
Universität Bielefeld

Technische Fakultät
AG Praktische Informatik

GENDB
A second generation genome annotation system

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Universität Bielefeld

vorgelegte

Dissertation

von

Folker Meyer 29. Oktober 2001

Contents

1. Introduction 2

1.1. A shift of paradigms from analysing genes to analyzing genomes 2

1.2. Data from genome analysis . 3

1.2.1. Sequence data . 3

1.2.2. Transcriptomics data . 5

1.2.3. Proteomics data . 6

1.2.4. Metabolomics data . 7

1.3. Genome annotation systems . 8

1.3.1. Existing genome annotation systems 9

1.3.2. Other Genome Information Systems 16

2. Design of a new genome annotation system 17

2.1. New challenges for genome annotation systems 17

ii

Contents

2.2. Software engineering design criteria 18

2.3. The need for conservation of resources 19

2.3.1. Computational resources 19

2.3.2. Storage resources . 19

2.3.3. Human resources . 19

2.4. Other requirements . 20

2.5. Overview of the GENDBsystem 21

2.5.1. Data storage . 22

2.5.2. Frontends – The user interfaces 27

2.5.3. Wizards – automation of complex repetitive tasks . . . 29

2.5.4. Scheduler – computing observations 31

2.5.5. The application programmer’s interface 38

2.5.6. The flow of information in GENDB 39

2.5.7. Conventions used in GENDB. 42

3. Implementation of GENDB 43

3.1. Implementation details . 43

3.1.1. Achieving modularity and extensibility 43

3.1.2. Use of object oriented approach 44

3.1.3. Use of a DBMS . 45

3.1.4. Using objects with a RDBMS 47

3.1.5. Class and object methods generated by O2DBI 51

3.1.6. Functions automatically generated by O2DBI 52

3.2. The Application Programmers Interface 54

3.2.1. Autogenerated functions for all object types. 54

3.2.2. Not automatically generated methods for all object types 67

iii

Contents

4. Results 76

4.1. User interface manual . 76

4.1.1. Uploading data and gene prediction 77

4.1.2. Viewing the Contig . 78

4.1.3. Viewing observations 81

4.1.4. Annotation . 85

4.1.5. Pathway viewer . 87

4.1.6. Wizards . 88

4.1.7. The virtual 2D-Gel . 91

4.2. The web interface of GENDB. 93

4.3. Analysis of genomic data with GENDB 98

4.3.1. Analysis of the complete genome of C. glutamicum . . . 98

4.3.2. Analysis of several S. meliloti contigs 100

4.3.3. Analysis of several smaller contigs with GENDB 100

4.3.4. Analysis of the B. subtilis, E. coli and M. tuberculosis
genomes . 101

4.3.5. Analysis of a mycoplasma genome 101

4.4. Summary . 104

5. Discussion 108

5.1. Availablility and Future work for GENDB. 110

5.1.1. Availability . 110

5.1.2. Future work . 110

A. Roadmaps for Installation and future development 112

A.1. Installation Roadmap for a GENDBsystem. 113

iv

Contents

A.1.1. Step: 1 – Installating the neccessary software 113

A.1.2. Step: 2 – Installation of GENDB 114

A.2. Roadmap for future GENDBversions. 115

B. Source Code 117

B.1. Source code for GENDB.pl . 117

B.2. Code generated for the contig object by O2DBI 127

Bibliography 138

v

Acknowledgements

The author wishes to thank Prof. Dr. Robert Giegerich, Prof. Dr. Alfred
Pühler and Dr. Jörn Kalinowski for their scientific guidance.

Many thanks also to the following people for their work on the GENDBsys-
tem: Burkhard Linke who implemented a lot of the functionality in the _add

modules. Oliver Rupp who implemented the new user interface. Dipl.-
Inform. Jörn Clausen who wrote the O2DBI package in the context of this
project. Dipl.-Inform. Torsten Kasch, our System administrator, who kept
the machines and databases working. Dipl.-Inform. Alexander Goesmann
who made numerous changes to the web interface and together with Dipl.-
Inform. Martin Haubrock implemented the metabolic pathway component
(PathViz).

vi

Abstract

The advent of new high throughput technologies opens the road towards a
new era of genome analysis. Data from high throughput sequencers, chip
based RNA expression analysis and proteome analysis systems create the
need for software systems to support new kinds of analysis and data.

At the same time the focus of molecular research shifted from the analysis
of single genes to the analysis of whole genomes, multiple high throughput
sources of data are routinely used. Yet there is a shortage of software sys-
tems that help store, integrate and analyse the wealth of information now
available.

We describe the development of a new genome annotation system (GENDB)
based on a relational database system and object oriented technology that
helps with the analysis of this data. GENDBsignificantly reduces the storage
and compute overhead of existing systems, while offering more flexibility.
The ability to integrate new kinds of data and new methods of analysis is
one of the primary design targets for GENDB. The GENDBsystem has been
succesfully used in a number of genome projects.

1

CHAPTER 1

Introduction

1.1. A shift of paradigms from analysing genes

to analyzing genomes

The new sequencing technologies that have become available in the last de-
cade introduced a shift of paradigms in molecular biology. While researchers
traditionally focused on single genes or gene clusters, now whole genomes
or large genomic regions started to become available. With the advent of the
S. cerevisiae genome in 1996 [CJB+97] a new area of research was opened, the
analysis of large amounts of genomic data.

From the sheer volume of information in genomic data – the genomes start-
ing to become available contained thousands of genes – the need for automa-
tion became immediately clear to researchers. In the relatively young field
of bioinformatics, a number of systems for the automatic analysis of the new
data were developed.

2

1. Introduction

1.2. Data from genome analysis

Initially, the DNA sequence data was all that was available in large quanti-
ties, but new technologies in other areas allowed them to scale up towards
the analysis of whole genomes as well.

1.2.1. Sequence data

The sequencing technology introduced by Maxam and Gilbert [MG77] granted
researchers access to genomic data.

The genomic data consists of the primary DNA (Desoxyribonucleic Acid) se-
quence of the genome and data derived from that genome using bioinfor-
matics tools.

3

1. Introduction

(a) Step1: Multiple chromatogram (SCF) files as
visualized by the trev [SBB98] program.

(b) Step2: Creation of a
consensus sequence from the
SCF files. Visualized by
gap4 [SBB98].

(c) Step3: Analysis of the consensus sequence using a genome
annotation system. (Picture taken from Magpie [GS96]).

Figure 1.1.: The flow of data from sequencer to genome annotation system.

Once the primary sequence is determined, the remaining information is added
in silico by a collection of bioinformatics tools and databases.

The most important piece of information is the data on sequence similarity
that allows the classification of the putative genes in the new organism based
on their similarity to other genes already in the sequence databases.

Figure 1.1 shows the flow of information and data when analyzing a genome.
First, thousands of sequence files are obtained from the sequencing automata,

4

1. Introduction

then the files are assembled in one or more contiguous stretches of DNA,
which are then analyzed with a genome annotation system.

1.2.2. Transcriptomics data

With the microarray technology developed by Brown et al. [SSDB95, SDDP95,
BB99] in 1995 it became possible to measure the amount of a specific mRNA
in a given cell, thus adding a new kind of information to the existing data.
Using a single chip or glass slide it became possible to measure the expres-
sion level of thousands of genes in a matter of hours.

Figure 1.2.: A typical microarray showing different expression levels (from
Brown et al. [Bro00]). [Intensity represents expression level,
colours indicated different expression]

A similar method was developed by Affymetrix [Inca]. In addition to the
hybridization based methods, a sequencing based method, the serial anal-
ysis of gene expression (SAGE) developed by Velculescu et al. [VZVK97] in
1995 can be used to obtain similar data. SAGEuses a tagged DNA approach
to measure the level of gene expression. Figure 1.2 shows the results of a
microarray experiment.

5

1. Introduction

All methods can be employed to detect changes in the level of expression of
individual genes after some changes in the cell. As a result the researcher can
now study the changes in the level of expression for all genes in the genome
instead of focussing on a single gene that is affected by some changes in the
cell.

Expression data can be utilized to gather information on gene regulation and
metabolic pathways, e.g. for the S. cerevisiae genome, a systematic effort is
under way to establish the rules that govern the expression of genes in the
living yeast cell. Other uses of microarray technology include data mining for
regulatory elements as demonstrated by Vilo and Brazma et al. [VBRU00].
Zien et al. [ZKZL00] have shown the usefulness of integrating microarray
data with other genomic data.

1.2.3. Proteomics data

While the methods described above for measuring the level of mRNA in a
cell provide a valuable tool to researchers, there are nevertheless some lim-
itations to studying gene expression levels based on the mRNA amounts.
As shown by Gygi et al. [GRFA99], the level of protein expression cannot be
predicted by the abundance of mRNA. Protein function is subject to many
posttranslational modifications and the dynamic process of protein degra-
dation has a significant influence on the amount of active protein in the cell.

Therefore, in addition to measuring the abundance of mRNA in the cell, the
protein expression, modification and activity in the cell have to be measured.

Two techniques have become closely associated with analyzing the proteome
of a cell:

� Two-Dimensional (2D) Gel Electrophoresis
Using the 2D Gel method, proteins are separated in the first dimension
according to their isoelectric points, in the second dimension according
to their mass [O’F75]. Figure 1.3 on the following page shows a 2D gel
from C. glutamicum.

6

1. Introduction

� Mass Spectrometry (MS)
Since the resolution of 2D gels is limited, a technique with higher res-
olution is required. Mass spectrometry provides sequence spectra for
proteins in the low-femtomole or even attomole region [Jam01], thus
providing a much higher resolution than 2D gels.

Figure 1.3.: A 2D gel from the C. glutamicum genome project.

1.2.4. Metabolomics data

Using the data shown so far, the analysis of the metabolic pathways of an
organism has become feasible. Databases like KEGG[KG00] have become
increasingly important in the last few years. KEGGcontains pictures for the
pathways known so far. The researcher can select a specific pathway and
highlight a set of proteins in that pathway. The system offers a user friendly

7

1. Introduction

interface but unfortunately no programmer’s interface which would enable
automation of queries.

Figure 1.4 shows a pathway as visualized by the KEGG[KG00] system.

Figure 1.4.: The lysine biosynthesis pathway as shown by KEGG[KG].

1.3. Genome annotation systems

Definition of a genome annotation system

A genome annotation system provides the software infrastructure necessary
to compute, store and visualize genomic data for a given genome. In addi-
tion, the genome annotation system] needs to accomodate user analysis and
interpretations.

8

1. Introduction

Definitions of terms

� observations
Information derived from the primary sequence data using various
bioinformatics tools is referred to as observations. Observations need
to be stored in a format that facilitates the automated analysis and
quintessentially drawing of interferences from the data.

� annotations
The interpretation of the observations is referred to as annotation.

1.3.1. Existing genome annotation systems

Starting in 1995, a number of genome annotation systems were developed
by various groups.

In 1995, the Magpie [GS96] system by Gaasterland et al. was immediately
followed by the Genequiz [ABL+99] system developed at the EBI by Sander
et al. Later, the Pedant system [MFG+00] was developed at MIPS by Mewes
et al. to help with the analysis of the S. cerevisiae genome.

All systems perform the task of extracting possible genes (referred to as ORFs
– open reading frames)1 and try to assign meaning to each ORF by automati-
cally comparing it to a number of sequence databases and running a number
of bioinformatics tools. All the information is then presented to the user with
a some kind of frontend that allows navigation and, to some extent, search-
ing. To a varying degree, the system store results of analyses performed by
the user, i.e. human interpretation of the homology data computed automat-
ically, for individual ORFs.

Because of the immense commercial interest in this area, none of the systems
are in the public domain. The author has access to results (HTML docu-
ments) from Pedant and Genequiz , less than one workday with the suc-
cessor to the Genequiz system (BioScout) and about 1.5 years experience

1The original Pedant and Genequiz systems required the ORFs to be input by the user.
A task easily automated by using one of the numerous gene prediction tools.

9

1. Introduction

with Magpie . An elaborate comparison of Magpie , Genequiz and Pedant

was done in [Scz98], reflecting the state of 1998.

The immense commercial interest in this area makes it almost impossible to
perform a scientific evaluation of existing tools.

Analysis of the various genome annotation systems

The systems mentioned above have been used to analyse a large number of
genomes. They provide the user with a valuable tool to assign functions to
individual genes and gain insight into the genome.

The remainder of this section describes the main characteristics of the vari-
ous systems and also aims at a comparison.

� Web Frontend
All systems provide a web frontend in form of precomputed data stored
in HTML [BL92] documents that are stored as flat files. Java [GA96] or
Javascript [Net] applications provide information and control elements
that are not available in HTML.

All systems provide tables that offer an overview of the ORFs found for
a contig. Figure 1.6 on page 12 shows the table generated by Magpie

for the pCM1 plasmid from C. glutamicum.

10

1. Introduction

Figure 1.5.: The contig as represented by Magpie .

Figure 1.5 shows the graphical contig representation generated by Mag-

pie .

11

1. Introduction

Figure 1.6.: The table of ORFs generated for pCM1 by Magpie .

� No well defined storage component
In their original implementations, all of the systems used a hierarchy
of flat files to store the various bits of information. Some systems relied
on HTML documents as the sole form of information storage (Pedant

and Genequiz), others (Magpie) used Sicstus Prolog [Sah91] facts files
to store some information and a collection of flat files and HTML doc-
uments to store the rest.

To the authors knowledge, both the original Pedant and Genequiz

directly produce HTML output, no other means of storing information
is present in the system. In both Pedant and Genequiz , data is in-
put in form of one or more sequences, a number of computations are
started, and a set of HTML documents is generated.

12

1. Introduction

sequence data computation of blast etc. HTML pages

1 Megabyte 1 Gigabyte

Figure 1.7.: The flow of data in Pedant and Genequiz . There is no reason-
ing component.

The Magpie system uses an intermediate stage where some of the in-
formation that is computed is stored in form of Sicstus Prolog [Sah91]
fact files, but some information is output directly into HTML docu-
ments.

sequence data Prolog facts

computation of blast etc.

html generator

HTML pages

1 Megabyte 1.5 Gigabyte

Figure 1.8.: The flow of data in Magpie . The red arrows indicate the flow of
information bypassing the reasoning component.

� No API
None of the systems has a clearly defined programmer’s interface that
would enable a systematic query or the extension of the system. Since
all systems generate HTML output, parsing the HTML documents is
usually the unfortunately the only way to extract information. In the
case of Magpie , parsing the Prolog fact files is another viable option,
but as shown in figure 1.8, some information is directly output into
HTML documents bypassing the Prolog fact stage.

13

1. Introduction

� Static visualization
Since all systems use precomputed – static – visualisations all are prone
to run into problems once the original input data changes. In this event
all visualisations have to be recomputed. During the possibly lengthy
process of regenerating the HTML output, documents will be inconsis-
tent, some showing up to date information, others showing obsolete
information.

The successor of the Pedant system, the Pedant Pro , system that is
available as a commercial software package, now uses a MySql [Incb]
database system to store the information from which it generates HTML
representations dynamically.

Figure 1.9 shows the result of changing the orientation of a contig in the
Magpie system. The gene prediction algorithm is rerun if the contig
data changes, resulting in ORF names changes.

Figure 1.9.: Changes to ORF names after changing the orientation of a contig
in Magpie .

Since Magpie uses static HTML documents as output, a user retriev-
ing information on the ORF a_002 (via the specific URL for this ORF,

14

1. Introduction

e.g. by using the web browser’s bookmark mechanism) would access
a different ORF after the contig orientation is changed.

Unfortunately, a user accessing the information saved by the Magpie

system for that open reading frame is likely to run into even more trou-
ble. The additional information (i.e. Blast results, etc.) computed by
the system for ORF a_002 is invalid after changes to the contig. It
refers to a different part of the contig. All the information for that con-
tig needs to be recomputed. During the lengthy recomputation, the old
information is still available to the user.

� Consumption of disk space
Since raw data, numerous results of computations, precomputed HTML
documents, and various intermediate formats are kept on disk, a large
number of files is generated and stored for each of the systems de-
scribed above. At least some of the data is redundant, most of it will
almost certainly remain unused. This creates output data in excess of
1 gigabyte per megabase of genome information input into the system.

� Consumption of CPU time
In their original implementation the systems described above relied on
a single computer to perform all the computations necessary. There-
fore, a single – very expensive – large computer was needed to com-
pute all the information.

