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Summary

The main goal of this dissertation is to develop a classifier for assigning environmental
genomic fragments to the closest known source organism. This has been achieved by the
development of a novel method for the TAxonomic COmposition Analysis – TACOA– of
environmental genomic fragments using a kernelized nearest neighbor approach. A com-
bination of machine learning techniques has been employed to realized a classifier that
exploits the wealth of knowledge deposited in public databases. The developed classifier
uses as features oligonucleotide frequencies which carry the so called genomic signature.
A key advantage of the use of genomic signatures is that enable sequence comparison
without alignment. A central assumption of the genomic signature is that oligonucleotide
compositions of DNA sequences from the same or closely related organisms are prone
to be more similar than those from far related ones.

This work embodies one of the first attempts to tackle the problem of taxonomic clas-
sification of metagenomic data. Moreover, it is the first of its kind using a kernelized
nearest neighbor approach. The use of the k-nearest neighbor algorithm in the TACOA
strategy assures that the realized classifier is in its nature multi-class. In addition, this
approach has the advantage of not making any assumptions about the distribution of the
input data and the classification results can easily be interpreted. However, the tradi-
tional k-NN algorithm has the drawback of running into problems when dealing with
high dimensional input data (called curse of dimensionality). In the kernelized extension
presented herein, this problem is overcome by the incorporation of a Gauss kernel into
its architecture.

Furthermore, the developed software can easily be installed and run on a desktop com-
puter offering more independence in the analysis of metagenomic data sets. The refer-
ence set used by the proposed classifier can be easily updated with newly sequenced
genomes, a very desirable feature on this situation of continuing expansion of genomic
databases.

The novel strategy presented was extensively evaluated using genomic fragments of
variable length (800bp – 50Kbp) from 373 completely sequence genomes. As a whole,
the classification accuracy at five different taxonomic ranks was evaluated: superking-
dom, phylum, class, order and genus. TACOA is able to classify genomic fragments of
length 800bp and 1Kbp with high accuracy until rank class. For fragments longer than
3Kbp accurate predictions are made even at deeper taxonomic ranks (order and genus).
TACOA compares well to the latest intrinsic classifier PhyloPythia. For fragments of
length 800bp and 1Kbp the overall accuracy of TACOA is higher than that obtained by
PhyloPythia across all taxonomic ranks. For all fragment lengths, both methods achieved
comparable high specificity results up to rank class and low false negative rates.
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CHAPTER 1

Introduction

The massive amount of available data in all fields of knowledge has experienced a blis-

tering surge in the past decade. In particular, microbiology has recently undergone a

revolution, comparable to the invention of the microscope. Technical advances have mo-

torized extraordinary improvements in the field of DNA sequencing. A boost in speed

and efficiency, together with persistent reducing costs, is making possible to deliver even

more sequence data into public databases. In particular, the young field of metagenomics

has benefited from this breakthrough in sequencing technology. In turn, metagenomics or

the genomic analysis of co-occuring species in a community is reshaping the landscape

of microbiology, ecology, evolution and medicine. Transcending individual genes and

genomes, metagenomics offers access to all genomes of a microbial community reveal-

ing the secrets of the ”uncultured world”, i.e.the enormous number of microbial species

that currently cannot be isolated into pure culture. In the near future, metagenomics will

expand our ability to discover and benefit from microbial capabilities, improve our under-

standing of microbial communities and promises a lead to major advances in medicine,



2 Chapter 1. Introduction

agriculture, energy production and bioremediation.

One key step in the metagenomic approach is to directly sequence the DNA collected

from an ecosystem, which may contain thousands of species. After sequencing, typical

metagenomics data comprises a vast collection of small fragments that has not associa-

tion to the organisms from which they were derived. Thus, the first major task imposed

by this type of data is to phylogenetically classify raw sequence fragments into related

taxonomic groups. The classification step is frequently a syne qua non condition for the

recovery of complete genomes or assessing the biological diversity of a sample.

Computational challenges come hand by hand with the vast amount of data; their

complexity and multi-dimensionality are strongly pushing forward the development of

new methods and technologies. They should be able to contribute to the analysis of the

data in a high-throughput and ”intelligent” manner, in the hope that new well-founded

knowledge can be extracted from the raw data. In this context, machine learning meth-

ods are employed to unveil valuable information from the data by mining, visualizing

and revealing hidden correlations. Two major approaches in machine learning can be

recognized:

• Supervised learning. In this case a classification function is learned from a ref-

erence set of items with known class labels, This process is known as training.

Subsequently, the trained classifier, i.e., the learned function is applied to classify

new items with unknown class affiliation. An example of a classifier using this type

of approach is the Support Vector Machine (SVM) algorithm (Hastie et al., 2002).

A second example for a supervised classifier is the k-nearest neighbor approach (k-

NN) (Cover and Hart, 1967). However, in this approach, the classification function

is not learned during an explicit training step, but online during the classification

phase.

• Unsupervised learning. The classifier is not provided with prior knowledge of

existing classes. It classifies items based on patterns found in the input data. A

classical example of unsupervised learning is the self organizing maps (Kohonen,
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1982).

In general, items are classified based on intrinsic features. As features, the taxonomic

classifier presented in this work employs the concept of genomic signatures (Karlin and

Burge, 1995) which allows alignment-free sequence comparisons. It is based on the

postulate that oligonucleotide composition of DNA fragments from the same species or

phylogenetically close relatives are prone to be more similar to each other than those

from distantly related species. This basic idea has already been used to detect horizontal

gene transfers (Karlin, 2001; Merkl, 2004; Dufraigne et al., 2005) and study the evolution

of viruses and plasmids (Campbell et al., 1999; Karlin and Mrázek, 2007). In this work,

the genomic signature notion was used to taxonomically classify whole genomes as part

of the exploratory analysis to evaluate the suitability of employing the genomic signature

as a feature.

Traditional genome sequencing and analysis approaches where single-species is stud-

ied at a time have generated an immense valuable knowledge ready to be exploited. Com-

pletely sequenced genomes, which could be used as references for the taxonomic classi-

fication of metagenomic sequences, become available at an exponential rate. Therefore,

the taxonomic classification of metagenomic data will greatly benefit from supervised

methods that can be instantaneously updated when new genomes are made available.

The work developed in this dissertation can be count within one of the first attempts

to tackle the problem of taxonomic classification of genomic fragments from metage-

nomic data. A novel classifier able to predict the taxonomic origin of environmental

genomic fragments of variable length in a supervised manner is presented. As one of the

main outcome of this work, the TAxonomic COmposition Analysis method –TACOA–

developed was implemented in a software. Furthermore, the developed software can be

easily installed and run on a desktop computer offering more independence in the anal-

ysis of metagenomic data sets. The reference set used by the proposed classifier can

easily be updated with newly sequenced genomes, a very desirable feature in this time of

constantly expansion of genomic databases.
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TACOA applies the intuitive idea of the k-nearest neighbor (k-NN) approach (Cover

and Hart, 1967) and combines it with a smoother kernel function (Hastie et al., 2002;

Tran et al., 2006). Compared to other less intuitive and more complex approaches, k-NN

based methods have proven to yield competitive results in a large number of classifica-

tion problems (Berrar et al., 2006; Saha and Heber, 2006; Yao and Ruzzo, 2006; Zhu

et al., 2007). In particular, when the classification problem to be solved has a multi-class

nature. The kernelized k-NN approach used in TACOA allows to realize an accurate

multi-class classifier. In general, k-NN is intuitive, does not make any assumptions about

the distribution of the input data and the reference set can be easily updated. For a wide

range of practical applications it approximates the optimal classifier if the reference set

is large enough. A further advantage is that the classification results can be easily inter-

preted. However, the traditional k-NN algorithm runs into problems when dealing with

high dimensional input data (called curse of dimensionality) (Hastie et al., 2002). In our

extension of the k-NN algorithm, the introduction of a Gaussian kernel helps to alleviate

this problem. (Hastie et al., 2002). By using a smoother kernel function the complete

reference set is considered during the classification procedure instead of a strict neigh-

borhood. The presented kernelized k-NN approach provides an alternative to solve the

problem of taxonomically classifying environmental genomic fragments derived with

sequencing technologies producing fragments that are at least 800bp long.

Another aspect regarding the analysis of metagenomic data relates to processing of

very short genomic fragments, as well as visualization of metagenomic data. These two

aspects were explored within collaborations. For the analysis of very short genomic

fragments a framework (in cooperation with Lutz Krause) was developed to identify

fragments bearing a partial protein family domain. Subsequently, with the help of a phy-

logenetic tree the taxonomic origin of fragments bearing a partial protein family domain

is assigned to its taxonomic source. Visualization of the pre-clustered data is possible

using SOMs, or more precisely with the Poincaré projection of a trained H2SOM. This

allows detecting groups of genomic feature vectors having either a low or high variation

in feature space in a graphical manner. The visualization work was done as part of a
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cooperation with Christian Martin.

1.1 Overview of this dissertation

This dissertation is structured as follows:

• Chapter 1 gives a broad overview on all different topics covered along this disser-

tation. General concepts developed in later chapters are presented, as well as the

biological and computational motivations and goals founding this work.

• Chapter 2 introduces in more detail basic concepts and terminology related to the

biology and computational aspects used in this dissertation. The notion of metage-

nomics is presented together with the description of the approach. From the com-

putational perspective, two approaches for the analysis of metagenomic data are

presented: first, similarity based and second, compositional based. Important no-

tions of the machine learning algorithms used and evaluated in this work are also

reviewed, as well as methods widely used to assess the classification accuracy of

the classifiers presented herein.

• Chapter 3 reviews existing approaches directed to sove the problem of taxonomic

classification of environmental genomic fragments. Existing methods such as

Bayesian classifier, TETRA, self organizing maps, and the support vector machine

based PhyloPhytia are discussed. In addition, accuracy results obtained by the

above mentioned methods are given.

• Chapter 4 describes the data sets employed in the exploration analysis undertaken

in this work, as well as the data set used to evaluate the TACOA classifier. The

data sets used for the comparison analysis of TACOA and PhyloPhytia are also

explained. Finally, the vector representation of the oligonucleotide features used

throughout this dissertation is developed.
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• Chapter 5 is a pivotal part of this dissertation presenting the body of results ob-

tained in this work. In section 5.2 the outcome of the exploratory analysis of the

features used in the TACOA classifier is given. Following, results from the ex-

ploratory classification using a novel implemented SVMs strategy are given. The

main contribution of this thesis, the TAxonomic COmposition Analysis method

–TACOA–, is presented in section 5.3, as well as the classification accuracy ob-

tained. Section 5.4 focuses on the comparison, in terms of accuracy, between

TACOA and the svm-based PhyloPyhtia. In each one of the above mentioned sec-

tions, the corresponding strategy, implementation, and evaluation of the method

is presented. Furthermore, in section 5.5 the influence of horizontally transfered

DNA chunks on the classification accuracy of a composition based classifier is as-

sessed using two case of study. The last section of this chapter, highlights some

results obtained as part of a collaboration made within other metagenomic related

projects. One of then relates to the analysis of short environmental fragments and

the other to the visualization of metagenomic data.

• Chapter 6 discusses particular aspects associated with the results obtained for the

TACOA classifier and its classification. The accuracy obtained in the compari-

son analysis between both classification approaches (TACOA and PhyloPyhtia) is

examined. This chapter also considers the manner in which a kernelized k-NN

strategy can give competitive results when compared to an svm-based approach.

A detailed discussion on an adequate interpretation of the accuracy measures used

in this work, in the context of multiclass classification, is also given. Finally, the

influence of horizontal transfer events on the classification performance of a com-

position based classifier is interpreted.

• Chapter 7 outlines the main contributions of this dissertation.

• Chapter 8 presents and discusses possible future directions of new aspects to be

explored in follow up research.



CHAPTER 2

Background

Overview

This chapter presents fundamental concepts that will be used throughout this dissertation.

First, the biological basics of the problem treated herein are stated. Second, statistical

techniques employed in this dissertation are introduced. The biological and computa-

tional motivations and goals founding this work are also provided.

2.1 Metagenomics

Metagenomics is a new field of research that has recently emerged from genomics. In

principle, genomics and metagenomics are devoted to deciphering the DNA sequence

or genetic code that serves as the blueprint of life for every living organism and many

viruses. In genomics, each genome from a single organism is cultured in a lab, sub-

sequently sequenced and finally analyzed. In contrast, in metagenomics the collective
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genomes of all organisms inhabiting a common environment are simultaneously se-

quenced and analyzed. Metagenomics offers researchers to change the genome-centric

paradigm, which focussed on sequencing single species at a time by directly sequencing

all genomes sampled from an environment. Therefore, the metagenomics approach al-

lows to bypass the isolation and cultivation procedures, which are estimated to capture

only 1% of the microbial and viruses diversity (Rappe and Giovannoni, 2003). In partic-

ular, this has been possible with the development of new sequencing techniques that do

no require a cultivation step before sequencing.

2.1.1 Sequencing a metagenome

Prior to sequencing, the genomic DNA from organisms collected in an environmental

sample, i.e., sample directly extracted form the environment, needs to be extracted.

Subsequently, the extracted DNA is sequenced, which is mainly carried out using the

whole genome shotgun (WGS) approach (Venter et al., 1998) (Figure 2.2). In the WGS

approach, the environmental DNA is directly fragmented into small pieces of variable

length, which are later sequenced (Figure 2.1).

An essential step in most sequencing protocols is to generate numerous copies of a

DNA fragment, i.e., DNA amplification, which can be undertaken in vivo or in vitro.

In vivo amplification uses the replicative machinery of a living system (e.g. bacteria)

to make copies of a DNA fragment. In the conventional Sanger method (Sanger et al.,

1997), this is achieved by cloning a DNA fragment into vectors, i.e., plasmids or fosmids

(step 3 in Figure 2.1). These cloning vectors provide the replicative ability that enables

the cloned DNA fragment to be copied in vivo using a host cell (commonly Escherichia

coli). In the Sanger method, in vitro amplification can also be applied using the poly-

merase chain reaction (PCR). Despite a few advantages (e.g. gain in speed or avoid

bias), the use of PCR has not completely substituted traditional cloning in the Sanger

procedure.

Following the amplification step, the DNA to be sequenced is put together with en-
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zymes that copy the DNA (i.e. DNA polymerase) and a mixture of standard and modi-

fied (fluorescent dye-labelled terminators) nucleotides (Sanger et al., 1997; Fleischmann

et al., 1995). The standard nucleotides allow to incorporate other contiguous nucleotides

while the modified ones terminate the copying process. As a result, a collection of many

prematurely terminated strands (all differing by one nucleotide) is obtained, which are

then separated and read using a device that separates the strands by length differing in

a single-base-pair. As fragments of each discrete length pass through a special device

(capillary electrophoresis instrument) the fluorescent labeled nucleotide can be detected

and interpreted by a computational component (Shendure et al., 2008; Lindsay, 2008).

The Sanger technique (Sanger et al., 1997; Fleischmann et al., 1995) produces se-

quenced DNA genomic fragments of high quality (99.5% accuracy) with a fragment

length ranging between 750 and 1,000 base pairs (bp) (Tyson et al., 2004). Despite the

high accuracy of the Sanger technique, amplification bias can be introduced by the use

of in vivo cloning. The amplification bias is due to the fact that not all DNA stretches

can be successfully amplified in a nonnative living system. Disruption of amplification

relates to toxic compounds or intrinsic physical properties, originating form the foreign

DNA fragment, that are not compatible with the bacterial host used (Hall, 2007).

In the so called ”next generation” technologies (e.g. 454 Life Sciencies or Illumina–

Solexa) the DNA is also extracted and fragmented (step 2 Figure in 2.1) as it would be

done for the traditional cloning into plasmids. Following, each DNA molecule is attached

to short specific oligonucleotide sequences called adapters, which are then immobilized

on a solid support (beads in 454 or a glass slides in Solexa). A key issue in this sequenc-

ing technology, is that only one DNA fragment is attached to one bead (454) or bridged

on a glass surface (Solexa) allowing the amplification of individual DNA molecules us-

ing PCR. Since the amplification of the DNA fragments is aided by beads or a planar

support, on which clusters of identical sequences are formed, it is regarded as in vitro

cloning (step 3 Figure in 2.1). Therefore, no bacterial cloning step is required to amplify

the genomic DNA. To decipher the DNA sequence, each base is interrogated as each flu-

orescently labeled nucleotide is incorporated by a polymerase, which is another key in-
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gredient of these new technologies. Moreover, this process is carried out simultaneously

enabling a higher degree of parallelization compared to the conventional capillarity se-

quencing, exceeding by far the sequencing capacity of the conventional Sanger method

(Shendure and Ji, 2008; Hudson, 2008).

In particular, the use of in vitro amplification, that circumvents amplification biases, in

the ”next generation” sequencing technologies makes it possible to have a better coverage

of the number of different DNA fragments that can be amplified. For the most popular

high-throughput technology developed (454 Life Sciencies), the average read length has

already improved from 100 bp to 400 bp, since it appeared in the market in 2005.

2.2 Computational analysis of metagenomic data

In metagenomic sequencing projects, a basic step following sequencing is the assem-

bly of raw reads into longer contigs to gain insight into their taxonomic distribution or

functional attributes of the source community inhabiting an specific environment. As-

sembly refers to the process of merging raw reads into contiguous stretches of DNA

called contigs. A consensus composite contig is produced based on the highest-quality

score (low probability of calling a nucleotide incorrectly at that position) or based on a

majority rule (the most frequently found nucleotide at each position). The assembly of

metagenomic data is a challenging task due to fluctuating read depth produced by the

unequal species distribution and the possible co-assembly of reads originating form dif-

ferent species (chimeras) or closely related ones. All these elements contribute to the

final quality of assembled contigs to be deposited in public databases. Reads showing

high sequence similarity because they stem from closely related species or from highly

conserved regions across distantly related species are prompt to be co-assembled.

According to Kunin et al. (2008), the performance of assembly programs on metage-

nomic data is highly variable. A reason for this is that all of them were designed to

assemble reads stemming from one genome and not from collective genomes (Mavro-

matis et al., 2007). A tool called AMOS has been developed to assemble metagenomic
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Figure 2.1: Steps carried out in the sequencing process of environmental DNA samples.
Steps 1 to 3 are common despite the sequencing technique used. The first common
step (1) is to extract the DNA from the organisms by means of lysis. Subsequently, all
extracted DNA molecules are mechanically sheared using the shotgun approach. The
cloning step (3) can be carried out either in vivo (Sanger) or in vitro (454 Life Sciencies
and Illumina - Solexa). In vivo cloning refers to the use of modified organisms into which
a foreign DNA fragment can be inserted and copied numerous times. Illumina - Solexa
and 454 Life Sciencies techniques perform the amplification step in vitro by means of
agarose beads (454 Life Sciencies) or bridge amplification on a glass surface device.
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data based on a comparative approach (Pop et al., 2004). The AMOS assembler uses

reference genomes meaning that only those genomes that have been sequenced can be

assembled.

Raw metagenomic data (i.e. unassembled reads) can also be analyzed using the so

called gene-centric approach by means of mapping each read to a functional category

without the need of assembly. Each read having a hit to a functional category is called

environmental gene tag (EGT) (Tringe and Rubin, 2005). The gene-centric approach is

focussed on interpreting the over and under-representation of genes in the studied com-

munity, thus treating the community as an aggregate and deliberately obviating the con-

tribution of individual species. The idea behind this reasoning is that in an environment,

genes with high frequencies confer beneficial traits to the members of the community

embracing them. Relative abundances of gene families permit to focus on prominent

functional differences or what the organisms are doing in the studied community. The

exploration of how these beneficial genes are interacting with each other can be per-

formed at a higher level, by looking at them as part of broader functional units such as

metabolic pathways (Tringe and Rubin, 2005).

