.18
6.93

3.18
2.47

6.95
3.16

2.44
2.28

0.0
2.31

0.0
2.31

0.0
18

1000
6.28

3.26
3.09

5.66
3.33

3.71
5.71

3.37
3.66

6.39
7.20

5.98
10.36

6.01
7.87

4000
6.28

3.26
3.09

5.66
3.33

3.71
5.71

3.37
3.66

4.75
0.00

4.79
0.00

4.79
0.00

9000
6.28

3.26
3.09

5.66
3.33

3.71
5.75

3.35
3.65

2.22
0.0

2.26
0.0

2.35
0.00

Table
6.3:

Localisation
statistics

for
fillhole

schem
e

on
generated

specim
en.

θ
A

gives
the

am
plitude

threshold
used

for
com

putation,
and

TPi,
FPi

and
FN

igive
the

true
positive,

false
positive

and
false

negative
count

per
im

age,
respectively.

A
s

defined
in

section
4.2.1,

the
candidates

show
n

here
are

the
potentialspot

locations
w

here
fitting

com
m

enced,
w

hile
the

localisations
are

presum
ed

fluorophore
locations.

The
localisation

count
surpasses

the
candidate

count
because

of
the

different
counting

m
ethods

described
in

section
5.4.

66

the fillhole transformation to isolate the spots on an otherwise black background.
In a third step, the spot image was eroded by a rectangular 3x3 mask to erase noise
maximums. This image was then subjected to a non-maximum suppression to find
single maximums.

Considering the large mask sizes and complex operations included in the fill-
hole scheme, efficient implementation is crucial. While the fillhole transformation
was performed by Tscherepanow’s very fast reconstruction implementation of Luc
Vincent’s algorithm[55], the dilation and erosion operators were implemented us-
ing Gil and Werman’s algorithm.[15]

Subsequently, I compared this scheme with searching local maximums in a
smoothed image. The results on real specimens were inconclusive and can be
found in the appendix in Table D.3 on page 101. The morphological operators
sometimes caused more localisations to be found than the Spalttiefpass, sometimes
less, and took significantly more time; however, without reliable data about the
false positive rate, no conclusions should be drawn.

Table 6.3 compares the more precise statistics possible on generated data. On
the normal specimens, the morphological operators clearly find far less true spots
and true positive localisations than the Spalttiefpass does. On specimen 11, which
features very many and barely separated spots, the morphological schemes per-
form best, even better than the Gaussian kernel. Notwithstanding the high compu-
tational effort, both the erosion and even more so the fillhole scheme exhibit a re-
markable tolerance towards false positive localisations for some threshold ranges.
This good classification reliability might provide valuable ground truth data if em-
ployed correctly.

6.2.5 Parameter choice

Sections 6.2.2 and 6.2.4 showed that a Spalttiefpass is the superior choice for
candidate search amongst the solutions I have considered. However, the propor-
tionality factor ms for the size of the Spalttiefpass kernel matrix remains to be
determined. As I have elaborated in section 4.3.1, the mask size may neither be
too large nor too small to maximise the relative weight of the spot contribution.

I measured the impact of changes in ms for the generated specimens and sum-
marised important results in Table 6.4, with the complete results in Table D.4 in
the Appendix on page 102. For the high-noise specimens the choice of 1.5 seems
to be a consistently good value for ms, while the low-noise specimens are almost
indifferent to the smoothing mask size. Specimen 11 is once again a special case
where the blurring effect of a large average mask is detrimental.

6.3 Spot fitting and judging stage

The spot fitting and judging stage is as important as the spot finding, but has
already received substantial attention from Thompson [53] and Cheezum [9].
Therefore, I did not devote as much experimental time to it. Nonetheless, it is
important to have an estimate of the spot judging’s reliability for different choices
of the amplitude threshold parameter θA to demonstrate the viability of an ampli-

67

Sp. θA candidates localisations
no. (ADC) ms TPi FPi FNi TPi FPi

9 4000 1.0 7.09 3.60 3.28 5.92 2.04
4000 1.5 6.80 3.48 3.28 5.68 0.40
4000 2.0 5.66 3.69 4.28 4.50 0.10

10 4000 1.0 6.59 3.60 3.83 5.42 1.97
4000 1.5 6.46 3.47 3.75 5.29 0.40
4000 2.0 5.74 3.65 4.26 4.42 0.09

11 4000 1.0 22.39 1.08 71.44 20.34 0.15
4000 1.5 13.66 1.13 80.35 13.73 0.28
4000 2.0 3.35 2.56 91.11 1.67 0.22

16 4000 1.0 7.12 3.19 2.75 4.75 0.00
4000 1.5 7.09 3.18 2.73 4.78 0.00
4000 2.0 6.83 3.34 2.91 4.84 0.00

Table 6.4: Effects of smoothing mask size on spot and localisation error rates. I have
selected specimens 9–11 to reflect different spot densities and specimen 16 to
include a different noise distribution. The results for other fluorophores can be
found in Table D.4. θA gives the amplitude threshold, ms the size factor for the
smoothing mask, while TPi, FPi and FNi give the average TP, FP and FN count
per image.

tude threshold and to be able to reproduce Thompson’s results to demonstrate the
correctness of the algorithm.

6.3.1 Error rates in spot fitting

I measured the false positive and the false negative rate for the generated spec-
imens by fitting to a single fluorophore that was located in the centre of an im-
age 2m fσ+ 1 pixels wide and high. This fluorophore had the standard dynamics;
therefore, most images contained no signal at all and only noise, some images con-
tained a weakly fluorescing fluorophore and some a strongly fluorescing one. The
spot fitter was required to accept a spot whenever it emitted a minimum number
of photons (30) and reject otherwise. Figure 6.3 shows the error rates measured
on the generated samples. As expected, the rate of FPs amongst the localisations
drops exponentially, making an amplitude threshold feasible. Moreover, the error
rate can be predicted roughly by the variance of the noise, which can be measured
easily from acquired data.

6.3.2 Amplitude threshold choice

Table 6.2 shows a sharp decline of false positive rates in a range of spot amplitude
thresholds between 1000 to 4000 A/D counts. A good amplitude threshold should
suppress most false positives and therefore be chosen near the upper end of this
spectrum; this consideration would indicate a good threshold value of 3000-4000
A/D counts. On the other hand, the choice of an amplitude threshold on the basis
of these simulations is doubtful because false positive rates cannot be confirmed

68

Figure 6.3: Error rates on generated samples by threshold. It becomes obvious that the
error rate can be predicted fairly precisely by the standard deviation of the
pixel noise. The noise extraction was performed identically as described in
section 5.3.1. Specimens 10-12 were left out because their noise is identical
to specimen 9.

Figure 6.4: Localisation amplitude histogram on real specimen and noise. Note that spec-
imen 9 is a simulation using the noise measured from specimen 1, ensuring
comparability.

69

Figure 6.5: Effects of varying spot fitting mask size on spot fitting and fit judging error.
Note how an increasing mask size improves reliability and accuracy. Spec-
imens 9 and 12 were selected to represent two different photon emittance
rates.

on real samples.
However, the decline of noise spots should manifest itself in the histogram of

localisation amplitudes as a transition point between an exponential drop and a
less steep part. The exponential drop should be due to false positives, which can
be expected to occur with exponentially decreasing probability; and the less steep
part would indicate true positives, which should exhibit a significantly different
probability distribution.

Figure 6.4 shows the localisation amplitude histogram of specimen 1 and a
corresponding histogram for noise measured on specimen 1 without any fluoro-
phores. These data show a transition from one roughly exponential behaviour to a
different trend; the histogram acquired from generated noise does not. Moreover,
this transition happens in the region of 3000-4000 A/D counts, as predicted. This
supports the hypothesis that an amplitude threshold found in simulations can be
applied to real specimens.

6.3.3 Fit window size

The spot fitting module, which computes localisations from spots, operates on
rectangular windows with a size proportional to the current value of σ. The choice
of this window size’s proportionality factor m f is critical for both the speed and
the precision of the spot fitting process and thereby the entire software. Since the
number of pixels that the model function is fitted to grows quadratically with m f ,

70

Figure 6.6: Change of localisation precision with threshold and noise. Data points are
missing where a low PER made threshold exceedance unlikely.

the computational complexity of the fit grows quadratically with m f , requiring its
value to be chosen as low as possible. On the other hand, the probability of a false
positive judge on a fit should drop drastically with higher values for m f , as well as
the precision of the fit should rise due to the inclusion of a larger sample of noise
pixels surrounding the spot.

To test this effect, I measured the effect of several mask sizes on spot fitting and
shown the results in Figure 6.5. It is surprising how even very large fitting masks6

still show an improvement in fitting and judging precision. However, it also shows
a value of 2 is a viable choice under normal conditions.

6.3.4 Spot fitting precision on generated data

With the same fitting method as in section 6.3.1, I measured the SD of the error in
fitting a single spot. The results are shown in Figure 6.6. I have added fits of the
Thompson model

¬

(∆x)2
¶

=
a

N
+

b

N2 (6.1)

(with N being the number of photons in a spot and a and b constants motivated
and calculated physically in [53]) plus an additive constant to these data where ac-

6At normal dSTORM σ values of 2, an m f of 4 will cause a window 19 pixels wide and high to
be fitted.

71

Sp. Integration X SD (nm) Y SD (nm)
time (ms)

5 1 14.0 15.0
4 100 6.3 6.0
6 1000 12.0 12.0

Table 6.5: Localisation precision of real quantum dot specimens. X/Y SD gives the sta-
tistical standard deviation of the localisation position in X/Y direction. This
SD should be proportional to a linear combination of the inverse and the in-
verse square of the number of emitted photons, which should be proportional
to the integration time. The exhibited deviation from this theory hints at the
fluorophore drift effect.

ceptable fit parameters were found.7 The agreement with the Thompson model is
excellent in these cases, and the additive constant I needed to add can be explained
with the error inherent in fitting a Gaussian function to a Besselian PSF.

The specimen stacks I used were acquired with pixel sizes between 71 and
85 nm. Therefore, the values acquired here are in good agreement with those
published for dSTORM in [21].

6.3.5 Localisation precision on real data

To ensure the applicability of the fit precision results from section 6.3.4 to the real
specimen, I have tried to reproduce the results of Heilemann et al. [21] using the
quantum dot specimens with numbers 4-6. The quantum dots in these specimens
should, due to their high photon emittance rate (PER) and continuous activity,
allow a very high localisation precision, at least as good as the predictions shown
in Figure 6.6.8 The localisation precision should, according to Thompson [53],
improve either with the inverse or the inverse square of the photon number (which
is proportional to the integration time), depending on the type of noise dominant
under the conditions. Table 6.5 summarises the results.

The results are far from the expectations. Not only are the predictions from
simulated data far more optimistic than these data imply, but the localisation pre-
cision for 1000 ms integration time is almost equal to that for 1 ms. This implies
that there must be an additional effect overlaying the pure noise effects consid-
ered in Thompson’s work. A time-resoluted view onto the localisations found for
a single quantum dot, shown in Figure 6.7, supports this hypothesis: The quan-
tum dot is slowly and erratically drifting from its original position. When this
movement is roughly linear for short times, it can be guessed that the localisation
precision is definitely higher than indicated by the standard deviation.9 This move-

7The fits to several data sets yielded negative parameters for either a or b, which would be
unphysical. For the data sets with 5 kHz photon rate, this fit failure can be explained by an under-
estimation of the fit error due to rejected fit positions. For the data set with 10 kHz photon rate and
noise from specimen 4, I cannot explain the fit failure.

8Actually, this high photon count is counteracted by the non-negligible size of a quantum dot.
Therefore, an additive constant should arise in equation 6.1.

9This is, naturally, only a rough estimate, and it seems statistically unsafe to draw conclusions for
the localisation precision from the short time scales in which the drift velocity seemed to be stable.

72

Figure 6.7: Spot time traces showing fluorophore drift. Each data point shows a locali-
sation of the same quantum dot, while the three graphs show three different
quantum dots. The black lines indicate sections where the drift was roughly
linear and the true, better localisation precision becomes visible. The lines are
spaced 10 nm in specimen 4 and 8 nm in specimen 6.

73

Measured quantity θA Fixed Free σ Fixed
(ADC) σ = 2 σ = 1.8

False negative rate (false
negatives per true spot)

2000 0.12 0.19 0.12
4000 0.24 0.29 0.27
6000 0.37 0.41 0.4

False positive rate (false
positives per 1000 noise spots)

2000 28 68 28
4000 0.96 6.3 0.96
6000 0.16 0.52 0.18

Correlation between real and
measured spot amplitude

2000 0.97 0.94 0.97
4000 0.97 0.93 0.96
6000 0.95 0.9 0.94

Localisation precision (SD of
localisation error in pixels)

2000 0.33 0.34 0.31
4000 0.26 0.26 0.24
6000 0.21 0.21 0.2

Table 6.6: Comparison between fitting with fixed and variable σ parameter. θA gives the
amplitude threshold. A fluorophore was, as in the other experiments, simulated
with a PSF SD of 1.8 and fitted with a Gaussian function that had either fixed
or free σ paramaters. The differences in performance support the choice of
fixed σ paramaters for rapidSTORM.

ment reduced the localisation precision, and its effect increased with integration
time, explaining the bad results for specimen 6. This effect has been mentioned by
Zhuang et al. in [59], and has been observed in further specimens.

