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Summary

The ability of a bacterial cell to respond to a complex environment lies with the network of
genetic interactions that process information regarding the state of the cell and its local envi-
ronment. The object of this study has been to better understand bacterial genetic regulatory
networks, which conceptually consist of nodes (the genes) and edges (the interactions between
the genes). Two problems are addressed, one focusing on the nodes in the network, the other
focusing on the edges (see Figure 1.1).

The problem concerning the nodes in the network is that a large fraction of genes from bac-
teria have an unknown function. Even the most studied microbe,E. coli, still has around 30% of
its genes uncharacterised. Using phenotype data and genomic data, a method for gene-function
prediction is improved and implemented in a tool called GeneTrawler. The gene-function predic-
tion tool is validated against a number of well studied phenotypes, and successfully predicts the
majority of genes known to be involved in each phenotype when the phenotype is well defined.
In addition, it can suggest genes that are dependent on a phenotype, but not directly involved.

The second problem addressed in this thesis is reconstructing gene networks from DNA mi-
croarray data. DNA microarrays can measure the expression levels of thousands of genes simul-
taneously. Elucidating the topology of biochemical or genetic regulatory networks is a common
problem in molecular biology (Arkinet al., 1997), but piecing together gene regulatory networks
with standard molecular methods not only requires significant time and effort, but may also miss
the global or modular structure of the network. In addition, different stimuli can substantially
change the ‘wiring’ of a network (Luscombeet al., 2004), meaning that understanding how a
network functions in time requires a global analysis of its dynamics combined with a detailed
fine-grained approach.

There has been much interest in the possibility of reconstructing genetic regulatory interac-
tions from microarray data. We investigate the limitations of such reconstruction procedures, in
terms of what kinds of networks can (and cannot) be reconstructed. A method of reconstruc-
tion is investigated that uses evolutionary computation for ’evolving’ a population of networks
to resemble a target network. The results demonstrate that the topology of gene regulatory net-
work structures can be reconstructed from time series data if the network displays dynamics of
a particular category where negative feedback loops determine the dynamical behaviour of the
network.
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Structure

This thesis addresses two problems. Chapter 1 provides the background literature and concepts
for both problem areas. Prokaryotes are introduced and placed in context with the two other
domains of life, followed by a discussion on the impact of genome sequencing technology in
Section 1.4. Some important concepts regarding genome evolution are outlined in Section 1.3
which are a basis for the gene-function prediction methods in Section 1.6. Methods of modeling
gene regulatory networks are discussed in Section 1.8, followed by a discussion of previous
attempts at reconstructing gene regulatory networks from microarray data in Section 1.9. A
discussion about evolutionary computation concludes in Section 1.10.

The next two chapters (2 and 3) detail work on GeneTrawler, a tool for gene-function predic-
tion. GeneTrawler uses phenotype and orthologue information to predict gene function. The tool
was implemented as a web tool for working biologists and the instruction manual is located in
the Appendix. Chapter 2 introduces the algorithm and described the implementation. Chapter 3
discusses the results and outlines future work.

Chapter 4 introduces the second problem addressed in this thesis. The motivation for recon-
structing gene regulatory networks is discussed and the reconstruction method is described. The
results determined by applying this method to random networks are presented and discussed in
Chapter 5.

Chapter 6 concludes the thesis with a general discussion of the results of both Genetrawler
and the gene regulatory network reconstruction procedure.
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Chapter 1

Background

The structure of this chapter is as follows: the first section discusses the motivation for the work
presented in this thesis. The second section introduces prokaryotes, which are placed in context
with the two other domains of life: archaea and eukaryotes. This is followed by a discussion on
the impact of genome sequencing technology in Section 1.4. Some important concepts regarding
genome evolution are outlined in Section 1.3 which are a basis for the gene-function prediction
methods in Section 1.6. Section 1.7 provides definitions of graphs and networks. The following
Section (1.8) discusses different formalisms and models for representing and simulating gene
regulatory networks. Section 1.9 discusses recent approaches in reconstructing gene regulatory
networks from microarray data, while the last section (1.10) gives an outline of evolutionary
algorithms.

1.1 Motivation

“The greatest challenge today, not just in cell biology and ecology but in all
of science, is the accurate and complete description of complex systems. Scien-
tists have broken down many kinds of systems. They think they know most of the
elements and forces. The next task is to reassemble them, at least in mathematical
models that capture the key properties of the entire ensembles.” E. O. Wilson (1998).

As we peer into the hidden world of the microscopic, like most things studied in science,
we are met with unimagined complexity. One of the first steps in the face of such complexity
is to catalogue; and for most of the previous century, biology was very much a reductionist
science where the effort was spent trying to obtain a parts list for some biological system. This
approach is still important today as there are many cellular processes that are poorly understood.
However, for many systems there is a veritable flood of data, for example genomic sequences and
microarray data. The availability of detailed information about certain biological systems means
that a more systems-oriented approach may shed light on complex biological processes. Often, a
systematic view results in some kind of network, as a principle shared by many natural systems
is their organization into a network of many interacting units: atoms in molecules, molecules in

10



1.2. A BRIEF HISTORY OF PROKARYOTES CHAPTER 1. BACKGROUND

cells, nerve cells, species in an ecosystem, computers in the Internet, and interacting people in a
social environment are just a few examples.

In molecular and evolutionary biology, the principal units under study are thegenes, which
not only contain the information to grow an organism from a single cell, but also contain infor-
mation about the evolutionary history of the species. Since the 1950’s, after the discovery of
the structure of DNA (Crick & Watson, 1953), molecular biology has come long way, with so-
phisticated sequencing technologies routinely providing the raw material for scientific analyses
involving genes.

Genes can indirectly interact with one another, usually via the proteins they encode, for
example, by producing transcription factors that influence the expression rate of another gene,
or by producing a protein that then produces a metabolite that influences protein activity. Thus,
genes are usually discussed as components in a larger network of interactions (Figure 1.12).

This thesis addresses two problems in elucidating the entire network of genetic interactions in
a particular organism. The first problem is that most genes in most organisms have an unknown
function. For example, inE. coli, the most intensively studied microorganism, around 30% of
its genes have an unknown function. Reconstructing a network is of dubious value when so
much is missing. Chapters 2 and 3 address this problem with a new method of gene-function
prediction that combines homology and phenotype data in a novel way. The second problem is
in piecing together the network of gene and protein interactions. Microarrays have provided the
first opportunity to do this in a systematic way, however it is unclear if such a technology can
furnish the required data for reconstruction significant parts of the cellular interaction network.
Chapters 4 and 5 introduce a method of gene regulatory network reconstruction using microarray
data. Figure 1.1 shows how these two problems are part of the overall problem of elucidating the
function and structure of the genetic reaction network controlling cellular systems. Each section
in the rest of this chapter discusses the necessary background for the two approaches discussed.

?
?

? 1 2

?

??

Figure 1.1: This thesis addresses two problems in piecing together a network of cellular interactions: 1)
Many genes (coloured circles) have an unknown function; and 2) Microarray technology provides the
first opportunity to reconstruct genetic interactions in a large-scale way. This can be be thought of as 1)
reconstructing the nodes in a network, and 2) reconstructing the edges in a network.

1.2 A brief history of Prokaryotes

This thesis concerns the reconstruction of gene function and regulatory network topology in
prokaryotes. The reason for this focus is that the lifestyle, selection pressure, gene content, evo-

11



1.2. A BRIEF HISTORY OF PROKARYOTES CHAPTER 1. BACKGROUND

lution strategies, and core genetic replication machinery are substantially different to eukaryotes.
Therefore, the methods for understanding core cellular processes in one domain often do not
work for the other. Because of this restriction to prokaryotes, a brief history is given, followed
by relevant sections concerning gene-function prediction.

Many of the core discoveries of the cellular machinery were acquired through studying mi-
crobes, mostly due to their ease of handling and manipulation. However, there are many other
reasons to study microbes: they are crucial for all ecosystems from small to large scales, and
are the causative agents for many diseases of humans and livestock, and play such a huge and
important role in every ecosystem, acting mostly as ‘black boxes’, as so much is unknown.

The classification of bacteria has undergone much change over the last few decades, with the
result of renaming and reclassifying many species. The cause of this have been the many recent
advances in gene sequencing and related technologies, genomics, bioinformatics and computa-
tional biology, which have revealed important parts in the long story of life.

Originally, bacteria were thought to be a group of fungi, except the cyanobacteria which were
considered to be blue-green algae. This perception changed with the discovery of the prokaryotic
cell structure, which defined them until the 1970s as a distinct group, variously called Monera,
Bacteria, and Prokaryota.

Figure 1.2: A universal phylogenetic tree inferred from comparative RNA sequences (from Woese (2000)).

In 1977, Carl Woese shocked the biological community with the introduction of a new group
of organisms, the Archaea (Woese & Fox, 1977). From studying RNA sequences, Woese con-
cluded that prokaryotes comprise of two distinct groups, known today as Bacteria and Archaea.
Biochemically, Archaea appeared as different to Bacteria as Bacteria to Eukaryotes, and were
often isolated in extreme environments (see Box 1.3). These three groups, Bacteria, Archaea,
and Eukaryotes, are called domains. At present, the dates and order of branching at the root of
this tree is rather uncertain (Figure 1.2).
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1.2. A BRIEF HISTORY OF PROKARYOTES CHAPTER 1. BACKGROUND

Box 1.3: Extremophiles

Many places, once assumed to be sterile, have turned out to contain thriving microorgan-
ism communities, and the resulting adaptions to extreme conditions are of great scientific and
industrial interest. For example, the heat-resistant DNA copying enzymeTaq Polymerasewhich
is the workhorse of molecular biology, was isolated from a bacterium living in hot springs
(Thermus aquaticus).

Deinococcus radioduransis the most radiation-resistant organism
known, being able to survive exposure to more than 1,000 times the
amount of radiation that would kill a human.
Image: dividingD. radioduranscells, courtesy of Alice Dohnalkova,
Uniformed Services University.

Pyrodictium abyssi, found on geothermally heated areas of the seabed.
It has an optimum growth temperature of 105°C and growth maximum
of 110°C.
Image: Pyrodictiumcells, connected by a network of protein ‘fibers’
from Riegeret al. (1995), ©1997 R. Rachel.

At the other end of the spectrum are the Psychrophiles. These are or-
ganisms that prefer cold temperatures, such asPolaromonas vacuolata
which lives in the sea ice of Antarctica and has a preferred temperature
of 4C. The image to the right shows ice-worms that live in a combina-
tion of natural gas and ice, 500 metres down on the bottom of the Gulf
of Mexico (Image publicly available from Fisher (1997)).

Halobacteriagrow optimally in water with extremely high salt concen-
trations of 4 to 5 M NaCl. They produce a red pigment which colours the
salt lakes shown left (Image used with permission (Armstrong, 1998),
©Wayne. P. Armstrong).

Microorganisms are even found as far as 3.5km under the earths crust (Krumholzet al.,
1997), in extremely acidic (pH< 2) and alkaline environments (pH> 10) (Finlayet al., 1987).
This huge diversity demonstrates the adaptability and hardiness of life, at the same time probably
indicating limits of earth-based life.
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1.3 Prokaryote genome evolution

The details of prokaryote genome evolution has important implications for gene-function predic-
tion. The evolutionary forces acting on a bacterial genome are substantially different from those
acting on a larger, multicellular eukaryotes, resulting in differences in genome size, gene regula-
tion, and gene structure. The large differences in genome structure observed between prokaryotes
and eukaryotes arise mainly because of the different evolutionary strategies taken.

1.3.1 r versus K selection

Two fundamental strategies for maximising fitness are long life or quick reproduction. These
are somewhat mutually exclusive, in that an organism cannot devote the same resources for
quick reproduction as developing a system that is long-lived, however they are also somewhat
dependent: a minimum amount of reproduction must occur for the species to survive. This is a
development-reproduction trade-off.

In mostly risky and/or hostile environments where energy sources and nutrients are not regu-
larly available, most offspring will perish regardless of how much resources for development are
invested. Thus, if many offspring are produced, at least one will hopefully survive to pass on the
genetic information to the next generation. This strategy is calledr selection.

In a predictable environment, those that invest the most resources in development are more
likely to win the competition for survival. In other words they will be stronger, larger, taller
etc. This strategy is calledK selection (Roughgarden, 1977). Oak trees are an example of aK
selected organism.

The termsr andK come from a mathematical model of population growth. For small pop-
ulations, growth is exponential as represented by ther parameter. For large populations that are
near the carrying capacity of the environment (represented by theK parameter), resources are
limited, which allows only the strongest, largest, most developed, or most intelligent members of
the species to survive and reproduce.r-selected populations are usually not close to the carrying
capacity of their environment, and thus able to grow exponentially using an abundance of avail-
able resources. However, because of the dangers in the environment, the population is regularly
decimated so that it never actually reaches the carrying capacity.

1.3.2 r versus K selection and implications for bacterial genome evolution

The selective pressure for fast generation times has several implications for bacterial genomes.
Firstly the size: a larger genome requires more resources for division than a smaller genome.
Thus individuals with smaller genomes will be able to divide more rapidly than individuals with
larger genomes competing for the same resources. This means that genes that are not under
positive selective pressure for long enough time periods will eventually be lost. The larger the
selection pressure for a smaller genome, the quicker the rate of gene loss.

Contrast this with genomes from most multicellular eukaryotes. There is no obvious selection
pressure against large genomes and, as a result, genomes can be very large, e.g. 670 billion base
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pairs forAmoeba dubia, compared with 3 billion forHomo sapiens(Gregory, 2001) and 4.5
million for E. coli.

Quick generation times not only affect genome size, they also affect the mutation rate (Martin
& Palumbi, 1993). Errors introduced through copying DNA are a major source of mutations, thus
a quicker generation time means a higher mutational load. This results in an additional source
of gene loss forr-selected organisms. Although one may argue that this should favour better
DNA repair mechanisms, in anr selected environment where few individuals of any population
survive, investing resources in better DNA repair mechanisms does not necessarily pay off unless
DNA damage is the major cause of death (see Box 1.3:Deinococcus radiodurans).

Kunin & Ouzounis (2003) analysed the relative contributions of gene loss, gene genesis, and
horizontal gene transfer (HGT) in prokaryote evolution. They concluded that gene loss is the
most important factor in shaping prokaryote gene content, being three times more frequent than
HGT. This high rate of gene loss is compensated by a high rate of gene genesis via e.g. gene
duplications.

1.3.3 Informational/operational genes

In Riveraet al. (1998), the genomes from members of the three domains1 were compared, and it
was attempted to determine to which other domain the genes in each genome were most related.
The genomes included two prokaryotes (E. coli andSynechocystis), an archaea (M. jannaschii)
and a eukaryote (S. cerevisiae). They found that prokaryotic genomes contain two classes of
genes: informational genes which include GTPases, vacuolar ATPase homologues, and most
tRNA synthetases; andoperationalgenes coding for e.g. amino acid synthesis, the biosyn-
thesis of cofactors, the cell envelope, energy metabolism, and intermediary metabolism. The
informational genes appear to have much less functional divergence than the operational genes,
implying that operational genes undergo functional divergence more often. In eukaryotes, the
informational genes are most closely related to the archaea,M. jannaschii, whereas the majority
of operational genes are most closely related to those ofE. coli.

In further work, the authors formulated a hypothesis arguing that informational genes are
much less frequently horizontally transferred than operation genes (Jainet al., 1999). The rea-
soning is that most informational genes have interactions with many other genes, and these in-
teractions are often critical to the functioning of the DNA, RNA, and translation apparatus. If
an informational gene was transferred into another genome, the chances are very small that it
would be able to integrate into the regulatory network, as many interactions must be similar to
those in the original host organism. On the other hand, operational genes are usually under the
control of one or a few regulatory elements. This means it is more likely for operational genes to
be integrated into the cellular metabolism, compared to informational genes, as there are fewer
regulatory regions that must be shuffled in front of the new genes(s) (see Figure 1.4).

1Archaea, Bacteria, and Eukaryotes.
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Figure 1.4: Examples of the complexity of gene product interactions in informational (A) and operational
genes (B). The assembly map of theEscherichia, small ribosomal subunit is shown in A as an illustration
of the high complexity that is frequently present in the translational apparatus. The thioredoxin (Th) and
thioredoxin reductase (ThR) complex is shown in B as an example of the reduced complexity present in
some operational genes (figure from Jainet al. (1999)).

1.4 The pace of genome acquisition

In 1995, the first complete genome of a free-living organism,Haemophilus influenzae, was se-
quenced (Fleischmannet al., 1995). This was soon followed by the first multicellular organism
(Caenorhabditis elegans) in 1998, and the rough draft of the human genome was announced in
June 2000. The rate of acquisition of gene sequences has accelerated; currently there are over
200 complete genomes including several multicellular eukaryotes in the databases, and many
more in the pipeline (Figure 1.5). This exponential increase in sequence databases fuels the ex-
ponential growth of other biological databases such as structure databases, presenting interesting
challenges in database searching and integration (Davidsonet al., 1995).

Acquiring the sequence of an organism is just the beginning in terms of gaining new biolog-
ical knowledge. The genome ultimately controls and directs the development and workings of
an organism by regulating which genes are transcribed, at what time, and to which sub-cellular
location. It is currently beyond our capabilities to build a relatively complete model of the organ-
ism starting with only the genome. Despite this, the genome is the first necessary building block
in this endeavour.

Many problems remain in these first steps–in prokaryotes more than one third of the genes
in most genomes have an unknown or hypothetical function (see Chapter 1). In eukaryotes the
situation is still more complicated, as even identifying genes is problematic.

Even though many genes are either not properly identified or have an unknown function, the
comparison of whole genomes opened the door for answering many questions, for example, the
question of gene amelioration in isolated species (Tamaset al., 2002). Cross comparisons of the
metabolic pathways between species reveals striking similarities in the global structure (Jeong
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Figure 1.5: The number of sequences deposited in GenBank is growing at an exponential rate (Benson
et al., 2004).

et al., 2000), not only of metabolic networks compared with each other, but also metabolic net-
works compared with other networks such as power grids and the Internet (Albertet al., 2000;
Milo et al., 2004).