To be able to draw hypotheses about the environment from which an environmen-

tal sample was taken, it would be desirable to assess the taxonomic information of co-

occurring organisms and their genes. The process of predicting the taxonomic affiliation

of reads or contigs in a metagenomic sample is called binning or classification. The pre-

diction of the taxonomic origin of reads or contigs is an important ingredient to support

three major different steps in the analysis of metagenomic data: (i) It facilitates the as-

sembly of highly diverse communities containing a small number of dominant species.

For example, a high complexity metagenome can be partitioned into groups or bins ac-

cording to broad phylogenetic relatedness, thereafter each bin is assembled separately.

(ii) To reconstruct the taxonomic composition of the studied sample, which helps to de-

rive important community and population-related parameters to understand natural liv-

ing systems. (iii) In linking interesting gene functions identified in metagenomic reads

or contigs to members of the community. For instance, an example often mentioned is
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the discovery of rhodopsin-like proteins in the bacterial linage. This finding has been

a breakthrough for understanding the flux of carbon and energy in the photic zone of

oceans worldwide, which is considered a relatively nutrient poor environment. In this

case, it took several additional experimental steps to be able to link the rhodopsin-like

gene to its phylogenetic source (Béjà et al., 2000).

For the analysis of metagenomic data, computational methods are particularly needed

due to the vast amount of information that must be processed. As it was mentioned be-

fore, metagenomic data is highly fragmented, thus imposing an additional challenge to

bioinformaticians in the process of making sense of the data. So far, large efforts have

been devoted to characterize the data in terms of genes, phylotypes, protein domains, and

metabolic pathways. The analysis of metagenomic data relates to an important bioin-

formatics branch: sequence analysis. Without prior modifications, existing traditional

computational methods for sequence analysis have difficulties when dealing with these

fragmented data. In such a scenario of lack of tailored tools, the contribution that novel

computational approaches can provide is of crucial importance.

From the perspective of sequence analysis, two major approaches exist to taxonom-

ically classify metagenomic data: (i) similarity–based methods focus on identifiying

genes, domains, conserved gene families using traditional sequence homology methods.

(ii) Compositional–based methods aiming to predict the source organism of environmen-

tal genomic fragments using intrinsic characteristics directly computed from the genomic

sequences.

2.2.1 Similarity–based analysis

Similarity–based analysis makes use of approaches traditionally employed in genomics

to search for homology. Similarity-based-methods depend on a sequence-comparison

with a reference set of genomic sequences. Similarity-based methods directly align

metagenomic sequences to known sequences in a database using the BLAST algorithm

(Altschul et al., 1997). Some tools have been developed to build searchable databases
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suited to annotate and analyze metagenomic data (Huson et al., 2007; Markowitz et al.,

2006). The use of BLAST homology searches has been successfully applied for the

taxonomic classification of genomic fragments originating from closely related organ-

isms already represented in databases (Kunin et al., 2008) but this may not be always

the case for organisms contained in an environmental sample. Although, these databases

provide an emerging infrastructure for the analysis of metagenomic data, their practical

use is limited given the large number of unknown proteins, and bias towards cultured

organisms.

Furthermore, similarity–based methods are also employed to characterize the func-

tional capabilities of a community. Mostly, homology searches are performed against

databases such as NCBI cluster of orthologous groups (COG’s), Kyoto Encyclopedia of

Genes and Genomes (KEGG), the Pfam protein family database to identify the genes

present in the community from which the sample was taken. Simple BLAST searches

allow to allocate ≈ 25-50% of known proteins in a metagenome (Raes et al., 2007).

However, this percentage raises to≈ 50-80% when more sophisticated methods are used

such as modeling protein domains and building profiles that are later used to to search

for protein modules in domain databases (Finn et al., 2008; Letunic et al., 2006; Mulder

et al., 2007).

2.2.2 Composition–based analysis

On the other hand, composition-based analysis relies on characteristics which can be

extracted directly from nucleotide sequences (e.g. oligonucleotide frequencies, GC-

content, codon usage). It has been suggested that sequence composition of genomes

reflects environmental constraints (Foerstner et al., 2005).

In absence of a phylogenetic anchor (e.g. rRNA genes) taxonomic classification of

genomic fragments can be achieved using nucleotide frequencies. Different cellular pro-

cesses such as codon usage, DNA base-stacking energy, DNA structural conformation or

DNA repair mechanisms can produce sequence composition signatures that are species–
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specific (Karlin et al., 1997; Campbell et al., 1999). This global statistical property of

sequence composition among genomes can be used to determine the taxonomic origin

of a genomic fragment (Sandberg et al., 2001; Teeling et al., 2004a; Abe et al., 2005;

McHardy et al., 2007; Chan et al., 2008) and to identify atypical genomic regions pro-

duced by horizontal gene transfer (HGT) events (Bohlin et al., 2008a; Zhang and Ya-Zhi,

2008). Nucleotide frequencies are a measure of occurrences of words of fixed size in a

genomic fragment. The word size routinely used ranges from 1 (GC content) and is not

longer than 8 nucleotides (Kunin et al., 2008). These words are known as di-, tri-, tetra-,

penta-, hexa-, septa- or octa-nucleotides. In general, longer words produce better taxo-

nomic resolution but due to the highly fragmented nature of metagenomic data their use

is not recommendable (Bohlin et al., 2008a). Longer words are not only computationally

expensive but they also need longer DNA fragments such that all possible word combi-

nations are sufficiently represented. Most commonly used word sizes producing good

results range between 3 and 6 nucleotides (Kunin et al., 2008).

2.3 Application of the metagenomic approach

Since decades, microbiologists have been intrigued with answering classical questions in

their field, such as ”Who is out there?” (microbial diversity) and ”What are they doing”

(metabolic or functional capacity) (Amann, 2000). With the advent of metagenomics,

this hope seems to have materialized. An example of the colossal genetic diversity is

given by the Global Ocean Sampling Expedition (Rusch et al., 2007), in which six mil-

lion proteins (nearly twice the number of proteins present in current public sequence

databases) are reported. Furthermore, 1,700 new protein families were discovered with

more than 20 representatives per family (Yooseph et al., 2007). These results reported

by Yooseph et al. (2007) are not surprising if they are taken in light of recent estimates of

microbial diversity, which suggest to be in the hundreds of millions to billions microbial

species globally (Hugenholtz and Tyson, 2008).

Despite its infancy, metagenomics has already contributed to broaden our understand-
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ing of microbial communities and their functional capabilities (Figure 2.2). For exam-

ple, Tyson and colleagues (Tyson et al., 2004) showed the possibility to reconstruct five

genomes (two of them non-culturable species) from the dominant organisms of the acid

mine drainage habitat at Iron Mountain, California (USA). Moreover, the authors could

bring together the metabolic capabilities of the community inhabiting this extremely

acidic effluent (pH between 0.5 and 0.9) and link them to specific strains. Data anal-

ysis from the archaea populations in the same acid mine drainage showed that genetic

recombination occurs at a much higher rate than previously predicted and is the pri-

mary force of evolution in these populations (Eppley et al., 2007). This example shows,

that relative simple communities can be explored in all their components using metage-

nomics. Moreover, metagenomics has astonished the scientific community with striking

discoveries, e.g., the presence of proteorhodopsin proteins (light-driven proton pumps)

in members of the bacterial domain. These types of proteins were previously thought

to be specific to archaeal species. Similarly, the study of the human and mouse gut mi-

crobiota has helped to shed light on the mechanisms underlying biomass conversion in

these species (Turnbaugh et al., 2006, 2007, 2008, 2009). This emerging area of research

holds the potential to provide a better understanding of our ecosystems and the impact of

microbes on human health.

The increase in popularity and impact of metagenomics has been facilitated not only

by the development of massive sequencing capacity, but also by the assistance of bioin-

formatics. High-throughput sequence technologies (454, Illumina and ABI) have the

capacity to deliver huge amounts of sequence more than 1Gb per run that is vastly more

than capillary-based technology can produce (Cardenas and Tiedje, 2008; Wold and My-

ers, 2008). This ever increasing bulk of data is posting new challenges to the field of

informatics (e.g. in issues such as data handling and storage) as well as to bioinformati-

cians who are urged to develop new tools and methods for the analysis of these data.
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Figure 2.2: Timeline of metagenomic projects and the variety of habitats sampled.

The different sequencing technologies mainly use in metagenomic projects are: Sanger

dye-terminator (black) and pyrosequencing (red). This information was extracted from

the metagenomic projects present at www.genomesonline.org until January 2009. The

Soils represent the microbiomes of four different geographical locations. The nine

biomes include samples from: stromatolites, fish gut, fish ponds, mosquito viriome, hu-

man lung viriome, chicken gut, marine viriome and saltern microbial. (Figure adapted

from Hugenholtz and Tyson, 2008)

Although computational methods to analyze the immense amount of metagenomics

data are in their infancy, these have already helped in giving some interesting glimpses

into our natural world. The amount of interpretable information, regarding taxonomic

composition or metabolic capacities, that can be extracted from a sequenced metagenome

highly depends on the complexity of the underlying community, being soil one of the

most complex communities studied up to date (Hugenholtz and Tyson, 2008).

Metagenomic sequences from low complexity communities can be used to recon-

struct nearly-complete composite microbial genome sequences (Tyson et al., 2004;

Garcı́a Martı́n et al., 2006). Variability in genomic sequences that contribute to the com-
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posite genome can be used to evaluate population heterogeneity within a given micro-

bial community (Tyson et al., 2004). For low complexity communities, in which deep

sequence-read coverage of individual populations is possible, metagenomics is able to

provide an exquisite unique insight into evolutionary processes shaping population of

natural microbial systems. An excellent example, refers to the detection of discrete ar-

chaeal sequence clusters in acid mine drainage biofilms, related to Ferroplasma types I

and II. Additionally, the reduced rate of genetic exchange seen between recently diverged

Ferroplasma types I and II relative to the high rates within each population provides sup-

port for the concept that the breakdown of homologous recombination in these archaea

serves as a species boundary (Eppley et al., 2007). The authors suggested sympatric

speciation (i.e. speciation without a physical barrier) as a possible mechanism to ex-

plain these observations (Eppley et al., 2007). A highly debated issue in evolutionary

theory has been sympatric evolution due to the limited amount of evidence. Although

some studies have revealed its existence, these are mostly related to large eukaryotes (e.g.

mammals, reptile, fish) (Niemiller et al., 2008; Lodé, 2001; Barluenga et al., 2006). With

the advent of metagenomics, evidence for sympatric speciation in bacteria and archaea

is emerging as is the case reported by Eppley et al. (2007) in which the archaeal popula-

tions showed a limited genetic exchange despite inhabiting the same biofilm sampled in

an acid mine drainage. For microorganisms, this type of evidence has been missing par-

tially due to their small size, which makes it difficult to differentiate phenotypes among

isolated populations. In addition, the identification of potential geographical barriers that

prevent gene flow and migrations among microorganisms have been particularly difficult

(Whitaker, 2006; Hanage et al., 2006).

Perhaps one of the most important contribution that metagenomics can provide, relates

to the highly disputed issue of microbial species definition. Speciation arises either via

genetic divergence of coexisting populations or via a geographical barrier that separates

populations into discontinuous lineages over time. With the high-throughput techniques

coming into play, it is now possible to unveil such patterns of individual-level variation in

microorganisms (Whitaker, 2006). Metagenomic analysis can ultimately offer a culture
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independent way of addressing the number of genome variants present in a community

which has been shown to greatly exceed the number of 16s rRNA phylotypes. Even

close relative microbial species sharing ≥97% of sequence identity of their 16srRNA

can display a surprisingly high amount of variability in their proteomes. For example,

a survey of 32 strains belonging to Escherichia coli and Shigella (Willenbrock et al.,

2007) as well as the analysis of six strains of Streptococcus agalactiae (Tettelin et al.,

2005) revealed a large set of ”disposable” genes found in a subset of genomes of each

”species”. Such findings are driving microbiologist and evolutionary biologist to ”re-

think” the definition of ”species” and the underlying mechanism that originates it. A

more unifying concept of species might be delineated not only by marker genes, e.g. 16s

rRNA, but also include the functions encoded by the set or core-of-genes present in the

”pan-genome” representing the sum of all genes found in 16s rRNA-related phylotypes.

Despite its complications, analysis of metagenomic sequence data from complex com-

munities is possible by means of associating metabolic processes to members of the

community. For example, Turnbaugh et al. (2006, 2008, 2009); Gill et al. (2006) and

Kurokawa et al. (2007) have elucidated connections between the biomass conversion

and the underlying microbiome in a variety of natural bioreactors such as the gut of

mice and humans. In a recent work, Turnbaugh et al. (2009) investigated the gut mi-

crobiomes of adult monozygotic and dizygotic twin pairs. The authors could identify a

”core microbiome” at the gene level, rather than at the organismal lineage. Turnbaugh

et al. (2009) concluded that a diversity of organismal assemblages can still yield a core

microbiome at a functional level, and that deviations from this core are associated with

different physiological states such as obese or lean.

2.4 Machine learning for classification

The task of predicting the taxonomic origin of a DNA fragment can be regarded as a mul-

ticlass classification problem. Given a DNA fragment, the goal is to decide from which

of the multiple possible taxonomic classes (e.g. Firmicutes, Chlamydia, Actinobacte-
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ria, etc.) the fragment stems. This task can be addressed using statistical classification

techniques from the field of machine learning.

In general, the goal of statistical classification is to categorize individual items x from

an input space X into groups based on quantitative information on one or more attributes

inherent to the items. Statistical classification can be divided into two major approaches:

supervised and unsupervised (Hastie et al., 2002; Duda et al., 2001; Tarca et al., 2007).

In supervised classification, a classification function is learned from a so called training

set of items with known class labels. Formally, let Y be the set of class labels and X

the input space. Given a training set {x j,y j}, 1 ≤ j ≤ N of items x j ∈ X with known

class label y j ∈ Y , the goal in supervised classification is to learn a classification function

f : X → Y that assigns a class label y ∈ Y to each item x j from the training set. This

process is called training of the classifier. Subsequently, the trained classifier, i.e., the

learned classification function is applied to classify items with unknown class affiliation.

In this process, a class label y ∈ Y is assigned to new items x ∈ X , which in the following

are called test items. Let ft : X→ Y be the classification function that assigns the correct

class label y ∈ Y to each x ∈ X . A main goal of supervised classification is to learn a

classification function f based on the training set that minimizes the classification error,

this is commonly measured by the mean-squared error:

MSE( f ) = ∑
x∈X

( f (x)− ft(x))2 (2.1)

In the context of this work, a training set is built from DNA fragments (x) of known

taxonomic origin (y). During training, a classifier is trained to discriminate between

fragments from different taxonomic classes. In other words, a classification function is

learned that assigns the respective taxonomic class to each fragment of the training set.

Subsequently, the learned classifier could be employed to predict the taxonomic class of

new metagenomic DNA fragments of unknown origin.

If a learned classification function is able to nicely reproduce the class labels of the
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training set it is called well fit to the training data. More formally, a well fit classifier

has a low mean-squared error for the training set. The ability of a classifier to correctly

predict the class labels of so far unseen items, which were not contained in the training

set is called generalization. A non trivial task in machine learning is to find a good trade-

off between a classifier that is well fit to the training data and at the same time has a

good generalization ability. For example, if a training set contains outliers (e.g. items

with wrong class labels) a complex, perfectly fitted classifier might achieve only a poor

generalization ability. Such a classifier is then called overfitted or overtrained.

A similar concept in machine learning theory is the bias-variance trade-off. In brief,

the bias measures how well a classifier is fit to the training data, i.e., a well fit classifier

has a low bias. On the other hand, the variance measures how much the learned clas-

sification function depends on the selected training set, i.e., how consistent the learned

function is for different training sets. The mean-squared error of a classifier can be ex-

pressed as the sum of the bias and variance (Hastie et al., 2002) and hence an optimal

classifier should have both a low variance and bias. A complex classifier (e.g. many

parameters or high power) might have a low bias but a high variance and hence a poor

generalization ability. On the other hand, a too simple classifier may have a low variance

but a high bias.

Unsupervised classification methods do not require labeled training data but are able

to directly group individual items without a prior knowledge of existing classes. These

methods are used to identify patterns in the input data or how the data is organized (e.g.

PCA, ICA or SOM). For instance, all metagenomic DNA fragments with a high pairwise

sequence identity could be grouped together. The resulting groups would give insights

into the diversity and structure of the underlying microbial community.

If the boundaries (called decision boundaries) between the learned classes in the input

space are linear, a classifier is called linear, otherwise non-linear.
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2.4.1 k -Nearest Neighbor

The k-Nearest Neighbor (k-NN) approach was developed by Cover and Hart (1967) and

is one of the oldest and simplest methods for statistical classification. A k-Nearest Neigh-

bor classifier is a case-based reasoning strategy, which accesses training items at the same

time when a new case needs to be classified. Thus, this method does not require an ex-

plicit training step. A new item is classified by a majority vote of its neighbors, with

the item being assigned to the most common class among its k nearest neighbors. In

this approach, three key elements can be identified: First, the need of a set of labeled

training items, e.g. DNA fragments. Second, a distance function to compute the distance

between the labeled items and the test item. Third, the number of k nearest neighbors to

be considered in the classification step. Formally, let

(x j,y j)with x j ∈ X ,y j ∈ Y, j = 1, . . . ,N (2.2)

be the training set (refset), where y j denotes the class membership of each training item

x j. The computation of the nearest neighbors is based on a distance function (commonly

Euclidean distance) d(x,x j).

Let Nk(x) denote the k-neighborhood of a test item x, which is defined as the set of k

training items x j with the smallest distance to x. Then x is classified into the class y∗ with

y∗ = argmax y∈Y |{x j|x j ∈ Nk(x) and y j = y}| (2.3)

The best choice of the parameter k depends upon the classification problem. In general,

larger values of k will increase the bias and reduce the variance of the classifier and vice

versa. Small values of k result in decision boundaries with higher variance that well-fit

the training set, while large values achieve smooth and stable decision boundaries that

avoid overfitting and are more robust (Hastie et al., 2002).
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The k-NN algorithm is easy to understand, implement and despite its simplicity, it

performs well in many classification tasks. Furthermore, k-NN based methods have pro-

vided competitive results in a large number of classification problems (Berrar et al.,

2006; Saha and Heber, 2006; Yao and Ruzzo, 2006; Zhu et al., 2007). In particluar, if

the classification problem has a multi-class nature. It has also been shown that the error

rate of the k-NN algorithm is upper-bounded above by twice the Bayes error, which is the

minimal achievable error rate given the distribution of the data (Cover and Hart, 1967).

The k-NN is a non-parametric estimation approach, i.e., it does not assume an underlying

distribution of the data (Hastie et al., 2002; Duda et al., 2001). The k-NN has the advan-

tage to approximate the optimal classifier if the training set is large enough, however, it

runs into problems with high dimensional data (Hastie et al., 2002; Duda et al., 2001).

2.4.2 Kernel functions

Kernel functions k(x,x′) are similarity measures k : X ×X → R between two items x

and x′ ∈ X that can be regarded as computing the dot-product of x and x’ in a higher

dimensional feature space F :

k(x,x′) =< φ(x),φ(x′) >, (2.4)

where φ : X → F is a mapping function that maps each item of X into F (Boser et al.,

1992; Schoenberg, 1938). A key concept of kernel functions is that they can time effi-

ciently compute the dot product in the feature space without explicitly mapping the data

into that space.

Any learning algorithm that accesses the input data only via dot products can rely on

the implicit mapping offered by kernel functions. This is achieved by simply replacing

the dot product < x,x′ > by a kernel function k(x,x′), which is called the kernel trick.

In this manner, learning methods can easily be adapted to different problems without

changing the underlying algorithm.
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Input space (X) Feature space (F)

Figure 2.3: Graphic representation of the mapping of kernel functions.
Two classes of objects are depicted (circles and diamonds). On the left the data points for
each class are represented in the input space X . After mapping into a higher dimensional
feature space via the mapping function φ the items become linearly separable (on the
right). By learning a linear decision boundary in the feature space, a non-linear decision
boundary can be realized in the original input space (dotted lines).