For the Magpie system, annotating a contig of cosmid size (approx.
40 kilobases) on a 4 CPU, 300MHz, 2GB RAM Sun Ultra 450 Worksta-
tion takes up to 2 weeks.2 For a genome that consists of up to 60 such
cosmids this results in 120 weeks of computation. This computational
effort is easily multiplied by the need to recompute information due
to changing data or updated sequence databases that form the basis of
the annotation.

All systems are non conservative with respect to their resources usage.
If a single base in a contig of 2 Megabases changes, all the information
has to be recomputed.

2Depending on the number of tools that are set up to be used for the contig in question.

15

1. Introduction

� Systems are commercial and non “open source”
All existing systems described in section 1.3.1 are either commercial or
not publically available for other reasons (unknown to the author).

Since the funding of most projects does not allow to purchase one of
these systems, most genome projects have to develop their own genome
annotation system, thus re-inventing the wheel over and over again.

1.3.2. Other Genome Information Systems

While genome annotation systems provide the researcher with a framework
with which he/she can perform the annotation and store the relevant in-
formation, a number of systems provide similar functionality, in some cases
overlapping some of the functions described for the genome annotation sys-
tem.

Other systems provide the infrastructure to store information on a given
genome but do not integrate the computation of results or subsystems that
allow user input: AceDB [WAC98] and GIMS [PKH+00]. A very simple sys-
tem that allows genome visualization and annotation in the form of EMBL
flat files is the artemis system [RPC+00].

And some systems provide access to automatically computed results but do
not allow the anaylsis of the results by the user: ENSEMBL [ENS].

16

CHAPTER 2

Design of a new genome annotation

system

2.1. New challenges for genome annotation

systems

The new transcriptome, proteome and metabolome data described in sec-
tion 1.2.2 provide a new challenge for the existing genome annotation sys-
tems. By integrating the results of the genome annotation with these new
kinds of data, a better understanding of the respective organisms can be
achieved.

This integration process will enable future experiments and future analysis.
The experiments done by Zien et al. [ZKZL00] combining expression data
and metabolic pathways demonstrate the need for data integration.

17

2. Design of a new genome annotation system

2.2. Software engineering design criteria

Since integrating new kinds of data and integrating new approaches to the
analysis of data requires access to the information in the genome annotation
system, there is a need for modular, extensible and open systems.

The systems described in section 1.3.1 were designed for a completely differ-
ent situation, their output was destined for the human reader. Nowadays,
the generation of human readable tables is no longer sufficient.

The systems lack a number of important properties necessary to meet the
new demands for data integration. Neither an application programmer’s in-
terface nor a well defined internal data representation exists for the systems
described above. Therefore, we chose to implement a completely new sys-
tem. Another reason for re-implementing was the lack of either extensibility
or source code availability for the existing systems.

Also, the fast moving research in molecular biology and other areas requires
frequent changes or addons to a genome annotation systems. Therefore, it
should provide support for rapid changes of the system itself and the inte-
gration of new components. Any new system should rather provide a frame-
work for the fast integration of new data and new research questions than a
static system for addressing a well defined problem.

There is a need for a new system that provides the following features:

� abstract data representation

� an application programmer’s interface

� modularity

� extensibility

� an open source implementation accessible to other researchers

The choice of open source as a licensing model should enable researchers to
use the framework to address their own problems and adapt the system to
their data.

18

2. Design of a new genome annotation system

2.3. The need for conservation of resources

2.3.1. Computational resources

The computation of the data involved in a genome annotation takes a large
amount of computational resources. For a genome of 5000 genes, approxi-
mately 15000 to 20000 Blast [AGM+90] runs are computed initially and a
large portion of those are recomputed once the underlying sequence databases
change.

Therefore, the genome annotation system should only compute a minimum
set of observations for a given problem. In the Magpie system, once a single
nucleotide changes in a genome, this invalidates all the information for a
genomic region, in a worst case scenario. This leads to a massive waste of
computational resources.

In addition the system should support distributed computing, thus obviat-
ing the need for a single large computer system.

2.3.2. Storage resources

The amount of data stored for a megabase of primary sequence data can well
exceed one gigabyte. This starts to become a problem once many genomes
are analysed on a single system. A large genome of 20 megabases would
require up to 310 gigabytes of storage capacity. Therefore, a genome anno-
tation system should store only a minimal set of data and at the same time
provide access to a maximum of information.

A well designed data representation layer and the use of adequate storage
technology – a database system – have to be employed to achieve these goals.

2.3.3. Human resources

The data in a genome annotation system is presented to the human annotator
who provides his or her interpretation of the information generated by the

19

2. Design of a new genome annotation system

system. It should provide a well designed user interface, thus minimizing
the time required for any particular task. Therefore, automated assistance for
recurring operations should be provided. In addition to the user interface,
the system should enable the developer to rapidly implement new features
that help the human annotator perform his or her task.

2.4. Other requirements

There are a number of other requirements for a genome annotation system:

� Portability
The system should not be vendor specific wherever possible. Minimal
or no changes should be needed to port the system to as many other
platforms as possible. To achieve this aim, the choice of the underly-
ing operating system has to be made carefully. Currently, applications
for some operating systems need to include a large amount of vendor
specific code (i.e. Microsoft Windows) while other platforms (i.e.
UNIX) are in the process of achieving cross platform compatibility.

� Transparency
The system should be transparent. It should be clear who added what
information and who made which changes to the primary data for
what reason.

� Use of adequate technology
A new system should not re-invent the wheel but instead use existing
technology and existing standards. Designing a purpose built DBMS
(database management system) makes little sense when well tested,
well supported, and fast systems already exist. Therefore, existing soft-
ware systems should be used whenever feasible.

� Use of dynamic visualisation
To avoid the pitfalls associated with the use of precomputed visualisa-
tion, the system should contain a visualisation component that gener-
ates views of the data stored in the system on demand.

20

2. Design of a new genome annotation system

This not only increases the flexibility for the user, who can customize
his or her output.

� Minimal costs
The system should cost as little as possible in terms of both software
licenses needed to install and run it and requirements for non stan-
dard hardware. For the software side, an attempt should be made to
use little or no commercial subsystems, thus making the whole system
affordable.

2.5. Overview of the GENDBsystem

From the criteria presented above we designed the GENDBsystem.

Of the different types of data described earlier, currently only genomics and
metabolomics data are managed by the system. The development of pro-
teomics and transcriptomics components is an ongoing project.

A schematic overview of the GENDBsystem is represented in figure 2.1 on
the following page.

21

2. Design of a new genome annotation system

SQL

O2DBI

wizards

scheduler

frontends

WWW

GUI

API

GENDB overview

 frameshifts
 orfeditor
 annotation

 batch cluster
 queue

Figure 2.1.: GENDB schematic view

The O2DBI layer shown in blue is the glue that connects the data backend
with the other parts of the system. All access from one component to the
data in the storage component is via the O2DBI layer. The O2DBI layer also
provides an application programmer’s interface for external applications or
extensions to the system.

2.5.1. Data storage

Since we want GENDBto posses a user interface that dynamically creates
view for the data in the system, an internal representation of the genome data

22

2. Design of a new genome annotation system

and a mechanism for storing and retrieving that data is essential. A relational
database in combination with the O2DBI tool described in section 3.1.4 on
page 47 is used to implement persistent data storage.

Figure 2.2 shows the role of objects and tables in GENDB. A single object may
contain information from multiple tables. Using the application program-
mer’s interface, the tables are hidden from the programmers of user level
applications.

ORF object

from int;
to int;
gc int;
sequence text;
contig text;
name text;
id int;
alias @text;
......

User Level Programs

ORFs

CONTIGs

aliases

annotation

SQL DBMS

Figure 2.2.: The ORF object and the corrensponding database tables in
GENDB.

We chose this approach to reduce complexity and facilitate the replacement
of storage backends. Only library functions (i.e. code in Perl [WS91] mod-
ules) are allowed to contain direct references to tables or real SQL code.
Should a change of the storage module become neccessary, no single line

23

2. Design of a new genome annotation system

of code in the higher-level applications will have to be modified. Instead,
only the Perl modules that form the API need to be updated accordingly.

The data model

In addition to the means to store and retrieve information from a database
system, an internal data representation is needed. Only by providing ab-
stract data types can an application programmer’s interface be implemented
and the data used for reasoning. A simplified model of the data entities in
GENDBis shown in figure 2.3.

Since the GENDBsystem was designed to replace an existing system (Magpie)
we chose – for the first version – to implement only the features of that sys-
tem. A future version (1.10) of GENDBwill allow for the complete set of
EMBL features to be added to a contig, thus making the ORF a special case.

contig
contig

orf
orf

fact
fact

annotation
annotation

gene

Figure 2.3.: A simplified view of the GENDB data model.

24

2. Design of a new genome annotation system

As shown in figure 2.3 on the preceding page, ORFs, sequences (contigs),
observations a.k.a facts (i.e. information deduced by various bioinformatics
tools), and annotations (information added by human annotators) are the
only sequence feature objects currently represented in GENDB.

For the objects shown in figure 2.3 on the page before, the following gives a
brief overview of the information contained in the objects.

� contigs
The sequences that are uploaded into the system. In addition to the se-
quence, the name and the position of the contig in a replicon are stored.

In detail that is:

– sequence name

– sequence

– the identity of left and right neighbor contigs

– the overlap with the left and right neighbor contigs

� ORFs
The positions of putative open reading frames are stored along with
the information generated by the gene prediction algorithm.

The sequences of the ORFs are not stored; they are extracted on de-
mand from the sequence object.

The following information is stored:

– name

– start

– length

– the identity of the respective sequence object

� observations
The information computed for a given ORF is referred to as observa-
tions.

The following information is stored:

25

2. Design of a new genome annotation system

– the identity of the respective ORF

– the tool and parameters used to compute the observation

– the description line of a database hit

– the score for a database hit

– the database identifier of the sequence hit in the database

– the unique identifier for the database

– the regions in the ORF and in the database entry that match

Any additional information can be recreated using the information stored
for the observation.

� annotations
The information added by a human annotator is referred to as annota-
tion.

The following information is stored:

– the name of the annotator

– the identity of the ORF being annotated

– any number of identities of observations relevant to this annota-
tion

– the gene name

– the gene product

– the EC-number

– a description line

– a comment line

There is no gene object or table in GENDB. Instead, a gene is represented by an
ORF combined with an annotation and possibly a number of observations.

The complete sources for the objects and the data model used in GENDBare
listed in O2DBI syntax in the appendix. See section B.1 on page 117 for a
complete listing.

26

2. Design of a new genome annotation system

2.5.2. Frontends – The user interfaces

A genome annotation system needs to provide a comprehensive and flexi-
ble user interface. Providing an internal representation and a data storage
module facilitate the creation of interfaces that are adaptable to the user de-
mand. Instead of relying on a single way of presenting the results, a number
of different “views” can be created from the internal representation of the
data.

At present we chose to implement two interfaces:

� A graphical user interface (GUI) (see figure 2.4) implemented in Perl/Tk [IS,
Wal99] for the manipulation of data and

Figure 2.4.: Overview of the graphical user interface.

27

2. Design of a new genome annotation system

� a web interface (see figure 2.5) for read only access to the data over the
Internet.

Figure 2.5.: Overview of the web interface.

The web interface will be enhanced to provide the complete functionality of
the GUI in a future version (1.10 or later).

28

2. Design of a new genome annotation system

The frontends are the primary user visible parts of the system. Careful plan-
ning of those in close interaction with the biologists using the system creates
interfaces that facilitate human interpretation of the data in the system.

While the web frontend generates dynamic views of the data, a static version
(which may be written to a CD-ROM) can be created with very little changes
to the code. Both frontends are further described in section 4.1 and 4.2.

2.5.3. Wizards – automation of complex repetitive tasks

A number of complex tasks (e.g. searching for frameshifts, editing of the au-
tomatic ORF prediction) recur multiple times in a project. Wizards are soft-
ware agents that guide the user through these tasks. By implementing these
tools, the workload for the human annotators is reduced. At the same time,
changes to the data are automatically done in a transparent and comprehen-
sive manner. Each individual edit operation is treated as an annotation and
thus recorded by the data storage component.

The following wizards exist today:

� ORF editor
This wizard allows the editing of the gene prediction computed when
uploading the contig into the system.

� frameshift editor
The frameshift wizard allows for corrections in the contig sequence
while maintaining the integrity of the data objects that exist for the
contig.

� data entry editor
Allows the uploading of contigs and running of gene prediction tools.

Other wizards are in preparation at the time of writing:

� the frameshift detection wizard
This wizards automatically detects possible frameshifts and returns a
list of regions for the contig that contain potential frameshifts.

29

2. Design of a new genome annotation system

� the automatic annotation wizard
This wizard uses the observations to suggest a possible annotation,
which can be exported or entered as a putative annotation into GENDB.
Using this wizard requires to add a non human annotator to the sys-
tem. All annotations performed by this wizard are easily identified as
computer generated.

� the manual annotation wizard
This wizard lists all ORFs not previously annotated and presents a
summary of the observations computed for that ORF to the human an-
notator.

Figure 2.6 shows the role of wizards in the GENDBsystem.

O2DBI

SQL

frameshift correction
wizard

manual annotation
wizard

orf editor
wizard

automatic annotation
wizard

Figure 2.6.: The role of wizards in GENDB.

30

2. Design of a new genome annotation system

2.5.4. Scheduler – computing observations

One important subsystem of a genome annotation system is the mechanism
used to compute, evaluate, and store observations for the genome data. The
subsystem of GENDBthat performs this function is referred to as the sched-
uler.

The scheduler was designed to compute and store the observations neces-
sary with a minimum overhead. It implements a FIFO (first in first out)
scheduling algorithm. In addition, the scheduler allows the user to trigger a
recomputation once external data has changed (e.g. new sequence databases
have become available) and automatically recompute observations that refer
to internal data when it has changed.

Usually, a genome annotation requires thousands of runs of tools. While a
single computer could handle this workload, the price for such a machine is
prohibitively high. Instead of buying a single large computer, we chose to
use a cluster of workstations to run the analysis tools on. Running a single
job at a time on a number of low-cost workstation class computers requires
a system to distribute the jobs over the cluster and to collect the results. Sys-
tems that perform this function are referred to as “batch systems”. While the
GENDBsystem allows for the easy integration of existing batch processing
systems (e.g. NQS [NQS00], Codine [Inc00a] or LSF [Inc00b]), we have de-
veloped a light weight system of our own.1 The main reason for developing
a light weight batch system within GENDBwas the complexity of installation
and runtime overhead of existing systems.

The GENDBscheduler consists of three components. The first component is
a job table stored in the database using the established O2DBI mechanisms.
The table is used to provide synchronisation for the scheduler components.
Another component is the job_submitter that enters information on jobs
to run into the database table.

The last part is responsible for running the jobs (GENDB_daemon.pl). Fig-

1The following document gives a overview of existing batch processing systems: http:

//www.cmpharm.ucsf.edu/~srp/batch/systems.html .

31

2. Design of a new genome annotation system

ure 2.7 gives an overview of the components involved.

multiple daemons

daemon
1

daemon
1

....

daemon
2

daemon
2

daemon
3

daemon
3

jobs

job submitter

new jobs are
added to the
table of jobs

Figure 2.7.: Overview of the GENDBscheduler.

The job_submitter

Once the job_submitter is run, a list of jobs is created from the ORFs in
the database for that observations have not yet been computed. If any new
ORFs are found or old observations are to be recomputed, a set of jobs is
entered into the job queue. Optionally, new observations can be computed
for all ORFs in the database, overwriting all existing observations.

32

2. Design of a new genome annotation system

Job locking in the GENDBscheduler

One instance of the daemon is started on each node in the compute clus-
ter. Each of these processes reads a single job from the job queue using the
fetchnextjob method of the job class. Then the job is locked so that no
other scheduler will try to execute this particular job. Upon completion of
the job execution, the job is finished, the results are parsed, and stored in the
database.

Figure 2.8 illustrates this process.

Figure 2.8.: Job locking in the of the GENDBscheduler.

Figure 2.9 on the following page lists the methods that are implemented for

33

2. Design of a new genome annotation system

the job object.

� newid

Return a new unique job id, used when inserting new jobs into the job
table.

� fetchnextjob

This class method retrieves the next unlocked job from the database
using a FIFO scheduling strategy.

� lock

Lock a job prior to processing it. This method returns immediately, if
the job is already locked.