1.5 Finding genes in a genome

Before discussing gene-function prediction methods, an overview of gene finding methods is
given, as this is a crucial step that comes before gene-function prediction.

Given a raw genome sequence, the first step is to identify all the promoters, coding regions,
and non-coding RNAs (for a review, see Matheet al.(2002)). Most genes encode proteins, which
are the biochemical machinery that actually do most of the biochemical work. Finding which
stretch of DNA encodes for what protein is the next step after sequencing a genome. This is not a
trivial task, especially in eukaryotes which can possess long regions of DNA that must be spliced
out of the gene before it is translated (introns). Bacterial genomes do not usually contain introns,
obeying the old dogma of molecular biology: one gene→ one protein. To compare, about 85%
of the Haemophilus influenzaegenome is composed of genes (Fleischmannet al., 1995), but
only about about 2% of the human genome is composed of protein-coding sequences (exons) of
genes (Pennisi, 2001).

1.5.1 Prokaryote gene identification

Compared to eukaryotes, gene finding in prokaryotes is less complex. Prokaryote genes tend to
cluster in operons, do not usually have introns, and have relatively consistent gene begin and end
signals. For bacterial genomes, a first step in finding all genes is to look for long regions uninter-
rupted by a stop codon, called ORFs (Open Reading Frames), as these regions have a higher like-
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lihood of being genes. Although this can be done manually, an automated approach is normally
applied. More sophisticated approaches are needed for automatedab initio gene prediction, such
as hidden Markov models, which have been applied extensively to eukaryotic (Burge & Kar-
lin, 1997), prokaryotic and archaeal genomes (Salzberget al., 1998; Lukashin & Borodovsky,
1998). As bacterial genomes usually lack introns, bacterial gene prediction is not as problematic
as eukaryotic gene prediction.

1.5.2 Eukaryote gene identification

Although this thesis concerns gene regulatory networks in prokaryotes, often a clearer perspec-
tive is obtained by comparing the differences between prokaryotes and eukaryotes. Finding genes
in eukaryotes is challenged by the large amounts of introns and spaces between genes, which do
not exist so much in prokaryotes. There are four main methods for finding genes in eukaryotes:

cDNA library Complementary DNA (cDNA) is single-stranded DNA synthesized from a
mature mRNA template. By indiscriminately amplifying all mRNAs in a cell, a cDNA library
is constructed. Sequencing the entire library provides the mRNA of all the genes in the cell cur-
rently being expressed. By aligning the cDNA with the genomic sequence, a coding region can
be identified. The advantages of using cDNA libraries to predict genes are that it is accurate, and
can find exon boundaries and alternatively spliced genes. Disadvantages are that low-expressed
genes can not be found (not in the library), and the quality of the library is not very high.

Genome comparisonAs regions coding for proteins or functionally required RNA like tRNA
are under larger constraints than non-coding regions, it is hypothesized that highly similar (con-
served) regions between the same chromosome fragment in different species, e.g. mouse and
human, are more likely to be coding regions, and thus exons for genes (O’Brienet al., 1999;
Parraet al., 2003). However, if genomes are too closely related, all regions are similar, not just
genes, and if genomes are too far apart, analogous regions may be too dissimilar to be found.
Thus a number of genomes with different evolutionary distances are needed to clarify the picture.
This reasoning also applies to regulatory regions. Identifying genes by genome comparison is
more useful for eukaryotes due to the difficulties in identifying the coding sequence boundaries
(e.g. Taheret al. (2004)), and the fact that prokaryotes genes are shuffled at a higher frequency,
making alignment of long DNA sequences less useful.

Genome 1

Genome 2

Similar at the translation level

Figure 1.6: Comparing relatively long DNA sequences identifies conserved regions and, hence, putative
coding regions.

Protein sequence comparisonThe most reliable method of gene finding is using homology
searches (e.g. using BLAST and/or FASTA). By blasting an entire protein database against
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the genome sequence, a large number of genes can be identified. A problem with prokaryotic
genomes is that they tend to be gene rich (80%-90% of the sequence is coding), which can make
it difficult to determine which of two or more overlapping reading frames contains a gene. In
addition, the quality of protein databases is not very high, which means finding genes without
known homologues cannot be based on such searches.

Statistical gene-findingMany prokaryotic gene finding programs exist, often based on the
identification of start and stop codons, and using statistical models (Delcheret al., 1999; Salzberg
et al., 1998). Although many programs exist for eukaryotes too, the job is made much more dif-
ficult by the presence of splice sites, introns (which can be much larger than the coding sequence
of the gene), and overlapping genes. In addition, the results must still be evaluated with other
methods such as homology models or cDNA libraries (see Matheet al. (2002) for a review).

1.5.3 Regulatory regions

Regulatory (promoter) regions in DNA sequences do not follow a strict pattern, which makes
the identification of promoter regions more difficult. In prokaryotes and eukaryotes, promoter
regions vary, although it is usually possible to find a DNA sequence (called the consensus se-
quence) to which all of them are very similar. For example, based on the study of 263 promoters,
the consensus in the bacteriumE. coli is TTGACA followed by 17 uncorrelated base pairs, fol-
lowed by TATAAT, with the latter, called TATA box, located about 10 bases upstream of the
transcription start site. None of the 263 promoter regions exactly match the above consensus
sequence.

As genomes of prokaryotes are coding-sequence rich, the location of the promoter is almost
always upstream of the gene, and methods of prokaryotic gene finding are relatively complete
and accurate, automated prediction of promoters is of little use. The identification of general
regulatory regions in prokaryotes usually follows from the identification of the gene or operon.

For eukaryotes it is more difficult. Not only can coding sequences be interspersed with
introns, the regulatory regions may lie within the introns or even the coding region itself. It is not
uncommon to find promoter regions hundreds of times bigger than the gene itself. For example,
the gene involved in the disease cystic fibrosis, CFTR, produces a 6100-bp mRNA transcript. The
transcript is produced from 27 exons scattered over 250,000(!) base pairs (250 kb) of genomic
DNA. During transcription, the introns are spliced out and exons are pieced together (Zielenski
et al., 1991).

Despite advances in computational promoter-prediction in eukaryotes, multiple cross-species
genome comparisons covering a range of distances, from closely to distantly related species, will
likely be the most fruitful approach (Enard & Pbo, in press).

1.5.4 Gene function

Hidden among the avalanche of genome sequences is potential knowledge about gene function.
Until recently, there have been two main ways of finding out more about a protein. The primary
source of information comes from biological experiments, either genetic, structural, or biochem-
ical. Once the function has been somewhat determined, one can search in the sequence data-
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bases for proteins with a high similarity. This is the ‘homology’ method, widely used to extend
knowledge from one protein sequence to another under the assumption that genes with enough
sequence similarity will likely be functionally similar as both sequences arose from the same
ancestral sequence. BLAST (Altschulet al., 1997) and similar programs are powerful enough so
that this process can easily be applied to whole genomes, resulting in roughly 40%-70% of new
prokaryote sequences receiving some functional assignment (Tatusovet al., 2000).

A problem is of course when there is no characterized sequence similar to the unknown
protein: sequence homology cannot be used in this case. But there are other methods, and this is
the focus of Chapters 2 and 3.

The process of labeling genes with their functions, whether predicted or experimentally con-
firmed, is calledannotation. Due to the human input required by current annotation methods,
genome annotation has proceeded much slower than the acquisition of raw sequences.

An example of annotation nomenclature is as follows:

Known Gene Predicted gene matches the entire length of a known gene.

Putative Gene Predicted gene contains regions related to known genes. Also referred to as
“like” or “similar to”.

Unknown Gene Predicted gene matches a gene or EST of which the function is not known.

Hypothetical Gene Predicted gene that does not contain significant similarity to any known
gene or EST.

General problems of annotation include:
a) The assignment of a gene function is highly probabilistic in nature. A major source of

uncertainty arises from the fact that assignment of gene function is often based on the functional
assignment of a gene with some sequence similarity.

b) The functional annotation can be correct, yet too broad. For example, the term “sigma-F
transcribed gene”2 is not very specific.

c) The annotation may contain no information about the context of the protein, for example,
which broader biochemical reaction it participates in e.g. histidine biosynthesis. A regulatory
protein may have a specific biochemical function that needs interacting proteins to make sense,
and these interacting proteins may be not fully known. This requires an annotation that mentions
the pathway the protein is involved in. Thus, the ‘function’ of the protein can have two correct,
but very different meanings.

There are pitfalls with blindly annotating sequences based on some arbitrary similarity thresh-
old. The difference of a single amino acid can change the function of an enzyme. For example,
many single gene diseases are often the result of a single mutation, e.g. cystic fibrosis. Also, the
sequential annotation of sequences can produce creeping errors. Suppose, for example, that we
have gene A whose function has been determined experimentally. Gene B has some sequence
similarity to A and is given a hypothetical function. Gene C is then found to be similar to B,

2bsu:BG10088 csfB, yaaM; sigma-F transcribed gene, from theBacillus subtilusgenome from the KEGG data-
base (Kanehisa & Goto, 2000)
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and given a putative function. This can continue until the query sequence shares little similarity
to the original characterized sequence A (for a review of quality control in molecular biology
databases see Aboaet al. (2000)). This means that annotation strategies must rely on a large
amount of human input from knowledgeable annotators.

1.6 Gene function prediction methods

This section details the state-of-the-art in gene-function prediction using non-homology meth-
ods. To clarify and avoid confusion: most non-homology methods still use similarity searches,
e.g. BLAST (Altschulet al., 1997), to find homologous sequences. However, they do not base
the predictiononly on this information. Rather, this information is used as a basis for further
exploration. What these methods have in common is that they use genetic variation between
organisms to estimate protein function.

1.6.1 Domain fusion method

This method is based on the observation that sometimes functionally related proteins in one
species are fused together in a multi-domain protein in another species (Marcotteet al., 1999).
The assumption is that if a composite protein is similar to two component proteins in at least
one other species, then the two proteins are likely to interact or be involved in the same reaction
or process. The composite protein is called a Rosetta Stone sequence in Marcotteet al. (1999)
because it helps to decipher the interaction between the protein pair (see Figure 1.7).

Figure 1.7: Domain fusion method to predict protein function: genes A and B are separate genes in one
genome, gene C is a multi-domain protein in another genome. Genes A and B are likely to be involved
in the same reaction or pathway because they have fused into C at some point. Figure from Enrightet al.
(1999).

In Enright et al. (1999), the authors compared the genes of two eubacteria (E. coli andH.
influenzae), an archaea (M. jannaschii), and a eukaryote (S. cerevisiae) with each other. They
showed that 215 genes or proteins from the three prokaryotes are involved in 64 gene fusion
events. The minimum number of genes involved in fusion events is 2.8%, based on the three
prokaryote genomes.
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1.6.2 Conservation of relative gene position

Related to the analyses above, an inference of functional relatedness can be made between
two proteins if they are located close to each other over multiple genomes (Figure 1.8). The
conserved-position information can be the preservation of genes as neighbours (Dandekaret al.,
1998), or preservation of genes in runs (Overbeeket al., 1999) where a set of genes share the
same direction of transcription.

Figure 1.8: Three different organisms with different gene orders. It is inferred that genes B and C are
functionally related because they are in proximity to each other in multiple genomes. (Figure adapted
from Marcotte (2000))

Tamameset al. (1997) classed all the genes fromH. influenzaeandE. coli into 9 functional
classes. They then performed statistics on neighbouring genes, and found that functionally re-
lated genes tend to be neighbors more often than unrelated genes.

The conservation of gene position has probably much to do with the organization of prokary-
ote genes intooperons, a set of sequential genes that are regulated by the same promoter, for
example thelac operon (Jacob & Monod, 1961). Horizontal gene transfer has been proposed as
a driving force for this organization (Lawrence & Roth, 1996). True identification of an operon
requires the identification of promoters and regulatory elements, but for gathering a subset of
likely operons, the above methods are well suited.

1.6.3 Clusters of Orthologous Groups (COG)

COGs (Tatusovet al., 1997, 2000, 2001, 2003) are sets of proteins from different (mostly prokary-
ote) organisms grouped so that their functional equivalence is maximised. A COG consists of
putative orthologous proteins from at least three different organisms, where each protein is the
symmetric top-scoring protein or bi-directional best hit in a sequence-homology search in the
other genomes. In other words, a query sequence from genome A has an orthologue in genome
B if the best match from genome B also returns the query sequence from genome A as the best
match. This must be true for at least three genomes to define a COG.

An assumption is that genes clustered in the same COG often have the same function. Thus,
functional information can be transferred to new sequences. The use of COGs can be a useful
step in genome annotation projects, especially now that the COG database was recently updated
to include more multi-cellular eukaryotes as their genomes have become available (Tatusovet al.,
2003).
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Some interesting observations arose by computing COGs for many species: 55-83% of pro-
teins encoded by bacterial and archaeal genomes can be placed into distinct and non-overlapping
COGs, suggesting that many genes present in bacteria and archaea are highly conserved.

The COG database has provided a platform for subsequent analyses, such as:

Identification of species-specific genes

Using the COG database, Forterre (2002) searched for all the genes present in hyperthermophile
genomes, but absent from all thermophile and mesophile genomes. He found only one, reverse
gyrase. This gene is clearly a crucial adaption to life at high temperatures.

To infer Phylogeny

Snelet al. (1999) proposed using the presence or absence of a set of genes to infer phyloge-
nies. Traditional phylogenies are constructed using sequence alignment and comparison, but are
sensitive to inconsistencies due to horizontal gene transfer, unrecognized paralogues and highly
variable rates of evolution. By using the COG database and gene content, a similarity score was
defined between two species as the number of genes that they have in common divided by their
total number of genes. The phylogenetic tree constructed correlated with the standard reference
of prokaryotic phylogeny which is based on sequence similarity of 16s rRNA (Olsenet al., 1994).

1.6.4 The use of the presence or absence of genes

Protein phylogenetic profiles

Pellegriniet al. provided a method for gene-function prediction based on the presence or absence
of genes within a genome (Pellegriniet al., 1999). The starting assumption is that the proteins
that function together, e.g. by forming a functional complex, will likely evolve in a correlated
fashion. Therefore during evolution, the functionally linked proteins will be preserved or elim-
inated as a unit. An additional argument supporting this assumption is the effect of horizontal
gene transfer on genome structure (Lawrence & Roth, 1996).

The prediction of gene function is accomplished as follows: starting with a genome, each
protein encoded in that genome is represented as a string of bits, where each bit represents the
presence or absence of a corresponding homologue in other genomes. The string of bits is called
aprofile (Figure 1.9).

A zero means no homologue has been found. The profiles are clustered according to their
similarity, and a group of similar profiles implies a common functional relationship. Note that
two proteins in the same organism are thus considered to be functionally related if the collection
of organisms in which homologues have been identified, more or less coincide (and not if their
sequences exhibit some degree of similarity). By returning the proteins with one or more bits
different, the scope is widened to include proteins that have had a counterpart replaced in one or
more species.

It was shown that proteins with a similar profile also have similar keywords in the annotation,
and vice versa, proteins with similar keywords tended to have similar phylogenetic profiles.
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Figure 1.9: The method of phylogenetic profiles is illustrated with four hypothetical genomes (top), each
containing a subset of several proteins labelled P1, ..., P7. The presence or absence of each protein is
indicated by 1 or 0, respectively, in the phylogenetic profiles given on the lower left. Identical profiles
are clustered in boxes on the right, with profiles differing by one bit connected by lines. The conclusion
at the bottom is that proteins P2 and P7 are functionally linked because they have the same phylogenetic
profile and, similarly, that proteins P3 and P6 are functionally linked. Note that two proteins classified
as functionally linked from this classification procedure neither requires nor implies sequence similarity.
Original figure from Pellegriniet al. (1999).

Three proteins3 were examined in more detail to see if the proteins with similar phylogenetic
profiles were functionally linked. For all three, almost all the proteins with identical profiles
were involved in the same function.

Extended phylogenetic patterns

Reichard & Kaufmann (2003) released an application that computed phylogenetic patterns as
in Forterre (2002) and Pellegriniet al. (1999) using the COG database ((Tatusovet al., 1997)

3The ribosomal protein RL7, the flagellar protein FlgL and the histidine biosynthesis protein His5.
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Perfect Match One-needed

{Gc} = {Gt} {Gc′} ∩ {Gc′′} ∩ {Gc′′′}... = {Gt}

Similarity Measure All-needed

‖ {Gc} ∩ {Gt} ‖
‖ {Gc} ∪ {Gt} ‖

≥ X {Gc′} ∪ {Gc′′} ∪ {Gc′′′}... = {Gt}

Table 1.1: Algorithms used in Levesqueet al. (2003).Gc represents the set of genomes withCOGc. Gt

represents the set of genomes with trait t. X is a threshold value that is adjusted between 0 and 1 to set the
stringency of the algorithm. A value of 1 for X generates the same results as the Perfect Match algorithm
(and the Include/Exclude method described in Section 2.1.3).

and Section 1.6.3), but allows one to relax the restrictions. Unfortunately, the program runs only
under Windows.

Differential genome analysis

Huynenet al.(1998) first introduced the idea of classifying genomes according to the phenotype
and then finding genes specific to that phenotype. From the genome ofH. pylori, they subtracted
the orthologues shared withE. coli andH. influenza. This resulted in a subset ofH. pylori’s
genes which would more likely contain genes responsible for features only seen inH. pylori.
The subset of genes was then analysed by the authors. This is the earliest work that is similar to
the research presented in the next chapter. The problem encountered in this work was the small
dataset (only three genomes), and the lack of a phenotype definition, as species specific genes
could cover a potentially large number of phenotypes.

Trait to Gene

This method by Levesqueet al. (2003) follows from the analysis in the previous paragraph and
is closest in ideas and implementation to the research presented in the following chapter. The
authors wrote some simple set-theoretic algorithms designed to extract genes from a genome
that has orthologues in some genomes but not in others. The genomes are classified into those
possessing a phenotype and those that do not. Then, one could gather the genes present in all
or most of one set of genomes (exhibiting the phenotype), and not present in another subset (not
exhibiting the phenotype).