In the context of statistical classification, the kernel trick can be applied to transform a

linear classifier into a non-linear one. Assume a given classification problem that is not

linear-separable in the input space X (left side of Figure 2.3). Frequently, a non-linear

mapping function φ : X → F exists, such that the data becomes linearly separable in F

Figure 2.3). Hence, if the input data is not linearly separable in the input space, a linear

classifier can be employed that makes use of a non-linear kernel function k(x,x′) (i.e. the

respective φ of k(x,x′) is non-linear). Then by learning a linear decision function in the

respective feature space defined by k(x,x′), a non-linear classifier can be achieved in the

original input space (Figure 2.3).

A kernel based classifier contains two modules: (i) a module that performs the im-

plicit mapping into the feature space via a kernel function and (ii) a linear classifier to

discriminate between classes. In this modular context, the feature space can be redefined

by changing the kernel without modifying the classification algorithm itself.

The most commonly used kernel function in real world application is the

Gaussian kernel. In the following, the Gaussian kernel (Kλ) will be presented in detail

since it is used within this dissertation. The Gaussian kernel is defined as:
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Kλ(x,x′) = e

(
− d(x,x′)2

2λ

)
, (2.5)

where d is the Euclidean distance and λ > 0 is a parameter that controls the width of

the Gaussian function. The λ parameter relates directly to the bias-variance trade-off of a

kernel based classifier. Small values of λ (narrow width of the Gaussian) result in a high

variance and a low bias. Conversely, large values of λ (wide width of the Gaussian) lead

to a low variance but a high bias. The Gaussian kernel (Equation 2.5) is a decreasing

function of the Euclidean distance between points, implying that the larger the kernel

Kλ(x,x′), the closer the points x and x′ in X . On the other hand, the Gaussian kernel

uses weights that decrease smoothly to zero with increasing distance from the item x to

be classified or target point. As result, the contribution of items close to the target point

is bigger than those located far away. This property is beneficial if the training data is

sparsely distributed in the input space.

The selection of an appropriate kernel function for a particular problem is in itself an

area of research. Unfortunately, no recipe of how to choose an optimal kernel exists and

the choice is usually made based on the trial and error approach. That is, several kernel

functions are selected, subsequently the accuracy of the resulting classifier is evaluated.

Finally, the kernel function that results in the highest accuracy for the analyzed data is

selected. Custom based kernel functions can be developed to incorporate, for example,

prior knowledge about the data or to adapt a learning algorithm to different types of

input data (e.g. DNA fragments). Although the selection of an optimal kernel function

is a demanding task, the popularity of kernel methods in the area of pattern analysis is

flourishing.

2.4.3 Support Vector Machine

The Support Vector Machine (SVM) algorithm is a supervised learning method that was

initially proposed by Boser et al. (1992) and later exhaustively studied by Vapnik (1995,



26 Chapter 2. Background

1998). The SVM algorithm was developed as a binary (two class) classifier and has

a strong mathematical foundation and high generalization abilities. The usage of the

SVM algorithm has become very popular in recent years. For instance, SVMs have been

successfully applied for handwritten digit recognition and also to a variety of biological

applications (e.g. gene prediction).

Four key concepts of SVMs can be identified: (i) separating hyperplane, (ii) maximum

margin hyperplane, (iii) soft margin and (iv) kernel function.

The separating hyperplane is a hyperplane which separates the items of two classes

(right side of Figure 2.3). An infinite number of hyperplanes separating the items of

two classes exists but SVMs select the maximum margin hyperplane, which optimally

separates two classes, that is, it maximizes the distance between the hyperplane and the

nearest data point of each class. By selecting the maximum margin hyperplane, SVMs

achieve high generalization abilities for so far unseen items.

In real case scenario outliers may exist in the training set, or items from one class

may even be embedded among items of the other class. Then a soft margin SVM allows

for misclassifications of some training items avoiding overfitting, thus, improving the

generalization ability.

In cases where the input data is not linearly separable in input space, SVMs can be

combined with non-linear kernel functions. Then by learning an optimal separating hy-

perplane in the respective feature space, a non-linear classifier can be realized in the

original input space (Noble, 2005) (Figure 2.3).

For simplicity, in the following SVMs are introduced in more detail for the case in

which the input space X equals RM. Considering a set of training vectors x j (1≤ j ≤ N)

with known class labels y j ∈ {+1,−1}. Further, let H be a vector space in which the

dot product < x,x′ > is defined. In the context of SVMs H is called feature space into

which the input items are implicitly mapped using kernel functions. Furthermore, the

separating hyperplane in H is given by a vector w∈H and a scalar b∈R and is defined

as:



2.4. Machine learning for classification 27

{x ∈H |< w,x > + b = 0} (2.6)

The separating hyperplane that is learned during training separates the vectors of the

two training sets. The vector w that defines the separating hyperplane can be expressed

as a linear combination of weighted training vectors:

w =
N

∑
j=1

α jy jxj, (2.7)

where α j are weights that are assigned to each xj during the training phase. The subset

of training items xj with α j 6= 0 are called support vectors (Chen et al., 2005).

The unique maximum margin hyperplane, which maximizes the distance between the

hyperplane and the nearest data point of each class, allows for improvement in the clas-

sification accuracy of new test items with unknown class labels. Given a learned hy-

perplane, a test item x is classified depending on the side of the hyperplane where it is

located. This is done using the following decision function:

f (x) = sgn(< w,x > + b) = sgn(
N

∑
j=1

α jy j < x,xj > + b). (2.8)

The item x is classified into the class with the +1 label if f (x) is above 0, otherwise

into class with the -1 label. Note that during classification only the support vectors are

taken into account (Chen et al., 2005; Ben-Hur et al., 2008).

In practice, a separating hyperplane often does not exist if the distributions of the

training items from the two classes overlap. As mentioned above, the solution to this

problem is to allow the misclassification of some of training items. For this purpose,

the key concept of soft margin is introduced (Figure 2.4). Soft margin hyperplanes are

accomplished by imposing upper bounds to the weights α j learned during training by a

constant C (Chen et al., 2005; Ben-Hur et al., 2008). The constant C permits to control

the bias and variance of the SVM classifier. If the value of C is small, outlier items are
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Figure 2.4: Representation of a hard and soft margin SVM.
A hyperplane separates (red dotted line) two classes of items (diamonds and circles). A
hard margin (a) does not allow misclassifications of outliers. Compared to a hard margin,
a soft margin (b) is wider allowing that outlier items to be misclassified.

misclassified and the margin of the hyperplane w.r.t. the remaining correctly classified

vectors increases. In this case, the resulting classifier has a high bias and low variance.

Conversely, a large value of C assigns a large penalty to ”errors”, thus allowing only a

low number of misclassifications. Such a classifier will have a low bias but high variance.

An SVM classifier using a finite value of the parameter C is called a soft margin SVM

classifier (Hastie et al., 2002).

As previously mentioned, in cases where the data set is not linearly separable in the

input space, an appropriate transformation of the data into a higher dimensional feature

space H may enable a linear separation in H . In the context of SVMs, this can implic-

itly be achieved by combining the SVM with an adequate kernel function (Noble, 2005;

Chen et al., 2005; Ben-Hur et al., 2008). This transformation is performed implicitly by

replacing the dot product < x,xj > in Equation 2.8 by a kernel function k(x,xj). Non-

linear kernel functions can be effectively used by an SVM to learn complex and non-

linear decision functions in the original input space. Although kernel functions greatly

help in complicated classification problems, the choice of the optimal kernel is trouble-

some. An adequate kernel function can be determined for example by trying different

standard kernel functions and subsequently asessing the classification accuracy of the

resulting classifier using cross-validation (see section 2.4.1) (Noble, 2005; Chen et al.,
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2005; Ben-Hur et al., 2008).

Although SVMs were originally developed for binary classification problems, several

extensions of SVMs habe been devised for multiclass classification problems (Vapnik,

1998; Crammer and Singer, 2002). Most methods for multiclass SVM decompose the

data set into several binary problems. Two main approaches have been used for the

extension to a multiclass SVM: (i) ”one-against-one” and (ii) ”one-against-all”. The

”one-against-one” strategy trains a seperate binary SVM for each combination of two

classes. In consequence, for a k-class problem, k(k−1)/2 SVMs are trained. In the clas-

sification phase, a voting scheme is used: a test item x is classified to the class obtaining

the maximum number of votes. On the other hand, in the ”one-against-all” approach a

binary SVM is trained for each class to separate vectors of that class from vectors of all

remaining classes (Hastie et al., 2002). This strategy builds as many k binary SVMs as

there are different classes. The output label of the multiclass classifier for new items is

given by the class whose associated classification score is maximal (Hastie et al., 2002).

2.4.4 Self Organizing Maps

Self Organizing Maps (SOMs) are based on competitive learning in which units or arti-

ficial neurons compete to represent a pattern of the input space. This representation is

realized on a one-, two- or multi-dimensional map or topological map, which is prede-

fined and organized in a grid (Figure 2.5) (Hastie et al., 2002). Self organizing maps are

a unique kind of artificial neural networks because they employ a neighborhood function

to preserve topological attributes of the input space, i.e., the relative distances of items

in input space (Kohonen, 1982). The main task of the SOM algorithm is to find a way to

distribute the data on the grid while preserving topological attributes of the input space,

this is achieved in feature space by modifying the neurons while the data items remain

fixed (Kohonen, 1982). In consequence, SOMs can be applied as a visualization or a

clustering tool of high-dimensional data, e.g., by mapping multidimensional data onto a

two dimensional map. SOMs can be extended to work in hyperbolic space by applying
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(a) (b) (c)

Figure 2.5: Training of a Self-Organizing map (SOM).
Each unit or prototype is represented by a blue circle. (a) Initially, the SOM starts with
a rectangular grid. During the learning process the weight vectors approximate the dis-
tribution of the data items while keeping their grid structure (b). At the of the training,
each unit canbe regarded as a prototype vector of a small region of the input space (c).
The map itself is two dimensional but the units in the map have the same number of
dimensions as the feature space.

a tree-like grid in that space (Ontrup and Ritter, 2006). Some advantages of hyperbolic

SOMs is that they can model hierarchically organized data and allow a very fast training

of the algorithm (Ontrup and Ritter, 2006).

A key notion of the SOM algorithm are the units, which can adapt to different regions

of the input space. Theoretically, units can be arranged on a one-, two-, or multidimen-

sional grid and they have lateral connections to neighboring units. However in practice,

two-dimensional grids are used in visualization applications. The grid can have a rectan-

gular form but other forms are also used (e.g. hexagonal). The SOM algorithm employes

a neighborhood function η, whose value η(ui,um) represents the strength of the coupling

between unit ui and unit um during the training process. A simple choice is defining

η(ui,um) = 1 for all units ui in a neighborhood of radius r of unit um and η(ui,um) = 0

for all other units (Rojas, 1996).

Let S = x j be the data set of items (in the context of SOMs called observations) in an

n-dimensional input space X . Furthermore, the units are arranged in a two dimensional

rectangular grid of Z computing units. Each unit ui, 1 ≤ i ≤ Z is associated with an n-

dimensional weight vector vi. The learning of a SOM proceeds in four steps and over a

preset number of iterations:



2.4. Machine learning for classification 31

Initialization: The n-dimensional weight vectors v1,v2,v3, . . . ,vZ of the Z

computing units are randomly selected. An initial radius r, a learning rate ρ,

and a neighborhood η are chosen.

step 1:

Randomly select an input vector ξ ∈ S

step 2:

Select the unit um with minimal distance between vm and ξ, m = 1, . . . ,Z

step 3:

The weight vectors are updated using the update rule and neighborhood function

vi← vi +ρ η (ui,um)(ξ−vi), for i = 1 . . . ,Z

step 4:

Stop if the maximum number of iterations has been reached; otherwise continue

with step 1. Notably, the learning rate ρ is linearly reduced with each iteration.

In each iteration, the weight vectors um and the units in the neighborhood of um are

attracted in the direction of the observations ξ. The neighborhood function is larger for

units that are closely together (especially the same unit) and decreases as the distance

between the two units increases. It is important to note that neighbourhood refers to

the proximity of the units on the grid not how close their weight vectors are in feature

space. The final topological map is deformed (compared to the original) to adapt to

input data (see sketch (a) and (b) in Figure 2.5) and neighboring units remain together

after adaptation (Rojas, 1996).
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2.5 Methods for evaluating the classification accuracy

An essential issue in machine learning relates to judge generalization capability or its

ability of correctly predicting unseen examples of the learning method. The degree of

generalization capability is evaluated by the ”closeness” between the learned function

and the true function, measure by the generalization error. In machine learning prob-

lems, a good model or classifier is one that minimizes the generalization error (produces

good predictions) and not the training error on a particular data set. Assessment of the

generalization error can be achieved by employing analytical methods that seek for the

model having minimal generalization error. On the other hand, empirical methods based

on efficient sample re-use are also applied, e.g., cross-validation and bootstrap (Hastie

et al., 2002). Among all existing empirical methods, cross-validation is one of the most

simple and widely used method for estimating the generalization error.

2.5.1 Leave one out cross validation strategy

In this dissertation the Leave-One-Out Cross-validation (LOOC) strategy is employed,

which is a special case from the K-fold cross-validation. The idea behind the K-fold

cross-validation is to divide the training data into K-parts, then to use part (K-1) of the

available data to fit the model, and a different part (K-th) to test it. Subsequently, the

average error across all K trials is quantified. Ideally, the data set should be partitioned

into K parts of equal size. The case in which K equals the size of the data set is known

as leave-one-out cross-validation. In the special case of LOOC, a single item is removed

from the training set and the classifier is trained with the remaining training data. Subse-

quently, in each step each single item is classified and the generalization error measured.

2.5.2 Measurements for assessing the classification accuracy

A crucial step for evaluating the predictions of a classifier relates to quantifying misclas-

sifications or the times a classifier wrongly predicts the class of an example. The intuition
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behind evaluating the classification accuracy is to compare the predicted class of an item

with its known class label. The task of predicting the taxonomic origin of environmental

fragments is in essence a multi-class classification problem because several taxonomic

classes exist into which a genomic fragment can be assigned.

The binary classification version of sensitivity and specificity proposed by Baldi et al.

(2000) was employed and adapted it to a multi-class classification problem. The classifi-

cation accuracy was evaluated for each taxonomic class. Let the i-th class be denoted as

class i. Further, let Zi be the total number of items from class i, the true positives (T Pi)

the number of items correctly assigned to class i, the false positives (FPi) the number of

items from any class j 6= i that is wrongly assigned to i. The false negative rate (FNi)

is defined as the number of items from class i that is erroneously assigned to any other

class j 6= i. For an item whose class label cannot be inferred, the algorithm classifies it

as ”unclassified”. The unclassified items (Ui) are the number of items from class i that

cannot be assigned to any known class, so Zi = T Pi +FNi +Ui.

The sensitivity (Sni) for class i is defined as the percentage of items from class i cor-

rectly classified and it is computed by:

Sni =
T Pi

Zi
(2.9)

The reliability (expressed in percentage) of the predictions made by the classifier for

class i is denoted as specificity (Spi) and it is measured using the following equation:

Spi =
T Pi

T Pi +FPi
(2.10)

Note that the specificity for class i is undefined for those cases when the terms T Pi

and FPi are both zero. Herein, the average specificity is computed over those classes on

which a specificity can be mathematically defined.
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We make use of the false negative rate (FNri) to measure the percentage of items from

class i that is misclassified into any class j 6= i, which is given by:

FNri =
FNi

Zi
(2.11)
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Existing methods for the taxonomic

classification of environmental genomic

fragments

Overview

This chapter will introduce existing methods developed to address the problem of taxo-

nomically classifying environmental DNA fragments. From a machine learning point of

view composition- and similarity-based methods can be further divided into supervised

and unsupervised. In the context of this work, supervised methods require a reference

set of genomic sequences with known taxonomic origin. Supervised composition-based

methods employ the reference set to learn sequence characteristics of each taxonomic

class during a training phase. Methods such as a Bayesian classifier (Sandberg et al.,
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2001) and PhyloPythia (McHardy et al., 2007) fall into the supervised composition-

based category.

On the other hand, unsupervised approaches do not depend on reference sequences

for classification, instead characteristics are directly learned from the data set being ana-

lyzed. In the context of metagenomics, unsupervised methods are used to group genomic

sequences such that all sequences originating from the same taxon are grouped into one

cluster. Several unsupervised methods have been developed for the analysis of metage-

nomic data. TETRA (Teeling et al., 2004a,b) was a pioneering study, followed by the

work of Abe et al. (2005, 2006) who employed a self-organizing map (SOM). In this

chapter, all existing methods for the taxonomic classification of environmental genomic

fragments will be discussed in more detail, as well as important results drawn.

3.1 Bayesian classifier

The work of Sandberg et al. (2001) was the first to explore the feasibility to use oligonu-

cleotide frequencies to classify DNA fragments. However, it was casted on the challenge

of identifying the taxonomic origin of horizontally transfered regions and not for metage-

nomic data. The authors analyzed DNA fragments of six different lengths: 35, 60, 100,

200, 400, and 1000 bp, using nine different oligonucleotide lengths (between 1 and 9 nu-

cleotides). The classifier developed by the authors is based on Bayesian statistics, which

relates the conditional and marginal probabilities of two random events. That is, given

that event A occurred, how likely (P) is event B to occur, P(B | A) (Sandberg et al., 2001;

Langley et al., 1992). In the context of taxonomic classification of genomic sequences,

the probability of finding a sequence, S, in a genome, G, can be use to calculate the prob-

ability of a sequence to belong to a certain genome, P(G | S) (Sandberg et al., 2001).

Using a set of 25 different organism, including bacteria and archaea, the authors taxo-

nomically classified DNA fragments as shorts as 400 bp with 85% accuracy (correctly

classified). Sandberg et al. (2001) showed that classification accuracy increases when

longer oligonucleotide length were analyzed, the highest accuracy obtained was using
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oligonucleotides of size 8 and 9. Furthermore, the authors speculate that with some im-

provements their proposed naive Bayesian classifier could be employed to analyze the

microbial species composition from environmental samples (Sandberg et al., 2001).

3.2 TETRA

A pioneering study to investigate the problem of taxonomic classification of genomic

fragments was carried out by Teeling et al. (2004a). Tetra-oligonucleotides were em-

ployed to recover the phylogenetic signal of genomic fragments of length ≈ 40 Kbp.

Correlations, i.e. z-scores, were used to measure the divergence between observed and

expected oligonucleotide frequencies. To predict the taxonomic origin of a given DNA

fragment, Pearson correlation coefficients were employed. The authors evaluated a data

set of 118 different genomes including archaea and bacteria, from which a synthetic

fosmid-size (≈ 40 Kbp) library was generated. In addition, fosmid inserts for two real

fosmid libraries from methane-rich habitats were analyzed.

The TETRA method provided reliable assignments (with correlation coefficients close

to 1) when closely related species (at the taxonomic level of species) exist in the reference

set. However, these correlation coefficients deteriorate when higher taxonomic levels are

considered (e.g. order, class, phylum, and superkingdom). A main limitation of this

approach is that it is not suited for large metagenomic data set because the all-versus-all

pairwise matrix of all test fragments becomes quickly intractable (McHardy et al., 2007).

Another limitation is that the minimal genomic fragment length required to get reliable

results with this method is 20Kbp (Teeling et al., 2004b).

3.3 Self Organizing Maps

Abe and coworkers (Abe et al., 2005, 2006), showed the feasibility to accurately clas-

sify environmental genomic fragments with minimal length of 5Kbp in an unsupervised

manner using a self-organizing map (SOM). The authors also classified genomic frag-
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ments of length 1 Kbp but with low accuracy (69%). The SOM method (Abe et al.,

2005) is able to recognize in a DNA fragment key combinations of short oligonucleotide

frequencies that are the signature of each genome. By using these signatures the SOM

separated DNA fragments into species-specific clusters without prior information about

the species (Abe et al., 2005). In this work, several SOMs were trained using oligonu-

cleotides of length 2, 3, and 4. To evaluate the SOM based classifier, 81 completely

sequenced genomes were selected, in this data set only one representative per species

was chosen. The highest clustering power was achieved when the classifier was trained

using 5 Kbp long sequences and tetra-nucleotide frequencies.