� unlock

Unlock a job, upon completion or in case of problems.

� delete

Delete a job from the job table.

Figure 2.9.: The additional methods for the job object.

The GENDB_daemon

The GENDB_daemon waits for new jobs, this is implemented avoiding busy
waiting. As soon as a new job is available, the daemon locks the job, sets
the UNIX process environment according to the job information and starts
runtool.pl to process the job. After executing the job, the corresponding
job table entry is marked as completed. When no job is available, the daemon
does an unconditional wait, using no CPU resources.

runtool.pl is the main stage of execution. It locks the project-internal job
database (orfstate) and starts the tools using the tool-specific run_job com-
mand.

Since each tool can have several features that distinguish it from other tools,
the run_job routines that perform the actual start of each tool are part of

34

2. Design of a new genome annotation system

the tool specific code in GENDB.

Storing observations in GENDB

The observations that are generated by the tools are stored in the data storage
component. Only a minimal set of information is stored for the observations
in GENDB. If more detail is needed, that detail can be recomputed at very low
computational cost.

The following information is stored in GENDBto represent observations.

$geneproject{’observation’} = {

members => {

’orf_id’ => ’int’,

’description’ => ’text’,

’toolresult’ => ’text’,

’information’ => ’int’,

’dbref’ => ’text’,

’orffrom’ => ’int’,

’orfto’ => ’int’,

’dbfrom’ => ’int’,

’dbto’ => ’int’,

’tool_id’ => ’int’

},

creator => [

’orf_id’

]

};

Figure 2.10.: The observation information stored in GENDB

The orf_id is used to identify the corresponding open reading frame. The
description is used to store the description line from a database hit. dbref

and tool_id are used to describe the database and the tool used to com-
pute this observation. In addition to this information, the location of the

35

2. Design of a new genome annotation system

match both in the database and in the ORF are stored (orffrom, orfto,

dbfrom, dbto). The toolresult and information fields are used to
store the scores returned by the application computing the observation. One
field (toolresult) contains the result in text form as returned by the appli-
cation and the other contains the result converted into bits (as in information
theory according to Shannon [Sha48]) in the field information .

Extracting information in greater detail.

As shown above (see figure 2.10 on the page before), a database reference
(dbref) and a tool (tool_id) are stored with the observations.

36

2. Design of a new genome annotation system

$geneproject{’tool’} = {

members => {

’name’ => ’char(20)’,

’description’ => ’text’,

’input_type’ => ’int’,

’user_value’ => ’int’,

’number’ => ’int’,

’cost’ => ’int’,

’dburl’ => ’text’,

’dbname’ => ’text’,

’executable_name’ => ’text’,

’level1’ => ’int’,

’level2’ => ’int’,

’level3’ => ’int’,

’level4’ => ’int’,

’level5’ => ’int’,

’helper_package’ => ’text’

},

creator => [’name’],

constructors => [

[’name’]

]

};

Figure 2.11.: The tool information stored in GENDB

Using the tool_id as a reference, the name (dbname) and the URL (dburl)
of the relevant sequence database are accessible for every observation in
GENDB.

If the user needs more information than that stored in the observation entry,
the following algorithm is applied:

37

2. Design of a new genome annotation system

INPUT: observation object

1. $or f = $observation->init_name(orf_id)

2. $dbre f= $observation->dbref and $tool_id = $observation->tool_id

3. $tool= init_id ($tool_id)

4. $database_sequence = srsfetch ($tool->dburl , $tool->dbname ,
$dbre f)

5. If necessary convert the database record into a suitable format.

6. run $tool->excecutable_name ($database_sequence, $or f _sequence)

Figure 2.12.: The algorithm to obtain detailed observation information.

This algorithm is implemented in the object method $tool�> run_ job($observation).
The method is polymorphic. If no observation is given as a parameter, a new
observation will be computed, parsed, and the relevant information is stored
in the database system. The data retrieval from the sequence database is han-
dled by the SRS [EA93, EUA96] system developed by Thure Etzold et al. at
the EBI.

The whole process described in figure 2.12 takes less than 1.5 CPU seconds
on a moderate workstation. Retrieving the same information from flat file
storage using the HTTP protocol requires up to 5 seconds.

2.5.5. The application programmer’s interface

Providing both an internal represention of the data and a mechanism for
efficient storage and retrieval opens the way towards an application pro-
grammer’s interface. The data structures created with O2DBI together with
the functions that are added manually form the GENDBapplication program-
mer’s interface (API).

38

2. Design of a new genome annotation system

The components (e.g. wizards, frontends, scheduler) of the GENDBsystem
use the API. That application programmer’s interface is described in sec-
tions 3.2. Details on O2DBI can be found in section 3.1.5 on page 51.

Using the application programmer’s interface, the system can be extended.

2.5.6. The flow of information in GENDB

The GENDBsystem is used to process data that originates from DNA se-
quencing machines. Once that data is saved in SCF format [DS92], it is run
through a pipeline of applications in order to perform the following steps:

� Normalize traces from different machines and different runs.

� Remove any vector sequences and low quality regions.

� Assemble the sequences into one or more (consensus) sequences, re-
ferred to as contigs.

This pipeline is implemented using a variety of existing tools:

� cap3 – An DNA sequence fragment assembly program developed by
Huang [HM99].

� gap4 – The assembly editor from the Staden [SBB98] package.

� phrap – A DNA sequence fragment assembly program developed at
the University of Washington by Greene et al. [Greb].

� phred – A DNA basecalling programm developed at the University of
Washington by Greene et al. [EHWG98].

� crossmatch – A sequence comparison utility specialized in vector se-
quence detection by Greene et al. [Grea].

� vector_db – A vector sequence database that is part of Genbank [WCL+01]

39

2. Design of a new genome annotation system

Figure 2.13 on the following page summarises the flow of information in a
genome project and the role of GENDB.

Within the GENDBsystem, a gene prediction tool is called, its results are
parsed and the resulting open reading frames (ORFs) are added to the database.
Then a set of tools selected by the user is run for each of these ORFs. Once
that is done, the user interfaces (see section 4.1 on page 76) can be employed
to interpret the results and add to a manual annotation. A list of tools used
in the GENDBsystem is available in section 3.2.2 on page 75.

40

2. Design of a new genome annotation system

trace
files

normalize
traces

vector and
quality clipping

assembly

contig

BioMake

gene
prediction

automatic
annotation

manual
annotation

GENDB

 phred
 crossmatch
 phred

 cap3
 phrap
 gap4

 multiple SCF files
 multiple source machines
 heterogeneous quality values

 updated daily

 fasta format

Bio-
Sequenzdaten

banken

Bio-
Sequenzdaten

banken

Figure 2.13.: The GENDBdata flow.

41

2. Design of a new genome annotation system

2.5.7. Conventions used in GENDB.

A number of conventions are used throughout the GENDBsystem:

� Genes are annotated ORFs
As described in section 2.5.1 on page 24, there is no gene object as such.
Each ORF, once annotated by an annotator, becomes a gene.

� Multiple names for a single object.
Since researches like to use different names for a single entity – often
this behaviour is induced by software systems requiring different nam-
ing schemes – ORF objects can have multiple names.

� Conserve ORF names
When updating the gene prediction or the sequence, the system should
preserve the old ORF names. Any new ORFs will have names not pre-
viously used in the project. Thus the ORF names do no longer contain
information on the neighbourhood relationship of the ORFs, but exper-
iments conducted using the results of a previous sequence analysis are
still useful when the sequence has been updated.

� Multiple annotations for a single ORF
While the system stores multiple annotations for a single ORF, by de-
fault, the latest annotation is used. The programmer can change this
behaviour (e.g. show only annotations of a specific user) by imple-
menting additional methods for access to the annotation objects.

� Adherence to the layer model
Figure 2.1 shows the layer model in GENDB. As described in section 2.5.1
on page 24 in order to facilitate future changes to parts of the system, all
access from frontends, wizards, or backends to the SQL storage is per-
formed through the O2DBI object methods. Direct SQL access is strictly
prohibited. Only the objects themselves can see or utilize the features
of the database. This allows changing the storage backend with little
or no modifications to the code.

42

CHAPTER 3

Implementation of GENDB

3.1. Implementation details

In the previous chapter we have defined a number of issues to address for
a new genome annotation system. In this chapter we present a number of
aspects that together form our new system.

3.1.1. Achieving modularity and extensibility

In order to achieve both a modular and an extensible system, we need to
provide some internal data model and an application programmer’s inter-
face to access data and functions in the system. The existence of an abstract
data representation is the key towards achieving all of this goal. Since a
large amount of information is computed at some cost, the system needs to
be able to store and retrieve this information efficiently. A mechanism for

43

3. Implementation of GENDB

persistence is needed.

3.1.2. Use of object oriented approach

To implement the abstract data representation we have chosen an object ori-
ented approach.

Using an object oriented programming paradigm has a number of advan-
tages:

� “simple, readable programs” [Obj00, SWA98]
The complexity is mostly hidden in the objects themselves, the pro-
grams usually are very short and are easy to comprehend even for the
uninitiated.

� “objects provide a clearly defined application programmer’s interface” [Obj00]
The objects and the properties and methods define the application pro-
grammer’s interface thus a new module can be implemented using the
existing data.

� “the source code is almost self documenting” [Obj00]
Since the source code is usually free of technical details, it can be read
and understood by non programmers, thereby offering a bridge be-
tween the biologists using the system and the computer scientist de-
veloping it. A distribution of labor where the computer scientist devel-
opes an object and its methods and the biologist writes small programs
that use these objects becomes feasible.

� “less error prone” [Obj00]
There are fewer lines of code and the code is easier to read. This, in
addition to the high degree of code reusage, leads to less error prone
development.

44

3. Implementation of GENDB

An example for object oriented development

Figure 3.1 shows an excerpt of a Perl [WS91] program that lists all ORFs in a
genome, computes the value of “startcodon”, and stores it in the correspond-
ing object property.

A definition for the ORF object used below

$ORF->name;

$ORF->sequence;

$ORF->

walk thru all ORFs

foreach $orf (GENDB::orf->fetchall) {

extract the first 3 characters of each ORF

$startcodon=substr($orf->sequence,0,3);

write the startcodon property

$orf->startcodon($startcodon);

}

Figure 3.1.: A simple OO program.

In the example above, the ORF objects are loaded in to memory using the
fetchall method, then, for each ORF, the substring property is computed
using the Perl substring method to extract the first three characters in the
ORF’s sequence and store it in the ORF object.

3.1.3. Use of a DBMS

To achieve data persistency, we have chosen to use a database management
system.

From a programmers’ point of view, a database management system is a

45

3. Implementation of GENDB

subsystem that manages data handling. There are a number of established
such systems that fall into three categories:

� relational database management systems (RDBMS)

� object oriented database management systems (OODBMS)

� a combination of these: object relational database management systems

In conjunction with the object oriented model described above, the use of an
OODBMS seems clearly the way to go, but unfortunately there are no ob-
ject oriented DBMS systems in the public domain [Obj00]. So the use of an
OODBMS collides with our design target of using as little a possible commer-
cial software. While commercial database management systems (e.g. Object-
store [OBJ]) exist, they are rather expensive for an academic environment.

There are a number of RDBM systems in the public domain (e.g. MySQL[Incb]
or Postgres [Pos]).

This, in conjunction with the fact that relational database management sys-
tems are long established led us to choose an RDBMS.

An RDMBS also provides a simple method for making complex queries, e.g.
the distribution of start codons can be easily obtained if a RDBMS is used to
store the data. The Standard Query Language (SQL) [MS93] language can be
used to formulate queries:

46

3. Implementation of GENDB

Example use of SQL: Distribution of start codons

select count(*) from orfs where startcodon=’ttg’;

returns the number of ORFs with the respective start codon.

This is a more complex query:

select count(*) from orfs where startcodon=’ttg’ and

length>1000;

Figure 3.2.: Determine the distribution of start codons using SQL.

Issuing queries like those shown in figure 3.2 with one of the genome an-
notation systems described in section 1.3.1 would require a large amount of
code since the necessary information would have to be parsed out of either
HTML documents and/or Prolog fact files.

3.1.4. Using objects with a RDBMS

An RDBMS stores data in a table format, it cannot handle objects. In order
to achieve persistency of objects in an RDBMS, code has to be written that
handles the conversion from objects to table formats. While the process of
storing objects in database tables is well defined [Amb99], it is a labor inten-
sive one.

While systems that map objects to database tables exist for the Java program-
ming language [Cat], for the Perl programming language no such system ex-
isted at the time the GENDBproject was started. An ideal system would allow
the description of objects in a Perl like syntax and automatically create the
code needed to read from a database system and store objects in a database
system.

In the example in figure 3.1 on page 45 the ORF object is defined using the
Perl standard way of declaring object properties.

47

3. Implementation of GENDB

The O2DBI– tools developed by Jörn Clausen [Cla00] in the context of the
GENDBproject provide automatic conversion from Perl objects to tables in
an relational database. Based on the description of the objects in Perl-like
syntax, the code for object persistency is automatically generated by O2DBI.
For each class of objects, a Perl module is generated that allows the user to
specify additional functionality in a separate file.

Figure 3.3 shows the O2DBI description of an ORF object. Section 3.1.5 on
page 51 describes the functions that are automatically created.

$geneproject{’orf’} = {

members => {

’contig_id’ => ’int’,

’name’ => ’char(20)’,

’status’ => ’int’,

’start’ => ’int’,

’stop’ => ’int’,

’molweight’ => ’float’,

’isoelp’ => ’float’,

’frame’ => ’int’,

’ag’ => ’int’,

’gc’ => ’int’,

’startcodon’ => ’char(3)’,

’@names’ => {

’name’ => ’char(20)’,

},

’@annotations’ => {

’annotation_id’ => ’int’,

}

},

Figure 3.3.: The O2DBI description of an ORF object.

Figure 3.4 on page 50 shows part of the code generated for the create and
the fetchall methods of the ORF object. The create method establishes

48

3. Implementation of GENDB

a database entry and the corresponding ORF object. The parameters are then
stored as object properties using a number of object methods automatically
created by O2DBI. The Perl object is then returned as a result of the create

method. The fetchall method creates an array of Perl objects of the type
ORF. Using an SQL select statement, a list of all ORFs is returned from a
database table. The content of the table is then converted into ORF objects
which are stored in an array. The code returns an array reference.

The complete code generated for the ORF object is listed in the appendix
see B.2 on page 127.

49

3. Implementation of GENDB

create a new object and insert it into the database
sub create {

my ($class, $contig_id, $start, $stop, $name) = @_;
fetch a fresh id
my $id = newid(’orf’);

if ($id < 0) {
return(-1);

}
insert the primary key into the database
$GENDB_DBH->do(qq {

INSERT INTO orf (id) VALUES ($id)
});

if ($GENDB_DBH->err) {
return(-1);

}
create the perl object
my $orf = { ’id’ => $id,

’_buffer’ => 1 };
bless($orf, $class);
fill in the remaining data
$orf->contig_id($contig_id);
$orf->start($start);
$orf->stop($stop);
$orf->name($name);
$orf->unbuffer;
return($orf);

}

get all objects from the database efficiently and return an array reference
sub fetchall {

my ($class) = @_;
local @orf = ();
my $sth = $GENDB_DBH->prepare(qq {

SELECT molweight, contig_id, startcodon, name, status, stop, ag, gc, fra
me, isoelp, id, start FROM orf

});
$sth->execute;
while (($molweight, $contig_id, $startcodon, $name, $status, $stop, $ag, $gc

, $frame, $isoelp, $id, $start) = $sth->fetchrow_array) {
my $orf = {

’molweight’ => $molweight,
’contig_id’ => $contig_id,
’startcodon’ => $startcodon,
’name’ => $name,
’status’ => $status,
’stop’ => $stop,
’ag’ => $ag,
’gc’ => $gc,
’frame’ => $frame,
’isoelp’ => $isoelp,
’id’ => $id,
’start’ => $start
};

bless($orf, $class);
push(@orf, $orf);

}
$sth->finish;
return(\@orf);

}

Figure 3.4.: The code generated for the create method of the ORF object.

50

3. Implementation of GENDB

3.1.5. Class and object methods generated by O2DBI

A number of methods that allow access to objects and their properties are
automatically created by O2DBI

� Class methods

� create

A new object is created simultaneously in memory and in the database.

� init_name

An object is created in memory from the data stored in the database.
The object has to be specified via its name.