The authors tested combinations of four algorithms (Table 1.1) usingB. subtilusas the query
genome, and the COG (Tatusovet al., 1997) database for the orthologues. With genomes classi-
fied according to the presence of flagella or not, a set of genes was predicted to play a functional
role in flagella. Under stringent settings, most of these predicted genes did indeed play a role in
flagella function, synthesis, or regulation (according to some pre-established sequence annota-
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tion). A subset of genes without flagella annotation was selected for further exploration. Three
of the genes from this subset were knocked out, and a reduction in motility was observed for
two of them (see Figure 1.10), confirming their role in flagella functioning. Potential limitations
of this method is the reliance on the COG database for the source of orthologues, as the COG
database only contains a representative set of genomes (see next chapter).

Figure 1.10: The motility was assayed for twoB. subtilisgene knockouts, yqeW (B) and yuxH (B).
Compared to the wild type, a reduction in motility was observed (the mutant covers less of the agar plate),
confirming a role in flagella function for the two genes. (Photo from Levesqueet al. (2003) ).

1.6.5 Correlated mRNA measurements

The methods described above require the use of homologous genes, even though sequence ho-
mology was not the basis for function assignment. Other methods do not require direct sequence
homology. They still rely on the assumption that genes rarely work in isolation and that func-
tionally linked genes are often expressed at the same time or place. By measuring the cellular
mRNA levels using DNA microarrays (Lashkariet al., 1997), serial analysis of gene expression
(SAGE) libraries (Velculescuet al., 1995), or expressed sequence tag (EST) libraries (Adams
et al., 1991), and varying the conditions that cells are grown in or choosing cells from different
tissues/species, it is hoped that enough variation in gene expression is observed to delineate the
functionally-linked genes. Clustering seems to perform well for strongly expresses genes, but
less so for other genes, and also requires large data sets.

1.6.6 Protein co-expression analysis

Similar to mRNA co-expression analysis, proteins can also be measured under different condi-
tions and co-expression patterns established. Protein levels can be measured directly via mass
spectrometry of protein mixtures and by various two-dimensional electrophoresis gel techniques.
This approach is likely to yield better results as the mRNA and protein levels in a cell are ba-
sically uncorrelated (Gygiet al., 1999). There is a growing awareness that post-transcriptional
gene regulation is more complex than previously anticipated (especially in eukaryotes), and could
explain the lack of correlation between gene numbers and complexity (Mattick, 2001). In ad-
dition, the fate and function of a protein within a cell is often dependent on the relative spatial
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localisation within a cell, meaning that multiple combined technologies (e.g. Schubert (2003))
are probably needed to fully understand protein function.

1.6.7 Gene function prediction using protein 3D structures

Gene function prediction is also possible if there is a similar structure in a database, even if there
is very little sequence similarity. The active site of an enzyme is highly constrained during evo-
lution, and thus is the most conserved, while the rest of the protein may be mostly ‘scaffolding’.
In this case, alignment of two structures may show which amino acids are conserved. Functional
similarity is implied between two proteins when the active site of both is conserved.

The increase in genomic sequences also fuels the growth of related databases, such as pro-
tein sequence, 3D structure, and other more specialized databases. The exponential increase in
biological data presents several challenges, from searching and storage to integration (Davidson
et al., 1995).

1.6.8 Network reconstruction from protein function predictions

Most methods described above are large scale in nature or amenable to genomic-scale approaches.
This means that one can computationally begin building a genome-wide network of interactions.
This was done experimentally for yeast proteins by Osman (2004). In addition, much work is
being done on reconstructing networks computationally from e.g. microarray data. This is the
focus of the second part of this thesis, beginning with Chapter 1.

1.7 Graphs and networks: definitions and examples

The study of networks pervades all areas of science, from neurobiology to statistical physics (Stro-
gatz, 2001), including the analysis of gene and protein interactions. The concept of networks is
not just a philosophical concept. Research into real world examples of networks reveal proper-
ties such as the dynamics and stability of systems (Albertet al., 2000), and motivate hypothesis-
driven research into new directions (Strogatz, 2001). For example, many networks, both bio-
logical and man-made, exhibit a property called ‘scale-free’ (see Figure 1.11). Put simply, this
means that the distribution of edges per node does not change with the size of the network.
Several properties distinguish scale-free networks from other types of networks such as ‘expo-
nential networks’ (exponential refers to the node degree distribution). Scale-free networks have
a smaller proportion of nodes with many links; scale-free networks retain overall connectivity
much longer with the random removal of nodes. However, the overall connectivity can fall faster
after the targeted removal of nodes.

In many biological fields, a network is a principal means to describe what is known about
an entire collection of entities. In simple terms, they detail the relationships of entities with
each other. As biology is very much about its objects and how they interact, it is a very natural
formalism.
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Figure 1.11: The analysis of global properties of different networks have identified two types that differ
according to the probability distribution of edges. The exponential network (left) is homogeneous: most
nodes have approximately the same number of edges. The scale-free network (right) is inhomogeneous:
the majority of the nodes have one or two links, but a few nodes have a large number of links. This
property has several interesting consequences, for example a higher resistance to random attacks (Albert
et al., 2000).

1.7.1 Definitions

A graph is a symbolic representation of a network. In the work presented in this thesis, it implies
an abstraction of the reality it represents as a set of linked nodes. Intuitively speaking, a graph is
a set of objects called vertices (or nodes) connected by links called edges (or arcs). Typically, a
graph is depicted as a set of dots (i.e., the vertices) connected by lines (i.e., the edges).

Formally, a graphG = (v, e) is a setv of vertices (nodes) connected by edges (links) repre-
sented by a sete of pairsx,y of elements ofv representing the nodesx andy linked by the edge
represented by the pairx,y. Depending on the network studied, edges may or may not have a
direction; edges joining a vertex to itself may or may not be allowed, and vertices and/or edges
may be assigned weights, that is, numbers. If the edges have a direction associated with them
(indicated by an arrow in the graphical representation), then it is a directed graph. A graph with
only one vertex and no edges is the trivial graph or “the dot”. A graph with no edges is known
as the empty graph, but is sometimes also known as the Null graph.

Graphs can be represented conveniently by anadjacency matrix. This is anN × N matrix,
whereN is the total number of vertices in the graph. If there is an edge from some vertexx to
some vertexy, then the elementMx,y would be 1, otherwise it would be 0. This makes it easier
to find subgraphs, and to reverse graphs if needed. In addition, for weighted graphs, the number
may be any allowed number representing the weight of the edge from vertexx to vertexy.

Commonly used properties of graphs: thedistance, which is the sum of the edge weights
between two nodes; thediameter, which is the number of nodes which must be traversed in order
to travel from one node to another when paths which backtrack, detour, or loop are excluded from
consideration; andconnectivity.

1.7.2 Examples of network studies in different fields

Metabolic networks: The availability of whole genomes makes it possible to catalogue all
possible reactions within a cell. Metabolic networks describe the metabolism of an organism,
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the chemical system that generates nucleic and amino acids, sugars: in fact all the chemical
constituents that the cell needs in order to survive (Figure 1.12).

Figure 1.12: The biochemistry of a cell is commonly regarded a large network. The above biochemical
reaction network shows all the known mass transformation reactions ofE. coli intermediate metabolism
from EcoCyc (Karpet al., 1996). Each node represents a particular biochemical species, and an edge
indicates an enzymatic reaction into another species. No details of the enzymes, regulatory reactions, or
reaction directions are shown.

Ecological networks: In ecology, food webs (Figure 1.13) describe the food sources of
species. Food webs are then digraphs where the vertices are species, and the directed edges link
to those other species they consume, resulting in sometimes rather complex webs. Food webs are
crucial in aiding understanding of ecosystem dynamics. Food webs enable the identification of
‘keystone’ species (Kotliaret al., 1999). A classic example of a keystone species is the sea otter
(Enhydra lutris). The sea otter preys on sea urchins in large numbers. When sea otter populations
were removed by trappers and fishermen, sea urchin populations increased dramatically which
led, in turn, to overgrazing of algae and kelp. Entire kelp beds were consumed, which caused
declines in important commercial fish species that were dependent on the kelp beds. When sea
otters were reintroduced, the kelp beds recovered (Estes & Palmisano, 1974).

Social networks: Social network analysis uses graph-theoretic concepts to describe, under-
stand, and sometimes even predict social structures indicating, e.g., emergent patterns of rela-
tionships (e.g. Figure 1.14).

1.8 Modeling and simulating GRNs

The integration of recent advances in high-throughput biological techniques and the growing bi-
ological databases have enabled the construction of large-scale models of gene transcription and
metabolic pathways (Covertet al., 2004). These models form the basis in answering questions
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Figure 1.13: Food web of Little Rock Lake, Wisconsin, currently the largest food web in the primary lit-
erature (Williams & Martinez, 2000). Nodes are functionally distinct ‘trophic species’ containing all taxa
that share the same set of predators and prey. Height indicates trophic level, with mostly phytoplankton
at the bottom and fishes at the top. Cannibalism is shown with self loops, and omnivory (feeding on more
than one trophic level) is shown by different coloured links to consumers. (Figure from Strogatz (2001))

.

concerning the evolution of entire genomes and regulatory networks (Pappet al., 2004), as well
as the fine grained structure of the latter (Shen-Orret al., 2002).

Typically, metabolic and regulatory (or signaling) networks are viewed as different entities.
Modeling metabolic networks is an older research field due to the more developed experimental
techniques to quantify the network components. In metabolic networks, the flow of mass and
energy is the essential purpose of the machinery. In regulatory networks, the purpose is the
regulation of other processes, i.e., the flow of information. The use of energy and mass flow is
a requirement, but not the point. However, there is an essential component of regulation also in
metabolic networks–the enzymes are regulated through interactions with substrates and products
so that certain conditions in the cell are upheld.

Genomic databases such as KEGG (Kanehisa & Goto, 2000) contain not only genes and
proteins but also metabolic pathways: a user can graphically navigate through common metabolic
pathways. As no single organism possesses all pathways, organism specific pathways can be
established by highlighting the genes present only in the query organism.

Several high-throughput methods have been developed recently that provide a broad glimpse
at various cellular networks. The large-scale yeast two-hybrid screens (Uetzet al., 2000) measure
the binding of one set of proteins with a library of 6000 others, providing a large graph and a
context for protein interactions. Leeet al. (2002) performed a large-scale system-wide assay
of transcription binding factors, producing a network of transcription regulation. The raw data
from these experiments has been used by others as a basis for studies into network topology and
evolution (Miloet al., 2004; Conant & Wagner, 2003).

Literature mining and sequence comparisons together (e.g. Salgadoet al. (2004)) are also
used for reconstructing global cellular regulation networks, and provide the raw data for several
interesting studies into network structure (Shen-Orret al., 2002; Conant & Wagner, 2003; Milo
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Figure 1.14: The September 11th terrorist network. In the network map above, the hijackers are colour
coded by the flight they were on. The dark grey nodes are others who were reported to have had di-
rect, or indirect, interactions with the hijackers. The gray lines indicate the reported interactions (from
major newspapers on the Internet), a thicker line indicates a stronger tie between two nodes. From
http://www.orgnet.com/hijackers.html

.

et al., 2004).
Recently, there has been much interest in the possibility of reconstructing4 regulatory inter-

actions from DNA microarray experiments. Several methods for modeling and reconstructing
GRNs have been proposed in the literature and will be reviewed in the next two sections.

The different computational methods used to reconstruct gene regulatory networks depend
very much on the mathematical formalism used to model the networks. What follows is a dis-
cussion of different mathematical formalisms and computational methods to model and simulate
gene regulatory networks. What is not discussed here is metabolic modeling: modeling gene
regulatory networks is different in that small metabolites are usually ignored, the focus is on the
information processing of biomolecules rather than understanding the flux of metabolites.

4In this text, the word ‘reconstruction’ means the process of elucidating the structure and dynamics of gene
regulatory networks from experimental observations.
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Mathematical models of gene networks range in their detail, from simply stating if there is
a connection or not between two nodes, to modeling the strength and type of the interaction, to
full differential equations describing the dynamics of the system. Nodes usually represent genes
or proteins, but can also represent groups of genes, depending on the granularity and detail of the
model. Edges represent the interactions between the nodes.

There are many ways to represent gene networks (de Jong, 2002), and the following discusses
the most common and relevant representations for regulatory network reconstruction. Although
some simulation methods are not currently utilised by reconstruction methods, such as stochastic
simulations, they are included because they are important for analysing dynamic genetic regu-
latory networks and provide a context for the choice of formalism and simulation used in this
study. Some formalisms are not discussed here because they are not suited for network recon-
struction methods, such as rule based formalisms (Meyers & Friedland, 1984; Brutlaget al.,
1991). Others are omitted because their impact regarding the dynamic analysis of genetic reg-
ulatory networks has been limited, including Petri nets (Goss & Peccoud, 1998; Hofestaedt &
Thelen, 1998; Matsunoet al., 2000), transformational grammars (Collado-Videset al., 1998),
and process algebra (Regevet al., 2001).

1.8.1 Directed graphs

All formalisms discussed here refer to directed graphs. This is perhaps the simplest description
of networks, where edges are represented simply as links from one node to another, with possibly
a direction (Figure 1.15). Extra information is sometimes included, such as the edge weight. This
description is most often shown in published studies of gene regulation. In fact, most databases
of gene and protein interactions can be interpreted as storing directed networks, for example
KEGG (Kanehisa & Goto, 2000), the database of genes and metabolic networks. A directed
graph description says nothing about the dynamics of the network, it is simply a description of
the topology.

Figure 1.15: A simple directed graph. The circles are called nodes (or vertices) and could represent genes
for example. The arrows connecting the nodes are called edges, and represent regulatory interactions.
The network is directed because gene interaction is not necessarily symmetric. This is a simple way to
represent gene regulatory networks.

1.8.2 Boolean networks

The study of Boolean networks as abstractions of genetic regulatory networks was pioneered by
Stuart Kaufmann in 1969 and summarised in his book “The Origins of Order : Self-organization
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and Selection in Evolution” (Kauffman, 1993) where, for example, Boolean network models
were used to study the global properties of large-scale regulatory systems.

In Boolean networks, genes are either in one of two states: active or “on”, represented by 1,
and inactive or “off”, represented by 0. The interactions between genes are expressed as boolean
functions computing the state of any gene as a function of the states of other genes. As each gene
can have only two states, the state space of the network consists of2n states. The transition from
one state to the next can be computed in one step (synchronous) or with a delay (asynchronous).
Boolean networks are deterministic which means the state space is finite and that the network
will eventually reach a steady state or a state cycle, also called a point or dynamic attractor,
respectively.

Boolean models make simplifications about the dynamics of gene networks, enabling the
efficient analysis of large networks. However, there are several drawbacks. By ignoring interme-
diate states of gene expression and updating genes synchronously, realistic dynamic behaviour
is lost. A simple example illustrates this: imagine two genes that negatively interact with each
other, i.e., reduce the other gene’s state to 0 when this state is 1. In addition, both genes have
positive interactions from other genes. In real cellular systems, this is called a bi-stable switch,
where one gene will suppress the activity of the other resulting in a stable steady state. However,
in a Boolean model, this setup will cause an oscillation, as each gene successively reduces the
state of the other to 0. This is a completely different behaviour from that observed in real genetic
systems, which will consequently affect the dynamics of the entire network.

1.8.3 Generalised logical networks

These can be viewed as an extension of Boolean networks, where instead of only two possi-
ble states for genes, multiple states exist. These models have been described most recently
by Thomas (1991). In these models, genes have an abstract level of concentration. That is, its
states are not given by numbers expressing its concentration; rather, they are characterised by
the various sets of genes it can influence at its various states, where each state is associated with
an influence on a subset of it targets. Specifically, if a gene influences the concentration ofp
other genes, then it may have up top + 1 different states. The state of a gene is determined by a
function of the states of the influencing genes.

As the model consists of a finite number of states, the number of steady states can be ex-
haustively determined. The effectiveness of this model has been demonstrated in a number of
small-scale regulatory systems such asλ phage infection inE. coli (Thieffry & Thomas, 1995),
pattern formation inDrosophila(Snchez & Thieffry, 2003), and flower morphogenesis inAra-
bidopsis(Mendozaet al., 1999).

Despite this formalism showing promise in modeling small systems, it does not scale well
for large networks and lacks the predictive power of physically based models (Gilman & Arkin,
2002).
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1.8.4 Differential equations

Differential equations are probably the most frequently used formalism for modeling dynamical
systems in science and engineering and have also been used to study gene regulatory networks.
If a gene network consists ofn entities (proteins, mRNA, and/or small molecules), there existn
rate equations, one for each entity, describing its rate of synthesis and decay. The general form
of the equation is:

dxi

dt
= fi(x1, ... , xn) (1.1)

wherexi is the concentration of an entity , and its rate of synthesis and degradation is de-
pendent of the concentrations ofx1, ..., xn (the other entities in the network).fi is called the
regulation function, as it is a function of other metabolites and gene products. Iffi is positive,
xi will increase in concentration. Iffi is negative, the concentration ofxi will decrease, however
xi cannot go below zero, as this makes no biological sense. Time delays, for example wait-
ing for the transcription to finish, can also be represented. Mathematical methods for modeling
metabolic biochemical reactions by rate equations are quite highly developed (for introductions
see Cornish-Bowden (1979); Heinrich & Schuster (1996); Voit (2000)).

Linear models

Despite the fact that gene regulatory systems are inherently non-linear, assuming linear inter-
actions can make the system much more tractable, in that solutions to the system can be found.
Linearity can also be assumed when analysing a system in a small neighbourhood of a given state.
Most linear equations of gene regulation have at their core a linear regulation function, where
total regulatory input from other genes is determined by summing the regulatory influences:

hi =
∑

j

wjixj (1.2)

wherexj is the expression level of genej andwji is the weight of genej to genei. A posi-
tive value models activation while a negative value models repression. This results in a linear
equation of the form

dxi

dt
= hi + bi (1.3)

wherebi is a basal rate of expression. Assuming the basal rate of transcription,bi, is the
same for all genes, the regulatory network can be represented by the matrixwij of regulatory
coefficients (See Figure 1.16).