3.4 PhyloPythia

PhyloPythia, a supervised composition-based method, uses over-represented oligonu-

cleotide patterns as features to train a hierarchical collection of Support Vector Machines

(SVMs). The trained SVMs are subsequently used to predict the taxonomic origin of

genomic fragments as short as 1 Kbp (McHardy et al., 2007). PhyloPythia also makes

use of the genomic signatures, with the exception that the evaluated oligonucleotides of

a fixed length are not always literal strings of nucleotides. In more detail, the oligonu-

cleotide patterns used in this framework are regular expressions, which may contained

”gaps” or ”wild cards”, that is, nucleotides can be ”ignored” at certain positions in the

analyzed oligonucleotide of a fixed length.

Due to the multiclass nature of the taxonomic classification problem, PhyloPythia uses

a hierarchical collection of SVMs. In this framework the ”all-versus-all” technique is em-

ployed to extend the SVM to multiclass using a total of k(k− 1)/2 distinct binary clas-

sifiers, where N is the number of classes at a given taxonomic rank. At every taxonomic

rank, several SVMs are used, one for each pair of taxonomic classes. The taxonomic

class prediction is made based on a majority vote scheme and in case of a tie the assign-

ment to a class is made at random. Additionally, in a post processing step the prediction

is confirmed or rejected using a binary ”one-versus-all” SVM (McHardy et al., 2007).
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PhyloPythia was evaluated using a total of 340 completely sequenced genomes from

archaea, bacteria and eukarya. At each taxonomic level, severeal classifiers are em-

ployed, each one trained on genomic fragments of certain length. The different DNA

fragment lengths used to train the classifiers were: 1, 3, 5, 10, 15, and 50 Kbp. During

the evaluation of this framework, the authors tested two different kernel functions (linear

and Gaussian) and showed that the Gaussian kernel is better suited for the taxonomic

classification problem (McHardy et al., 2007).

Support Vector Machines demonstrated to achieve a high classification accuracy for

fragments of length ≥ 3 Kbp and moderate for 1 Kbp long fragments. However, the

complete collection of classifiers built into the framework of PhyloPythia need to be

retrained (a computationally expensive procedure) when newly sequenced genomes are

added to the training set.
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Data

Overview

This chapter describes the hierarchical biological nature of the data used in this work.

In addition, a description of the data sets employed in the exploration analysis is given.

The data set used in the comparison of TACOA and PhyloPhytia is also introduced.

Finally, an explanation on how the data is represented as feature vectors, which are used

throughout this dissertation, is provided.
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4.1 Data sets

4.1.1 Data sets used in the exploratory analysis

For feature exploration

The feature exploration was carried out using a data set comprising 350 genomes down-

loaded from the SEED database (Overbeek et al., 2005). The selected genomes represent

2 Superkingdoms, 11 Phyla, 20 Classes, 41 Orders, and 59 Genera. The taxonomic in-

formation for this data set was collected from the taxonomy database located at the US

National Center for Biotechnology Information (NCBI) (Wheeler et al., 2002). Some of

the genomes downloaded from SEED were unfinished and present as several contigs. In

this case, all contigs of each genome were arbitrarily joined together. The exploration of

the features used in the different classifiers was carried out on the whole genomes of the

350 genomes data set named in the following 350-genomes.

For the exploratory classification experiment

In the course of the exploratory classification experiment a novel multiclass SVM was

developed and its classification accuracy was tested by using two benchmark data sets.

Namely, the iris and wine data sets from the UCI machine learning repository (Asuncion

and Newman, 2007).

Iris data set This data set contains information regarding different types of Iris flowers.

It contains 50 examples from each of the three type of flowers (Setosa, Versicolor

and Virginica). The data set has 4 numerical features: sepal length,sepal width,

petal length, and petal width. One class is linearly separable from the other two

and the remaining two have some overlap.

Wine recognition data set This dataset contains instances of three categories of wine

derived from a chemical analysis of wines grown in a region in Italy but derived

from three different cultivars. The datset contains the chemical analysis of these
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wines in the form of 13 numerical attributes, 59 instances of wine with the fol-

lowing class distribution class 1: 59 examples class 2: 71 examples class 3: 48

examples.

The complete set of 350 genomes previously used for the feature exploration was

employed to examine the classification accuracy of an SVM classifier using the selected

features. To assess the classification accuracy of the novel devised multiclass SVM four

different data set were generated. The use of these four different data sets will allow to

examine the influence of the number of contained classes in the performance. Each data

set contains 6, 12, 18 and 29 different taxonomic classes at rank order. At this rank, a

taxonomic class was included in the test data set if at least three different organisms for

that class existed. Each data set was partitioned as follows:

6-orders data set comprises organisms from the orders: Actinomycetales, Chlamydi-

ales, Bacillales, Lactobacillales, Rhizobiales, and Enterobacteriales.

12-orders data set contains all orders from the 6-orders data set plus: Rickettsiales,

Burkholderiales, Campylobacterales, Alteromonadales, Pseudomonadales, and

Thermoplasmatales.

18-orders data set contains all orders from the 12-orders data set plus: Neisseriales,

Pasteurellales, Xanthomonadales, Spirochaetales, Methanosarcinales, and Ther-

mococcales.

29-orders data set contains all the following orders: Actinomycetales, Bacteroidales,

Chlamydiales, Chroococcales, Nostocales, Prochlorococcales, Bacillales, Lacto-

bacillales, Clostridiales, Mycoplasmatales, Rhizobiales, Rickettsiales, Burkholde-

riales, Neisseriales, Desulfuromonadales, Campylobacterales, Alteromonadales,

Enterobacteriales, Legionellales, Pasteurellales, Pseudomonadales, Thiotrichales,

Vibrionales, Xanthomonadales, Spirochaetales, Sulfolobales, Methanosarcinales,

Thermococcales, and Thermoplasmatales.
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4.1.2 Data sets used to evaluate two different classifiers

Data set used in the kernelized k-nearest neighbor classifier

As a proof of concept the kernelized k-nearest neighbor method was evaluated on a data

set containing 373 completely sequenced genomes and named in the following 373-

genomes. The 373-genomes data set comprised a vast majority of members from the

archaeal and bacterial phyla. All completely sequence genomes available up to March

2008 were downloaded from the SEED database (Overbeek et al., 2005). The selected

genomes represent 2 Superkingdoms, 11 Phyla, 21 Classes, 45 Orders, and 61 Genera.

The taxonomic information for this data set was collected from the taxonomy database

located at the US National Center for Biotechnology Information (NCBI) (Wheeler et al.,

2002). Some of the genomes downloaded from SEED were unfinished and present as

several contigs. In this case, all contigs of each genome were arbitrarily joined together.

Data set used for the comparison of TACOA and PhyloPythia classifiers

A set of 63 completely sequenced genomes was downloaded from the NCBI genome

database (Wheeler et al., 2002). In the following, this data set is named as the 63-

genomes data set. It comprises completely sequenced genomes from 2 Superkingdoms,

12 Phyla, 22 Classes, 38 Orders, and 54 Genera. The taxonomic information for the 63-

genomes data set was collected from the taxonomy database located at the US National

Center for Biotechnology Information (NCBI) (Wheeler et al., 2002).

4.2 Hierarchical taxonomic organization

Taxonomic classification refers to the categorization of organisms into groups reflecting

the principle of common descendent proposed by Darwin in his origin of species work

(Darwin, 1859). Before the DNA molecule was discovered organisms were grouped us-

ing morphological characteristics (e.g. number of legs, presence-absence of hair, etc.).

With the advent of molecular methods the taxonomic classification of organisms is be-
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ing constantly revised and modified. Currently, the most widely accepted scheme is the

three domain system proposed by Woese et al. (1990). In microbial taxonomy, eight

taxonomic levels or ranks exist but five are the most commonly used, namely: Superk-

ingdom, Phylum, Class, Order and Genus.

Figure 4.1: Schematic representation of the three-domain system.

This tree is based on molecular evidence. The broader taxonomic groups or ranks are

represented by archaea, bacteria and eucarya. Triangles depict the organismal groups at

the taxonomic rank of phylum. Green color represent taxonomic groups for which at

least one member has been cultivated. Red triangles depict highly divergent or candidate

divisions for which no member has been cultivated. Tree of life figure taken from (López-

Garcı́a and Moreira, 2008).

4.3 Vector representation of features

The advantage of using oligonucleotide frequencies as features to taxonomically classify

genomic fragments is that a given DNA fragment can be represented in a vector. The
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entries of a vector are all possible oligonucleotide frequencies of fixed length. This

vector representation of genomic fragments implies that they can be directly used by

the kernel module of a kernel based classifier. Each DNA fragment is represented in a

n-dimensional space in which each oligonucleotide of a fixed length constitute one axis

and its frequency in the analyzed genomic fragment (Salton et al., 1975).

4.3.1 Computation of genomic feature vectors using the

oligonucleotide frequency deviation

In the following, the computation of genomic feature vectors (GFVs) used throughout

this dissertation is described in detail. Computation of the GFVs is performed for each

genome in the reference set as well as for each genomic fragment (read or contig) to be

classified.

An oligonucleotide o is defined as a string over the alphabet ∑ = {a, t,c,g}. The

total number of possible oligonucleotides of length l is given by 4l , e.g. for l = 3

oligonucleotides can take the form of o[1] = aaa,o[2] = aat, . . . ,o[64] = ggg. To gen-

erate a GFV for a genomic fragment, the oligonucleotide deviation score is computed

for each oligonucleotide. Given the GC-content of the analyzed fragment, the oligonu-

cleotide deviation score is defined as the ratio between the observed oligonucleotide

frequency in the fragment and the expected oligonucleotide frequency in that fragment.

The GC-content should be subtracted because it has a profound impact on the sequence

composition of genomes but a low phylogenetic signal. It has been shown that closely

related organisms coming from different environments may show profound differences

in GC-content (Foerstner et al., 2005).

Formally, given a genomic fragment s, for each oligonucleotide o[y](y = 1, . . . ,4l) the

number of occurrences of o[y] in s is counted. The computation of the oligonucleotide

frequencies is conducted in a sliding window approach with step size of 1 and window

size l. This approach is carried out on the forward and reverse DNA strand.

In order to more efficiently recover the phylogenetic signal contained in the oligonu-
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cleotide frequency deviation, biases introduced by the GC-content of the genomic frag-

ments are corrected. The expected frequency for a certain oligonucleotide o in a genomic

fragment s can be estimated by:

E[o] ≈ |s|− (l−1)
|o|

∏
q=1

p(oq) (4.1)

The length of a genomic fragment is defined as |s| and |o| is the length of an oligonu-

cleotide. Let O[oq] be the observed occurrence of oligonucleotide oq in the analyzed

genomic fragment, then p(oq) is estimated by p(oq) = O[oq]
|s| . For each oligonucleotide o,

a GC-normalized deviation score g(o) is computed in a given genomic fragment. The de-

viation score g(o) resolves for under-represented (negative value) and over-represented

(positive value) oligonucleotide frequencies in a genomic fragment. The deviaton score

g(o) is given by:

g(o) =


0 if O[o] = 0

O[o]
E[o] if O[o] > E[o]

−E[o]
O[o] if O[o]≤ E[o]

(4.2)

The computed g(o) for each possible o[y] of length l in a given genomic fragment is

summarized in a GFV x (Equation 4.3), this approach is also referred to as the vector

representation model (Salton et al., 1975).

x =
(

g(o[1]),g(o[2]), . . . ,g(o[4l ])
)T

(4.3)





CHAPTER 5

Results

Overview

This chapter presents the body of results obtained in the course of this work. In section

5.1 the outcome from the exploratory analysis of the features employed in the classi-

fiers is given. Results from the exploratory classification analysis using a novel SVM

approach is provided. The main contribution of this thesis the TAxonomic COmposition

Analysis method –TACOA– is presented in section 5.2, together with its classification

accuracy. Section 5.3 focuses on comparing the accuracy obtained by TACOA to the

SVM-based PhyloPyhtia. For each of the methods presented in this chapter, the corre-

sponding strategy, implementation, and evaluation is given. Furthermore, by using two

case study, the influence of horizontally transfered chunks of DNA on the classification

accuracy of a composition based classifier is assessed. The last section of this chapter,

describes some results obtained as part of a collaboration made within two metagenomic

related projects. One of them investigate the classification of very short genomic frag-
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ments (80 - 120bp), and the other one examines how to visualize metagenomic data.

Major results obtained within these collaborations are briefly presented.

5.1 Exploratory analysis

5.1.1 Feature exploration

A key part for any classification task are the features describing the items to be classi-

fied. For the taxonomic classification of environmental genomic fragments it is desirable

that the selected features reflect the taxonomic relatedness of organisms. As described

before, sequence similarities have been traditionally used to explore the taxonomic or

phylogenetic relationships among organisms. Other features that have also been em-

ployed include domain content (Yang et al., 2005), concatenated proteins (Brown et al.,

2001; Baldauf et al., 2000), gene content (Fitz-Gibbon and House, 1999; Wolf et al.,

2002; Snel et al., 1999), gene order (Dandekar et al., 1998; Korbel et al., 2002; Wolf

et al., 2001) and the distribution of structural folds (Gerstein, 1998; Gerstein and Hegyi,

1998; Wolf et al., 1999). These features can be categorized as similarity-based since they

depend on prior identification of a functional region (e.g. genes). The use of similarity

based features represent a disadvantage for the analysis of metagenomic data because a

vast part of the data stems from not yet sequenced or from genomic regions that have

not been functionally characterized, thus similarity based features are of limited used for

this type of data.

On the other hand, as introduced before oligonucleotide frequencies carry a phyloge-

netic signal that is species-specific(Karlin et al., 1997; Karlin, 1998). These two impor-

tant aspects: 1) not need of prior identification of functional regions, and 2) the species-

specific signal, make the oligonucleotide frequency a very appealing feature to be used

in the taxonomic classification of environmental genomic fragments. In this dissertation,

the oligonucleotide frequencies are used in the oligonucleotide deviation score (ODS)

measure that accounts for their over- and under-representation in a DNA fragment (as
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Figure 5.1: Average GC-content of the microbiota from soil and oceanic water samples.
GC-content distribution measured for two different type of complex environments: soil
and sea water. GC-content distribution was ordered from high to low percentage. NPSG,
North Pacific Subtropical Gyre. GS, Global Sampling of oceanic waters. Data collected
from the Gold database.

described in chapter 4).

The oligonucleotide frequency patterns found in a genomic fragment are strongly in-

fluenced by the genomic GC-content (Noble et al., 1998; Reva and Tümmler, 2004,

2005; Bohlin et al., 2008b). However, it has been proposed that the genomic GC-content

is more the result of the environment in which an organism lives, and in many cases

correlates poorly to its taxonomic group (Foerstner et al., 2005; Chen and Zhang, 2003).

Foerstner et al. (2005) showed that samples from soil and ocean surface waters have nar-

rower GC-content distribution than theoretically expected, despite of being very complex

communities with more than 1,000 non-abundant species (Venter et al., 2004; Tringe

et al., 2005; Rusch et al., 2007).

To explore the distribution of the GC-content from the microbiota sampled in different

environments, namely soil and oceanic waters, the mean value was compared in Figure

5.1. In average, the GC-content found in an environmental sample from soil is higher

than that obtained for oceanic waters samples (Figure 5.1).
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r
Oligonucleotide length GC-normalized GC-non-normalized

3 0.438* 0.970*
4 0.540* 0.980*
5 0.545* 0.982*

Table 5.1: Pearson correlation values obtained between the GC-content and the ODS
feature.

Pearson correlation values obtained between GC-content and the oligonucleotide devia-
tion score ODS on different oligonucleotide lengths. ODS for oligonucleotide of length
3, 4, and 5 were chosen as representative to test the correlation of the ODS feature vs.
the GC-content. All values with (*) are highly significant at p-level of 0.01.

If the GC-content is similar among organisms co-occurring in an environment, then it

is valid to assume that it is not a good discriminatory feature (i.e. noise) for the taxo-

nomic classification problem this thesis deals with. Therefore, a pearson correlation (r)

was employed to evaluate the correlation between the GC-content of the organisms used

in this study and the ODS feature used herein. Table 5.1 shows that the strength of the

correlation between the genomic GC-content and the oligonucleotide frequency is signif-

icantly higher (p-level 0.01) if the score is not normalized. The GC-normalization of the

ODS reduced the noise introduced by the GC-content considerably, however it does not

remove it all (Table 5.1). Despite the fact that the correlation between the GC-normalized

ODS and the GC-content is still significant, this is weaker than the one obtained for the

GC-non-normalized ODS (Table 5.1).

The 350-genomes data set was used to explore if the ODS feature account for the

taxonomic relationship among the test organisms. The ODS were computed for each of

the 350 genomes and their respective scores (ODS) were used to build the oligonucleotide

feature vectors (GFVs) and hence each organism is described by a GFV. By normalizing

each vector to unit length differences in genomic vector lengths are corrected.

Pairwise dot products were used to compute the similarities between pairs of GFVs (all

against all comparison) and subsequently stored in a symmetric matrix called the phylo-

matrix (Figure 5.3). A phylo-matrix graphically summarizes all pairwise similarities

between organisms. The degree of similarity between two organisms is visualized using
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a color code from red (highly similar), over white, to black (very dissimilar). All entries

of the phylo-matrix are symmetric with respect to the main diagonal, thus, entries on

the upper half are the same as those in the lower half (Figure 5.3). The main diagonal

represents the highest similarity possible between two GFV, since each of this entry is

the pairwise comparison of a GFV to itself.

In the phylo-matrix all entries are ordered in a nested manner according to their re-

spective taxonomic information. First, GFVs are ordered according to their broadest

taxonomic rank of superkingdom, followed by phylum and so on until the deepest tax-

onomic rank of species. In consequence, entries around the main diagonal always rep-

resent closely related species while distant related ones correspond to entries located

further away from the main diagonal. It is important to note that the GFVs computation

is independent of the matrix re-ordering which can be considered a post-processing step.

A phylo-matrix is generated for each oligonucleotide length evaluated in this work and

they were employed to explore four different oligonucleotide lengths, namely di-, tri-,

tetra- and penta-oligonucleotides.

After reordering the phylo-matrices, the underlying structure reflecting the relatedness

among different taxonomic groups became apparent and the different color shades are

not randomly arranged (Figure 5.3). Those entries colored with a dark red shade are

localized around the main diagonal, indicating the high degree of similarity among the

respective GFVs. Moreover, lighter red and grey shades can be seen in entries further

away from the main diagonal where the similarity of the GFVs becomes smaller. This

behavior is expected since those entries further away from the main diagonal represent

distantly related organisms.

In general, a clearer pattern of closely related GFVs was obtained for oligonu-

cleotides of longer length (Figure 5.3). Differences between the GC-normalized and

non-normalized ODS feature is clearly seen in Figure 5.3. The GC-normalized ODS

feature better discriminate among taxonomic groups. Although the ODS feature helps

to unveil some structure in the data, this is not strikingly clear, showing the complexity

of the classification problem being addressed in this work. The phylo-matrices help in
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Figure 5.2: Visualization example of a phylo-matrix.
A phylo-matrix is a symmetric matrix whose entries are all pairwise similarities between
genomic feature vectors (GFVs). The similarity with respect to the entries of the main
diagonal diminishes from top to right and from top to bottom. The highest similarity
possible is found in the diagonal since these entries represent the pairwise comparison
of a GFVs to itself. The color scheme is defined by dark red shades (high similarity),
over white, to black (low similarity). Highly similar GFVs (phylogenetically closer or-
ganisms) are clearly spotted with a dark red tone while far related organism have a pale
tone and very dissimilar GFVs will have a dark grey tone. Taxonomic groups with highly
homogenous GFVs are easily detected (e.g. Chlamydiae) as well as more heterogeneous
one (e.g. Proteobacteria). This phylo-matrix example is based on ODS computed for
oligonucleotides of length 5.
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exploring the variability of the ODS feature among taxonomic groups and across all tax-

onomic ranks, therefore giving hints on which taxonomic groups will be more difficult

to classify.

