PART 2.
ON REDUCED K-THEORY FOR
CENTRAL SIMPLE ALGEBRAS

The incompatibility of life’s elements: Everest silences you. When
you come down, nothing seems worth saying, nothing at all. You find the
nothingness wrapping you up, like a sound. Non being. You can’t keep
it up, of course. The world rushes in soon enough. What shuts you up
is, I think, the sight you’ve had of perfection. Why speak if you can’t
manage perfect thoughts, perfect sentences. It feels like a betrayal
of what you’ve been through. But it fades, you accept that certian com-
promises, closures, are required if you’re to continue...

Section 1. WEDDERBURN’S FACTORIZATION THEOREM

We begin this part by providing a short and elementary proof of the key theorem
of reduced K-theory, namely Platonov’s Congruence theorem. Our proof is based
on Wedderburn’s factorization theorem. We then use this approach to give an
explicit formula for the reduced Whitehead group in certain cases. But then we
postpone this line of research until Section 3 which concentrates on computational
aspects of the group SK;(D). The results that we obtain in this section leads
us to study the descending central series of the multiplicative group of a division
ring which we explore in Section 2. We assume that the reader is familiar and
comfortable with the theory of central simple algebras. A very nice source for the
theory is the book of Draxl [2].

Let D be a division algebra with center F'. If a € D is algebraic over F' of degree
m, then by Wedderburn’s factorization theorem, one can find m conjugates of a
such that the sum and the product of them are in F'. This observation has been
used in many different circumstances to give a short proof of known theorems of
central simple algebras. (See [25 for a list of these theorems.) Here we will use this
fact to prove Platonov’s congruence theorem.

The non-triviality of the reduced Whitehead group SK;(D) was first shown by
V. P. Platonov who developed a so-called reduced K-theory to compute SK; (D) for
certain division algebras. The key step in his theory is the “congruence theorem”
which is used to connect SK;(D) where D is a residue division algebra of D to
SK;(D). This in effect enables one to compute the group SK;(D) for certain
division algebras. (See [18] and [21].)
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38 PART 2. REDUCED K-THEORY

Before we describe the congruence theorem, we employ Wedderburn’s factoriza-
tion theorem to obtain a result regarding normal subgroups of division algebras.

We fix some notation. Let D be a division algebra over its center F' with index
i(D) = n. Then Nrdp,p : D* — F* is the reduced norm function and SK; (D) =
DM /D’ is the reduced Whitehead group where D() is the kernel of Nrdp JF-
Put SH(D) for the cokernel of Nrdpp. we take p,(F') for the group of n — th
roots of unity in F, and Z(D') for the center of the group D’. Observe that
pn(F) = F* N DM and Z(D') = F*N D'. If G is a group, denote by G" the
subgroup of G generated by the n — th powers of elements of G. Let exp(G) stands
for the exponent of the group G. If H and K are subgroups of GG, denote by
[H, K] the subgroup of G generated by mixed-commutators [h,k] = hkh~1k™1,
where h € H and k € K. For convenience we denote [D*, D*] by D’. Denote by
det : GL,(D)/SL,(D) — D*/D' the Dieudonne determinant, where GL,, (D) is
the general linear group and SL, (D) is its commutator subgroup (See [2]).

We are now in a position to state our main lemma which is interesting in its own
right.

Lemma 1.1. Let D be a division algebra with center F, of index n. Let N be a
normal subgroup of D*. Then N™ C Nrdp,r(N)[D*, N].

Proof. Let a € N whose minimal polynomial f(z) € F[z] is of degree m. From the
theory of central simple algebras (cf. [23], §9), we have,

(1) f@)"™ =" —Trdpsr(a)z™ ' +--- + (=1)"Nrdpyr(a),

where Nrdp,p : D* — F™* is the reduced norm, T'rdp,F is the reduced trace and
the right hand side of the equality (1) is the reduced characteristic polynomial of a.
Using Wedderburn’s factorization theorem for the minimal polynomial f(z) of a,
one obtains f(z) = (z — dyad; ") -+ (z — dpad;;}) where d; € D. From the equality
(1), it follows now that

Nrdp/p(a) = (diadi ™" -+ dady, ~H)™™.
Since N is a normal subgroup of D*, it follows that Nrdp,r(a) € N. But
dyady ™t dpad, = [d1,alalds,ala-- - [dp,ala = a™d,

for some d, € [D*, N]. Therefore a" = Nrdp,r(a)d, where d;, € [D*, N]. Thus
N™ C Nrdp;p(N)[D*,N]. O

Note that Nrdp/r(N) € D* N N. Let N = D*. Then by above Lemma, for
any r € D*, 2" = Nrdp,r(v)d, where d, € D'. This shows that the group
G(D) = D*/F*D' is a torsion group of bounded exponent n. Some algebraic
properties of this group are studied in Section 3.
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In order to describe Platonov’s congruence theorem, we need to recall some
concepts from valued division algebras.

Let D be a finite dimensional division algebra with center a Henselian field F'.

Recall that a valuation v on a field F' is called Henselian if and only if v has a
unique extension to each field algebraic over F'. Therefore v has a unique extension
denoted also by v to D ([28]). Denote by Vp, Ve the valuation rings of v on D
and F respectively and let Mp, Mr denote their maximal ideals and D, F their
residue division algebra and residue field, respectively. We let I'p,'r denote the
value groups of v on D and F, respectively and Up,Ur the groups of units of
Vb, Vr respectively. Furthermore, we assume that D is a tame division algebra,
i.e., CharF does not divide i(D), the index of D. The quotient group I'p/TF is
called the relative value group of the valuation. In this setting it turns out that
D is defectless, namely we have [D : F|[Ip : Tr] = [D : F]. D is said to be
unramified over F if [['p : I'p] = 1. At the other extreme D is said to be totally
ramified if [D : F] = [[p : Tr]. D is called semiramified if D is a field and
[D: F]=[Tp:Tr]=i(D). Since the valuation is Henselian, Hensel’s lemma can
be used to obtain a relation between the reduced norm of D and that of its residue
algebra, i.e.

(1.%) Nrdp(a) = Nz(ﬁ)/FNrdﬁ(a)"/mm',

where a € Up and m = i(D) and m' = [Z(D) : F] (see [4]). For a recent account
of the theory of Henselian valued division algebras see [9].

Platonov’s congruence theorem asserts that if D is a tame division algebra over
a Henselian field F then (1 + Mp) N DX C D’. This is the crucial theorem of
reduced K-theory which is proved in [18] (Note that [18] provides a lengthy and
complicated proof for the special case of a complete discrete valuation of rank 1,
and [4] notes that the same proof works for general case of tame Henselian valued
division algebras). Here we give a short and elementary proof of this fact.

Theorem 1.2 (Congruence Theorem). Let D be a tame division algebra over a
Henselian field F = Z(D), of index n. Then (1+ Mp)N DM =[D*, 1+ Mp).