An example of a linear system of two genes is shown below. The slope ofdx1

dt
is given in

Figure 1.17.

dx1

dt
= w11x1 + w12x2 + b1

dx2

dt
= w21x1 + w22x2 + b2
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Figure 1.16: Top: directed graph showing the gene network controlling flower morphogenesis inAra-
bidopsis thaliana, proposed by Mendozaet al.(1999). Green arrows represent activation, red lines ending
with a perpendicular line indicate inhibition. The network can also be represented by the matrix below the
network. Adapted from de la Fuenteet al. (2002).

The reaction rates ofx1 andx2 are linear functions of the gene product concentrations plus
a constantb1 or b2, respectively, representing a basal level of transcription. There are variants of
this model (Mjolsnesset al., 1991; Chenet al., 1999; D’Haeseleeret al., 1999; Weaveret al.,
1999) which all at the core have linear additive weights for the regulation function, in the simplest
case being simply the addition of weights and gene levels of Equation 1.4:

The assumption of linearity may be reasonable if the system is near some given steady state,
however the predictive power of the model is limited outside that particular state.

Non-linear models

In reality, regulation functions must be non-linear because they saturate at some point. The most
common approach is to use some kind of saturating function. Two such functions often used to
model gene regulatory interactions are the sigmoidal transfer function, which is commonly used
to model neural networks, and the Hill function. Both models assume that regulatory effects are
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Figure 1.17: The quantityw11x1 +w12x2 + b1 is the rate of change of the first genex1 as a function of the
first gene(x1) and the second gene(x2). Geometrically, it is given by a plane with slopesw11 andw12

in the first and second co-ordinate directions, respectively. Biologically, these two numbers represent the
strength of the effect of the two genes on the first gene (so thatw11 in particular quantifies the feedback of
the first gene back on itself). The parameterb1 is the height of the plane above the origin(x1, x2) = (0, 0).
Biologically it represents the background level of transcription of the first gene. Figure adapted from Stark
et al. (2003).

approximately additive, with the non-linearity confined to a saturating function. Both functions
sum the regulatory inputs to a genei as in the linear model

hi =
∑

i

wjixj (1.4)

wherewij is the matrix of regulatory coefficients (Figure 1.16), and then convert the regulatory
sumhi to a saturating function. Thesigmoidal transfer functionhas the form:

dxi

dt
=

1

1 + e−(αihi+βi)
− µixi (1.5)

whereαi andβi are two gene-specific constants that define the shape of the dose-response curve
(Figure 1.18) for genei (the termdosemeans the total input weight e.g. from Equation 1.4, and
responseis the rate of transcription), andµi is the degradation rate for gene producti. The con-
stantαi can be any positive real-number value and defines the slope of the curve at its inflection
point (50% maximal expression). The constantβi can be any real number and moves the curve
to the right as it becomes negative (Figure 1.18).

The other non-linear regulation function often used is theHill equation (Hill, 1985). For
modeling gene regulatory interactions it often has the form:

dxi

dt
=

Φ(hi)
m

Φ(hi)m + θm
i

− µixi (1.6)

whereΦ(hi) is a Heaviside function, which ensures that negative weights do not lead to
negative concentration values, defined byΦ(x) := x for all positivex andΦ(x) := 0 otherwise,
θi is the threshold for the regulatory influence , andm > 0 determines the steepness of the slope

36



1.8. MODELING AND SIMULATING GRNS CHAPTER 1. BACKGROUND

á=2.0
á=0.5

á=1.0

Dose

R
es

po
ns

e

Figure 1.18: Dose-response curve for the sigmoidal transfer function (Equation 1.5). The dose is the sum
of regulatory inputs given in Equation 1.4, and the response is the change in expression,dxi

dt . Genes with a
large correspondingαi will shift rapidly from near zero expression to near maximal expression when the
activating inputs surpass some gene specific threshold, i.e. they will display switch-like behaviour. Those
with a smallαi will have a nearly linear response over the range of regulatory inputs. Asβi increases the
curve shifts to the left.

(see below), andµi is the degradation rate for gene producti. Ignoring the degradation term
µixi, the regulatory function ranges from 0 to 1, approaching 1 ashi → ∞. Whenm > 1, Hill
curves have a sigmoid shape, in agreement with experimental evidence (Yagil & Yagil, 1971;
Yagil, 1975), see Figure 1.19.

Inhibition is handled slightly differently by the two functions. In the sigmoidal transfer func-
tion, a negative value ofhi means a lower rate of gene expression, but never reaching zero. For
the Hill function, lowering inhibition can result in an expression rate of zero.

Despite being more realistic than linear models, there are a number of limitations to the above
equations. Both regulation functions (Equation 1.5 and 1.6) assume that each gene has a static
dose-dependent response to activating and repressing regulatory influences. It is assumed that
each gene will respond with the same response curve to both positive and negative regulatory
influences. Although the expression functions are non-linear, it assumes that the overall effect
of the involved “partners”x1, ..., xn on xi can be modelled by composing a linear real-valued
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Figure 1.19: Hill plot: dose-response curve for the Equation 1.6. The dose is the sum of regulatory inputs
given in Equation 1.4, and the response is the change in expression,dxi

dt . Form = 1, the curve is of the
Michaelis-Menten form (Voit, 2000). Form = 2, the curve is similar to the sigmoidal transfer function
(Figure 1.18).

function ofxi, ..., xn with a non-linear function in just one variable, coming about by a weighted
sum of the concentrations of the individual gene products. However, it is known that some
transcriptional regulators have different activities depending on their binding partners (Garrell &
Campuzano, 1991)

Because the Hill and sigmoidal transfer functions are non-linear, analytical solutions to the
rate equations (1.1) are difficult to obtain. The equations can either be simplified into e.g. linear
forms (see above), or numerical techniques can be applied. By numerically simulating the equa-
tions, the solution to the equations is approximated by computing valuesxi(t0), ..., xi(tm) for xi

at consecutive time stepst0, ..., tm, i = 1, ..., n (Lambert, 1991). There have been a number of
well-studied regulatory systems that have been simulated numerically (see de Jong (2002) for a
review).

A major problem with numerical simulations of regulatory systems is the lack ofin vivo or
in vitro measurements of the kinetic parameters of the rate equations. This problem may be
alleviated by the fact that (a) regulatory systems are by necessityrobustand tolerant to changes
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(i.e. mutations or measurement errors) in the kinetic parameters (von Dassowet al., 2000), and
(b) large-scale gene-expression measurement techniques may produce bounds for certain values.

According to the literature reviewed here, the sigmoidal transfer function is used more com-
monly for modeling gene networks than the Hill function. The Hill function is often used to
model co-operative binding systems, where it has some validity (Hill, 1985). However in all the
papers reviewed here, it is assumed that the binding sites are independent or, at least, the regu-
latory inputs are linearly additive (Equation 1.4). In most studies, it appears that only a general
saturating function is needed and that either functions could be used without altering results or
conclusions.

Other rate equations

Piecewise-linear differential equations
These are a special case of non-linear differential equations. The sigmoid shape of the curve in
Equation 1.6, which gives rise to switch-like behaviour, is approximated by discontinuous step
functions (Thomas & D’Ari, 1990). They are conceptually similar to Boolean networks and the
simplicity enables easier mathematical analysis.
Qualitative linear differential equations
These are another generalisation of linear equations where the variables take on discretequalita-
tive valueswhich abstract the real value. An example of an application has been given by Heidtke
& Schulze-Kremer (1998), where a model was constructed that consisted of seven QDEs repre-
senting different stages ofλ phage growth. Each QDE describes the infected bacterium including
λ phages, viral DNA, ribosomes, mRNA and proteins, and how they interact to control cellular
events. A major problem with qualitative differential equations is that they do not scale well
unless the behaviour in phase space is tightly constrained, which means that the system must
already be well studied.

1.8.5 Stochastic approaches

In real cellular systems, genes and regulatory processes are stochastic processes subject to bio-
chemical noise (Raoet al., 2002; Blakeet al., 2003). Although differential equations allow
highly detailed models, down to the level of individual molecules binding to each other or to
DNA, they assume that molecular concentrations vary continuously and deterministically. When
the number of molecules in a particular reaction is small, stochastic effects can play a large role,
and models should then include a stochastic component (Thattai & van Oudenaarden, 2001).
There are three main stochastic approaches used to model gene regulatory networks: stochastic
differential equations, stochastic particle simulations, and Bayesian networks.

Stochastic differential equations and particle simulations

Modeling of gene regulatory networks using stochastic differential equations is at a developmen-
tal stage. Tian & Burrage (2004) introduce a model based on the sigmoidal transfer function
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(Equation 1.5) where Poisson random variables are introduced into the gene product synthesis
and degradation process.

Rather than using differential equations, some authors have proposed a discrete and stochastic
model of gene regulation (Gillespie, 1977; McAdams & Arkin, 1997; Arkinet al., 1998). The
numbersX = X1, ..., Xn of distinct molecules are the state variables, and a joint probability
distributionp(X, t) is introduced to express the probability that at timet the cell containsX1

molecules of the first species,X2 molecules of the second species, etc.
Another technique for simulating genetic systems is to directly simulate the time evolution

of a discrete number of particles. In such a stochastic simulation by Gillespie (1977), stochastic
variables indicate when the next reaction will take place and what kind of reaction it will be.

Despite many improvements to stochastic algorithms (for a review see Menget al. (2004)),
the complexity of estimating, solving, and analysing stochastic equations means that they are
rarely used for larger networks with more than a few genes (Kepler & Elston, 2001).

Although stochastic simulations are closer than differential equations in approximating the
underlying reality, this is not necessarily an advantage. The stochastic approach is computa-
tionally very expensive as individual molecules and reactions are simulated, limiting the size of
the simulations. At large scales, stochastic effects may level out, meaning the continuous and
deterministic models may be accurate enough an approximation (Gillespie, 2000).

Bayesian networks

Bayesian networks are probabilistic graphical models that represent the state of each gene as a
multivariate joint probability distributions via a product of terms (Friedman, 2004). The joint
distributions over a setX = {X1, ..., Xn} of random variables is represented as a product of
conditional probabilities, where each variableXi is associated with a conditional probability
P (Xi | U i) andU i ⊆ X is a set of variables that are called the parents ofXi. Thus, the parents
of Xi directly influence the choice of values forXi (Figure 1.20).

A B

E

CD

P(C| A,B)

A    B    0      1

0    0   0.9   0.1

0    1   0.2    0.8

1    0   0.9    0.1

1    1   0.01   0.99

Figure 1.20: Left: a Bayesian network with five random variables, where vertices (A to E) are labeled
with variable names. Edges represent direct dependencies. Right: the table is the conditional probability
distribution for the vertexC, where the expression level of its parents is discretised to a Boolean value. The
product form specified by this Bayesian network isP (A,B, C, D, E) = P (A)P (B)P (C | A,B)P (D |
A)P (E | C).

An advantage of using Bayesian networks to model gene networks is that it deals with the
stochastic aspects of gene expression and noisy data in a natural way, and can be used when
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knowledge of the system is incomplete. However, the dynamical aspects of gene expression are
not directly modeled, as the networks are acyclic, preventing network structures such as feedback
loops to be modeled. This can be overcome with the use ofDynamic Bayesian Networks(Murphy
& Mian, 1999).

1.9 GRN reconstruction methods

What follows is an overview of recently published methods of reconstructing gene regulatory
networks from microarray data. The reconstruction methods are categorised according to the
underlying model of gene regulation.

1.9.1 Reconstruction methods using directed graphs

As all gene-network models are in some sense directed graphs, the term here meansonlydirected
graphs, in that there is no modeling of the regulatory dynamics.

Many experimental techniques produce data in the form of directed graphs (Lashkariet al.,
1997; Osman, 2004) and many databases store information in the same form (e.g. Kanehisa &
Goto (2000)), making comparison and validation of results possible. However, directed graphs
are often produced from experimental data because such a representation contains less ambi-
guities, which means however that subtle, complex, or dynamic interactions usually cannot be
represented. Most methods that use a dynamic model of gene regulation have difficulty testing
predictions, as experimentally determined parameters for dynamic models are very difficult to
acquire.

Reconstruction methods that ignore complex or dynamic interactions are often based on a
form of clustering, where genes with a similar change of expression following a perturbation are
clustered together (Arkinet al., 1997; Tavazoieet al., 1999; Jorgensenet al., 2002). This can
identify a set of genes for closer investigation, or establish a functional cluster to which a partic-
ular gene belongs. Clustering genes is not sensitive enough to distinguish intermediate reactions
between two genes, to determine the nature of reactions within a cluster, or to understand the
regulatory dynamics. It is useful as a first step for understanding complex processes.

Qianet al. (2003) used support vector machines (SVMs) to predict regulatory relationships
of yeast expression data. SVMs require a training set for which Qianet al. used two publicly
available transcription-factor-binding databases. A problem encountered was the lack of negative
examples required to train the SVM. This was partially solved by using well studied transcription
factors where the DNA binding sites are known. Any genes without a matching upstream DNA
binding site constituted a negative example. They found that simple correlations of gene expres-
sion are not enough to correctly predict a regulatory relationship; gene expression time-series
(profiles) were needed. The overlap between the predicted and experimentally derived regula-
tory relationships was small. However, the overlap between different experimental data sets from
different groups was also small, indicating that the time and the state of the cell can drastically
alter the network of regulatory interactions, as suggested by Schubert (2003); Luscombeet al.
(2004).
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1.9.2 Reconstruction methods using Boolean models

Liang et al. (1998) have developed an algorithm called REVEAL to infer Boolean networks
from state transition tables, which correspond to time-series data. Akutsuet al. (1999) proved
thatO(log n) expression patterns are necessary and sufficient to identify the underlying Boolean
network ofn genes correctly with a high probability if the maximum number of incoming edges
is bounded.

Akutsuet al. (2000) propose two models: a qualitative Boolean network model with noise,
and a power-law model called an S-system, i.e., systems based on a particular type of non-
linear differential equations. An inference algorithm is presented and tested on both network
models. They found that for both models, correct prediction requires many different time-series
with different initial values, representing different environmental inputs or gene mutations. The
method using S-systems is not robust when noise is included in the system. They concluded
that using linear equations in network reconstruction methods will make the methods difficult to
apply to real data, as many real regulatory relationships are non-linear. The predictions were not
compared with experimental data, as none were available.

1.9.3 Reconstruction methods using differential equations

Linear models, while being less realistic, can employ a large amount of tools available from
linear algebra. Given an equidistant time series of expression data, one can use linear algebra to
find a least-squares fit to the model. D’Haeseleeret al. (1999, 2000) showed that a simple linear
model could infer biologically relevant regulatory relationships from real data.

Chenet al.(1999) presented a linear model including both mRNA and protein concentrations
and two methods (one of which uses Fourier transforms) to reconstruct the model from gene
expression data. Both reconstruction methods require extra assumptions: for the linear algebra
approach, called Minimum Weight Solutions to Linear Equations, the assumption is that the
number of regulators for each gene is a small constant, otherwise the method is intractable. For
the method that uses Fourier transforms, gene expression has to be periodic in the cell cycle.
Interestingly, the models did not lead to acceptable results with only mRNA levels measured –
the protein concentrations were also required.

Methods of reconstruction using non-linear models require more general techniques due to
complexity problems. Mjolsnesset al. (1991) presented a model of development, called the
connectionist model (D’Haeseleeret al., 2000), that incorporated a phenomenological model
including gene regulation based on neural net dynamics coupled with cell events such as cell
division. Simulated annealing was used to fit the model to spatial data. Simulated annealing is a
global optimisation method that is designed to avoid getting stuck in (non-global) local optima,
however, unlike the evolutionary algorithms outlined in Section 1.10, there is no recombination
between solutions.

Tominagaet al. (1999) represent gene regulatory networks with S-systems, which they at-
tempt to fit to data using Genetic Algorithms (GAs) (section 1.10.2). Although the algorithm
could accurately reproduce the parameters of a given S-system, the size of the system had to be
kept very small (>= 5), otherwise the numbers of parameters to estimate became too large. GAs
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are also used in Wahde & Hertz (2000) where genes are modeled as continuous-time recurrent
neural networks, similar to Equation 1.5, however the reconstruction algorithm deals withclus-
tersof genes rather than individual genes. Similarly to Tominagaet al.(1999), the approach was
only evaluated on very small networks, in this case with 4 genes.

It is demonstrated in Weaveret al. (1999) that a ‘weight matrix model’ (D’Haeseleeret al.,
2000) (which also uses Equation 1.5) could accurately reconstruct some randomly generated
networks. Gene networks were modeled to include external inputs, representing environmental
signals. The time series from a simulated network is ‘de-squashed’, giving a linear equation to be
solved, which then results in a predicted weight matrix. The reconstruction method has difficulty
with genes with very high or very low expression rates. In addition, the method relies on the
assumption that it is possible to detect the maximal expression rate for each gene.

A ‘coarse-grained’ approach is described in Wahde & Hertz (2000) where regulatory net-
works are modeled by continuous-time recurrent neural networks, and reconstructed with a ge-
netic algorithm. The term ‘coarse grained’ is used because individual genes with similar expres-
sion patterns are clustered into ‘waves’, reducing the complexity of the problem but also reducing
the resolution. This was done because the reconstruction algorithm could not cope with a gene
size greater than 4. A limitation to the method was that edges are not created or destroyed during
the reconstruction procedure.

1.9.4 Reconstruction methods using Bayesian networks

The natural way Bayesian networks can account for stochastic aspects and errors in the raw data
have made them a popular tool for network reconstruction (Friedman, 2004). Pe’eret al. (2001)
used the framework of Friedmanet al.(2000) to go beyond clustering genes based on expression
data to infer a finer structure, such as mediation, activation, and inhibition. Instead of assuming a
Boolean expression level for each gene as in Figure 1.20, Pe’eret al. introduce a procedure that
calculates how many discrete levels of expression are needed for each gene. The methods provide
an automated approach to finding significant subnetworks of interacting genes, using microarray
experiments with perturbed levels of gene expression. Unlike most other studies, the authors
applied their techniques to real data, in this case∼280S. cerevisiaedeletion mutants. For three
closely inspected genes, Pe’eret al. claim that the regulatory role was correctly reconstructed.

