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Summary

A  generic  modeling  environment  for  the  analysis  and  simulation  of  spatio-temporal 

phenomena in  ecosystems  was  developed.  This  framework was  built  upon a  Rich  Client 

Platform  (RCP)  which  uses  new  concepts  of  extensibility  and  software  architecture  for 

sustainable  development  and  provides  a  solid  basis  for  an  Integrated  Development 

Environment (IDE) for ecological models. The integration of various statistical tools, imaging 

routines and several specialized drawing panels, makes this environment particularly suitable 

for the analysis of the above mentioned spatio-temporal ecological processes.

Because of their comparatively low complexity, dry acidic grassland ecosystems have been 

repeatedly  used  for  studying  vegetation  pattern  formation  and  the  underlying  biotic 

interactions. In order to obtain an integrative view of the existing knowledge as well as to 

provide a possibility for further integrative analysis with the help of model simulations, the 

above described platform was used to develop an individual based Model structure for the 

investigation  of  long  term  effects  of  environmental  changes  on  the  stability  of  early 

successional  stages  such  dry acidic  grasslands  which  are  typically dominated  by the  two 

pioneer species Corynephorus canescens and Polytrichum piliferum. The model was validated 

with experimental data and the spatio-temporal patterns created by the model were in good 

accordance with the measured natural patterns.

The model was then used to analyze the effect of changes in temperature, nutrient supply and 

disturbance rate on the long term behavior on this ecosystem. The results showed an overall 

high stability of this system under different temperature and nutrient scenarios as long as an 

intermediate disturbance frequency is assured. 

Finally,  an  experimental  study  on  the  effect  of  herbivory  and  competition  on  the 

Corynephorus canescens  was conducted.  In a controlled field experiment, the effects of the 

removal of various amounts of aboveground biomass on the above and belowground biomass 

allocation during the following regeneration phase was analyzed in the presence or absence of 

an intraspecific and interspecific competitor (Hieracium pilosella). The results show a rather 

high ability of C.canescens to compensate low to medium amounts foliage loss (reflecting the 
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typical natural herbivory induced by grasshoppers and rabbits) without significant changes in 

its  competitive  ability.  Belowground,  no  biomass  effects  of  foliage  removal  and/or 

competition  could  be  detected.  Because  of  these  negligible  effects,  herbivory  was  not 

implemented in the above described model.
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Zusammenfassung

Eine allgemeine Entwicklungsumgebung wurde für die Analyse und Simulation von räumlich 

zeitlichen Phänomenen in ökologische Systemen entwickelt.  Die gesamte Plattform basiert 

auf  einer  "Rich-Client-Platform"  (RCP),  die  neue  Konzepte  der  Modularisierung  und 

allgemeinen  Programmarchitektur  mitbringt.  Damit  bietet  sie  die  Grundlage,  für  eine 

nachhaltige  Weiterentwicklung  und  ist  somit  eine  solide  Basis  für  eine  integrierte 

Entwicklungsumgebung für ökologische Modelle. Die Integration verschiedener statistischer 

Werkzeuge, Methoden der Bildverarbeitung und spezielle Visualisierungen qualifizieren diese 

Umgebung besonders für die Analyse der oben genannten räumlich-zeitlichen Prozesse.

Aufgrund ihrer vergleichsweisen geringen Komplexität, wurden Sandlebensräume wiederholt 

für Studien von Vegetationsmustern und ihrer zugrunde liegenden biotischen Interaktionen 

genutzt.  Für  einen  integrativen  Überblick  und  weitere  integrative  Ansätze  mit  Hilfe  von 

Simulationsmodellen wurde die oben genannte Plattform genutzt, um eine individuenbasierte 

Modellstruktur für die Analyse von Langzeiteffekten aufgrund von Umweltveränderungen auf 

die Stabilität von Sandlebensräumen zu entwickeln, die typischerweise von zwei Pionierarten, 

Corynephorus canescens und Polytrichum piliferum dominiert werden. Das Modell wurde mit 

experimentellen Daten verifiziert und die vom Modell erzeugten räumlich zeitlichen Muster 

zeigten eine hohe Übereinstimmung mit natürlich gemessenen Mustern.

Das Modell  wurde  dann genutzt,  um Langzeiteffekte  von Veränderungen der  Temperatur, 

Nährstoffversorgung und Störungsraten in  diesem System zu untersuchen.  Die Ergebnisse 

zeigten  eine  generell  hohe  Stabilität  des  Systems  unter  veränderten  Temperatur  und 

Nährstoffbedingungen,  wobei  temporal  wiederkehrende,  kleinräumige  Störungen  als 

Grundlage notwendig waren.

Schließlich  wurde  noch  eine  Untersuchung  über  die  Auswirkungen  von  Herbivorie  und 

Konkurrenz  auf  Corynephorus  canescens durchgeführt.  In  einem  kontrollierten 

Freilandexperiment wurden die Auswirkungen von entfernter Biomasse von Blättern sowie 

die  An-  oder  Abwesenheit  eines  intraspezifischen  und  interspezifischen  Konkurrenten 

(Hieracium pilosella) auf die überirdische und unterirdische Allokation von Biomasse in der 
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folgenden  Regenerationsphase  analysiert.  Die  Ergebnisse  zeigten  das  Corynephorus 

canescens die  Fähigkeit  besitzt,  leichte  bis  mittlere  Blattverluste  (die  typische  natürliche 

Herbivorie von Kaninchen und Paarhufern simulieren sollten) zu kompensieren ohne dabei an 

Konkurrenzstärke  zu  verlieren.  Unterirdisch  konnten  keine  Auswirkungen  der  simulierten 

Herbivorie bzw. Konkurrenz festgestellt werden. Aufgrund dieser zu vernachlässigen Effekte 

wurde Herbivorie nicht in dem Modell berücksichtigt.
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1. Introduction

The complexity of vegetation patterns of plants is caused by biotic and abiotic factors which 

interact with each other in time and space. All these factors form an overwhelming complexity 

which makes it difficult for the scientist to understand the functioning of the system and to 

derive predictions of the development in the near future. Despite of the complexity of nature, 

scientists still believe that nature is to a certain amount predictable and that these predictions 

are valuable for management and conservation of ecological systems.

Because of their comparatively low complexity, dry acidic grassland ecosystems have been 

repeatedly  used  for  studying  vegetation  pattern  formation  and  the  underlying  biotic 

interactions. Less complex ecosystems are often considered as a good basis to identify driving 

forces behind patterns and to generate hypotheses on more complex vegetation patterns in 

order to better understand the key mechanisms behind biotic and abiotic interactions. 

Figure 1: Dry acidic grasslands in Southern Germany
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1.1 Objectives of this Thesis

This thesis consists of three parts: 

The  first  part  (chapter  2)  contains  a  description  of  the  development  of  an  Integrated 

Development Environment (IDE) for ecological modeling. The reason for the development of 

this application was the need of a tool for the development of spatially explicit simulation 

models.  Spatially  explicit  simulation  models  are  theoretical  tools  which  reduce  spatial 

complexity by binning spatial relationships and complexity into a grid structure with arbitrary 

precise  resolution.  This  saves  calculation costs  to  simulate  spatial  relationships  like plant 

communities without sacrificing the claim of reality. Such models are particularly popular in 

ecology because of their easy to understand rule-based formulation, which makes it easy to 

implement complex experimental data. 

In the second part of this work (chapter 3) this framework is then used to develop and test an 

individual based model structure for the investigation of long term effects of environmental 

changes  on  the  stability  of  early  successional  stages  of  dry acidic  grasslands,  which  are 

typically dominated by the two pioneer species  Corynephorus canescens and  Polytrichum 

piliferum. The model is parametrized with experimental data and validated with independent 

experimental measurements. This part of the thesis also contains the results of the application 

of this model in order to analyze the effect of changes in temperature, nutrient supply and 

disturbance rate on the long term behavior on this ecosystem. 

Part  3  (chapter  4)  describes  the  results  of  a  controlled  field  experiment  on  the  effect  of 

herbivory  and  competition  on  the  Corynephorus  canescens which  was  conducted  to 

implement herbivory as a potential factor affecting the competitive strength of this species 

into the model. 
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1.2 Dry Acidic Grasslands

Dry acidic grasslands in Europe were formed during the last glacial period about 10000 years 

ago  from  melting  glaciers  transporting  and  sorting  sediment  and  forming  typical  sandy 

landscape structures (ELLENBERG 1996, BURKART et al.  2004). The early successional 

stages of dry acidic grasslands exhibit rather extreme abiotic site conditions. The ecosystem is 

very nutrient  poor and the sand has a  low ability to  store water which causes significant 

drought stress during the summer (JENTSCH & BEYSCHLAG 2003). Furthermore the sun 

can heat up the soil surface temperature up to 70 °C and another stress factor is the highly 

mobile  substrate  which  leads  to  permanent  erosions.  (HOHENESTER  1960,  BERGER-

LANDEFELDT & SUKOPP 1965, RITESEMA & DECKER 1994, QUINGER & MEYER 

1995).

The typical course of succession in dry acidic grasslands is depicted in Figure  2. The early 

successional stages which are the focus of the present work are colonized by highly adapted 

pioneer plant species which are able to grow under these extreme conditions (JENTSCH & 

BEYSCHLAG  2003)  Naturally,  these  early  stages  are  comparatively  stable  because 

frequently occurring small scale disturbances (e.g. by rabbits and ants) continuously recreate 

open sand areas and keep the succession from going on (JENTSCH 2001, JENTSCH et al. 

2002, JENTSCH & BEYSCHLAG 2003, BÖGER 2007).

Figure  2:  Succesional  pathway  on  inland  dunes  (Weigelt  2001).Grey  marked: 
successional stages important for this thesis.
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Dry acidic grasslands are rather valuable ecosystems because they harbor a large number of 

rare and endangered plant and animal species but they become increasingly endangered by 

habitat fragmentation and anthropogenic nutrient deposition from the atmosphere which leads 

to quick ruderalisation (see Figure  2) and loss of the typical species (HEIL & BRUGGINK 

1987, BERENDSE & ELBERSE 1990, AERTS et al.  1991, QUINGER & MEYER 1995, 

BOBBINK  et  al.  1998,  JENTSCH 2001,  FROMM et  al.  2002,  JENTSCH  et  al.  2002b, 

RUSSEL 2002).

1.3 Selected Plant Species of the Early Successional Stages

The three dominating plant species of the early successional stages of dry acidic grasslands 

(Spergulo  morisonii-Corynephoretum  canescentis)  are  the  bunchgrass  Corynephorus 

canescens (Grey  Hair  Grass),  the  clonal  rosette  plant  Hieracium  pilosella (Mouse-ear 

Hawkweed)  and  the  moss  Polytrichum  piliferum (Awned  Hair  Cap).  Two  of  them, 

Corynephorus  canescens and 

Polytrichum piliferum play an 

important  role  in  fixing  and 

stabilizing the open sand (they 

both tolerate burial of sand) as 

well  as  in  accumulating 

nutrients  and  offering  safe 

sites  for  other  less  well 

adapted  species.  Thus  they 

open  the  pathway  of 

succession  towards  higher 

diverse  and  more  complex 

plant communities. The model 

simulations of part two of the present work deal with a variety of the Spergulo morisonii-

Corynephoretum  canescentis  where  only  two  species  (C.  canescens and  P.  piliferum) 

dominate.

Figure 3: C. canescens, P. piliferum(dark-grey areas) and H. pilosella on 
early stages of dry acidic grasslands
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1.3.1 Corynephorus canescens

Corynephorus canescens  (L.) Palisot 

Beauvais (P.B.), the grey hair grass is 

a perennial Pocaceae which is highly 

adapted  to  the  early  stages  of  dry 

acidic  grasslands.  The  grass  itself  is 

growing as a bunch grass very well on 

mobile  sand systems (TÜXEN 1967, 

SYMONIDES  1985).  The  flowering 

of  C.canescens  occurs  typically  in 

June,  July and sometimes in August. 

The  extensive  root  system  of 

Corynephorus canescens  can reach a 

depth  of  15-50 cm (OBERDORFER 

1994,  ELLENBERG  1996)  and 

attaches  the  plants  securely  to  the 

ground  which  is  necessary  for 

survival on the mobile substrate of the 

early  successional  stages  on  sandy 

ecosystems.  C.canescens can 

effectively  reduce  the  transpirational 

area of its leaves by rolling or folding 

them.  The  grass  occurs  all  over 

Europe,  in  North  Africa,  North  and 

South  America.  In  several  parts  of 

Germany  C.canescens  is  endangered 

for  example  in  Bavaria  and  North 

Rhine-Westphalia (category 3 source: 

BFN) .

Ellenberg Numbers: Light: 8 Temperature: 6 Kontinental: 5 F: 2 Reaction: 3 N: 2 

Figure 5: Distribution of C. canescens in Germany (Haeupler et 
al. 1989)

Figure 4: Corynephorus canescens
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1.3.2 Polytrichum piliferum

Polytrichum  piliferum,  the 

Awned  Hair-Cap  Moss 

belongs  to  the 

Polytrichaceae family of the 

Bryopsida  (FRAHM  1992, 

FRAHM  2001, 

STRASBURGER  2002).  It 

grows in colonies which are 

often  circular  and  well 

adapted  for  dry  sandy 

conditions. The stems of the 

moos  can  be  2-5  cm  long 

and  bear  lanceolate 

phylloids, 4-6 mm long with long white Glashairs and the end of the leaf. During drought the 

phylloids become in-curved exhibit their dark brown colored backside which together with 

reflective  glass  hairs  at  the  phylloid  tips  protects  the  photosynthetic  pigments  against 

excessive radiation and also has glass hairs to reflect sunlight (SHAW & GOFFINET 2000). 

Thus, the color of the moos is green if growing under well watered conditions but appears 

brownish under  dry low water  conditions.  P.piliferum  produces  up to  guessed 50 million 

spores in its capsules on top of a 1-4 cm long Seta enclosed by the Calyptra which is mostly 

light brown which arises from the middle of the stem. Alhough it produces so many spores 

most of the colonies seem to arise vegetatively from gametophyte fragments or small clumps 

of shoots (MEUSSEL 1935, HOBBS & GIMINGHAM 1984, HOBBS & PRITCHARD 1987, 

FREY & HENSEN 1995). P.piliferum is a widely spread moss which grows mostly on sandy, 

dry, acidic and sunny spots.

Ellenberg Numbers: Light: 9 Temperature: 2 Kontinental: 5 F: 2 Reaction: 2 N: -

Figure 6: Polytrichum piliferum
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1.3.3 Hieracium pilosella

Hieracium  pilosella,  the  Mouse-ear 

Hawkweed  is  a  clonal  perennial 

Asteraceae typically forms a rosette of 

3-25  leaves  which  are  dull  or  dark 

green above and densely grey or white 

tomentose  beneath  (BISHOP  & 

DAVY  1994).  H.  pilosella  flowers 

from  June  to  September  and 

reproduces  either  vegetatively  with 

stolons  or  sexually  with  wind 

dispersed  seeds.  Its  yellow 

flowerheads develop on leafless 5-30 

cm long shoots (ROTHMALER 2005, 

SCHMEIL-FITSCHEN  2006).  The 

plants form a fine root system close to 

the  soil  surface  with  intense  lateral 

growth and typically one thicker deep 

growing  root  of  30  to  40  cm length 

(WEIGELT 2001).  It  often occurs in 

short or sparse grassland vegetation on 

chalky  or  acidic  soils  as  well  as  in 

maritime cliff communities (BISHOP 

& DAVY 1994).  H. pilosella  can be 

found in all areas of Germany.

Ellenberg numbers: Light: 7 Temperature: - Kontinental: 3 F: 4 Reaction: - N: 2 

Figure 7: Hieracium pilosella

Figure 8: Distribution of H. pilosella in Germany (Haeupler et 
al. 1989)
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1.4 The Study Areas

The parametrization and validation data for the model simulations of this thesis were collected 

in Northern Bavaria (Franconia) at Eltersdorf (Latitude 49.5418, Longitude 10.9866; WGS 

84)  in  the surroundings  of  the  city of  Erlangen and at  the Büg natural  reserve  (Latitude 

49.7485, Longitude 11.0530; WGS 84) near the city of Forchheim (see Fig. 10). This region 

consists  mainly  of  pleistocenic  inland  sand  dunes  many  of  them  afforested  with  pines 

(JENTSCH 2001). The climate can be described as temperate continental with moderately 

cold winters.  Temperatures range from range 8-9 °C (annual average)  with rainfall  levels 

between 650 mm – 750 mm (annual average)(BÖGER 2007). The experiments for part 3 of 

this work were carried out in a 1.2m deep sandpit near the University of Bielefeld (Latitude: 

52.0338 Longitude: 8.4954). The climate in Bielefeld is humid (slightly oceanic) with mean 

annual rainfall levels of 650-750 mm and temperature between 8 and 9 °C (annual average). 