� init_id

An object is created in memory from the data stored on disk. The object
is specified via its id.

� fetchallby_id

All objects of a specified type are fetched from the database and stored
in a hash. The subsequent access to the objects is based on the object
id.

� fetchallby_name

All objects of a specified type are fetched from the database and stored
in a hash. The subsequent access to the objects is based on the object
name.

� fetchallby_SQL

A selection of objects of a specified type are fetched from the database
and stored in memory. The selection is based on the result of an SQL
statement.

� fetchall

All objects of a specified type are fetched from the database and stored
in an array.

51

3. Implementation of GENDB

� Object methods
For each object property, a method is created allowing read and write
access to the property in question.

3.1.6. Functions automatically generated by O2DBI

The following functions are provided by O2DBI and should only be used in
object methods. They are not part of the GENDBapplication programmer’s
interface.

The function getset()

The code autogenerated by O2DBI uses the function getset() described in
figure 3.5 to get or set any of the member variables.

sub getset {

my ($self, $var, $val) = @_;

my $id = $self->id;

if (defined($val)) {

if (!$self->buffered) {

my $qval = $GENDB_DBH->quote($val);

$GENDB_DBH->do(qq {

UPDATE contig SET $var=$qval WHERE id=$id

}) || return(-1);

}

$self->{$var} = $val;

}

return($self->{$var});

}

Figure 3.5.: The function getset() .

This allows very easy access to the member variables, figure 3.6 on the next
page shows code using the getset() function.

52

3. Implementation of GENDB

get or set the member variable ’sequence’

sub sequence {

my ($self, $sequence) = @_;

return($self->getset(’sequence’, $sequence));

}

Figure 3.6.: The sample code using the function getset() .

The function mset() .

The function mset() allows the setting (and automatically storing) of sev-
eral member variables at the same time. mset() is called with a hash ref-
erence as parameter and stores all values listed for the variables. The hash
keys are the variables to be set.

sub mset {

my ($self, $hashref) = @_;

my $curbuffer = $self->buffered;

$self->buffer;

foreach $key (keys(%$hashref)) {

prevent really stupid tricks

if ($key eq ’id’) {

return(-1);

}

my $val = $hashref->{$key};

eval $self->$key($val);

}

if (!$curbuffer) {

$self->unbuffer;

}

}

Figure 3.7.: The mset () function.

53

3. Implementation of GENDB

3.2. The Application Programmers Interface

As described earlier (see section 2.5.5 on page 38), the application program-
mer’s interface plays a central role in GENDB.

The following section explains the various routines that constitute the GENDB

API.

3.2.1. Autogenerated functions for all object types.

For each class specified in the GENDB.pl (listed in the appendix, see sec-
tion B.1 on page 117) file, a set of methods is generated. Table 3.1 lists these
methods.

54

3. Implementation of GENDB

Name Description
init_id() Constructor method to fetch an

object from the database using
the object id to select the object.
This method is always created.

init_xyz() Additional constructor method
xyz, if additional constructors
are specified.

create() Creator method requiring the
parameters described in the
object definition.

delete() Destructor, deletes the object
and the database entry.

id() The unique database identifier
for this object.

fetchall() Retrieve an array containing all
objects of this type.

fetchallby_name() Retrieve a hash containing all
objects of this type (indexed by
the object name). This class
method returns a hash
reference.

fetchallby_id() Retrieve an hash containing all
objects of this type (indexed by
their id).

fetchbySQL($sql_statement) Retrieve a list containing all
objects of this type resulting
from executing
$sql_statement .

Table 3.1.: The autogenerated methods by O2DBI.

See complete source code for GENDB.pl in the appendix (see section B.1).

55

3. Implementation of GENDB

The contig object

The definition for the contig object is shown in figure 3.8. In addition to the
seven member variables, a creator method is defined which will allow the
creation of a contig object with the name and sequence of a new contig. A
constructor method is defined that will allow access to the contig object
based on the contig name.

$geneproject{’contig’} = {

members => {

’name’ => ’char(20)’,

’sequence’ => ’text’,

’length’ => ’int’,

’rneighbor_id’ => ’int’,

’lneighbor_id’ => ’int’,

’loverlap’ => ’int’,

’roverlap’ => ’int’

},

creator => [’name’, ’sequence’],

constructors => [

[’name’]

]

};

Figure 3.8.: GENDB.pl – the object definition for contig .

The information on left and right neighbor ({r|l}neighbor_id) and their
respective overlap ({r|l}overlap) is used to tie together individual con-
tigs in to a larger supercontig in a later version of the program. The unique
object identifier is added by the O2DBI system.

The supercontig object

The supercontig object offers access to a supercontig made up of several con-
tig objects. Two member variables are stored, a name for the supercontig and

56

3. Implementation of GENDB

the contig_id of the first contig object in the supercontig. Access to and
creation of new supercontig objects is done via the name of the supercontig.

$geneproject{’supercontig’} = {

members => {

’name’ => ’char(50)’,

’first_contig’ => ’int’

},

creator => [’name’],

constructors => [

[’name’]

]

};

Figure 3.9.: GENDB.pl – the object definition for supercontig .

Although the object is present in the system, the functionality for supercon-
tigs is not yet fully completed (see the roadmap in the appendix). Once com-
pleted, accessing a supercontig will be identical to accessing a contig object.
Thus the software using contig objects will be able to use supercontig objects
without a change. All additional functionality will be implemented in the ap-
plication programmer’s interface, therefore, the user level applications will
be able to use supercontigs in addition to contigs with little or no changes in
code.

The orf object

The ORF object is the most complex object in GENDBso far. While some object
properties are self explanatory, some are more complex or rely on definitions
within GENDB. The following table contains definitions and explanations for
the not self evident properties.

The notion of multiple names for a single ORF object is probably the single
most important feature in the ORF description. It enables the integration of

57

3. Implementation of GENDB

data from multiple sources and different stages of the genome analysis. In
the past, extensive efforts went into the creation of translation tables for ORF
identifiers.

For the names of contigs see section 2.5.7 on page 42.

Name Description
contig_id The object identifier of the

contig object this ORF is in.
name The ORF name for this ORF

object as defined by the
basecaller or by GENDB.

status The state of the ORF as defined
in figure 3.15 on page 70.

start,stop The start and stop position.
molweight,isoelp The molecular weight and the

isoelectric point for the ORF.
startcodon To allow easy access to the

startcodon, e.g. using the SQL
query interface of the DBMS.

names Since biologists like to rely on
an early annotation to start
running costly laboratory
experiments, we need to store a
number of names for each ORF.

annotations For a single ORF any number of
annotations can be stored. A list
of annotation ids is stored for
each ORF.

The inclusion of multiple annotations for a single ORF is another distinguish-
ing feature of GENDB. The annotations are ordered according to the date they
were entered. By definition (see section 2.5.7 on page 42), the latest annota-
tion is used when generating output.

Figure 3.10 on the following page shows the complete object definition for

58

3. Implementation of GENDB

the ORF object.

$geneproject{’orf’} = {

members => {

’contig_id’ => ’int’,

’name’ => ’char(20)’,

’status’ => ’int’,

’start’ => ’int’,

’stop’ => ’int’,

’molweight’ => ’float’,

’isoelp’ => ’float’,

’frame’ => ’int’,

’ag’ => ’int’,

’gc’ => ’int’,

’startcodon’ => ’char(3)’,

’@names’ => {

’name’ => ’char(20)’,

},

’@annotations’ => {

’annotation_id’ => ’int’,

}

},

creator => [’contig_id’, ’start’, ’stop’, ’name’],

constructors => [

[’name’]

]

};

Figure 3.10.: GENDB.pl – the object definition for orf .

The creator method for an orf object requires a contig_id , the start and
stop positions and a name for the ORF. A constructor is created that uses the
name to access the ORF object.

59

3. Implementation of GENDB

The annotation object

As shown in section 2.5.7 on page 42, a gene is defined as an ORF object
plus an associated annotation object. The annotation stored for an ORF is
very similar to the annotation stored in the Magpie system. As detailed in
the roadmap in the appendix, this will change in a future version of GENDB.
Unlike the Magpie system, a number of observation_id s can be stored
that support an individual annotation.

Figure 3.11 shows the complete definition for the annotation object.

$geneproject{’annotation’} = {

members => {

’name’ => ’char(20)’,

’orf_id’ => ’int’,

’product’ => ’char(20)’,

’comment’ => ’text’,

’date’ => ’int’,

’description’ => ’text’,

’ec’ => ’text’,

’category’ => ’int’,

’offset’ => ’int’,

’annotator_id’ => ’int’,

’@observations’ => {

’observation_id’ => ’int’,

}

},

creator => [’name’, ’orf_id’],

};

Figure 3.11.: GENDB.pl – the object definition for annotation .

No additional constructor method is defined, thus access to an annotation
has to be done via the database object id only. Creation of an annotation
object is possible using both a name and an orf_id .

60

3. Implementation of GENDB

The date field enables the sorting of annotation entries according to their
date of entry. Each annotation is linked to the annotator who must be listed
in the table of annotators. As with ORFs and annotations, a one to many
relation exists between annotations and observations, allowing for multiple
observations to be added to a single annotation object.

The annotator object

The annotator object is used to store information on the persons performing
annotations. Currently, only the name of the annotator is stored. The anno-
tator object can easily be expanded to contain the person’s email address or
telephone number to facilitate discussion among different annotators. Also,
the inclusion of passwords to use over the web interface is feasible.

No creator method is defined, thus the annotators has to be added using the
SQL monitor tool of the DBMS. Access to the annotators is performed via the
annotators id and the annotators name.

$geneproject{’annotator’} = {

members => {

’name’ => ’char(20)’,

’description’ => ’text’

},

constructors => [

[’name’]

]

};

Figure 3.12.: GENDB.pl – the object definition for annotator .

Since O2DBI allows for the easy extension of the objects without the need to
rewrite the user level applications, the annotator object will be extended in
a later version of GENDBwhen the need for a more complex annotator object
arises.

61

3. Implementation of GENDB

The observation object

As explained earlier, the need to conserve resources led us to store only a
minimal set of data for a given observation. Since recreating the complete
observation is feasible once the tool, the exact parameters, and the database
entry that are referenced in the observation are known, this information has
to be stored.

For a given observation the following information is stored:

Name Description
description Description from the database

record.
toolresult The result from the tool. e.g. E

value and score from Blast .
information The information content in the

observation.
dbref Database identifier for the hit.
dbfrom,dbto Region in the database entry

that matches to the ORF.
orffrom,orfto Region in the ORF that matches

to the database entry.
tool_id The database identifier of the

tool used to create this entry.

Other information, e.g. the original alignment, is recomputed on demand.
This is a very storage efficient strategy, only a small subset of the tool results
is actually stored. Most of the information is discarded and recomputed on
demand. From a user perspective, recomputing the original tool result takes
about the same time as retrieving the same information from storage.

For a given genome project, thousands of tool results are computed, each
containing up to several hundred individual results. Of this multitude of

62

3. Implementation of GENDB

results, only a small percentage is ever viewed by the human annotator. This
strategy has proven to be very effective for GENDB.

$geneproject{’observation’} = {

members => {

’orf_id’ => ’int’,

’description’ => ’text’,

’toolresult’ => ’text’,

’information’ => ’int’,

’dbref’ => ’text’,

’orffrom’ => ’int’,

’orfto’ => ’int’,

’dbfrom’ => ’int’,

’dbto’ => ’int’,

’tool_id’ => ’int’

},

creator => [

’orf_id’

]

};

Figure 3.13.: GENDB.pl – the object definition for observation .

Figure 3.13 shows the observation (or fact) object.

No additional constructor method has been specified. The creator method
uses a single argument, the ORF database identifier. The observation object
is only used in conjunction with an ORF object therefore, a single creator
method is sufficient.

The tool object

In the context of GENDB, a tool is an external program in conjunction with
a sequence or sequence motif database. Tools are used to compute observa-
tions. An example for a tool is Blast using the Swissprot database.

63

3. Implementation of GENDB

Therefore, the tool object contains information on how to compute observa-
tions with a given tool and also information on how to present these obser-
vations.

We have decided to store only a minimal amount of data for observations
and regenerate the rest dynamically to save resources. Only a fraction of the
observations are viewed by a human annotator and recomputing the origi-
nal results is easily possible when the tool, the parameters and the database
entry that was found are known. The tool object thus includes information
on how to recreate the original query result by rerunning the tool.

The following table lists the more complex properties in the tool object defi-
nition.

64

3. Implementation of GENDB

Name Description
input_type A tool uses either DNA or

amino acid sequences to
perform the query.

number The user can sort the tools, thus
the tools with the lowest user
priority are computed first. A
simple scheduling algorithm
can e.g. compute observations
until a level n observation is
found, starting from the tool
with the lowest number .

user_value This is intended for a future
scheduling algorithm that
allows the user to group tools
into classes.

cost A systemwide value for the
computational costs of a tool,
intended for future use.

dburl The URL of the database, used
for downloading the database
sequences before recomputing
the observations.

dbname The name of the database.
level n A score threshold value that is

to be exceeded by the tool score
to create a level n observation.

helper_package The parser for the tool results
and other functions are
implemented in the helper
packages, see section 3.2.2 on
page 74.

Figure 3.14 on the following page shows the object definition for the tool
object.

65

3. Implementation of GENDB

$geneproject{’tool’} = {

members => {

’name’ => ’char(20)’,

’description’ => ’text’,

’input_type’ => ’int’,

’user_value’ => ’int’,

’number’ => ’int’,

’cost’ => ’int’,

’dburl’ => ’text’,

’dbname’ => ’text’,

’executable_name’ => ’text’,

’level1’ => ’int’,

’level2’ => ’int’,

’level3’ => ’int’,

’level4’ => ’int’,

’level5’ => ’int’,

’helper_package’ => ’text’

},

creator => [’name’],

constructors => [

[’name’]

]

};

Figure 3.14.: GENDB.pl – the object definition for tool .

A creator and a constructor method are defined both requiring a name as the
only parameter. By changing the settings for the different levels the presen-
tation of the observations can be achieved in the user level programs. This
implicates that the level settings are changed on a per project basis instead
of on a per user basis.

For each tool, the system stores information on how to classify the tool results
into five different levels. The user can decide to trust level 1 results and write
a program that automatically uses level 1 results to annotate the ORFs.

66

3. Implementation of GENDB

3.2.2. Not automatically generated methods for all object

types

The code for the manually added functions is located in the *_add.pm perl
modules located in the GENDBdirectory.

We list the functions available in this part of the application programmer’s
interface that are currently available on a file by file basis.

$GENDBROOT/lib/annotation_add.pm

fetchall_ecs()

This ORF object method returns all Enzyme Classification Numbers

numbers stored in the database for the ORF as a list of strings of Enzyme

Classification Numbers and hash containing all annotation_ids for
each EC-number.

latest_annotation_init_orf_id()

This ORF object method returns an annotation object with the latest annota-
tion for a given ORF.

$GENDBROOT/lib/annotator_add.pm

annotator()

This object method for a annotation object returns a string containing the
name of the last annotator.

67

3. Implementation of GENDB

$GENDBROOT/lib/contig_add.pm

fetchorfs()

This object method returns all ORFs for a given contig. A reference to a hash
containing the ORFs indexed by name is returned.

fetchallby_id()

This object method returns all ORFs for a given contig. A reference to a hash
containing the ORFs indexed by id is returned.

num_orfs()

This object method returns the number (an integer) of ORFs for a contig ob-
ject.

num_genes()

This object method returns the number (an integer) of annotated ORFs (called
genes) for a contig object.

orf_stats()

This object method returns an array with statistics about the state for a given
contig object. $array[0] contains the number of ORFs, $array[1] the
number of ORFs with state 0, $array[2] the number of ORFs with state 1,
etc.

fetchOrfsinRange()

This object method, requiring the two parameters $start and $stop , re-
turns all ORFs within the range described by the integers $start and $stop .

68

3. Implementation of GENDB

fetchOrfsatPosition()

This object method requiring one parameter $position (integer), returns
all ORFs which overlap the position.

getTranslationFrame($frame,$fill)

This object method uses two parameters $frame,$fill and returns the
translation of the DNA sequence contained in the contig. $frame denotes
the reading frame to be translated. If $fill is not empty, the sequence of
each amino acid letter followed by two “whitespace” characters.