6.3.6 Fixing of σ parameter

To test the hypothesis that fixing of the σ parameter enhances the fit precision,
I have repeated the measurements for spot judging error rates and localisation
precision on generated data for a spot fitting implementation that also fitted the
σx and σy parameters. The initial guesses for these parameters were set to the
real values, and a fit was judged to be good when the amplitude threshold was
exceeded and the measured value for both σ components were within ±1 pixels
of the real value.

Table 6.6 summarises the results. Obviously, fixing the fit parameters enhances
fit spotting and judging precision and predicts the real number of photons better.
However, these results are not surprising, since the photon distributions in the
generated were generated by a perfect Besselian PSF. Since this is not necessarily
given for real data, these results should be confirmed for real specimens.

6.3.7 Motivation parameter M0

The motivation parameter M0 is used in the rapidSTORM engine to control the
dynamic threshold for spot candidate fitting. Algorithm 4 on page 34 will abort
fitting spot candidates for a given image once M0 consecutive bad spots yielded
bad fits.

74

Figure 6.8: Average errors in σ estimation. The values in this graph show the average
relative error, while the error bars indicate the minimal and maximal estima-
tions. The blue and the violet line show the error allowed in σ estimation.
The photon emittance rate was varied within the bounds given by Heilemann
et al. in [19].

Naturally, high values for M0 will result in some additional localisations com-
pared to low values, but also in a much higher number of additional bad fits and
in a small amount of additional FN localisations. To estimate these factors, I mea-
sured the number of localisations and the computation time needed at different
values of M0 and compiled the results in table D.5 on page 99. To summarise,
it shows that a motivation parameter of 3 is a good choice at normal and high
threshold levels with few additional localisations to be found with higher values,
while at low threshold levels additional localisations are found with each rise in
M0. I deem the latter phenomenon to be caused by false positives. I have not tried
to support this belief on generated data because the correct choice of a motivation
parameter is naturally strongly dependent on the exact nature of the noise and on
background signal, even more so than the other parameters.

6.4 σ estimator

Iterative heuristics are by their nature difficult and troublesome pieces of code.
Therefore, special care must be taken to test these for accuracy, stability and con-
vergence speed.

To test the accuracy and stability of the σ estimation code, I modified specimen
9 to use different PSF SDs and tried to estimate those from initial guesses that were

75

Figure 6.9: Number of localizations used for σ estimation. Error bars indicate minimum,
average and maximum value measured in 50 runs on specimen 9.

off by a factor of
p

2. Consistently, the initial guesses for σx were chosen too low
and the ones for σy were chosen too high. For each measured standard deviation,
50 independent samples have been taken at an amplitude threshold of 3000 and
the final guesses for the σ parameters have been recorded. Figure 6.8 shows the
results.

These results prove the overall fitness and stability of the standard deviation
estimation. As evident in the graph, the values of the σ parameters can be guessed
within the self-imposed limits of few percents of deviation. Furthermore, of the
several thousand estimation attempts made for this graph, none failed to converge
and none were off by more than 10%, as Tables D.2 and D.1 on page 100 prove.
Since the SNR encountered with the high noise of specimen 9 and the very low
PER of 5 kHz is amongst the worst encountered in photoswitching microscopy, the
σ estimation algorithm can be expected to work for all photoswitching microscopy
inputs.

To test the speed of convergence, I have recorded the number of localisations
used for the measurements shown in Figure 6.8, including spots that were not
fitted with a free-form Gaussian because of low amplitudes. Localisations that
were used in multiple iterations were counted multiple times. Figure 6.9 shows
the mean number of localisations needed for acceptance of a σ estimate with the
error bars indicating the minimal and maximal value.

It becomes clear that a low SNR exacts fitting very many spots to reach an equi-
librium state. This effect grows significantly with the PSF standard deviation. In
extreme cases, the σ estimation process is rather unpredictable, with the minimum
and maximum number of localisations needed spanning two orders of magnitude.

76

Sp.no. θA Acq. Processor Searching Fitting
(ADC) time (s) time used (s) time (s) time (s)

1 4000 400 47.0 1.1 43.0
1 (m f = 2) 4000 400 29.7 1.6 25.0

2 600 200 38.6 0.2 30.2
3 1200 400 13.6 1.0 10.5
4 4000 50 10.6 0.6 6.7
5 300 1 2.7 0.1 2.7
6 4000 600 3.2 0.1 1.9
7 1000 5000 30.5 2.6 13.2
8 4000 800 39.3 1.5 35.2

Table 6.7: Comparison of computation and acquisition times. The processor time gives
the total runtime of the software including startup and reading of the data
files. Searching time is the time spent in candidate search, including smooth-
ing and construction of the size-limited tree, while fitting time gives the time
spent on fitting the found spot candidates. The difference between the sum
of searching and fitting time and the total processor time probably stems from
I/O operations.

6.5 Real-time computation

The experiments described in sections 6.2 to 6.4 were conducted to test the sta-
bility and accuracy of the rapidSTORM algorithm and implementation. This
section tests whether the implementation can achieve real-time computation of
dSTORM data and what the limits of real-time computability are.

Table 6.7 summarises the values already presented in Table 6.1. Please note
that, in all cases, I have used processor time as the unit of measurement; for mod-
ern n-core processors, this number must, at maximum multithreading efficiency,
be divided by n to give the wall clock time expended in computation. The multi-
threading efficiency for rapidSTORM computations has been at more than 99%
for all real specimens on a 2-core processor, indicating very high multithreading
capabilities and thereby large future speedup if the current trend to multi-core
processors holds.

It is evident that most specimens were easily deconfined within the real-time
domain. Given a 2-core processor, typical specimens such as specimen 1 can be
deconfined in less than 25 seconds, which translates into roughly 3 ms per image,
and choosing a mildly optimistical m f value reduces this to less than 2 ms. This
is well within real-time range for all photoswitching microscopy methods10, and
actually close to the maximum acquisition rates for many scientific cameras. It is
therefore safe to declare rapidSTORM as real-time capable system.

10PALM uses frame rates of 0.5-1 seconds [3]; for STORM, the acquisition timings are not explicitly
stated, but can be derived to be at least 50 ms from the Cy5 emittance rate and the photon counts
in [43]; and for dSTORM, 10-100 ms [57] are common.

77

Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this work, I have examined several aspects of the deconfinement problem of
photoswitching microscopy. The existing deconfinement approaches of Betzig et
al., Schüttpelz, Thomann and Zhuang et al. have been summarised and brought
to a coherent terminology. This terminology defines the way of a fluorophore
emission from a source image over a candidate spot, which gives a likely position
of fluorophore emission, and a fit, which gives the parameters of a PSF model
fitting this spot, to a localisation, which is a definitive position and strength of a
fluorophore emission.

Building on kernel operators as well as morphological image processing and on
non-linear parameter fitting methods, I have found a real-time-capable algorithm
for deconfinement. The key insight for this algorithm is the introduction of a
motivational method for choosing a spot candidate threshold: Whether or not a
spot candidate is fitted is not decided by some pre-chosen value, but by the success
or failure of fit attempts to spot candidates with higher qualities.

I have chosen, implemented, tested and benchmarked several spot candidate
detection schemes, including those mentioned in prior work. I have found that
spot detection based on finding the maximum values in the source image after
smoothing the noise by an average smoothing mask (Spalttiefpass) locates most
fluorophore emissions, is tolerant towards noise and bad parameter choices and
yields false positives which are easily discerned from true positives by later stages.
With the size-limited merging binary tree, I have found a data structure that allows
fast and efficient storage and sorting of the found candidates.

For fitting the PSF model to the candidate spots, I have demonstrated the use
of the Levenberg-Marquardt scheme for non-linear least squares parameter fitting
as implemented in the GNU Scientific Library. Using this scheme and analytically
derived partial derivatives of the parameters, a fitting speed of less than 400 µs
processor time per localisation was reached.

In addition, I have demonstrated how the assembly of the individual fluoro-
phores into a target image can be realised concurrently to the deconfinement pro-
cess and with enhanced contrast by using a series of caching tables for a weighted
histogram equalisation.

78

Along with this work, I have produced a working and stable implementation
for deconfinement called rapidSTORM. This implementation is capable of com-
pletely automatising the process of dSTORM photoswitching microscopy from im-
age acquisition over deconfinement to image assembly with a minimum of user
input, but is at the same time highly and easily configurable with a graphical user
interface. In addition, this software is flexible and extensible by the means of a
publishing interface for found localisations.

Regarding these aspects of terminology, candidate spot finding, spot fitting, fit
judging and assembly of localisations into a target image, the real-time deconfine-
ment for photoswitching microscopy has been advanced to a productive level.

7.2 Outlook

While the basic aspects of the deconfinement problem have been tackled, some
facets remain questionable and further problems have been raised.

Firstly, Thomann’s candidate search scheme based on the Hessian matrix was
not implemented in this work. If the scheme can be simplified sufficiently, it might
provide additional sensitivity to the candidate search.

Secondly, the fluorophore switching behaviour was greatly simplified in the
simulations conducted to test this work. While this does not pose a problem at
the moment, further work building on these simulations should carefully check
whether this systematic error influences its findings.

Thirdly, the localisation precision tests done to compare fitting methods and pa-
rameters have been conducted in simulations only and are not necessarily true for
data acquired from real specimens. Once the fluorophore drift problem is solved,
these tests should be repeated to check the results.

The fourth point is the fluorophore drift problem itself. This problem is not
so much a fault in the deconfinement, but rather the problem of systematic posi-
tion changes of fluorophores during image acquisition. While Zhuang et al. [59]
claim to have a solution, there is yet no published method that can detect and
correct for fluorophore drift in software. This task is a, perhaps the, major task for
deconfinement algorithms.

Fifthly and lastly, the usefulness of the developed algorithm could be enhanced
if localisations stemming from the same, continuously active fluorophore could be
connected, like Betzig et al. [3] did. Not only would this enhance image contrast
by avoiding clusters of sometimes hundreds of localisations stemming from a sin-
gle fluorophore, this information could also be used to enhance the localisation
precision or to correct fluorophore drift.

All this leaves much to do in deconfinement. Hence, I would like to conclude
this work as it has begun: with a motivation.

For any man with half an eye,
What stands before him may espy;
But optics sharp it needs I ween,

To see what is not to be seen.

– From the poem McFingal by Trumbull [54]

79

Appendix A

Credits
Before thanking all the people who have helped me to conduct this work, I have
to explain the unusual title of this chapter. I felt that the usual title, “Acknowl-
edgements”, does not properly express the gratitude I feel. I admit it is commonly
used to express this feeling: but the connotations of acknowledging, which is often
used synonymously with admitting or acquitting receipt, do not feel right. Rather,
I used the term “credits” because it expresses how I owe my thanks to all of the
people listed in this chapter.

First of all, I want to thank the people directly involved in this work. I ex-
press my gratitude to Prof. Dr. Markus Sauer and Prof. Dr. Franz Kummert for
the interesting topic and the friendly and productive atmosphere in the working
groups, and I owe much to my supervisors Dr. Mark Schüttpelz and Dr. Marko
Tscherepanow for the advise and criticism that was crucial for transforming a
quickly-hacked piece of software into a piece of scientific work. Further credit
goes to the other members of the Applied Laser Physics and Laser Spectroscopy
group, especially Sebastian van de Linde for many pictures and test runs on the
acquisition system, Dr. Mike Heilemann for advice on several topics and my office
colleagues Thomas Niehörster, Simon Hennig and Tobias Milde for many help-
ful comments. Last, but not least, I want to give kudos to Oliver Beine, Katja
Heinig, Christian Mertes, Enis Poyraz, Hanna Radzey and Ralph Welsch, whose
proof-reading greatly helped this work’s comprehensibility.

Without detracting from the value of these contributions, I also want to express
my gratitude to the people who have supported me personally during the course of
this work. First amongst these are my parents, Michael and Helga Wolter, to whom
I owe much more gratitude than this paper can hold and who have, through their
emotional and financial support, made my studies and this work possible. My
gratitude also goes to my beloved Katja Heinig, who has brightened my days with
her love and smile, and who has given me the strength to tame the most meddle-
some bits I have ever encountered. Furthermore, I want to thank my flatmates and
friends for their patience and support.

Last, but not least, I want to thank all the people who worked on the huge sys-
tem of public domain software available today. This work has greatly profited from
the range of free software available, especially the GNU compiler suite, make and
scientific library as well as from the vim editor, LATEX and the countless programs
that drive today’s professional computing, and I’ll try to give some of that use back
into the upstream.