Proof. First we show that (1+Mz)ND® =1. Let 1+ f € 1+ Mp. If 14+ f € DO,
then (14 f)" = 1. But v((1+ f)™ — 1) = v(f). This shows that f = 0 and so our
claim. Now take N =1+ Mp. By Lemma 1,

(1+ Mp)" C ((1 + Mp) N F) [D*, (1+ MD)].

Since the valuation is tame and Henselian, Hensel’s lemma shows that (1+Mp)" =
1+ Mp. Therefore 1 + Mp = (1 + Mr) [D*, 1+ MD)]. Now using the fact that
(1+ Mp) N DW =1, the theorem follows. [
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Remark 1.3. There is an elegant proof of the congruence theorem by A. Suslin in
[26], in the case of a discrete valuation of rank 1. This proof uses substantial results
from valuation theory and the fact that the group SK; (D) is torsion of bounded
exponent n = i(D). Using results of Ershov in [4], Suslin’s proof can be written for
arbitrary tame Henselian division algebras.

Having the congruence theorem, it is easy to see, in the case of discrete valuation
of rank 1, that the sequence,

SKl(E) — SKl(D) — Ll/Lo-—l — 1,

is exact where L = Nrd(D), L = LN NZ_(IB)/F(I) and L,-; = the image of L
under the homomorphism a + a{ja~?!, where (o) = Gal(Z( D)/F). This leads to
computations of SK;(D) for certain division algebras. (See [18], [21] and [26].)

Another look at the proof of Theorem 2 shows that 1+ Mp C (1 + Mg)D’ and
therefore 1+ Mp C UpD'. Put G(D) = D" /F D'. In many applications, it is easy
to obtain information about the residue data of division algebras. The following
theorem gives an explicit formula for the group SK;(D) when the group G(D) is
trivial.

Theorem 1.4. Let D be a tame division algebra over a Henselian field F = Z(D),
of index n. If G(D) =1 then SK1(D) = pn(F)/Z(D").

Proof. The reduction map Up — D" induces an isomorphism D" —Up /1+Mp,
@* (14+ Mp)a. Since 1 + Mp C UpD’, it follows that

D' /F'D = Up/UrD'.

Now if G(D) = D*/F D’ = 1 then Up = UpD'. But DM C Up. This shows that
DWW =y, (F)D'. Using the fact that u, (F)ND’ = Z(D’), the theorem follows. [

Note that Hensel’s lemma implies that p,(F) ~ u,(F). In particular if D is
a totally ramified division algebra, i.e. D = F, then G(D) = 1. We close this
section with an example but will be back to this topic again in Section 3 where we
systematically study the SK;-like functor G(D). We will show that G(D) has the
most important functorial properties of the reduced Whitehead group SK;. The
structure of G(D) turns out to carry significant information about the arithmetic
of D. Along these lines, we employ G(D) to compute the group SK; (D).

Example 1.5. Let C be the field of complex numbers and r be a nonnegative
integer. Let Dy = C((z1)) and define o1 : D; — D; by the rule o1(z1) = —x;.
Now let D2 = Dl((]}z,O’l)) and set D3 = D2((.’E3)) Again define o3 : D3 — D3
by o3(xz3) = —z3. In general, if i is even, set D;11 = D;((z;4+1)) and if i is odd
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define o; : D; — D; by o4(z;) = —z; and D;31 = D;((zi41,0;)). By Hilbert’s

construction (see [3], §1 and §24), D = Dy, = C((z1, -+ ,Z2r, 01, ,02,-1)) IS &
division algebra with center F = C((z%,23,--- ,23,_;,23.)) and n = i(D) = 2.
Finally define v : D* — T'p = Z?" by the rule v(> ¢zl ---27) = (i1,--- ,iay)
where i1, - - - , 2, are the smallest powers of the x;’s in the lexicographic order. It can

be observed that v is a tame valuation and D = C and F = C. Therefore G(D) = 1.
Theorem 3 implies that SK;(D) = p,(F)/Z(D'). From the multiplication rule in

D, it follows that
D' C { +1 —I—chil :v’;,f}

Since Z(D') C pyn (F), it follows that Z(D') = {1, —1}. But p,(F) = pn(F) = Zar,
hence SK1(D) = Zgr-1.

In Section 3 as another application of Lemma 1.1, we obtain theorems of reduced
K-theory which previously required heavy machinery, as simple consequence of this
approach.
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Section 2. ON CENTRAL SERIES OF THE
MULTIPLICATIVE GROUP OF DIVISION RINGS

From Lemma 1.1 it follows a very curios result on the descending central series
of a division algebra (see Lemma 2.1 ) which motivates us to study this series. In
this Section we show that certain properties which a term in the descending central
series may have, can be lifted to the full multiplicative group and it determines
quotients of consecutive terms in the descending central series, in tame Henselian
unramified or totally ramified cases.

We follow the convention that if D is a division ring with center F' then D is
called a division algebra if [D : F is finite.

Let D be a division ring and D* the multiplicative group of D. Put G°(D) = D*
and for any natural number i, define G*(D) = [D*,Gi~1(D)], i.e. the subgroup
generated by the mix-commutators of D* and G*~1(D). The sequence

---CG*(D) C GY(D) C G°(D) = D*

is called the descending central series of D*. It is a classical result that if D is
noncommutative then the multiplicative group of D* is not nilpotent, that is, no
term in the above series is 1 [11, p.223].

In this note we study the subgroups G*(D) above. We shall show that several
properties they may have, can actually be lifted in a natural way to the group D*
and we shall compute the consecutive quotients G*(D)/G**1(D) where i > 1 in
several cases.

The results divide into two parts. The main result in subsection 1 is that if some
GY(D) is algebraic over the center F of D then the F-subalgebra of D generated
by G*(D) is all of D, in particular D is an algebraic division ring. This Theorem
is used to generalize results of Kaplansky and Jacobson which provide conditions
when a division ring is commutative. The work above shows that the subgroups
G*(D) are big in D*.

The results in subsection 2 determine the consecutive quotients G*(D)/G*+1(D)
for ¢ > 1 when D is a tame Henselian division algebra which is either totally
ramified or unramified. This extends previous work of U. Rehmann [22] and P.
Draxl [3, Vortrag 7] over local division algebras (also see C. Riehm [24].) where
it is shown that the descending central series of D* becomes stationary and the
quotients G*(D)/G*T1(D) are calculated.

1. DESCENDING CENTRAL SERIES IN DIVISION RINGS

Before stating our first Lemma, we fix some notation. If G is a group, denote
by G" the subgroup of G generated by all n — th powers of elements of G. As in
Section 1, if H and K are subgroups of G, denote by [H, K] the subgroup of G
generated by mix-commutators [k, k] = hkh~1k™!, where h € H and k € K. For
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convenience we sometimes denote [D*, D*] by D’. We say that a subset S of D
is algebraic over F' if each element of S is algebraic over F'. Also if S and T are
subsets of D, then S is said to be radical over T, if for any element z € S, there is
a natural number r such that z" € T

As we mentioned in the beginning of this section, the first result is the immediate
consequence of the Lemma 1.1. Remember that if N is a normal subgroup of a
division ring D of index n then N* C Nrdp,p(N)[D*, N].