1.10 Evolutionary algorithms

Evolutionary algorithms represent a form of machine learning that is inspired by biological evo-
lutionary processes. It has been observed since the 1950s that evolutionary processes can lead
to highly optimised solutions to complex problems, where the solution space is too big for an
exhaustive search for the global optimal solution. There are a variety of evolutionary computa-
tion models that have been proposed and studied. They share a common conceptual base, where
a population of randomly generated solutions are evolved. The individual solutions in one gen-
eration are given a fitness value that reflects how good the solution is, and the best individuals
are recombined and mutated to make the next generation. Although simplistic from a biologi-
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cal viewpoint, these algorithms are sufficiently complex to provide robust and powerful adaptive
search mechanisms. What follows is an overview of the most common form of evolutionary
algorithms.

1.10.1 Evolutionary strategies

Evolutionary strategies (ES) were developed by Rechenberg (1973) and extended by Schwefel
(1981). In standard recombinative ES, children are produced via recombination then mutated.
Then either the best N children survive, or the best N children and parents survive. Each individ-
ual can have an adaptive mutation rate, like Evolutionary Programming (EP, see below), enabling
adaptive mutations. However, unlike EP, crossover (Figure1.21) plays an important role.

1.10.2 Genetic algorithms

Genetic algorithms (GAs) were invented by Holland (1975) and further developed by Goldberg
(1989). In genetic algorithms, each individual in a constant-sized population is represented by
a finite string of symbols such as bits, known as thegenome. The string is sometimes called a
chromosome or genome, inspired from biology. The genome can represent the weights, biases,
or structure of a neural network, for example. Each genome represents a possible solution in the
search space, which consists of all possible solutions. An example genome of bits may look like
this:

01010111010100101001110110111011111110

At the beginning, a large number of genomes are randomly generated. Each one, when de-
coded will represent a different solution to the problem at hand. Biologically inspired operations,
namely ‘crossover’ and ‘mutation’, on a population of genomes produce the change required for
evolution. Crossover involves two ‘parents’ exchanging parts of their genomes. Mutations can
be implemented as bit flipping on bit strings. With an initial population of N genomes, the
procedure in a genetic algorithm for generating the next generation of solutions usually looks
something like this:

• Assign each genome a fitness value which measures how well that genome solves the given
problem

• Select two members from the current population. The chance of being selected is propor-
tional to the genome’s fitness.

• Crossover the bits from each chosen genome at a randomly chosen point.

• Step through the chosen genome bits and flip dependent on the mutation rate.

• Repeat the above steps until a new population of N members has been created.
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The algorithm clearly depends on the mutation and crossover rates. Crossover between two
genomes is as follows: given two genomes to crossover, randomly choose a bit in one genome (a
zero or a one), and swap all bits between genomes after that chosen bit. For example, given two
genomes:

10001001110010010
01010001001000011

choose a random bit e.g. at position 9, and swap all bits after that position, so the above two
genomes become:

10001001101000011
01010001010010010

After many rounds of selection, a hopefully optimal solution to the problem is encoded by
the resultant genomes.

1.10.3 Genetic programming

Genetic programming (GP) (Koza, 1992; Banzhafet al., 1998) aspires to evolve actual computer
programs, by inducing programs to change and automatically improve processing training data.
As a computer program can be represented as a tree structure (Figure 1.21), genetic programming
involves graph operations on a population of programs. Structures other than programs can be
evolved, for example neural networks. Crossover and mutation are applied to the population to
generate change. The GP representation is regarded as a general representation of many classes
of algorithms including GAs. However, the programs evolved by GP can vary in length, whereas
the individuals in GAs are fixed in length.

1.10.4 Evolutionary programming

Evolutionary programming (EP) was developed by Fogelet al. (1966)5. This approach has also
been called evolutionary computation, however that term is used in this thesis as a general de-
scription rather than a specific methodology. In evolutionary programming, the representations
of individuals are usually tailored specifically to the problem, for example using graphs to rep-
resent finite state machines. In this approach, the N parents are mutated and produce N children,
and the next generation is chosen from the 2N individuals. Recombinations are not generally per-
formed since the forms of the mutations are quite flexible, for example adapting the mutations
rates to the current evolutionary improvement.

5Lawrence Fogel has set up a company, Natural Selection, Inc., which claims to apply evolutionary computation
to a wide variety of real-world problems.
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Figure 1.21: Crossover between two programs. In Genetic Programming, computer programs are repre-
sented as trees, and populations of programs are evolved to compute a particular function. To create the
next generation, two parents of the current generation,s1 ands2, exchange subtrees (at the crossover point
marked in grey) to form the next generation,t1 andt2. This process is calledcrossover, and is inspired by
the biological process carrying the same name. Other mutations can be applied to individual programs,
for example by randomly changing operators, or adding new variables.
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Chapter 2

GeneTrawler: Motivation and
Methodology

This chapter introduces Genetrawler, a tool for predicting the function of prokaryote genes. De-
veloping gene-function prediction tools is highly relevant even with the current deluge of ge-
nomic information. The most studied microbe,E. coli, still has around 30% of its genes unchar-
acterised. An often used approach to assigning a function to an uncharacterised gene sequence is
to transfer the function of the gene with the most sequence similarity. However, if the similarity
is too low, or the most similar gene is also poorly characterised, then this approach fails. As out-
lined in the previous chapter, computational methods show promise in identifying the function of
a gene, especially via comparative genomics. Several methods, especially those outlined in Sec-
tion 1.6.4, indicate that it is possible to predict a specific function for certain genes, using other
information in addition to sequence homology. However, each has at least one of the following
drawbacks:

• The criteria for grouping genomes or genes are too vague, or poorly defined (Huynenet al.,
1998).

• Homologues are computed using COGs which currently provide poor coverage of the
available sequenced genomes (Levesqueet al., 2003; Reichard & Kaufmann, 2003).

• The software provided by the developers is difficult to use for others, either being a set of
scripts, requiring a commercial program, or limited to a single operating system (Levesque
et al., 2003; Reichard & Kaufmann, 2003).

The methods described in this chapter, and implemented in the tool GeneTrawler, builds on
previous research (Forterre, 2002; Huynenet al., 1998; Levesqueet al., 2003; Pellegriniet al.,
1999; Tamameset al., 1997), and corrects or improves on the above shortcomings. GeneTrawler
is a tool for predicting the function of bacterial genes, using only homology and phenotype
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information–it does not rely on previous annotation or knowledge of gene sequences or any
other database derived information. It is available either as a stand-alone program or via the
Internet1.

The structure of this chapter is as follows: the method for gene-function prediction is de-
scribed, starting with a discussion on the reasoning and assumptions behind the method, followed
by a description of the input data required. The implementation in a web tool called GeneTrawler
is then described.

2.1 Prokaryote gene-function prediction

In the following discussion, the term ‘phenotype’ means a specific biochemical function or mea-
surable trait that is observed in a prokaryote species. For example, the ability to metabolize
sulfur, a physical organelle such as flagella, or antibiotic resistance are all phenotypes.

To predict gene function using the information from some phenomenon, that phenomenon
must in some way influence or be influenced by the gene(s). To put it another way, to use one
signal to infer another, there must be some interaction between the signals. One signal is the
gene sequence. The other signal here is phenotypic information, in prokaryotes mostly a direct
result of a gene sequence.

In the work discussed here, one of the most important differences between eukaryotes and
prokaryotes is the different selection pressure on genome size (see Section 1.3.2). Because bacte-
ria lose genes relatively quickly, only those genes under sufficient positive selection pressure are
retained. This difference in selection pressure is exploited to predict gene function. Assuming
that if in some genome2 all the genes have an unknown function, simply the presence of a gene
obviously doesn’t tell us anything useful. However, if we compare one genome against another,
quite a bit of information becomes available. For instance, if there are no homologous genes
between two genomes, then we can say with confidence that not only are the two genomes not
closely related, but they also probably do not share the same biotope, or habitat (as no horizontal
gene transfer is observed).

If we are armed with extra information about the species, we can make some more inferences.
If, for example, we know that some species share some trait or function, which we will denote
by Θ, and others do not have this trait, we can become more specific in our predictions. To see
what sort of predictions might be possible, a brief discussion about the two different categories
of bacterial genes is necessary.

The genes in a bacterial genome can be loosely divided into two sets: operational genes and
informational genes (see Section 1.3.3). Informational genes are involved with DNA replication,
repair, RNA synthesis, translation etc. These genes are more or less present in all members of a
particular domain, as they are absolutely necessary and involved in many interrelated functions
which makes the replacement or loss of one of these genes usually lethal. Operational genes,
on the other hand, are involved in the more specific functions that may be present only within
closely related members.

1http://bibiserv.techfak.uni-bielefeld.de/genetrawler/
2Unless otherwise stated, ’genome’ refers to ’bacterial genome.
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Figure 2.1: In the diagram above, the intersection of two circles represents common orthologues between
genome(s). The goal is to find genes that are functionally involved in a specific phenotype. To find these
genes, we find all the orthologues between the genomes that possess the phenotype, and exclude all the
between the genomeswithout the phenotype. Because the orthologues are based on BLAST searches,
one genome is the query and all others are database genomes. The area we are interested in is represented
by a star, which contains orthologues present in only those species with the phenotype.

Now if we compare any two genomes, they will obviously share many informational genes,
but whether or not they share any operational genes will depend on many factors including com-
mon selection pressures, time of divergence, ecological and genetic histories, and chance. How-
ever, assuming two species inhabit very different habitats after they have diverged, and do not
exchange genes with each other via horizontal gene transfer, it will only be a matter of time be-
fore the number of operational genes shared is very small. If, however, they overlap somewhat
in their ecology, lifestyle, or physiology, for example both requiring the functionΘ (which could
be for example the ability to fix atmospheric nitrogen), then the genes involved inΘ are going to
remain in both species far longer.

If we assume that an arbitrary long period of time has passed, and that no genes are shared
except the informational genes and the genes involved inΘ, then if we only compare those two
genomes, knowing that both species possess the functionΘ gives us no further information.
However, if we include in the comparison a species that doesnot haveΘ, the situation changes.
We can now classify the genes into three groups: those shared only by those genomes withΘ,
those shared by the genomes withoutΘ, and those genes shared by all. The genes shared by
all are likely to be informational genes, and are of no interest here except for the fact we have
identified them as such. The genes shared only by those species absent inΘ are of no interest,
as there is no further information about these genes–they are likely operational genes, but no
further information can be gained. Lastly, and most importantly, are those genes sharedonly by
those species possessingΘ. Due to the evolutionary consequences of time previously discussed,
these genes will very likely be involved withΘ. Thus, knowing only the presence or absence
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of genes and some phenotypic information, it is possible to acquire more information about the
genes themselves (Figure 2.1).

Thus, we need two things for predicting gene function in this manner: the genes in common
between genomes (orthologues) and a binary classification for each genome for a given pheno-
type. Before describing the algorithm for identifying gene function in further detail, these input
requirements will be further discussed.

2.1.1 Phenotype data

Phenotypes are traits or characteristics that differentiate distinct species, or specify a biochemical
function or ability. For example, some sample phenotypes are:

• Formation of flagella

• Aerobic metabolism

• Production of antibiotics

• Photosynthetic metabolism

• Methanogenesis

The phenotype information used to predict gene function is necessarily a binary classifica-
tion. This means phenotypes have to be chosen or defined in such a way that biologically make
sense and that a precise definition can be given. For example, the metabolic phenotype ‘Sulfur
Metabolism’ is too broad, and can be more precisely defined by being split into three phenotypes;
‘Dissimilatory Reduction’, ‘Dissimilatory Oxidation’, and ‘Assimilatory Reduction’ (Rueckert,
2004).

For each phenotype, the data relevant to each species was gathered from Levesqueet al.
(2003), Bergeyet al. (1984), expert users, and many Internet sources. For each datum, the
source of the data is included and visible to the user in the tool (see example in Table 2.1).
This is crucial because the binary phenotype classification is the most important parameter for
function prediction here. Examining the source of data enables a user to eliminate genomes from
the queries where the classification could be unreliable, or an error is suspected.

In other words, the phenotypes that could be used were yes/no type traits.

2.1.2 Orthologous genes

To describe how orthologous genes are computed, some definitions are in order. Often in this
text it is written ‘genes in common’ for explanatory purposes. What is meant precisely are
genes that are defined to be orthologous according to some algorithm. The definitions below are
paraphrased from Eisen (1998). An example showing the difference between orthologues and
paralogues is given in Figure 2.2.
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Species Phenotype Value Source
Agrobacterium
tumefaciens
(C58 Cereon)

Flagella 1 Genetic and environmental factors affecting T-pilin
export and T-pilus biogenesis in relation to flagella-
tion of Agrobacterium tumefaciens. Lai EM, Ches-
nokova O, Banta LM, Kado CI (2000).

Caulobacter
crescentus

Flagella 1 Synthesis and Structure of Caulobacter crescentus
Flagella. Lucille Shapiro and J. V. Maizel, Jr. (1973).

Streptococcus
pneumoniae
TIGR4

Gram Stain 1 http://www.ncl.ac.uk/dental/oralbiol/
oralenv/tutorials/gramstain.htm

Table 2.1: Sample phenotype data.

Homologue A gene related to a second gene by descent from a common ances-
tral DNA sequence. The term, homologue, may apply to the relationship be-
tween genes separated by the event of speciation (see orthologue) or to the
relationship between genes separated by the event of genetic duplication (see
paralogue).

Orthologues are genes in different species that evolved from a common ancestral
gene in the course of speciation. Normally they retain the same function in the
course of evolution. Identification of orthologues is critical for reliable predic-
tion of gene function in newly sequenced genomes. (See also Paralogues.).

Paralogue Paralogues are genes related by duplication within a genome. Ortho-
logues normally retain the same function in the course of evolution; paralogues
evolve new functions (even though these may be related to the original one).

Xenologue A homologue that has diverged from its ancestor after ahorizontal gene
transferevent (e.g. antibiotic resistance genes in bacteria).

Positional homology Common ancestry of specific amino acids or nucleotide posi-
tions in different genes.

Two available methods for comprehensively determining orthologous genes are looking up
the COG database (Tatusovet al., 1997) and using bi-directional best hits from an alignment
program such as BLAST (Altschulet al., 1997).

The COG database groups clusters of genes deemed to exhibit sufficient sequence similarity
to be orthologous. The COG database contains only a representative set of available genomes
and is updated approximately annually (Tatusovet al., 1997, 2000, 2001, 2003) as the process
requires manual validation. At the time of writing (March 2004), there were 41 different bacte-
rial species (42 including multiple strains) present in the COG database, compared to 124 (155
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Figure 2.2:Homologous sequences. Orthologues and paralogues are two types of homologous sequences.
Homologues are genes in different species that derive from a common ancestor. Homologues may or may
not have the same function. Paralogues are homologous genes that diverged after gene duplication (Figure
from http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Orthology.html).

including multiple strains) publicly available complete bacterial genomes. Even when the COG
database is updated, the manual intervention required means that the number of genomes present
in the COG database will always be considerably less than the total number of available genomes.
Thus, newly available genomes are not available for incorporation into gene-function prediction
methods that rely on the COG database.

The technique of bi-directional BLAST hits for orthologue determination is a simple and
fully automated process. For each gene in one genome, a BLAST search is performed against
all the genes of one other genome. If two genes from different genomes are each other’s best
BLAST hit, then they are classified as orthologues. This process suffers from the problem of false
positives, however, as gene duplication followed by gene loss can result in the false classification
of homologues as orthologues, when really the genes are (maybe distant) paralogues.

The need to include as many genomes as possible because of the scarcity of good pheno-
type data meant that the method of bi-directional BLAST hits was chosen to supply putative
orthologues.

2.1.3 Gene prediction algorithm description

So far, orthologue and phenotypic classifications have been determined. Next, the algorithm that
predicts gene function is described. The predictions made are “high level”, in that the exact
function of a gene cannot be predicted, only that a gene is functionally involved in creating a
given phenotype.

Almost all gene-function prediction algorithms use some form of gene orthologue informa-
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tion, and the algorithm presented here is no exception. If the orthologues are determined by
bi-directional best BLAST hits, then this leads to a problem of higher false positives than manu-
ally determining , e.g. via the COG database (Tatusovet al., 1997). The algorithms in Levesque
et al.(2003) gave poorer results when bi-directional best BLAST hits were used instead of COGs,
except for the ‘Similarity Measure’ defined in Levesqueet al. (2003) (see Chapter 3). A more
flexible algorithm, called the Include/Exclude method, was developed to deal with the higher
number of false positives.

In the Similarity Measure from Levesqueet al. (2003), each gene is given a score based on
its presence in other genomes. If this score is above some given threshold, the gene is included
in the list of genes predicted to be functionally involved in the phenotype of interest. The score is
given by a function of two variables, a geneh and a phenotypeΘ, whereGH = GH(h) is a subset
of G, the set of all genomes, and depends onh, comprising of all genomes with a homologue to
h, andGT = GT (Θ) ≤ G is the set of all genomes with the phenotypeΘ. The score is given by
the function:

f(h, Θ) =
‖GH ∩GT‖
‖GH ∪GT‖

If f(h, Θ) ≥ X, whereX is some given threshold, then the geneh is regarded as being
functionally involved in phenotypeΘ.