80

Bibliography

[1] Mark Bates, Timothy R. Blosser, and Xiaowei Zhuang. Short-range spec-
troscopic ruler based on a single-molecule optical switch. Physical Review
Letters, 94(10):108101, 2005. Available from World Wide Web: http:
//link.aps.org/abstract/PRL/v94/e108101.

[2] Mark Bates, Bo Huang, Graham T. Dempsey, and Xiaowei Zhuang.
Multicolor Super-Resolution Imaging with Photo-Switchable Fluores-
cent Probes. Science, 317(5845):1749–1753, 2007. Available
from World Wide Web: http://www.sciencemag.org/cgi/
content/abstract/317/5845/1749.

[3] Eric Betzig, George H. Patterson, Rachid Sougrat, O. Wolf Lindwasser, Scott
Olenych, Juan S. Bonifacino, Michael W. Davidson, Jennifer Lippincott-
Schwartz, and Harald F. Hess. Imaging Intracellular Fluorescent Proteins
at Nanometer Resolution. Science, 313(5793):1642–1645, 2006. Avail-
able from World Wide Web: http://www.sciencemag.org/cgi/
content/abstract/313/5793/1642.

[4] Norman Bobroff. Position measurement with a resolution and noise-limited
instrument. Review of Scientific Instruments, 57(6):1152–1157, 1986. Avail-
able from World Wide Web: http://dx.doi.org/10.1063/1.
1138619.

[5] Max Born and Emil Wolf. Principles of Optics: Electromagnetic Theory of Prop-
agation, Interference and Diffraction of Light. Pergamon Press, Cambridge,
England, fifth edition, 1975.

[6] Albert Hosmer Bowker and Gerald J. Lieberman. Engineering Statistics.
Prentice-Hall, Inc., Eaglewood Cliffs, New Jersey, second edition, 1972.

[7] Norbert Brändle, Horng-Yang Chen, Horst Bischof, and Hilmar Lapp. Robust
parametric and semi-parametric spot fitting for spot array images. In Proceed-
ings of the Eighth International Conference on Intelligent Systems for Molecular
Biology, pages 46–56. AAAI Press, 2000.

[8] J Canny. A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell., 8(6):679–698, 1986.

[9] Michael K. Cheezum, William F. Walker, and William H. Guilford. Quan-
titative comparison of algorithms for tracking single fluorescent particles.

81

http://link.aps.org/abstract/PRL/v94/e108101
http://link.aps.org/abstract/PRL/v94/e108101
http://www.sciencemag.org/cgi/content/abstract/317/5845/1749
http://www.sciencemag.org/cgi/content/abstract/317/5845/1749
http://www.sciencemag.org/cgi/content/abstract/313/5793/1642
http://www.sciencemag.org/cgi/content/abstract/313/5793/1642
http://dx.doi.org/10.1063/1.1138619
http://dx.doi.org/10.1063/1.1138619

Biophys. J., 81(4):2378–2388, October 2001. Available from World Wide
Web: http://www.biophysj.org/cgi/content/abstract/
81/4/2378.

[10] James W. Cooley, Peter A. W. Lewis, and Peter D. Welch. The fast fourier
transform and its applications. Education, IEEE Transactions on, 12(1):27–
34, March 1969.

[11] Unknown Editor. Method of the Year 2008. Nature Methods, 6(1):1–1, Jan-
uary 2009. Available from World Wide Web: http://www.nature.
com/nmeth/journal/v6/n1/abs/nmeth.f.244.html.

[12] J. Doyne Farmer and John J. Sidorowich. Optimal shadowing and noise
reduction. Physica D, 47(3):373–392, 1991.

[13] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman,
Michael Booth, and Fabrice Rossi. Gnu Scientific Library: Reference Manual.
Network Theory Ltd., February 2003. Available from World Wide Web:
http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20\&path=ASIN/0954161734.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Entwurfs-
muster. Addison-Wesley Verlag, München, erste edition, 1996.

[15] J. Gil and M. Werman. Computing 2-d min, median, and max filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(5):504–507,
May 1993.

[16] Samuel Glasson. Censored Regression Techniques for Credit Scoring. PhD the-
sis, RMIT University, 2007.

[17] Image of Hawkes Bay, New Zealand, published by Phillip Capper under
Creative Commons attribution license and modified by the anonymous
Wikipedia user Konstable, who also created the histogram graphs. Sources
are linked at: http://en.wikipedia.org/wiki/Histogram_
equalization, June 2006.

[18] Stephen Hawking. The Universe in a Nutshell. Bantam Books, New York,
2001.

[19] M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld. Carbocya-
nine dyes as efficient reversible single-molecule optical switch. J. Am. Chem.
Soc., 127(11):3801–3806, March 2005. Available from World Wide Web:
http://dx.doi.org/10.1021/ja044686x.

[20] Mike Heilemann. Design of Single-Molecule Optical Devices: Unidirectional
Photonic Wires and Digital Photoswitches. PhD thesis, Bielefeld Univer-
sity, 2005. Available from World Wide Web: http://bieson.ub.
uni-bielefeld.de/volltexte/2005/711/.

82

http://www.biophysj.org/cgi/content/abstract/81/4/2378
http://www.biophysj.org/cgi/content/abstract/81/4/2378
http://www.nature.com/nmeth/journal/v6/n1/abs/nmeth.f.244.html
http://www.nature.com/nmeth/journal/v6/n1/abs/nmeth.f.244.html
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0954161734
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0954161734
http://en.wikipedia.org/wiki/Histogram_equalization
http://en.wikipedia.org/wiki/Histogram_equalization
http://dx.doi.org/10.1021/ja044686x
http://bieson.ub.uni-bielefeld.de/volltexte/2005/711/
http://bieson.ub.uni-bielefeld.de/volltexte/2005/711/

[21] Mike Heilemann, Sebastian van de Linde, Mark Schüttpelz, Robert Kasper,
Britta Seefeldt, Anindita Mukherjee, Philip Tinnefeld, and Markus Sauer.
Subdiffraction-resolution fluorescence imaging with conventional fluores-
cent probes. Angewandte Chemie International Edition, 47(33):6172–6176,
2008. Available from World Wide Web: http://dx.doi.org/10.
1002/anie.200802376.

[22] Stefan W. Hell. Far-Field Optical Nanoscopy. Science, 316(5828):1153–1158,
2007. Available from World Wide Web: http://www.sciencemag.
org/cgi/content/abstract/316/5828/1153.

[23] Peter Høeg. Smilla’s Sense of Snow. Farrar, Straus and Giroux, New York,
1993.

[24] T.S. Huang, G.J. Yang, and G.Y. Tang. A fast two-dimensional median filter-
ing algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing,
27:13–18, February 1979.

[25] Masahiro Irie, Tuyoshi Fukaminato, Takatoshi Sasaki, Naoto Tamai, and
Tsuyoshi Kawai. Organic chemistry: A digital fluorescent molecular photo-
switch. Nature, 420(6917):759–760, December 2002. Available from World
Wide Web: http://dx.doi.org/10.1038/420759a.

[26] Peter A. Jansson. Convolution and related concepts. In Peter A. Jansson,
editor, Deconvolution, pages 3–37. Academic Press, Inc., Orlando, Florida,
1984.

[27] L.P. Jaroslavskij. Einführung in die digitale Bildverarbeitung. Hüthig, Heidel-
berg, 1990.

[28] Karatsuba, Catherine A. Fast evaluation of bessel functions. Integral
Transforms and Special Functions, 1(4):269–276, 1993. Available from
World Wide Web: http://www.informaworld.com/10.1080/
10652469308819026.

[29] Charles Kingsley. Glaucus, volume 695 of Project Gutenberg. Project
Gutenberg, P.O. Box 2782, Champaign, IL 61825-2782, USA, 1996. Avail-
able from World Wide Web: http://www.gutenberg.org/dirs/
etext96/glcus10.zip.

[30] Reinhard Klette and Piero Zamperoni. Handbuch der Operatoren für die Bild-
bearbeitung. Vieweg, Wiesbaden, 1992.

[31] Donald E. Knuth. Notes on the van emde boas construction of priority de-
ques: An instructive use of recursion. Letter to Peter van Emde Boas, March
1977.

[32] Donald E. Knuth. The art of computer programming, volume 2: seminumerical
algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
third edition, 1997. Available from World Wide Web: http://portal.
acm.org/citation.cfm?id=270146.

83

http://dx.doi.org/10.1002/anie.200802376
http://dx.doi.org/10.1002/anie.200802376
http://www.sciencemag.org/cgi/content/abstract/316/5828/1153
http://www.sciencemag.org/cgi/content/abstract/316/5828/1153
http://dx.doi.org/10.1038/420759a
http://www.informaworld.com/10.1080/10652469308819026
http://www.informaworld.com/10.1080/10652469308819026
http://www.gutenberg.org/dirs/etext96/glcus10.zip
http://www.gutenberg.org/dirs/etext96/glcus10.zip
http://portal.acm.org/citation.cfm?id=270146
http://portal.acm.org/citation.cfm?id=270146

[33] Jennifer Lippincott-Schwartz and Suliana Manley. Putting super-resolution
fluorescence microscopy to work. Nature Methods, 6(1):21–23, January
2009. Available from World Wide Web: http://www.nature.com/
nmeth/journal/v6/n1/abs/nmeth.f.233.html.

[34] Stephen G. Lipson, David S. Tannhauser, and Henry S. Lipson. Optik.
Springer-Verlag, Berlin, Germany, first edition, 1997.

[35] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Trans. Model. Comput. Simul., 8(1):3–30, January 1998. Available
from World Wide Web: http://dx.doi.org/10.1145/272991.
272995.

[36] A. D. McNaught and A. Wilkinson. IUPAC Compendium of Chemical Terminol-
ogy. Blackwell Science, 1997.

[37] D.B. Murphy. Fundamentals of light microscopy and electronic imaging. Wiley-
Liss, New York, 2001.

[38] Alexander Neubeck and Luc Van Gool. Efficient non-maximum suppression.
In ICPR ’06: Proceedings of the 18th International Conference on Pattern Recog-
nition, pages 850–855, Washington, DC, USA, 2006. IEEE Computer Society.

[39] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical Recipes in C : The Art of Scientific Computing. Cambridge
University Press, second edition, October 1992. Available from World Wide
Web: http://www.amazon.ca/exec/obidos/redirect?
tag=citeulike09-20\&path=ASIN/0521431085.

[40] Kevin Pulo. Simparm: A simple, flexible and collaborative configuration
framework for interactive and batch simulation software. In International
Supercomputing Conference (ISC07), Dresden, Germany, June 2007.

[41] W.S. Rasband. ImageJ. U. S. National Institutes of Health, Bethesda, Mary-
land, USA, 1997-2008. Available from World Wide Web: http://rsb.
info.nih.gov/ij/. Fluorescent cell image was published under GNU
Public License.

[42] J. C. Russ. The Image Processing Handbook. CRC Press, Boca Raton, Florida,
1992.

[43] Michael J. Rust, Mark Bates, and Xiaowei Zhuang. Sub-diffraction-limit
imaging by stochastic optical reconstruction microscopy (storm). Nature
Methods, 3(10):793–796, August 2006. Available from World Wide Web:
http://dx.doi.org/10.1038/nmeth929.

[44] Andrés Santos and Ian T. Young. Model-based resolution: Applying the the-
ory in quantitative microscopy. Appl. Opt., 39(17):2948–2958, 2000. Avail-
able from World Wide Web: http://ao.osa.org/abstract.cfm?
URI=ao-39-17-2948.

84

http://www.nature.com/nmeth/journal/v6/n1/abs/nmeth.f.233.html
http://www.nature.com/nmeth/journal/v6/n1/abs/nmeth.f.233.html
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0521431085
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0521431085
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://dx.doi.org/10.1038/nmeth929
http://ao.osa.org/abstract.cfm?URI=ao-39-17-2948
http://ao.osa.org/abstract.cfm?URI=ao-39-17-2948

[45] Markus Sauer. Reversible molecular photoswitches: A key technology for
nanoscience and fluorescence imaging. Proceedings of the National Academy
of Sciences of the United States of America, 102(27):9433–9434, 2005. Avail-
able from World Wide Web: http://www.pnas.org/content/
102/27/9433.short.

[46] Mark Schüttpelz. Stormengine.m. Unpublished MATLAB file.

[47] Mark Schüttpelz. Fluoreszenzspektroskopische Methoden zur Charakter-
isierung von Protein-Wechselwirkungen. PhD thesis, Universität Biele-
feld, 2006. Available from World Wide Web: http://bieson.ub.
uni-bielefeld.de/volltexte/2006/1013/.

[48] F. Graham Smith, Terry A. King, and Dan Wilkins. Optics and Photonics: An
Introduction. John Wiley & Sons Ltd, Chichester, England, second edition,
2007.

[49] Pierre Soille. Morphological Image Analysis. Springer-Verlag, Berlin, 2004.