Figure 9: Climate of the two locations in Germany important for this work. Data shows the monthly mean. Data 
for  Nürnberg  from  weather  station  Nürnberg-Buch.  Data  for  Bielefeld  from  the  weather  station  near  the 
University of Bielefeld. Light measured with sensors for global radiation (W/m²).
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Figure 10: Locations in Germany (near Nuremberg) from which aerial and experimental data were obtained 
from.
Bottom-left:  Büg (Latitude 49.7485, Longitude 11.0530; WGS 84)
Bottom-right: Elterdorf (Latitude 49.5418, Longitude 10.9866; WGS 84)
(image Copyright Microsoft Corporation )
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1.5 Models in Ecology

Models are an important tool for the analysis of complex interactions in ecological systems. 

As stated by Jørgensen & Bendoricchio (2001) it is impossible to analyze all components and 

their reactions in an ecosystem without the use of models as a synthesis tool. Typically models 

are a simplified and abstract representation of a system or a process (TURNER et al. 2003). 

Most  authors  agree  that  we  are  simply  not  able  to  get  the  complete  information  of  all 

processes within an ecological system. So models are necessary to simplify the reality and 

bring it into a manageable form for investigation (WISSEL 1989, GAYLER 1998). It is quite 

interesting  that  many people think  that  modeling  in  ecology is  a  trend  of  recent  decades 

starting  with  the  appearance  of  the  first  affordable  and  high-performance  computers. 

However,  scientists  have  always  employed  models  in  order  analyze  complex  data  as  for 

instance statistical models to deal with the uncertainty of experimental data (Fig. 11).

It is commonly agreed upon, that models in ecology are in the first place useful to create and 

test  scientific  hypotheses  by  comparing  real  data  with  model  results.  Depending  on  the 

respective  questions  models  can  be  either 

analytical  or  predictive  and  can  serve  as  a 

virtual  laboratory.  They  can  reveal 

unmeasurable  system  properties  and  reveal 

long term dynamics which may be important 

under  the  aspect  of  changing environments. 

Furthermore they can also serve as integrators 

within  and  between  disciplines  (HAEFNER 

1996,  JØRGENSEN  &  BENDORICCHIO 

2001,  JELTSCH  &  MOLONEY  2002 

WAINWRIGHT & MULLIGAN 2004). 

As  depicted  in  Fig.  12 a  huge  variety  of 

model  types  has  been  developed during the 

last  decades  for the analysis  of all  kinds of 

ecological problems. In the following those of 

these  models  which  are  relevant  for  the 

present work, are described in more detail.
Figure  11: History of model development in ecology 
(from Haefner 1996)
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Statistical models (in the context of ecological modeling) certainly belong to the classical type 

of models researchers successfully use all over the world. Univariate as well as multivariate 

statistical models are the basis to capture and filter important data from experimental results 

and to simplify complex interdependencies. As an example frequently used simple statistical 

models in ecological studies are regressions which allow to estimate parameter values and 

their  standard  errors  from  sample  data  (CRAWLEY 2007).  They  typically  describe  the 

dependency  of  one  variable  from  one  or  many  other  variables.  A linear  regression,  for 

example, can be used to to estimate the effect of soil moisture on the abundance of a species 

(LEYER & WESCHE 2007).

Another classical model type often used in ecology are  differential equations. A differential 

equation is an equation in which beside one or many independent variables and one or many 

functions of them in addition the derivatives of this functions to the independent variables 

appear  (BRONSTEIN  et  al.  2001).  Differential  equations  are  often  used  in  ecology  for 

mathematical descriptions of population dynamics, predator prey dynamics, ecotoxicological 

phenomena or nutrient dynamics (LOTKA 1998, JØRGENSEN & BENDORICCHIO 2001, 

MURRAY 2008).  A disadvantage  of  differential  equations  in  ecology is  the  generalizing 

Figure 12: Overview of different popular model types and their use in ecology (more general types are marked 
bold)
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character  of  this  type  of  models.  Ecological  processes  are  often  bound  to  individual 

properties,  variable  not  fixed  events  and  emergent  phenomena,  which  often  cannot  be 

properly addressed by this type of models.

With the increasing availability of powerful digital computers the development of calculation 

intensive model types (which often produce results because of their emergent and random 

features  whereas  the  creation  of  complex  patterns  is  caused  by  the  interaction  and 

interdependence of parts of the system) became possible. In such models patterns and outputs 

are often caused by self organization similar as in nature ants, termite, bees or even fungal 

colonies  (CAMAZINE  2003).  Popular  examples  for  these  models  are spatially  explicit 

simulation models like grid based models.  In a grid based model the modeled area of an 

ecosystem is divided into a grid of squares in which each square can adopt a (before defined) 

possible ecological state. In fixed timesteps at each progress rules are applied for changes of 

the ecological states (WISSEL 2000). 

A special  case of grid  based models are  Cellular  Automata.  Cellular  Automata  were first 

developed by John Conway (GARDNER 1970) and later more in detail described by Stephen 

Figure 13: Initial arrangement of Agrostis (yellow), Holcus (green), Lolium (red), Cynosurus (dark blue) and Poa 
(light blue) in the aggregated model and species' distributions at iterations 1, 50, 100, 150, 200, 300; (a) Agrostis, 
Holcus,  Lolium,  Cynosurus,  Poa;  (b)  Agostis,  Lolium,  Cynosurus,  Holcus,  Poa;  (c)  Agrostis,  Holcus,  Poa, 
Cynosurus, Lolium (Silvertown et al.1992).
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Wolfram (WOLFRAM 1984, WOLFRAM 1986, WOLFRAM 2002). They reveal interesting 

emergent  behaviors  and  patterns  very  similar  to  those  which  can  be  found  in  nature 

(RIETMAN  1989,  GERHARDT  &  SCHUSTER  1995,  WEIMAR  2003,  DEUTSCH  & 

DORMANN  2005).  Spatially  explicit  models  have  been  frequently  used  in  ecological 

research to explore spatio-temporal phenomena within and between populations (Fig. 13; e.g. 

SILVERTOWN et al. 1992, BALZTER 1998, WINKLER

& STÖCKLIN 2002). 

The steadily increasing computing power during the last decades made it possible to develop 

even more complex spatially explicit  models,  like the so called  "individual  based models 

(IBM)" which separately calculate the behaviour of each individual of a population. A popular 

IBM model  is  the  "Swarm"  model,  calculating,  like  the  title  of  the  model  suggests,  the 

behavior of a swarm. In the implementation of a swarm model the realistic behaviour of a 

swarm is created by the application of a few rather simple rules for each individual and the 

effect  of  self  organization  (GRIMM  &  RAILSBACK  2005,  REYNOLDS  1987). 

UCHMANSKI & GRIMM (1996) formulated four criteria which define an IBM: The degree 

to which the lifecycle is reflected in a model, whether or not the dynamics of resource used by 

individuals are explicitly represented, whether real or integer numbers are used to represent 

the size of a population and the extent to which variability among individuals of the same age 

is  considered.  Because  of  the  much  more  realistic  implementation  and  interaction  of 

individual attributes, IBM’s became particularly popular in ecological research. Additionally 

they are easier to understand for scientist with less mathematical knowledge, comprehensible 

and typically the applied assumptions and rules can be experimental  verified (POETHKE 

1994). 

Similar  as  cellular  automaton  models,  IBM models  are  often  used  to  for  the  analysis  of 

vegetation dynamics (DEUTSCHMAN et al. 1997, SMITH et al. 2001, PICARD & FRANC 

2001, SATO et  al.  2007, WALLENTIN et al.  2008).  This model  type is  also used in the 

present work for the analysis of vegetation dynamics of dry acidic grasslands.

Frequently models of a certain type incorporate models of another  type (e.g  an IBM can 

contain several statistical models for certain calculations).
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1.6 How to Create a Model 

Several steps have to be considered in order to create and validate a model (Fig. 15). Detailed 

descriptions of the modeling process can be found in the ecological modeling literature (e.g. 

JØRGENSEN & BENDORICCHIO 2001, TURNER & GARDENER 2003, WAINWRIGHT 

& MULLIGAN 2004, HAEFNER 2005, GRIMM & RAILSBECK 2005). 

Most of the authors agree that at the beginning of a modeling process specific questions and 

hypotheses should be formulated, which a model could help to answer or test. For ecological 

processes  it  should  be  clear  which  scales  should  be  considered  (e.g.:  individual  scale, 

community  scale  see  also  Fig.  14;  WIENS  1989)  and  which  model  type  seems  to  be 

appropriate. In the next step all relevant factors need to be gathered (e.g. experimental results, 

literature  data)  in  order  to  identify  relevant  deterministic,  non-deterministic  processes, 

variables and interdependencies. At this step several authors suggest to visualize these factors 

in  a  conceptual  diagram (e.g.  JØRGENSEN  & BENDORICCHIO  2001).  These diagrams 

should help to visualize components and their inhibitory or facilitative effects on parts of the 

modeled system. The next step is the formulation process where the gathered information and 

insights  need  to  be  mathematically  or  syntactically  expressed  and  translated  into  an 

appropriate computer programming language.  For many tasks an easy to learn interpreted 

language  may  be  sufficient.  For  more  complex  structured  models  the  newly  developed 

computer  program needs  to  be  tested  an  debugged  to  make  sure  that  all  information  is 

Figure 14: Scales in ecology (from Haefner 2005)
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correctly implementated and the code is error free. 

Now the model must be validated i.e. the model output has to be compared with measured 

data in order to proof the reliability of the model results. Frequently this will lead to program 

changes (mostly implementation of additional information). The next step of the modeling 

process  is  the  sensitivity  analysis  where  selected  parameters  are  systematically  varied  to 

evaluate their impact on the model results (SALTELLI et al. 2000) as well as to systematically 

analyze  the  (sometimes)  huge  combinational  space  of  parameters  and  to  identify  critical 

thresholds.

Figure 15: Simplified flowchart of a modeling process.
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After  successful  validation  and  sensitivity  analysis  the  model  can  be  used  to  answer  the 

questions and to test the hypotheses. Typically, the application of a model reveals various 

possibilities for improvements (e.g. removal of redundant parameters).

1.7 Beyond Population Data: Analysis of Spatial and Geometrical data

Besides  species  lists  and  classical  population  analysis,  the  assessment  of  spatial  and 

geometrical data adds a new dimension to vegetation analysis, being a necessary precondition 

for the analysis of all spatio-temporal phenomena and the development of spatially explicit 

models.

The  following  section  of  this  chapter  provides  an  overview  of  established  spatial  and 

geometrical  analysis  methods and their  usefulness  for ecological  problems and ecological 

modeling. Furthermore some useful summary statistics will be presented to use these methods 

for modeling and summarizing of plant patterns. 

1.7.1 Point Pattern Analysis

A spatial  point  pattern  is  defined  as  locations  which  are  irregularly  distributed  within  a 

designated  region  and are  presumed to  have  been  generated  by some form of  stochastic 

mechanism (CRESSIE 1993, DIGGLE 2003). A simple form of Point Pattern Analysis could 

for instance be a nearest neighbor analysis of plants assess the nearest neighbor competing for 

resources. 

In ecology Point Pattern Analysis are often used to quantitatively describe spatial distributions 

of individuals (and their causes). In multispecies systems such distribution patterns can reveal 

valuable informations on potential competitive interactions (BADDELEY & TURNER 2005, 

BIVAND et al. 2008). A popular example for a Point Pattern Analysis is Ripley's K method 

(Fig.  16) , a second-order analysis of point patterns in a two-dimensional space in order to 

detect if point patterns are clustered, follow a homogeneous Poisson process or are regularly 

spaced (RIPLEY 1976).
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1.7.2 Morphometrics

Morphometric analysis  is the study of shape and size variations and covariations between 

individuals and their covariations with other variables for a better understanding of the diverse 

causes  of  variation  and  morphological  transformations  (DRYDEN  &  MARDIA  1998, 

ZELDITCH  et  al.  2004,  CLAUDE  2008).  Typical  examples  of  morphometrics  are  the 

statistical analysis of outlines with the Fourier analysis or the geometrical analysis of shapes 

based on the configuration of landmarks. 

Up to  now, morphometrics  have rarely been used in  connection with vegetation analysis, 

however, there is quite a potential as the automatic identification species specific outlines of 

plants  individuals  providing  information  of  the  species  composition  or  the  detection  and 

quantification of typical growing patterns (e.g of clonal plants or mosses) moss species. These 

techniques are particularly valuable for the validation of spatially explicit simulation models.

Figure  16: Ripley's K analysis for 1362 locations of  Corynephorus canescens growing side by side with the 
moos  Polytrichum piliferum in Eltersdorf indicating Complete Spatial Randomness (CSR). The points in the 
graph on the left side are the C. canescens location. The graph on the right side shows two dotted lines which 
indicate CSR within a certain radius (y-axis). The continous line represents the result from the analysis. A line 
above the dashed lines would indicate aggregation whereas a line below would indicate a more regular pattern.
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1.7.3 Geometric Features of Images

This  technique  certainly  belongs  to  the  classical  analysis  techniques  of  binary  images 

(BURGER & BURGE 2007). The measurements are quite similar to the measurements of 

landscape metrics and morphometrics but employ sometimes different algorithms to measure 

morphological and geometrical features of regions (e.g. cells, leaves etc.). Typical examples 

are measurements of area, diameter, bounding box, perimeter, roundness of connected regions 

(Fig. 18). Such measurements are also suitable for the automatical analysis and summary of 

plant communities.

Figure  17:  Landmarks  from a  fish  to  differentiate  Gila  (Cyprinidae) 
species (after Douglas et al. 2001)

Figure 18: Measurements of thresholded particles in an greyscale image (left). One row in the table of the right 
site represent a measurement of one identified particle (one connected region).
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1.7.4 Geostatistics

Geostatistics are often used to interpolate spatial data and estimations of spatial averages from 

continuous spatially correlated data (KALUZNY et al. 1998, BIVAND et al. 2008). A very 

well known example is Kriging which uses a method of interpolation which predicts unknown 

values from data observed at known locations (NIELSEN & WENDROTH 2003).

Kriging uses a variogram for the prediction which provides a measure of spatial correlation by 

describing how sample data are related with distance and direction (KALUZNY et al. 1998) 

and then minimizes the error of predicted values. This interpolation method reveals trends 

which for instance predict future states or summarize general trends in spatial datasets.

Figure 19: Kriging example (Pebesma 2004) for zinc measurement samples 
(log(ppm)  -  black  crosses)  and  their  predictions  (coloured  Quads)  for 
unknown locations.  The meuse  data set used here as an example is a data 
set comprising of four heavy metals measured in the top soil in a food plain 
along the river Meuse (Netherlands; Lat: 50.9703 Lon: 5.7415 – WGS 84). 
The  x,y  axis  reflecting  the  geographic  locations  (Latitude,  Longitude  - 
RDM Dutch topographical map coordinates) of the values. The scalebar on 
the right side of the plot indicates concentrations from low (purple) to high 
values (green).
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1.7.5 Fractal Analysis

Fractals are geometric shapes that can be split into parts, each of which is a reduced-size copy 

of the whole (MANDELBROT 1967, MANDELBROT 1982, PEITGEN et al. 2004). Fractals 

are often used to simulate and create landscapes (PEITGEN & BARNSLEY 1988) or create 

patterns of plants (PRUSINKIEWICZ & LINDENMAYER 1996). Analysis of fractality is a 

popular  method  to  measure  shape  complexity  and  morphometric  variability.  In  ecology 

Fractal  Analysis  has  been  used  to  analyze  vegetation  changes  (LINARES  et  al.  2006) 

landscape complexity (MILNE 1992), forest patches (KRUMMEL et al. 1987) or to examine 

spider mite movements (DICKE & BURROUGH 1988).

1.7.6 Triangulations

A very popular  form of triangulation is  the Voronoi  diagram which is  frequently used to 

visualize spatial relationships between individuals.

They can be constructed geometrically by constructing perpendicular lines from the center of 

connecting lines between a central  point (e.g.  plant location) and surrounding points  (e.g. 

competing  plants).  The  closest  intersection points  from the  perpendicular  lines  forming a 

Voronoi-Polygon. Given a finite set of distinct, isolated points within a continuous space, all 

locations within that space are associated with the closest member of the point set. The result 

is the partitioning of the space into a set of regions. (OKABE et al. 2000). Voronoi diagrams 

are  also used in  pattern recognition and path finding routines  as well  as  in  Geographical 

Information Systems (GIS) to interpolate spatial data (NETELER & MITASOVA 2008). In 

Figure 20: Fractal Dimension of a simple shape (D=1.7891)
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ecology Voronoi diagrams have been used for instance to model forest dynamics and the local 

competition between trees (MERCIER 1997), to analyze bark beetle attack patterns (BYERS 

1992)  or  to  reveal  forest  age  classes  (NELSON  et  al.  2004).  Voronoi  areas  are  a  good 

indicator for spatial interactions of individuals (KENKEL 1990, SLETVOLD & HESTMARK 

1999, KRISTENSEN et al. 2006). Directly associated to Voronoi diagrams are the so called 

"Delauney  triangulations"  which  triangulate  a  set  of  points.  The  Delauney  triangles  are 

constructed with an method that ensures that the circle circumscribing the points of a triangle 

contains (within) no points of another triangle. In ecological research they are for instance 

used to approximate a network of travel paths from a set of animal point locations (DOWNS 

& HORNER  2007). 