Now let N = G*(D). Since for a € [D*,D*], Nrdp,r(a) = 1, the above lemma
shows that G*(D)" C G?(D). Letting in general N = G*(D) where i > 1, we
obtain by the same argument that G*(D)® C G**1(D). As a consequence, we get
the following corollary.

quollary 2.1. Let D be a division algebra of index n. For any i > 0, the quotient
GY(D)/G*tY(D) is a torsion abelian group of bounded exponent n.

The corollary says nothing about the quotient G°(D)/G'(D). But using a
theorem of Jacobson [11, p. 219], it is an easy exercise to see that the group
G°(D)/G*(D), namely K;(D) = D*/D’, is not a torsion group.

In the rest of this section we concentrate on the general case of a division ring.
The main result is to show that the algebraicity of a subgroup of D* which contains

a term of the descending central series of division ring, gives rise to the algebraicity
of D.

Lemma 2.2. Let D be a division ring with center F' and N be a subgroup of D*
which contains some G*(D). If a € D is algebraic over F, then a is radical over
F*N.

Proof. Clearly we can replace N by G*(D). The proof will be by induction on 1.
For ¢ = 0, there is nothing to prove. Suppose there is a nonnegative integer r such
that a” = fb for some f € F and b € G*~1(D). It suffices to show that there is a
nonnegative integer m such that b™ = ec for some e € F and ¢ € G*(D). Since a is
algebraic over F', so is b. From field theory, we have

(1) f@) =a™ = Trppyr®)a™ ' + -+ (=1)"Npp)r(b),

where f(z) is the minimal polynomial of b over F'. Now using Wedderburn’s fac-
torization theorem for f(z) as in the Lemma 1.1, it follows that

Nr@y/r(b) = [d1,b]b[d2,b]b- - - [dy,, b]b = b™dy

where dy € [D*,G""}(D)] = GY(D). Let e = Npp)r- Thus b™ = ec where
c= db_l. d

We are now in a position to show how the properties of a subgroup which appear
in the descending central series of D* can be lifted to D*. The following Theorem
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shows that the algebraicity of a division ring is inherited from the algebraicity of
any subgroup containing some G*(D). In contrast, note that a division ring can be
transcendental over its center and yet have maximal subfields which are algebraic
(Example 2.4).

Theorem 2.3. Let D be a division ring with center F' and N a subgroup of D*
containing some G*(D). If N is algebraic over F' then the F-subalgebra generated
by N is D. In particular D is an algebraic division ring.

Proof. Clearly we can replace N by G*(D). The conclusions of the theorem are
trivial if D = F. So we can assume D # F. Let A = F*G*(D). Since D* is not
a nilpotent group, G*(D) € F. So F C A. Suppose a € A and b is an algebraic
element of D*. Denote by @ and b the images of @ and b in the quotient group
D*/F*G**1(D). Since a € F*G*(D), a commutes with b. By Lemma 2.2, a and
b are torsion elements. Therefore ab is torsion. It follows that ab is algebraic over
F. Next consider the element a + b = a(1 + a~1b). Since a € F*G*(D) and b are
algebraic, 1+ a~'b is algebraic. It follows that a + b is algebraic. Consider the ring
(A) generated by elements of A. From the above it follows that (A) is algebraic
over F. Therefore (A) is a division ring. Obviously (A)* is a normal subgroup of
D* and so by Cartan-Brauer-Hua [11, p.222], (A) = D. Hence D is generated as a
F-subalgebra by the elements of G*(D) and D is algebraic over F. [

For the sake of completeness, we give an example showing that the algebraicity
of a maximal subfield of a division ring D, does not give rise to the algebraicity of
D. (Also see [5], p. 280.)

Example 2.4. Let L be a field which is algebraic over its prime subfield and o €
Aut(L) such that ord(c) = oo, e.g., take L = Z,, and o(z) = 2" or L = [J;2, F o
and o(z) = 2P  where p is a prime number and 7 is a natural number. Let K
denote the fixed field of 0. Now let D = L((X,0)) denote the formal twisted
Laurent series in the indeterminant X with twisting X! = o(/)X. By Hilbert
classical construction (cf. [2]), D is a division algebra with center Z(D) = K. We
show that L is a maximal subfield of D. Suppose L C M C D and M is a field.
Take A € M\L. Clearly A = >7° a;X" where r is an integer. Since M # L,
there is 0 # n € Z such that a, # 0. Now for all | € L, [\ = Al. Therefore
Y la; X' =3 a;0*(1)X". In particular, for all [ € L we have 0" (l) = [. This means
that o(o) is finite, which is a contradiction, and therefore L = M. Therefore L
is a maximal subfield of D which is algebraic over Z(D). But clearly D is not
algebraic. We remark that L and K ((X)) are two maximal subfields of D such that
L is algebraic over K whereas K((X)) is transcendental over K.

We are now ready to generalize some commutativity theorems for a division
ring. The following is a generalization of Kaplansky’s Theorem (See [11, p. 259]
and [14]).
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Corollary 2.5. Let D be a division ring with center F'. If a subgroup N containing
some G*(D) is radical over F then D is commutative.

Proof. Since N is radical over F', we conclude by Theorem 2.3 that D is algebraic
division ring. Thus by Lemma 2.2, D is radical over F*N. Since N is radical over
F, it follows that D is radical over F'. Now applying Kaplansky’s Theorem, the
proof is complete. [

Next we generalize the Noether-Jacobson Theorem asserting that any noncom-
mutative algebraic division ring D contains an element in D\ F' which is separable
over F. (See [11], p.257.)

Corollary 2.6. Let D be non-commutative qlgebmic division Ting with center F'.
Then for any subgroup N containing some G*(D) there ezxists an element of N\F
which is separable over F'.

Proof. Suppose this is not the case. Then all elements in N are purely inseparable
over F'. This means that N becomes radical over F'. Now apply Corollary 2.5 to
get a contradiction. [

The following can be viewed as a generalization of a Jacobson’s Theorem. (See
[11], p.219.)

Corollary 2.7. Let D be algebraic division ring with center F. If a subgroup N
containing some G*(D) is algebraic over a finite subfield of F', then D is commu-
tative.

Proof. Exercise. [

2. DESCENDING CENTRAL SERIES IN VALUED DIVISION ALGEBRAS

In this section we study the descending central series of a Henselian valued
division algebra. Theorem 2.9 determines completely this series in the tame totally
ramified case. At the other extreme, namely in the tame unramified case we show
that the quotient group G*(D)/G*t1(D) is stable under reduction, namely

G'(D) _ G'(D)
G+Y(D) Gi"'l(ﬁ).

Recall that a subgroup H of a group G is called G-perfect, if [G, H] = H. The
following Corollary is an immediate consequence of the Theorem 1.2.

Corollary 2.8. Let D be a tame, Henselian division algebra. Then [D*,1+ Mp]
is D*-perfect. In particular [D*,1+ Mp] C G*(D) for all i > 0.
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Theorem 2.9. Let D be a tame, totally ramified Henselian division algebra with
center F' and index n. Then

(i) GY(D)/G?*(D) = Ze, where e = exp(Tp/TF).