[50] Mark M. Somoza. Franck-Condon diagram is licensed under Cre-
ative Commons attribution and share-alike license and can be
found at http://commons.wikimedia.org/wiki/File:
Franck-Condon-diagram.png, May 2006.

[51] Andor Technology. iXon camera manual. Andor Technology, 7 Millennium
Way, Springvale Business Park, Belfast, BT12 7AL, NORTHERN IRELAND,
2008.

[52] Dominik Michael Thomann. Algorithms for detection and tracking of objects
with super-resolution in 3D fluorescence microscopy. PhD thesis, ETH Zürich,
2003. Available from World Wide Web: http://e-collection.
ethbib.ethz.ch/view/eth:26349.

[53] Russell E. Thompson, Daniel R. Larson, and Watt W. Webb. Precise Nanome-
ter Localization Analysis for Individual Fluorescent Probes. Biophys. J.,
82(5):2775–2783, 2002. Available from World Wide Web: http://www.
biophysj.org/cgi/content/abstract/82/5/2775.

[54] John Trumbull. The satiric poems. Univ. of Texas Pr., Austin, Texas, 1962.

[55] Marko Tscherepanow. Image Analysis Methods for Location Proteomics.
PhD thesis, Bielefeld University, 2008. Available from World Wide
Web: http://bieson.ub.uni-bielefeld.de/volltexte/
2008/1384/.

[56] S. van de Linde, R. Kasper, M. Heilemann, and M. Sauer. Photoswitching
microscopy with standard fluorophores. Applied Physics B: Lasers and Optics,
93(4):725–731, December 2008. Available from World Wide Web: http:
//dx.doi.org/10.1007/s00340-008-3250-9.

85

http://www.pnas.org/content/102/27/9433.short
http://www.pnas.org/content/102/27/9433.short
http://bieson.ub.uni-bielefeld.de/volltexte/2006/1013/
http://bieson.ub.uni-bielefeld.de/volltexte/2006/1013/
http://commons.wikimedia.org/wiki/File:Franck-Condon-diagram.png
http://commons.wikimedia.org/wiki/File:Franck-Condon-diagram.png
http://e-collection.ethbib.ethz.ch/view/eth:26349
http://e-collection.ethbib.ethz.ch/view/eth:26349
http://www.biophysj.org/cgi/content/abstract/82/5/2775
http://www.biophysj.org/cgi/content/abstract/82/5/2775
http://bieson.ub.uni-bielefeld.de/volltexte/2008/1384/
http://bieson.ub.uni-bielefeld.de/volltexte/2008/1384/
http://dx.doi.org/10.1007/s00340-008-3250-9
http://dx.doi.org/10.1007/s00340-008-3250-9

[57] Sebastian van de Linde, Ulrike Endesfelder, Anindita Mukherjee, Mark
Schüttpelz, Gerd Wiebusch, Steve Wolter, Mike Heilemann, and Markus
Sauer. Multicolor Photoswitching Microscopy for Subdiffraction-Resolution
Fluorescence Imaging. Photochemical & Photobiological Sciences, 2009. Paper
submitted and in review process.

[58] J. Widengren and P. Schwille. Characterization of photoinduced isomeriza-
tion and back-isomerization of the cyanine dye cy5 by fluorescence cor-
relation spectroscopy. J. Phys. Chem. A, 104(27):6416–6428, July 2000.
Available from World Wide Web: http://dx.doi.org/10.1021/
jp000059s.

[59] Xiaowei Zhuang, Wilfred M. Bates, Michael J. Rust, and Bo Huang. Sub-
diffraction limit image resolution and other imaging techniques. United
States Patent Application 20080182336, July 2008.

86

http://dx.doi.org/10.1021/jp000059s
http://dx.doi.org/10.1021/jp000059s

Glossary

G Maximum grey value for image pixel, 47
M0 Candidate fitting motivation, 33, 40, 58, 74, 86
Re Resolution enhancement factor, 44, 45
THE Histogram equalization transfer function, 22
TW HE Transfer function for the weighted histogram

equalization, 22, 48
heqw weighted histogram equalization, 22, 47
b Gauss bracket giving the largest integer not

larger than the bracketed number, 22, 22, 45,
47, 48, 50

D′′′ Histogram equalization of D′′, 47
D′′ Preliminary result image produced from D′ by

scaling intensity values into a given range, 47–
49

D′ Preliminary result image that was discretized
into pixels, but has unscaled intensity values,
44, 45, 47–49

D Result image of photoswitching microscopy, 32,
44, 45, 47–49

θA Amplitude threshold, 63, 65, 67, 74, 77, 86
hC Cumulative brightness histogram function, 20,

22
hw Brightness histogram function, 22, 23, 48
hC ,w Cumulative brightness histogram function, 22,

23
h Brightness histogram function, 20–22, 57
m f Mask size for spot fitting, 42, 68, 70, 71, 77
ms Mask size for candidate search, 67, 86

ADC A/D count: Unit of measurement for source im-
age intensity, 53

87

classificator Function mapping a large space of pattern vec-
tors onto few symbols, 28

confidence interval Interval containing with some given probability
the stochastical mean of the distribution under-
lying a sample, 28

confinement Separation of close light sources in space or
time. Is used to achieve higher resolutions via
photoswitching microscopy, 1, 1, 2

temporal confinement Separation of close light sources in time. Tem-
porally confining methods for photoswitch-
ing microscopy activate fluorophores indepen-
dently of position, but rather by some stochas-
tical low-rate switching process, 2, 3

deconfinement Reversal of the confinement process. The
deconfinement finds the confined fluorophore
emissions in the source data and re-assembles
them into a single, complete image of the spec-
imen, 2, 3

dSTORM direct stochastic optical reconstruction mi-
croscopy: Temporally confining photoswitch-
ing microscopy method using standard fluoro-
phores, 10, 31, 36, 37, 45, 47, 52, 53, 60, 71,
72, 78

FN false negative: With respect to a classification
symbol, a pattern that was not classified for that
symbol even though it should have been, 28,
59, 67, 74

FP false positive: With respect to a classification
symbol, a pattern that was falsely classified for
that symbol, 28, 56, 59, 67, 68

histogram equalization Image operating enhancing contrast by inten-
sity equidistribution, 21

image translation The translation of an image by a vector is the
translation of all pixels by the given vector., 16

marker image In the context of geodesic dilations, the marker
image is the image which is dilated in limits de-
fined by the mask image, 17

88

mask image In the context of geodesic dilations, the mask
image is the image which limits the dilation of
the marker image, 17

morphological reconstruction Geodesical dilation/erosion iterated until sta-
bility is called morph. recon. by dilation/ero-
sion, 18

NLLS nonlinear least-squares: Class of fitting prob-
lems, 24, 26, 43–45

NMS non-maximum suppression: Morphological op-
erator finding local maximums of an image, 19,
20, 38–41, 58, 61, 65

opening A morphological operation consisting of ero-
sion and subsequent dilation, 17

PDF probability density function:, 56
PER photon emittance rate: Average number of pho-

tons emitted by a fluorophore per second, 72,
76

photoswitching microscopy Collective term for microscopy methods that
circumvent the Abbe diffraction barrier by us-
ing photoswitches, 1, 2–4, 9, 11, 30, 44, 52,
76–79

PSF point spread function: Function giving the in-
tensity distribution that a point light source
generates on the detector of an optical device,
5, 6, 16, 31–33, 38, 39, 41–43, 52, 57, 74, 76,
78

resolution limit Minimal distance for resolvable light sources.
This distance is dependant on the objective
used and the wavelength of the measured ra-
diation, 1

resolved An image is said to be resolved if the resolving
power of the optical instrument is sufficient to
discern between its details., 5, 6

resolving power The capability of an optical instrument to dis-
cern between close light sources, 5, 5, 6

SD standard deviation: Square root of sample vari-
ance, 27, 39, 42, 45, 56, 58, 61, 71, 72, 74,
75

89

SE structuring element: Set of vectors defining a
neighbourhood for pixels, 16–20, 39

seperable matrix A seperable matrix can be expressed by the ten-
sor product of two vectors, 14

SNR signal-to-noise ratio: Ratio between average
power of signal and noise, 14, 52, 53, 57, 76

tensor product Product operator producing matrix from two
vectors, 14

TN true negative: With respect to a classification
symbol, a pattern that was not classified for that
symbol correctly, 28

TP true positive: With respect to a classification
symbol, a pattern that was correctly classified
for that symbol, 28, 59, 67

unresolved An image is said to be unresolved if the resolv-
ing power of the optical instrument is insuffi-
cient to discern between its details, 5

WHE weighted histogram equalization: Variant of
histogram equalization featuring a weight pa-
rameter r, which can be used to scale the ef-
fects of histogram equalization, 48

90

Appendix B

Proof of recursion formula for
sum of squares

In section 3.3.1, I have given the West recursion formula for the sum of squares in
a sample. This chapter contains the complete proof for this formula.

In this proof, x denotes a sample that is extended by one observation o to the
sample y. x denotes the mean of a vector, M2(x) the sum of squares for that vector.

M2(y) = (o− y)2+
N
∑

n=1

(xn− y)2

= (o− y)2+
N
∑

n=1

�

(xn− x)− (y− x)
�2

and by using δx= y− x= o−x
N+1

= (o− y)2+
N
∑

n=1

�

(xn− x)2− 2δx(xn− x) + (δx)2
�

and by using
∑N

n=1 xn− x= 0

= (o− y)2+
N
∑

n=1

(xn− x)2+ N · (δx)2

and by using o− y= o− x− o−x
N+1
= N

N+1
(o− x)

= M2(x) + (o− y)2+ N ·
(o− x)2

(N + 1)2

= M2(x) + (o− y)

�

(o− x′) +
o− x

N + 1

�

⇔ M2(y) = M2(x) + (o− y)(o− x). (B.1)

91

Appendix C

Schematic overview over
rapidSTORM system

92

Engine

computationThreadList

Constructor(SourceStack,LocalizationPublisher)
run(int pistonNumber)

Piston

ComputationThread

lockForCurrentImage

run(SourceStack, LocalizationPublisher)

SpotFinder

smoothingBuffer

smooth(Image)
findSpots(Image)

GaussFitter

GSL NLLS fitting struct
lastFitParameters

bool fit(Image, Spot locationInImage)

MergingTree

Spot elements[]

add(Spot)
getSortedIterator()

Crankshaft

LocalizationPublisher

subscriberList

Constructor
addSubscriber()

<<interface>>
Transmission

LocalizationSubscriber

started()
gotNew(LocalizationList)
restarted()
finished() ost::Thread

SourceStack

Other packages

Engine package

1 .. *

1

SpotFitter

(a) Class diagram

Lock next free
source image

Search and sort candidates

Acquire reading lock
on listener list

Lock and notice
each subscriber

of the new localizations

Fit parameters
to first candidate

Reset
motivation

Decrease
motivation

Save
localization

Candidates and

motivation remaining?

Localization?

No Yes

Critical sections Uncritical sections

(b) Activity diagram

Figure C.1: UML diagrams for parallelized rapidSTORM engine

93

sigm
a_x: C

onfigE
ntry

D
isplay

A
ccum

ulation im
age

C
ached discretization

C
ached histogram

C
am

era
C

ontrol
SourceStack

E
ngine

E
xpansion

Interface

C
onfig

L
ocalizationFile: L

ocal.Subs.

A
cquisition System

ComputationThread

ComputationThread

ComputationThread

PrecM
eter: L

ocal.Subsc.

V
iew

er: L
ocalizationSubsc.

controls

D
ata

......

Im
ages

Localizations

pre−
acquired im

ages in file

Sigm
aG

uesser: L
ocal.Subscr.