1.7.7 Landscape Metrics

Landscape  metrics  were  developed  to  analyse  landscape  patterns  and  to  explain  spatio-

temporal  structural  changes  of  different  landscapes  (TURNER 1989,  WIENS et  al.  1993, 

GUSTAFSON 1998, GERGEL & TURNER 2002, TURNER et al. 2003, TURNER 2005). 

Landscape metrics are defined as algorithms that quantify specific spatial characteristics of 

patches, classes of patches, or entire landscape mosaics (MCGARIGAL et al. 2002). A patch 

Figure 21: Voronoi diagramm (left) and Delauney triangulation (right) of 1362 locations of C. canescens
in the Büg. In the left illustration the plant locations building the center (indicated as points) of each polygon.
In the right illustration the plant locations are the vertices of the triangles.
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generally is a landscape component respectively a connected region belonging to one class 

(e.g open sand). After MCGARIGAL et al. (2002) typical metrics of this kind fall into two 

categories:  those  that  quantify  the  composition of  the  map  without  reference  to  spatial 

attributes  (Tab.  1),  and  those  that  reflect  the  spatial  configuration  of  the  map  (Tab.  2), 

requiring spatial information for their calculation.

Tabelle 1: Measurements of composition

Composition
Proportional Abundance of each Class

The proportion of each class in an entire map.
Richness

The number of different patch types.
Eveness

Describes the relative abundance of different patch types.
Diversity

Diversity is a composite measure of richness and evenness and the computation form varies 

(e.g. Shannon's and Simpson's diversity indices. Diversity indices can be used to assess the 

diversity of any population (patch types) in which each member belongs to a unique species 

(patch). 

Tabelle 2: Measurements of spatial configuration

Spatial configuration
Patch size distribution and density

Patch size describes the area of a patch whereas the Patch size distribution are summary 

statistics of this measurment (e.g. mean, median, max, variance, etc.). Patch density is  the 

number of patches per unit area. 
Patch shape complexity

A general measurement to describe the geometry of a patch (e.g. perimeter-to-area ratio, 

fractal dimension).
Core Area

Describes the area of a patch inside of a buffer zone (e.g after substracting an ecotone or 

riparian zone).
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Isolation/Proximity

A general measurement for the distance to other patches of the same class.
Contrast

Describes relative differences among patch types.
Dispersion

Describes if a patch is regularly or contagiously distributed.
Contagion & Interspersion

A relative measurement to analyze whether patch types are spatially aggregated.

Subdivision

Describes the general degree to which a patch type is broken up (e.g. fragments).
Connectivity

Describes the functional connections among patches.

Most of these metrics are part of the software package called Fragstats, a computer program 

designed  to  compute  a  wide  variety  of  landscape  metrics  for  categorical  map  patterns 

(MCGARIGAL et  al.  2002) offering a huge amount (>100) of possible metrics.  Since so 

Figure 22: Different landscape metrics for the description of composition and spatial configuration.
(Figure from Blaschke, Lang 2007)
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many landscape metrics are available the question arises which metrics should be used for a 

specific  analysis.  Riitters  et  al.  (1995)  analyzed  some  common  metrics  with  a  Principal 

Component Analysis and found out that depending of the type of analysis, often only a few 

metrics are needed to sufficiently analyze certain landscape patterns.

Since  landscape  metrics  are  able  to  analyze  discrete  patterns  they  can  also  be  useful  to 

validate spatially discrete simulation models and to statistically summarize simulated patterns 

and compare them to real patterns. In this thesis these metrics were used to validate a discrete 

spatial simulation model with measured data. For the comparison of calculated vs. measured 

data  a  statistical  method  (cluster  analysis)  was  used  which  is  appropriate  to  extract  and 

arrange spatial data. In the following section some methods beside the cluster analysis are 

presented, which are useful to analyse spatial data collected from the metrics we introduced in 

this section.

1.7.8 Summary Results and Classification of Data

In the first place a summary statistic from collected metrics can help to summarize metrics 

collected from a simulation model and compare them with real spatial data.

If only a few parameters are of importance for the comparison univariate statistical methods 

(e.g.  t-test,  ANOVA) are useful and sufficient.  However in patterns of ecological systems 

Figure  23:  Regression  tree  result  from 17  C.  canescens patterns  (rpart).  Patterns  can  be 
predicted from classification result.



29 Introduction

often more than one attribute has to be analyzed for a comparison. Appropriate for this are 

multivariate analysis  techniques which concern datasets that have more than one response 

variable for each observational or experimental unit (VENABLES & RIPLEY 2002). 

After Venables & Ripley (2002) the main difference in multivariate methods is between those 

methods that assume a given structure (dividing cases into groups) and those that seek to 

discover structure from the evidence of the data matrix alone (data mining). They also quote, 

that in the terminology of pattern recognition there is a difference between supervised and 

unsupervised methods.

 

Supervised  methods  are  for  example  classification  and  regression  trees  (CARTs  - 

BREIMANN 1993),  Neural  networks  (see  RIPLEY 1996)  and Support  Vector  Machines. 

CARTs, for example, subdivide the space spanned by the predictor variables into regions for 

which the values  of the response variable are  approximately equal,  and then estimate the 

response variable by a constant in each of these regions. In classification trees the dependent 

variable is categorical, in regression trees it is quantitative. (MOISEN & FRESCINO 2002). 

CARTs can be useful in analysis to predict unknown patterns out of known spatial data i.e. for 

example to collect those results (bound to selected parameters) of model simulations which 

are similar to the patterns found in nature. As example, Fig.  23 shows a regression tree for 

certain C. canescens patterns. 

Such  classification  results  can  be  used  to  predict  unknown  patterns  (a  predict  functions 

generates the probability of one observation belonging to any given group).

Typical unsupervised methods are cluster analysis,  partitioning methods like K-means and 

factor analysis like the PCA (Principal Component Analysis). A cluster analysis which was 

particularly important for this thesis (see chapter 3) is a method which discovers groupings 

among the cases of a n by p matrix. 

A cluster analysis can be divided in agglomerative hierarchical methods, optimal partitioning 

methods and divisive hierarchical methods (HANDL 2002, VENABLES & RIPLEY 2002). 

For the agglomerative hierarchical methods measures of distances (e.g. Euclidean, Manhatten, 

Mahalanobis,  Hamming distances)  are  used for  measurements  of  similarity which can be 

agglomerated  with  different  algorithms  (e.g.  Single-Linkage,  Complete  Linkage,  Average-
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Linkage,  Minimum-variance).  The  minimum-variance  (Wards-method)  algorithm  uses  an 

analysis  of  variance  algorithm  to  evaluate  the  distances  between  clusters.  In  this  thesis 

patterns of dry acidic grasslands were fusioned with this algorithm (see chapter 3).

Multivariate supervised and unsupervised techniques are presently used in GIS systems to 

cluster spectral image data in order to detect land use changes or patterns within landscapes 

(NETELER & MITASOVA 2008). 

Generally,  the  described  techniques  become  increasingly  important  for  the  validation  of 

spatial explicit ecological models

There are more methods available in this area of spatial analysis, some of those come from 

Geographical Information Systems ( BÖHNER et al. 2006, NETELER & MITASOVA 2008) 

others come from the general spatial analysis literature (KALUZNY et al. 1998, BIVAND et 

al.  2008) and maybe also very useful for summary statistics or multivariate analysis  (e.g. 

analysis of Areal Data, Matrix correlations - e.g Mantel test, Spatial Autocorrelation).
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Chapter 2

Bio7 

A Simulation Framework
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2. Bio7 – A Simulation Framework

Creating a model for evaluating a specific ecological problem is typically a time and resource 

consuming task because the development and testing of the simulation framework, i.e. before 

the ecological informations are implemented, is a major enterprise per se. Furthermore such 

frameworks  are  frequently  not  scalable  i.e.  they  cannot  be  used  for  addressing  other 

ecological problems. To overcome these difficulties and to ease up the general development of 

ecological models a general simulation framework was developed as part of this thesis, which 

reduces the developmental work of the scientist to the mere implementation of the particular 

ecological problem. The newly developed modeling environment, named Bio7 is particularly 

suitable for the analysis and simulation of spatio-temporal vegetation patterns.

Bio7 (Fig.  24)  is  an Integrated Development  Environment  (IDE) for  ecological  modeling 

based  on  a  Rich  Client  platform  (RCP)  created  with  the  powerful  Open  Source  Java 

programming tool Eclipse. The RCP Platform is a framework which reuses existing Eclipse 

Figure 24: Screenshot of the Bio7 user interface 
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modules, GUI functionalities and libraries. It can be created inside of Eclipse. This platform 

was chosen because of its high extensibility and plugin structure profiting from its forward-

looking modular  design and the agile  development  community of  Eclipse in the internet, 

which is continuously improving this platform and therefore the RCP basis framework. As 

described  below,  several  powerful  tools  and  panels  for  the  visualization  simulation  and 

quantitative  analysis  of  spatiotemporal  ecological  phenomena  were  integrated.  Further 

popular applications for image analysis (ImageJ), statistical analysis ("R") and an interface to 

the  "Calc"  tool  of  OpenOffice  for  the  exchange  of  data  were  included.  Bio7  allows  the 

interactive use of all these tools with their available plugins and thus provides a large variety 

of advanced analytical methods for the exploration of various ecological phenomena. Several 

editors for "R", Java and a scripting language (BeanShell) offer the possibility to easily create 

the code of complete simulation models. In addition an embedded flowchart editor for all 

created methods and analysis is available. In this special editor scripts can be compiled and 

interpreted in an ordered sequence which for instance can be used to easily run sensitivity 

analyses of a particular model or submodel. The main components of Bio7 are illustrated in 

Fig. 25.

Figure 25: Components of the Bio7 application
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2.1. Description of Important Components

2.1.1 Statistical Analysis in Bio7 with "R"

For statistical evaluation of model simulation results Bio7 has an interface to the powerful 

open source software package "R" together with Rserve, which in Bio7 acts as a local server 

application. "R" is becoming more and more popular as a tool for ecological modeling and the 

analysis of complex systems (PETZOLDT 2003, CRAWLEY 2007, PETZOLDT & RINKE 

2007, BOLKER 2008, SOETAERT & HERMAN 2009). Rserve provides an interface which 

can  be  used  by  applications  to  perform 

computations  in  "R"  (URBANEK  2003) 

and  can  be  called  directly  from  the 

programming  language  Java,  the  main 

programming language of Bio7. Because of 

the speed of this connection it is possible to 

execute "R" statistics out of a running Java 

model. Further it is also possible to create 

models in the "R" scripting language and 

visualize the results  for instance within a 

Bio7  panel.  Bio7  can  also  be  used  as  a 

Graphical User Interface to "R" because it 

includes  a  full  featured  "R"  script  editor 

and  a  customized  shell  to  execute  "R" 

commands.  "R"  offers  an  enormous 

amount  of  valuable  statistical  methods  for  ecological  analysis  which  can  be  installed  as 

separate  packages  and  then  interactively  be  used  with  Bio7.  In  the  present  case  special 

packages for spatial analysis, multivariate data analysis, time series analysis have been used 

for the modeling work described below.

Figure 26: Screenshot of the R-Shell of Bio7 
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2.1.2 Image Analysis

Bio7 is the first Integrated Development Environment which has fully integrated the open 

source  image analysis  tool  ImageJ  (RASBAND  1997-2009)  into  a  Rich  Client  Platform. 

Thus, ImageJ’s sophisticated image analysis methods which can be compiled or interpreted 

with the integrated Java compiler or the embedded BeanShell script application are available 

within  Bio7.  As  a  scientific  image  analysis  tool,  ImageJ  provides  special  methods  for 

morphological measurements, fractal analysis, 3-dimensional analysis (stacks) etc.  One of the 

reasons  to  implement  this  particular  software  into  Bio7  was  its  ability  to  automatically 

measure areas of recognized objects (particles) and summarize them in a spreadsheet. Objects 

in this respect can also be plants which can be measured with its area, location and perimeter 

etc. useful for a spatial analysis which then can be done in "R". Optional this values can be 

used tor create spatial interpolations like Kriging, Voronoi diagrams or detect randomness or 

clumping with methods like Ripley's K for example. The same tools can be applied for a 

profound analysis of simulation model results calculated within Bio7. Closely associated with 

ImageJ is a specialized Points panel which allows to easily set points on a resizeable panel. 

Figure 27: Spatial information of marked patters of an image (left side) are transferred as Points to the Points 
panel (right side - black points illustrated as an overlay)
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Points determined by a particle analysis can be transferred to this panel (see Fig. 27). Further 

points can be mapped on to a grid to simplify spatial information as a basis for a discrete 

simulation model. 

2.1.3 "R" and ImageJ

Bio7 is one of the first applications which contains some special methods to transfer image 

data (as matrices or vectors) from ImageJ directly into "R". Vice versa vector or matrix data 

data created in "R" can be transferred back to ImageJ for the creation of images (e.g. Float, 

RGB, Greyscale).  Beside  this  transfer  available  image data  can  be  merged in  clusters  to 

identify  similarities  between  different  images.  In  the  present  work  this  was  used  to 

automatically compare measured and calculated vegetation distribution patterns (see Fig. 28). 

Another available method of image analysis is the Principal Component Analysis which offers 

the opportunity to preselect only important image information out of several image layers (for 

example for a cluster analysis).

Figure 28: Clustering result of R, G, B image data from an aerial photograph of a 
Corynephoretum  attached  to  6  cluster  regions.  A cluster  region  in  this  image 
represents a vegetation type which could be clearly separated by it's unique R, G, B 
(spectral) color values. Yellow = sand, blue = moos, orange = C. canescens 
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2.1.4 Database

The  integrated  object  oriented  database  "dbo4"  in  Bio7  stores  the  attributes  of  the  plant 

objects  (species  or  individuals)  used  for  the  model  simulation.  Information  can  easily  be 

entered with the help of a questionnaire form which contains entry fields for all necessary 

attributes. The entire content of this database can be displayed as a spreadsheet from which 

plant  objects  can  be  selected  to  be  used  for  the  model  simulations  or  for  editing  their 

attributes.  If  selected for  modeling,  plant  objects  are  automatically entered and randomly 

distributed in a custom sized (e.g. 100*100) 2d-array as a starting pattern for a model run. The 

dbo4 database is also used for the storage of plant distribution patterns and their individual 

attributes. So particular patterns can be stored during model runs and can be restored for 

further analysis or as start configuration for new model runs.

Figure 29: Screenshot of the database user interface of Bio7 
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2.1.5 Visualization Tools

Bio7  is  particularly  suitable  for  the  creation  of  spatially  explicit  models.  In  ecological 

research  such  models  are  typically  used  to  simplify  spatial  processes  and  patterns  of 

interaction of individuals. This is achieved by mapping the precise spatial information into a 

grid and describing the interaction processes by particular rules. Above- and belowground 

distribution patterns of plant individuals and resources can be simultaneously visualized in 

several discrete panels (Fig. 30). Plant individuals can either be displayed as quads (Quadgrid 

panel) or optionally as hexagons (Hexagon panel). Plant species (or individuals) contained in 

the database can be activated for display in these panels from the database spreadsheet. The 

attributes of each single individual within the grids can be easily edited by simply clicking on 

it which will display the respective information from the database. Similarly, the belowground 

resource  or  root  distribution  patterns  can  be visualized  and edited.  In  a  special  3d  panel 

(3Dgrid) both, above- and belowground patterns can be visualized together which allows for 

instance  to  explore  the  spatio-temporal  interrelationships  between  resource  and  plant 

distributions. 

Figure  30:  Visualization  panels  of  Bio7:  Top-left:  Hexgrid  panel;  top-right:  Quadgrid  panel; 
bottom: 3Dgrid panel.
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2.1.6 The Spatial Module

Another option to visualize models in Bio7 (which was not used for the present work) is an 

integrated spatial module. Spatial interactions are of great importance in ecological systems. 

Spatial  models  can  easily  be  created  in  Bio7’s  spatial  module  with  the  embedded  Java 

OpenGL ("JOGL") library's and the available default spatial environment. Several tools and a 

visualization panel are available to simulate and visualize spatial interaction problems. Using 

the Java editor of Bio7 simple or complex models can easily be created. Additionally, several 

specially developed methods and useful libraries are available to measure distances in 3d or to 

create physics inside a virtual 3d world. The integrated physics library for instance allows the 

development  of soil  erosion or seed dispersal  models.  An easy to  use graphical  interface 

(integrated in the Options 3d panel) allows loading of 3d environments and heightmaps for a 

realistic display of 3d data and supports timing, lightening and camera settings.