(ii) GY(D) = G**1(D) where i > 2.

Proof. Since D is totally ramified, D = F. Thus Up = Up(1 + Mp). Thus
[D*, D*] C Up(1 + Mp). Therefore G?(D) C [D*,1+ Mp]. From Corollary 2.8, it
follows G?(D) = [D*,1+ Mp] and G?(D) is D*-perfect. Thus G?(D) = G*(D) for
all 4 > 2. This proves (ii).
Now consider the reduction map Up — D". Restriction of this map to D’ gives
rise to an isomorphism
Dl
D'N(1+ Mp)

From the equality G*(D) = [D*,1+ Mp] above and THeorem 1.2, we get G*(D) =
D' N (1+ Mp). Thus D'/G?(D) ~ D’. On the other hand D’ ~ Z, where e =
exp(T'p/T'r). (See the proof of Theorem 3.1 in [27].) Therefore
!
o,
G*(D)

=D

and the proof is complete. [

The calculation of G1(D)/G?(D) in the above theorem was possible because we
were able to identify (1 + Mp) N D’ with [D*,1+ Mp], thanks to Theorem 1.2.

Theorem 2.10. Let D be a tame, unramified Henselian division algebra. Then
(i) [D*,1+ Mp| C Gi(D),ior any i > 1.
(ii) GY(D)/G**Y(D) ~ G*(D)/G**1(D), for any i > 1.

Proof. As in the proof of Theorem 2.9, the restriction of reduction map Up — D
to [D*, D*] gives rise to an isomorphism

G'(D)
[D*,1+ Mp]

Since D is unramified, D* = F*Up. Therefore for a,b € D*, the element ¢ =
aba~'b~! may be written in the form ¢ = afa~'8~! where o and 8 € Up. This
shows that [D*, D*] = [ﬁ*,ﬁ*]. By Corollary 2.5, [E*,E*] is not a torsion group.
Therefore G*(D)/[D*,1+ Mp] is not torsion. On the other hand by Corollary 2.1,
G'(D)/GY(D) is a torsion group and by Corollary 2.8, [D*,1+ Mp] C G*(D). This
shows that [D*,1+ Mp] C G*(D).

(ii) Since the valuation is unramified, it can be shown as above that, G¢(D) =
G*(D). As above the restriction of reduction map to the subgroup G*(D) give rises
to an isomorphism

=, [D*, D).

G(D) =~ i
D1+ Mp] — G'(D).



PART 2. REDUCED K-THEORY 47

Therefore _ o
G'(pb) _ G'(D)
Git+1(D) - GH'l(E)

and we are done. [
Dieudonne has shown that the projective special linear group

~ SL,(D)
PSLu(D) = ZosT. D))

is a simple group where n = 2 and D has more than 3 elements or n > 2 [2, §21]
and [10, p.191]. The following theorem shows that if a noncommutative division
algebra enjoys a tame and discrete valuation then

D/
Z (D)

PSLy(D) =

is not a simple group.

Theorem 2.11. Let D be a tame and discrete valued division algebra. Then
PSLyi(D) is not a simple group.

Proof. We consider two cases. Suppose D is commutative. It follows that D" C
1+ Mp. By induction one shows that if D) denotes the i — th derived subgroup
of D and i > 2, then D® C 1+ MDQ(PQ). Suppose D' = D". Obviously D’ = D)
forall 4 > 1. Thus D' C (N;2,1+ MDQ(Z%) = 1. Thus D is commutative, which is
a contradiction. Thus D" C D'. Thus UpD" /Ur <« UpD'/Upr. But PSLi(D) =
UpD'/Up. This shows that PSL;(D) is not a simple group.

We are left with the case when D is not commutative. In this case consider the
normal subgroup N = Z(D')(1+ Mp N D’) of D'. Tt is easy to show that N does
not coincide with D’. Suppose N = Z(D'). Since the valuation is tame, it follows
that (14+ Mp)N D' =1. Thus [D*,1+ Mp] =1. Thus 1+ Mp C F. That is, D is
commutative and therefore D is commutative, which is a contradiction. Therefore
PSLy(D) has a non-trivial normal subgroup and the proof is complete. O
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Section 3. SK;-LIKE FUNCTORS FOR DIVISION ALGEBRAS

Let D be a division algebra with center F'. The non-triviality of the impor-
tant group SK;(D) is shown by V. P. Platonov who developed a so-called Reduced
K-Theory to compute SK; (D) for certain division algebras. The group SK;(D)
enjoys some interesting properties which distinguish it from the K-Theory functor
K1(D). An interesting characteristic of the group SK;(D) is its behavior under
extension of the ground field. Namely for any field extension L/F one has a ho-
momorphism SK; (D) — SK;(D ®p L). On the other hand SK; enjoys a transfer
map, that is, if L/F is a finite extension, then there exist a norm homomorphism
SK1(D®p L) — SK;(D). Since SK;(M, (L)) = 1, one can then deduce that SK;
is a torsion abelian group of bounded exponent (D) and if the degree [L : F] is
relatively prime to index of D, then SK;(D) — SK;(D ®p L). Moreover the pri-
mary decomposition of a division algebra induces a corresponding decomposition
of SK;(D). Furthermore in the case of a valued division algebra SK; is stable,
namely SK;(D) = SK;(D), where D is unramified division algebra. (See [15] for
the complete list of the properties of SK; and [2] for the proofs).

In this section we investigate the group G(D) = D*/F*D' where D is a division
algebra with center F' and D’ the commutator subgroup of D*. We shall show that
G enjoys most important functorial properties of the reduced Whitehead group
SKi. We show that the functor G may grow “pathologically” for an algebraic
extension of the ground field whose degree is prime to the index of D. It is then
shown that this functor satisfies a decomposition property analogous to one for
SK;(D). To be more precise, we will show the following properties:

i. For any field extension L/F one has a homomorphism G(D) - G(D ®F L).

ii. If L/ F is a finite extension, then there exist a transfer homomorphism G(D®p
L) — G(D). (Proposition 3.3)

iii. G(D) is a torsion group of bounded exponent i(D) (Corollary 3.4, Lemma
1.1)

iv. If [L : F] is relatively prime to i(D), then G(D) — G(D ®F L). (Corollary
3.5).

v. f D = Dy ®r Dy ®F --- @r D and the i(D;) are relatively prime, then
G(D) ~ [[ G(D;). (Theorem 3.8)

vi. If D is unramfied tame Henselian division algebra, then G(D) ~ G(D).
(Theorem 3.11 4)

It turns out that there is a close connection between the group structure of
G(D) and algebraic structure of D. For example in subsection 3, after establishing
a fundemental connection between G(D), its residue version and relative value
group when D admits a Henselian valuation, we show that if D is a totally ramified
division algebra, then there is a one to one correspondence between the isomorphism
classes of F'-subalgebras of D and the subgroups of G(D).