$GENDBROOT/lib/observation_add.pm()

A constant ($srs_query_url) set in this module defines the fixed host pre-
fix of the URL used for sequence database information retrieval. Currently
this is set to http://srs.Genetik.Uni-Bielefeld.DE/cgi-bin/wgetz? .

SRSrecordURL()

For a given observation object, this method returns a string containing the
URL of the associated sequence database entry.

SRSrecord()

For a given observation object, this method returns a string containing the
complete sequence database entry as returned by the SRS system.

dbsequence()

This object method returns only the sequence portion of a database entry
associated with the observation.

69

3. Implementation of GENDB

$GENDBROOT/lib/orf_add.pm

The ORF states are defined in this module as follows.

$ORF_STATE_PUTATIVE = 0;

$ORF_STATE_ANNOTATED = 1;

$ORF_STATE_IGNORED = 2;

$ORF_STATE_FINISHED = 3;

$ORF_STATE_ATTENTION_NEEDED = 4;

$ORF_STATE_USER_1 = 5;

$ORF_STATE_USER_2 = 6;

Figure 3.15.: The definition of the ORF states.

The methods defined in this module are based on the idea that the first base
in the start codon is the start position of an ORF, the last posistion (stop posi-
tion) is the last base before the stop codon. Thus we count positions starting
from 1 (not from 0 as it is common, e.g. in the Cprogramming language).

length()

Based on the assumptions described above, this object method returns the
length of the DNA of an ORF as an integer.

aalength()

Based on the assumptions described above, this object method returns the
length of the amino acid sequence for an ORF as an integer. The length is
computed by simply dividing the DNA sequence length by three.

sequence()

The DNA sequence for an ORF is returned by this object method.

70

3. Implementation of GENDB

aasequence()

This object method for an ORF object returns the amino acid sequence for a
given ORF.

fetchobservations()

For a given ORF object this object method returns a hash reference with all
observations asscociated with the ORF. The hash is indexed by the observa-
tion id .

best_observation()

For a given ORF object, this object method returns the best observation. The
best observation is computed by SQL sorting the observations by level
within the DBMS and returning the topmost observation.

no_observation()

For a given ORF object this object function returns the number of observa-
tions for this ORF.

latest_annotation()

This object function for an ORF object returns the latest annotation as an
annotation object.

fetch_annotations()

For a given ORF object this object function returns a hash reference with all
annotations asscociated with the ORF. The hash is indexed by the annotation
id .

71

3. Implementation of GENDB

fetchAllOrfsWithState()

This is not an object method, but a class method returning all ORF objects of
the $state given as parameter.

nexttool()

This object function returns the id of the next analysis tool to run.

toollevel()

This object function returns the level of the last tool result that was computed
for this ORF. The tools are stored in an ordered list.

order_next_job()

For a given ORF object, this object method creates the next job in line for
$orf and returns the $job_id (from the orfstate table).

set_orf_alias()

This object function stores a new name for a given ORF in the database. The
new name is given as a parameter.

$GENDBROOT/lib/orfstate_add.pm

To implement a simple batch processing system, a table of jobs is used. Each
of the jobs is in any one of the following states

� unlocked

No tool is currently running for this job and no tool has completed a
successful run for this job.

72

3. Implementation of GENDB

� locked

A tool is currently running for this job.

� finished

A tool has successfully run for this job.

lock()

This object method locks a job. The internal $date_done variable is set to 1.
Before computing a job for a given ORF, the scheduler will always perform
a lock() on the job. If lock() returns 1 the job is already locked and will
not be computed. Only if lock() succeeds (returning 0) will the job be
computed.

unlock()

If the execution of a job failed, the process calls unlock() . The job can then
be rerun the next time the scheduler is updated. unlock() sets $date_done

to 0, the ready-to-run job state.

finished()

This object function is used after sucessfully running a job. The process uses
finish() to indicate this state, finish() sets $date_done to the current
date.

fetch_failed_jobs()

Assuming the scheduler completed a run, only jobs still in state locked or
unlocked are assumed to have failed. This object function returns a list of job
ids that have $date_done equal to 0 or 1.

73

3. Implementation of GENDB

$GENDBROOT/lib/supercontig_add.pm

_build_contig_chain()

This internal method is used to build a chain of contigs.

length()

This object method returns the overall length of this supercontig.

sequence($start, $stop)

This object method for the supercontig object returns a string containing the
DNA sequence for the supercontig. If $start and $stop are defined, only
the region from $start to $stop is returned.

$GENDBROOT/lib/tool_add.pm

This package contains a number of methods that are only used to refer to
functions in the helper packages (see below).

fetch_ordered_tools()

This class method retrieves all tools from the database efficiently and returns
a sorted array reference.

Stubs for the helper tools

� command_line()

A command line is needed by the batch system to actually execute the
tool run.

� run_job()

This function uses the $command_line described above and parses

74

3. Implementation of GENDB

the results. Any number of tool and environment specific settings are
contained in this function.

� score()

This returns the score as computed by the tool, e.g. Blast .

� bits()

This returns a normalized score using bits from information theory.

� level()

Depending on the user definable settings for tool levels, this function
returns a level for an observation.

� configure()

This is the most complex function of the stubs since it creates a window
and allows the user to modify the tool settings. This function is part of
the tool specific code in GENDB.

Tool helper packages

The tool helper packages implement the stubs described above. Currently,
the following helper packages are implemented in the GENDBsystem:

name description
Blast Homology searches using blast1 , blast2 ,

psi-blast and phi-blast .
hmmpfam Homology searches using Hidden Markov

models.
glimmer1+2 Gene prediction [DHK+99].
gff Import and Export data in GFF [DH00] format.
embl Import and Export data in EMBL [SMS+01]

format.

75

CHAPTER 4

Results

4.1. User interface manual

The user interface is one of the most critical components of a genome anno-
tation system. Since thousands of genes have to be manually inspected and
various pieces of information are available for each single gene, an intuitive
user interface is a must for such a system.

The user interface is embedded in the workflow of a genome annotation with
GENDB.

Figure 4.1 on the next page shows the flow of information in the GENDBsys-
tem.

76

4. Results

trace data contig

Storage

gene
prediction

user
annotation

automatic
annotation

GENDB

manual step

automatic step

dataflow in GENDB

2 import contig data
into GENDB

1 assembly

5

3

4

Figure 4.1.: The flow of information in the GENDBsystem.

This chapter is the user manual for the graphical user interface, i.e. various
tasks the user can perform with the GENDBsystem are described in detail.

4.1.1. Uploading data and gene prediction

The first task that a user usually faces with GENDBis uploading a sequence
into the system. 1

1Please note that the system administrator’s tasks for settings up GENDBare listed in the
appendix.

77

4. Results

Loading a contig

From the main dialog that GENDBstarts up with, select Import Contig

from the Management menu. Once this dialog has been selected, a new
window appears that allows browsing for a filename for the new contig.
After the filename has been added, a number of options can be set.

The file must be in the FASTA format, only a single contig per file is allowed.

The current version of GENDBonly supports Glimmer as a gene prediction
tool, so all options refer to the options of that tool.

The user can choose to use the longest contig in the database as a basis for a
Glimmer ORF model or choose a model file to use. Should the new contig
be longer than those already in the database, the option update all con-

tigs results in a new gene prediction being computed for all contigs in the
database.

Figure 4.2 shows the user interface for adding new contigs.

Figure 4.2.: Uploading a new contig and setting the preferences for gene pre-
diction.

4.1.2. Viewing the Contig

The most important element of the graphical user interface is the visualiza-
tion of the contig and the ORFs contained in the contig.

78

4. Results

Main view

The single most prominent view in GENDBis the contig view. Figure 4.3
shows a sample contig view. The top half of the window contains a scalable
graphical representation of the contig that the user can scroll through. The
lower half contains a table that lists the ORFs in the contig.

Figure 4.3.: The Contig view.

Further information on the ORFs is contained in the table. The graphical
view is used as a basis for accessing information on observations associated
with an ORF.

79

4. Results

Base view

In addition to the contig view , the so called base view , can be used to
navigate through the sequence. The two complementary DNA strands are
shown in the center of the window, the six derived amino acid sequences
are shown above and below the DNA. Stop Codons are indicated by blue
ticks on the center line. The ORFs are indicated by colored boxes around the
amino acid sequences.

The contig view and the base view are synchronized, clicking on an
ORF in the contig view automatically causes the base view to show the
position of that ORF.

Figure 4.4.: The base view showing both DNA strands and the derived six
amino acid sequences.

80

4. Results

4.1.3. Viewing observations

For each ORF in GENDBa number of observations can be computed. These
are stored in the database and are accessible through the user interface. By
right-clicking on a ORF symbol in the contig view , the user can select
show observations from a pop-up window. This opens up the multi-

ple observation viewer .

The multiple observation viewer

For each ORF a graphical view of the observations associated with that ORF
is computed on demand. The window is separated into five columns that
contain the following information:

Column Description
Observation overview A graphical view of the ORF showing where the

database matches occured.
Score The score as returned by the analysis tool.
Bits The information content contained in the

observation.
Tool description The name of the analysis tool.
Hit description The database description.

Both the graphical description and the database description are clickable.
If the user performs a release of the right mouse button on a database de-
scription, the original database entry is shown using the SRS [EV97] system.
Upon a right click on the graphical view, the original analysis results are
recomputed and displayed.

81

4. Results

Figure 4.5.: The observations view.

The original tool results

The complete results of the analysis are not stored in GENDBbut are recom-
puted on demand by the system. The system uses the database identifier of
the sequence involved in a match and the tool used to recompute the com-
plete analysis. Since we now know the sequence in the database, recomput-
ing a tool result (e.g. Blast against EMBL) we do not need to compare the
entry to the complete EMBL database, but can compare against the single
sequence in EMBL that is known to match.

Figure 4.6 on the following page shows the alignment results of a hmmp-
fam [AER+00] analysis. Since only a single sequence is involved, the recom-
putation is done in a matter of seconds (usually 1-2 seconds) on a reasonably
fast workstation. 2

2From an end user perspective, this is faster or at least as fast as the alternative, storing the
complete results and looking them up.

82

4. Results

Figure 4.6.: The original tool results.

A sample output from the SRS system is shown in figure 4.7.

Integration of sequence database information

Each observation in GENDBis associated with a sequence database entry. The
system does not store the complete entry, but the user still has access to the
complete information via the SRS system developed by Thure Etzold at the
EBI [EV97].

83

4. Results

Figure 4.7.: The database information as viewed with SRS.

84

4. Results

4.1.4. Annotation

The automatic DNA sequence analysis by tools like Blast is not the end
of a genome analysis, but rather the beginning. The user needs to store ad-
ditional information and his or her interpretation of the observations com-
puted by the system. Confusingly, both the automatic analysis by bioinfor-
matics tools and the manual interpretation of results is referred to as annota-
tion. In GENDBwe use the term “automatic annotation” for the bioinformat-
ics tools and “annotation” for the information added by a human researcher
analyzing the automatic annotation.

The GENDBsystem allows the user to store any number of annotations for a
single ORF.

Adding an annotation

By double clicking on the ORF name in the table of ORFs in the contig

view , the user can view the annotation window, see figure 4.8.

Figure 4.8.: The annotation window.

85

4. Results

Annotation history

For each ORF multiple annotations can coexist. The most recent annotation
is shown in the contig view table (e.g. gene name) and other places, but
the other annotations are still available in the system. GENDBshows clearly
who did which annotation at what time, thus annotation based on old or out-
dated information can be easily identified. The left column in the annotation
window shows the annotation history in figure 4.8.

86

4. Results

4.1.5. Pathway viewer

From the information contained in the annotation and a separate database of
metabolic pathways, the PathFinder [GHM+01] tool computes metabolic
pathways that are represented in the genome. The graphical pathway repre-
sentation can be used to navigate through the genome and also to improve
the annotation. Enzymes missing in the annotation can be easily identified
by looking at the complete pathway. Missing enzymes are identified by color
code here.

For a more detailed description of the PathViz tool, see the paper [GHM+01].

Figure 4.9.: The pathway viewer.

87

4. Results

4.1.6. Wizards

A number of modules in GENDBperform special functions that do not fit
easily into the user interface of GENDBas described so far.

We have therefore introduced a new category for these functions, the so
called “wizards”. Wizards are software agents that help automating com-
plex recurring tasks in genome annotation. Adding wizards is an ongoing
task, once new problems are identified, new wizards will be implemented to
address these specific issues.

The following paragraph outlines the wizards implemented so far.

Frame shift wizard

In almost any genome project the need for quick analysis leads the researcher
to perform an automated sequence analysis once the first contig is assem-
bled. While this early analysis is desirable for the researcher, it causes some
problems with later changes in the contig data.

Most genome annotation system will require the user to reannotate the con-
tig if changes in the contig sequence are made. GENDBactually provides an
interface to alter the primary sequence and update its internal data structures
to allow editing of the sequence.

Upon completion of the changes to the sequence, the gene prediction tool is
called and any new, altered or obsolete ORFs are added, updated or deleted
as appropriate in the GENDBsystem. The data for all other ORFs, observa-
tions, etc. in the system is updated accordingly.

If a frameshift is found in the middle of a contig, the positions of all ORFs
downstream of the position with the frameshift are adjusted accordingly.

Figure 4.10 on the next page shows the frameshift editor of the GENDBsys-
tem. The wizard allows the insertion, deletion or alteration of bases in the
contig sequence. The user first selects a contig in the upper half of the win-
dow and the performs the edit operations in the lower half.

88

4. Results

Upon completion of the changes, the user can choose whether or not to up-
date the GENDBdatabase or discard the changes that were made.

Figure 4.10.: The frameshift editor.

89

4. Results

ORF editor wizard

Similar to the frameshift editor, the ORF editor allows editing of the ORFs
created by the gene prediction tool. The user can choose to shorten or pro-
long the ORF either to the next or previous ATG or to the next or previous
general start codon.

Upon completion of the changes, the user can choose whether or not to up-
date the GENDBdatabase or discard the changes made.

90

4. Results

Figure 4.11.: The ORF editor.

4.1.7. The virtual 2D-Gel

In addition to the pathway and the contig view, the virtual 2D-gel is another
navigation metaphor in GENDB.

The system provides the user with a 2D-gel computed by using the informa-

91

4. Results

tion on the isoelectric point (x axis) and the molecular weight (y axis) of each
ORF. By selecting one or more spots on the gel, the user can navigate through
this gel and view the observations and or the annotation for any spot in the
gel.

Figure 4.12 shows the current virtual 2D gel.

Figure 4.12.: The virtual 2D gel.

92

4. Results

4.2. The web interface of GENDB.

In addition to the frontend described in the previous section, a web frontend
exists for the GENDBsystem. The contigs, ORFs, observations, and annota-
tions can be viewed using a set of CGI scripts.

The data is tied together by hyperlinks, allowing the navigation through the
genome data via the web interface.

Figures 4.13-4.16 show various screenshots of the web interface correspond-
ing to the different views that the GENDBGUI provides.

Figure 4.13 on the next page shows a list of contigs from the GENDBweb user
interface. This view is very similar to that generated by the Magpie [GS96]
system.

93

4. Results

Figure 4.13.: The contig view of the web interface.

The open reading frames for a single contig are represented in figure 4.14 on
the following page.

94

4. Results

Figure 4.14.: The ORF information in the web user interface.

The information shown for a single ORF (see figure 4.15 on the next page) is
again very similar to the Magpie system.

95

4. Results

Figure 4.15.: The single ORF info view of the web interface.

Figure 4.16 on the following page shows another view for the ORF highlight-
ing the ORF sequence in the complete contig sequence.

96

4. Results

Figure 4.16.: The ORF in context view of the web interface.

The current version of the system does not allow human annotation to be
performed via the web interface, that is it provides a read-only version of
the data. A later version will include this capability.

97

4. Results

4.3. Analysis of genomic data with GENDB

The GENDBsystem has been applied to several genomes or genome scale
sequences. Using GENDBthe average time required for manual annotation
of a single ORF was reduced to between three and five minutes for most of
these projects.

The next paragraph gives a short outline for several projects.

4.3.1. Analysis of the complete genome of C. glutamicum

The ongoing C. glutamicum genome project has used a number of genome
annotation systems. The data from Magpie and Pedant has been imported
into the GENDBsystem.

The capability to include multiple ORF names into a single database has
greatly improved the integration of data from multiple genome annotation
efforts.