L
ocalizationPublisher

L
ocal.Subscriber

rapidST
O

R
M

 engine

Figure
C

.2:
O

verview
over

the
com

plete
r
a
p
i
d
S
T
O
R
M

system

94

Appendix D

Tables

X estimate Y estimate
Real value Mean Min Max σ Mean Min Max σ

1.2 1.180 1.147 1.219 0.018 1.188 1.141 1.220 0.021
1.25 1.236 1.177 1.276 0.022 1.248 1.194 1.293 0.022
1.3 1.289 1.246 1.338 0.019 1.300 1.246 1.333 0.019

1.35 1.338 1.301 1.378 0.020 1.347 1.299 1.388 0.019
1.4 1.386 1.346 1.431 0.021 1.394 1.355 1.437 0.021

1.45 1.441 1.399 1.481 0.019 1.447 1.405 1.481 0.018
1.5 1.483 1.444 1.532 0.018 1.491 1.458 1.534 0.020

1.55 1.525 1.486 1.570 0.018 1.535 1.480 1.587 0.021
1.6 1.566 1.510 1.610 0.023 1.579 1.514 1.619 0.021

1.65 1.617 1.557 1.662 0.021 1.621 1.572 1.660 0.022
1.7 1.655 1.620 1.695 0.021 1.661 1.619 1.701 0.018

1.75 1.704 1.655 1.785 0.029 1.712 1.666 1.777 0.027
1.8 1.762 1.671 1.826 0.034 1.769 1.674 1.827 0.033

1.85 1.825 1.778 1.869 0.022 1.823 1.746 1.864 0.022
1.9 1.872 1.825 1.916 0.024 1.877 1.829 1.937 0.023

1.95 1.912 1.843 1.967 0.026 1.911 1.853 1.959 0.021
2 1.962 1.913 2.003 0.023 1.963 1.904 2.015 0.024

2.05 1.994 1.952 2.048 0.020 1.998 1.953 2.054 0.024
2.1 2.036 1.992 2.087 0.025 2.040 1.980 2.084 0.027

2.15 2.074 2.022 2.142 0.030 2.087 2.041 2.142 0.026
2.2 2.114 2.057 2.159 0.026 2.119 2.078 2.160 0.018

2.25 2.142 2.089 2.197 0.027 2.149 2.099 2.203 0.027
2.3 2.187 2.126 2.271 0.031 2.192 2.126 2.281 0.034

2.35 2.251 2.154 2.344 0.052 2.265 2.160 2.373 0.051
2.4 2.301 2.192 2.389 0.049 2.325 2.190 2.411 0.050

2.45 2.368 2.209 2.461 0.046 2.375 2.177 2.450 0.048
2.5 2.411 2.286 2.485 0.040 2.436 2.311 2.494 0.043

Table D.1: σ estimator error statistic for 5 kHz photon emittance rate

Table D.5: Effect of M0 on localization count and computation time

Sp. θA M0 # of local. t (s) t / loc. (µs)
1 1000 1 88308 38.91 0.44
1 1000 2 125051 58.86 0.47
1 1000 3 160455 80.89 0.50
1 1000 4 201584 109.29 0.54
1 1000 5 239795 136.30 0.57
1 4000 1 63475 31.37 0.49
1 4000 2 74743 40.19 0.54
1 4000 3 79300 46.07 0.58
1 4000 4 81941 51.52 0.63
1 4000 5 83767 56.50 0.67
1 9000 1 37915 21.87 0.58
1 9000 2 48523 31.0 0.64

96

Table D.5: Effect of M0 on localization count and computation time

Sp. θA M0 # of local. t (s) t / loc. (µs)
1 9000 3 52747 37.20 0.71
1 9000 4 54646 42.02 0.77
1 9000 5 55619 45.88 0.82
2 1200 1 17503 21.61 1.23
2 1200 2 17596 27.65 1.57
2 1200 3 17597 33.68 1.91
2 1200 4 17597 39.41 2.24
2 1200 5 17597 45.50 2.59
2 300 1 26605 21.94 0.82
2 300 2 30788 28.82 0.94
2 300 3 34621 37.75 1.09
2 300 4 37514 46.38 1.24
2 300 5 41707 57.02 1.37
2 600 1 21014 21.47 1.02
2 600 2 21079 27.06 1.28
2 600 3 21089 32.85 1.56
2 600 4 21094 39.21 1.86
2 600 5 21097 44.63 2.12
3 1200 1 1475 8.72 5.91
3 1200 2 1971 10.71 5.43
3 1200 3 2158 14.30 6.63
3 1200 4 2248 15.36 6.83
3 1200 5 2238 20.57 9.19
3 300 1 9518 11.14 1.17
3 300 2 18301 15.87 0.87
3 300 3 26379 21.80 0.83
3 300 4 32421 36.05 1.11
3 300 5 42743 40.92 0.96
3 600 1 3152 9.60 3.05
3 600 2 4435 15.14 3.41
3 600 3 5390 21.44 3.98
3 600 4 6121 23.65 3.86
3 600 5 7414 27.43 3.70
4 1000 1 15297 9.58 0.63
4 1000 2 15619 10.06 0.64
4 1000 3 15733 10.20 0.65
4 1000 4 15835 10.49 0.66
4 1000 5 15910 10.80 0.68
4 4000 1 14523 9.27 0.64
4 4000 2 14651 9.50 0.65
4 4000 3 14652 9.72 0.66
4 4000 4 14652 9.88 0.67
4 4000 5 14652 10.04 0.69
4 9000 1 13308 8.90 0.67

97

Table D.5: Effect of M0 on localization count and computation time

Sp. θA M0 # of local. t (s) t / loc. (µs)
4 9000 2 13437 9.16 0.68
4 9000 3 13437 9.36 0.70
4 9000 4 13437 9.47 0.70
4 9000 5 13437 9.59 0.71
5 1200 1 1508 1.28 0.85
5 1200 2 1508 1.62 1.07
5 1200 3 1508 1.92 1.27
5 1200 4 1508 2.14 1.42
5 1200 5 1508 2.41 1.60
5 300 1 3469 1.69 0.49
5 300 2 3479 2.02 0.58
5 300 3 3479 2.30 0.66
5 300 4 3479 2.51 0.72
5 300 5 3479 2.68 0.77
5 600 1 2257 1.56 0.69
5 600 2 2258 1.90 0.84
5 600 3 2258 2.14 0.95
5 600 4 2258 2.36 1.05
5 600 5 2258 2.67 1.18
6 1000 1 2357 4.91 2.08
6 1000 2 2442 5.07 2.08
6 1000 3 2455 9.28 3.78
6 1000 4 2463 9.20 3.74
6 1000 5 2467 9.20 3.73
6 4000 1 2193 4.88 2.23
6 4000 2 2196 5.10 2.32
6 4000 3 2196 5.12 2.33
6 4000 4 2196 5.19 2.36
6 4000 5 2196 5.20 2.37
6 9000 1 2175 4.93 2.27
6 9000 2 2175 5.07 2.33
6 9000 3 2175 5.16 2.37
6 9000 4 2175 5.13 2.36
6 9000 5 2175 5.20 2.39
7 1000 1 10477 16.87 1.61
7 1000 2 11437 26.50 2.32
7 1000 3 12019 34.13 2.84
7 1000 4 12487 37.83 3.03
7 1000 5 12900 39.52 3.06
7 4000 1 6178 13.92 2.25
7 4000 2 6128 22.34 3.65
7 4000 3 6207 32.79 5.28
7 4000 4 6205 37.20 5.00
7 4000 5 6208 38.16 6.15

98

Table D.5: Effect of M0 on localization count and computation time

Sp. θA M0 # of local. t (s) t / loc. (µs)
7 9000 1 10 6.68 667.00
7 9000 2 10 9.10 909.00
7 9000 3 10 16.94 1694.00
7 9000 4 10 27.93 2793.0
7 9000 5 10 32.63 3263.00
8 1000 1 43779 30.14 0.69
8 1000 2 66597 48.56 0.73
8 1000 3 78848 63.17 0.80
8 1000 4 90437 75.42 0.83
8 1000 5 102738 93.52 0.91
8 4000 1 36750 30.98 0.84
8 4000 2 48475 44.85 0.93
8 4000 3 50444 47.26 0.94
8 4000 4 51728 53.18 1.03
8 4000 5 52102 57.04 1.09
8 9000 1 23077 50.16 2.17
8 9000 2 26446 30.93 1.17
8 9000 3 25766 32.77 1.27
8 9000 4 27799 53.16 1.91
8 9000 5 27931 57.52 2.06

99

X estimate Y estimate
Real value Mean Min Max σ Mean Min Max σ

1.2 1.192 1.164 1.222 0.014 1.201 1.176 1.230 0.014
1.25 1.249 1.214 1.284 0.017 1.250 1.220 1.290 0.017
1.3 1.305 1.275 1.339 0.016 1.306 1.269 1.338 0.018

1.35 1.348 1.312 1.389 0.018 1.351 1.320 1.381 0.014
1.4 1.398 1.359 1.440 0.020 1.410 1.367 1.450 0.019

1.45 1.452 1.411 1.498 0.020 1.455 1.418 1.495 0.018
1.5 1.501 1.471 1.553 0.017 1.504 1.472 1.545 0.017

1.55 1.544 1.510 1.582 0.018 1.552 1.515 1.584 0.019
1.6 1.601 1.557 1.639 0.021 1.603 1.554 1.643 0.020

1.65 1.644 1.597 1.677 0.020 1.653 1.613 1.690 0.018
1.7 1.693 1.646 1.739 0.020 1.705 1.650 1.747 0.022

1.75 1.752 1.700 1.802 0.024 1.760 1.715 1.795 0.021
1.8 1.801 1.764 1.828 0.017 1.809 1.770 1.851 0.020

1.85 1.850 1.814 1.889 0.017 1.854 1.825 1.886 0.016
1.9 1.891 1.854 1.932 0.020 1.901 1.845 1.953 0.022

1.95 1.948 1.902 1.989 0.019 1.956 1.911 1.996 0.023
2 1.993 1.962 2.041 0.021 2.002 1.967 2.053 0.021

2.05 2.042 2.008 2.069 0.016 2.049 1.999 2.096 0.024
2.1 2.097 2.046 2.150 0.024 2.098 2.038 2.138 0.021

2.15 2.140 2.093 2.171 0.019 2.144 2.085 2.200 0.024
2.2 2.184 2.128 2.224 0.021 2.191 2.125 2.239 0.024

2.25 2.235 2.194 2.294 0.026 2.244 2.189 2.294 0.023
2.3 2.297 2.231 2.364 0.028 2.303 2.247 2.356 0.023

2.35 2.341 2.294 2.394 0.024 2.354 2.316 2.392 0.017
2.4 2.392 2.343 2.452 0.023 2.409 2.353 2.450 0.024

2.45 2.445 2.400 2.497 0.023 2.454 2.387 2.502 0.025
2.5 2.491 2.444 2.535 0.022 2.501 2.450 2.563 0.025

Table D.2: σ estimator error statistic for 10 kHz photon emittance rate

100

Sp. Ampl. Spalttiefpass Erosion Fillhole
no. thres. # loc. t (s).# loc. t (s) # loc..t (s)
1 1000 160455 81.16 99279 79.32 95901 94.30

4000 79300 46.36 79044 66.66 78066 80.46
9000 52747 37.39 56559 54.79 56003 69.02

2 300 34621 37.74 32319 64.51 31468 98.43
600 21089 33.24 20985 61.64 21081 92.54

1200 17597 33.50 17631 62.25 17598 91.98
3 300 28176 30.08 24618 39.84 19913 56.50

600 5390 21.48 4895 30.25 4808 49.78
1200 2158 14.22 2016 24.33 2018 42.33

4 1000 15733 10.19 15834 24.43 15787 36.98
4000 14652 9.65 15167 23.85 15164 36.57
9000 13437 9.22 13851 22.97 13851 35.40

5 300 3479 2.37 3348 3.92 3351 6.84
600 2258 2.15 2254 3.65 2248 5.54

1200 1508 1.90 1506 3.65 1508 5.52
6 1000 2462 5.14 2207 9.04 2223 9.06

4000 2196 5.12 2192 8.94 2189 8.97
9000 2175 5.20 2185 8.93 2176 8.94

7 1000 12019 34.19 11140 85.25 11092 139.68
4000 6128 31.74 6117 84.66 6128 138.16
9000 10 17.37 10 80.07 10 132.60

8 1000 78848 63.19 78309 83.28 77487 127.94
4000 50310 52.22 59223 97.39 60957 79.27
9000 25766 32.81 30286 48.43 29565 57.51

Table D.3: Spot finder statistics for erosion operator

101

Sp. θA ms TPi FPi FNi TPi FPi
9 4000 1.0 7.09 3.60 3.28 5.92 2.04

4000 1.5 6.80 3.48 3.28 5.68 0.40
4000 2.0 5.66 3.69 4.28 4.50 0.10
4000 2.5 3.94 4.29 5.83 2.72 0.15

10 4000 1.0 6.59 3.60 3.83 5.42 1.97
4000 1.5 6.46 3.47 3.75 5.29 0.40
4000 2.0 5.74 3.65 4.26 4.42 0.09
4000 2.5 3.36 4.28 6.46 1.60 0.01

11 4000 1.0 22.39 1.08 71.44 20.34 0.15
4000 1.5 13.66 1.13 80.35 13.73 0.28
4000 2.0 3.35 2.56 91.11 1.67 0.22
4000 2.5 0.79 0.99 93.20 0.11 0.04

12 4000 1.0 6.0 3.88 5.08 4.06 1.94
4000 1.5 5.58 3.73 4.99 3.78 0.39
4000 2.0 3.77 3.90 6.23 2.36 0.09
4000 2.5 2.47 3.96 7.48 1.42 0.09

13 4000 1.0 6.38 3.38 3.78 4.87 0.25
4000 1.5 6.28 3.36 3.83 4.85 0.05
4000 2.0 5.32 3.67 4.61 3.84 0.01
4000 2.5 3.86 4.19 5.91 2.39 0.00

16 4000 1.0 7.12 3.19 2.75 4.75 0.00
4000 1.5 7.09 3.18 2.73 4.78 0.00
4000 2.0 6.83 3.34 2.91 4.84 0.00
4000 2.5 5.75 4.09 3.90 3.71 0.0

17 4000 1.0 7.38 3.10 2.17 4.63 0.00
4000 1.5 7.35 3.09 2.18 4.64 0.00
4000 2.0 7.31 3.18 2.19 4.82 0.00
4000 2.5 7.31 3.18 2.19 4.82 0.00

18 4000 1.0 6.80 3.23 3.03 4.68 0.00
4000 1.5 6.70 3.26 3.09 4.75 0.00
4000 2.0 6.49 3.84 3.28 4.72 0.45
4000 2.5 6.14 3.50 3.57 4.44 0.00

Table D.4: Effects of smoothing mask size on spot and localization error rates

102

Appendix E

Schüttpelz implementation

Several times in my work, I have mentioned the important contribution of Mark
Schüttpelz to the deconfinement algorithm. Because his pioneering implementa-
tion has not been published, I include it here to give proper credit and reference.
This chapter will list the Matlab script files written for dSTORM deconfinement. I
want to stress that all of this code is quoted and not my own work.