We then use G(D) to compute SK;(D) for certain division algebras. We show
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that if G(D) canonically coincides with the relative value group, then there is an
explicit formula for the group SKi(D) (Theorem 3.17). It turns out that some
theorems and examples of reduced K-theory which require heavy machinery can
all be viewed as simple examples of our case (Example 3.19, 3.20 and 3.21). Section
4 is devoted to the unitary version of the group G(D).

1. Functor G(D) = D*/F*D’

Let C be the category of all central simple algebras and G : C — Ab be a
covariant functor from C to the category of abelian groups such that for any central
simple algebra A with center F', G(A) = A*/F*A’.

It is easy to observe that the functor G has the following properties:

D1. There is a collection of homomorphisms d,, : G(M, (D)) — G(D) for
each division algebra D and each positive integer n such that for each z € G(D),
dpin(xz) = x™ where i, : G(D) — G(M,(D)) is the homomorphism induced by
the natural embedding D — M,,(D) and d,, induced by Dieudonne determinant
[, §20].

D2. For any field F', G(F) is trivial.

D3. If z € Ker(G(M,(D)) n, G(D)), where D is a division algebra and n € N,
then z™ = 1.

On the other hand there have been other groups associated with a division ring
D which have been used to study the arithmetic and algebraic structure of D. For
example the square class group D*/D*? in [12] in connection with Witt ring of a
division algebra or the group D*/Nrd(D*)D’. The following examples show that
some important groups already associated to D share the three conditions above.

Example 3.1. Let A € C with center F', then it is easy to observe that functors
B(A) = (A*)?/(F*)2A’, and &(A) = A*/F* Al where Al = {z € A*|z" € A’} and
r € N also satisfy the properties D1,D2 and D3 above.

Example 3.2. Let A € C be a central simple algebra finite over its center. The
following commutative diagram with exact rows shows that SKy(D) = D) /D’
and SH®(D) = F*/Nrdp,p(D*) satisfy the three conditions above,

NTdD F
1—— SK{(D) —— K, (D) —"~ p~ SHY(D) —1
Mn l/
N’I"dD/F
1 —— SK1(Mn (D)) — Ki(My(D)) F* SH®(My (D)) —1
det 1 \L
N’I"dD/F

1— SK;(D) ——— K(D) F* SH°(D) ——1
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where 7, (z) = =" for any z € F* and D is a division algebra with center F. Note
that in order to consider SK; and SH? as functors, we should limit the objects of
our category (See §22, §23 in [2]).

In the same way, it can be seen that &(A) = A*/Nrd,/p(A*)A" and &(A) =
A*JF* AN ~ Nrd(A*)/F*Pe94 also satisfy D1,D2 and D3.

For the rest of this section we restrict our attention to the functor G(A) =
A*/F*A’, although the results we get can be formulated and proved mutatis mu-
tandis for all the functors above.

Our primary aim in this section is to show that the functor G shares almost all
important functorial properties of SK;. Clearly the natural embedding of D in
D ®p L where L is a finite field extension of F', induces a group homomorphism 7 :
G(D) — G(D®pL). The following proposition provides us with a homomorphism
in the opposite direction.

Proposition 3.3. (Transfer map) Let D be a division ring with center F' and L
be a finite extension of F such that [L : F| = m. Then there is a homomorphism
P:G(D®F L) — G(D) such that PT = n,,, where n,,(z) = z™.

Proof. Consider the regular representation L —— M,,(F) and the corresponding
sequence when we tensor over F' with D:

D—D®r L3 D®r M, (F) — M, (D)

(3.1) a—a®1—a®1l+— al,

1®@L— 1Q (L) — u(£).

Thanks to the Dieudonne determinant, there is a homomorphism K;(D ® L) —
K, (D) which maps the center of D ® ¢ L into the center of D. Therefore G(D Q¢
L) — G(D). Again the sequence (3.1) shows that PZ(z) = z™. O

Note that in the above proposition D could be an infinite dimensional division
algebra. If D is finite dimension over its center F', then it turns out that G(D) is
a torsion group.

Corollary 3.4. Let D be a division algebra of index n. Then G(D) is a torsion
group of bounded exponent n? = [D : Z(D)].
Proof. Thanks to Proposition 3.3, for any finite field extension L of F' = Z(D), we

have the sequence of homomorphisms G(D) N G(D ®p L) N G(D), such that
PL(z) = 2™, where z € (D) and [L : F] = m. Now let L be a maximal subfield
of D. Since L is a splitting field for D, we get the sequence of homomorphisms

G(D) % G(M,(L)) £+ G(D). From D2 and D3 it follows that G(M, (L)) is
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a torsion group of bounded exponent n. Now the fact that for any z € G(D),
PZI(z) = z", shows that G(D) is a torsion group of bounded exponent n? = [D :
Z(D)]. O

It is now immediate that if A is a central simple algebra, then G(A) is also
torsion. Later in this subsection we show that the bound can be reduced to n, the
index of D.

The following corollary shows that the analogous result for the behavior of SK;
under extension of the ground field holds for G too. Namely, we show that G(D)
embeds in G(D @p L) when the index of D and [L : F| are relatively prime.

Corollary 3.5. Let D be a division ring over its center F' and L/F be a finite
field extension such that [L : F) is relatively prime to the index of D. Then the

canonical homomorphism G(D) N G(D ®p L) is injective.

Proof. Let i(D) = n and [L : F] = m. Suppose Z(z) = 1 for some z € G(D).
By Proposition 3.3, PZ(z) = z™ = 1. But by Corollary 3.4, G(D) is torsion of
bounded exponent n2. Hence z"° = 1. Since m and n are relatively prime, z =1
and the proof is complete. [

In the next section we compute the functor G for certain division algebras. But
before we continue with the functorial properties of GG, let us consider the case
when the group G(D) is trivial. Besides D1, D2 and D3, the functor G enjoys an
additional property, namely there is a natural transformation 7 : K; — G such
that,

(1) For any object A in C, 74 : K1(A) — G(A) is an epimorphism.

(2) For any division algebra D and any positive integer n, the following diagram
commutes,

K1(My (D)) —— G(My(D))

ldet ld
Ki(D) ———= G(D).
Note that the functors of Example 3.1, or &(D) = NrdD/F(D*)/F*i(D) and
B(A) = A*/Nrda p(A*)A’ satisfy the above property as well.

The following is almost the only known example where G(D) (and above func-
tors) is trivial.

Corollary 3.6. Let D be a division algebra of quaternions over a real-closed field.
Then G(D) = 1.

Proof. For any finite field extension L of F' = Z(D), the following diagram is
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commutative,
K1(D ®F L) —2—> K, (D)

G(D LTF L)—2~ G(l;).

Now since D is algebraically closed (See [11], Section 16), thanks to Proposition 3.3
and above diagram, G(D®F L) _i> G(D) is an epimorphism. Replace L by F,_the
algebraic closure of F'. Because F is a splitting field for D, G(D®r F) = G(Mz(F)).
We show that G(M,(F)) is a trivial group and hence the corollary follows. Since
7 : K1 — G is a natural epimorphism, there is a composite homomorphism

epi.