An example can be visualized using Figure 5.2, organisms belonging to Chlamydia

group do not show high variability in their GFVs. This observation contrast to the GFVs

computed for the Cyanobacteria group. Thus, problems in classifying genomic frag-

ments into the latest taxa can be anticipated. Additional to detecting variation of the

ODS feature inside a taxonomic group, the phylo-matrices are also helpful in detecting

outliers inside a taxonomic group. Outliers are easily recognized because their dot prod-

uct clearly differ in magnitude with respect to its relatives, thus displaying a lighter color

shade in a dark shaded area. Large homogeneous and heterogeneous group of GFVs

can be detected in entries relative far away from the main diagonal making evident that

problems in the classification task might arise for those items. In summary, the phylo-

matrices clearly expose that the taxonomic classification problem addressed in this work

is far from trivial.

5.1.2 Exploratory classification of fragments of variable length using

the oligonucleotide feature score

5.1.3 Strategy

In order to explore the feasibility to classify DNA fragments of variable length using

the ODS as features, a soft margin SVM was employed. The classification task was

performed only at rank order, which represents a good balance between the number of

taxonomic classes at that rank and the number of genomes per class. In this work, the

novel ”one-against-random” multiclass SVM was developed, which is a modification of

the ”one against all” strategy. This newly proposed strategy uses a random selection of

items from the complete training set for each binary SVM. It restricts the size of the train-

ing set (the ”all-part”) to the size of the test set for the analyzed class (the ”one-part”), by
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ODS Non-normalized
Oligonucleotide length 3

ODS Normalized
Oligonucleotide length 3

ODS Non-normalized
Oligonucleotide length 5

ODS Normalized
Oligonucleotide length 5

ODS Non-normalized
Oligonucleotide length 4

ODS Normalized
Oligonucleotide length 4

ODS Non-normalized
Oligonucleotide length 2

ODS Normalized
Oligonucleotide length 2

Figure 5.3: Phylo-matrices obtained using four different oligonucleotide lengths.
Phylo-matrices (from top to bottom) depict GFVs computed for the ODS feature using
different oligonucleotide lengths (i.e. 2, 3, 4, and 5). Taxonomically related groups are
more evident (dark red tone squares) around the main diagonal. Differences in the phylo-
matrices generated using the GC-normalized oligonucleotide deviation scores (right side)
than the non-normalized matrices (left side). A clearer structure can be seen for longer
oligonucleotide lengths as well as for the normalized ODS feature.
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picking as many random items for the negative class as there are items for the positive

class. As for the ”one-against-all” approach, the prediction function of the ”one-against-

random” method returns the class corresponding to the decision function with highest

score. If there is not an exact solution, e.g., the sample cannot be classified into a single

class or certain threshold is not overcome the item is labeled as unclassifiable. An advan-

tage of the ”one-against-random” strategy is that builds only as many binary classifiers as

there are existing classes, while the ”one-against-one” needs to build k(k−1)/2, where k

is the number of existing classes in the entire data set. This is of particular use when the

number of classes is large, as is the taxonomic classification problem addressed in this

work. In which the number of taxonomic classes explode (up to 60 classes) at deeper

ranks (class, order, species)

5.1.4 Implementation

The SVM used in the exploratory analysis was implemented in JAVA using an object ori-

entated approach. The classification methods are based on a JAVA version of the libSVM

(Chang and Lin, 2001). This version is provided with the ”one-agaisnt-one” multiclass

SVM implementation, which was extended to the ”one-agaisnt-random” approach used

herein. In addition, the BioJava library (Holland et al., 2008) library was employed to

compute the features on the DNA fragments. The framework is divided into classes

which are briefly explained in the following:

SVMClassifier is the main class containing methods for parameter selection using an

iterative grid search, training, and classification of new items.

Features contains object oriented methods to compute features from sequences stored

in the BioJava object SequenceDB. The resulting features are store in vectors that

can be exported as svm problem rows.

SVMData build an svm problem from the given svm problem rows. Two different

modes are provided: (i) a training mode with labels and (ii) a testing mode that
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Strategy
Data set One-Against-Random One-Against-All One-Against-One

Iris (C;γ) 95.34% (0.84;4.76) 96.88% (1.76;2.94) 97.33% (32;0.42)

Wine (C;γ) 98.31% (9.51;4.76) 98.91% (12.71;2.94) 98.88% (0.84;4.76)

Table 5.2: Accuracy evaluation of the One-Against-Random strategy.
The number of correctly classified items is expressed in percentage using two benchmark
data sets (Iris and Wine). Average classification rates obtained using a ten-fold cross-
validation, the corresponding cost (C) and Gaussian kernel width (γ) values are given in
parenthesis.

obviate class labels.

IOTools provides input, output, and parsing methods for the main objects and file for-

mats.

libSVMmod is a modified SVM library from the libSVM containing the new ”one-

against-random” strategy.

5.1.5 Evaluation

To evaluate the classification accuracy of the proposed ”one-against-random” strategy,

the new strategy was compared to the traditional ”one-against-all” and the most com-

prehensive ”one-agaisnt-one” using two well known benchmark data sets: iris and wine

data sets (Asuncion and Newman, 2007). The ”one-against-random” strategy achieves

comparable results when contrasted to the ”one-against-all” and to the ”one-against-one”

approach for the iris and wine data set using a ten-fold cross-validation (Table 5.2).

The comparison between the less complex ”one-against-random” and the ”one-

against-one” as well as the traditional ”one-against-all” showed that the new proposed

strategy achieves comparable classification accuracies (Table 5.2), while being more time

efficient particularly when a high number of classes exist as shown in Table 5.3 for the

18-orders data set. The newly devised multiclass SVM strategy ”one-against-random”

was employed to perform the exploratory classification analysis for the 6-, 12-, 18- and

29-orders dat sets.
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Runtime (secs)
Strategy ODS length 6-Orders 12-Orders 18-Orders

One-Against-Random 2 550 1540 1661
One-Against-Random 3 856 2173 3022
One-Against-Random 4 3030 5737 9548

One-Against-One 2 573 3775 2167
One-Against-One 3 870 5718 5343
One-Against-One 4 2921 9676 15002

Table 5.3: Average runtimes for three different data set sizes employing two strategies.
The ODS length refers to the length of the oligonucleotide chosen to calculate the
oligonucleotide deviation score. The runtime is measures in seconds (secs).

At rank order, all taxonomic classes having at least 3 different genomes were selected

and included in the data set to be used for evaluation. An SVM classifier was employed

to classify DNA fragments included in the data set for evaluation. To assess the accu-

racy of the SVM classifier, 200 DNA fragments were extracted from each completely

sequenced genome present in the analyzed data set. A ten-fold cross validation strategy

was used to estimate the classification accuracy. For this purpose, the complete data set

containing genomic fragments of all selected genomes was randomly partitioned into

10 subsets of equal size. Fragments of lengths 100bp and 200bp were used to simulate

reads produced by the 454 sequencing technology. In addition, DNA fragment lengths of

800bp and 1Kbp were chosen to represent reads obtained by the Sanger (dye-terminator)

technique. Moreover, contigs were simulated by DNA fragments of length 3, 5, and

15Kbp. The DNA fragments used in this exploratory analysis were generated by ex-

tracting, from each completely sequenced genome, subsequences of a fixed length at

random positions. This procedure simulates the randomly fragmentation step prior the

sequencing of a metagenome (Figure 2.1 step 2)

Parameter optimization

The grid search method (Staelin, 2003) was employed to optimize parameters of the

SVM classifier, in which a combination of parameters are simultaneously optimized. The

parameter C (misclassification cost) and γ (width of the Gaussian) required for the soft
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margin SVM classifier were optimized prior the training step. For this purpose, the algo-

rithm developed by Staelin (2003) was employed, which first uses a coarse grid and later

the search is refined based on the ”best” grid region found. This procedure is performed

over several iterations. After each one, the performance of every parameter combination

is measured and the search space is centered around the best point. This process is re-

peated until a previously defined number of iterations is reached and subsequently those

parameters with best performance are chosen (Staelin, 2003).

5.1.6 Classification accuracy obtained using an SVM classifier for

genomic fragments of variable length

A support vector machine was employed to evaluate the feasibility to taxonomically clas-

sify genomic fragments based on the ODS feature selected during the feature exploration

as described in section 5.1.1. This exploratory experiment was performed at rank or-

der which is one of the deepest rank of the taxonomic hierarchy. A total number of 29

different classes constitute the rank order representing a challenging multiclass classi-

fication task. To investigate the influence of the number of taxonomic classes consider

in the multiclass classification problem, the entire 350-genomes dat set was partition in

four different smaller subsets. Namely, -6,-12, -18, and 29-orders data set. Three differ-

ent oligonucleotide length were used to compute the ODS feature, namely di-, tri-, and

tetra-nucleotide. Simulated reads of length 100, 200 and 800 bp were used to explore

the feasibility to taxonomically classify short and very short genomic fragments. On the

other hand, genomic fragments of length 1, 3, 5, and 15 Kbp were used to examine the

classification accuracy of simulated contigs.

For all genomic fragment length analyzed, the ODS feature based on oligonucleotides

of length 4 achieved a better accuracy in terms of specificity, sensitivity and false neg-

ative rate compared to ODS of length 2 (Figure 5.4). A general observed trend was the

reduction in accuracy (sensitivity and specificity) as the number of consider classes in-

creased (Figure 5.4). Conversely, the opposite trend is detected for the false negative
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Figure 5.4: Overall classification accuracy of the SVM classifier for three different
oligonucleotide lengths.

Accuracy was measured by sensitivity, specificity and false negative rates (FNr) using
four different data sets at rank order. The numbers 6-, 12-, 18-, and 29 refers to the num-
ber of existing classes in the analyzed rank. ODS were computed using oligonucleotides
of length 2, 3, and 4.

rate (increments with the number of analyzed classes), revealing that the classification

problem turns more complex as the number of classes increases (Figure 5.4).

When comparing different data sets in terms of the number of taxonomic classes, fluc-

tuations as large as 20% in sensitivity and specificity are detected for ODS corresponding

to oligonucleotides of length 2. Moreover, ODS based on oligonucleotide of length 2

showed poor taxonomic resolution even for longer DNA fragments (5 Kbp and 15 Kbp)

analyzed (Figure 5.5). Furthermore, ODS of length 2 achieved the highest number of

misclassifications (up to 90% as seen by the FNr Figure 5.5) for all genomic fragment

lengths evaluated. This trend is more clear for those genomic fragments of larger size.

These observations suggest that ODS based on oligonucleotide of length 2 is not a good

discriminatory feature to taxonomically classify genomic fragments. For all ODS and

DNA fragment lengths evaluated, the FNr increased when new classes are included in

the data set. Minimal FNr values are registered for the 6-orders data set while maximal

were obtained for the data set with 29-orders (Figure 5.5).
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On the other hand, ODS of length 4 showed poor values of sensitivity and specificity

as well as high false negative rates for the two shortest DNA fragments evaluated (100

bp and 200 bp). The accuracy obtained using ODS of length 3 and 4 are comparable

for the four data sets tested. However, a small decrease in sensitivity is observed for the

29-genomes data set for all oligonucleotide length evaluated when compared to the 18-

genomes data set. As a whole, the high number of misclassifications suggests that this

complete strategy needs further evaluation, exploration and fine tuning of parameters to

achieve better results. However, the accuracy results in terms of sensitivity and specificity

also indicate that the complete strategy can be improved.

This exploratory classification experiment showed that the number of misclassifica-

tions rises dramatically when the number of taxonomic classes are increased (Figure5.5).

This observation is valid for all ODS length evaluated, although to a lesser extent for ODS

of length 3 and 4 (Figure 5.4). Figure 5.4 shows how the overall accuracy (sensitivity,

specificity and FNr) deteriorates as the number of taxonomic classes increases. This ob-

servation confirms the intuitive idea that a classification task gets more complex as the

number of taxonomic classes increases.

As an overall trend, the average sensitivity and specificity increased as longer genomic

fragments were considered. A general observation is that the number of misclassifica-

tions decreases as the length of the genomic fragment increases (Figure 5.5). The overall

accuracy of ODS of length 4 is comparable for longer genomic fragments.

To compared the classification results of the ”one-against-random” with the ”one-

agaisnt-one” strategy using metagenomic simulated data, an SVM for each strategy was

trained to analyzed the 18-orders data set. This data set was selected because represents a

good balance between the number of classes and number of members per class. As with

the benchmark data set, the obtained accuracies (sensitivity, specificity and false negative

rates) are comparable (Figure 5.6). Moreover, the run time of the ”one-against-random”

strategy is smaller (9,548 sec) in one order of magnitude compared to the ”one-agaisnt-

one” (15,002 sec) for the 18-order data set. This example highlights a key advantage of

the ”one-against-random” strategy.
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Figure 5.6: Overall classification accuracy for three different oligonucleotide lengths

using two different strategies.
Average values of sensitivity, specificity and false negative rates (FNr) obtained using

the ”One-Against-Random” and the ”One-Agaisnt-One” strategy. The classification ac-

curacy was measured for three different ‘oligonucleotide length using the 18-orders data

set.

Despite the encouraging classification results obtained with the SVM based classifier,

this first approximation to the problem showed the complexity of the classification task

this work deals with. This observation can also be found in the work of McHardy et al.

(2007), the authors opted for the expensive ”one-against-one” but accurate strategy and

combined it with several additional SVMs using the ”one-against-all” strategy to con-

firm or reject the predictions made in the classification phase. As result the developed

classifier is a hierarchical collection of SVMs, incrementing the complexity of the de-

veloped classifier. Some pitfalls that were detected in this exploratory analysis are: need

of costly retraining procedures, exploration of more intricate features to achieve better

performance, complexity of the classifier as the number of classes grows. The issues

revealed in this exploratory analysis motivated the search for a more straightforward
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solution without sacrificing classification power and that could still yield competitive

results.

5.2 TACOA – A novel classification approach of

environmental genomic fragments

5.2.1 Strategy

In this study, a genomic fragment is defined as a DNA sequence of a given length (note,

that a completely sequenced genome can be regarded as a genomic fragment). The total

number of oligonucleotides of length l, from the alphabet ∑ = {a, t,c,g} is given by 4l ,

where 4 represents all possible nucleotides. Each genomic fragment is represented as

a vector (i.e. GFV) using the Vector Space Model (Salton et al., 1975) as described in

chapter 4. To predict the taxonomic origin of a query GFV, TACOA compares that query

GFV to the reference GFVs. The reference GFVs are computed from all 373 completely

sequenced reference genomes used in this study. In the following, the set of all reference

GFVs is named reference set refset . In this study the 373-genomes was used as reference

set.

More formally, let refset = {x j} with 1 ≤ j ≤ T be the set of reference GFVs, where

each x j represents a GFV computed from a completely sequenced reference genome. Let

x be a query GFV representing a genomic fragment to classify. The multi-class classifi-

cation problem addressed herein, resides in deciding to which of all different taxonomic

classes, at rank r, x belongs to.

For each taxonomic rank r out of superkingdom, phylum, class, order and genus and

for each taxonomic class i at that rank, the algorithm computes a discriminant function

δi(x), and then classifies x into that class with the highest value for its discriminant

function. More precisely, for a given taxonomic rank r, let i be that class with the highest

discriminant function δi(x). Then, x is classified into class i if δi(x) is at least half as

large as the value of the second highest discriminant function on rank r, otherwise x is
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classified as ”unclassified”. This optimal cut-off value for the discrimination function at

each taxonomic rank r was identified in a grid search. The discriminant function for a

taxonomic class i is computed by:

δi(x) = ∑
x j∈refi

Kλ(x,x j) (5.1)

where refi = {x j|x j ∈ refset and x j stems from class i} is the set of all reference GFVs

from class i. The smoother kernel Kλ(x,x j) is based on the Gaussian density function

that exponentially decreases with Euclidian distance from x:

Kλ(x,x j) = e(−
dw(x,x j)

2

2λ
) (5.2)

where dw(x,x j) is a weighted distance function as defined later in Equation (5.4) and

λ controls the neighborhood width around x in the kernel function. Small values of λ

result in decision boundaries with higher variance that well-fit the reference set while

large values achieve smooth and stable decision boundaries that avoid overfitting and are

more robust (Hastie et al., 2002).

To estimate how much a query GFV x differs from a reference GFV the distance

between the two vectors is determined. By normalizing each vector to unit length differ-

ences in genomic vector lengths are corrected. The similarity between a query GFV x

and each reference GFV x j is computed using the dot-product between the normalized

query (GFV x̂) and the normalized reference (GFV x̂ j). The term similarity is expressed

as the dot product < x̂, x̂ j >. The similarity can be easily transformed into a distance by

subtracting 1− similarity. The distance is then expressed by:

d(x,x j) = 1−< x̂, x̂ j > (5.3)
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The distance d was weighted in order to account for the imbalanced reference set used

in this study, where majority classes and minority classes are present, e.g. the phylum

bacteria was over-represented compared to the archaea in a proportion of 10:1.

The weighted distance function is denoted as dw and the weights are assigned using

the following weighting scheme. Let x j originate from class i and let ni be the number

of genomes in class i. Furthermore, let T be the number of genomes constituting the

reference set. The weighted distance function dw is given by:

dw(x,x j) =
T
ni

d(x,x j) (5.4)

This weighting scheme assigns small weights to the GFVs belonging to the majority

classes and a relative larger weight for GFVs member of the minority classes.

5.2.2 Implementation

The TACOA classifier was implemented in PERL in object orientated manner. The clas-

sifier program is composed of separate objects:

DotProduct.pm Module dedicated to the computation of the dot product between the

oligo vectors.

KernelNN.pm In this module the kernelized version of the k-NN method is imple-

mented.

OligoVectors.pm This modules computes vectors from a DNA sequence which entries

are oligonucleotide frequencies of a given length.

DNAutils.pm This module contains various functions and methods frequently used to

process DNA sequences (e.g. subset of genetic codes, translation of DNA se-

quences).
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Configs.pm In this module all system parameters needed to be adapted to local systems

are found as well as the creation of required directories for storage of the outputted

and inputted data. This modules also executes checks to assure that required soft-

ware and adequate version is installed.

Common.pm Module dedicated to the process of DNA sequence to be used in the gen-

eration of the genomic feature vectors.

This modularity brings flexibility to the program allowing modification of single com-

ponents without changing the remaining system. The main PERL script is executed via

a bash wrapper script which sets up the environment for TACOA classifier. In particu-

lar, automatically sets up the paths to locate the libraries, default reference genomes and

other components needed. This ensures that the installation is extremely simple with

minimal user intervention and it can immediately be executed via the wrapper script.

5.2.3 Evaluation

The classification accuracy of the presented method was assessed using the leave-one-

out cross-validation strategy. In the leave-one-out cross validation, one genome is used to

generate fragments of a fixed length and thereafter the taxonomic origin of each fragment

was predicted using the remaining 372 genomes and used as the reference set (Figure

5.7). This procedure was repeated for each genome out of the 373 completely sequenced

genomes present in the data set (Figure 5.7).

This simulates the case when the taxonomic origin of DNA fragments is predicted that

stem from genomes that are not yet represented in the public genome databases. In a

second experiment, the classification accuracy of the method with the test set included

in the reference set was evaluated. In this case the fragments of each genome were

taxonomically classified using all 373 genomes as reference.
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Figure 5.7: Sketch of the leave-one-out cross validation (LOOCV) strategy adopted in

this study is depicted.
A genome is selected from the data set comprising 373 genomes and fragmented sub-

sequently. The collection of genomic fragments is regarded as the test set from which

each fragment is drawn and classified afterward. Classification of each test fragment is

carried out using the remaining 372 organisms as a reference.