STORMconv.m

1 c lear a l l
2 [da te i pfad]=u i g e t f i l e ;
3
4 i f da te i ~= 0
5 s i z e x=input (’ x s i z e [128] = ’) ;
6 s i z e y=input (’ y s i z e [128] = ’) ;
7 i f s ize (s i z e x) == [0 0]
8 s i z e x=128;
9 end ;

10 i f s ize (s i z e y) == [0 0]
11 s i z e y=128;
12 end ;
13 load ([pfad da te i]) ;
14 save f i t r e s u l t s f i t r e s u l t s −V6 ;
15 a= f i t r e s u l t s (: , 1) ;
16 b= f i t r e s u l t s (: , 3) ;
17 c=[a b] ;
18 h i s t im=h i s t 3 (c , ’ Edges ’ , {1 : . 1 : s i z e x 1 : . 1 : s i z e y }) ;
19 save h i s t im h i s t im −V6 ;
20 end

STORMengine.m

1 function x = STORMengine ()

103

2 global f i lename thresho ld s t a r t i m endim ro i1 ro i2 ro i3 ro i4
magn i f i ca t ion

3 while 1~=0
4 da te i=dir (’C:\ StormIn \ con t ro l . t x t ’) ;
5 i f s i ze (date i , 1) > 0
6 dostorm ([’C:\ StormIn\ ’ d a t e i (1) . name]) ;
7 dos ([’ rename "C:\ StormIn\ ’ d a t e i (1) . name ’ " " ’

da t e i (1) . name ’ . done " ’]) ;
8 ’ Done . . . STORMengine V0 .4 ’
9 else

10 pause (10)
11 end
12 end
13
14 function dostorm (c o n t r o l d a t e i)
15 global f i lename thresho ld de l t a s t a r t i m endim ro i1 ro i2

ro i3 ro i4 magn i f i ca t ion to l e rance
16 f i d=fopen (c o n t r o l d a t e i) ;
17 f i lename=[’C:\ StormIn\ ’ f g e t l (f i d)]
18 thresho ld=str2num (f g e t l (f i d)) ; %e d i t 3
19 de l t a=str2num (f g e t l (f i d)) ; %ed i t11
20 s t a r t i m=str2num (f g e t l (f i d)) ; %e d i t 4
21 endim=str2num (f g e t l (f i d)) ; %e d i t 5
22 ro i1=str2num (f g e t l (f i d)) ; %e d i t 7
23 ro i2=str2num (f g e t l (f i d)) ; %e d i t 8
24 ro i3=str2num (f g e t l (f i d)) ; %e d i t 9
25 ro i4=str2num (f g e t l (f i d)) ; %ed i t10
26 magn i f i ca t ion=str2num (f g e t l (f i d)) ; %e d i t 6
27 to l e rance=str2num (f g e t l (f i d)) ; %ed i t12
28 f c lose (f i d) ;
29
30 f i t r e s u l t s=[1 1 1 1 1 1 1 1] ;
31 imavg=zeros ((roi4−ro i3)+1,(roi2−ro i1)+1) ;
32
33 [data , back , r e f]= s i f r e a d (f i lename) ;
34 moviein=data . imageData ;
35
36 for i=s t a r t i m : endim
37 i
38 subim=moviein (ro i3 : roi4 , ro i1 : roi2 , i) ;
39 temp=ca lc s torm (subim) ;
40 f i t r e s u l t s=[f i t r e s u l t s ; temp , ones (s ize (temp ,1) ,1) i] ;
41 imavg=imavg+subim ;
42 end
43 f i t r e s u l t s= f i t r e s u l t s (2 : end , :) ;
44 temp=[get f i l ename () ’ f i t r e s u l t s . mat ’] ;
45 save (temp , ’ f i t r e s u l t s ’) ;

104

46 imavg=imavg/(endim−s t a r t i m+1) ;
47 imwrite (mat2gray (abs (max(max(imavg))−imavg)) ,[get f i l ename ()

’ Average . t i f ’] , ’ TIFF ’) ;
48 h i s t im=h i s t 3 (f i t r e s u l t s (: , [1 3]) magni f i ca t ion , ’ Edges ’ , {1 : (

roi4−ro i3+1) magn i f i ca t ion 1: (roi2−ro i1+1) magn i f i ca t ion
}) ;

49 imwrite (abs(1−mat2gray (his t im ,[0 1])) ,[get f i l ename () ’ ’
num2str (magn i f i ca t ion) ’ x Image . t i f ’] , ’ TIFF ’) ;

50
51 function f i t r e s u l t s = ca lc s torm (subim)
52 global th re sho ld de l t a to l e rance
53 opt ions=opt imset (’ TolFun ’ , t o l e rance) ;
54 s i z e x=8;
55 s i z e y=8;
56 f i t r e s u l t s=[1 1 1 1 1 1 1] ;
57
58 imlabe l=bwlabel (imhmax(subim , de l t a)>th re sho ld) ;
59 nrspo t s=max(max(imlabe l)) ;
60 imregionprops=reg ionprops (imlabel , ’ Area ’ , ’ BoundingBox ’ , ’

Centroid ’) ;
61 imspotcenter s=[imregionprops . Centroid] ;
62
63 for i=1: nrspots ,
64 posy=round(imspotcenter s (2 i−1)) ;
65 posx=round(imspotcenter s (2 i)) ;
66 i f posx−s i z e x/2>0 && posx+s i z e x /2 < s ize (subim ,1) &&

posy−s i z e y/2>0 && posy+s i z e y /2 < s ize (subim ,2)
67 i m f i t=double (subim (posx−s i z e x /2: posx+s i z e x /2 , posy−

s i z e y /2: posy+s i z e y /2)) ;
68 [x , y]=meshgrid (1 : s i z e x+1 ,1: s i z e y+1) ;
69 grid=[x y] ;
70 background=mean(mean(i m f i t)) ;
71 peak=max(max(i m f i t))−background ;
72 star tparam=double ([peak , s i z e x /2 ,2 , s i z e y /2 ,2 ,

background]) ;
73 [a re s]= l s q c u r v e f i t (@gauss2d , startparam , grid , im f i t

,[0 0 0 0 0 0] ,[] , op t ions) ;
74 i f r e s /a (1) < 1e4 && a (3)<s i z e y/2−1 && a (5)<s i z e x

/2−1
75 f i t r e s u l t s=[f i t r e s u l t s ; posx−s i z e x/2+a (4)−1,a (5)

, posy−s i z e y/2+a (2)−1,a (3) , a (1) , a (6) , r e s] ;
76 end
77 end
78 end
79 f i t r e s u l t s= f i t r e s u l t s (2 : end , :) ;
80
81 function f = gauss2d (a , data)

105

82 x = data (: , 1 : s ize (data ,2) /2) ;
83 y = data (: , s ize (data ,2) /2+1:end) ;
84 f = a (1) exp (−0 .5 (x−a (2)) .^2/(a (3)^2)−0 .5 (y−a (4)) .^2/(a

(5)^2)) + a (6) ;
85
86 function f i lenameout = get f i l ename ()
87 global f i lename thresho ld de l t a s t a r t i m endim ro i1 ro i2

ro i3 ro i4 magn i f i ca t ion to l e rance
88 f i lenameout=[’C:\ StormOut\ ’ f i lename (12: length (f i lename)−4)

’ Threshold ’ num2str (th resho ld) ’ Del ta ’ num2str (
de l t a) ’ Tolerance ’ num2str (to l e rance) ’ Images ’
num2str (s t a r t i m) ’− ’ num2str (endim) ’ ROI ’ num2str (ro i1
) ’− ’ num2str (ro i2) ’− ’ num2str (ro i3) ’− ’ num2str (ro i4)
] ;

89
90 function [data , back , r e f]= s i f r e a d (f i l e)
91 f=fopen (f i l e , ’ r ’) ;
92 i f f < 0
93 error (’ Could not open the f i l e . ’) ;
94 end
95 i f ~i s e q u a l (f g e t l (f) , ’ Andor Technology Multi−Channel F i l e ’)
96 f c lose (f) ;
97 error (’ Not an Andor SIF image f i l e . ’) ;
98 end
99 sk i pL in e s (f , 1) ;

100 [data , next]=readSect ion (f) ;
101 i f nargout > 1 & next == 1
102 [back , next]=readSect ion (f) ;
103 i f nargout > 2 & next == 1
104 r e f=back ;
105 back=readSect ion (f) ;
106 else
107 r e f=s t r u c t ([]) ;
108 end
109 else
110 back=s t r u c t ([]) ;
111 r e f=back ;
112 end
113 f c lose (f) ;
114
115 function [info , next]=readSect ion (f)
116 o=f scanf (f , ’%d ’ ,6) ;
117 info . temperature=o(6) ;
118 sk ipBy te s (f ,10) ;
119 o=f scanf (f , ’%f ’ ,5) ;
120 info . exposureTime=o(2) ;
121 info . cycleTime=o(3) ;

106

122 info . accumulateCycles=o(5) ;
123 info . accumulateCycleTime=o(4) ;
124 sk ipBy te s (f , 2) ;
125 o=f scanf (f , ’%f ’ ,2) ;
126 info . s tackCycleTime=o(1) ;
127 info . pixelReadoutTime=o(2) ;
128 o=f scanf (f , ’%d ’ ,3) ;
129 info . gainDAC=o(3) ;
130 sk ip L in e s (f , 1) ;
131 info . detectorType=readLine (f) ;
132 info . d e t e c t o r S i z e=f scanf (f , ’%d ’ ,[1 2]) ;
133 info . f i leName=readSt r ing (f) ;
134 sk ip L in e s (f , 3) ;
135 sk ipBy te s (f ,14) ;
136 info . shutterTime=f scanf (f , ’%f ’ ,[1 2]) ;
137 sk ip L in e s (f , 8) ;
138 i f strcmp (’ Luc ’ , info . detectorType) || strcmp (’ DV897_BV ’ ,

info . detectorType)
139 sk ip L in e s (f , 2) ;
140 end
141 info . f rameAxis=readSt r ing (f) ;
142 info . dataType=readSt r ing (f) ;
143 info . imageAxis=readSt r ing (f) ;
144 o=f scanf (f , ’ 65538 %d %d %d %d %d %d %d %d 65538 %d %d %d %d

%d %d ’ ,14) ;
145 info . imageArea=[o(1) o(4) o(6) ; o (3) o(2) o(5)] ;
146 info . frameArea=[o(9) o(12) ; o(11) o(10)] ;
147 info . frameBins=[o(14) o(13)] ;
148 s=(1 + d i f f (info . frameArea)) ./ info . frameBins ;
149 z=1 + d i f f (info . imageArea (5:6)) ;
150 i f prod (s) ~= o(8) | o(8) z ~= o(7)
151 f c lose (f) ;
152 error (’ I n c o n s i s t e n t image header . ’) ;
153 end
154 for n=1:z
155 o=readSt r ing (f) ;
156 i f numel (o)
157 f p r i n t f (’%s\n ’ , o) ;
158 end
159 end
160 info . timeStamp=fread (f , 1 , ’ uint16 ’) ;
161 info . imageData=reshape (fread (f , prod (s) z , ’ s i n g l e=>s i n g l e ’)

,[s z]) ;
162 o=readSt r ing (f) ;
163 i f numel (o)
164 f p r i n t f (’%s\n ’ , o) ;
165 end

107

166 next=f scanf (f , ’%d ’ ,1) ;
167
168 function o=readSt r ing (f)
169 n=f scanf (f , ’%d ’ ,1) ;
170 i f isempty (n) | n < 0 | i s e q u a l (f g e t l (f) ,−1)
171 f c lose (f) ;
172 error (’ I n c o n s i s t e n t s t r i n g . ’) ;
173 end
174 o=fread (f ,[1 n] , ’ u int8=>char ’) ;
175
176 function o=readLine (f)
177 o=f g e t l (f) ;
178 i f i s e q u a l (o,−1)
179 f c lose (f) ;
180 error (’ I n c o n s i s t e n t image header . ’) ;
181 end
182 o=deblank (o) ;
183
184 function sk ipBy te s (f ,N)
185 [s , n]=fread (f ,N, ’ u int8 ’) ;
186 i f n < N
187 f c lose (f) ;
188 error (’ I n c o n s i s t e n t image header . ’) ;
189 end
190
191 function s k i pL ine s (f ,N)
192 for n=1:N
193 i f i s e q u a l (f g e t l (f) ,−1)
194 f c lose (f) ;
195 error (’ I n c o n s i s t e n t image header . ’) ;
196 end
197 end