VK (F)=F =5 Ki(My(F)) 5 G(My(F)).
Take z € G(M(F)). Since F is algebraically closed, there exist y € K1 (F)=F"
such that (y?) = z. But G(M3(F)) is a torsion group of bounded exponent 2,
hence z = 1. This shows that G(Mz(F)) is trivial and the proof is complete. O

Back to the functorial properties of G, the next step is to replace the field L in
Proposition 3.3 by a division ring. The following proposition shows that the same
result holds here too.

Proposition 3.7. Let A and B be division algebras with center F such that [B : F]
is finite. Then there is a homomorphism P : G(A ®r B) — G(A) such that
PL = nB:r)-

Proof. Let [B : F] = m. We have the following sequence of F-algebra homomor-
phisms,

A—)A@FB—)A(X)FB@FBOPHA@FMm(F)—)Mm(A).

This implies the group homomorphism P : G(A ®r B) — G(M,,(A)) LN G(A).

The rest of the proof follows from D1. O

Note that in the above proposition A could be of infinite dimension over its center
F. A same statement as Corollary 3.5 could be obtained here too. In particular if
(i(A),i(B)) = 1 then G(A) embeds in G(A ®F B) and similarly for B. Employing
torsion theory of groups and sequences which appeared in the above propositions,
we can write the primary decomposition for G(D). The proof follows more or less
the same pattern as for SK;(D).

Theorem 3.8. Let A and B be division algebras with center F' such that (i(A),i(B))
1. Then G(AQr B) = G(A) x G(B).
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Proof. By Corollary 3.4, G(A®p B) is a torsion group of bounded exponent m?n?
where m = i(A) and n = i(B). Therefore G(A ®F B) ~ G x H, where exp(G)|m?
and exp(H)|n?. By Proposition 3.7, we have the sequence:

(3.2) G(A) % G(A®r B) % G(A® B® B®) -4 G(4)

such that 8¢ = n,2. Hence G(A) = np2np2 (G(A)) = 0209 p(G(A)) C 09n,2 (G X
H) = 09(G) C G(A). This shows that 6¢|g : G — G(A) is surjective. Next
we show that 0%|g is injective. Considering the regular representation B°? —
M,z (F). As Proposition 3.3, we have the following sequence

G(A®r B) % G(A® B B?) Y5 G(A® B® M,»(F)) 25 G(A®r B)

such that 6/4)'p = m,2. Now if 1 # w € G, then 0'9/'1p(w) = 2 (w) = w™ # 1.
Therefore 1|g is injective. Rewrite the sequence (3.2) as follows:

G(A®F B) - G(A® B ® B%) “% G(M,:(4)) % G(A).

Suppose z € G such that 6¢y(z) = The above sequence and D3 shows that

¢(w)n = 1. Since 9|g is injective, z* = 1. On the other hand because ezp(G)|m?
then 2™ = 1. Since m and n are relatively prime, z = 1. This shows that 61 is an
isomorphism and so G(A) ~ G. In the similar way it can be shown that G(B) ~ H.
Therefore the proof is complete. O

Let A = M,,(D) be a central simple algebra. From Corollary 3.4 and D3 it is
immediate that G(A) is a torsion group of bounded exponent m[D : Z(D)]. Recall
Lemma 1.1, which says that for any normal subgroup N of a division algebra D,
we have N" C Z(N)[D*, N]. If we take N = D*, then for any z € D*, z" € F*D’.
This in effect shows that G(D) = D*/F*D’ is a torsion group of bounded exponent
n.

In the next subsection we will show yet another SKj;-like property for the group
G(D). Namely G(D) satisfy the following stability, G(D) ~ G(D((z))) where
D((z)) is the division ring of formal Laurent series (Corollary 3.16). We close this
section by the following theorem, which shows that the group G(D) = D*/F*D’
does not always follow the same pattern as the reduced Whitehead group SK; (D).
Namely G(D) is not “homotopy invariant”.

Theorem 3.9 (J. -P. Tignol). Let D be a division algebra over its center F
with index n. Then the following sequence where © runs over the irreducible monic
polynomials of Flx] and n,, is the index of D ®F F[z]/p, is split ezact.

1— G(D) — G(D —>@n/n
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Proof. By Proposition 7 in [12], the sequence
1 — Ky(D) — Ky(D(z)) — @ ny/nZ — 1
2

which is obtained from the localization exact sequence of algebraic K-theory is split
exact. Now since the group G(D) is the cokernel of the natural map K;(F) —
K, (D), applying the snake lemma to the commutative diagram,

1—— K (F) —— K (F(z)) &b, 2z 1

L |

1] —— Kl(D) —_— Kl(D(:L')) — @pnp/nZ —1
the result follows. O

2. ON THE GRrROUP G(D) OVER HENSELIAN DIVISION ALGEBRAS

We start with the following theorem which describes a fundemental connection
between the group G(D) and its residue version.

Theorem 3.10. Let D be a tame division algebra over a Henselian field F = Z (D)
with index n. Let L/F be a subfield of D. Then the following sequence is ezact.

(3.3) 1— D' /L'D' — D*/L*D' — 'p/T; —> 1.

Proof. Consider the normal subgroup 1 + Mp of D*. Thanks to Lemma 1.1, we
have

(3.4) (14 Mp)™ C ((1+ Mp) N F*)[D*,1+ Mp).

We will show that (1 4+ Mp) = (1 + Mp)™. Let a € 1+ Mp. Consider the field
F(a) and a € 1+ Mp(,). Since F is a Henselian field, so is F'(a). The polynomial
f(z) = 2™ — a has 1 as a simple root modulo Mp(,), because Charm does not
divide n. Applying Hensel’s lemma to the polynomial f(z) = z" — a, we obtain an
element b € 1+ Mp(,) such that b = a. This shows that a € (1 + Mp)™. Thus
1+ Mp is n-divisible, namely, (1+ Mp) = (1+ Mp)™. Hence from (3.4) it follows
that 1 + Mp C (1 + Mp)D'. Now consider the reduction map Up — D". We
have the following sequence:

D" = Up/1+ Mp "™ Up/(1+ Mp)D' "5 Up /(1 + M)D' "%
" Up/ULD' =5 L*Up /L*D'.

Therefore ¢ : D' /(L")D’ — L*Up/L*D’ is an isomorphism. Considering the fact
that D*/L*Up ~T'p/T'r, the theorem follows. [

Now we are ready to compute G(D) for some certain cases.
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Theorem 3.11. Let D be a Henselian division algebra tame over its center F with
index n. Then

i. If D is unramified over F then G(D) ~ G(D).

ii. If D is totally ramified over F then G(D) =Tp/Tp.

iii. If D is semiramified and D is cyclic over F then the following sequence
where Ng /F is the norm function, is exact.

1— NpD")/F" — G(D) — Tp/Tr — 1.