Figure  31:  The  3d  perspective  which  integrates  an  options  panel  ("Options  Space"  -  left)  to  load  3d 
models, adjust lightening etc. and a visualization panel ("Space" - right) of 3d data. In this example an 
environment model (green) has been loaded with the help of the user interface into the application.
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2.1.7 Virtual Globe

(This  option was also not  used for  the  present  work.)  For  the analysis  of  spatiotemporal 

phenomena at larger scales (e.g. ecosystem, landscape) it is reasonable to georeference spatial 

data. This is generally achieved by using Geographical Information Systems. Bio7 is able to 

load such georeferenced data with 

the  help  of  "R"  and  to  visualize 

them as a 2d-plot, with ImageJ or 

as a 3d virtual globe. This globe is 

an  implementation  of  the  "NASA 

WorldWind Software Development 

Kit"  (a  special  library  written  in 

Java which  offers  a  complete  3d-

globe  visualization)  and  is 

embedded  in  a  special  routine  of 

Bio7.  An  available  options  view 

allows  the  activation  of  several 

layers  of georeferenced data from 

GIS packages. Such data can also be visualized dynamically with OpenGL for Java ("JOGL") 

commands which allows to run spatial simulations directly and georeferenced on the virtual 

WorldWind globe (see Fig. 33). 

Figure  32:  The WorldWind perspective of Bio7.  In  the "Options 
WorldWind" panel on the left side some functionalities (e.g. add a 
dynamic layer) can be controlled and activated.

Figure 33: Left: Dynamic data visualized as spheres on the WorldWind globe; Right: Georeferenced
data (Meuse data) from "R" and plotted with accurate coordinates on the globe. The meuse data set used here as 
an example is a data set comprising of four heavy metals measured in the top soil in a food plain along the river  
Meuse (Netherlands; Lat: 50.9703 Lon: 5.7415 – WGS 84).
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2.1.8 Language Editors

The language editors of Bio7 assist the scientist in creating the programming code for his 

ecological models by offering several editing tools (syntax highlightening, code templates, 

code formatting etc.) for the integrated programming languages Java, BeanShell and "R". The 

main programming language of Bio7 is Java which can be easily compiled with the integrated 

dynamic Java compiler. Since Bio7 uses a dynamic compiler models run "Out of the box" in 

the  Bio7  environment  and  no  intermediate  compiled  files  are  created  which  have  to  be 

executed.  With the integrated scripting language BeanShell  which also can interpret  Java, 

easy to use scripts can be created and for instance be used to extend a special Scripts menu of 

Bio7 (Scripting languages are easy to learn and allow e.g. a fast prototyping of models). The 

organization  of  created  files  is  highly  supported  inside  this  Rich  Client  Platform.   The 

integrated file explorer allows easy storage or loading of created files. The file explorer also 

supports "drag and drop" of files e.g. into the flow editor (see below).

Figure 34: Opened "R" editor (top-right) as an example for the language editors in Bio7 (which look 
similar). In general editor files can be opened from the file explorer (Navigator, top-left). In the Console 
of Bio7 (bottom-right) error messages (e.g compilation or script errors) are indicated.
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2.1.9 Flow Editor

To  verify  or  test  different  parts  a  model  it  is  often  required  to  gradually  adjust  certain 

parameters or routines. Such a careful analysis of a certain parameter space with a chosen 

method (e.g. a sensitivity analysis of certain parameters) can be extremely time consuming 

because the  calculation  of  each  scenario requires  a  complete  model  run.  Furthermore  the 

results of all these model runs need to be statistically analyzed (e.g. compared with measured 

data from images or population counts for model validation). To accelerate this procedure 

Bio7 contains a special Flow Editor, in which sensitivity analysis can easily be carried out by 

simply organizing files in a Flowchart like structure (Fig.  35). With the ability of the Flow 

Editor to handle nested loops and decisions, a dragged model file (e.g.  Java,  "R") can be 

executed and the results systematically be analyzed e.g. with the numerous statistical methods 

available  in  Bio7.  The  Flow editor  recognizes  different  file  types  ("R",  Java,  BeanShell, 

ImageJ macros etc.) which can easily dragged from the available file explorer to the Flow 

Figure 35: A  flowchart organizing different files for a simulation.
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editor and calls the appropriate Compiler or Interpreter for the execution of the file. A typical 

flow for a sensitivity analysis of a model would at first compile and execute a parametrized 

model. Then a script would limit the execution of the model to a certain area of interest. A 

connected statistical script would then calculate and store the data within that area for later 

analysis. With a connected loop this part of the model would be repeated several times, each 

time with a different parameter selection defined by a script. At the end of such a routine all 

collected results then would be analyzed (e.g. using another script) and tested for reliability. 

2.2 Sustainable Development 

As mentioned above, Bio7 is built upon Eclipse, a very popular tool with a vigor community 

developing this  RCP platform  further  and  further.  Newly  upcoming  tools  and  concepts 

developed by this  community can  easily  be  implemented  into  Bio7  if  needed.  The  Bio7 

version which was created for this thesis is fully documented with a developers guide, lots of 

examples and a Java API, making it easy to get started with Bio7. Bio7 is an Open Source 

application (momentarily available for Windows and Linux) which can be downloaded freely 

together  with  all  documentation  materials  from  a  project  website 

(http://sourceforge.net/projects/bio7/) on the Internet.
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2.3 Conclusions

The  new  development  tool  Bio7,  was  built  upon  the  powerful  Eclipse  framework  for 

sustainable  development.  In  contrast  to  existing  popular  OpenSource  simulation  tools  for 

agent based modeling or numerical computations like Repast, Netlogo, Breve, Swarm, Scilab, 

Octave (MINAR et al. 1996, WILENSKY 1999, EATON 2002, KLEIN 2003, CAMPBELL et 

al. 2006, NORTH et al. 2007) Bio7 is particularly suitable for simulations of spatio-temporal 

phenomena  in  ecological  systems.  Many  of  the  integrated  algorithms  are  based  on 

experimental ecological data sources or come from popular OpenSource GIS tools like e.g. 

Grass, Saga GIS and Fragstats (MCGARIGAL 2002, BÖHNER et al. 2006,  NETELER & 

MITASOVA 2008).

Additionally Bio7 is one of the first simulation tool with an integrated dynamic Java compiler, 

which makes compiled methods (models) instantly executable thus allowing effective testing 

of  newly created  algorithms  during  model  development.  A unique  feature  of  Bio7 is  the 

implementation of popular tools  like "R" and ImageJ not only used as a library but fully 

integrated in an Eclipse Rich Client Platform. The ImageJ and "R" components of Bio7 were 

primarily developed for microscopy and statistics but are presently becoming increasingly 

popular also for general simulation-workflow environments as well as for pattern recognition 

or  morphological  measurements  (LUDÄSCHER  et  al.  2006,  BERTHOLD  et  al.  2006, 

NORTH et al. 2007). 

The  widely  applicable  algorithms  facilitate  the  development  of  new methods  or  transfer 

methods  known  from  e.g.  microscopy  to  scales  relevant  for  spatio-temporal  ecological 

problems.  Since both  tools  have  also a  huge user  base and are  well  documented,  arising 

problems during model development can quickly be solved. Finally Bio7 offers specialized 

default visualizations (dynamic charts) which don't have to be created from the programming 

source which saves valuable development time. 

Bio7 is an ongoing effort to create an easy to use general purpose simulation platform for 

spatio-temporal ecological problems. One can therefore expect, that future versions of Bio7 

will integrate even more tools for pattern analysis and will also extend the capabilities of the 

database. An already finished tool for an upcoming release is a routine which allows to create 

a different null model with the implemented so-called "midpoint-algorithm" (PEITGEN & 
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BARNSLEY 1988, GARDENER 1999, GARDENER et al. 2007) which can be combined 

with  random patterns as  basis  for  more  realistic  start  patterns  in  grid  based  simulations. 

Furthermore  a  tighter  integration  of  "R"  with  a  spreadsheet  component  inside  Bio7  has 

already been developed, thus allowing to use Bio7 as a complete "R" graphical interface. 

Certainly future versions will  contain more GIS related methods and the already ongoing 

further development of the general Rich-Client concept will ease up the continuous future 

development of this platform. 

Bio7 integrates concepts of different disciplines like e.g. image analysis and spatial statistics 

and  encourages  the  application  of  these  concepts  in  connection  with  spatio-temporal 

ecological problems. 
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Chapter 3

An Individual Based Modeling 

Approach for the Analysis of Vegetation 

Dynamics in Dry Acidic Grasslands
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3. An Individual Based Modeling Approach for the Analysis of Vegetation 

Dynamics in Dry Acidic Grasslands

Urban expansion, and other land use changes have been identified to be the major causes for 

the presently ongoing massive loss of open dry acidic grasslands. But even protected areas of 

these  valuable  nutrient  poor  ecosystems  are  increasingly  endangered  by  anthropogenic 

atmospheric nitrogen deposition which destabilizes the competitive equilibrium within this 

community and elicits an irreversible ruderalization process (BAUERNSCHMITT & GREBE 

1997,  WEIGELT  2001,  2005).  Additionally  climatic  changes  resulting  in  increased 

temperatures during the growing season may lower the water availability and, thus, negatively 

affect  mineralization  rates  and  nutrient  supply  for  the  plants.  In  order  to  evaluate  the 

consequences of such phenomena for the spatio-temporal vegetation dynamics of the early 

successional stages of such grasslands a spatially explicit individual based simulation model 

was developed. The rules of this model are based on the available information from previous 

experimental work as well as on new experimental data particularly collected for this model 

development. Using this model it should be possible to determine the relative importance of 

various  biotic  and  abiotic  factors  for  the  stability  of  this  plant  community,  vegetation 

composition at this successional stage and to determine critical thresholds in this connection. 

The general working hypothesis was, that besides the already known importance of frequent 

disturbances  (JENTSCH 2001,  2004,  FRIEDRICH et  al.  2006,  HOBBS & TEMPERTON 

2006,  WARREN et  al.  2007)  temperature  changes  and  the  related  changes  in  water  and 

nutrient availability would play an important role for dynamic equilibrium between the two 

dominant pioneer species P. piliferum and C. canescens. Experimentally obtained information 

on vegetation distribution, growth parameters, dispersal dynamics, disturbance frequencies, 

competitive  interactions  and  microclimate  from  two  field  sites  (Eltersdorf  and  Büg,  see 

chapter 1, Fig. 10) were used for the validation of this model.

3.1 Material and Methods

Individual based models in ecology are defined as models which describe a population of 

individuals which may differ from each other, thus, taking into account the complexity of the 
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individual's  lifecycles.  They  describe  changes  in  numbers  of  individuals  rather  than  in 

population density and typically also consider resource supply (UCHMANSKI & GRIMM 

1996). 

The Quadgrid option of Bio7 was used for all simulations of the present work. In order to 

keep the general calculation within reasonable boundaries, the grid size was set to 100*100 

cells. The size of the grid cells was set to 10*10 cm which reflects the average diameter of a 

C. canescens bunch. Thus the total grid represented a simulation area of 100 m². This scale 

was chosen because several experimental studies had already shown that an area of 100 m2 

was representative to reflect the relevant vegetation dynamics including the important small 

scale disturbance regime ( JENTSCH et al. 2002, JENTSCH et al. 2008). A torus function was 

used to avoid edge effects in the simulation. 

P. piliferum  which is  much smaller  than  C. canescens and grows in colonies (HOBBS & 

PRITSCHARD 1987)  was modeled as  superindividuals  (where each grid  cell  represented 

multiple individuals but was treated as one GRIMM & RAILSBECK 2005). Each calculation 

cycle represented a month to resolve the seasonal growth, disturbance and mortality rates of 

the different plants.  

As described in more detail below, the implemented simulation rules for the behavior of the 

two species were based on the available experimental and literature data on the lifecycle, and 

the  spatial  distribution  patterns  of  the  two  species.  The  different  plant  individuals  were 

modeled as objects in an object oriented approach to get a more realistic scenario. In this 

approach important attributes were assigned to each individual of one of the two modeled 

species each independent from the other. Additionally a disturbance function which randomly 

deletes plant individuals and, thus, creates free grid cells (i.e. open sand) at a given frequency 

was developed to reflect the naturally occurring activities of rabbits and ants in this system 

which seem to be essential for the stability of these ecosystems (JENTSCH et al. 2002b). 
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3.1.1 Vegetation Dynamics of Corynephorus canescens

C.  canescens reproduces  solely by wind dispersed  seeds  (BÖGER 2007).  Thus  the  most 

important aspect for its population dynamics is the dispersal distance. Several authors have 

shown  that  the  most  of  the  seeds  are  found  within  3-4  m  around  the  mother  plant. 

(ELLENBERG 1996, WOLTER 1996, KUNZMANN 2000, BÖGER 2002, 2007) Only rather 

few  seeds  are  dispersed  over  larger  distances  with  the  help  of  wind.  Fig.  36 shows  an 

approximated dispersal function (on moos) based on experimental data obtained from three 

different  locations  in  Northern  Bavaria.  This  function  is  used  in  the  present  model  (see 

below).  The number of fertile seeds produced by a healthy individual mother plant of  C. 

canescens  can  reach  up  to  15.000 fertile  caryopses.  The  numbers  for  nutrient  limited  or 

stressed  individuals  are  typically  a  magnitude  smaller  (BÜREN-RIEDER  2000,  BÖGER 

2007).  C. canescens is  considered to be biennial  i.e.  its  life span amounts to  generally 2 

(sometimes 3)  years  (ROTHMALER 2005).  They remain  vegetative  in  the  first  year  and 

typically flower between June and August of the second year. The dispersed caryopses then 

germinate to almost 100% in the following autumn as soon as the water supply becomes 

Figure 36: Exponential  seed dispersal function, illustrating the decline of dispersed seeds with increasing 
distance  from a  dense  stand  of  C.  canescens based  on experimental  data  from three  different  sites  in 
Northern Bavaria (Data from Böger 2007).



50 An Individual Based Modeling Approach

sufficient.  There  is  no  evidence  for  a  persistent  seed  bank  (BÜREN-RIEDER  2000, 

PICKELMANN 2001, JENTSCH 2001) .

These facts were integrated into the model in the following way.

In the simulation model flowering of all individuals occurs in June of their second year. The 

resulting  caryopses  are  equally  dispersed  into  all  directions  according  to  the  exponential 

function from Fig. 36 (see Table 3) . The amount of caryopses reaching the several distances 

are dependent on an exponential function which is based on the afore illustrated exponential 

regression function of field data adapted on moos. 

The maximum number of produced seeds is ca. 13.000 per individual. However this number 

can be greatly reduced by a fertility factor, which reflects the nutrient supply of the particular 

individual which is a combined function of the available nutrients coming from a nutrient 

availability matrix (see Fig.  37). Nutrient limitations seem to play an important role for the 

fitness of the plant individuals of this species (WEIGELT 2001, JENTSCH & BEYSCHLAG 

2003).  Fig.  38 shows the effect  of  a  theoretical  nutrient  gradient  on seed production and 

dispersal of individual C. canescens mother plants. Because there were no spatio-temporal 

data on nutrient distributions available, the nutrient matrix was randomized each year which 

comes probably close to  the natural  situation.  If  more than one seed is  dispersed into an 

individual grid cell it is assumed that only one seedling will be able to establish itself in this 

cell.

Figure 37: Regular plant grid (top) with the nutrient matrix as a parallel layer below. 
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Seeds which fall into cells which are already occupied by established plants of either of the 

two species will not be able to establish themselves. After two years each individual in our 

simulation died i.e. the respective grid cell was reassigned to the state of open sand.

Table 3: Equations for dispersal and establishment of C. canescens

Lcxy t t =P xy∗ f d  , if Lc xyt t =0

  Lcxy = A location in the neighborhood distance d of the center cell is occupied by the amount of seeds   

  calculated from the dispersal function f(d) and the fertility factor Pxy if not occupied by P. piliferum or C.    

  canescens (0 = soil). 

  t+Δt = Time interval from birth to dispersal.

  

f d =e −0.138184∗d7.61125

 Empirical generalized dispersal function (d=distance), see Fig 36.

P xy = 0.01-1.0 
Random fertility factor at the given point of the nutrient matrix from which the  

probability in percent is calculated and is multiplied with the dispersal function.

  

d = ydi− yc
2xdi− xc

2

 Euclidean distance from the centroid of the center cell c to the centroid of the cell in the distance di.