The Include/Exclude method (used in GeneTrawler) works by checking two thresholds in-
stead of one: given a phenotypeΘ, for each geneh in the query genome one computes

‖GH(h) ∩GT (Θ) ≥ GT (Θ)− Inc‖

which indicates if enough genomes with the phenotypeΘ also have an orthologue toh given a
thresholdInc, and

‖GH(h) ∩ (G−GT (Θ)) ≤ Exc‖

which indicates if enough genomeswithout the phenotypeΘ do nothave an orthologue toh,
given a thresholdExc

By using two thresholds one could, for example, gather all those genes present in 6 out
of 10 genomes with the phenotype, and absent in at least 10 genomes without the phenotype.
The justification for modifying two thresholds separately is that bacterial genomic evolution is a
story of exchanges, swaps, replacements, and general genetic tinkering. Relaxing, i.e. raising,
the include threshold corresponds to allowing gene replacements for a phenotype. That is, some
species may have replaced some genes required for a function with other, unrelated genes. In
addition, some species may have lost a phenotype but adapted the genes previously used in
that function into a different function. For example, flagella biosynthesis genes have in some
species evolved into type III secretory systems which are used to inject toxins into the eukaryotic
host (Blockeret al., 2003). Relaxing, i.e. increasing, the exclude threshold allows the possibility
that genes from the phenotype of interest have been adopted for different functions in some
genomes. The practical difference between the two thresholds is discussed in Chapter 3.
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The complexity of the algorithm is linear with respect to the number of genomes, however
it depends on the preprocessing of the orthologues beforehand, which is also linear if only one
species is being queried. If all genomes will be compared with each other then the complexity
becomesO(n2), wheren is the number of genomes. Despite being linear, if the orthologue data
is not all loaded into RAM then queries can take approximately 10 seconds on a 500MHz CPU.

2.2 Implementation

This section details the implementation of GeneTrawler, the software tool written to perform the
analyses described in the previous section. The goal was to build a tool that implemented the
algorithm described, also integrating the phenotype and orthologue databases within a tool that
could be used by the geneticist or biologist. In addition, the tool may need to be integrated into a
larger genome analysis tool such asGenDBif it turned out to be useful, which was kept in mind
when designing the tool.

The tools presented here are meant to be used in the wider community. Therefore, the fol-
lowing principles were established:

Maintain generality. The program was designed to be extendable to include more compli-
cated analyses and/or other data sources, or to be integrated into a larger tool set in the future.
For this reason the core system was designed to be simple and modular.

Open source.Users can download the source code and modify and extend the basic system.
In addition, by releasing the source code previously unnoticed bugs may be found.

Portability. To ensure that users can download and install the system themselves with a
minimum of problems, the code for GeneTrawler was written in Java, which can run on most
operating systems without compilation. In addition, database servers and external libraries used
by GeneTrawler are all open source and platform independent.

Web availability. As the installation is not trivial, and the databases are quite large, Gene-
trawler can also be accessed via the Internet at

http://bibiserv.techfak.uni-bielefeld.de/genetrawler/

2.2.1 Databases

The database of orthologues, genomes, and associated phenotype data is the backbone of Gen-
eTrawler. As one of the previously stated goals was to make the system easily distributable, a
publicly available open-source database was required that was simple to install and at the same
time powerful enough for our purposes. MySql3 was used to test the programs. Due to adminis-
trative issues, the database was migrated to PostgreSQL, another open source database.

2.2.1.1 Phenotype database

The phenotype or trait data is crucial for GeneTrawler to return accurate results, as a few wrongly
categorised genomes can introduce substantial errors into the results when the sample of genomes

3http://www.mysql.com/
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is small. For this reason, every datum describing an organism’s phenotypic trait has additionally
the source of that datum and the entry date recorded. This is for a variety of reasons: 1) In
GeneTrawler, the quality of the phenotypic data is of more importance than the accuracy of the
orthologue classification in predicting gene function (see Chapter 3). 2) The orthologues are
acquired via automated BLAST searches, but the phenotype data has to be manually recovered
from textbooks, Internet sources etc. This is prone to errors, and also is usually not complete. 3)
The actual data may be based on flawed or incorrect experiments or observations, for example
erroneous lab tests, or incorrect identification of the species, or other mundane occurrences.

Initially, the phenotype data from Levesqueet al. (2003) was parsed and downloaded into
the database. According to the authors, this was manually validated data, however a substantial
number of errors were still found. This meant that much of the data used in the analyses presented
here had to be checked again.

Additional data was gathered from a variety of sources, including the Internet, microbiology
reference manuals such as Bergeyet al. (1984), and scientific experts. When the source of the
information was not somehow official, e.g. refereed papers or textbooks, attempts were made to
find multiple sources.

It is envisioned that the phenotype data will be added to and edited by expert users. For this
reason, the facility to add and edit was made available in the online version of GeneTrawler.

2.2.1.2 Orthologue database

As of March 2004, all prokaryote (archaea & eubacteria) genomes in the Kegg database (Kane-
hisa & Goto, 2000) were indexed in the GeneTrawler database. Protein sequences were used
rather than DNA sequences as sequence conservation is higher at the amino acid level than the
nucleotide level.

For each gene in a given genome, the orthologue (if any) in all other genomes was required.
Bi-directional best hits in BLAST are determined for each gene; e.g. if BSU012 has a best hit
(is most similar to) KAN325, and KAN325 has a best hit BSU012, the pair is considered a bi-
directional best hit (putative orthologue). All other homologues are excluded. This prevents one
gene from being related to multiple, less similar, genes in the other genome.

BLAST version 2.2.6 was used with default settings. The raw BLAST results were parsed
with the BioJava (Mangalam, 2002) library and added to theGenetrawler database. From
there, the orthologues were computed and indexed to each genome.

2.2.2 Program structure

For the standalone program, the user interacts with the program which connects directly to the
phenotype and orthologue database. This results in essentially instantaneous query results. The
web version has a script to interpret the HTML form commands into database queries and then
sends the results back as an HTML page that is viewed in a new window in the web browser (see
Figure 2.3).
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Figure 2.3: This diagram shows the essential difference between the stand-alone version of GeneTrawler
and the web based version, where the web based version has an extra interface layer, which results in
slower performance.

2.2.2.1 Stand-alone application

A stand-alone GUI4 to the databases was written in Java. When a genome and phenotype is
selected, the application loads all relevant data in the computer RAM which results in essentially
instant computations (compared with about 10 secs per query from the web interface). The
speed of computations is an important difference, as a user often needs to compare the results
from incrementally changing a parameter: having instant results enables one to quickly gain an
overview of a parameter effect.

The application used only open-source libraries: BioJava (Mangalam, 2002) and third party
open source database connection libraries.

2.2.2.2 Web interface

The installation of the stand-alone version of GeneTrawler includes not only the application, but
also the associated non-trivial database installation. Because of potential technical difficulties for
end users, a web interface was also built, enabling the same queries to be made via any Internet
connection.

In the stand-alone application (SAA), all phenotype data was loaded in memory at once,
enabling instant queries. This was not possible over the Internet without using Java Applets.
However, Java applets proved too slow. A regular HTML form-based interface was then con-
structed, using a Perl script as the bridge between the HTML form requests and the GeneTrawler
database. The database queries were modified so that all the processing occurred in the database
and Perl script, as the client machine could perform no processing. However, the results could
not be stored in between requests like the SAA, resulting in repeated subqueries and reducing
the speed of the query. However, the query processing time by the server is under 10 seconds.

4Graphical User Interface.
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Figure 2.4: A screenshot of the GeneTrawler query form, showing the query genome (top box,Bacillus
subtilus), the chosen phenotype (Flagella), the thresholds, and the genomes to compare with associated
phenotype classification (bottom box).
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Figure 2.5: A screenshot of a the results from a query in GeneTrawler. At the top are 5 genes predicted to
be associated with the phenotype, while below is the query information (genome classifications, thresh-
olds, etc).
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Chapter 3

GeneTrawler: Results

This chapter presents the results of the GeneTrawler system (discussed in the previous chapter)
when tested against known phenotypes and genes. Firstly, in Section 3.1 the effects of adjust-
ing and optimising the the parameters is discussed. Section 3.2 presents the comparison of the
algorithm developed in the course of this thesis (Include/Exclude method) with a similar al-
gorithm (Similarity method) in Levesqueet al. (2003). Section 3.3 details the analysis of the
Include/Exclude method applied to four different phenotypes. From this detailed investigation,
the results are summarized, and future work is outlined.

3.1 Parameters

The three main parameters in GeneTrawler are the Include and Exclude thresholds that deter-
mine the stringency of genome-set membership, and the minimum e-value for determining or-
thologues.

Thresholds

The Include/Exclude method has two discrimination thresholds that can be independently ad-
justed. It was found that to return accurate predictions, only the Include threshold (Inc) should
vary, while the Exclude threshold (Exc) needed to remain relatively stringent (i.e., low). This
means that, rather than keeping the orthologues from species with the phenotype, it seems more
useful to exclude the genes shared with the species without the phenotype.

Practically speaking, it was observed that the Exclude threshold should be either 0 or 1 for the
phenotypes and genome sets examined in this work (see the Appendix for the genome listings).
The Include threshold is then gradually relaxed. This procedure produces the lowest fraction of
false positives in almost all result sets (data not shown).

One reason for this is that in using bi-directional best BLAST hits to assign putative ortho-
logues, some false assignments are produced. This results in some genomes by chance being
falsely classified as possessing an orthologue. However, if more species are included in the
analysis, especially species classified asnot having the phenotype, this kind of error is reduced,
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as the likelihood of the same gene falsely classified as a homologue in multiple genomes de-
creases as the number of genomes added to the analysis increases. Another factor could be the
nature of genome evolution. Some genes involved in specific functions can be replaced over
time. However, if a genome does not have a phenotype it is less likely to have co-opted genes
from that phenotype, via horizontal gene transfer for example. This is because genes involved in
a function usually need to be transferred together, as individual genes are less likely to perform
some useful function. This shortfall seems to be alleviated by the addition of more phenotype
data. It must be noted that theInclude/Exclude method still requires a minimum of about
8 genomes with the phenotype in question (i.e. include genomes).

e value

The precision of GeneTrawler was highest when only bi-directional best BLAST hits were used
with a minimume value of between0.01− 0.0001, as this limited erroneous matches. There are
other BLAST attributes that also could have been used to limit the number of false orthologue
assignments, such as percentage of sequence identity or sequence lengths. These were tested,
but gave the same or worse results than the e-value threshold, even in combination.

3.2 Comparison of algorithms

The Similarity Measure from Levesqueet al. (2003) (see Section 2.1.3 in the previous chapter)
and the Include/Exclude method used in Genetrawler were compared.

Comparison measures

The prediction of gene function is a binary classification, classifying the members of a given set
of objects into two groups on the basis of whether they have some property or not. In this case,
the property is‘functionally involved in a given phenotype’.

To measure the performance of a classification system, the concepts of sensitivity and selec-
tivity are useful:.

sensitivity = true positives
true positives + false negatives

selectivity = true negatives
true negatives + false positives

ROC curves are used to evaluate the results of a prediction by plotting the sensitivity and se-
lectivity as some discrimination threshold is varied. Developed in the area of signal processing,
the technique has proved to be very useful in the biological and biomedical sciences (Zweig &
Campbell, 1993).
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Figure 3.1: Example ROC plot. As a parameter is changed, the sensitivity and selectivity values are
plotted. The area between the ROC curve and the no-discrimination line gives a single number that
estimates the discrimination. The red line shows the method being evaluated applied to test data, the blue
line shows the method applied to real data. A steeper slope implies a clearer discrimination.

Figure 3.2: ROC plots comparing the Similarity Measure and Include/Exclude methods. The comparison
is inconclusive because of lack of coverage and different parameters altered (Similarity Measure has one
parameter, Include/Exclude has 2).

ROC analysis

However, plotting ROC curves from results from Genetrawler proved to be not very informative.
For the same phenotype, the plots did not have enough resolution to show a difference between
algorithms, even though the difference for some phenotypes was substantial (see results below).
In addition, the algorithms did not use the same parameters (Similarity Measure has one para-
meter, Include/Exclude has 2). Interpreting differences from comparisons between phenotypes
was difficult as there were multiple variables that also changed between phenotypes, such as the
species included in the analysis, the numbers of genes, and how well the genes have been studied
and annotated.
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Include/Exclude Similarity Measure
Sensitivity Fraction false Fraction false

0.54 0.13 0.05
0.57 0.13 0.16
0.7 0.9 0.54

Table 3.1: Comparison of the Similarity Method and the Include/Exclude method for the Flagella phe-
notype. For equal sensitivity scores, the fraction of genes falsely predicted as positives is compared. At
more relaxed thresholds, the Include/Exclude method shows a higher fraction of falsely predicted hits.

Include/Exclude Similarity Measure
Sensitivity Fraction false Fraction false

0.42 0 0
0.67 0.47 0.53
0.83 0.55 0.8

Table 3.2: Comparison of the Similarity Method and the Include/Exclude method for the Nitrogen Fixation
phenotype. For equal sensitivity scores, the fraction of genes falsely predicted as positives is compared.
At more relaxed thresholds, the Similarity Measure shows a higher fraction of falsely predicted hits.

Include/Exclude and Similarity Measure comparison

From a detailed examination of the results over multiple phenotypes, two measures proved useful
in comparisons: sensitivity and the fraction of false positives

fraction of false positives = false positives
false positives + true positives

To compare two different algorithms, the fraction of false positives were compared for those val-
ues where the sensitivity was equal, e.g. Table 3.1. For the phenotype Photosynthesis, not enough
genes were detected due to problems with the phenotype classification (see Section 3.3.3). For
the phenotype Sulfur Reduction, the number of known genes was small and both algorithms
performed similarly. For the phenotype Flagella, the Similarity Measure performed better, and
for the Nitrogen Fixation phenotype the Include/Exclude algorithm performed better. At high
sensitivity, the Include/Exclude method fares worse than the Similarity Measure for the Flagella
phenotype, but better with the Nitrogen Fixation phenotype (see Tables 3.1 and 3.2).

For the Nitrogen Fixation phenotype, theInclude/Exclude method performed substan-
tially better than the Similarity Measure: for the detection of 10 out of 12 true positives, only
around half the hits were false positives for theInclude/Exclude method, compared to 80%
false positives for theSimilarity Measure . For the Flagella phenotype, the Similarity
Measure retained a lower fraction of false positives as sensitivity was lowered.
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3.3 Results: Phenotypes

In this section, four phenotypes are examined with respect to the ability of Genetrawler to detect
genes specific for the given phenotype. Although annotation information was not used to predict
the function of genes, it was used to validate predictions. For example, the set of genes known to
play a role in flagella was defined as the set of genes with the word ‘flagella’ (or a derived word
such as ‘flagellin’) in the annotation. This set of genes corresponded to the set of true positives.
In the examples below, a parameter is incremented and the numbers of genes returned by the
algorithm is noted, including the true positives. A comment for each phenotype then follows.

3.3.1 Flagella

The bacterial flagellum is a readily identifiable and definable trait, and identifying previously
unknown flagella genes has already been used as a proof of principle (Levesqueet al., 2003).

Genes and genomes

For the set of true positives, agrep 1 search was performed on all protein sequences from the
Bacillus subtilisgenome downloaded from Kanehisa & Goto (2000), using the regular expression
(. * flag. * ). This returned all annotations with the words flagella, flagellar and flagellin, which
was 37 gene annotations in total. The annotations were examined to confirm involvement in
flagella function and regarded as the set of true positives.

The species included in analysis are listed in Table A1 in the Appendix.

Performance

GeneTrawler identified the majority of flagella genes, and indicated some genes worth further
investigating. The table below shows the number of Flagella and other genes given the specified
Include value. See Section 3.1 for a discussion of suitable thresholds.

Exclude value = 1
Include value Flagella genes (of 37) Total genes

0 15 15
1 19 20
2 20 22
3 20 30
4 24 61
5 24 145

Most ( >50%) of the known flagella genes are returned when there are less than half false
positives. When the Include value is three, there are 10 genes returned without a flagella annota-
tion: these genes would be good candidates for further investigation. As not all the genes classed

1Grep is a pattern matching program that searches the lines of an input file for character patterns.
http://www.gnu.org/software/grep/grep.html
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as false positives neccesarily are false positives, it is possible that some genes have some as yet
unknown role in flagella function (see Discussion). Such an investigation was performed for the
phenotype Sulfur Reduction. All the genes whose direct role in sulfur reduction appeared to be
involved in reactions in the periphery of the network.

Comments

Genetrawler could detect more that 50% of the known flagella genes with few false positives.
This represents a useful level of accuracy, for example, if no genes had been previously identified,
this is a useful number of genes for beginning to characterise the phenotype.

It must be noted that the false positives are putative, in that the genes may have some as
yet unknown role in flagella. In fact, the genes without a flagella annotation that are returned
by the algorithm when the stringency is high are excellent candidates for further investigation.
However, further investigation requires an expert, and such analysis was only performed for one
phenotype (Section 3.3.4), where such an expert was available.

A potential problem for these methods are genes that were previously involved in a function
that have subsequently been co-opted for a completely different function, possibly followed by a
loss of the original function. For flagella, this is especially relevant. During the construction of
the flagella, protein subunits are secreted into the periplasm. The secretory apparatus, involving
a type III secretory system, has been co-opted by bacterial pathogens to inject toxins into their
eukaryotic hosts (Blockeret al., 2003). Thus, there are many species who do not have flagella,
but possess a subset of the genes associated with flagella. This is one reason why approximately
a third of the flagella genes could not be detected by GeneTrawler.

3.3.2 Nitrogen fixation

Genes and Genomes

The query organism chosen was3.2Mesorhizobium loti. The core nitrogen fixation pathway in
M. loti consists of 12 genes, which were taken from the Kegg pathway database (Kanehisa &
Goto, 2000). These were used as true positives:

mll5837 nif-specific regulatory protein [KO:K02584]
msl5852 hypothetical protein(fixU protein) [KO:K02593]
mll5854 hypothetical protein(nifZ protein) [KO:K02597]
mll5855 nitrogen fixation protein nifB [KO:K02585]
mll5857 nif-specific regulatory protein,nifA [KO:K02584]
mll5864 nitrogenase stabilizer NifW [KO:K02595]
mlr5905 nitrogenase iron protein, nifH [EC:1.18.6.1] [KO:K02588]
mlr5906 nitrogenase molybdenum-iron protein alpha chain, nifD [EC:1.18.6.1] [KO:K02586]
mlr5907 nitrogenase molybdenum-iron protein beta chain, nifK [EC:1.18.6.1] [KO:K02591]
mlr5908 nitrogenase molybdenum-cofactor synthesis protein nifE [KO:K02587]
mlr5909 nitrogenase molybdenum-iron protein beta chain, nifN [KO:K02592]
mlr5911 nitrogenase molybdenum-iron protein nifX [KO:K02596]
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Exclude=0, max e=0.01
Include value Nitrogen genes (of 12) Total genes
0 5 5
1 5 5
2 5 5
3 5 5
4 5 6
5 8 15
6 10 22*
7 10 78

Table 3.3: GeneTrawler results for the phenotypenitrogen fixation. The species in the analysis are from
Table A2 in the Appendix. The Exclude value is kept at 0 while the Include value is incremented. As the
Include value is relaxed, more nitrogen-fixation genes are detected, but also more probable non-nitrogen
fixation genes. The star (*) on row seven indicates the best results, with 10/12 nitrogen fixation genes
detected, with only 12 other (putatively false positive) genes.