Proof. i. Writing (3.3) for L = F', we have:

Now if (D, v) is unramified, namely [['p : I'p] = 1, then D" /F D’ ~ D*/F*D'. On
the other hand Z(D) = F and D* = F*Up. Therefore, for a,b € D*, the element
¢ = aba~1b~! may be written in the form ¢ = afa~!5~!, where o and 8 € Up.
This shows D' = D, so G(D) ~ G(D).

ii. If D is totally ramified over F then D = F. Writing (3.3) for L = F, since
the group D' /F D' is trivial G(D) = T'p/Tp.

iii. Let D be semiramified and D be cyclic over F. Consider the norm func-
tion Ng /7 - D" — F°. Moreover for any z € Up, from (1.*) it follows that,
Nrdp,r(z) = Np,7(Z). This shows that D' C KerNgp 7. But if z € KerNg 7
then by Hilbert theorem 90, there exists a such that z = ao(@)”", where o is
the generator of Gal(D/F). It is well known that the fundemental homomor-
phism D* — Gal(Z(D)/F) is surjective [9]. Therefore 0 : D — D is of
the form o(a) = cac~!, for some ¢ € D*. This shows that z € D’. Therefore
KerNp = D’. Now it is easy to see that D" /F D’ ~ NB/F(E*)/FM. So thanks

to (3.3),1 — N5 m(D")/F" — G(D) — I'p/Tr — 1is exact. [

Remark 3.12. If D is a cyclic field extension of F, a similar proof as iii. above
shows that KerNp 7 C D'. In particular it follows that N3 /7(5*) /F*f —
D" /F'D’, where [D : F| = f, is always surjective. Therefore if Ny /F(E*) /F*f =1
then G(D) =T'p/T'r. This will be used in Example 3.19.

Using Theorem 3.2 44i., we construct division algebras such that the group G(D)
is cyclic.
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Example 3.13. Let C be the field of complex numbers. Let 1 # o € Gal(C/R)
where R is real numbers. Then by Hilbert construction (See [2], §1), D = C((z,0))
is a division ring with center ' = R((z?)). We show that G(D) = Z,. D has a
natural valuation such that I'p/T'p = Z/2Z = Zjy. Clearly D = C and F = R.
Since N¢/gr (C) = R? by Theorem 3.2 iii., G(D) = T'p/T'p = Zs.

Example 3.14. Let ¢ > 3 be a prime number. Take a prime number p # ¢
such that (p — 1,q) = 1. Consider the cyclic extension F,q /IF, where F, and Fpq
are fields with p and p? elements respectively. Let o be a generator of the cyclic
group Gal(F,q /IF,). By Hilbert construction D = Fpq((z,0)) is a division algebra
with center F' = Z(D) = F,((z?)) and i(D) = ord(s) = ¢q. D has a natural
valuation which is tame and Henselian. It is easy to see that with this valuation D
is semiramified, D = Fpe and F = F,. Since N5 7 is surjective, by Theorem 3.11
iii, it follows that G(D) = Z,.

There have been significant results on the structure of the relative value group in
the case of a totally ramified algebra. Using Theorem 3.11 we can write interesting
statements relating the group structure of G(D) to the algebraic structure of D.
Recall that the group G(D) is torsion of bounded exponent n.

Theorem 3.15. Let D be a valued division algebra tame and totally ramified over
a Henselian field F = Z(D) of indez n. Then,

i. There is a one to one correspondence between the isomorphism classes of F'-
subalgebras of D and the subgroups of G(D).

it. exp(G(D)) divides the exponent of D, i.e., the order of [D] in Br(F), the
Brauer group of F'.

iti. D is a cyclic division algebra if and only if exp(G(D)) = n.

Proof. The theorem follows by comparing Theorem 3.11 ., with the results on the
relative value group in the case of a totally ramified valuation (See for example
[27]). O

Corollary 3.16. Let D be a finite dimensional division algebra over its center F'.
If CharF 1i(D) then G(D) = G(D((x)))-

O
Now we are in a position to use the group G(D) to compute SK1(D). The
following theorem enables us to compute SK;(D) when, roughly speaking, G(D)
is trivial. Note that we do not use any results from reduced K-theory.

Theorem 3.17. Let D be a tame division algebra over a Henselian field F = Z(D)
of index n.

i. IfD"/F'D’ =1 then SK1(D) = pun(F) /(D' NF).

it. If D is a cyclic division algebra with a mazimal cyclic extension L/F such
that D" JT'D’ = 1 then SK{(D) = 1.
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Proof. i. As the proof of Theorem 3.10 shows, we have a natural isomorphism,
¢:D )(F)D — Up/UrD'.

Now if D" /F D’ = 1 then Up = UpD'. But D) C Up. This shows that D) =
pn(F)D'. Using the fact that u,(F)N D' = Z(D'), it follows that SK{(D) =
wn(F)/Z(D"). Since D is tame and Henselian over its center F, using Hensel’s
lemma, it is easy to see that u,(F) — u,(F);e¢ + @ is an isomorphism. Also
it is not difficult to show that Z(D') ~ Z(D') = D' N F. Therefore SK;(D) =

1 (F)/(D' N F).

7. The same proof as i. shows that if D" /Z*ﬁ = 1then Up = U D’'. Therefore
DW CULD'. Letz € DY, Thenz = Ild where! € Landd € D'. So Nrdp,r(z) =
Np,r(l) = 1. Hilbert theorem 90 for the cyclic extension L/F guarantee that

I = ao(a)”", where o is a generator of Gal(L/F). Now the Skolem-Noether theorem
implies that o(a) = cac™* where ¢ € D*. Therefore | = aca™'c¢™!. This shows that
pW=p. O

Remark 3.18. Part i. of the above theorem shows that if D is totally ramified,
then SK1(D) = p,(F)/D’. This shows that Tignol’s formula for SK;(D) is a
special case of Theorem 3.17 i. (See [12]).

We deduce both theorems of Lipnitskii [13] which are obtained by using heavy
machinery of reduced K- theory, as natural examples of the above theorem.

Example 3.19. For any division algebra D with center F = R((z1,-+ , %)) where
R is the real numbers, SK; (D) is trivial.

Proof. From number theory, it is well known that [D : F| = 2° where s < m.
Since the complete field FF = R((x1,- - ,%;,)) has a natural valuation, then D
admits a valuation which is obviously tame. It is clear that F = R. Because
the only division algebras over real numbers are either the quaternion Hr or the
field C of complex numbers, therefore D = Hg or D = C. Now Corollary 3.6
and Remark 3.12 show that in either case D /F D’ = 1. Now by Theorem 3.17,
SK1(D) ~ ,ui(D)(]R)/(ﬁ NR). But clearly u;py(R) = {1, ~1}. On the other hand
if i(D) is even, then —1 € D’ (See [29]). Thus SK;(D) = 1.

Example 3.20. For any division algebra with center F = C((z1, -+ ,Zm)) where
C is an algebraically closed field, and charC {i(D), SK1(D) is cyclic.

Example 3.21. Hilbert classical construction of division algebras. Let L be a field
and o € Aut(L) with o(0) = n such that charL { n. Let F' = Fiz(o) be the fixed
field of 0. Hence Gal(L/F') is a cyclic group with the generator o. Let D = L((z,0))
be the division ring of formal Laurent series. It follows that Z(D) = F((z")) and
i(D) = n. D has a natural valuation, and it is easy to see that with this valuation
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D is semiramified and L((z")) is a maximal subfield of D. Now by Theorem 3.17
it., SK1(D) is trivial.