 

Figure 38: The effect of a (utilizable) nutrient gradient on the dispersal function of C. canescens.
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3.1.2 Vegetation Dynamics of Polytrichum piliferum

The moss  P. piliferum disperses  mostly through clonal  growth (HOBBS & PRITCHARD 

1987, FREY & HENSEN 1995). In consequence the bryophyte is normally growing in dense 

circular  colonies  with a  measured yearly radius increase of approx.  5-15 cm (HOBBS & 

PRITCHARD  1987)  depending  on  the  environmental  conditions.  For  the  growth  of 

Polytrichum piliferum in the simulation model a probability function was created to assess the 

growth rate of the moss assuming that the cell size of 10*10 cm represents one individual 

colony of the moss.  In this  function each individual  colony of  P. piliferum  can occupy a 

neighboring cell as long as it is not occupied by another individual of either plant species. P. 

piliferum shows optimal  growth rates  under  moderately warm (7 to  15 degrees)  and  wet 

conditions  (annual  precipitation between 250 and 650 mm) (CORRADINI & CLÉMENT 

1999). To implement this temperature dependency into the model, a polynomial regression 

was fitted to measured regional air temperature data of the years 2004-2006 (Weather Station 

Buch, near Nuremberg) to obtain monthly temperature means. In the model simulation growth 

of P. piliferum was only allowed during months with a mean air temperature between 5-15 C. 

The growth of P. piliferum was implemented as a random growth function in all directions. 

The probability to disperse in the direct neighbourhood (8-cell neighbourhood) was adapted 

and fixed to match the afore mentioned yearly radius increase (see Fig. 39).

Figure 39: Implemented random growth of P. piliferum (72 colonies as 
examples)  which  approx.  matches  the  yearly  radius  increase 
experimentally obtained by Hobbs & Pritchard (1987). Illustrated are 
the different geometries caused by the implemented random growth.
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The superindividuals (grid cells) of P. piliferum were assumed to be immortal because in in 

nature all dead material is instantly replaced by a newly formed shoots. Table 4 summarizes 

the rules for the growth of P.piliferum.

Table 4: Equations for the growth of Polytrichum piliferum

Lpxyt1=Pd∗g t  , if Lpxyt1=0

  Lpxy =  A location in the neighborhood distance d=1 of the center cell is occupied with a fixed probability 

  based on data of yearly radius increase if not occupied by P. piliferum or C. canescens (0 = soil). 

  Pd = fixed probability (0.03).

  t+1 = Each timestep.

   

g t =1∗s s = {0
1

for f t 5, f t 15
f t ≥5, f t ≤15}

 Growth function to only allow the growth of P. piliferum colonies at optimal temperature growth 

 conditions.

f t =4.98578−3.45102t1.30274t 20.0634756t3−0.0297666t40.00144329t5

  The fitted temperature function (monthly mean 2004-2006 weather station Buch. t=month 1-12).

3.1.3 Disturbance Dynamics

Since the naturally occurring disturbance activities of rabbits and ants seem to essential for 

the  stability  of  the  ecosystem  (JENTSCH  et  al.  2002b),  a  disturbance  function  which 

randomly deletes plant individuals and, thus, creates free grid cells (i.e. open sand) at a given 

frequency was implemented into the model. Its activity was limited to the months May – 

October because this is the time span where ants and rabbits are predominately active in the 

area (FRIEDRICH 2006). Table 5 contains the rules for this algorithm.
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Table 5: Equations Disturbance

P xyt1=Dt∗Pd Pd=0.01−1.0

  Pxy = The probability that a cell of the whole field is affected by disturbance in the selected months.

  Pd = Variable disturbance rates from 1% to 100%.

  t+1 = each timestep.

   

Dt=1∗tm tm= {01 for t5, t10
t≥5, t≤10}

  Dt  = The time dependant activation of disturbance based on data about burial activities on dry acidic  

  grasslands.

 

3.1.4 Initialization of the Model

For initialization the plant  individuals and open sand areas were randomly and uniformly 

assigned to the grid cells of the modeling space using a Mersenne Twister random generator 

as a pseudo number generator (MATSUMOTO & NISHIMURA 1998). For the distribution of 

plants and soil the following proportions of grid cells were chosen: 50 % open sand, 25 % C. 

canescens,  and  25%  P. piliferum.  This  distribution  is  justified  by the  results  of  a  cluster 

analysis where several artificial distributions were compared to measured values (see Fig. 47) 

showing that this particular random distribution approximately resembles the natural situation. 

In order to obtain a realistic age distribution, the age of the initial  C. canescens  individuals 

was randomly shuffled between first year and second year plants. All calculations began in the 

month of July as a selected seasonal starting point.
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3.1.5 Model Validation and Sensitivity Analysis 

The  general  quality  of  the  model  was  evaluated  by  means  of  a  sensitivity  analysis  of 

important parameters. Each model run for a specific parameter value (starting every time with 

a randomly different initial distribution of plants and open space) was repeated ten times to 

obtain  a  standard  deviation  for  the  results.  Each  run  was  performed  for  600  time  steps 

(months)  which  represents  a  simulated  time  period  of  50  years.  The  final  values  were 

collected during the steady state phase in the month of June just before the new dispersal 

events. The resulting distribution patterns were dynamically collected in a data frame and 

Figure 40: Flow for the pattern analysis of the simulation model. (1) Measured patterns 
from the Büg and Eltersdorf location are added to a dataframe. (2) Random patterns are 
created and added to the dataframe. (3) Simulation model is loaded and started. (4) 
Simulation model repeatedly runs to a specified timestep and the resulting patterns are 
added to the dataframe. (5) Collected data are statistically analyzed and clustered.
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statistically summarized with the software "R". The resulting spatial patterns were analyzed 

with landscape metrics in order to compare them to experimentally measured patterns from 

real nature and, thus, validate the model. 

These natural distribution patterns of C. canescens and P. piliferum were obtained from digital 

photographs  taken at  about  2  m height  above canopy during  the  summer  of  2005 at  the 

Eltersdorf and the Büg site. Additional aerial photographs from approximately 10 m height 

were taken at different randomly chosen locations of the Büg site during summer of 2006 

using a  weather  ballon with  an attached digital  camera (see  Fig.  41).  Before analysis  all 

images were (if necessary) geometrically corrected with the image software GIMP 2.6 to fix 

spatial  distortions  (pincushion  distortions)  caused  by  the  camera  lens.  Using  "Bio7"  the 

obtained spatial information from photographs covering a 10x10m area was then transferred 

to the model grid (Fig. 42).

Subsequently  selected  landscape  metrics  (see  Table  6)  were  calculated  for  the  obtained 

patterns.  The  individual  bunches  of  C.  canescens could  be  exactly  detected  from  the 

photographs. The areas of open sand and moss, however were more difficult to quantify. Their 

percent proportion of the entire area was, therefore, assessed with image analysis.

Figure  41: Weather balloon with attached digital camera to obtain aerial vegetation images 
from the Büg site.
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Figure 42: Transfer of distribution patterns from a 10x10m aerial photograph into the modelling grid (Red: C. 
canescens, Green: P. piliferum, Yellow: open sand) 
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Table  6: Left column: Selected Landscape metrics used for the analysis. Right column: Species for which the 

metrics were measured 

Nearest-Neighbor Distance (Patch: mean,max)

MNN= ∑
i=1

m

∑
j=1

n '

hij

C. canescens

Percent of Landscape

 
LAND=P i=

∑
j=1

n

aij

A

Soil, C. canescens, P. piliferum

Number of Patches

NP=N i

C. canescens

Patch Density

PD = 
ni

A

C. canescens

Patch Size (mean, max)

MPS=
∑
j=1

n

aij

ni

C. canescens

Nearest-Neighbor Distance (mean, max)

MNN=
∑
j=1

n '

hij

n ' i

C. canescens

Patch Perimeter (mean, max)

MPP=
P ij

ni

C. canescens

Perimeter-Area Ratio (mean)

PARA=
P ij

aij

C. canescens

Fractal dimension

FRACT=
2 ln .25∗Pij 

ln a ij

C. canescens
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Subsequently  the  datasets  of  the  analyzed  real  patterns  and  the  datasets  of  the  different 

simulation  runs  were  compared  by a  cluster  analysis  in  "R"  (Wards  method  with  scaled 

euclidean distances).

3.1.6 Application of the Model

After the verification and evaluation the model was then used to analyze the effect of nutrient 

availability, different temperature regimes and dispersal distances by varying the respective 

parameters.

For these simulations the disturbance frequency was adjusted to a value which represented a 

stable  species  equilibrium  (see  Fig.  44).  From  this  stable  state  the  effect  of  the  afore 

mentioned parameters on the species composition was analyzed.
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3.2 Results

3.2.1 The Effect of Disturbance

Assuming a fixed reasonable dispersal distance for C. canescens of 3 m and a yearly colony 

growth of  P.piliferum  of  ca.  10 cm colony radius,  the disturbance probability was  varied 

between 0.6% and 43.8%. Figs.  43-46 show the impact of different disturbance rates on the 

population development of the two plant species of concern The y-axis shows the number of 

individuals with a maximum value of 10.000 (grid cells). The x-axis is a time axis for 50 

years simulation time (= 600 time steps à 1 month).  After some initial  equilibration time 

stable  equilibria  between  the  two  species  were  reached  throughout  a  large  range  of 

disturbance rates.  With a  disturbance rate  of about  5-10% per  year  (low disturbance)  the 

population  size  of  the  grass  varied  between  900  to  1700  i.e.  a  cover  of  9-17  % of  the 

Figure 43: Results from 10 different runs. The y-axis shows the amount of individuals whereas the x-axis shows 
the time in years (up to 50 years).  C. canescens: Mean = 3541, sd ± 69.08 (10 repl. including all timesteps!). 
The red line represents the amount of flowering + non flowering C. canescens (3848 individuals) counted in 
2004 after ca. 18% disturbances in 2003 (FRIEDRICH 2006).
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simulated system while the moss covers almost 85-70% of the available area. At intermediate 

disturbance rates (10-20 % = medium disturbance) which are close to the disturbance rates 

reported by Friedrich (2006) for natural systems  C. canescens  increases to 17-35% cover. 

Whereas  P. piliferum decreases from 70-43% cover. Under these conditions the calculated 

data  for  C.  canescens match  the  experimental  population  data  collected  by FRIEDRICH 

(2006) in the same area (Red line in Fig. 43). At about 21-22% disturbance rate (Fig. 44) both 

species cover roughly the same amount of area.

Higher  disturbance  rates  benefit  C.  canescens  which  needs  open  sand  for  successful 

establishment and inhibit  P. piliferum. Lower disturbance rates have the opposite effect. In 

consequence extremely high or low disturbance regimes lead to the extinction of either one of 

the species (Fig. 45-46).

Figure 44: Results from 10 different runs. The y-axis shows the amount of individuals whereas the x-axis shows 
the time in years (up to 50 years). C. canescens: Mean = 3896.71, sd ± 74.13 (10 repl. including all timesteps!)
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Figure 46: The effect of high disturbance. The y-axis shows the amount of individuals whereas 
the x-axis shows the time in years (up to 50 years). C. canescens: Mean = 5832.5, sd ± 50.38 (10 
repl. including all timesteps!)

Figure 45: The effect of low disturbance. The y-axis shows the amount of individuals whereas 
the x-axis shows the time in years (up to 50 years). C. canescens: Mean = 575.68, sd ± 19.7 
(10 repl. including all timesteps!)
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3.2.2 Model Validation

The  resulting  distribution  patterns  from  all  these  simulations  were  then  compared  with 

patterns obtained from the aerial  photographs taken at  the Büg site (2005, 2006) and the 

Eltersdorf site (2006) by means of a cluster analysis. As shown in Fig.  47, there is a good 

accordance  between  simulated  and  measured  patterns.  All  measured  patterns  of  Büg  and 

Eltersdorf are found within the same cluster consisting of simulated annual disturbance rates 

between 0.6-9.6%.

Within this cluster, a clear distinction between the patterns from the two experimental sites 

can be observed. This is due to the fact that rabbit activities are less pronounced in Eltersdorf 

2005 than in the Büg (own observation). So the Eltersdorf pattern is found in a subcluster 

together with comparatively low simulated disturbance rates between 3.0-4.8% while the Büg 

situation belongs to a subcluster with markedly higher disturbance values. Interestingly the 

measured  pattern  of  Büg (2006)  belongs  to  the  same  subcluster  as  the  random situation 

related to a relative high burial activity of rabbits in that year (own observation).

Figure 47: Clustered scaled euclidean distances (ward) of selected Landscape metrics at different disturbance 
rates.  The y-axis  reflects  the dissimilarities  between the clusters. The numbers  in the clusters  denote the 
disturbance frequency (%) which are clustered together with the measured spatial patterns of Elterdorf 2005 
and the Büg (2005, 2006) and an artificial random pattern. 
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3.2.3 Results of Parameter Variation

Fig.  49 shows the results  of model simulations where effects  of temperature changes and 

variations in nutrient supply on the population size of the two species were investigated. The 

disturbance  rate  in  these  scenarios  was  held  constant  at  approx.  21% resulting  in  equal 

populations of C. canescens and P. piliferum under the standard conditions (see Fig. 44). The 

data in Fig.  49 represent the steady state population sizes reached after a simulation time of 

40 years. Case 1 shows the control situation with equal proportions of the two species. Case 2 

shows the effect of an increase of the monthly mean temperature of 5 degrees (Fig. 48 orange 

line).  It  was  assumed  that  temperature  variations  solely affect  the  length  of  the  growing 

season of P. piliferum.

The simulated temperature increase extends the growing period of the moss in spring and fall 

leading to a higher number of occupied grid cells and in consequence to a decrease of the C. 

canescens population because there is less open sand available for the establishment of its 

seeds. A temperature decrease of -5 (Fig. 48 purple line) leads to the opposite effect (Case 3). 

Since P. piliferum grows better at low temperatures (see Fig. 48) the optimal growth period of 

P. piliferum falls into the months in which the disturbance activities occur. This is the reason 

why  C.  canescens dominates  slightly  in  this  case.  Case  4  illustrates  a  scenario  without 

temperature limitation for the moss allowing it to grow throughout the entire year without 

being limited by the temperature optimum, which has major negative effects on C. canescens.

Figure 48: Annual course of air temperature (monthly mean values) as measured at the meteorological station 
Nuremberg-Buch (blue) as well as the +5 °C (orange) and the -5 °C (purple) courses which were used for the 
model simulations (see Fig.  49). The dark area indicates the temperature range (7-15 °C) where P. piliferum is 
supposed to exhibit optimal growth rates (CORRADINI & CLÉMENT 1999).
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Almost the same result was obtained for the situation where the moss grew all year and there 

was an additional nutrient limitation (Case 5). Variations in nutrient supply were assumed to 

solely affect the fertility factor of  C. canescens. The fertility in this case was 99% reduced. 

The fact that this treatment led to similar results as case 4 indicates that the reduced seed 

production of C. canescens was still sufficient to occupy all available cells of open sand.

In case 6 the dispersal distance of  C. canescens was increased from 3 to 4 m leading to no 

significant changes of the species composition. In case 7 finally a homogeneous age structure 

was assumed for the grass giving the moss the chance to grow without establishment of new 

C. canescens plants for almost two complete vegetation periods. The effect is very similar as 

in case 2. Both treatments enable the moss to cover plenty of grid cells at the cost of the grass. 

Figure  49: Results from the parameter variation. From left to right the seven grouped barplots denote seven 
different parameter cases. Case 1 (Species equilibrium) served as a control. "*" Denotes statistical significance 
using One-way ANOVA with Tukey multiple comparison test at 5% level of significance (Different cases of C. 
canescens tested against  C. canescens species equilibrium and different cases of  P. piliferum tested against P.  
piliferum species equilibrium ).
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3.3 Discussion

The newly developed spatially explicit, individual based simulation model for the simulation 

of vegetation dynamics in the early successional stages of dry acidic grasslands was used to 

address  questions  concerning  the  long-term  stability  of  this  ecosystem  under  changing 

environmental conditions. Dispersal events, temperature and nutrient conditions, individual 

variability  and  lifecycle  are  often  successfully  used  and  suggested  to  analyze  vegetation 

patterns in theoretical spatially explicit frameworks (SILVERTON et al. 1992, COLASANTI 

& GRIME 1993,  WINKLER & KLOTZ 1997,  CZÁRÁN 1998,  WIEGAND et  al.  1998, 

HOVESTADT et al.  2000, WISSEL 2000, JELTSCH & MOLONEY 2002, WINKLER & 

STÖCKLIN 2002, GROENEVELD 2002, WIEGAND et al. 2003, MAZZOLENI et al. 2004, 

PERRY &  ENRIGHT 2006,  NUTTLE  &  HAEFNER  2007).  In  the  case  of  dry  acidic 

grasslands  these  phenomena  as  well  as  disturbance  dynamics,  the  role  of  nutrients, 

(JENTSCH 2001, WEIGELT 2001, ANDERS et al. 2004, HASSE 2006, FRIEDRICH et al. 