The accuracy evaluation carried out in this study requires the existence of at least two

different genomes per taxonomic class. This criteria responds to the need of having a

genome as reference and another one for testing. Thus, one genome is used to generate
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fragments of fixed length and thereafter predict the taxonomic origin of each fragment

while the second is part of the 372 genomes and used as reference set. At the same time,

the classification accuracy for fragments originating from genomes with only one repre-

sentative per taxonomic class was also evaluated, namely a reference to those genomes

do not exist in the reference set. The purpose of the latter evaluation was to assess

the classification accuracy of TACOA in the situation when the taxonomic origin of a

genomic fragment stemming from a taxonomic group that has not yet been sequenced

needs to be predicted. Conversely, also already sequenced genomes may be present in

real metagenomic data sets. Thus, in a second experiment the classification accuracy of

the method having the test set included in the reference set was also evaluated.

For both experiments, different genomic fragment lengths to simulate DNA fragments

obtained in real metagenomic sequencing projects were selected. Genomic fragments

of length 800bp and 1Kbp were chosen to resemble single reads derived by the Sanger

technology. Assembled contigs were simulated choosing fragment lengths of 3, 10, 15,

and 50Kbp. Genomic fragment generation was executed in the following manner: For

each completely sequenced genome and for each chosen genomic fragment length, 3000

non-overlapping fragments were randomly retrieved from the selected genome and sub-

sequently included into the test set.

Parameter optimization

An extensive investigation of the oligonucleotide length parameter choosing different

values of l (2≤ l ≤ 6) and detected the length with maximal classification accuracy. For

short fragment lengths only small values of l were considered to guarantee that all possi-

ble oligonucleotides occur sufficient times, i.e. 4l < |s| in a considered genomic fragment

s as mentioned in Section 3.4. The optimal oligonucleotide length l was determined for

each genomic fragment length at each taxonomic rank.

Oligonucleotides of length 4 achieved the highest classification rates for genomic frag-

ments of length 800bp, 1Kbp and 3Kbp. For genomic fragments of length 10, 15 and
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Figure 5.8: Oligonucleotide length-dependent performance for two different genomic
fragment length.

Achieved specificity (left), sensitivity (middle) and false negative rate (right) for different
oligonucleotide lengths in genomic fragments of length 800bp (a) and 50Kbp (b). For
clarity the standard deviation was not depicted in these figures, instead is given in Figure
5.9.

50Kbp, oligonucleotides of length 5 were best suited for classification. A general trend

for all genomic fragment lengths was that both average specificity and average sensi-

tivity dropped when oligonucleotides longer than 5 were analyzed. In Figure 5.8 the

oligonucleotide length-dependent trend is exemplified with sequence of length 800bp

and 50Kbp. Conversely, the false negative rate increased when longer oligonucleotide

lengths were considered (Figure 5.8). A detailed table summarizing average accuracy

values and standard deviations for the two different fragment length (800bp and 50Kbp)

and for each oligonucleotide length analyzed is given in Figure 5.9.

The kernel parameter λ governs the width of the local neighborhood, thus influencing

the local behavior of the decision boundary allowing the search of an optimal trade-off

between a well-fitted and a more generalized classifier.

A grid search (2 ≤ λ ≤ 1000) was employed to detect optimal values of λ achieving

maximal accuracy (λopt). In general, λopt is smaller at lower taxonomic ranks (Table 5.4).

This observation may be explained by the drastically increased number of taxonomic
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Average specificty

Genomic 

fragment 

length (s)

Oligonucleotide 

length (l)
Superkingdom ! ± Phylum ! ± Class ! ± Order ! ± Genus ! ±

800bp 2 0,61 0,51 0,26 0,28 0,14 0,19 0,05 0,16 0,03 0,12

3 0,64 0,50 0,45 0,21 0,37 0,23 0,31 0,26 0,24 0,22

4 0,73 0,44 0,70 0,23 0,61 0,28 0,59 0,28 0,58 0,24

5*

6*

50Kbp 2 0,64 0,50 0,70 0,19 0,52 0,35 0,63 0,46 0,59 0,38

3 0,76 0,32 0,74 0,08 0,64 0,28 0,67 0,40 0,69 0,39

4 0,87 0,17 0,87 0,05 0,72 0,22 0,76 0,30 0,75 0,27

5 0,93 0,12 0,94 0,02 0,80 0,22 0,78 0,37 0,77 0,12

6 0,92 0,24 0,92 0,02 0,78 0,05 0,79 0,29 0,75 0,28

Average sensitivity

Genomic 

fragment 

length (s)

Oligonucleotide 

length (l)
Superkingdom ! ± Phylum ! ± Class ! ± Order ! ± Genus ! ±

800bp 2 0,20 0,52 0,26 0,20 0,06 0,10 0,05 0,26 0,03 0,01

3 0,70 0,02 0,45 0,15 0,15 0,15 0,31 0,05 0,24 0,08

4 0,73 0,07 0,69 0,15 0,30 0,12 0,57 0,20 0,60 0,09

5*

6*

50Kbp 2 0,63 0,12 0,09 0,18 0,06 0,16 0,13 0,12 0,02 0,11

3 0,74 0,14 0,25 0,28 0,23 0,23 0,18 0,25 0,16 0,26

4 0,79 0,11 0,42 0,28 0,44 0,29 0,37 0,33 0,36 0,36

5 0,82 0,09 0,73 0,25 0,63 0,28 0,49 0,34 0,46 0,40

6 0,83 0,05 0,72 0,31 0,50 0,29 0,42 0,34 0,47 0,41

Average false negative rate

Genomic 

fragment 

length (s)

Oligonucleotide 

length (l)
Superkingdom ! ± Phylum ! ± Class ! ± Order ! ± Genus ! ±

800bp 2 0,1440 0,0220 0,0640 0,0360 0,0807 0,0287 0,0324 0,0665 0,0220 0,0247

3 0,1126 0,0003 0,0543 0,0106 0,1074 0,0669 0,0319 0,0160 0,0360 0,0425

4 0,0902 0,0001 0,0336 0,0032 0,0855 0,0767 0,0267 0,0120 0,0287 0,0357

5*

6*

50Kbp 2 0,11 0,03 0,22 0,00 0,16 0,02 0,02 0,03 0,08 0,06

3 0,07 0,06 0,24 0,01 0,14 0,03 0,02 0,03 0,08 0,02

4 0,08 0,09 0,15 0,01 0,13 0,03 0,02 0,04 0,06 0,03

5 0,01 0,06 0,09 0,00 0,12 0,04 0,03 0,06 0,03 0,04

6 0,05 0,04 0,12 0,01 0,19 0,01 0,05 0,12 0,05 0,09

*Oligonucleotide length not evaluated due to lack of minimal fragment length 

require to contain all posible oligonucleotide patterns

Additional Table 1: Standard deviation for average accuracy and false negative rate achieved
for fragments of length 800bp and 50Kbp using different oligonucleotide length. Standard
deviation and average specificity, sensitivity and false negative rate is given for all oligonucleotide lengths
and taxonomic ranks evaluated.

Figure 5.9: Standard deviation for average accuracy and false negative rate obtained
for fragments of length 800bp and 50Kbp.

Standard deviation and average specificity, sensitivity and false negative rate is given for
all oligonucleotide length and taxonomic ranks evaluated.



5.2. TACOA – A novel classification approach of environmental genomic fragments 73

λopt
Fragment length S P C O G

800bp 500 300 100 25 100
1Kbp 500 300 200 100 100
3Kbp 500 300 300 500 400

10Kbp 300 400 300 100 90
15Kbp 400 300 500 200 100
50Kbp 500 1000 400 500 80

Table 5.4: Optimized λ parameter obtained for each genomic fragment length at each
taxonomic rank.

Optimal lambda parameter (λopt) is shown for each genomic fragment length at each
taxonomic rank: Superkingdom (S), Phylum (P), Class (C), Order (O), and Genus (G).

classes at deeper ranks. If a large number of taxonomic classes occur at deeper ranks

the neighborhood to be considered in the classification task needs to be smaller (small

λ) than in broader taxonomic ranks. If a large λ is considered and a large number of

classes exists, the respective neighborhood of a query genomic vector may cover too

many reference vectors from diverse taxonomic classes having a negative impact on the

classification accuracy. On the other hand, if the reference GFVs from a taxonomic class

are sparsely distributed with respect to the query GFVs, a bigger neighborhood (large λ)

needs to be considered. This may explain those cases where a large λopt is obtained.

During the optimization procedure, optimal parameters were chosen based on average

accuracy values over all taxa at each taxonomic rank, therefore it may occur that the

optimal parameters chosen are suboptimal for some taxonomic classes at a given rank.

In consequence, the accuracy for some taxonomic classes can drop dramatically, this

situation can be seen as ”gaps” in Figure 5.10.

From a practical perspective, in this work was regarded as more valuable to be able

produce a low number of highly reliable predictions than a large number of predictions

with low reliability. Therefore in this study parameters producing high specificity values

over high sensitivity were favored.
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Figure 5.10: Classification accuracy achieved for genomic fragments of different
length.

Bars depict detailed specificity and average values for specificity (Sp.), sensitivity (Sn.)
and false negative rate (FNr.) for each fragment length on different taxonomic ranks.
Each color represents a genomic fragment length.
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5.2.4 Classification accuracy obtained by TACOA for genomic

fragments of variable length

The classification accuracy of TACOA was evaluated on genomic fragments of lengths

ranging from 800bp to 50kbp. A total of 11,730,382 genomic fragments from 373 dif-

ferent species were analyzed, comprising ≈42 Mb of sequence data. The classification

accuracy for all different evaluated genomic fragment lengths, taxonomic ranks, and taxa

is given in detail in Figure 5.10.

A high proportion of contigs (genomic fragments of length 3Kbp, 10Kbp, 15Kbp,

and 50Kbp) was correctly classified with an average sensitivity between 76% at rank

superkingdom and 39% at rank genus (Figure 5.11). At the same time, less than 10% of

contigs were misclassified (false negative rate) at all taxonomic ranks. For the remain-

ing contigs the taxonomic origin could not be inferred and hence these were assigned

to the ”unclassified” class. Overall, reliable predictions were obtained with an average

specificity ranging from 89% at superkingdom to 71% at rank genus. For the longest

analyzed contig length (50Kbp), TACOA achieved an average sensitivity of 82% at su-

perkingdom and 46% at genus, and specificity of 93% (superkingdom) and 77% (genus)

(Figure 5.10, 5.12). Moreover, also for shorter contigs a high classification accuracy was

obtained. For example, 74% of the contigs of length 3Kbp were correctly classified at

rank superkingdom and 31% at rank genus (Figure 5.10, 5.12), the specificity for contigs

of length 3kbp reached values between 74% (superkingdom) and 31% (genus).

In this evaluation, single reads were represented by genomic fragments of length

800bp-1Kbp. TACOA is capable of accurately predicting the taxonomic origin of single

reads up to the rank of class, despite the limited information contained in these short se-

quences. A high proportion of reads was correctly classified. For reads of length 800bp,

the average sensitivity was between 67% at superkingdom and 16% on rank class and for

reads of length 1Kbp, it ranged from 71% to 22%. Furthermore, in average only between

9% (superkingdom) and 5% (class) of reads were misclassified. Overall, reliable predic-

tions were obtained, with an average specificity ranging from 73% (superkingdom) to



76 Chapter 5. Results

Figure 5.11: Overall performance achieved by TACOA at each taxonomic rank for
reads and contigs.

Bars depict the average sensitivity (Sn.), specificity (Sp.), and false negative rate (FNr.)
achieved for reads and contigs at each taxonomic rank.

62% (class) for 800bp reads and between 73% and 64% for reads of length 1Kbp. In

light of the limited information contained in fragments of length 800bp - 1Kbp and the

complexity of the classification problem (e.g. 62 classes on rank genus), TACOA also

achieves a surprisingly good performance for single reads at rank order and genus (Fig-

ure 5.11). However, in practice it is not recommended to interpret classification results of

single reads at these ranks because only a small number of organisms may be represented

in the currently available sequenced genomes employed as references.

In real metagenomic data sets, already sequenced organisms may be contained in the

studied sample. Therefore, the classification accuracy of TACOA was also assessed for

fragments stemming from organisms included in the reference set (Figure 5.12). As ex-

pected, this has a markedly positive impact on the accuracy at all taxonomic ranks. An

increase in sensitivity of up to 30% was observed. Furthermore, the specificity substan-

tially increased while the false negative rate was reduced (Figure 5.12).
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Figure 5.12: Classification accuracy achieved using two different reference sets.

Each colored bar depicts the accuracy achieved by TACOA with two different reference

sets. The label ”Taxonomic organism of test fragment absent from reference set” refers

when the test fragment is classified using a reference set not containing the source or-

ganism from which the test fragment originates from.
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Figure 5.13: Fragment length and rank dependent performance.
Sensitivity (left) and specificity (right) achieved by TACOA for each genomic fragment
length and taxonomic rank evaluated. Single single read lengths were simulated us-
ing genomic fragments of 800bp and 1Kbp long. Contigs were simulated by fragment
lengths raging between 3Kbp and 50Kbp.

As a general trend, the accuracy improves when longer genomic fragments were clas-

sified (Figure 5.13). For example, on rank superkingdom the sensitivity increased from

67% (800bp reads) to 82% (50Kbp contigs) and at rank genus from 5% to 46% respec-

tively. Conversely, the accuracy decreases as deeper taxonomic ranks were examined

(Figure 5.11). In general, it is easy to predict classes that are well represented in the ref-

erence set, while detecting the underrepresented taxonomic groups is more challenging

(Figure 5.10). TACOA is capable of detecting a remarkably high number of different tax-

onomic classes (Figure 5.14), for example for contigs of length 3Kbp, TACOA achieved

a sensitivity above 20% for all 11 phyla, for 18 of the 21 classes, for 30 of the 45 order,

and for 33 of the 61 genera represented in our test set (Figure 5.15).

5.3 Assessing the classification accuracy of TACOA and

PhyloPythia for genomic fragments of variable length

TACOA was compared to the SVM-based PhyloPythia, which is one of the state-of-

the-art, most accurate existing methods for the taxonomic classification of environmen-
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Additional figure 5: Intervals for specificity (left) and sensitivity (right) of predicted taxonomic
classes for reads. Classification accuracy intervals for genomic fragments of length 800bp (top) and 1Kbp
(bottom). The distribution of number of predicted taxonomic classes at each interval and per taxonomic
rank is shown.

Figure 5.14: Specificity and sensitivity intervals for predicted taxonomic classes and
reads.

Each bar depicts the sensitivity (right) and specificity (left) of predicted taxonomic
classes for reads. Classification accuracy intervals for genomic fragments of length
800bp (top) and 1Kbp (bottom) is given. Per taxonomic rank, the distribution of number
of predicted taxonomic classes at each interval is shown.
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Additional figure 6: Intervals for specificity (left) and sensitivity (right) of predicted taxonomic
classes for contigs. Classification accuracy intervals for genomic fragments of length 3Kbp, 10Kbp, 15Kbp
and 50Kbp (from top to bottom). Per taxonomic rank, the distribution of number of predicted taxonomic
classes at each interval is shown.

6

Figure 5.15: Specificity and sensitivity intervals for predicted taxonomic classes and
contigs.

Each bar depicts the sensitivity (right) and specificity (left) of predicted taxonomic
classes for contigs. Classification accuracy intervals for genomic fragments of length
3; 10; 15; and 50Kbp (from top to bottom) is given. Per taxonomic rank, the distribution
of number of predicted taxonomic classes at each interval is shown.
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tal genomic fragments. The accuracy of both classifier was assessed on a synthetic

metagenome generated from 63 completely sequenced genomes.

5.3.1 Measuring the classification accuracy in the comparison of

PhyloPythia and TACOA

The set of completely sequenced genomes used for comparison was selected as follows:

at rank class, two different genomes were randomly chosen from each taxa guaranteeing

that the data set used in the comparison is as unbiased as possible. This procedure yielded

a set of 63 genomes that were downloaded from the NCBI genome database (Wheeler

et al., 2002). For each evaluated fragment length and for each selected genome, ten

non-overlapping genomic fragments were randomly extracted for classification. Both

classification strategies were evaluated at five different taxonomic ranks using three dif-

ferent genomic fragment lengths: 800bp, 1Kbp, and 10Kbp. The PhyloPythia web server

with the built-in generic model was employed to predict the taxonomic origin of genomic

fragments generated from the 63 selected genomes. TACOA was executed with default

parameters to predict the taxonomic origin of genomic fragments from the same data set.

Notice that this evaluation aims to investigate the performance that a researcher should

expect when analyzing their metagenomic data.

The accuracy of both classifiers was assessed using the sensitivity, false negative rate

and specificity. Values of sensitivity, specificity and false negative rate were computed

as previously described in Section 1.5.2. As measures of accuracy the sensitivity and the

false negative rates (FNr or misclassifications) was chosen to compare the PhyloPythia

and TACOA classifier to account for possible compositional biases of the data set. The

sensitivity and the FNr measured for one class do not depend on the composition of the

remaining classes (since the term false positive is absent in the equations of sensitivity

2.9 and FNr 2.11). Hence, the sensitivity and FNr measured for each taxonomic group is

not affected by possible biases of the test set. Contrastingly, the specificity measured for

a class is strongly affected by the composition of the test set since it includes the false
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positives obtained from other classes.

5.3.2 Accuracy obtained by TACOA and PhyloPythia

The classification accuracy of the proposed kernelized k-NN classification method

TACOA was compared to PhyloPythia using sensitivity, specificity and false negative

rate as described in chapter 2, section 2.5.

In general, TACOA and PhyloPythia achieved quite comparable classification accu-

racies, but TACOA had a slightly improved performance for the classification of short

DNA fragments. For the classification of reads of length 800bp and 1Kbp, TACOA has

a larger sensitivity while both tools achieve a comparable false negative rate and speci-

ficity values (Figure 5.16). Remarkably, on ranks order and genus TACOA is still able

to correctly classify between 3% and 17% of short fragments (sensitivity), while Phy-

loPythia cannot infer the taxonomic origin of any of the genomic fragments and thus

has an average sensitivity of 0%. For longer contigs (DNA fragments of length 10Kbp)

PhyloPythia is more sensitive on higher taxonomic ranks (superkingdom, phylum and

class). In contrast, TACOA produces less misclassifications (false negative rate) making

its prediction more reliable. On lower taxonomic ranks (genus and order), TACOA is

able to correctly infer the taxonomic origin of about 10% to 17% of all contigs, while

PhyloPythia has a sensitivity of 0% for all taxonomic groups at these ranks.

Across ranks superkingdom, phylum and class TACOA achieved sensitivity values of

71% to 3% for 800bp fragments and 76% to 11% for 1Kbp fragments. On the other

hand, at the same ranks, PhyloPythia obtained a slightly lower sensitivity of 66% to

6% for 800bp fragments and 75% to 9% for 1Kbp fragments. At deeper ranks order

and genus, TACOA was able to correctly classify between 3% and 7% of all short frag-

ments (sensitivity), while only between 1% and 2.43% of fragments were misclassified

(false negative rate). In contrast, PhyloPythia was not able to predict any taxa result-

ing in a sensitivity of 0% for all groups on these two ranks. According to the authors

of PhyloPythia (personal communication), the stand alone classifier, which is not pub-
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Figure 5.16: Classification accuracy obtained for TACOA and PhyloPythia.
Sensitivity (top), specificity (middle) and false negative rate (bottom) achieved by
TACOA and PhyloPythia for three different genomic fragment lengths and taxonomic
ranks evaluated. Single read lengths are represented by fragments of length 800bp and
1Kbp and contigs by 10Kbp long fragments. The accuracy achieved is depicted using
green bars for TACOA and blue bars for PhyloPythia. The sensitivity and specificity
charts are scaled between 0 –100% and the false negative rate is scaled between 0 –30%
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licly available is able to make predictions at ranks order and genus. Conversely, the web

server available to the general user intentionally does not report prediction for these two

lower taxonomic ranks explaining why the sensitivity achieved by PhyloPythia was 0%.

However, this situation does not change anything on the fact that the standard user that

employs PhyloPythia via the web server will only get predictions until taxonomic rank

class while TACOA is able to provide predictions until rank genus.