The compute cluster in figure 4.18 on page 106 of the Center for Genome
Research at Bielefeld University took 6 days to compute the following tool
results for all ORFs in C. glutamicum:

� Blast against nt (EMBL/NCBI non redundant nucleotide database)
� Blast against nr (EMBL/NCBI non redundant protein database)
� hmmpfam

� Blast against Swissprot

Less than 80 percent of the 3.3 megabase genome of C. glutamicum have been
analyzed with Magpie . Storing the sequence data and the automatic anno-
tation created by Magpie was done via more than 450.000 files in the UNIX
filesystem. Table 4.1 on the following page compares some figures about
data storage for Magpie and GENDB.

98

4. Results

category Magpie GENDB

files 457487 uses SQL database
directories 6522 uses SQL database
static images � 50.000 uses dynamic visualization
Disc space � 10 Gigabyte 133.614 Kilobytes

Table 4.1.: Comparison of storage requirements for Magpie and GENDB.

Despite the fact that GENDBwas applied to the finished genome and con-
tained at least 15% more sequence data, the genome analysis stored by GENDB

requires 75 times less storage capacity compared to the Magpie system.

Figure 4.17 shows the ORF view for a region of the C. glutamicum genome.
In total, the genome contains 3688 putative ORFs for which a total of 707.506
database hits have been stored.

Figure 4.17.: The ORF view for a region of C. glutamicum
Blue ORFs are annotated, green putative, and red ORFs have been marked for

further analysis

Figure 4.19 on page 107 shows the virtual gel for C. glutamicum computed by
GENDB.

99

4. Results

4.3.2. Analysis of several S. meliloti contigs

In the context of the international S. meliloti analysis project, several contigs
have been uploaded to a GENDBsystem and analyzed. Upon completion
of the annotation by an international team the results will be uploaded to a
GENDBsystem using the EMBL import function.

Unfortunately, the creative use of the EMBL format to store annotation re-
sults makes exchanging annotations using EMBL format a very time con-
suming task.

4.3.3. Analysis of several smaller contigs with GENDB

Several smaller replicons have been analyzed with the GENDBsystem. Among
them, the pCM1 plasmid from C. glutamicum and the pSB102 plasmid ana-
lyzed by Susanne Schneiker or the pb4 plasmid analyzed by Andreas Tauch.

Figure 4.20.: The Contig information for the pb4 plasmid

The pb4 plasmid with 79371 (see figure 4.21 on the next page) bases has been
analysed using GENDB, generating 12054 database hits.

Of the 123 open reading frames detected by glimmer, the user validated 78
ORFs, 44 were ignored, one ORF still needs further attention. Figure 4.20
shows the way GENDBpresents this information to the user.

100

4. Results

Figure 4.21.: The ORF view for the pb4 plasmid
All 78 validated ORFs are shown in black, one ORF needing further analysis is

shown in red.

The analysis of plasmids has become a routine task to which GENDBis ap-
plied.

4.3.4. Analysis of the B. subtilis , E. coli and

M. tuberculosis genomes

When developing the pathway analysis component for their diploma the-
sis, Alexander Goesmann and Martin Bennemann used GENDBas a basis for
their software development and also used the system to automatically re-
annotate the respective genomes [GB00].

The genomes of B. subtilis, E. coli and M. tuberculosis were subjected to auto-
matical annotation by GENDB.

4.3.5. Analysis of a mycoplasma genome

In a collaboration with Joakim Westberg from the swedish Royal Institute of
Technology the web interface of GENDBis currently used for the analysis of
a mycoplasma genome.

101

4. Results

Figure 4.22 on the next page shows the web interface for the mycoplasma
genome. The web interface represents the database hits as shown in fig-
ure 4.23 on page 104. Clicking on the database id shows the original database
entry, clicking on the overlap graph yields the underlying alignment. By
clicking on the tool name, the database hit can be used as a basis for a man-
ual annotation.

102

4. Results

Figure 4.22.: The web interface for the mycoplasma genome

103

4. Results

Figure 4.23.: The database hits for ORF 53 of the mycoplasma genome

4.4. Summary

Today GENDBis routinely used to annotate contig data and as a point of
reference for researchers. The ability to include multiple ORF names has
proven to be valuable. Various GENDBinstallations outside of Bielefeld show
the portability of the system (e.g. at the German MPI bioinformatics server
at Garching, at MWG near Munich).

As outlined in the roadmap (see on page 115), future work for the GENDB

system includes its application to EST data, eucaryotic sequence data, the in-
clusion of expression data as well as many small improvements. The ability
to extend the system was demonstrated by many small enhancements to the
original design. The provision of the application programmer’s interface has
been crucial for extending the system.

Since only a subset of information is stored and the rest is recreated on de-
mand, the storage needs of GENDBare small when compared to the Magpie

system that was used previously.

The usefulness of the O2DBI tool has been proven by changing the DBMS
system halfway into the project from PostgreSQL [Pos] to MySql [Incb]. The
fact that the transition was possible without manual changes to the GENDB

code shows that the GENDBsystem is not specific to a single database man-
agement system.

104

4. Results

A most impressive proof of the concepts used in GENDBhas been the very
straightforward manner in which the inclusion of a component for the anal-
ysis and vizualization of metabolic pathway data by Alexander Goesmann
and Martin Haubrock [GB00, GHM+01] took place.

Also, the EMMA project for the storage, analysis and visualization of ex-
pression data in conjunction with EST (expressed sequence tags) developed
at Bielefeld University uses an approach very similar to the one chosen for
GENDB.

105

4. Results

Figure 4.18.: The compute cluster of the Center for Genome Research at
Bielefeld University. 30 Sun Netra t1(105) workstations with Ul-
tra Sparc IIe CPUs (360Mhz, 128 MB RAM)

106

4. Results

Figure 4.19.: The virtual 2D gel for C. glutamicum

107

CHAPTER 5

Discussion

While the first generation genome annotation systems had to provide the
researchers with a reasonably fast solution for viewing genomic data in a
very short timeframe, the GENDBsystem with the benefit of hindsight was
designed to avoid the problems that occured when using the older systems
for today’s tasks. Unlike the older systems, we have tried to use state-of-the-
art technology whenever possible and to make the system extensible and
well documented, thus facilitating novel uses for the system.

While traditionally a genome annotation system offered a graphical user in-
terface that presented the results of a number of tools to the user, there was
clearly no intention for them to be used as a data repository for new analysis
software. The new data described in section 1.2.2 clearly demands such an
open approach.

In contrast to the first generation systems, GENDBprovides the following
features or benefits:

108

5. Discussion

� Reduced storage requirements
Since only a minimal amount of information is stored for observations,
the amount of storage required is reduced drastically. For the C. glutam-
icum genome, there was a 75 fold reduction in the storage requirements
compared to Magpie .

� Reduced CPU time and computer costs
By selective recomputation of facts, we have reduced the number of
CPU cycles used by the system. We have implemented a batch pro-
cessing system that utilises a cluster of inexpensive workstations, thus
providing the neccessary computing power in a very cost effective way.

� System accomodates changes to the sequence data
The GENDBsystem allows the user to edit the sequence and invalidates
only the data affected by such changes. By only recomputing the inval-
idated data, CPU resources are conserved.

� GENDBprovides an application programmer’s interface
The API provided by GENDBenables easy extension of the system and
addition of new methods of analysis.

� Extensibility
Using the application programmer’s interface, the system can be adapted
for new data or new research questions.

� Support for the integration of new technologies
The upcoming proteome and expression data can be easily accommo-
dated in the GENDBframework and linked with the results of the genome
analysis.

The new system – in our opinion – presents a significant progress in the
area of genome annotation systems. As the roadmap in the appendix (see
page 115) shows, a series of extensions and improvements to the existing
system are planned.

109

5. Discussion

5.1. Availablility and Future work for GENDB

5.1.1. Availability

While the software presented here has been available inhouse for some time,
only a few beta testers outside of Bielefeld had access to the software so far.
We are planning to release GENDBas open source.

The software (including the complete source code) will be made available to
academics at no charge from the GENDBweb site: http://gendb.Genetik.

Uni-Bielefeld.DE .

While there already is a mailing list for GENDBdevelopers, a mailing list for
GENDBusers and announcements will be set up by the time the initial release
takes place.

5.1.2. Future work

A detailed in the roadmap for futher development (see page 115) the first
public release of GENDBwill be with version 1.0.5.

The next releases will contain a number of significant improvements:

� Full support for EMBL feature (v1.1)
While top level EMBL features can be selected for each ORF in version
1.0.5, the next version will include the whole range of EMBL features.

� Inclusion of multiple feature and gene prediction tools (v1.1)
Currently, the only supported feature prediction tool is Glimmer . For
the next release an extensible subsystem that includes various tools
(e.g. GeneMark/S [BJM01] by Borodovsky et al, tRNAscan [LE97] and
qrna [RE01] by Eddy, CRITICA [BG99] by Badger and Olson) and uses
an expert system tool (CLIPS) to analyse the different predictions.

� Generation of annotation suggestions using an expert system (v1.2)
Using the CLIPS system mentioned above, an analysis of the data per-
taining to a sequence feature is performed and a suggested annotation

110

5. Discussion

is created. This takes into account multiple database hits and the vari-
ous bits of information gathered by GENDB.

� Support for EST projects (v1.3)
A number of projects sequence ESTs and perform an annotation on
those instead of sequencing whole genomes. GENDBwill be extended
to allow for EST input instead of sequence contigs.

111

APPENDIX A

Roadmaps for Installation and future

development

112

A. Roadmaps for Installation and future development

A.1. Installation Roadmap for a GENDBsystem.

A.1.1. Step: 1 – Installating the neccessary software

Requirements for GENDBas of 29th October 2001. The following software
packages are required:

� a UNIX like operating system (Solaris preferred)

� the X Windows System (X11) with gtk-libraries

� various gnome libraries

� a Web Server (Apache 1.3 or later preferred)

� a relational database management system (MySQL [Incb] preferred)

� Perl 5.005 or later with the a number of perl modules

– Perl/Tk

– DBI + appropriate DBD

– GtkPerl

– Bio::Perl (version � 1.6)

– . . .

The GENDBinstallation includes a CPAN bundle file that automatically
uploads and installs the required modules into a perl installation.

� Blast with the respective databases and the formatdb utility

� the PFAM database and hmmpfam [AER+00]

� the Glimmer [DHK+99] (� 2.0.1) gene prediction software.

113

A. Roadmaps for Installation and future development

A.1.2. Step: 2 – Installation of GENDB

After installing the neccessary modules unpack the GENDBdistribution by
using the command gzcat <archive> | tar xf - .

run setup.pl and follow the instructions.

114

A. Roadmaps for Installation and future development

A.2. Roadmap for future GENDBversions.

v1.0.5: (first public release)

� Replacing ORFs by EMBL Features (partial).

� Integration of a Web User Interface.

� Replacing of the Perl/TK User Interface for new Interface implemented
in Perl/Gtk [MKM] offering more flexibility.

� Integration of KeggMapper by Alexander Goesmannfor projecting GENDB

annotations on the well known KEGG [KG00] pathway maps.

� Inclusion of a new interface to additional gene prediction tools.

v1.1:

� Replacing ORFs by EMBL Features (complete).

� Automatic analysis and comparison of the results of gene and feature
prediction tools.

� Allow annotation via the Web interface

v1.2:

� Automatic analysis of observations (former facts) and features using
an expert system (CLIPS).

� Supercontigs – tying together contigs and projecting EMBL features
onto the supercontig.

� Adding features for use with eucaryotes (limited support).

115

A. Roadmaps for Installation and future development

v1.3:

� EST project support, replacing contigs and EMBL features with the no-
tion of ESTs.

v2.0:

� Support for the integration of micro- and macroarray data.

� Support for the integration of proteomics data.

116

APPENDIX B

Source Code

B.1. Source code for GENDB.pl

#!/vol/perl/bin/perl

use O2DBI;

%geneproject = ();

=head1 NAME

GENDB:: gendb -- A perl sql database interface for genome analysis

C<$Id: GENDB.pl,v 1.22 2000/09/12 11:47:20 blinke Exp $>

=head1 DESCRIPTION

Using an SQL database persistent perl objects are created that store
sequences, orfs, facts and other data for genome annotation.

Using the O2DBI tool a set of perl modules is generated from a perl
object description. Persistence of these modules is achieved via
SQL using Perl::DBI. The object modelled in GENDB.pl are used for
storing data from a genome project.

Several classes exist:

=over 4

117

B. Source Code

=item * contig

A sequence of any length (max. 10^32 characters).

=item * orf

An open reading frame is a potential gene.

=item * annotation

Further description of an orf. I<orf + annotation = gene>.
Only a member of C<annotator> can create an C<annotation> object.

=item * fact

The results from different bioinformatics analysis tools are parsed and
facts are extracted into fact objects. Only relevant information is
contained in a fact object, the whole tool output is recreated on demand.

=item * annotator

Persons or software tools allowed to create annotation records. Currently
no automatic annotation tools exist.

=item * orfstate

The orfstate objects contain information on the analysis tools run started
or completed for each orf.

=item * tool

A description of the bioinformatics tool used for collecting evidence in
the form of facts. The information to display the complete hit is also
contained in each tool object.
To recreated the output of a tool SRS is used to retrieve the relevant
data sets from the databases. Since we know exactly what database record
we want to look at, we extract only this record and rerun the analysis for
on query object and a single database record. This works in E<lt> 2 seconds
on a modest workstation (C<Ultra Sparc I>).

=back

=head2 Several methods are automagically created for each class.

=over 4

=item * init_name

=item * init_id

=item * add INFO HERE !!!!

=back

=head2 automatically created member methods

For every individual field a method is created, that allows read and
write access to the database and the perl object.
I<e.g.> C<$orf->E<gt>C<status(’ignore’);>

=head1 TODO::

118

B. Source Code

The methods in _add.pm need documentation as well.

=head1 SYNOPSIS

use GENDB::contig;

use GENDB::orf;

use GENDB::annotation;

use GENDB::tool;

use GENDB::annotator;

use GENDB::orfstate;

Sample use:

C<use GENDB::orf;>

C<$orf::GENDB::orf->E<gt>C<init_id(0131043);>

C<if ($orf> E<lt> C<0) {>

C<die "can’t read orf from database";>

C<}>

C<print $orf->E<gt>C<length;>

=head1 Module descriptions

=head2 contig object

=over 4

=item * constructor methods

constructors => [[’name’]]

=item * creator methods

creator => [’name’, ’sequence’]

=item * name

the name of the sequence object in $contig

=item * sequence

a string of characters over the alphabet {G,A,T,C} (up to 10^32 chars)

=item * [rl]neighbor

the id of the [right|left] neighbor of $contig in the genome

=item * length

the length of $contig->sequence in bases

119

B. Source Code

(std. sql does not permit asking for the length of any field)

=item * [rl]overlap

the overlap with the [right|left] neighbor in bases

=back

=cut

$geneproject{’contig’} = {
members => {

’name’ => ’char(20)’,
’sequence’ => ’text’,
’length’ => ’int’,
’rneighbor_id’ => ’int’,
’lneighbor_id’ => ’int’,
’loverlap’ => ’int’,
’roverlap’ => ’int’
},

creator => [’name’, ’sequence’],
constructors => [

[’name’]
]
};

$geneproject{’supercontig’} = {
members => {

’name’ => ’char(50)’,
’first_contig’ => ’int’
},

creator => [’name’],
constructors => [

[’name’]
]
};

=head2 orf object

=over 4

=item * name

name of the orf

=item * status

state of work already done

status may be one of the following

0 = ignore (white or not displayed),
1 = putative (green),
2 = annotated (blue),
3 = finished (dark blue) and
4 = attention needed (red)

=item * start

the start of the orf on the contig

120

B. Source Code

=item * stop

stop of the orf, excluding the stop codon

=item * contig_id

the db_id of the contig this orf is in

=item * molweight

the molecular weight

=item * isoelp

the isoelectric point

=item * frame

the reading frame can be any of (1,2,3,-1,-2,-3)

=item * startcodon

for quick access we store the first three characters of the
orf

=item * names

a list of alternative names for a single orf object

=back

=cut

$geneproject{’orf’} = {
members => {

’contig_id’ => ’int’,
’name’ => ’char(20)’,
’status’ => ’int’,
’start’ => ’int’,
’stop’ => ’int’,
’molweight’ => ’float’,
’isoelp’ => ’float’,
’frame’ => ’int’,
’ag’ => ’int’,
’gc’ => ’int’,
’startcodon’ => ’char(3)’,
’@names’ => {

’name’ => ’char(20)’,
},
’@annotations’ => {

’annotation_id’ => ’int’,
}

},
creator => [’contig_id’, ’start’, ’stop’, ’name’],
constructors => [

[’name’]
]
};

=head2 orfstate object

121

B. Source Code

Information on the analysis tools run for $orf.