2006)  dispersal  dynamics  and  life  history  (HOBBS  &  PRITCHARD  1987,  FREY  & 

HENSEN 1995, ELLENBERG 1996, CORRADINI & CLÉMENT 1999, BÜREN-RIEDER 

2000, BÖGER 2007) were intensively studied during the past years. The information from all 

these studies served as a the basis for the implemented rules.

In  a  spatially  explicit  simulation  model  a  critical  task  is  the  implementation  of  spatial 

information which is even more difficult if the selected species vary extremely in their size for 

a grid based approach. One strength of the present simulation model is certainly the good 

approximation of the vegetation distribution data into the chosen resolution of the gridded 

structure  without  sacrificing  to  much spatial  detail.  For  the  case  of  C.  canescens  and  P. 

piliferum it  was  satisfactory  to  define  the  grid  cell  size  as  the  mean  bunch  size  of  C. 

canescens.

It is generally agreed upon that one should avoid the development of highly complex models 

because the huge parameter space will  inhibit  a systematic test  of such models (WISSEL 

1989,  GAYLER  1998,  JØRGENSEN  &  BENDORICCHIO  2001).  Therefore  the  present 

application  was  restricted  to  only  two  species  and  a  few  carefully  chosen  important 

parameters. 

It is well known that the disturbance dynamics play an important role for the stability of dry 

acidic  grasslands  (JENTSCH  et  al.  2002,  FRIEDRICH  et  al.  2006).  Depending  on  the 
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respective authors, disturbance events are typically defined as events relatively discrete in 

time and space which alter the structure of populations, communities and ecosystems, which 

are a limiting factor for the biomass or a factor which makes resources available or simply a 

deviation from the normal conditions (GRIME 1979, TILMAN 1982, SOUSA 1984, PICKET 

& WHITE 1985, FORMAN & GORDON 1986, WALKER 1999). Disturbances can change 

vegetation distribution patterns and its composition (GRUBB 1977) by benefiting disturbance 

adapted  species  like  C.  canescens and  P.  piliferum and  thus  disrupting  the  competitive 

equilibrium. 

In dry acidic grasslands and other sand dune communities disturbance events are essential for 

stability  because  they  inhibit  the  successional  progress  towards  a  nutrient  rich  grassland 

community (LACHE 1976, JECKEL 1984, STORM et al. 1998, GELKA 1999, JENTSCH 

2001) where the pioneer species adapted to low nutrient availabilities can not survive. In dry 

acidic  grasslands  rabbits  and  ants  are  the  continuously  active  major  disturbance  agents 

(PLATT 1975, JENTSCH 2001, FRIEDRICH 2006). 

In  the  present  model  application  we,   therefore,  systematically  analyzed  the  role  of 

disturbance to address the question how much disturbance is necessary to preserve this special 

ecosystem under the present conditions and what would be the consequence of a temperature 

increase  caused  by  global  climate  change.  Climate  change  has  several  effects  on  the 

vegetation composition increasing or decreasing the amount of certain species more or less 

adapted to this changes (BROWN et al.  1997, DUKES & MOONEY 1999, GITAY et al. 

2002, CLELAND 2007, WILLIS et  al.  2008,  BRADLEY 2009) or leading to  a complete 

extinction of species (THOMAS et al.  2004, HARTE et al.  2004). Predictions of possible 

effects of climate are difficult to derive from experiments. because the predictive value of 

such experiments is rather limited. In contrast,  simulation models like the one which was 

developed in the present work allow a systematic evaluation and temporal extrapolation of 

different  potential  environmental  scenarios  based  on  the  presently  available  experimental 

information.  The  variation  of  the  selected  environmental  parameters  reflecting  climate 

changes often altered the species composition but did not lead to an extinction or an instable 

situation of one species in the present analysis (Fig. 49). These results are in good accordance 

with long term monitoring data of this system which emphasize a high stability of these early 

successional stages over the last decades (FRIEDRICH 2006, BÖGER 2007).

As shown by the sensitivity analysis for disturbance intensity the model can be used for the 
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determination of upper and lower thresholds for system stability. 

A potential future application of this could be to analyze the effect of different disturbance 

distributions  (clumped,  regular,  random) which would reveal  valuable  information for the 

design of necessary management measures in order to prevent succession towards a nutrient 

rich grassland community.

A still existing weakness of the present model version is the rather rough implementation of 

the nutrient dynamics due to missing or insufficient experimental data. Typically, the ongoing 

succession increases the resource availability on sand dunes because of the accumulation of 

litter  (BERGER-LANDEFELDT & SUKOPP 1965,  LACHE  1976,   JECKEL 1984,  Van 

RHEENEN 1995, STORM et. al 1998, SCHMIDT 1998, HINNENTHAL 2001). In dry acidic 

grasslands,  such  nutrient  accumulation  (nowadays  enhanced  by  anthropogenic  nutrient 

deposition from the atmosphere) threatens the overall stability of the system (JENTSCH & 

BEYSCHLAG 2003, VAN DEN BERG 2005).  So it  has been shown that  colonies  of  P. 

piliferum can increase overall nutrient availability by accumulating nitrogen within its dead 

material  (BOWDEN  1991).  Further,  it  is  known  from  controlled  field  experiments  that 

increased nutrient availability decreases the competitive strength of pioneer species like  C. 

canescens. (WEIGELT 2001). Nevertheless, a long term study on nutrient availability and 

heterogeneity in dry acidic grasslands and it's effect on the vegetation composition would be 

highly desirable and would certainly improve the quality of related model simulations.

Another important aspect which is presently neglected in the model is the role of the soil 

microfauna and-flora including mycorrhizal fungi for vegetation composition distribution and 

dynamics.  Common mycorrhizal networks (CMNs) can connect plants and share resources 

among them (NEWMAN 1988, READ 1997, KENNEDY et al. 2003, PEREZ-MORENO & 

READ 2004, NARA 2006) and on dry acidic grasslands exploitation of resources, especially 

nitrate uptake seems to be relevant. (AL-AGELY & REEVES 1995, KOSKE & GEMMA 

1997,  PERUMAL & MAUN 1999).  At  present,  particularly  the  role  of  mycorrhizae  and 

mycorrhizal networks on dry acidic grasslands is not known and lots of experimental work 

needs to be done before such phenomena can be properly implemented into the model.

In chapter 4 of this thesis we tried to estimate the potential effects of herbivory (i.e. foliage 

loss)  which  has  been  shown to  have  the  possibility  of  changing  vegetation  composition 
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(MCNAUGHTON 1983, ADLER et al. 2001, SWAIN et al. 2007, OLOFSSON et al. 2008, 

DE KNEGT et  al.  2008).  While  for  C.  canescens and  H.  pilosella there  was  almost  no 

significant effect, this may be different for other plant species in which case the effects would 

have to be included into the model simulations.

The  presented  simulation  model  deals  only  with  two  dominant  species  in  an  early 

successional stage of dry acidic grasslands (Spergulo morisonii-Corynephoretum canescentis). 

In  the  future  it  would  be  worth  to  carefully  include  other  typical  plant  species  or  plant 

combinations in order to extend the analysis towards other, more complex successional stages. 

But as already mentioned the complexity of an model has to be manageable and this has to be 

considered if e.g. the present model would be extended by new species .

Since the model was created with the help of the integrated development environment (see 

chapter 2) the implementation of new species is comparatively easy. Nevertheless there is an 

upper  threshold  for  what  the  model  can  do  because  it  is  designed  to  address  questions 

regarding  the  interactions  of  plant  individuals  at  the  community  scale.  For  ecological 

questions on higher scales other models (like e.g. GIS models) are more suitable.

In contrast to other existing simulation models the present model was not only validated with 

experimental population data, but also with collected spatial data. New in this respect was the 

use of selected landscape metrics to compare measured with simulated distribution patterns. 

Such a pattern oriented approach to (dynamically) verify simulation results has rarely been 

employed  at  the  community  scale  (except  for  calculations  of  occupation  percentages  or 

summary statistics) because the necessary detailed spatial  information is typically lacking. 

Figure  50:  UAV  equipped  with  a  digital  camera 
(image  from  Draganfly  Innovations  Inc. 
www.draganfly.com)
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Satellite pictures and aerial photographs from planes are costly and do typically not provide 

the desired resolution. Therefore In the present work, the respective data were collected with 

an affordable weather balloon and a high resolution digital camera. Future researchers may 

employ socalled  "UAV's"  (unmanned aerial  vehicles;  Fig.  50)  which,  equipped with high 

resolution digital cameras, would be ideal for this purpose and would also allow long term 

monitoring  of  large  areas  (HARDIN  &  JACKSON  2005,  SCHMALE  et  al.  2008, 

EVERAERT 2008, GURTNER et al. 2009, BERNI et al. 2009). 

At present however, such tools are almost unaffordable (>16.000 US$). Additionally new but 

already available technologies like Light Detection and Ranging (Lidar) (BORK & SU 2007, 

IM et al. 2008, VIERLING 2008, HILKER et al. 2008, AKAY et al. 2009) will provide even 

clearer high resolution pictures and even the automatic identification of species seems to be 

within the range of these new possibilities.

3.4 Synthesis

Analyzing  ecological  systems  is  a  difficult  task  because  of  the  complexity  of  the 

interdependent biotic and abiotic factors determining the temporal and spatial configuration of 

animal  and  plant  communities.  In  this  respect  dry  acidic  grasslands  because  of  their 
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comparatively low complexity, provide valuable research sites for a better understanding of 

the mechanisms of biotic interactions and their emergent patterns in time and space. In order 

to facilitate the generation of reasonable hypotheses a simulation model was developed using 

a newly assembled integrated development environment. Due to its very versatile structure the 

newly developed model can be used for the analysis of numerous ecological problems from a 

variety of ecosystems In times of changing environmental conditions such models are very 

useful  tools  because they can help to  analyze and visualize the complexity of the related 

phenomena and the simulated model scenarios often provide valuable informations for the 

development of effective management measures. 
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Chapter 4

The Effect of Artificial Foliage Reduction 

(Clipping) on the Competitive Ability of 

Corynephorus canescens 
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4. The Effect of Artificial Foliage Reduction (Clipping) on the Competitive 

Ability of Corynephorus canescens 

Up to now, the fitness of a plant individual in our model is solely the function of the species 

and the nutrient and water supply. Another factor which may have a strong influence on the 

competitive ability of a plant is herbivory. In dry acidic grasslands the prominent herbivores 

are grasshoppers, rabbits and small rodents. Additionally grazing by sheep which is frequently 

part of the management strategy may play a role. It is well known that e.g. grazing has the 

potential to change distribution patterns, of plant species (MCNAUGHTON 1983, ADLER et 

al. 2001, OLOFSSON et al. 2008) and species richness (LACEY & VAN POOLEN 1981, 

BAKKER 1989, PUTMAN et al. 1991, HILL et al. 1992, BULLOCK et al. 1995, PUCHETA 

et  al.  1998,  BARBARO  et  al. 

2001). Two contrasting effects of 

herbivory are discussed.  On the 

one  side  it  is  widely  believed 

that  herbivory  plays  a  negative 

role for the general fitness of the 

affected plant individuals finally 

leading to a general decrease of 

biomass  (BELSKY  1986, 

BERGELSON  &  CRAWLEY 

1992,  BELSKY  et  al.  1993, 

BIGGER  &  MARVIER  1998). 

On the other hand many authors 

found  that  herbivory  can  also 

have a positive stimulative effect on the affected plant finally leading to overcompensation 

and thus to an increased fitness. Some authors interpret this positive effect also as the result of 

coevolution (DYER & BOKHARI 1976, OWEN AND WIEGERT 1976, HILBERT et al. 

1981, PAIGE & WHITHAM 1987, LENNARTSSON et al. 1997, PAIGE 1999). 

Generally compensatory growth can be either overcompensating (cumulative dry weight of 

the grazed or clipped plants is greater than that of the control plants), or fully compensating 

(cumulative  dry  weight  of  the  treated  plants  equals  the  weight  of  the  controls,  or 

Figure 51: Grazed C. canescens individual found on an early stage at 
a dry acidic grassland site near Bielefeld. 
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undercompensating (cumulative dry weight of the treated plants is below the weight of the 

controls at a defined point in time after the herbivory event (BELSKY 1986). In order to 

evaluate whether foliage reduction may have substantial positive or negative effects on fitness 

and competitive ability of C. canescens plants (and would, therefore, have to be implemented 

into the simulation model) a controlled field study was carried out in a sand pit in Bielefeld. 

At three different timesteps we investigated the effect of foliage removal, on the above and 

belowground biomass, the spatial distribution of roots and the resulting competitive ability. 

The effect of competition on root allocation of C. canescens has already been investigated by 

Bartelheimer et al. (2006). They found that C. canescens showed a marked root aggregation 

towards the roots competing neighbor plants. In the present work we used a similar, slightly 

modified approach to answer the following questions: 

4.1 Questions

- Is C. canescens able to compensate or even overcompensate foliage removal?

- How does the presence of a competitor affect this behaviour?

- Is there a measurable effect of aggregation or segregation of the roots under herbivory

  and/or competition?

As a general working hypothesis it was assumed that foliage removal would have a dramatic 

negative effect on plant fitness and that this effect would be enhanced by the presence of a 

competitor, due to the limited nutrient supply in this sandy environment.
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4.2 Material and Methods

4.2.1 Experimental Setup

The  experiment  was  carried  out 

between  April  and  September  2004 

in  a  20  x  6  m sand pit  of  120 cm 

depth  near  the  university  of 

Bielefeld.  The  sandpit  itself  is 

divided into four identical chambers 

(Fig.  52).  For a detailed description 

of  the  sandpit  and  the  available 

nutrients  see  Weigelt  (2001).  C. 

canescens plants were planted either 

alone  (control)  or  together  with  an 

intra-  or an interspecific competitor. 

Figure 52: The sand pit near the University of Bielefeld with the experimental setup

Figure 53: Corynephorus canescens prepared for clipping.
25% or 75% of the Shoot height were clipped.
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Hieracium pilosella  was chosen as interspecific competitor because it  frequently cooccurs 

with C. canescens in the early successional stages of dry acidic grasslands. At the field sites 

used in the present thesis H. pilosella is typically not majorly affected by herbivores (but see 

SYRETT et. al 1997). 

Two month old young individuals of the two species (cultivated four weeks in a greenhouse 

and four weeks in a hotbed) were planted either alone or in a 1:1 competition experiment with 

a  7.5  cm  distance  between  the  competitors  according  to  Bartelheimer  et  al.  2006.  The 

different treatments (Tab. 7) were repeated eight times resulting in 264 single plots and placed 

in  a  randomized  block  design  across  the  area  of  the  sand pit  to  avoid  edge  effects  and 

influences of growing position and exposition of the plants.  To simulate herbivory on the 

target  species  C.  canescens,  either  25% (low herbivory)  or  75% (high  herbivory)  of  the 

aboveground biomass was clipped from the top of the bunches at three different times after 

planting. A cable strap was used for an exact determination of the foliage proportion to be 

clipped (Fig. 53). 

The first clipping took place in June i.e. three months after planting. In July and August part 

of the plants were clipped a second and a third time to simulate continuous herbivory. In all 

cases the removed biomass was oven dried at 80 °C and weighted to obtain its dry weight. In 

July and August a complete set of plants (8 plants for each treatment) was also harvested from 

the previous treatment (timestep 1 and timestep 2). The remaining plants including the August 

treatment were harvested in September timestep 3 (Fig. 54).

Figure 54: Sandpit harvest plan for the three different timesteps in four chambers of the sandpit (see also Fig. 
52).  From left  to right  four different  chambers are illustrated.  From top, bottom to the middle the three 
different timesteps are illustrated.
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4.2.2 The Harvest

At harvest time, the complete aboveground biomass of all selected plants was removed, oven 

dried at 80 °C and weighted. The harvest of the belowground plant parts was done fractionally 

according  to  Bartelheimer  (2005)  who  used  a  modified  monolith  method  (BÖHM 1979, 

CALDWELL & RICHARDS 1986, KÜCKE et al. 1995) in order to obtain informations about 

the spatial distribution of the root biomass. 

As an improvement compared to BARTELHEIMER (2005) a metal box was created which 

could be opened at one side and could easily be pushed into the rhizosphere of the plot due to 

its sharpened edges (Figs. 55, 56). To avoid edge effects the box itself was fitted in a gauge to 

hold an accepted distance to the neighboring plots. The box covered exactly one third of the 

whole  plot  down to  a  depth  of  15  cm resulting  in  a  volume  10.125  dm³.  According  to 

Bartelheimer a soil layer of this depth contains almost the entire (>80%) root biomass of the 

plants. Within the opened box it was then possible to divide the contained sand into different 

layers and volumes from which the contained root biomass was washed out separately (Fig. 