STORMhist.m

1 c lear a l l
2 s i z e x=128;
3 s i z e y=128;
4
5 [da te i pfad]=u i g e t f i l e ;
6
7 i f da te i ~= 0
8
9 load ([pfad da te i]) ;

10 output=zeros (200 ,1) ;
11
12 a= f i t r e s u l t s (: , 1) ;

108

13 b= f i t r e s u l t s (: , 3) ;
14 c=[a b] ;
15 h i s t im=h i s t 3 (c , ’ Edges ’ , {1 : . 1 : s i z e x 1 : . 1 : s i z e y }) ;
16
17 imagesc (h i s t im) ;
18 [xpts , yp t s]=ge tp t s ;
19 close ;
20
21 for i=1: f loor (s ize (xpts , 1) /2)
22 x (1)=xpts (i 2−1) ;
23 x (2)=xpts (i 2) ;
24 y (1)=ypts (i 2−1) ;
25 y (2)=ypts (i 2) ;
26
27 i f y (1) > y (2)
28 x=f l i p l r (x) ;
29 y=f l i p l r (y) ;
30 end ;
31
32 de l tax=x (2)−x (1) ;
33 de l t ay=y (2)−y (1) ;
34
35 alpha=−atan (de l t ax / de l t ay) ;
36 R=[cos (alpha) ,− sin (alpha) ; sin (alpha) , cos (alpha)] ;
37
38 c2=(R c ’) ’ ;
39 h i s t r e c t x=R ([y (1) ; x (1)]/10) ;
40 h i s t r e c t y=R ([y (2) ; x (2)]/10) ;
41 r s i z e x=round(sqrt (2) s i z e x) ;
42 r s i z e y=round(sqrt (2) s i z e y) ;
43 his t im2=h i s t 3 (c2 , ’ Edges ’ ,{− r s i z e x : . 1 : r s i z e x −r s i z e y : . 1 :

r s i z e y }) ;
44 tempx=(r s i z e x+round(h i s t r e c t x)+1) 1 0 ;
45 tempy=(r s i z e y+round(h i s t r e c t y)+1) 1 0 ;
46
47 h i s t d a t a=sum(h i s t im2 (tempx (1) : tempy (1) , tempx (2)−50:

tempy (2)+50)) ;
48 [histmax maxindex]=max(h i s t d a t a) ;
49 output(−maxindex+101:−maxindex+201)=output(−maxindex

+101:−maxindex+201)+h i s tda ta ’ ;
50 end ;
51 bar (output) ;
52 csvwrite ([pfad da te i ’ . t x t ’] , output ’) ;
53
54 end ;

109

STORMview.m

1 function varargout = STORMview(vararg in)
2 % STORMview M− f i l e f o r STORMview . f i g
3 % STORMview , by i t s e l f , c r e a t e s a new STORMview or

r a i s e s the e x i s t i n g
4 % s i n g l e t o n .
5 %
6 % H = STORMview r e t u r n s the handle to a new STORMview

or the handle to
7 % the e x i s t i n g s i n g l e t o n .
8 %
9 % STORMview (’ CALLBACK ’ , hObjec t , eventData , handles , . . .)

c a l l s the l o c a l
10 % f u n c t i o n named CALLBACK in STORMview .M with the

g i v en input arguments .
11 %
12 % STORMview (’ Proper ty ’ , ’ Value ’ , . . .) c r e a t e s a new

STORMview or r a i s e s the
13 % e x i s t i n g s i n g l e t o n . S t a r t i n g from the l e f t ,

p r op e r t y va lue p a i r s are
14 % a p p l i e d to the STORMview b e f o r e STORMview_OpeningFcn

g e t s c a l l e d . An
15 % unrecogn i z ed p rop e r t y name or i n v a l i d va lue makes

p rope r t y a p p l i c a t i o n
16 % stop . A l l i n p u t s are pas s ed to STORMview_OpeningFcn

v ia vararg in .
17 %
18 % See STORMview Opt ions on GUIDE ’ s Too l s menu .

Choose " STORMview a l l ows only one
19 % i n s t a n c e to run (s i n g l e t o n) " .
20 %
21 % See a l s o : GUIDE , GUIDATA , GUIHANDLES
22
23 % E d i t the above t e x t to modify the r e s pon s e to he lp

STORMview
24
25 % Las t Mod i f i ed by GUIDE v2 .5 03−Mar−2008 15:13:42
26
27 % Begin i n i t i a l i z a t i o n code − DO NOT EDIT
28 gu i_S ing le ton = 1;
29 gu i_S ta te = s t r u c t (’ gui_Name ’ , mfilename , . . .
30 ’ gu i_S ing le ton ’ , gu i_S ing le ton , . . .
31 ’ gui_OpeningFcn ’ , @STORMview_OpeningFcn ,

. . .

110

32 ’ gui_OutputFcn ’ , @STORMview_OutputFcn ,
. . .

33 ’ gui_LayoutFcn ’ , [] , . . .
34 ’ gu i_Ca l lback ’ , []) ;
35 i f nargin && i s c h a r (vara rg in {1})
36 gu i_S ta te . gu i_Ca l lback = s t r2 func (vara rg in {1}) ;
37 end
38
39 i f nargout
40 [varargout {1: nargout }] = gui_mainfcn (gui_State ,

va ra rg in { : }) ;
41 else
42 gui_mainfcn (gui_State , va ra rg in { : }) ;
43 end
44 % End i n i t i a l i z a t i o n code − DO NOT EDIT
45
46
47 % −−− E x e c u t e s j u s t b e f o r e STORMview i s made v i s i b l e .
48 function STORMview_OpeningFcn(hObject , eventdata , handles ,

va ra rg in)
49 % Thi s f u n c t i o n has no output args , s e e OutputFcn .
50 % hObje c t handle to f i g u r e
51 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
52 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
53 % vararg in command l i n e arguments to STORMview (s e e

VARARGIN)
54
55 % Choose d e f a u l t command l i n e output f o r STORMview
56 handles . output = hObject ;
57
58 % Update hand le s s t r u c t u r e
59 guidata (hObject , handles) ;
60
61 global moviein movies izex movies izey f i t r e s u l t s
62 colormap (gray) ;
63
64 % UIWAIT makes STORMview wait f o r u s e r r e s pon s e (s e e

UIRESUME)
65 % uiwa i t (hand le s . f i g u r e 1) ;
66
67 % −−− Outputs from t h i s f u n c t i o n are r e tu rned to the

command l i n e .
68 function varargout = STORMview_OutputFcn(hObject , eventdata

, handles)

111

69 % varargout c e l l array f o r r e t u r n i n g output arg s (s e e
VARARGOUT) ;

70 % hObje c t handle to f i g u r e
71 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
72 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
73
74 % Get d e f a u l t command l i n e output from handle s s t r u c t u r e
75 varargout {1} = handles . output ;
76
77
78 function ed i t1_Ca l lback (hObject , eventdata , handles)
79 % hObje c t handle to e d i t 1 (s e e GCBO)
80 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
81 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
82
83 % Hint s : g e t (hObjec t , ’ S t r ing ’) r e t u r n s c o n t e n t s o f e d i t 1 as

t e x t
84 % s t r 2 d o u b l e (g e t (hObjec t , ’ S t r ing ’)) r e t u r n s c o n t e n t s

o f e d i t 1 as a double
85 set (handles . s l i d e r1 , ’ Value ’ , str2num (get (hObject , ’ S t r i ng ’)

)) ;
86 updateim (handles) ;
87
88 function ed i t3_Ca l lback (hObject , eventdata , handles)
89 % hObje c t handle to e d i t 3 (s e e GCBO)
90 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
91 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
92
93 % Hint s : g e t (hObjec t , ’ S t r ing ’) r e t u r n s c o n t e n t s o f e d i t 3 as

t e x t
94 % s t r 2 d o u b l e (g e t (hObjec t , ’ S t r ing ’)) r e t u r n s c o n t e n t s

o f e d i t 3 as a double
95 updateim (handles) ;
96
97 function ed i t6_Ca l lback (hObject , eventdata , handles)
98 % hObje c t handle to e d i t 6 (s e e GCBO)
99 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
100 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
101

112

102 % Hint s : g e t (hObjec t , ’ S t r ing ’) r e t u r n s c o n t e n t s o f e d i t 6 as
t e x t

103 % s t r 2 d o u b l e (g e t (hObjec t , ’ S t r ing ’)) r e t u r n s c o n t e n t s
o f e d i t 6 as a double

104 global f i t r e s u l t s
105 h i s t im=h i s t 3 (f i t r e s u l t s (: , [1 3]) str2num (get (handles . edi t6 ,

’ S t r i ng ’)) , ’ Edges ’ , {1 : (str2num (get (handles . edit10 , ’
S t r i ng ’))−str2num (get (handles . edi t9 , ’ S t r i ng ’))) str2num (
get (handles . edi t6 , ’ S t r i ng ’))+1 1:(str2num (get (handles .
edi t8 , ’ S t r i ng ’))−str2num (get (handles . edi t7 , ’ S t r i ng ’)))
str2num (get (handles . edi t6 , ’ S t r i ng ’))+1}) ;

106 axes (handles . axes3) ;
107 imagesc (h i s t im) ;
108
109 function ed i t11_Ca l lback (hObject , eventdata , handles)
110 % hObje c t handle to ed i t11 (s e e GCBO)
111 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
112 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
113
114 % Hint s : g e t (hObjec t , ’ S t r ing ’) r e t u r n s c o n t e n t s o f ed i t11

as t e x t
115 % s t r 2 d o u b l e (g e t (hObjec t , ’ S t r ing ’)) r e t u r n s c o n t e n t s

o f ed i t11 as a double
116 updateim (handles) ;
117
118 function ed i t12_Ca l lback (hObject , eventdata , handles)
119 % hObje c t handle to ed i t12 (s e e GCBO)
120 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
121 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
122
123 % Hint s : g e t (hObjec t , ’ S t r ing ’) r e t u r n s c o n t e n t s o f ed i t12

as t e x t
124 % s t r 2 d o u b l e (g e t (hObjec t , ’ S t r ing ’)) r e t u r n s c o n t e n t s

o f ed i t12 as a double
125 updateim (handles) ;
126
127 % −−− E x e c u t e s on s l i d e r movement .
128 function s l i d e r 1 _ C a l l b a c k (hObject , eventdata , handles)
129 % hObje c t handle to s l i d e r 1 (s e e GCBO)
130 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
131 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)

113

132
133 % Hint s : g e t (hObjec t , ’ Value ’) r e t u r n s p o s i t i o n o f s l i d e r
134 % g e t (hObjec t , ’ Min ’) and g e t (hObjec t , ’ Max ’) to

de te rmine range o f
135 % s l i d e r
136 set (handles . edi t1 , ’ S t r i ng ’ , num2str (round(get (hObject , ’

Value ’)))) ;
137 updateim (handles) ;
138
139 % −−− E x e c u t e s on but ton p r e s s in pushbutton1 .
140 function pushbutton1_Cal lback (hObject , eventdata , handles)
141 % hObje c t handle to pushbutton1 (s e e GCBO)
142 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
143 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
144 global f i t r e s u l t s
145 [f i lename , pathname , f i l t e r i n d e x] = u i g e t f i l e ({ ’ . mat ’ , ’MAT−

f i l e s (. mat) ’ ; ’ . ’ , ’ A l l F i l e s (.) ’ } , ’ P i ck an MAT−
f i l e ’ , ’ Mu l t i Se l e c t ’ , ’ on ’) ;

146 i f i s c e l l (f i lename)
147 temp=load (f i lename {1}) ;
148 f i t r e s u l t s=temp . f i t r e s u l t s ;
149 for i=2: s ize (f i lename ,2)
150 temp=load (f i lename { i }) ;
151 f i t r e s u l t s=[f i t r e s u l t s ; temp . f i t r e s u l t s] ;
152 end
153 else
154 temp=load (f i lename) ;
155 f i t r e s u l t s=temp . f i t r e s u l t s ;
156 end
157 set (handles . edi t8 , ’ S t r i ng ’ , movies izex) ;
158 set (handles . edit10 , ’ S t r i ng ’ , movies izey) ;
159 updateim (handles) ;
160
161 % −−− E x e c u t e s on but ton p r e s s in pushbutton3 .
162 function pushbutton3_Cal lback (hObject , eventdata , handles)
163 % hObje c t handle to pushbutton3 (s e e GCBO)
164 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
165 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
166 global moviein movies izex movies izey
167 set (handles . checkbox1 , ’ Value ’ ,0) ;
168 imavg=zeros (moviesizey , movies izex) ;
169 for i=str2num (get (handles . edi t4 , ’ S t r i ng ’)) : str2num (get (

handles . edi t5 , ’ S t r i ng ’))