For each tool that is run a orfstate object is created every time
the tool is run for $orf.

Both the id of the tool and the orf are stored together with dates for
the ordering a specific analysis and the finishing date for the analysis.

$orfstate object can be used to check what analyses have been performed
already

=over 4

=item *

constructor methods

none

=item *

creator methods

creator => [’orf_id’ , ’tool_id’]

=back

=cut

$geneproject{’orfstate’} = {
members => {

’orf_id’ =>’int’,
’tool_id’ => ’int’,
’date_ordered’ =>’int’,
’date_done’ => ’int’,

},
creator => [’orf_id’ , ’tool_id’],

};

=head2 annotation object

Using fact and orf data, annotations are constructed that turn orfs into
genes.

=over 4

=item * constructor methods

none

=item * creator methods

creator => [’name’, ’orf_id’]

=item * name

the gene name

=item * orf_id

the id of the orf object this annotation referrs to

122

B. Source Code

=item * product

the gene product

=item * comment

a comment by the annotator

=item * date

the date and time when the annotation was added to the database

=item * description

a textual description of the gene

=item * ec

the Enzyme Classfication Number

=item * category

a pointer to a member in the list of categories (derived from Monika Reilly)

=item * annotator_id

a pointer into a list of annotators, indentifying the owner of the current annotation object

=item * facts

a list of fact_ids that lead to $orf being annotated as $orf->name

=back

=cut

$geneproject{’annotation’} = {
members => {

’name’ => ’char(20)’,
’orf_id’ => ’int’,
’product’ => ’char(20)’,
’comment’ => ’text’,
’date’ => ’int’,
’description’ => ’text’,
’ec’ => ’text’,
’category’ => ’int’,
’offset’ => ’int’,
’annotator_id’ => ’int’,
’@facts’ => {

’fact_id’ => ’int’,
}

},
creator => [’name’, ’orf_id’],

};

=head2 annotator object

Stores a name and a description for the annotator.

=over 4

123

B. Source Code

=item * creator methods

none

=item * constructor methods

constructors => [[’name’]]

=back

=cut

$geneproject{’annotator’} = {
members => {

’name’ => ’char(20)’,
’description’ => ’text’
},

constructors => [
[’name’]
]
};

=head2 tool object

A tool object contains the information for computing analysis and
displaying the resulting facts.
The command line for running the tool is generated by the helper
package. It uses the executable_name and dbname fields to contruct
the command line.

=over 4

=item * name

a clear text short name for the tool. e.g. blast2n_EMBL

=item * description

a clear text description for the tool

=item * input_type

the type of data DNA=0, AA=1

=item * cost

(not used currently) the computational cost in minutes for a single
analysis

=item * dburl

a url to fetch database records from, required for retrieval of info on facts

=item * dbname

the name of the database, required for srs retrieval of information on facts

=item * executable_name

the name of the executable file (maybe including path to file)

=item * level[12345]

124

B. Source Code

a cut off value in bits that allows ordering the facts into different levels
a fact level1E<gt>level2E<gt>level3E<gt>level4E<gt>level5.
The values are read by the visualization and further analysis components.

=item * number

The number in the ordererd list of tools. This is in effect the toollevel
referred to in by $orf->toollevel.

=back

=cut

$geneproject{’tool’} = {
members => {

’name’ => ’char(20)’,
’description’ => ’text’,
’input_type’ => ’int’,
’user_value’ => ’int’,
’number’ => ’int’,
’cost’ => ’int’,
’dburl’ => ’text’,
’dbname’ => ’text’,
’executable_name’ => ’text’,
’level1’ => ’int’,
’level2’ => ’int’,
’level3’ => ’int’,
’level4’ => ’int’,
’level5’ => ’int’,
’helper_package’ => ’text’
},

creator => [’name’],
constructors => [

[’name’]
]
};

=head2 fact object

A database object to store abstract information on a single hit returned by
a bioinformatics analysis tool for a given $orf.
A I<blast2> hit (HSP) e.g. is one fact.

=over 4

=item * toolresult

the output of the tool I<e.g.> C<e:10^-20, s:1000> for a I<blast2> fact

=item * information

the information returned by the analysis tool in bits

=item * dbref

The database reference to the hit. I<e.g. X10236> for a Swissprot entry

125

B. Source Code

=item * orf[from|to]

region in $orf that matches the database entry

=item * db[from|to]

region in the db hit that $orf matches to

=item * tool_id

a pointer to the list of tools

=item * constructor methods

none

=item * creator methods

creator => [’orf_id’]

=back

=cut

$geneproject{’fact’} = {
members => {

’orf_id’ => ’int’,
’description’ => ’text’,
’toolresult’ => ’text’,
’information’ => ’int’,
’dbref’ => ’text’,
’orffrom’ => ’int’,
’orfto’ => ’int’,
’dbfrom’ => ’int’,
’dbto’ => ’int’,
’tool_id’ => ’int’
},

creator => [
’orf_id’
]
};

O2DBI->deploy(\%geneproject, ’GENDB’, ’mysql’);

=head1 See also

O2DBI by Joern Clausen
Perl::DBI
SRS

=cut

126

B. Source Code

B.2. Code generated for the contig object by
O2DBI

##
#
This module was created automagically.
Do not modify this file, changes will be lost!!!
#
Additional methods can be defined in the file GENDB::contig_add.pm.
#
##

package GENDB::contig;

use GENDB::DBMS;

1;

##
#
constructor and destructor methods for contig
#
##

create a new object and insert it into the database
sub create {

my ($class, $name, $sequence) = @_;
fetch a fresh id
my $id = newid(’contig’);

if ($id < 0) {
return(-1);

}
insert the primary key into the database
$GENDB_DBH->do(qq {

INSERT INTO contig (id) VALUES ($id)
});

if ($GENDB_DBH->err) {
return(-1);

}
create the perl object
my $contig = { ’id’ => $id,
’_buffer’ => 1 };
bless($contig, $class);
fill in the remaining data
$contig->name($name);
$contig->sequence($sequence);
$contig->unbuffer;
return($contig);

}

create an object for already existing data
sub init_id {

my ($class, $req_id) = @_;
fetch the data from the database
my $sth = $GENDB_DBH->prepare(qq {

SELECT name, length, loverlap, lneighbor_id, sequence,
roverlap, rneighbor_id, id FROM contig
WHERE id=’$req_id’
});

127

B. Source Code

$sth->execute;
my ($name, $length, $loverlap, $lneighbor_id, $sequence,

$roverlap, $rneighbor_id, $id) = $sth->fetchrow_array;
$sth->finish;
if successful, return an appropriate object
if (!defined($id)) {

return(-1);
} else {

my $contig = {
’name’ => $name,
’length’ => $length,
’loverlap’ => $loverlap,
’lneighbor_id’ => $lneighbor_id,
’sequence’ => $sequence,
’roverlap’ => $roverlap,
’rneighbor_id’ => $rneighbor_id,
’id’ => $id
};

bless($contig, $class);
return($contig);

}
}

get all objects from the database efficiently and return a hash reference
sub fetchallby_id {

my ($class) = @_;
local %contig = ();
my $sth = $GENDB_DBH->prepare(qq {

SELECT name, length, loverlap, lneighbor_id, sequence,
roverlap, rneighbor_id, id FROM contig
});

$sth->execute;
while (($name, $length, $loverlap, $lneighbor_id, $sequence,
$roverlap, $rneighbor_id, $id) = $sth->fetchrow_array) {

my $contig = {
’name’ => $name,
’length’ => $length,
’loverlap’ => $loverlap,
’lneighbor_id’ => $lneighbor_id,
’sequence’ => $sequence,
’roverlap’ => $roverlap,
’rneighbor_id’ => $rneighbor_id,
’id’ => $id
};
bless($contig, $class);
$contig{$id} = $contig;

}
$sth->finish;
return(\%contig);

}

get all those objects from the database efficiently that conform to the
given WHERE clause and return an array reference
sub fetchbySQL {

my ($class, $statement) = @_;
local @contig = ();
my $sth = $GENDB_DBH->prepare(qq {

SELECT name, length, loverlap, lneighbor_id, sequence,
roverlap, rneighbor_id, id FROM contig WHERE $statement
});

$sth->execute;
while (($name, $length, $loverlap, $lneighbor_id, $sequence,

128

B. Source Code

$roverlap, $rneighbor_id, $id) = $sth->fetchrow_array) {
my $contig = {
’name’ => $name,
’length’ => $length,
’loverlap’ => $loverlap,
’lneighbor_id’ => $lneighbor_id,
’sequence’ => $sequence,
’roverlap’ => $roverlap,
’rneighbor_id’ => $rneighbor_id,
’id’ => $id
};
bless($contig, $class);
push(@contig, $contig);

}
$sth->finish;
return(\@contig);

}

create an object for already existing data
sub init_name {

my ($class, $req_name) = @_;
fetch the data from the database
my $sth = $GENDB_DBH->prepare(qq {

SELECT name, length, loverlap, lneighbor_id, sequence,
roverlap, rneighbor_id, id FROM contig
WHERE name=’$req_name’
});

$sth->execute;
my ($name, $length, $loverlap, $lneighbor_id, $sequence,

$roverlap, $rneighbor_id, $id) = $sth->fetchrow_array;
$sth->finish;
if successful, return an appropriate object
if (!defined($id)) {

return(-1);
} else {

my $contig = {
’name’ => $name,
’length’ => $length,
’loverlap’ => $loverlap,
’lneighbor_id’ => $lneighbor_id,
’sequence’ => $sequence,
’roverlap’ => $roverlap,
’rneighbor_id’ => $rneighbor_id,
’id’ => $id
};

bless($contig, $class);
return($contig);

}
}

get all objects from the database efficiently and return a hash reference
sub fetchallby_name {

my ($class) = @_;
local %contig = ();
my $sth = $GENDB_DBH->prepare(qq {

SELECT name, length, loverlap, lneighbor_id, sequence,
roverlap, rneighbor_id, id FROM contig
});

$sth->execute;
while (($name, $length, $loverlap, $lneighbor_id, $sequence,
$roverlap, $rneighbor_id, $id) = $sth->fetchrow_array) {

my $contig = {

129

B. Source Code

’name’ => $name,
’length’ => $length,
’loverlap’ => $loverlap,
’lneighbor_id’ => $lneighbor_id,
’sequence’ => $sequence,
’roverlap’ => $roverlap,
’rneighbor_id’ => $rneighbor_id,
’id’ => $id
};
bless($contig, $class);
$contig{$name} = $contig;

}
$sth->finish;
return(\%contig);

}

get all those objects from the database efficiently that conform to the
given WHERE clause and return an array reference
sub fetchbySQL {

my ($class, $statement) = @_;
local @contig = ();
my $sth = $GENDB_DBH->prepare(qq {

SELECT name, length, loverlap, lneighbor_id, sequence,
roverlap, rneighbor_id, id FROM contig WHERE $statement
});

$sth->execute;
while (($name, $length, $loverlap, $lneighbor_id, $sequence,
$roverlap, $rneighbor_id, $id) = $sth->fetchrow_array) {

my $contig = {
’name’ => $name,
’length’ => $length,
’loverlap’ => $loverlap,
’lneighbor_id’ => $lneighbor_id,
’sequence’ => $sequence,
’roverlap’ => $roverlap,
’rneighbor_id’ => $rneighbor_id,
’id’ => $id
};
bless($contig, $class);
push(@contig, $contig);

}
$sth->finish;
return(\@contig);

}

get all objects from the database efficiently and return an array reference
sub fetchall {

my ($class) = @_;
local @contig = ();
my $sth = $GENDB_DBH->prepare(qq {

SELECT name, length, loverlap, lneighbor_id, sequence,
roverlap, rneighbor_id, id FROM contig
});

$sth->execute;
while (($name, $length, $loverlap, $lneighbor_id, $sequence,
$roverlap, $rneighbor_id, $id) = $sth->fetchrow_array) {

my $contig = {
’name’ => $name,
’length’ => $length,
’loverlap’ => $loverlap,
’lneighbor_id’ => $lneighbor_id,
’sequence’ => $sequence,

130

B. Source Code

’roverlap’ => $roverlap,
’rneighbor_id’ => $rneighbor_id,
’id’ => $id
};
bless($contig, $class);
push(@contig, $contig);

}
$sth->finish;
return(\@contig);

}

delete an object completely from the database
sub delete {

my ($self) = @_;
my $id = $self->id;
$GENDB_DBH->do(qq {

DELETE FROM contig WHERE id=$id
}) || return(-1);

undef($self);
}

##
#
methods to access the member variables
#
##

get or set the member variable ’name’
sub name {

my ($self, $name) = @_;
return($self->getset(’name’, $name));

}

get or set the member variable ’length’
sub length {

my ($self, $length) = @_;
return($self->getset(’length’, $length));

}

get or set the member variable ’loverlap’
sub loverlap {

my ($self, $loverlap) = @_;
return($self->getset(’loverlap’, $loverlap));

}

get or set the member variable ’lneighbor_id’
sub lneighbor_id {

my ($self, $lneighbor_id) = @_;
return($self->getset(’lneighbor_id’, $lneighbor_id));

}

get or set the member variable ’sequence’
sub sequence {

my ($self, $sequence) = @_;
return($self->getset(’sequence’, $sequence));

}

get or set the member variable ’roverlap’
sub roverlap {

my ($self, $roverlap) = @_;
return($self->getset(’roverlap’, $roverlap));

}

131

B. Source Code

get or set the member variable ’rneighbor_id’
sub rneighbor_id {

my ($self, $rneighbor_id) = @_;
return($self->getset(’rneighbor_id’, $rneighbor_id));

}

get the member variable ’id’
sub id {

my ($self) = @_;
return($self->{’id’});

}

set several member variables at the same time
sub mset {

my ($self, $hashref) = @_;
my $curbuffer = $self->buffered;
$self->buffer;
foreach $key (keys(%$hashref)) {

prevent really stupid tricks
if ($key eq ’id’) {

return(-1);
}
my $val = $hashref->{$key};
eval $self->$key($val);

}
if (!$curbuffer) {

$self->unbuffer;
}

}

##
#
load additional methods from self made module
#
##

require GENDB::contig_add;

##
#
private functions used inside this module
#
##

test if the data is buffered or passed to the DBMS immediately
sub buffered {

my ($self) = @_;
return($self->{’_buffer’});

}

make the data buffered, i.e. don’t write to the database
sub buffer {

my ($self) = @_;
$self->{’_buffer’} = 1;

}

write the current contents to the database and declare the object unbuffered
sub unbuffer {

my ($self) = @_;
if ($self->buffered) {

my @sql = ();

132

B. Source Code

foreach $key (qw{name length loverlap lneighbor_id
sequence roverlap rneighbor_id id}) {

push(@sql, "$key=".$GENDB_DBH->quote($self->{$key}));
}
my $id = $self->id;
my $sql = "UPDATE contig SET ".join(’, ’, @sql)." WHERE id=$id";
$GENDB_DBH->do($sql) || return(-1);

}
$self->{’_buffer’} = 0;

}

get or set one of the member variables
sub getset {

my ($self, $var, $val) = @_;
my $id = $self->id;
if (defined($val)) {

if (!$self->buffered) {
my $qval = $GENDB_DBH->quote($val);
$GENDB_DBH->do(qq {

UPDATE contig SET $var=$qval WHERE id=$id
}) || return(-1);
}
$self->{$var} = $val;

}
return($self->{$var});