In general, for short fragments TACOA is more sensitive at almost all taxonomic ranks,

in particular at ranks order and genus. The only exception is at rank class, at which

PhyloPythia is more sensitive for the classification of 800bp fragments. At the same

time, for the classification of short fragments TACOA has a slightly lower false negative

rate for almost all taxonomic ranks. Excepting rank phylum at which PhyloPythia has a

lower false negative rate for 800bp fragments.

For the classification of contigs of length 10Kbp, TACOA achieved a sensitivity be-

tween 73% and 30% at ranks superkingdom to class, while PhyloPythia correctly clas-

sified between 82% and 47%. According to these results PhyloPythia was between 9%

and 17% more sensitive than TACOA. But for the same contig length and ranks, TACOA

was between 10% and 9% more specific than PhyloPythia. In addition, a high percentage

of misclassifications was also observed for PhyloPythia (18.64% in average) in contrast

to that achieved by TACOA (4.30% in average). At lower taxonomic ranks, TACOA

achieved average sensitivity values between 17% (order) and 10% (genus) for the clas-

sification of 10Kbp contigs, while PhyloPythia was not able to predict any taxa for these

long contigs, thus obtaining a sensitivity of 0% (Figure 5.16). Although PhyloPythia

was not able to make predictions at ranks order and genus, a marginal misclassification

rate was observed (0.14% at rank order and 0.10% at rank genus) for fragment length of

10Kbp.
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5.4 Influence of horizontal gene transfer on the

classification accuracy

The classification accuracy of methods using composition-based features might be influ-

enced by an heterogeneous nucleotide composition present in the DNA sequence of the

analyzed genomic fragment.

Although differences in the nucleotide composition of DNA sequences can be linked

to a number of genomic attributes, including codon usage, DNA base-stacking energy,

DNA structural conformation, strand asymmetry and even relic features of the primary

genetic information, horizontal gene transfer events (HGT) is one of the most common

cause (Bohlin et al., 2008a; Zhang and Ya-Zhi, 2008). The work of Brown et al. also

suggest that despite the rapid changes on the nucleotide composition of recent transferred

DNA chunks, the phylogenetic signal from the donor can still be detected if the HGT

event is recent, rather than ancient (Brown, 2003). Since the importance of HGT events

has been gaining increasing attention lately (Keeling and Palmer, 2008), its influence in

the accuracy of the intrinsic-based classifier TACOA was investigated.

One of the finding of this work is that tetranucleotides were best suited to analyzed ge-

nomic fragments ≤ 3Kbp. But it has been reported that tetranucleotide frequencies are

a good measure to detect horizontally transferred regions (Bohlin et al., 2008b). There-

fore, any classifier aiming to predict the taxonomic origin of genomic fragments based

in a tetranucleotide feature is susceptible to ”wrongly” classify to the donor taxonomic

class a genomic fragment obtained via HGT. To explore the influence of HGT events in

the classification accuracy of TACOA, fragments of length 1Kbp from two genomes (one

archaeal and one bacterial) were selected. Several studies (Koonin et al., 2001; Podell

and Gaasterland, 2007; Ruepp et al., 2000; Garcia-Vallve et al., 2000) have reported

acquisition of large stretches of DNA via HGT events for Thermoplasma acidophilum

(archaea) and for Thermotoga maritima (bacteria).

In particular, the archaeal genome of Thermoplasma acidophilum has been reported
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to acquire ≈12% of its genome via HGT. The main donors seem to belong to bacte-

rial organisms, but also some archaeal species have been proposed (Koonin et al., 2001;

Podell and Gaasterland, 2007). It has been suggested that T. acidophilum has received

genes via HGT from Sulfolobus solfataricus, a distantly related crenarchaeota living in

the same ecological niche (Ruepp et al., 2000; Podell and Gaasterland, 2007). The sen-

sitivity achieved by TACOA for T. acidophilum was 43% for reads 800bp long and 51%

for reads of length 1Kbp.

In order to evaluate the taxonomic distribution of misclassifications for T. acidophilum

genomic fragments, its genome was fragmented into pieces of length 1Kbp and predicted

their taxonomic origin. For the 1,564 fragments analyzed, 1% (16 from 1,564) were mis-

classified into the order sulfolobales, another 3% (47 from 1,564) into other members of

the euryarchaeota group, 7% (110 from 1,564) to a variety of members from the bacterial

group, and 38% (601 from 1,564) could not be classified (Figure 5.17). From the pro-

portion of genomic fragments that were ”erroneously” misclassified, the largest fraction

(7%) was placed into the sulfolobus group. The results of the taxonomic distribution of

”misclassifications” made by TACOA for T. acidophilum are in close agreement to pre-

vious studies made by Koonin et al. (2001); Podell and Gaasterland (2007). Hence, the

low number of correctly classified fragments obtained for T. acidophilum at rank genus

may be partially explained by the lateral transfered DNA from other species.

The same analysis was performed for the bacterial genome of Thermotoga maritima,

which is another organism with a high number of candidate genes that have been pre-

sumably acquired from archaea via HGT (Koonin et al., 2001). A total of 1,860 genomic

fragments of length 1Kbp each were classified using TACOA and analyzed (Figure 5.18).

A high number of misclassified genomic fragments were ”wrongly” assigned to the ar-

chaeal group (91 from 1,860), a small fraction (27 from 1,860) was erroneously assigned

to the sulfolobus group and 27% (503 from 1,860) could not be classified. Conversely

to T. acidophilum, the genome T. maritima seems to be recipient of DNA originating

mainly from archaeal species as already suggested by other authors (Koonin et al., 2001;

Podell and Gaasterland, 2007; Ruepp et al., 2000; Garcia-Vallve et al., 2000).
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Figure 5.17: Distribution of taxonomic assignments for Thermoplasma acidophilum.
Proportions of genomic fragments originating from the T. acidophilum genome that are
misclassified into other taxonomic groups.

Figure 5.18: Distribution of taxonomic assignments for Thermotoga maritima.
Proportions of genomic fragments originating from the T. maritima genome that are
misclassified into other taxonomic groups.
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These two case of studies strongly suggest that horizontally transfered stretches of

DNA can affect the classification accuracy of a classifier using compositional based fea-

tures to infer the taxonomic origin of genomic fragments. A possible explanation for this

observation is that the nucleotide composition of transferred DNA chunks still carry phy-

logenetic signals from the donor genome after the HGT event has occurred as suggested

by Brown (2003).

5.5 Cooperation in other metagenomic related projects

5.5.1 Overview

Nowadays high-throughput technologies are low in cost, fast and cloning biased free but

the size of the produced sequences is small when compared to the traditional Sanger

sequencing. One of the many open questions in the field of metagenomics relates to

the taxonomic classification of very short fragments (ranging from 100 to 400bp). A

short length of reads means that the information contained in it is very limited. The first

cooperation described in the following sections investigated the problem of taxonomi-

cally classifying these short genomic fragments. The most important results obtained

in this cooperation (the method developed and its classification accuracy) are given in

subsection 5.6.2.

Another important aspect of metagenomic projects is the visualization of the analyzed

data. After running the computational pipelines is desirable to summarize the informa-

tion in a graphical manner permitting an easier interpretation. Section 5.6.3 reviews some

results obtained within a cooperation, which one of the goals was to develop a method to

reveal patterns on metagenomics data and visualize them.

5.5.2 Classification of short DNA fragments – CARMA

CARMA is an algorithm that employes Pfam protein families as phylogenetic markers

to classify short read fragments based on a highly sensitive sequence similarity method.
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This classifier incorporates two components: the first, dedicated to identify protein fam-

ily fragments using profile hidden Markov models (pHMMs). Each existing protein fam-

ily is modeled using pHMMs derived from multiple alignments of all members of each

family. In CARMA, these pHMMS are used to identify new family members. The sec-

ond, relates to the reconstruction of a phylogenetic tree per matching Pfam family. The

taxonomic classification of an unknown read is based on its phylogenetic relationship to

family members with known taxonomic affiliation, derived from the reconstructed phylo-

genetic tree. All gene fragments encoding a protein family are regarded as environmental

gene tags (EGTs).

Identification of EGTs is carried out using the comprehensive and manually curated

Pfam database. Multiple alignments of protein families as well as their corresponding

pHMMs are deposited in the Pfam data base (Finn et al., 2008). The taxonomic origin

of each member of the protein family is also stored in the database. The highly sensitive

pHMMs are employed to detect partial domains and protein families in short length read

sequences.

All EGTs carrying a complete or partial protein family are aligned to the multiple

alignment of the matching Pfam family. Subsequently, a phylogenetic trees is recon-

structed using the multiple sequence alignment containing all members of the protein

family and the corresponding matching EGTs. To reconstruct a phylogenetic tree for

the EGTs and the members of the matching protein family, the pairwise distances of all

members of the protein family matching an EGT is employed. The pairwise distance is

computed using the fraction of identical amino acids contained in the aligned region. All

phylogenetic trees reconstructed by CARMA are unrooted. An unrooted phylogenetic

tree illustrate the relatedness of the sequences used but without assuming a common

ancestry. Unrooted phylogenetic trees are reconstructed using the neighbor-joining clus-

tering method (Saitou and Nei, 1987).

To evaluate the classification accuracy of the developed algorithm, 77 completely se-

quenced genomes were used to build a synthetic metagenome covering the archaea and

bacteria phylum. The generated test set contained fragments of short length averaging



90 Chapter 5. Results

Figure 5.19: Average accuracy obtained by CARMA on a synthetic metagenome.
The average accuracy obtained for assignments of short genomic fragments (80-120 bp)
at five different taxonomic ranks are depicted as bars. Colors represent three different
accuracy measures (sensitivity, specificity and False Negative rate).

100bp representing 10 phyla, 11 classes, 29 orders and 62 genera. Short sequence reads

were simulated using all selected genomes and generating genomic fragments ranging

between 80 – 120 bp in length. Artificial sequencing errors were introduced at homopoly-

mers to better recreate the short reads generated with a GS 20 system (Margulies et al.,

2005).

In general, a high classification accuracy was obtained considering the short length

of the genomic fragments analyzed. Approximately 15% of the ≈ 2.7 million genomic

fragment analyzed was labeled as having an EGT. On average, the sensitivity ranged

from 84% (superkingdom) to 44%(genus) while the specificity reached 97% at rank su-

perkingdom and 90% at rank genus (Figure 5.19). Conversely, the number of misclassi-

fications was kept low fluctuating between 7% (superkingdom) to 11% (genus). On the

other hand, the number of EGTs that cannot be assigned to a known taxonomic group

increased from 10% (superkingdom) to 45% (genus).
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5.5.3 Using a hierarchically growing hyperbolic SOM to cluster and

visualize taxonomic hierarchical data

The main idea behind the use of a hierarchically growing hyperbolic SOM (H2SOM)

was to take advantage of its capacity to visualize large and hierarchically structured data

sets. H2SOM employs hyperbolic spaces which are characterized by an uniform nega-

tive curvature, meaning that the size of the neighborhood around a given point increases

exponentially with its radius (Ontrup and Ritter, 2006; Martin et al., 2008). This expo-

nential behavior enables to produce visualizations that are easy to explore, for example

in Ontrup and Ritter (2006) the Poicaré disk was employed to project trained H2SOM.

This projection enables to selectively bring to the center (focal area) while still keeping

on sight its surrounding (Ontrup and Ritter, 2006). Moreover, the use of H2SOM allows

to explore, cluster and visualize the analyzed data simultaneously in an unsupervised

manner. To explore and classify metagenomic data the H2SOM can be provided with

pre-labeled data or by identifying highly conserved sequences using the 16sRNA to link

each node to its taxonomic affiliation.

An example is given in Figure 5.20, which was generated using genomic feature vec-

tors (GFVs) derived from 350 genomes from the archaea and bacteria phylum. GFVs

were computed using oligonucleotides of length 4. In this visualization, the objects rep-

resent the most abundant taxonomic group, in terms of number of sequences. Objects are

colored according its taxonomic affiliation at rank superkingdom, red and orange depict

the archaeal group while yellow, green cyan, and blue the bacteria superkingdom. The

labels of each node outlines its content, by numerical and taxonomically means. The in-

ner or first ring of the trained H2SOM represents the taxonomic rank superkingdom and

is labeled with its representing groups and their respective counts. The trained H2SOM

continuos growing towards the periphery with outer rings each one of them representing

deeper taxonomic ranks (i.e. phylum, class, order and genus). The background color

helps to visualize the node distances in feature space, thus easily revealing areas of high

or low variation among GFVs. Blue areas corresponds to large node distances while red
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ones signify that GFVs are close to each other in feature space.

The trained H2SOM shown in Figure 5.20 reveals that GFVs are clustered in a bio-

logical meaningful manner, that is taxonomically related organisms are often localized

close to each other. In general, nodes to which closely related species were assigned

have lower variation, thus small distance (red background), reflecting their similar GFVs.

Conversely, variation increases in areas located towards the inner ring regions indicating

that GFVs contained in those nodes are more dissimilar (blue background). The high

variation observed for inner rings with respect to the periphery is reasonable due to the

wider phylogenetic spectrum to which the contained GFVs belong to. Analogously, Fig-

ure 5.20 shows that GFVs obtained from archaeal genomes display a higher variance

than those computed from the superkingdom bacteria.

The case of study Thermotoga reviewed using TACOA was also found in the unsu-

pervised clustering accomplished by the H2SOM. In section 5.5, it was shown that parts

of the Thermotoga genome was misclassified into the euryarchaeota phyla. In Figure

5.20 this case is easily spotted, Thermotoga despite of being a bacteria is located in a

node with members of the euryarchaeota (archaea) phyla. The H2SOM clustering results

independently confirm the effect of horizontally gene transfer events in the classification

problem when using compositional based features.
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Figure 5.20: Graphical spotting of misclassified organisms.
A projection showing outer nodes and the taxonomic groups therein clustered. The pro-
jection has been dragged such that the methanosarcinales, chlamydiales, thermotogales,
thermococcales and lactobacillales are on focus towards the edge of the graphic. At each
node the most represented taxonomic group is displayed by a colored object red and or-
ange for archaea and yellow, green, cyan and blue for bacteria. In this projection, the
blue (high variation)-red (low variation) spectrum is more evident indicating the degree
of variance of the groups affiliated to the exhibited nodes. It is readily seen that a blue
object (bacteria - thermotoga) is co-localized within a group that is mainly composed by
euryarchaeota.





CHAPTER 6

Discussion

TACOA, a novel method developed in this work is able to accurately predict the taxo-

nomic origin of genomic fragments from metagenomic data sets by combining the advan-

tages of the k-NN approach with a smoothing kernel function. The reference set used by

the proposed method can be easily updated by simply adding the Genomic Feature Vec-

tors (GFVs) of new genomes to the reference set without the need of retraining. TACOA

is a standalone tool, which can be easily installed and can be run on a desktop computer.

Therefore allowing researchers to locally analyze their metagenomic sequence data or

integrate the program into their computational pipelines.

Analogous to PhyloPythia, sample specific-models of particular organisms can be eas-

ily integrated into TACOA framework and hence supporting the identification of organ-

isms of special interest. Sample specific-models can be easily incorporated using the

following approach: Genomic fragments carrying phylogenetic marker genes (such as

rRNA genes) or fragments with high similarity to reference sequences of known origin

(e.g. identified using a blast search) can be taxonomically annotated in a pre-processing
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step. Subsequently, these annotated fragments can be added to the reference set of

TACOA. This can be easily achieved using the ”addReferenceGenome” program pro-

vided in TACOA. The use of sample-specific models can improve the accuracy of the

classifier for those species that are represented in public databases (because the test set

is contained in the reference set). It was demonstrated in this work that having the test

set in the reference set substantially improves the sensitivity and specificity (up to 30%)

and at the same time a decline on the false negative rate is observed.

As a whole, the classification accuracy at five different taxonomic ranks was evalu-

ated: superkingdom, phylum, class, order, and genus. TACOA is able to correctly clas-

sify genomic fragments as short as 800bp up to rank class. It can be applied to predict

the taxonomic origin of genomic fragments obtained using any sequencing technology

able to produce fragments ≥ 800bp. The TACOA strategy also produced reliable pre-

dictions for genomic fragments originating from taxonomic groups that are absent from

the reference set (simulating fragments stemming from genomes not yet sequenced). On

average and over all taxonomic ranks, 77% of these fragments were correctly classified

as ”unknown”.

TACOA compares well to PhyloPyhtia the current most sophisticated taxonomic clas-

sifier for environmental fragments. In terms of percentage of correctly classified frag-

ments (sensitivity) TACOA slightly outperforms PhyloPythia for reads of length 800bp

and 1Kbp at all taxonomic ranks evaluated, except for reads 800bp at rank class. But the

very low false negative rate (0.16%) and the high specificity (86%) of TACOA makes the

accuracy for reads of length 800bp (at rank class) comparable to that obtained by Phy-

loPythia. Compared to TACOA, the overall reduced sensitivity obtained by PhyloPythia

(evident for the analyzed read lengths) is partially due to the absence of the phylum Chlo-

roflexi and Thermatogae from its training set. This example illustrates the positive effect

of an updated training or reference set in the prediction of known taxonomic classes.

For contigs of length 10Kbp, TACOA achieved a lower sensitivity, lower false nega-

tive rate and higher specificity values than PhyloPyhtia. Although PhyloPythia achieves

higher sensitivity values for contigs of length 10Kbp the overall performance is compa-
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rable for both classifiers at ranks superkingdom, phylum and class.

At deeper taxonomic ranks (order and genus), for all evaluated lengths TACOA was

still able to provide correct classifications for several taxonomic classes (average sen-

sitivity of about 7%) while PhyloPythia failed in making any taxonomic assignments

(sensitivity of 0%). With an average sensitivity of 17% (order) and 10% (genus), an

average false negative rate of 1.45% (order) and 2.29% (genus), TACOA can provide a

more detailed view of the taxonomic composition of an environmental sample. Notice

that in practice it is not recommended to draw conclusions at such deep ranks for reads

≤ 1Kbp because only a small number of fragments may be represented in the currently

available sequenced genomes.

The accuracy of both classifiers was assessed using the sensitivity, false negative rate

and specificity. To rule out any differences on performance due to possible compositional

biases of the data set used in the comparison between PhyloPythia and TACOA, only the

sensitivity and false negative rates (FNr) were given emphasis. The reasoning behind this

criteria is that the sensitivity and FNr measure for a taxonomic class is independent of

the composition of remaining classes. The term false positive is absent in the equations

used to compute the sensitivity and FNr (chapter 2). Hence, the sensitivity and FNr

measured for each taxonomic group is not affected by possible biases of the test set.

Contrastingly, the specificity measured for a class is strongly affected by the composition

of the remaining test set since it includes the false positives obtained from other classes.

To better illustrate this issue two cases are given:

First case: Lets assume that at rank phylum only three different taxonomic classes ex-

ist: Proteobacteria, Cyanobacteria and Chloroflexi. Lets also assume that the number of

DNA fragments representing each class is biased: Proteobacteria has 10,000 fragments

while Cyanobacteria and Chloroflexi have 100 fragments each. Now lets assume that

the FNr is constant at 10% per class. In consequence, each class contributes to the false

positives (FPs) of other classes unequally: 1,000 fragments from Proteobacteria will

be wrongly assigned between Cyanobacteria and Chloroflexi. On the other hand, only

10 fragments from Cyanobacteria will be wrongly assigned between Proteobacteria or
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Chloroflexi. Additionally, only 10 fragments from Chloroflexi will be assigned between

Proteobacteria and Cyanobacteria. Furthermore, lets assume that the false positives are

assigned at random to one of the wrong classes. In this case, a high specificity for Pro-

teobacteria will be measured and a low specificity for Cyanobacteria and Chloroflexi.

Second case: Now lets assume that class Protebacteria is represented by only 10 frag-

ments and Cyanobacteria and Chloroflexi are both represented again by 100 fragments.