114

170 imavg=imavg+moviein (: , : , i) ;
171 end
172 imavg=imavg/(str2num (get (handles . edi t5 , ’ S t r i ng ’))−str2num (

get (handles . edi t4 , ’ S t r i ng ’))+1) ;
173 axes (handles . axes3) ;
174 imagesc (imavg) ;
175
176 % −−− E x e c u t e s on but ton p r e s s in pushbutton4 .
177 function pushbutton4_Cal lback (hObject , eventdata , handles)
178 % hObje c t handle to pushbutton4 (s e e GCBO)
179 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
180 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
181 axes (handles . axes1) ;
182 r o i=round(g e t r e c t) ;
183 set (handles . edi t7 , ’ S t r i ng ’ , r o i (1)) ;
184 set (handles . edi t8 , ’ S t r i ng ’ , r o i (1)+r o i (3)) ;
185 set (handles . edi t9 , ’ S t r i ng ’ , r o i (2)) ;
186 set (handles . edit10 , ’ S t r i ng ’ , r o i (2)+r o i (4)) ;
187
188 % −−− E x e c u t e s on but ton p r e s s in pushbutton7 .
189 function pushbutton7_Cal lback (hObject , eventdata , handles)
190 % hObje c t handle to pushbutton7 (s e e GCBO)
191 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
192 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
193 global movies izex movies izey
194 set (handles . edi t7 , ’ S t r i ng ’ ,1) ;
195 set (handles . edi t8 , ’ S t r i ng ’ , movies izex) ;
196 set (handles . edi t9 , ’ S t r i ng ’ ,1) ;
197 set (handles . edit10 , ’ S t r i ng ’ , movies izey) ;
198
199 % −−− E x e c u t e s on but ton p r e s s in pushbutton8 .
200 function pushbutton8_Cal lback (hObject , eventdata , handles)
201 % hObje c t handle to pushbutton8 (s e e GCBO)
202 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
203 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
204 global moviein f i t r e s u l t s
205 imavg=zeros (str2num (get (handles . edit10 , ’ S t r i ng ’))−str2num (

get (handles . edi t9 , ’ S t r i ng ’))+1,str2num (get (handles . edi t8
, ’ S t r i ng ’))−str2num (get (handles . edi t7 , ’ S t r i ng ’))+1) ;

206 for i=str2num (get (handles . edi t4 , ’ S t r i ng ’)) : str2num (get (
handles . edi t5 , ’ S t r i ng ’))

115

207 imavg=imavg+moviein (str2num (get (handles . edi t9 , ’ S t r i ng ’)
) : str2num (get (handles . edit10 , ’ S t r i ng ’)) , str2num (get (
handles . edi t7 , ’ S t r i ng ’)) : str2num (get (handles . edi t8 , ’
S t r i ng ’)) , i) ;

208 end
209 imavg=imavg/(str2num (get (handles . edi t5 , ’ S t r i ng ’))−str2num (

get (handles . edi t4 , ’ S t r i ng ’))+1) ;
210 imwrite (mat2gray (abs (max(max(imavg))−imavg)) ,[get f i l ename (

handles) ’ Average . t i f ’] , ’ TIFF ’) ;
211 h i s t im=h i s t 3 (f i t r e s u l t s (: , [1 3]) str2num (get (handles . edi t6 ,

’ S t r i ng ’)) , ’ Edges ’ , {1 : (str2num (get (handles . edit10 , ’
S t r i ng ’))−str2num (get (handles . edi t9 , ’ S t r i ng ’))+1)
str2num (get (handles . edi t6 , ’ S t r i ng ’)) 1 : (str2num (get (
handles . edi t8 , ’ S t r i ng ’))−str2num (get (handles . edi t7 , ’
S t r i ng ’))+1) str2num (get (handles . edi t6 , ’ S t r i ng ’)) }) ;

212 imwrite (abs(1−mat2gray (his t im ,[0 1])) ,[get f i l ename (handles)
’ ’ get (handles . edi t6 , ’ S t r i ng ’) ’ x Image . t i f ’] , ’ TIFF ’) ;

213
214 % −−− E x e c u t e s on but ton p r e s s in checkbox1 .
215 function checkbox1_Cal lback (hObject , eventdata , handles)
216 % hObje c t handle to checkbox1 (s e e GCBO)
217 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
218 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
219
220 % Hint : g e t (hObjec t , ’ Value ’) r e t u r n s t o g g l e s t a t e o f

checkbox1
221 updateim (handles) ;
222
223 % −−− E x e c u t e s on but ton p r e s s in checkbox2 .
224 function checkbox2_Cal lback (hObject , eventdata , handles)
225 % hObje c t handle to checkbox2 (s e e GCBO)
226 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
227 % handle s s t r u c t u r e with hand le s and use r data (s e e

GUIDATA)
228
229 % Hint : g e t (hObjec t , ’ Value ’) r e t u r n s t o g g l e s t a t e o f

checkbox2
230 i f get (hObject , ’ Value ’)==1
231 colormap (f l ipud (gray)) ;
232 else
233 colormap (gray) ;
234 end
235
236 function updateim (handles)

116

237 global moviein f i t r e s u l t s ro i1 ro i2 ro i3 ro i4
238 %subim=movie in (: , : , round (g e t (hand le s . s l i d e r 1 , ’ Value ’))) ;
239 axes (handles . axes1) ;
240 %imagesc (subim) ;
241 axes (handles . axes2) ;
242 %imagespo t s=imhmax(subim , str2num (g e t (hand le s . ed i t11 , ’ S t r ing

’)))>str2num (g e t (hand le s . ed i t3 , ’ S t r ing ’)) ;
243 %imagesc (imagespo t s) ;
244 %s e t (hand le s . t ex t11 , ’ S t r ing ’ , max(max(bwlabe l (imagespo t s))))

;
245 axes (handles . axes3) ;
246 h i s t im=h i s t 3 (f i t r e s u l t s (: , [1 3]) str2num (get (handles . edi t6 ,

’ S t r i ng ’)) , ’ Edges ’ , {1 : (roi4−ro i3+1) str2num (get (handles .
edi t6 , ’ S t r i ng ’)) 1 : (roi2−ro i1+1) str2num (get (handles .
edi t6 , ’ S t r i ng ’)) }) ;

247 axis ([1 (roi4−ro i3+1) str2num (get (handles . edi t6 , ’ S t r i ng ’))
1 (roi2−ro i1+1) str2num (get (handles . edi t6 , ’ S t r i ng ’))]) ;

248 view ([90 90]) ;
249
250
251 function f i lename = get f i l ename (handles)
252 f i lename=get (handles . ac t ivex1 , ’ FileName ’) ;
253 f i lename=[f i lename (1 : length (f i lename)−4) ’ Threshold ’ get (

handles . edi t3 , ’ S t r i ng ’) ’ Images ’ get (handles . edi t4 , ’
S t r i ng ’) ’− ’ get (handles . edi t5 , ’ S t r i ng ’) ’ ROI ’ get (
handles . edi t7 , ’ S t r i ng ’) ’− ’ get (handles . edi t8 , ’ S t r i ng ’)
’− ’ get (handles . edi t9 , ’ S t r i ng ’) ’− ’ get (handles . edit10 , ’
S t r i ng ’)] ;

254
255 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
256 function s l ide r1_Crea teFcn (hObject , eventdata , handles)
257 % hObje c t handle to s l i d e r 1 (s e e GCBO)
258 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
259 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
260
261 % Hint : s l i d e r c o n t r o l s u s u a l l y have a l i g h t gray

background .
262 i f i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
263 set (hObject , ’ BackgroundColor ’ , [. 9 .9 . 9]) ;
264 end
265
266 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .

117

267 function edi t1_CreateFcn (hObject , eventdata , handles)
268 % hObje c t handle to e d i t 1 (s e e GCBO)
269 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
270 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
271
272 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
273 % See ISPC and COMPUTER .
274 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
275 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
276 end
277
278 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
279 function edi t2_CreateFcn (hObject , eventdata , handles)
280 % hObje c t handle to e d i t 2 (s e e GCBO)
281 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
282 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
283
284 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
285 % See ISPC and COMPUTER .
286 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
287 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
288 end
289
290 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
291 function edi t3_CreateFcn (hObject , eventdata , handles)
292 % hObje c t handle to e d i t 3 (s e e GCBO)
293 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
294 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
295
296 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
297 % See ISPC and COMPUTER .
298 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
299 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;

118

300 end
301
302 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
303 function edi t4_CreateFcn (hObject , eventdata , handles)
304 % hObje c t handle to e d i t 4 (s e e GCBO)
305 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
306 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
307
308 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
309 % See ISPC and COMPUTER .
310 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
311 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
312 end
313
314 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
315 function edi t5_CreateFcn (hObject , eventdata , handles)
316 % hObje c t handle to e d i t 5 (s e e GCBO)
317 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
318 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
319
320 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
321 % See ISPC and COMPUTER .
322 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
323 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
324 end
325
326 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
327 function edi t6_CreateFcn (hObject , eventdata , handles)
328 % hObje c t handle to e d i t 6 (s e e GCBO)
329 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
330 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
331
332 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .

119

333 % See ISPC and COMPUTER .
334 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
335 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
336 end
337
338 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
339 function edi t7_CreateFcn (hObject , eventdata , handles)
340 % hObje c t handle to e d i t 7 (s e e GCBO)
341 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
342 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
343
344 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
345 % See ISPC and COMPUTER .
346 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
347 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
348 end
349
350 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
351 function edi t8_CreateFcn (hObject , eventdata , handles)
352 % hObje c t handle to e d i t 8 (s e e GCBO)
353 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
354 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
355
356 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
357 % See ISPC and COMPUTER .
358 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
359 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
360 end
361
362 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
363 function edi t9_CreateFcn (hObject , eventdata , handles)
364 % hObje c t handle to e d i t 9 (s e e GCBO)
365 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB

120

366 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l
C r ea t eF cn s c a l l e d

367
368 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
369 % See ISPC and COMPUTER .
370 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
371 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
372 end
373
374 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
375 function edi t10_CreateFcn (hObject , eventdata , handles)
376 % hObje c t handle to ed i t10 (s e e GCBO)
377 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
378 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
379
380 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
381 % See ISPC and COMPUTER .
382 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
383 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
384 end
385
386 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .
387 function edi t11_CreateFcn (hObject , eventdata , handles)
388 % hObje c t handle to ed i t11 (s e e GCBO)
389 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
390 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
391
392 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
393 % See ISPC and COMPUTER .
394 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
395 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
396 end
397
398 % −−− E x e c u t e s dur ing o b j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r o p e r t i e s .

121

399 function edi t12_CreateFcn (hObject , eventdata , handles)
400 % hObje c t handle to ed i t12 (s e e GCBO)
401 % even tda ta r e s e r v e d − to be d e f i n e d in a f u t u r e v e r s i o n

o f MATLAB
402 % handle s empty − hand le s not c r e a t e d u n t i l a f t e r a l l

C r ea t eF cn s c a l l e d
403
404 % Hint : e d i t c o n t r o l s u s u a l l y have a whi te background on

Windows .
405 % See ISPC and COMPUTER .
406 i f i s p c && i s e q u a l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))
407 set (hObject , ’ BackgroundColor ’ , ’ white ’) ;
408 end

122

Selbstständigkeitserklärung

Ich versichere hiermit, dass ich die vorliegende Diplomarbeit „ An Accurate and
Efficient Algorithm for Real-Time Localisation of Photoswitchable Fluorophores “
selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel
angefertigt habe sowie alle Zitate entsprechend kenntlich gemacht habe.

123

	Introduction
	Photoswitching microscopy overview
	Temporal confinement and deconfinement
	Motivation for and goal of present work
	Structure of this Thesis

	Theory of photoswitching microscopy
	Microscopy
	Photoswitchable fluorophores
	Photoswitching microscopy

	Algorithmic theory
	Image processing
	Levenberg-Marquardt parameter estimation
	Elementary statistics

	Implementation of a deconfinement program
	State of the Art
	Specification
	The rapidSTORM engine
	The rapidSTORM image construction
	Guessing the spot standard deviation

	Experimental material and methods
	dSTORM image acquisition process
	dSTORM stacks selected for testing
	Stochastically generating data sets
	Measuring error rates in candidate search stage
	Computational hard- and software

	Results and discussion
	Evaluation by comparison with Schüttpelz implementation
	Candidate search
	Spot fitting and judging stage
	 estimator
	Real-time computation

	Conclusion and Outlook
	Conclusion
	Outlook

	Credits
	Proof of recursion formula for sum of squares
	Schematic overview over rapidSTORM system
	Tables
	Schüttpelz implementation