}

133

List of Figures

1.1. The flow of data from sequencer to genome annotation system. 4

1.2. A typical microarray showing different expression levels (from
Brown et al. [Bro00]). 5

1.3. A 2D gel from the C. glutamicum genome project. 7

1.4. The lysine biosynthesis pathway as shown by KEGG[KG]. . . 8

1.5. The contig as represented by Magpie 11

1.6. The table of ORFs generated for pCM1 by Magpie 12

1.7. The flow of data in Pedant and Genequiz 13

1.8. The flow of data in Magpie . 13

1.9. Changes to ORF names after changing the orientation of a con-
tig in Magpie . 14

2.1. GENDB schematic view . 22

2.2. The ORF object and the corrensponding database tables in
GENDB. 23

134

List of Figures

2.3. A simplified view of the GENDB data model. 24

2.4. Overview of the graphical user interface. 27

2.5. Overview of the web interface. 28

2.6. The role of wizards in GENDB. 30

2.7. Overview of the GENDBscheduler. 32

2.8. Job locking in the of the GENDBscheduler. 33

2.9. The additional methods for the job object. 34

2.10. The observation information stored in GENDB. 35

2.11. The tool information stored in GENDB 37

2.12. The algorithm to obtain detailed observation information. . . 38

2.13. The GENDBdata flow. 41

3.1. A simple OO program. 45

3.2. Determine the distribution of start codons using SQL. 47

3.3. The O2DBI description of an ORF object. 48

3.4. The code generated for the create method of the ORF object. . 50

3.5. The function getset() . 52

3.6. The sample code using the function getset() 53

3.7. The mset () function. 53

3.8. GENDB.pl – the object definition for contig 56

3.9. GENDB.pl – the object definition for supercontig 57

3.10. GENDB.pl – the object definition for orf 59

3.11. GENDB.pl – the object definition for annotation 60

3.12. GENDB.pl – the object definition for annotator 61

3.13. GENDB.pl – the object definition for observation 63

3.14. GENDB.pl – the object definition for tool 66

135

List of Figures

3.15. The definition of the ORF states. 70

4.1. The flow of information in the GENDBsystem. 77

4.2. Uploading a new contig and setting the preferences for gene
prediction. 78

4.3. The Contig view. 79

4.4. The base view showing both DNA strands and the derived six
amino acid sequences. 80

4.5. The observations view. 82

4.6. The original tool results. 83

4.7. The database information as viewed with SRS. 84

4.8. The annotation window. 85

4.9. The pathway viewer. 87

4.10. The frameshift editor. 89

4.11. The ORF editor. 91

4.12. The virtual 2D gel. 92

4.13. The contig view of the web interface. 94

4.14. The ORF information in the web user interface. 95

4.15. The single ORF info view of the web interface. 96

4.16. The ORF in context view of the web interface. 97

4.17. The ORF view for a region of C. glutamicum 99

4.20. The Contig information for the pb4 plasmid 100

4.21. The ORF view for the pb4 plasmid 101

4.22. The web interface for the mycoplasma genome 103

4.23. The database hits for ORF 53 of the mycoplasma genome . . . 104

136

List of Figures

4.18. The compute cluster of the Center for Genome Research at
Bielefeld University. 106

4.19. The virtual 2D gel for C. glutamicum 107

137

Bibliography

[ABL+99] M.A. Andrade, N.P. Brown, C. Leroy, S. Hoersch, A. de Daruvar,
C. Reich, A. Franchini, J. Tamames, A. Valencia, C. Ouzounis,
and C. Sander. Automated genome sequence analysis and an-
notation. Bioinformatics, 15(5):391–412, 1999.

[AER+00] Bateman A., Birney E., Durbin R., Eddy S., Howe KL., and
Sonnhammer E. The Pfam Protein Families Database. Nucleic
Acids Research, 2000.

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman.
Basic local alignment search tool. J. Mol. Biol., 1990.

[Amb99] S. W. Ambler. Mapping objects to relational databases. http:

//www.AmbzSoft.com/mappingObjects.pdf , 1999.

[BB99] P.O. Brown and D. Botstein. Exploring the new world of the
genome with dna microarrays. Nature Genetics, 21:33–37, 1999.

[BG99] JH Badger and Olsen GJ. Critica: Coding region identification
tool invoking comparative analysis. Molecular Biology and Evolu-
tion, 16:512–524, 1999.

138

Bibliography

[BJM01] Lomsadze A. Besemer J. and Borodovsky M. Genemarks: a
self-training method for predicition of gene starts in microbial
genomes. implications for finding sequence motifs in regulatory
regions. Nucleic Acids Research, 29(12):2607–2618, 2001.

[BL92] T. Berners-Lee. HTML – Hyper Text Markup Language.
http://www.w3.org/History/19921103-hypertext/

hypertext/WWW/MarkUp/Mark%Up.html , 1992.

[Bro00] P. Brown. Microarray information. http://cmgm.stanford.

edu/biochem/brown.html , 2000.

[Cat] R. Cattell. Javaone – database access. http://java.sun.

com/javaone/javaone96/pres/DBAccess.pdf .

[CJB+97] Jacq C., Alt-Moerbe J., Andre B., Arnold W., Bahr A., Ballesta
J.P.G., Bargues M., Baron L., Becker A., Biteau N., Bloecker H.,
Blugeon C., Boskovic J., Brandt P., Brueckner M., Buitrago M.J.,
Coster F., Delaveau T., del Rey F., Dujon B., Eide L.G., Garcia-
Cantalejo J.M., Goffeau A., Gomez-Peris A., Granotier C., Hane-
mann V., Hankeln T., J.D. Hoheisel, Jaeger W., Jimenez A., Jon-
niaux J.-L., Kraemer C., Kuester H., Laamanen P., Legros Y.,
Louis E., Moeller-Rieker S., Monnet A., Moro M., Mueller-Auer
S., Nussbaumer B., Paricio N., Paulin L., Perea J., Perez-Alonso
M., Perez-Ortin J.E., Pohl T.M., Prydz H., Purnelle B., Rasmussen
S.W., Remacha M., Revuelta J.L., Rieger M., Salom D., Saluz H.P.,
Saiz J.E., Saren A.-M., Schaefer M., Scharfe M., Schmidt E.R.,
Schneider C., Scholler P., Schwarz S., Urrestarazu L.A., Verhas-
selt P., Vissers S., Voet M., Volckaert G., Wagner G., Wambutt R.,
Wedler E., Wedler H., Wölfl S., Harris D.E., Bowman S., Brown
D., Churcher C.M., Connor R., Dedman K., Gentles S., Hamlyn
N., Hunt S., Jones L., McDonald S., Murphy L., Niblett D., Odell
C., Oliver K., Rajandream M.A., Richards C., Shore L., Walsh
S.V., Barrell B.G., Dietrich F.S., Mulligan J., Allen E., Araujo R.,
Aviles E., Berno A., Carpenter J., Chen E., Cherry J.M., Chung E.,
Duncan M., Hunicke-Smith S., Hyman R., Komp C., Lashkari D.,

139

Bibliography

Lew H., Lin D., Mosedale D., Nakahara K., Namath A., Oefner
P., Oh C., Petel F.X., Roberts D., Schramm S., Schroeder M.,
Shogren T., Shroff N., Winant A., Yelton M., Botstein D., Davis
R.W., Johnston M., Andrews S., Brinkman R., Cooper J., Ding H.,
Du Z., Favello A., Fulton L., Gattung S., Greco T., Hallsworth K.,
Hawkins J., Hillier L., Jier M., Johnson D., Johnston L., Kirsten
J., Kucaba T., Langston Y., Latreille P., Le T., Mardis E., Menezes
S., Miller N., Nhan M., Pauley A., Peluso D., Rifken L., Riles
L., Taich A., Trevaskis E., Vignati D., Wilcox L., Wohldman P.,
Vaudin M., Wilson R., Waterston R., Albermann K., Hani J.,
Heumann K., Kleine K., Mewes H.W., Zollner A., and Zaccaria
P. The nucleotide sequence of Saccharomyces cerevisiae chro-
mosome IV. Nature, 387, 1997.

[Cla00] Jörn Clausen. O2DBI. Technical report, Bielefeld University,
Technische Fakultät, 2000.

[DH00] Richard Durbin and David Haussler. The GFF for-
mat. http://www.sanger.ac.uk/Software/formats/

GFF/GFF_Spec.shtml , December 2000.

[DHK+99] A.L. Delcher, D. Harmon, S. Kasif, O. White, , and S.L. Salzberg.
Improved Microbial Gene Identification with Glimmer. Nucleic
Acids Research, 1999.

[DS92] S. Dear and R. Staden. A standard file format for data from dna
sequencing instruments. DNA Sequence 3, pages 107–110, 1992.

[EA93] T. Etzold and P. Argos. SRS an indexing and retrieval tool for
flat file data libraries. Cabios, 1993.

[EHWG98] Brent Ewing, LaDeana Hillier, Michael C. Wendl, and Phil
Green. Base-calling of automated sequencer traces using phred.
Genome Research, 8:186–194, 1998.

[ENS] The ensembl genome annotation system. http://www.

ensembl.org/ .

140

Bibliography

[EUA96] T. Etzold, A. Ulyanov, and P. Argos. SRS: Information Retrieval
System for Molecular Biology Data Banks. Methods in Enzymol-
ogy, 1996.

[EV97] Thure Etzold and Giorgio Verde. SRS. http://srs.ebi.ac.

uk/ , 1997.

[GA96] A. Gosling and J. Arnold. The JAVA Programming Language. Ad-
dison Wesley, 1996.

[GB00] A. Goesmann and Bennemann. Pathviz – a system for the dy-
namic reconstruction of metabolic pathways. Master’s thesis,
Bielefeld University, Dept. of Computer Science and Biotechnol-
ogy, 2000.

[GHM+01] Alexander Goesmann, Martin Haubrock, Folker Meyer, Jörn
Kalinowski, and Robert Giegerich. Pathfinder: Reconstruction
and dynamic visualization of metabolic pathways. Bioinformat-
ics, in press, 2001.

[Grea] Phil Greene. Crossmatch – documentation. http://bozeman.

mbt.washington.edu/phrap.docs/swat.html .

[Greb] Phil Greene. Phrap – documentation. http://bozeman.mbt.

washington.edu/phrap.docs/phrap.html .

[GRFA99] S. Gygi, Y. Rochon, B. Franza, and R. Aebersold. Correlation
between protein and mrna abundance in yeast. Mol. Cell Biol.,
19(1720-1730), 1999.

[GS96] T. Gaasterland and C.W. Sensen. Magpie: automated genome
interpretation. Trends Genet, 12(2):76–8, 1996.

[HM99] X. Huang and A. Madan. CAP3: A DNA Sequence Assembly
Program. Genome Research, 9:868–877, 1999.

[Inca] Affymetrix Inc. http://www.affymetrix.com/.

141

Bibliography

[Incb] Mysql Inc. The MySQL database management system. http:

//www.mysql.com/ .

[Inc00a] Gridware Inc. Codine load management software. http://

www.gridware.com/product/codine.htm , 2000.

[Inc00b] Platform Inc. Lsf product overview. http://www.

platform.com/platform/platform.nsf/webpage/

LSF?OpenDocument , 2000.

[IS] Nick Ing-Simmons. Perl / Tk. http://www.lns.cornell.

edu/~pvhp/ptk/ptkFAQ.html .

[Jam01] P. James. Mass spectrometry and the proteome. In P. James,
editor, Proteome Research: Mass Spectrometry, pages 1–9. Springer,
2001.

[KG] Minoru Kanehisa and Susumu Goto. The KEGG pathway
database. http://www.genome.ad.jp/ .

[KG00] Minoru Kanehisa and Susumu Goto. Kegg: Kyoto encyclopedia
of genes and genomes. NAR, 28(1):27–30, 2000.

[LE97] T.M. Lowe and S.R. Eddy. tRNAscan-SE: a program for im-
proved detection of transfer RNA genes in genomic sequence.
Nucleic Acids Research, 25:955–964, 1997.

[MFG+00] H.W. Mewes, D. Frishman, C. Gruber, B. Geier, D. Haase,
A. Kaps, K. Lemcke, G. Mannhaupt, F. Pfeiffer, C. Schuller,
S. Stocker, and B. Weil. MIPS: a database for genomes and pro-
tein sequences. Nucleic Acids Res, 28(1):37–40, 2000.

[MG77] A. M. Maxam and W. Gilbert. A new method for sequencing
dna. PNAS, 74:560–564, 1977.

[MKM] Peter Mattis, Spencer Kimball, and Josh MacDonald. Gtk home
page. http://www.gtk.org/ .

142

Bibliography

[MS93] Jim Melton and Alan R. Simon. Understanding the New SQL: A
Complete Guide. Morgan Kaufmann Publishers, San Mateo, CA.,
1993.

[Net] Netscape, Inc. Javascript. http://www.javascript.com/ .

[NQS00] www.gnqs.org. http://www.gnqs.org/ , 2000.

[OBJ] Object store product section. http://www.odi.com/htm/

object_prod.htm .

[Obj00] Object faq. http://www.cyberdyne-object-sys.com/

oofaq2/oodb.htm , 2000.

[O’F75] P. O’Farrel. High resolution two-dimensional electrophoresis of
proteins. J. Biol. Chem., 250:4007–4021, 1975.

[PKH+00] NW Paton, SA Khan, A Hayes, F Moussouni, A Brass, K Eilbeck,
CA Goble, SJ Hubbard, and SG Oliver. Conceptual modelling of
genomic information. Bioinformatics, 16:548–557, 2000.

[Pos] The PostgreSQL database management system. http://www.

postgresql.org/ .

[RE01] Elena Rivas and Sean Eddy. Qrna 1.0 documentation. unpub-
lished, 2001.

[RPC+00] K.M. Rutherford, J. Parkhill, J. Crook, T. Horsnell, P. Rice, M-A.
Rajandream, and B. Barrell. Artemis: sequence visualisation and
annotation. Bioinformatics, 2000.

[Sah91] Dan Sahlin. An Automatic Partial Evaluator for Full Prolog. PhD
thesis, The Royal Institute of Technology (KTH), Stockholm,
Sweden, 1991. SICS Dissertation Series 04.

[SBB98] R. Staden, K. Beal, and J. Bonfield. The staden package. In
Stephen Misener and Steve Krawetz, editors, Computer Methods
in Molecular Biology, volume Bioinformatics Methods and Proto-
cols, pages 115–130. Humana Press Inc., 1998.

143

Bibliography

[Scz98] Alexander Sczyrba. Master’s thesis, Bielefeld University, Tech-
nische Fakultät, 1998.

[SDDP95] M. Schena, Shalon D., R. Davis, and Brown P.O. Quantitative
monitoring of gene expression patterns with a cdna microarray.
Science, 270:467–470, 1995.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27:379–423 and 623–656, July and Octo-
ber 1948.

[SMS+01] G. Stoesser, M. A. Moseley, J. Sleep, M. McGowran, M. Garcia-
Pastor, and P. Sterk. The EMBL Nucleotide Sequence Database.
NAR, 2001.

[SSDB95] M. Schena, D. Shalon, R. Davis, and P. Brown. Quantitative mon-
itoring of gene expression patterns with a complementary DNA
microarray. Science, 270:467–470, 1995.

[SWA98] Richard S. Wiener Scott W. Ambler. Making object applications that
work. Cambridge University Press, 1998.

[VBRU00] J. Vilo, A. Brazma, A. Robinson, and E. Ukkonen. Mining for
putative regulatory elements in the yeast genome using gene
expression data. In R. Altman, T. Bailey, P. Bourne, M. Brob-
skov, T. Lengauer, I. Shindyalov, Eyck. T., and H. Weissig, edi-
tors, ISMB00, pages 384–395, 2000.

[VZVK97] V. Velculescu, L. Zhang, B. Vogelstein, and K. Kinzler. Serial
analysis of gene expression. Science, 270:484–487, 1997.

[WAC98] S. Walsh, M. Anderson, and S.W. Cartinhour. Acedb: a database
for genome information. Methods Biochem Anal, 39:299–318, 1998.

[Wal99] Nancy Walsh. Learning Perl/Tk. O’Reilly, 1999.

[WCL+01] David L. Wheeler, Deanna M. Church, Alex E. Lash, Detlef D.
Leipe, Thomas L. Madden, Joan U. Pontius, Gregory D. Schuler,

144

Bibliography

Lynn M. Schriml, Tatiana A. Tatusova, Lukas Wagner, and Bar-
bara A. Rapp. Database resources of the national center for
biotechnology information. Nucleic Acids Research, 29:11–16,
2001.

[WS91] Larry Wall and Randall L. Schwartz. Programming Perl. O’Reilly
and Associates, Inc, 1991.

[ZKZL00] A. Zien, R. Küffner, R. Zimmer, and T. Lengauer. Analysis of
gene expression data with pathway scores. In R. Altman, T. Bai-
ley, P. Bourne, M. Brobskov, T. Lengauer, I. Shindyalov, Eyck. T.,
and H. Weissig, editors, ISMB00, pages 407–418, 2000.

145