At the time of writing (November 2004), there were 8 other bacterial species with the ability
to fixate nitrogen. The ability to fix nitrogen is usually easy to determine from the habitat and
lifestyle of the organism, as it is a highly specialized trait. This specialization also means that
the genes involved in this phenotype have not been adapted for some other non-nitrogen related
function, as far as this author is aware. For the list of species included in the analysis see Table A2
in the Appendix.

Performance

GeneTrawler could detect 5 nitrogen fixation genes (out of 12) with no false positives. Detecting
10 true positives resulted in about 50% false positives (see Table 3.3). There are many other
genes involved in the periphery of nitrogen fixation, however none of those genes were detected.
See Section 3.1 for a discussion of suitable thresholds.

Comments

The detection rate for this phenotype was relatively high. A factor in this is likely the biology
and evolutionary history of nitrogen fixation: as the genes for nitrogen fixation are so specific, it
is less likely that have been co-opted for other biochemical functions, thus less likely that species
exist with orthologues to these genes yet without the phenotype.

The two genes not detected were nitrogen fixation specific regulatory proteins (mll5837nif-
specific regulatory protein andmll5857 nif-specific regulatory protein, nifA). Regulatory se-
quences are less likely to be detected with these methods because they are not under the same
constraints as genes involved in a more specific biochemical reaction, such as nitrogen fixation.
The proteins for such a primary function as nitrogen fixation are highly optimized and therefore
constrained, whereas the regulation of those genes cannot easily be ’optimized’, as regulation is
often complex with subtle interactions by many other genes, such as transcription factors.
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3.3.3 Photosynthesis

Genes and Genomes

Synechocystis sp., a member of the Cyanobacteria group, was chosen as the query genome. From
the Kegg pathway database (Kanehisa & Goto, 2000), 65 genes were identified as parts of the
photosynthetic machinery, and used as known true positives.

Seven genomes were known to be photosynthetic, including five in the taxonomic group
Cyanobacteria, one Alphaproteobacteria, and one Green Sulfur bacteria. As with nitrogen fixa-
tion, photosynthesis is an easily detected trait, and accurately classifying species as non-photosynthetic
was not difficult, compared with other phenotypes, such as flagella or sulfur reduction. The list
of species in the analysis is in the Appendix, Table A3.

Performance

Initially, almost no photosynthesis genes were detected, despite very relaxed thresholds, until
the two non-Cyanobacteria were removed from the list of genomes possessing photosynthesis
(hence no table is shown as in the earlier phenotypes). After their removal, 25 out of 65 true
positives were detected, but with 85 additional false negatives.

Comments

Photosynthesis evolved billions of years ago and, since then, horizontal gene transfer has played
an important role in the evolution of this phenotype in different species (Raymondet al., 2002).
From phylogenetic studies, it is postulated that oxygenic photosynthesis (which produces oxy-
gen) evolved later that anoxygenic photosynthesis (Xionget al., 2000). Cyanobacteria use oxy-
genic photosynthesis while the two bacteria that were removed from the list (Chlorobium tepidum
andRhodopseudomonas palustris) use non-oxygenic photosynthesis mechanisms (Eisenet al.,
2002; Larimeret al., 2004) and are phylogenetically very distant. This is reflected in the results,
in that photosynthesis genes could only be detected when species in the same phylogenetic group
only were used. The poor ability to predict photosynthesis genes might be improved when the
genomes from a more representative sample of photosynthetic bacteria can be included. How-
ever, while the addition may improve the precision, it would probably not predict more pho-
tosynthetic genes, as many may have been substituted in different species over the course of
evolution (Raymondet al., 2002).

3.3.4 Assimilatory Sulfur Reduction

For this phenotype, an expert was available (Rueckert, 2004) which enabled a more detailed and
comprehensive study.
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From Christian Rueckert (Rueckert, 2004)From Kegg database (Kanehisa & Goto, 2000)
Known
NCgl2713
NCgl2714
NCgl2715 NCgl2715
NCgl2716 NCgl2716
NCgl2717 NCgl2717
NCgl2718 NCgl2718
NCgl1923

Suspected
NCgl0328
NCgl2350-2353
NCgl2462/2463
NCgl2658
NCgl2719
NCgl2940-2943

Table 3.4: Assimilatory Sulfur Reduction genes fromC. glutamicum

Genes and Genomes

Rueckert (2004) studied the pathway in a specific species,C. glutamicum. Therefore, this species
was chosen as the query genome. The genes fromC. glutamicumthat were involved in assimila-
tory sulfur reduction were compiled by Rueckert (2004), coming from personal knowledge and
numerous literature sources. In addition, the genes from the Kegg pathway database (Kanehisa
& Goto, 2000) were also gathered for comparison purposes (see Table 3.4).

From Rueckert (2004), a list of species was compiled exhibiting assimilatory sulfur reduction
(see Table A4 in the Appendix).

Performance

GeneTrawler retrieved the genes involved in the core pathway specified by Kegg under stringent
conditions2: NCgl2715 - NCgl2718. The other genes were not detected even when the thresholds
were very relaxed (hence no table is shown as in the earlier phenotypes). According to Rueckert
(2004), the sulfur metabolism gene cluster inC. glutamicumis not conserved well, i.e. it is quite
unique.

Comments

When the e-value=0.0001 threshold was raised and lowered, the core pathway from KEGG re-
mained in the set of genes returned, however extra genes were also part of the result set, de-
pending on the e-value threshold. As these genes were returned under the strictest Include and

2Include=0, Exclude=0, e-value=0.0001
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Name Annotation Extra data from investigation
NCgl0290 NTP pyrophosphohydrolase Performs oxidative repair mechanisms, involved in

thioreduction, thus electron transfer or assembly.
NCgl2115 cytochrome C oxidase subunit II Uses electron transer or assembly.
NCgl2471 hypothetical protein Cofactor repair, cobalimine.
NCgl2283 pirin-related protein Containes iron, therefore probably sulfur cluster.
NCgl0824 metalloendopeptidase-like

membrane protein
No other info

NCgl0210 ABC-type transporter, permease
component

Involved in molybdate metabolism.

NCgl1511 polyprenyltransferase
NCgl1183 electron transfer flavoprotein

alpha-subunit
Uses electron transer or assembly.

NCgl1903 FAD synthase Uses electron transer or assembly.

Table 3.5: By varying only the e-value threshold, several interesting genes were returned with the core
sulfur pathway. All of these genes shared one characteristic: they use metal-sulfur clusters to transfer
electrons.

Exclude thresholds, and in preference to other genes known to be involved in the pathway, they
were of interest as the sulfur reduction pathway is in no way fully characterised.

A list of these genes was compiled and investigated further, Table3.5. All of these genes
shared a characteristic: they were either involved in the metabolism of metal-sulfur groups, or
they required metal-sulfur groups for enzymatic activity. Metal-sulfur groups are used in reac-
tions that involve electron transport, as sulfur is relatively easily oxidised and reduced. Iron is
often the metal associated with the sulfur group, but genes involved in molybdate metabolism
were also observed.

For example:

- NCgl0210 is involved in molybdate metabolism. Molybdenum is an essential trace metal
required for the activity of some enzymes that are involved in catabolism, including the
catabolism of purines and the sulfur amino acids.

- NCgl2283 is a pirin-related protein. Pirin is an iron-binding nuclear protein and transcrip-
tion cofactor.

- NCgl2115 is a cytochrome C oxidase subunit. These use electron transer which requires
iron-sulfur clusters.

This demonstrates that GeneTrawler can gather genes not only directly involved a a pathway,
but either dependent on it or somehow involved in periphery reactions. This will be of consid-
erable use to those who study pathways. Often gene knockouts are used to establish whether
a gene is involved in a particular pathway, but sometimes the knockout is lethal or displays no
effect. This method shows that a set of genes can be found that are involved indirectly in the
pathway or are dependent on the pathway.
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3.4 Discussion

The above results demonstrate that, given accurate phenotype data, it is possible to predict the
function of bacterial genes without the use of any previous knowledge of those genes. This will
be of particular use as the pace of genome sequencing accelerates. For three of the examined
phenotypes, a large enough proportion of true positives was returned to demonstrate that the
assumptions about the evolution of bacterial genomes hold. As the sulfur reduction phenotype
demonstrated (Section 3.3.4), genes dependent on (or in the periphery of) the phenotype can
also be detected (Figure 3.3). Dependent genes have previously been observed only after the
reconstruction of metabolic pathways from (direct or indirect) experimental data.

Comparison of algorithms

The Include/Exclude method and the Similarity Measure gave almost identical results for two
of the four phenotypes. The main difference was for the nitrogen fixation phenotype, where
the amount of phenotype data was substantially larger than the other phenotypes and thus many
more genomes could be included in the analysis. In fact, most genomes could easily be classified
as not having the phenotype, leading to proportionally more exclude genomes (see Table A2 in
the Appendix). The Include/Exclude method handles this kind of biased data set better, as two
thresholds can be adjusted separately. As the Similarity Measure only has the one threshold, the
two categories (include and exclude) are given equal weight when really one category is weighted
more due to the extra data.

For this reason the Include/Exclude method is more useful for larger datasets, as in this
analysis where orthologues are computed via bi-directional best BLAST hits rather than the
COG (Tatusovet al., 1997) database.

Comparison of phenotypes

The analysis of four different phenotypes demonstrated the capabilities and limitations of Gene-
Trawler. In summary:

The definition of the phenotype is of primary importance. As the photosynthesis phenotype
analysis demonstrated, two phenotypes may have the same general name and function, but are
actually two different phenotypes, due to the geological time passed in which they have diverged,
and the different physiochemical basis for the function. The genomes possessing the similar but
different phenotype should be excluded from the analysis. Horizontal gene transfer will also
be an issue in this case, as gene substitution will make the genes difficult to detect with these
methods.

Knowledge about the evolution of the phenotype can help when a subset of the phenotype has
been co-opted into another function, as in flagella genes being adapted into a secretory apparatus.
By excluding the genomes with the co-opted trait, a bigger subset of genes can be found, although
in this case determining which genomes have flagella but not type III secretory systems andvice
versais not trivial.
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Certain genes involved in a function are more likely to be found than others. Regulatory
genes are less likely, as regulatory genes are under less constraint than enzymatic genes. Indeed,
shuffling of regulatory genes is required to alter the regulation of a function, or to incorporate a
new function via HGT, which results in far less conservation for regulatory genes and sequences
than for non-regulatory coding DNA. The result is that these genes are more likely to be missed
by GeneTrawler.

The genes collected by GeneTrawler include not only genes directly involved in a function,
but also genes in the periphery of the network or pathway. These are genes that require the
function, or act in some auxiliary role. E.g. many genes were predicted for sulfur reduction
that required the sulfur produced by the pathway in their own reactions, usually as electron
transporters. This ability of GeneTrawler can be used to discover unknown biochemical reactions
within a network that may have very subtle phenotypes from gene knockout experiments.

?

Figure 3.3: For the assimilatory sulfur reduction phenotype, genes were detected that are dependent on
the assimilatory sulfur pathway, as all use metal-sulfur complexes as co-factors. Normally, pathways need
to be reconstructed before this kind of information becomes available.

Future work

GeneTrawler is a useful tool, however it is only one tool that should be used in conjunction with
many others. Because of this, the methods should be incorporated into a larger scale genome
analysis tool, such as WIT (Overbeeket al., 2000). This would simplify the process of discovery
and hypothesis testing in a genomics scale framework.

The phenotype database shows the most promise. If this database grows from input from the
biological community, then its value to these methods will correspondingly increase. Discussions
are underway into the feasibility of text mining a resource such as Bergeys Manual of Systematic
Bacteriology (Bergeyet al., 1984). This series of books already has much phenotypic data,
however it is not easily accessible by computers and would require a large investment in resources
to mine useful information.
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Extending Genetrawler to eukaryotes

The next step in this work will be adding eukaryote genomes into Genetrawler. There are several
theoretical reasons why including higher eukaryotes, such as multicellular eukaryotes, will not
produce useful results. The main reason is that the algorithms presented here rely on a strong
selection pressure against large genomes, and this does not appear to be an important factor in
higher eukaryote genomes. However, yeast genomes are under this selection pressure. When in-
vestigating phenotypes, one will have to be careful when defining phenotypes, as the correspon-
dence between prokaryotic phenotypes may not be clear, which may have negative consequences
for gene-function prediction. Although this author doubts that including eukaryote genomes will
produce useful results, it has not yet been tested.
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Chapter 4

Gene network reconstruction: Motivation
and Methodology

This chapter introduces the second approach to understanding gene regulatory networks. The
previous two chapters tackled the problem of predicting gene function, and in our conceptual
model (Figure 1.1) this represents elucidating thenodesof the network. In the next two chapters
the focus is on theedges.

The advances of high-throughput molecular technologies have presented interesting possibil-
ities for large-scale construction of biological models. DNA microarrays, or DNA chips, are one
such recent technology that can measure the mRNA levels of thousands of genes simultaneously,
providing a ‘global’ view of gene expression (Schenaet al., 1995). By measuring simultane-
ously the relative mRNA levels of all genes in a cell, a snapshot of the state of a cell is taken.
By repeating this a number of times, a time series is produced which reflects the dynamics of
gene-expression networks

There has been substantial interest in the possibility of reconstructing the network of gene
regulatory interactions using data from such microarray experiments. This is called areverse
problem. The reverse problem has been approached in many different ways (Section 1.9), de-
pending on the formalism used to model the gene regulatory network (GRN).

So far, previous methods have been tested on random networks. The main motivation for this
work is to find out the limitation for this kind of approach, in terms of what kinds of networks can
(and cannot) be reconstructed, using the time series of gene transcription levels (from simulated
microarray experiments) to reconstruct the network of gene interactions. To this end, we take
what we consider the best aspects of previous reconstruction attempts to develop a reconstruction
pipeline, and apply this pipeline to different types of networks. We then compare how well the
networks topology is reconstructed for different types of networks.

Due to the complexity of the model networks, an evolutionary approach is used to recover
the topology of artificial gene regulatory networks (by topology we mean the set of edges for a
given set of nodes). An overall strategy is used similar to approaches discussed in Section 1.9
(e.g. (Tominagaet al., 1999; Akutsuet al., 2000; Wahde & Hertz, 2000)) where an artificial net-
work is constructed to simulate a microarray experiment, and then the network is reconstructed
based on the data. The effectiveness of the algorithm can be determined by comparing the topol-
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ogy of the solution networks with the original target network.
The description is presented as a pipeline, with the details of each component of the pipeline

discussed sequentially. Before the reconstruction pipeline is discussed, the mathematical model
of gene regulation used here will first be described.

4.1 The model of gene regulation

A dynamic model of gene regulation is needed so that the expression levels of genes at different
time points can be measured, as these measurements are then used by the evolutionary algorithm
to evolve networks similar in topology to the original target network. Although reconstruction
methods using directed/undirected graphs and Bayesian networks are popular, these models do
not capture the network dynamics and are, then, unsuitable for our purpose of reconstruction
using time-series data. On the other hand, stochastic models are too complicated, requiring too
many parameters that need to be estimated (i.e. guessed) that cannot be measured experimentally
or validated. Boolean models are dynamic as well as mathematically very tractable, however they
possess several problems when applied to gene regulatory networks. Gene expression can spend
a lot of time at intermediate values, rather than having binary values (Arkin, 2000). Concepts
from control theory that seem important and applicable to gene networks, such as amplification
of a signal, subtractions and addition of signals, and smoothly varying periodic behaviour, either
cannot be implemented in Boolean networks or lead to very different behaviour (Arkin, 2000;
Vilar et al., 2002). Negative feedback is a common phenomenon in real gene circuits which
has a stabilising effect (Becskei & Serrano, 2000). However, in Boolean networks the outcome
of negative feedback is always oscillation. This problem is somewhat alleviated by the use of
piecewise linear equations or logical equations, but these formalisms are not quite appropriate
for quantitative modeling of large-scale expression data.

Ordinary differential equations were chosen as these have the advantage that the dynamics of
the model can be simulated, and that the system can be encoded in a very simple and intuitive
manner (e.g. Figure 1.16). Specifically, a non-linear regulation function was used, as all regu-
lation functions must saturate. In addition, several rules for genetic circuitry require continuous
methods (Savageau, 1998).

In our formalism, we simplify the biological process of gene regulation for tractability and
simplicity. The nodes in the network represent genes coding for transcription factors. We assume
that there is a direct relationship between transcription factors binding to the regulatory site of
a gene and the rate of production of the corresponding gene product: in other words we ignore
regulation at the mRNA transcript level. Transcription factors bind to specific promoter regions
on the genome, causing up-regulation or inactivation/inhibition. In addition, we initially assume
that all nodes in the network are measured which means that other non-transcribed effectors of
regulation, such as metabolites, are currently ignored. Thus, the words ‘gene’, ‘gene product’,
and ‘transcription factor’ are used interchangeably in regards to the model specified here, the
nodes in the gene regulatory network representing all three.

This simplification is justified by two reasons: firstly, there is no nuclear membrane in
prokaryotes, so transcription and translation can occur simultaneously. In eukaryotes, the pic-
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ture is complicated by extensive mRNA processing and regulation. However, this study initially
focuses on prokaryotes. Secondly, there is little justification for including many extra parame-
ters that cannot be measured experimentally, as this would not only increase computation time
but also complicate analysis. In further work, it is planned to model the unmeasured elements
specifically (see Section 5.5).