Example 3.22. From Theorem 3.17 ., it is immediate that reduced Whitehead
group of a tame division algebra over a local field is trivial.

Because most of the interesting valued division algebras arise from the iterated
formal power series fields, we may consider r-iterated Henselian division algebras.
Following Platonov in [19], we define inductively an r-iterated Henselian field F' if
its residue field F is an (r — 1)-iterated Henselian field.! Let (D;,v;),0 <4 <r—1
be an r iterated Henselian division algebra (E = Dj41). Let ®; : Up,_, — D;
be the i-th natural reduction map. Then ®;(®;_1(--- (®1(a))---)) is called an i-
iterated reduction, if it is defined. Denote the r iterated Henselian division algebra
by D, (D = Dy, Z(D) = F = F,). We also need the following notations in order to
state the following lemma. By [Up]; and [Ur]; we denote the set of all elements of
D and F respectively, such that 7 iterated reduction is defined. Also by [1 + Mp);
and [1 + MFp];, we denote the subsets of [Up]; and [Ur|; such that the ¢ iterated
reduction equals one. Clearly [1 + Mp]; =1+ Mp.

Lemma 3.23. Let D be an i iterated tame division algebra of finite dimension over
a Henselian field F = Z(D) with indezx n.

i. For each a € [1 4+ Mp]; there is b € [1 + Mp); such that ab € D'.

1. [1 + MD]i g [1 + MF]iD’.

Proof. i. Let a € [1+ Mp];. Then a is contained in a maximal subfield of D, say L.
Therefore a € [1+ Mg);. By lemma 3 of [19], we have Ny, r([14+ ML];) = [14+ MF];.
So Nrdp,r(a) = Nr/r(a) € [1 + MF);. Let t = Nrdp,r(a). Using an inductive
argument for Hensel’s lemma, we will show that there exists ¢ € [1+ Mp]; such that
c" =t Let s €1+ Mp =[1+ Mp|;. Applying Hensel’s lemma for f(z) = z" — s
gives ¢ € 1+ Mp such that ¢" = s. Now it is not hard to see that ®,([1 + MF];) =
[1+ M%]i—1. Therefore [14+ MFp];/[1+ Mp|; ~ [1+ M%];—1. Now by induction, we
conclude that [1+ MFp]; is n-divisible. Therefore exist ¢ € [14+MFp]; such that ¢ = ¢.
Now Nrdp,p(a) = ¢®. So Nrdp,p(ac™?) = 1. Hence ac™* € DW N [1+ Mp);.
Applying Platonov’s generalized congruence theorem (cf. [19] and [4]) , we obtain
ac™! € D'. Take b= ¢! and the proof is complete.

7. Applying the first part of the lemma for 4 = 1, in each step of reduction we
have, 1 + Mp, C (1 + Mg,)D;' where K; = Z(D;). First we show that in each
step of reduction, D;’ ¢ 1+ Mp,. Consider the groups A = D;"/1 + Mp, and
P(D;) = (1 + Mg,)D;'/(1+ Mp,). One can easily observe that P(D;) = A’ and
as Theorem 2.11 of [1] shows, the center of A is K;*(1+ Mp,)/(1 + Mp,). We

!See Ershov’s comment in [4] on iterated valued field. Among other things, considering iterated
valued field, enables us to have more insight in each step of reduction.
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claim that A is not an abelian group, for otherwise Up, = Uk, (1 + Mp,) which
implies that D; is totally ramified. Thus D;' = u.(K;), where e = exp(I'p, /T'k,),
(cf. the proof of Theorem 3.1 of [27]) which leads us to a contradiction. Therefore
D;" is not in 1 + Mp, and A is not abelian. But ®~'(1+ Mp,) = [1 + Mp)it1. If
D’ g [1 + MD]i-}—l then @(D’) Q (I)([]. + MD]i—I—l) =1+ MDi- But Dil g (I)(DI) SO
D/ C1+ Mp, a contradiction. [

Remark 3.24. In the proof of <. above, we could use Lemma 1.1 and avoid the
Platonov congruence theorem.

Theorem 3.25. Let D be an r iterated tame division algebra over a Henselian
field F of index n. If there is an 0 < £ < r — 1 such that Dy/F;D'y = 1 then
SK1(D) = n(F)/2(D').

Proof. For any 0 < k < r — 1, consider the k + 1 — th reduction map

L) D, P
[Uples1r 58" Dy .

Thanks to Lemma 3.23 i., we have:

nat

Di" 3 [Uples1 /Il + Mples1 "% [Uplet1/[1 + Mplis1D' ™S [Uplis1/[Uplksr D'

Therefore,
Dy /Fr Dy = [Upli+1/[Urlis1D'.

Hence if there is a ¢ such that D, /F, D, = 1 then [Ur]g41 D' = [Uple+1- By
lemma 1 in [19] D®) C [Uples1 so D) = p, (F)D'. Using the fact that p, (F) N
D' = Z(D') the theorem follows. [

Considering the fact that each Henselian division algebra is a 1-iterated division
algebra, we recover Theorem 3.17 4. from the theorem above.

3. ON THE UNITARY SETTING

Let D be a division ring with an involution 7 over its center F' with index n. Let
S:(D) = {a € D|a” = a} be the subspace of symmetric elements and ¥,(D) the
subgroup of D* generated by nonzero symmetric elements. Here we concentrate on
involutions of the first kind, i.e. £.(D)NF* = F*.

Definition 3.26. Let D be a division ring with an involution 7. Then the group
KU,(D) = D*/X,(D)D’ is called unitary Whitehead group and the GU(D) =
Y.(D)D'/F*D’ the unitary version of G(D).

We will prove that there is a stability theorem for GU(D) similar to one in
Corollary 3.16. The first part of the following theorem was first proved by Platonov
and Yanchevskii [20].
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Theorem 3.27. Let D be a finite dimensional tame and unramified division algebra
with an involution of the first kind over a Henselian field Z(D)=F. Then KU;(D) =

KU,(D) and GU(D) =« GU(D) .

Proof. Consider the following sequence:

D" — Up/1+ Mp — F*Up/F*(1+ Mp) — D*/%,(D)D'.

Because the valuation is unramified, we have 3=(D) = %,(D)NUp (See [20]),
and D =D’ (See the proof of Theorem 3.11 i.). Therefore we have the following
isomorphism: E*/27(E)EI = D*/%,(D)D'.

For the second part, consider the following commutative diagram with exact
rows:

1— GU(D) G(D) KU (D) ——1
1——= GU(D) G(D) KUy (D) — 1.

The two of the vertical arrows are isomorphisms, thanks to the first part of this
theorem and Theorem 3.11 .. Therefore the third one is also an isomorphism which
completes the proof. [

If D has an involution of the first kind, then D((z)) enjoys a natural involution
which is induced by the one from D. Therefore if CharF # 2 then thanks to the
above theorem, we have GU(D) = GU(D((z))) which is a stability theorem for
GU(D).
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