In this case, a low specificity for Proteobacteria but a high specificity for Cyanobacteria

and Chloroflexi would be measured.

These two cases clarify the issue of how the specificity is influenced by the composi-

tion of the entire data set. On the other hand, the sensitivity and FNr are not affected by

the false positives thus their values for each of the three classes should be very similar in

both cases. This example clearly illustrates that in a multi-class classification problem,

the sensitivity and FNr measured for each class is not impacted by the composition/bias

of the entire test set but the specificity is. However, the specificity for TACOA and Phy-

loPythia was also given because it provides an idea on how reliable the predictions are,

despite of being influenced by possible biases of the test set.

It has already been reported for many practical examples that simple traditional clas-

sification algorithms such as K-NN can achieve competitive results when compared to

more sophisticatted techniques such as SVMs (Zhu et al., 2007). Moreover, several

works have already shown that a boost in the performance of the K-NN algorithm can

be achieved by introducing modifications such as: a) a weight adjusted scheme (Song

et al., 2007), K-NN-kernel (Hotta et al., 2004), b) modified distance metrics – adaptive

metrics – (Domeniconi et al., 2002), c) large margin (Weinberger et al., 2006) among

others. Furthermore, for some practical applications the performance of a modified K-

NN algorithm demonstrated to be competitive or even outperform more sophisticated

machine learning techniques such as SVMs (Song et al., 2007; Okum, 2006; Yao and

Ruzzo, 2006; Saha and Heber, 2006; Berrar et al., 2006; Zhu et al., 2007). In this work

a modified K-NN-approach was used, namely a kernelized K-NN, which combines the

advantages of K-NN with those of kernel methods (also used by the SVM technique).
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In the comparison analysis of TACOA and PhyloPythia similar results were obtained.

The slightly higher accuracy achieved by TACOA does not stem from the method used,

in turn it is valid to assume that the higher accuracy is the result of the entire strategy

implemented in the classifier presented in this thesis. A possible explanation could be

that the features used in TACOA probably have a better discrimination power among

the different taxonomic classes. TACOA uses a ratio between the observed and the ex-

pected frequency of each oligonucleotide as features which can be considered as a more

elaborated measure of the oligonucleotide frequencies since it considers over and un-

derrepresentation of a given oligonucleotide. This ratio is computed for each possible

oligonucleotide of a fixed length. In contrast, PhyloPythia uses plain frequencies of

a given set of patterns in a sequence. For example, in McHardy et al. (2007) it was

reported that oligonucleotide patterns that best separate taxonomic classes have a dual

dependency: rank and genomic fragment length dependency. Conversely, the best sepa-

rating feature in TACOA depends only on the genomic fragment length. It is likely that

the features chosen for the PhyloPythia classifier would require longer fragments. This

would explain the higher sensitivity achieved by TACOA for smaller genomic fragments.

The fact that TACOA and PhyloPythia obtained comparable results can also be par-

tially explained by the following reasons: a) both approaches compare the query vec-

tor to reference vectors via a Gaussian kernel function. b) Both approaches are able

to learn complex and disjoint decision functions. c) Both approaches can deal with

high-dimensional input-data (using a Gaussian kernel), with unbalanced training-data

(TACOA using its weighting scheme) and are able to perfectly separate the classes in

most practical applications. The key difference between both classifiers is that the SVM

based PhyloPythia is able to maximize the margin between the learned hyperplane and

the two classes which is not the case for TACOA. On the other hand, the kernelized ap-

proach in TACOA has the advantage to be a natural multi-class classifier, in contrast to a

collection of binary classifiers.

Based on the comparable results obtained for PhyloPythia and TACOA, it can be

drawn that for this practical application the maximization of the margin (in the case
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of SVM) does not have a great influence in the overall accuracy achieved. This may

be explained by the sparseness of the data in the input space. If the classes are distant

enough (not too many examples are located in the class boundaries) then maximizing the

margin may not have a strong effect on the performance of the classifier.

According to the arguments presented above it is reasonable to obtain comparable re-

sults. Notably, the idea behind the comparison between the two classifiers was to evaluate

the strategy as a whole and not aimed to compare the performance of SVMs, K-NN and

kernelized K-NN. It can be said that the comparison of the classifier made in this work

was user-oriented or what an end user will expect when utilizing the available classifiers.

In the end, users are interested on the overall performance of the tools available for the

taxonomic classification of environmental DNA fragments.

An interesting observation made during this work was that the classification of ge-

nomic fragments is possible using only GFVs computed from complete sequenced

genomes rather than computing the vectors on fragments derived from complete

genomes. Similar observations have already been made by Abe et al. in 2005 and

2006 and more recently by McHardy et al. in 2007, where the developed classifiers

were trained with genomic fragments longer than those being tested. In addition to these

findings, this work demonstrated that complete genomes can also be used as reference to

classify environmental genomic DNA fragments.

This study supports the findings that frequencies of short length oligonucleotides (i.e.

tetra- and penta-oligonucleotides) are best suited to capture taxon-specific differences

among prokaryotic genomes (Abe et al., 2005, 2006; Sandberg et al., 2001; Teeling

et al., 2004a). Moreover, our parameter search analysis strongly suggests that tetra- or

penta-oligonucleotides frequencies are optimal features for TACOA to classify envi-

ronmental genomic fragments as short as 800bp. This observation is in accordance to

those reported by Bohlin et al. Bohlin et al. (2008a) who already proposed that little

increase in information potential about phylogenetic relationships is gained when using

oligonucleotide sizes larger than hexa-nucleotides.
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Parts of this work demonstrated that recent events of HGT can affect the accuracy

of a composition-based classifier. The correct classification of horizontally transferred

regions into its ”current” taxon is difficult if these still carry a strong phylogenetic signal

from the donor genome. This was illustrated by classifying fragments of length 1Kbp

from the archaea T. acidophilum and the bacteria T. maritima. Notably, HGT is not the

only phenomena causing variations in the oligonucleotide frequencies within genomes

and hence affecting the classification performance.

The method developed in this work, TACOA, combines the ability of predicting the

taxonomic origin of genomic fragments with high accuracy and the advantages of being a

tool that can easily be installed and used on a desktop computer breaking any dependency

and limitations that web server services may bring. Altogether, it strongly suggests that

TACOA offers a great potential to assist on the exploration of the taxonomic composition

of metagenomic data sets.





CHAPTER 7

Conclusions

One of the foremost contribution of this dissertation is a novel strategy targeting the

problem of taxonomic classification of genomic fragments. Furthermore, the strategy

presented in this work uses features that do not require sequence homology thus making

possible the classification of genomic fragments by means of comparison of statistical

properties derived directly from the DNA of taxonomic related organisms. Its contribu-

tions include:

• Development of a stand alone tool named TACOA to taxonomically classify

genomic fragments. The strategy implemented in TACOA classifies a genomic

fragments based on a ratio that is able to measure under- and over representation

of all oligonucleotides on a DNA sequence. The classifier itself combines the sim-

plicity of the k-NN algorithm with a kernel function. From a practical perspective,

this combination, together with the selected features, made possible to develop

a novel strategy for the classification of genomic fragments. Moreover, TACOA
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compares very well with other approaches employing more sophisticated methods

being at the same time easy to understand, apply and implement. Moreover it was

demonstrated in this work that the methodology is very accurate for ranks: superk-

ingdom, phylum and class while the modest accuracy obtained at lower ranks will

be soon overcome as the genomic fragment length growths in length.

• Frequencies of short length oligonucleotides are best suited to capture taxon-

specific differences among prokaryotic genomes. The parameter search analysis

performed in this work strongly suggests that tetra- and penta-oligonucleotides fre-

quencies are optimal features for the strategy implemented in TACOA to classify

environmental genomic fragments as short as 800bp.

• Phylogenetic signal of complete genomes can still be traced to genomic frag-

ments. In general, close related organisms have the same pattern of over- and

under-represented set of oligonucleotides and this oligonucleotide patterns are

taxon specific. The phylogenetic signal is strong enough to be traced even in DNA

chunks that have been recently transfer from one specie to other, despite the rapid

adaption of the foreigner DNA to its new ”host”.

• Complete genomes can be used as reference for de novo classification. This

work demonstrated that even complete genomes can be used as reference to clas-

sify environmental genomic DNA fragments. So far the taxonomic classification

of genomics fragments was made using as reference also genomic fragments of a

longer length than the one being analyzed.

• Recent events of horizontal gene transfer can affect the accuracy of a compo-

sition based classifier. Genomic fragments that have just being exchange between

species will be ”misclassified” into their taxon of origin only because they still

carry the phylogenetic signal of their source organism. The classification accuracy

for such fragments is jeopardized and the overall accuracy for a taxon will highly

depend on how much foreigner DNA it has received.
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• Use of sample specific models can greatly aid in identifying taxonomic groups

of interest. In this work it was demonstrated that guided searches can be per-

formed. The use of high quality (e.g. fragments carrying rRNA genes) fragments

from a taxonomic group of interest can greatly help in identifying genomic frag-

ments from the same taxonomic group.

• For multiclass classification problems the sensitivity and false negative rate

are unbiassed measures. In a multi-class classification problem, the sensitivity

(Sn) and False Negative rate (FNr) (as defined in this work) measured for each

class does not depend on any composition or bias of the test set, but the specificity

does. This indicates that comparisons between methods should be made on the

basis of the Sn and FNr, for those cases where another method (e.g. ROC analysis)

can not be made.

• First successful application of a kernelized k-NN for the problem of taxo-

nomic classification of metagenomic data. TACOA can be successfully apply

to metagenomic data set that have a minimum genomic fragment size of 800bp.

It was demonstrated in this work that the presented strategy can deal with high

dimensional data owing to the integration of a Gaussian kernel into the k-NN al-

gorithm.





CHAPTER 8

Future directions

The work presented in this dissertation is a first step towards answering one of the many

questions posed by the emerging field of metagenomics. But as one of the pioneering

work offers a solution to an immediate need, that is the problem of taxonomically clas-

sifying environmental genomic fragments. At the same time, it opens a myriad of new

challenges that can be explored as a natural extension of this work. In this chapter an

overview of possible directions of research is given.

There are two major areas of research that are immediately foreseen, the first con-

cerns to the improvement of the classification strategy itself. The second relates to the

visualization of the ever increasing amount of metagenomic data.

• Improvements to the classification strategy.

One aspect to improve in the classification strategy is to perform a deeper analysis

of the features (i.e. oligonucleotide ratio) used in the strategy of the TACOA clas-

sifier. It will be undoubtedly helpful to investigate wether the classification strat-
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egy would benefit from a feature selection preprocessing step. Or even further, if

problematic taxonomic groups, in terms of classification, can benefit from it. For

example it is possible to use feature selection techniques such as the Wrapper tech-

nique (Kohavi and John, 1998) which incorporates class information by evaluating

sets of features according to the performance of the classifier. Therefore, the set of

selected features are specifically tuned to a given classification method in this case

to TACOA.

It was already shown, as part of the collaboration work done with Christian Martin

for the visualization of metagenomic data, that feature selection of the oligonu-

cleotide frequency helped in improving the clustering step. Feature selection could

also positively impact the speed performance of the classifier presented in this

work. If the size of the genomic feature vector is reduced then the size of the whole

data set will also be reduced. As consequence, the amount of data to be stored and

the computational time required in the classification step will be reduced.

Another interesting direction of research is to explore if techniques such as ”con-

densing” (Hart, 1968) or ”editing” (Wilson, 1972) can speed up the classification

step of new items. The main advantage of ”condensing” is to reduce the training

set by eliminating many reference items that need to be stored, but considerably re-

taining the decision boundary (DB). the idea behind condensing is that references

items close to the DB are essential for the k-NN classification while those far from

the DB do not impact the decision. Thus, deletion of this inefficient reference

items aids in reducing the computational time (Fayed and Atiya, 2009). On the

other hand, complete removal of reference items, for example, outlier reference

items that are embedded by items from other classes or ”editing” can improve

generalization capabilities. However, the effect of editing is already a feature im-

plemented in TACOA by the using the Gaussian kernel but it could help in a better

tuning of the lambda parameter.

• Improvements for the visualization.
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Another natural extension of the presented framework is to develop a visualization

module able to graphically represent the discriminant function used to decide to

which taxonomic class to a genomic fragment is more likely to be affiliated. An

immediate benefit would be to explore the degree of association of the analyzed

fragment to the different taxonomic classes. Thus, can also assist the researcher

in deciding which is the taxonomic rank with stronger support for the proposed or

conflicting classification of special cases. As consequence a greater interpretability

of the results can be achieved. In this context, the methodology presented in this

work is fully transparent since classification details as the one discussed above are

completely traceable. This is not possible in black box strategies such as support

vector machines.

The evaluation made in this dissertation demonstrated that TACOA can accurately

predict the taxonomic origin of reads and contigs until rank genus. Even for reads as

short as 800bp these predictions are reliable until rank order. As described before, next

generation sequencing technologies have revolutionized the field of genome research

owing to high throughput and low sequencing costs. However, the main draw back is the

short read length of about 350bp for pyrosequencing and 120bp for Solexa. Therefore,

these reads are too short to be directly taxonomically classify using any of the intrinsic

classifiers including TACOA. However, sequencing technologies are rapidly advancing

and the problem of short length reads will soon be overcome. This will make these

sequencing technologies even more valuable for metagenomics as in metagenomics read

length clearly does matter.

On the other hand, if in the future is possible to sequence reads of several thousand

base pairs many of the current challenging problems in metagenomics will get much

easier or even completely resolved, including taxonomic classification, reconstruction of

complete genomes (assembly), and functional annotation.

Finally, another exciting direction of research is to bridge the knowledge gain by

identifying ”who is out here” (metagenomics) to ”what they are doing” (functional ge-
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nomics). The motivation for bridging focuses in the quest to go one step further: from

characterization or cataloging, first necessary and important step, to putting into a com-

munity context ”what we see”. Furthermore, another ideal goal is to investigate the

community dynamics, in other words how ”what we see” changes over time and range

of conditions. However, to successfully achieve this objective is of great importance to

accurately know ”what is out there” and ”what they are doing”.
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Lodé T.: Genetic divergence without spatial isolation in polecat mustela putorius popu-

lations. J. Evol. Bio., 14:228–236, (2001).

López-Garcı́a P., Moreira D.: Tracking microbial biodiversity through molecular and

genomic ecology. Res. Microbiol., 159:67–73, (2008).

Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., Berka

J., Braverman M. S., Chen Y.-J., Chen Z., Dewell S. B., Du L., Fierro J. M., Gomes

X. V., Godwin B. C., He W., Helgesen S., Ho C. H., Irzyk G. P., Jando S. C., Alenquer

M. L. I., Jarvie T. P., Jirage K. B., Kim J.-B., Knight J. R., Lanza J. R., Leamon J. H.,

Lefkowitz S. M., Lei M., Li J., Lohman K. L., Lu H., Makhijani V. B., McDade K. E.,

McKenna M. P., Myers E. W., Nickerson E., Nobile J. R., Plant R., Puc B. P., Ronan

M. T., Roth G. T., Sarkis G. J., Simons J. F., Simpson J. W., Srinivasan M., Tartaro

K. R., Tomasz A., Vogt K. A., Volkmer G. A., Wang S. H., Wang Y., Weiner M. P., Yu

P., Begley R. F., Rothberg J. M.: Genome sequencing in microfabricated high-density

picolitre reactors. Nature, 437:376–380, (2005).



118 Bibliography

Markowitz V. M., Ivanova N., Palaniappan K., Szeto E., Korzeniewski F., Lykidis A.,

Anderson I., Mavromatis K., Mavrommatis K., Kunin V., Garcia Martin H., Dubchak

I., Hugenholtz P., Kyrpides N. C.: An experimental metagenome data management

and analysis system. Bioinformatics, 22:e359–367, (2006).

Martin C., Diaz N., Ontrup J., Nattkemper T.: Hyperbolic som-based clustering of

dna fragment features for taxonomic visualization and classification. Bioinformatics,

24:1568–1574, (2008).

Mavromatis K., Ivanova N., Barry K., Shapiro H., Goltsman E., McHardy A. C., Rigout-

sos I., Salamov A., Korzeniewski F., Land M., Lapidus A., Grigoriev I., Richardson

P., Hugenholtz P., Kyrpides N. C.: Use of simulated data sets to evaluate the fidelity

of metagenomic processing methods. Nat. Methods, 4:495–500, (2007).

McHardy A. C., Martin H. G., Tsirigos A., Hugenholtz P., Rigoutsos I.: Accurate phy-

logenetic classification of variable-length DNA fragments. Nat Methods, 4:63–72,

(2007).

Merkl R.: Sigi: Score-based identification of genomic islands. BMC Bioinformatics,

5:22, (2004).

Mulder N. J., Apweiler R., Attwood T. K., Bairoch A., Bateman A., Binns D., Bork P.,

Buillard V., Cerutti L., Copley R., Courcelle E., Das U., Daugherty L., Dibley M.,

Finn R., Fleischmann W., Gough J., Haft D., Hulo N., Hunter S., Kahn D., Kanapin

A., Kejariwal A., Labarga A., Langendijk-Genevaux P. S., Lonsdale D., Lopez R.,

Letunic I., Madera M., Maslen J., McAnulla C., McDowall J., Mistry J., Mitchell A.,

Nikolskaya A. N., Orchard S., Orengo C., Petryszak R., Selengut J. D., Sigrist C. J.,

Thomas P. D., Valentin F., Wilson D., Wu C. H., Yeats C.: New developments in the

InterPro database. Nucleic Acids Res., 35:D224–228, (2007).

Niemiller M. L., Fitzpatrick B. M., Miller B. T.: Recent divergence with gene flow



Bibliography 119

in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene

genealogies. Mol. Ecol., 17:2258–2275, (2008).

Noble P. A., Citek R. W., Ogunseitan O. A.: Tetranucleotide frequencies in microbial

genomes. Electrophoresis, 19:528–535, (1998).

Noble W. S.: What is a support vector machine? Nature Biotechnology, 24(12):1565–

1567, (2005).

Okum O.: K-local hyperplane distance nearest neighbor algorithm and protein fold. Pat-

tern Recognition and Image Analysis, 6:19–22, (2006).

Ontrup J., Ritter H.: Large-scale data exploration with the hierarchically growing hyper-

bolic som. Neural Netw., 19(6):751–761, (2006).

Overbeek R., Begley T., Butler R. M., Choudhuri J. V., Chuang H.-Y., Cohoon M.,

de Crecy-Lagard V., Diaz N., Disz T., Edwards R., Fonstein M., Frank E. D., Gerdes

S., Glass E. M., Goesmann A., Hanson A., Iwata-Reuyl D., Jensen R., Jamshidi N.,

Krause L., Kubal M., Larsen N., Linke B., McHardy A. C., Meyer F., Neuweger H.,

Olsen G., Olson R., Osterman A., Portnoy V., Pusch G. D., Rodionov D. A., Ruckert

C., Steiner J., Stevens R., Thiele I., Vassieva O., Ye Y., Zagnitko O., Vonstein V.: The

subsystems approach to genome annotation and its use in the project to annotate 1000

genomes. Nucleic Acids Res, 33:5691–5702, (2005).

Podell S., Gaasterland T.: DarkHorse: a method for genome-wide prediction of horizon-

tal gene transfer. Genome Biol, 8:R16, (2007).

Pop M., Phillippy A., Delcher A. L., Salzberg S. L.: Comparative genome assembly.

Brief. Bioinformatics, 5:237–248, (2004).

Raes J., Harrington E. D., Singh A. H., Bork P.: Protein function space: viewing the

limits or limited by our view? Curr. Opin. Struct. Biol., 17:362–369, (2007).



120 Bibliography

Rappe M., Giovannoni S. J.: The uncultured microbial majority. Annu Rev Microbiol,

57:369–394, (2003).
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tetranucleotide frequencies for the assignment of genomic fragments. Environ. Mi-

crobiol., 6:938–947, (2004a).

Teeling H., Waldmann J., Lombardot T., Bauer M., Glöckner F. O.: TETRA: a web-
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