56).  The  washed  roots  from each  subsection  were  stored  in  tubes  filled  with  water  and 

transported to the laboratory for later analysis. In the laboratory the root samples were cleaned 

more  carefully  and  remaining  sand particles  were  removed.  Subsequently  the  roots  were 

placed in  transparent  glass pan and scanned at  300 dpi  with a  flatbed scanner  with back 

lighting  (AGFA Snap  Scan  1236).  The  resulting  scans  were  analysed  with  the  software 

WhinRhizo (Version 2002c) whereas the root area was measured. The analysis of the scanned 

Figure 55: Excavation Box for the fractional harvest of the roots.
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images  was  done  as  a  greyscale  image  at  a  threshold  value  of  235  (greyscale  value). 

Additionally the program was calibrated to ignore objects smaller then 0.01 cm² according to 

Barthelheimer (2005).

Figure 56: Left: Opened metal box containing one third of the spoil of a plot divided into various depth 
layers and subsections according to the template shown on the right.
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Table 7: Overview of treatments with herbivory and competition of C. canescens and H. pilosella

Treatment Clipping Setup Repetitions 

(n)

Time steps Individuals

Herbivory 

Monoculture

25.00% Cc 8 3 24

Herbivory 

Monoculture

75.00% Cc 8 3 24

Control Cc 8 3 24
Control Hp 8 3 24

Herbivory 

Competition

25.00% Hp/Cc 8 3 24*2

Herbivory 

Competition

75.00% Hp/Cc 8 3 24*2

Herbivory 

Competition

25.00% Cc/Cc 8 3 24*2

Herbivory 

Competition

75.00% Cc/Cc 8 3 24*2

Competition Hp/Cc 8 3 24*2
Competition Cc/Cc 8 3 24*2
Competition Hp/Hp 8 3 24*2

Sum 432  (in  264 

plots)
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4.2.3 Statistical Analysis

In order to detect significant herbivory and competition effects the measured data from the 

different treatments were analyzed with an Analysis of Variance (ANOVA) and, if significant 

values were found, with a Tukey-HSD posthoc test using the statistical Software package "R" 

vs.  2.8.0.  If  the  assumption  of  normal  distribution  and  homogeneity  of  variances  were 

violated for this test, the data were log or square-root transformed. For the detection of root 

aggregation or segregation patterns  a paired t-test  was  carried out  to compare lateral  and 

central fractions in two layers of the root system with their counterparts at the opposite side of 

the plant.  In order  to evaluate  the effects  of competition and clipping on the competitive 

ability  of  C.  canescens a  relative  indicator  was  calculated.  Because  the  frequently  used 

Relative Competitive Intensity index (RCI) is not symmetrical around zero a modification of 

RCI, the so called "Relative Neighbor Effect" (RNE) was used (MARKHAM & CHANWAY 

1996, WEIGELT & JOLLIFE 2003). 

Table 8: Difference between RCI and RNE calculation.

RCI = (Xcontrol - Xmix)/Xcontrol. Relative competitive intensity

X is an estimation of plant performance in the 

presence (mix) or in the absence (control) of 

neighbours
 RNE = (Xcontrol- Xmix)/x Relative neighbor effect

where x = Xcontrol if Xcontrol > Xmix and 

x = Xmix if Xmix > Xcontrol 

RNE ranges  from -  1  to  + 1 with negative 

values  indicating  facilitation  and  positive 

values indicating competition

For this calculation only the shoot biomass was used because of the not available individual 

root  biomass  (The  individual  root  biomass  was  not  available  because  the  roots  of  two 

interwoven competing plants couldn't be separated).
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4.3 Results

4.3.1 Aboveground Effects 

For  a  comparison  the  different  p-values  (to  accept  or  reject  the  null  hypothesis)  for  all 

timesteps (p1-p3) relative to the controls are shown. P-values above 0.05 were regarded as not 

significant. Fig. 57 shows the pure clipping effect on C. canescens. Only at the first timestep 

in July there was a significant reduction of biomass relative to the unclipped controls at the 

75% clipping level (p1=0.0012). In August and September the plants had compensated the 

foliage  loss  from the  previous  clipping  treatments  and  showed  no  significant  differences 

relative to the controls. 

Figure 57: The effect of the two clipping treatments on the shoot biomass of isolated C. canescens plants at the 
three harvest timesteps (July, August and September). 
All plants of timestep 1 were clipped in June and harvested in July (clipped one time).
The plants of timestep 2 were clipped in June and July (clipped two times) and harvested in August. Finally all 
plants of timestep 3 were clipped in June, July and August and harvested in September (clipped three times).
The y-axis shows the harvested shoot biomass. A box indicates the lower quartile (bottom), median (bold line) 
and upper quartile (top). Whiskers of a box indicate the sample minimum (below) and sample maximum (above). 
Points indicate outliers.
From left to right in each timestep:
Biomass of C. canescens 25% clipped
Biomass of C. canescens 75% clipped
Biomass of C. canescens unclipped
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Intraspecific competition (Fig. 58) reduced the aboveground biomass of the unclipped target 

plants by approx. 32 % compared to the values shown for the control plants in Fig. 57. 25% 

clipping  produced  no  significant  effects  neither  in  the  clipped/clipped  nor  in  the 

clipped/unclipped treatment at all three timesteps (p1=0.087, p2=0.727, p3=0.143). However, 

the  75%  clipped  plants,  competing  with  unclipped  neighbours  were  not  able  to  fully 

compensate  the  strong  simulated  grazing  pressure  and  showed  a  significant  reduction  in 

biomass (p1=0.0117,  p2=0.0034, p3=0.0002). The unclipped C. canescens plants growing in 

competition  with  clipped  plants  did  not significantly  benefit  from  this  situation  at  both 

clipping levels and remained at the level of the control plants. Similar results were found for 

the plots with interspecific competition (Fig. 59). At the 25% clipping level C. canescens was 

able to fully compensate at all three timesteps (p1=0.077, p2=0.439, p3=0.89) while it showed 

Figure 58: The effects of the two clipping treatments on the shoot biomass of C. canescens individuals growing 
in the presence of an intraspecific competitor at the three harvest timesteps (July, August and September).
All plants of timestep 1 were clipped in June and harvested in July (clipped one time).
The plants of timestep 2 were clipped in June and July (clipped two times) and harvested in August. Finally all 
plants of timestep 3 were clipped in June, July and August and harvested in September (clipped three times).
The y-axis shows the harvested shoot biomass. A box indicates the lower quartile (bottom), median (bold line) 
and  upper  quartile(top).  Whiskers  of  a  box  indicate  the  sample  minimum (below)  and  sample  maximum 
(above). Points indicate outliers.
From left to right in each timestep:
Biomass of C. canescens 25% clipped (in competition with unclipped C. canescens).
Biomass of unclipped C. canescens (in competition with 25% clipped C. canescens).
Biomass of C. canescens 75% clipped (in competition with unclipped C. canescens).
Biomass of unclipped C. canescens (in competition with 75% clipped C. canescens).
Biomass of unclipped C. canescens (in competition with unclipped C. canescens).
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significantly lower biomass values relative to the unclipped controls  for the 75% clipping 

treatments at the last two timesteps (p1=0.152, p2=0.01, p3=0.0159).

 

Figure 59: The effects of the two clipping treatments on the aboveground biomass of C. canescens individuals 
growing in the presence of an interspecific competitor (H. pilosella) at the three harvest timesteps (July, August 
and September). All plants of timestep 1 were clipped in June and harvested in July (clipped one time).
The plants of timestep 2 were clipped in June and July (clipped two times) and harvested in August. Finally all 
plants of timestep 3 were clipped in June, July and August and harvested in September (clipped three times).
The y-axis shows the harvested Shoot biomass. A box indicates the lower quartile (bottom), median (bold line) 
and upper quartile (top). Whiskers of a box indicate the sample minimum (below) and sample maximum (above). 
Points indicate outliers.
From left to right in each timestep:
Biomass of C. canescens 25% clipped (in competition with H. pilosella).
Biomass of C. canescens 75% clipped (in competition with H. pilosella).
Biomass of unclipped C. canescens (in competition with H. pilosella).
Biomass of H. pilosella (in competition with H. pilosella).
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4.3.2 Belowground Effects

Figs.  60-62 show the effect of the different clipping treatments on the root area. Since the 

roots of the competitors could not be separated in the competition treatments the values in 

Fig. 61 show the total root area of two C. canescens plants and in Fig. 62 of one C. canescens 

and one H. pilosella individual. 

Fig. 60 shows the differences between isolated clipped and unclipped C. canescens plants. At 

the first two timesteps no significant differences could be detected between the two treatments 

and the controls. At timestep 3 there were no differences at the 25% clipping level (p1=0.534, 

p2=0.51, p3=0.996) but a significant decrease at the 75% clipping treatment.(p1=0.424, p2= 

0.78, p3=0.005). 

Figure  60:  The effects of  clipping on the root  area of  isolated  C. canescens individuals  at  the three harvest 
timesteps (July,  August and September).  All  plants of timestep 1 were clipped in June and harvested in July 
(clipped one time). The plants of timestep 2 were clipped in June and July (clipped two times) and harvested in 
August. Finally all plants of timestep 3 were clipped in June, July and August and harvested in September (clipped 
three times). The y-axis shows the harvested root area (cm²). A box indicates the lower quartile (bottom), median 
(bold  line)  and  upper  quartile  (top).  Whiskers  of  a  box  indicate  the  sample  minimum (below)  and  sample 
maximum (above). Points indicate outliers.
From left to right in each timestep:
Biomass of C. canescens 25% clipped
Biomass of C. canescens 75% clipped
Biomass of C. canescens unclipped
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Figure  61: The  effects  of  clipping  on  the  root  area  of  C.  canescens plants  growing  in  the  presence  of  a 
intraspecific competitor at the three harvest timesteps (July, August and September). All plants of timestep 1 
were clipped in June and harvested in July (clipped one time). The plants of timestep 2 were clipped in June and 
July (clipped two times) and harvested in August. Finally all plants of timestep 3 were clipped in June, July and 
August and harvested in September (clipped three times). The y-axis shows the harvested root area (cm²). A box 
indicates the lower quartile (bottom), median (bold line) and upper quartile(top). Whiskers of a box indicate the 
sample minimum (below) and sample maximum (above). Points indicate outliers. 
From left to right in each timestep:
Biomass of C. canescens 25% clipped (in competition with unclipped C. canescens)
Biomass of C. canescens 75% clipped (in competition with unclipped C. canescens)
Biomass of unclipped C. canescens (in competition with unclipped C. canescens)

Figure  62: The effects  of  clipping on the  root  area  of  C. canescens plants  growing in  the  presence  of  an 
interspecific competitor (H. pilosella) at the three harvest timesteps (July, August and September).
All plants of timestep 1 were clipped in June and harvested in July (clipped one time). The plants of timestep 2 
were clipped in June and July (clipped two times) and harvested in August. Finally all plants of timestep 3 were 
clipped  in  June,  July and  August  and  harvested  in  September  (clipped  three  times).  The  y-axis  shows the 
harvested  root  area  (cm²).  A  box  indicates  the  lower  quartile  (bottom),  median  (bold  line)  and  upper 
quartile(top). Whiskers of a box indicate the sample minimum (below) and sample maximum (above). Points 
indicate outliers.
From left to right in each timestep:
Biomass of C. canescens 25% clipped (in competition with H. pilosella)
Biomass of C. canescens 75% clipped (in competition with H. pilosella)
Biomass of unclipped C. canescens (in competition with H. pilosella)
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Fig. 61 shows the combined effect of intraspecific competition and clipping on the total root 

area of the two competitors. No significant differences between treatments and controls could 

be  found  at  all  three  timesteps  (25%:  p1=0.802,  p2=0.65,  p3=0.954;  75%:  p1=0.298, 

p2=0.496, p3~0.672). At the third timestep some control plants died. So a statistic evaluation 

was not possible in this case. 

Similar  results  were  obtained  for  the  combination  of  interspecific  competition  with  H. 

pilosella  and  clipping  (Fig.  62).  There  were  no  significant  differences  for  both  clipping 

treatments timesteps (25% clipping: p1=0.058, p2=0.712, p3=0.832; 75% clipping: p1=0.164, 

p2=0.439, p3=0.992).

Table 9 summarizes the comparisons between treatments and controls from the experiments 

shown in Figs. 57-62. It contains the respective p-values of the significance tests and indicates 

the observed trends. An up-arrow marks overcompensation, a zero indicates full compensation 

and a down-arrow shows undercompensation. p-values which indicate a significant difference 

(p  <  0.05)  are  marked  in  red.  The  *  denotes  the  missing  samples  for  the  control  of 

intraspecific competition at timestep 3 of Fig 61.
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Table 9: Summary of the comparisons between treatments and controls from the experiments shown in Figs. 57-

62.  Shown are the p-values  (p1-p3) of  the respective post-hoc tests  at  the three different  timesteps.  Values 

indicating significant differences (p < 0.05) are marked in red .

Shoot Root Treatment
Cc (control unclipped) Cc (control unclipped)

0
p1=0.089, p2=0.289, p3=0.788

0
p1=0.534, p2=0.51, p3=0.996

Cc 25% clipped

0
p1=0.0012, p2=0.422, p3=0.303

↓
p1=0.424, p2=0.78, p3=0.005

Cc 75% clipped

Cc/Cc (control unclipped) Cc/Cc (*control unclipped)
0

p1=0.087, p2=0.727, p3=0.143

0
p1=0.802, p2=0.65, p3=0.954

Cc 25% clipped/Cc

↓
p1=0.0117, p2=0.0034, p3=0.0002

0
p1=0.298, p2=0.496, p3=0.672

Cc 75% clipped/Cc

Cc /Hp (control unclipped) Cc /Hp (control unclipped)
0

p1=0.077, p2=0.439, p3=0.89

0
p1=0.058, p2=0.712, p3=0.832

Cc 25% clipped/Hp

↓
p1=0.152, p2=0.015, p3=0.0159

0
p1=0.164, p2=0.439, p3=0.992

Cc 75% clipped/Hp

4.3.3 The Effect of Clipping on the Competitive Ability of C. canescens

Table 10 and Fig. 63 show the calculated RNE values (based on aboveground biomass) as a 

relative measure for the influence of clipping on the competitive strength of C. canescens.

For the treatments without competition (Tab. 10, Nr. 1-2) a pseudo RNE value was calculated 

with the RNE formula against the C. canescens control as a relative measurement to estimate 

the effect of clipping.
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Table 10: Values from the three time steps of the competition experiments shown in Figs. 57-59. The first two 

Treatments (1-2) were calculated with the RNE formula (Pseudo-RNE = PRNE) against the C. canescens control 

without competition as a relative measurement to estimate the effect of clipping. The following treatments (3-8) 

showing the results from the RNE calculations in a competition design.

Nr. Treatments PRNE t1 PRNE t2 PRNE t3
1 C. canescens 25% clipped 0.391 0.28 0.223
2 C. canescens 75% clipped 0.71 0.26 0.53

Nr. Treatments RNE t1 RNE t2 RNE t3
3 C. canescens/C. canescens 0.384 0.294 0.307
4 C. canescens/C. canescens

 25% clipped

0.633 0.416 0.499

5 C. canescens/C. canescens

 75% clipped

0.718 0.794 0.764

6 C. canescens/H. pilosella 0.259 -0.08 0.07
7 C. canescens/H. pilosella

25% clipped

0.805 0.178 0.175

8 C. canescens/H. pilosella

75% clipped

0.642 0.604 0.668

Figure  63: PRNE and  RNE values from the three time steps of the competition experiments 
shown in Figs. 57-59
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The RNE values of Table 10 and the plotted RNE values (Fig. 63) show a clear effect for the 

75% clipped species indicating once more that the individuals were not able to compensate 

competition with species of the same kind and strong clipping (Table 10 Nr. 5 -> RNE t3 = 

0.764).  Comparing  this  result  with  the  trend  of  the  pure  clipping  effect  (Table  10 Nr.  2 

->PRNE t3 = 0.53) it  seems that  competition causes an additional  negative effect  on the 

treated C. canescens target. 

There  seems to  be no effect  for  the  interspecific  competition  treatment  with  H. pilosella 

(Table 10 Nr. 6-> RNE t3 = 0.07) indicating no effect on the target. The clipped targets in this 

setup show higher RNE values (Table 10 Nr. 7, 8 -> RNE t3 = 0.175, RNE t3 = 0.668) caused 

by the clipping effect. The effect of competition (Table 10 Nr. 3 -> RNE t3=0.307) seems to 

have the same effect on the shoot biomass as the at least 25% clipped treatments without 

competition (Table 10 Nr. 1 -> PRNE 3=0.223) .

Generally the results from the RNE values suggest that the effect of intraspecific competition 

on the target plant equals the effect of soft or medium clipping. The combined effects are 

strongest with intraspecific competition and 75% clipping.

4.3.4 Results from the Spatial Analysis of Root Distribution

In this section the results from the spatial root analysis are presented. For all timesteps the 

spatial root allocation was plotted and analyzed (Figs. 64-72).

All figures are separated into two layers. The first layer shows the measured root distribution 

from 0 cm-7.5 cm depth. The second layer shows the root distribution from 7.5 cm-15 cm. 

Additionally all  layers  are  separated into four  units  to  enable  the comparison of the left-

outside of the plots (left-lateral) with the right-outside (right-lateral) and the left-middle (left-

central)  of  the  plots  with  the  right-middle  (right-central).  The  smaller  harvested  central 

samples (4 sections) were summarized into one section (left-central and right-central) for a 

sufficient analysis of the data. On the x-axis the different treatments are plotted together with 

their measured area (cm²) on the y-axis. For an improved visual comparison all treatments are 

plotted symmetrically around the y-axis for a comparison from the central sections to the 

lateral sections in both layers (right to left and left to right). 

The first  three plots show the spatial root distribution under the treatment of intraspecific 

competition of C. canescens and the two clipping factors (25% clipped, 75% clipped) at three 
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different timesteps. In the first three plots the scissor in the legend on top of the plots displays 

the location of the clipped  C. canescens plants spatially arranged for the investigation. For 

this analysis the results from the third timestep represents the most important data with the 

longest growing period and a continuous clipping pressure. 

Generally for the first three plots (C. canescens/C. canescens) an increase of the biomass to 

the  left  side  would  indicate  a  root  aggregation  in  the  direction  of  the  weakened  clipped 

concurrent whereas a root aggregation to the right side would indicate an overcompensation 

of  the  clipped plants  towards  the  concurrent.  A symmetric  distribution  around the  y-axis 

would indicate no effect of clipping for the spatial distribution of the roots. 

For the then following three plots (C. canescens/H. pilosella) an increase of the biomass to 

the left side would indicate a root aggregation in the direction of the clipped  C. canescens 

whereas an increase of the biomass to the right side would indicate that  C. canescens is a 

strong  competitor  despite  of  clipping  and  is  overcompensating.  A symmetric  distribution 

around the y-axis would indicate no effect of clipping for the spatial distribution of the roots 

and no interspecific competition effect.
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In the first timestep (Fig. 64) of the C. canescens/C. canescens treatments erroneous data was 

collected and invalid for a further analysis. Generally this plot shows a symmetric distribution 

(p>0.1) with some significant values to one side in the top-center (p>0.01) and bottom center 

(p=0.001) but general useless for an interpretation in this early stage. 

Figure  64: Root area results of two harvested layers after timestep 1. Clipped plant 
position on the left side. The plants of timestep 1 were clipped in June (clipped one 
time) and their roots were harvested in July.
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Also in the second timestep (Fig. 65) the statistical analysis revealed no asymmetry between 

the  left  and  the  right  side  (p>0.1)  indicating  an  aggregation-segregation  of  roots  due  to 

competition  and  clipping.  Once  more  in  the  third  timestep  (Fig.  66)  no  significant 

aggregation-segregation (p>0.1; exception is Cc/Hp bottom-lateral with p>0.02) to one side 

could  be  found  in  the  analysis  despite  of  the  fact  that  one  C.  canescens individual  was 

continuously clipped and damaged. In this timestep the C. canescens control couldn't be used 

for analysis because of the invalid amount of samples leading to a visual aggregation in this 

plot.

Figure  65:  Root  area  results  of  two  harvested  layers  after  timestep  2.  Clipped  plant 
position on the left side. The plants of timestep 2 were clipped in June and July (clipped 
two times) and harvested in August.
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Figure 66: Root area results of two harvested layers after timestep 3. Clipped plant position on the left side.
The plants of timestep 3 were clipped in June, July and August (clipped three times) and their roots were 
harvested in September.
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In the next three plots (Fig.  67-69) the results of interspecific competition with  H. pilosella 

and the two clipping factors are shown at three different timesteps. The legend on top of the 

plots displays the location of the species for the analysis. Again the analysis from the early 

harvested roots in Figure 67 revealed no significant root aggregation or segregation in the first 

layer as well as in the second layer (p>0.1; 1*0.091). 

Figure  67:  Root  area  results  of  two  harvested  layers  after  timestep  1.  H.  pilosella 
position on the right side. The plants of timestep 1 were clipped in June (clipped one 
time) and their roots were harvested in July.
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In both layers no statistical relevant differences could be found comparing the lateral sections 

and the central sections. These results were also found for the second timestep in Figure 68 

with a longer period of growth. Also this results suggest a strong symmetric distribution from 

the central sections to the lateral sections in both layers. Finally in the third timestep (Fig. 69) 

of the interspecific competition treatment between  Corynephorus canescens and  Hieracium 

pilosella  with  the  longest  period  of  growth  once  more  no  significant  aggregation  or 

segregation occurred.

Figure 68: Root area results of two harvested layers after timestep 2. H. pilosella position 
on the right side.  The plants of timestep 2 were clipped in June and July (clipped two 
times) and harvested in August.
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Figure 69: Root area results of two harvested layers after timestep 3. H. pilosella position on the right side.
The plants of timestep 3 were clipped in  June,  July and August  (clipped three times)  and their  roots  were 
harvested in September.
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The  last  three  plots  (Fig  70-72)  show  the  results  of  C.  canescens growing  without  any 

competition and with two clipping treatments in three different timesteps. Generally the root 

area decreases under heavier clipping. The root area on the left empty side is generally lower 

because of the missing neighbor. 

Figure 70: Root area results of two harvested layers after timestep 1. C. canescens position on 
the right  side growing without  competition.  The plants of  timestep 1 were clipped in  June 
(clipped one time) and their roots were harvested in July.
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Figure 71: Root area results of two harvested layers after timestep 2. C. canescens position on 
the right side growing without competition. The plants of timestep 2 were clipped in June and 
July (clipped two times) and their roots were harvested in August.
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Figure  72: Root area results of two harvested layers after timestep 3.  C. canescens position on the right side 
growing without competition. The plants of timestep 3 were clipped in June, July and August (clipped three 
times) and their roots were harvested in September.
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4.4 Discussion

Herbivory reduces living plant material and can be rather disadvantageous for the respective 

plant  individuals  (MITCHLEY  &  WILLEMS  1995,  HODGSON  &  ILLIUS  1998, 

VALLENTINE  2001).  Timing  (e.g.  before  or  after  reproduction),  the  amount  of  foliage 

removed, the kind of the resulting damage, environmental conditions and also species specific 

(i.e. genetic) factors are often important determinants for the plants potential to restore itself 

(MASCHINSKI & WHITHAM 1989, SIMONS & JOHNSTON 1999). Controversial results 

have been described for the role of simultaneous competitive pressure, which has been found 

to either amplify the herbivory effects or to have no effect at all. (READER 1992, MCEVOY 

et al. 1993, WARDLE & BARKER 1997).

4.4.1 Is C. canescens able to Compensate or even Overcompensate Foliage Removal?

The above- and belowground data of the present experiment lead to the conclusion that  C. 

canescens is obviously able to completely compensate low to medium scale foliage losses. No 

significant differences were found between the controls and the 25% clipped plants. Further, 

no significant influence of simultaneous competitive pressure was detectable. These results 

are in accordance to other grassland studies showing that slight or moderate grazing had no 

negative  effect  and  could  even  increase  the  aboveground  biomass  and  the  biodiversity 

compared to ungrazed areas (MCNAUGHTON 1979, HIK & JEFFERIES 1990, COLLINS et 

al. 1998, FRANK et al. 2003). It is well known, that compensation of herbivory in grasses 

works best if  the herbivory event (as in the present study) occurs before the reproductive 

phase (MASCHINSKI & WHITHAM 1989, LEHTILA & SYRJANEN 1995, ESCARRE et 

al.  1996, LENNARTSSON et al.  1998).  C. canescens  reproduces solely by seeds and the 

persistence of  the species  is  therefore highly dependent  on its  flowers.  Living as  pioneer 

species  in  an  environment  with  a  high  disturbance  frequency (FRIEDRICH et  al.  2006) 

including oversanding (LUX 1964) and herbivory, an effective regrowth strategy seems to be 

a key adaptation in this connection. Overcompensation, a frequently observed phenomenon 

after herbivory in grasslands (ALWARD & JOERN 1993, LENNARTSON et al. 1998) did not 

occur which is probably due to the limiting water and nutrient conditions on sand. Heavy 

grazing typically reduces the biomass production of grasslands (WANG & RIPLEY 1997, 
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SHANG et al. 2003). Accordingly the results of the 75% clipping treatment at timestep 3 (i.e. 

after  repeated  heavy  foliage  loss)  show  significant  negative  effects  on  the  aboveground 

biomass (Fig. 60). 

4.4.2 How does the Presence of a Competitor Affect Compensatory Growth?

Looking  at  the  aboveground  biomass  data  and  the  resulting  RNE-values,  intraspecific 

competition had no effect on the regrowth of clipped C. canescens plants at the 25% clipping 

level (Figs. 58, 63). This was different for the 75% clipping treatment which revealed a strong 

negative  effect  of  at  all  three  timesteps  (Figs.  58,  63).  Interspecific  competition  with  H. 

pilosella revealed no competitive effect of this species up to a clipping level of 25% (Figs. 59, 

63) generally identifying H. pilosella as a rather weak competitor. 

This finding is in accordance to the results of Weigelt (2001) and Barthelheimer (2005) which 

came to the same conclusion that H. pilosella is a weak competitior on the early stages of dry 

acidic grasslands. One reason for this result is certainly the low availability of nutrients on the 

sand whereas C. canescens is a strong competitor and grows vigorously under this conditions 

with  an  advantage  towards  H.  pilosella  (WEIGELT  et  al.  2005).  Furthermore  the  root 

architecture  of  both  plants  differs  in  morphology.  The  root  morphology of  C.  canescens 

indicates a high adaption on sand to explore resources from deep soil layers with its extensive 

root architecture (ELLENBERG 1996). 

Root  systems  of  bigger  competitors,  especially  the  grasses,  grow well  into  the  space  of 

competing smaller plants and use the resources. These bigger neighbor root systems are more 

likely to co-occupy a plant’s rooting volume and will reduce the nitrate concentration within 

(TILMAN & WEDIN 1991, BARTHELHEIMER et al. 2006). It's likely that C. canescens can 

use the resources on the H. pilosella side to compensate foliage losses. Barthelheimer (2005) 

found a direct relation between the size of the root system and the ability to affect the nitrate 

uptake of the neighbouring plant.

In contrast H. pilosella with smaller roots shows enhanced clonal growth under these resource 

poor conditions and seems to invest more biomass towards the exploration of new resources 

which in consequence again additionally benefits C. canescens.
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4.4.3 Is there a Measurable Effect of Aggregation or Segregation of the Roots under 

Herbivory and/or Competition?

The ability of a plant to uptake water and nutrients is bound to a general root plasticity which 

increases  the  potential  resource  availability (BRADSHAW 1965,  GRIME 1986,  SULTAN 

1987, SCHREINER 1993). After Grime (1986) high morphological plasticity is part of the 

foraging mechanisms which project new leaves and roots into the resource-rich zones of the 

constantly  changing  environmental  mosaic  created  by  the  activity  of  competing  plants. 

According to several authors competing root systems frequently avoid each other by foraging 

solely  in  resource-rich  soil  areas  (HUTCHINGS  &  DE  KROON  1994,  KRANNITZ  & 

CALDWELL 1995).  Defoliation  of  plants  can  change  root  topology  and  root  branching 

(ARREDONDO & JOHNSON 1998,  1999)  and grazing  tolerant  plants  often  temporarily 

reduce root growth after being grazed (DAVIDSON & MILTTHORPE 1966, RICHARDS & 

CALDWELL 1985). After Schenk et al. (1999) similar root morphology of two competitors 

typically suggests an avoiding growth strategy. Weigelt (2001) and Weigelt et al. (2005) found 

for  C.  canescens no changes  in  root  allocation  patterns  in  response to  the  presence  of  a 

competitor. This contradicts the results of Bartelheimer et al. (2006) who found for the same 

species and under comparable conditions significant aggregation effects towards a competing 

root system. The results of the present work, however, support the findings of Weigelt et al. 

(2005)  because  there  were  no  significant  effects  of  clipping  intensity  and/or  intra-  or 

interspecific competition on root allocation of C. canescens at all timesteps (Figs. 64-69).

Two popular hypotheses have been formulated to explain competition in plant communities 

along productivity gradients. After Grime (1979) and Huston (1979) competition is stronger 

in highly productive environments and is lower in less productive sites. For Newman (1973) 

and Tilman (1982, 1987) the amount of competition interaction is independent of availability 

of  growth resources  but  the mechanism of competition can differ.  In  productive systems, 

plants compete for light or space while in unproductive systems plants compete for water and 

soil nutrients. The early successional stages of dry acidic grasslands are nutrient and water 

limited and typically exhibit low plant productivity. The present results couldn't be explained 

by the theory of Grime (1979) because the results show a clear competition effect at least in 

the intraspecific competition design (see Tab. 10 and Fig. 63) whereas both species are highly 
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adapted to the nutrient poor conditions. These results are in accordance with the findings of 

Weigelt et al. (2005) and Barthelheimer (2005) where competition plays an important role in 

the early stages of dry acidic grasslands and C. canescens is a strong competitor under this 

nutrient poor conditions also for itself.

However the results suggest that moderate foliage loss did not majorly affect the belowground 

competitive interactions on the early stages of dry acidic grasslands. 

The  question  arises  if  foliage  removal  has  a  stronger  effect  on  the  overall  fitness  than 

competition. But studies about a comparison between the effect of competition and the effect 

of herbivory are rare. Results of different works e.g. on temperate salt marshes (DORMANN 

et al. 2000) suggest a stronger effect of species competition whereas some authors found this 

effect primarily on sites with relatively low biomass (BONSER & READER 1995). 

From the aboveground biomass data in Figs. 57-59 and the RNE values in Fig.  63 it can be 

concluded  that  the  effect  of  intraspecific  competition  approximately  balances  the 

compensatory growth at least at moderate (25%) clipping rates. At higher damage rates (75%) 

it seems that the effect of clipping is stronger.

In conclusion the results of the present experiments reject the introductory hypothesis, that 

foliage removal would have a dramatic negative effect on plant fitness and that this effect 

would be enhanced by the presence of a competitor, due to the limited nutrient supply in this 

sandy environment. Since the effects of foliage removal with or without competition seem to 

be more or less negligible (but see 4.5) they will not be integrated in the above described 

simulation model for the time being.

4.5 Outlook

Clipping is not necessarily equal to herbivory. Additional to the loss of foliage real herbivores 

frequently  induce  an  induction  of  chemical  defenses  (BALDWIN  &  SCHULTZ  1983, 

KARBAN & BALDWIN 1997, THALER 1999, HEIL et al. 2001, FARMER 2001, HARUTA 

et al. 2001, ENGELBERTH 2004, HEIL 2004, VAN DAM et al. 2004, KOST & HEIL 2006, 

MIRANDA et  al.  2007).  Furthermore,  numerous  reactions  of  the  plant’s  immune system 

induced  by  the  saliva  of  the  grazer  have  been  described  (DETLING  et  al.  1980, 
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MCNAUGHTON 1985, FELTON & EICHENSEER 1999, ROOKE 2003). 

Further  the  relationship  between  nutrient  supply  and  herbivory  has  been  investigated  by 

numerous authors revealing a heterogeneous scenario with either positive or negative effects 

on  plant  production  (JEFFERIES  1988,  RICKLEFS & MILLER 2000),  and  accelerating 

(MCNAUGHTON 1985, TILMAN 1982, 1988, DEANGELIS et al. 1989, RUESS et al. 1989, 

HOLLAND  &  DETLING  1990,  STERNER  1994)  or  slowing  down  nutrient  uptake 

(NAIMAN et al. 1986, TILMAN 1988, LEIBOLD 1989, BRYANT et al. 1991, PASTOR & 

NAIMAN 1992, WILSON & AGNEW 1992, WEDIN 1994). This relationship has also been 

shown to  affect  biodiversity  e.g.  by controlling  the  population  of  nitrogen  fixing  species 

(VITOUSEK & HOWARTH 1991, RITCHIE & TILMAN 1995). 

Because information on nutrients has non been collected during the present work we could 

not directly proof if the applied clipping of the plants changed the activity of nitrogen fixing 

species and the accompanying nutrient availability. Furthermore the effect of nutrient uptake, 

chemical responses and metabolistic reactions have not been assessed.  So the result that the 

effect of moderate foliage loss and/or competition seems to be negligible in  C. canescens 

needs to be verified under more realistic field conditions (e.g. by means of in situ herbivore 

exclusion  experiments)  and  in  laboratory  experiments  measuring  the  chemical  responses 

explicitly.
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6. Appendix

6.1 CD-ROM

A CD-ROM has been included in this thesis with the created Software Bio7 and the model about Dry 

Acidic Grasslands.
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