The model of gene regulation presented here is based on Salazar-Ciudadet al. (2000). It is
conceptually similar to most models discussed in Section 1.8.4 where genes and gene products
were represented conceptually as a single node in the network.

Non-linear ordinary differential equations are used to model the dynamics of the regula-
tory interactions. A non-linear function was used because linear equations do not capture long-
term dynamics as the validity of linear equations applies only in small neighbourhoods of given
states (Starket al., 2003). Linear equations also do not display aspects important for regula-
tion (Arkin, 2000). Consequently, the reconstruction method presented here is not limited to
linear approximations like other methods (Chenet al., 1999; D’Haeseleeret al., 1999; de Hoon
et al., 2003).

The Hill function (Equation 1.6, previous chapter) was chosen over the sigmoidal transfer
function as it has some biomolecular significance (Yagil & Yagil, 1971; Yagil, 1975; Hill, 1985)
and is widely used to model molecular binding processes (Cornish-Bowden, 1979). A problem
with the sigmoidal transfer function is that a gene with an incoming weight of zero will still show
a positive expression (see Salazar-Ciudadet al. (2000) for a discussion).

The dynamics of the networks are specified by the equation

dxi

dt
=

Φ(hi)

Φ(hi) + θi

− µxi (4.1)

wherexi is the concentration of gene producti, andΦ(hi) = max(0, hi) is the Heaviside
function which ensures that negative weights do not lead to negative concentration values,hi

is the incoming regulatory influence (see below), andµ is a term representing gradual decay.
For simplicity and tractability, we used the same degradation rate for all genes. The regulatory
function ranges from 0 to 1, approaching 1 ashi tends to infinity. The regulatory influence is
calculated as described in Chapter 1, Equation 1.4:

hi =
∑

j

wjixj (4.2)

wherewji measures the regulatory influence of genej relative to genei, andxj is the con-
centration of gene productj. Thus, the gene regulatory network is described by a matrix such as
in Figure 1.16. The random creation and mutation of gene regulatory networks is performed by
creating and changing matrices.

4.2 Methodology Pipeline

The reconstruction pipeline consists of four steps:
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1. Create a random gene regulatory network.

2. Simulate the gene expression data using this network and record the resulting artificial
microarray data.

3. Evolve a population of gene regulatory networks to produce the same microarray results.

4. Compare network topologies.

Each of these steps is detailed below, see Figure 4.1 for an overview. A possible point of
confusion is the fact that random networks are discussed in two separate places in this pipeline.
It must be kept in mind that the first random network, created in Step one, is thetargetnetwork
and we wish to reconstruct the topology of this network. We then create a population of random
networks (Step 3) and, using an evolution algorithm, we evolve them to have a similar microarray
time series to the target network (and hopefully similar topology). The target network does
not have to be random, but it is because we apply the pipeline to many networks to get some
measure of confidence in the results, and generating many networks by hand is time consuming
and unnecessary. The population of random networks of course must initially be random.

4.2.1 Step 1: Create a random target gene regulatory network

The ‘target network’ is the network that we wish to reconstruct or recover. First the actual model
of gene regulation will be described, followed by the process of constructing a random gene
regulatory network.

Generation of random gene regulatory networks (GRNs)

When the pipeline to recover network topology (described in Figure 4.1) is applied to real data
(future work, not attempted in this work), we will not know the true structure of the network. But
for development and testing purposes, and for comparing different reconstruction approaches,
the structure of the target network must be known beforehand so it can be compared with the
predicted networks produced by our method. The target network is randomly chosen because
this whole pipeline is applied many times on many different target networks, so that differences
can be detected in the predictive ability of the methods due to different network structures.

One possibility of creating artificial regulatory networks (ARNs) at random is to generate a bit
string and mimic the process of gene regulation occurring from this artificial genome (Banzhaf,
2003). The network then emerges from the interaction of the components. In contrast to this, we
generate the network topology directly.

Although initially it appears to be a trivial task to create a random target network, there is the
complication that the randomly created networks should “make sense”, i.e. they should exhibit
dynamic behavior that is arbitrary, but reasonable in the domain they are created for. In this case,
reasonable ARNs are those which do not stop expression at an early time or where activity is
confined to only a small subset of the whole network. Therefore, we applied a method to prune
and modify random networks to produce interesting dynamics:
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Create target gene regulatory network
and simulate time series

Create population of random 
networks

Simulate all networks in the 
population

Compare population time series to 
target time series

D  unfit networks, duplicate fit 
networks.

iscard

Mutate networks

Compare network topology when 
distance between target and evolved 
networks is low.

1

2

3

4

Figure 4.1: Pipeline for the reconstruction of gene regulatory networks using an evolutionary algorithm.
The steps are as follows: 1) Create a random gene regulatory network. 2) Simulate the network and record
microarray data. 3) Evolve a population of gene regulatory networks to produce the same microarray
results. 4) Compare network topologies.
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First, a directed random network is created by applying the Erdös-Renyi approach (Erdös &
Renyi, 1960) to directed graphs: for a number of nodes each possible edge is tested and drawn if
a random number is lower than a given probabilityp. Each edge is assigned a uniform random
weight in the range of[−1, 1]. The node with the highest “out degree” is chosen as thestarting
nodefor the simulation (for the concept of a starting node see also Section 4.2.2). All nodes
unreachable by the first node are connected at random to the reachable nodes (also chosen at
random).

All nodes in the network are now reachable from the first node with respect to edge direction,
but not necessarily with respect to reaction rates because negative reaction rates might inhibit
the expression of complete subnetworks “behind” a node. Thus, a second pruning is performed
considering the assigned edge weights (which serve later as reaction rates) and all nodes that are
not reachable due to negative weights are simply deleted from the network (Figure 4.2).

Figure 4.2: When generating the random target networks, nodes such as the grey node of the network on
the left can never be activated as there is no positive connection from any other node, and therefore is
deleted.

Removing unconnected nodes improves the efficiency of the simulations, as otherwise one
would be required to take account of many genes that will never be activated.

The final network is represented as a matrix,W , such as Figure 1.16.

4.2.2 Step 2: Simulate network dynamics

The target network is simulated and the results of the network dynamics are recorded. This
becomes the time series that represents an idealised microarray experiment, in that we capture
dynamics at quite regular and short time intervals, and we do not introduce any error that is
always present in real experimental work. The reason for this is simplicity: to evaluate the lim-
itations of this technique (and, in the future, other techniques), the reconstruction process firstly
assumes that there is no error in the results of the microarray experiments that produce the time
series of gene expression. Once the capabilities and limitations of the method are determined,
the contribution of error to reconstruction methods can be evaluated by introducing error into the
simulated microarray experiments.

Simulation of microarray data has been performed by other researchers in a variety of ways
and with different motivations. Repsilber & Kim (2003) start with an ARN and simulate the
network dynamics for a number of time steps to build a time series. They then change the initial
conditions of the ARN and simulate another time series. A simple model combines the two
sets of expression values deriving a time series of log ratios. The danger with this approach is
that any kind of averaging or combining of microarray results can obscure true differences in
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network dynamics that result from different starting conditions (Starket al., 2003). Cuiet al.
(2003) take a different approach. They use a more complicated model of the error implicit
in microarray experiments, but generate the raw expression values randomly from statistically
plausible probability distributions.

In this study, microarray experiments are done similarly to Repsilber & Kim (2003), however
without the averaging over multiple experiments. We have assigned the first gene as the ‘starting
gene’: this gene has a strong self loop and starts the simulation with a positive expression level
(2 in our simulations) while all other genes begin at zero. As the starting node has a self loop, it
is constantly activated and pushes the network out of the null steady state.

Using Euler’s method and a fixed step size, the ARN is simulated using numerical integration
of the differential equations (ie. Equation 4.1) for a small number of time steps. The network is
simulated fors time steps with node values recorded for each time step to form a time series of
network activity (s is chosen such that the steady state begins immediately after). In an approach
inspired by oligonucleotide microarray experiments (eg. Affymetrix experiments), a single gene
expression value is generated for each measured node. At this stage, sampling error and other
forms of noise are not added to the simulated data. The result of this step is a matrix of values
with a row for each measured node and a column for each time step (Figure 4.3). The time series
for the population of evolved networks are generated in the same manner.

1     . . .         t

1

...
n

2.0 .  .  .

2 0

0

...

Figure 4.3: The time series of a simulated network is a matrix, with each row corresponding to a gene,
1, ...n, and each column corresponding to a time step,1...t. The first gene starts with an expression level
of 2, all others begin with zero.

4.2.3 Step 3: Evolve population of networks

Next, ARNs are evolved using an evolutionary computation algorithm to discover networks that
produce output similar to the target ARN.

A challenge when inferring ARNs is the difficulty in assessing the effectiveness of algo-
rithms because the real biological regulatory network structure is mostly unknown. Some re-
searchers approach this challenge by comparing the induced ARNs with target ARNs, for ex-
ample Wahde & Hertz (2000). This difficulty has led some researchers, e.g. Repsilber & Kim
(2003) and Mendeset al. (2003), to test proposed methods with artificially generated, but plau-
sible GRNs. Microarray data is simulated for the ARN and the proposed solution to the reverse
problem is compared with the known ARN. A similar approach is used in this work.

To use an evolutionary approach to discover networks, it must be possible to encode each
candidate ARN as an artificial genome. In Section 4.1 above, we describe how ARNs are rep-
resented as a square matrixW of interaction weights (Figure 1.16). This matrix completely
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defines the behaviour of a particular ARN from given initial conditions. For this reason, we
simply encode each ARN by its matrixW .

For the evolved networks, each nodei is mapped to nodei in the target network. However,
the evolved networks can undergo gene duplications and deletions. For this reason, the top
leftmostn × n sub–matrix (wheren is the size of the target matrix) in each evolved network is
constrained such that these nodes may not be lost by evolution, as the evolution protocol includes
node duplication and deletion operations. Wiring between these nodes, however, is adaptable by
evolution. Also, the first node (w11 has a hard–wired feedback to itself to simplify the evolution
task. All other weights, however, can be changed during evolution.

The artificial evolution begins with a population of randomly created networks 10% larger
than the target matrix with weights drawn uniformly and randomly from the range [-1, 1]. How-
ever, evolution may increase or decrease the number of genes (rows/columns) in the matrix, but
not less than the number of nodes in the target network. That is, the evolution protocol consists
of a set of network mutations with an associated probability of occurrence at each time step, for
example edges may switch nodes or be deleted, weights may be changed by a small amount, and
nodes can be duplicated (see Table 4.1 for a list of mutation operators). At present we have not
implemented cross-over between child networks (see Section 1.21).

Mutation Matrix Operation
Node duplication/deletion A duplication involves copying a node plus all its incoming

and outgoing connections. Deletion is the opposite.
Edge duplication/deletion When an edge is duplicated, the source remains the same

but the target is chosen randomly.
Edge switch Two edges have their weights exchanged.
Edge move The target of an edge is changed to a random node.
Edge creation An edge is created with a random source and target.
Weight change The weight for an edge is altered by a small random amount.
Network duplication The entire network is duplicated. This operation was exper-

imental and not used in all simulations.

Table 4.1: During the evolution process networks are evolved by randomly applying mutations. Each
mutation represents a particular change in the matrix encoding the network.

Algorithm parameters

For the experiments in this study, the population size was typically 1000 individuals and run
lengths were up to 6000 generations. All networks were mutated, and the fittest 50% were taken
for the next generation.

Fitness function

The fitness of each individual network in the population is computed by a fitness function. The
fitness function compares the time series of the individual with the time series of the target
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network and derives a distance, where a low distance corresponds to a high fitness So, for each
genome, the GRN is simulated using equations described in the above section (Equation 4.1)
with the same initial conditions and constant parameters as for the target GRN. Only expression
values for the firstn genes (ie. the upper leftmostn × n submatrix matching the target) are
recorded. The distance of the resulting time series of expression values for each of then genes
to the target values is computed using a simple squared error approach:

d =
n∑

i=1

s∑
t=1

(xit − yit)
2 (4.3)

whered is the distance of the evolved genome time seriesX to the target genome time series
Y . Evolution seeks to minimise the distanced. d sums over each of then genesxit indexed by
genei and timet, for each of thes time steps. The valueyit is the target gene expression value
of genei at timet.

An elitist strategy is used to manage the population. After calculating the fitness of the
population, the weakest 50% of the population is deleted and replaced with the fittest 50%.
Genetic operators (Table 4.1) are then applied to the population with (small) fixed probability.
Genetic operators do not modify the feedback edge to the ‘initial’ node, ie.w11, nor do they
delete any of the nodes in the top leftmostn × n submatrix, as these correspond to the target
network nodes. At this stage, no recombination was implemented.

Fitness is computed for members of the new population and evolution continues until net-
works with suitably small fitness values are evolved or the maximum number of generations is
reached.

4.2.4 Step 4: Compare networks

At the time of this study, no sophisticated comparison methods were applied to compare the
topology of the target network and the topology predicted from the evolutionary algorithm, in
other words the networks were compared ‘manually’. This was not as laborious as it sounds. For
networks producing interesting dynamics (which is defined as any activity thatisn’t monotonic
increase to a steady state or no activity) there was usually a small core of genes that defined the
overall network behaviour.

Each target network was first classed according to the network dynamics. After a number
of different simulation runs, the evolved networks were compared with the target to determine
how much of the network topology was recovered. This is explained in more detail in the next
chapter.
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Chapter 5

Results and Discussion

This chapter discusses the results of the gene regulatory network reconstruction algorithm de-
scribed in the previous chapter. The target networks that will have their topology reconstructed
are classified according to their dynamical behaviour. This classification aids the interpretation
of the reconstruction results. The evolution algorithm is then discussed, followed by a descrip-
tion of the effectiveness of the reconstruction algorithm. A discussion of future work concludes
the chapter.

5.1 Classes of randomly generated networks

As discussed in Section 4.2.1, to evaluate the evolutionary algorithm presented in the previous
chapter (or other algorithms), many randomly generated networks are needed. For the model of
gene regulation used in this work, the first gene has a self loop and begins the simulation with a
non-zero expression level, 2.0 in this case, which pushes the network out of the null steady state.
This can be thought of as a single constant input. Other authors have experimented with multiple
inputs, e.g. (Weaveret al., 1999), but we began here with one of the simplest models.

Hundreds of networks were generated, and a time series of the network dynamics was gener-
ated for all networks. After examining a few hundred networks, it became clear that the dynamics
of each network could be generally classified into 3 categories (Figure 5.1):

Monotonic increase to steady state:this is by far the most common class of dynamical
behaviour seen. All genes that are activated increase monotonically, that is without decreasing,
until they reach a steady state. For almost all networks in this class, the steady state for all genes
was reached before 40 time steps.

Negative feedback:this class involved a negative feedback loop, where one gene is initially
activated, which causes the activation of second gene which represses the first gene. This is
seen as a steady state that is lower than the maximum expression level, i.e. there is a ‘spike’ of
activation before a reduction.

Oscillations: this class of behaviour was the rarest. It involved a negative feedback loop of
three genes, causing the expression level of all three genes to oscillate.
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Monotonic increase to steady state: this
is by far the most common class of dynamical
behaviour seen. All genes that are activated
increase monotonically, that is without
decreasing, until they reach a steady
state. For almost all networks in this class
the steady state for all genes was reached
before 40 time steps.

Negative feedback: this class involved a
negative feedback loop, where one gene is
initially activated, which causes the activation
of second gene which represses the first
gene. This is seen as a a steady state that is
lower than the maximum expression level,
i.e. there is a ‘spike’ of activation before a
reduction.

Oscillations: this class of behaviour was
the least common. It involved a negative
feedback loop of three genes, causing the
expression level of all three genes to oscillate.

Class description Example dynamics Example network 
topology

Figure 5.1: Classes of GRN dynamics

The differences in network dynamics represent differences in network topology. As will
be discussed later in Section 5.4, the information contained in a time series for reconstruction
purposes depends very much on the general category of dynamical behaviour. Classifying the
randomly generated networks into these three classes aids in interpreting the results.

5.2 The evolutionary algorithm

To optimise the evolutionary algorithm (described in Section 4.2.3), its structure parameters were
systematically altered, such as population size, mutation rates, and number of generations.

In all the observed runs of the evolutionary algorithm, the average distance decreased monoton-
ically (after smoothing for random fluctuations). After 500 generations the largest average in-
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crease in fitness usually occurred, followed by incremental improvements. This occurs because
the solution space is defined by the first generation of randomly generated networks. An esti-
mation of the stability of the final solution is acquired by repeating the whole procedure many
times, and comparing the final networks (see next section). Repeating the procedure multiple
times corresponds to starting at different places in solution space.

Within the limits of the computing resources available, population sizes of 1000 were found
to be of sufficient size. Larger population sizes did not significantly improve the final fitness or
the stability of the solutions.

5.3 Network Topology Reconstruction

Three networks of each category in Figure 5.1 were chosen for closer analysis and comparison.
The objective was to run the reconstruction procedure many times for each target network to de-
termine if a) the network topology could be reconstructed, and b) if the solutions were consistent
between attempts.

5.3.1 Monotonic increase to steady state

Three networks that fit this category were chosen semi-randomly, so that the dynamics of each
network were not too similar, yet all in the above mentioned category. The reconstruction proce-
dure was applied a number of times to each network, and the resulting predicted networks were
compared to the target network.

The evolutionary algorithm furnished networks that reproduced almost exactly the time series
of the target network, with the time series distances (Section 4.2.3, Equation 4.3) very low,
(< 0.5). For a target network with seven nodes and a time series of 30 steps, this corresponds
to an average difference of less than 0.001 per node per time step, meaning the time series of
the target and predicted networks are almost identical. This ability was consistent, in that almost
all repetitions of the reconstruction method produced similarly low distances, regardless of the
target network (for networks within this category).

However, when the topology of the target network and the reconstructed networks were com-
pared, there was little in common. Apparently, this is due to the type of topology of the target
network. Almost all the target networks in this category consist of cascades of sequentially ac-
tivated nodes, with little interaction between the cascades. From the starting node, which has a
self loop, most nodes are activated by a single incoming edge. Feedback loops, both positive or
negative, are uncommon.

This topology results in the sequential activation of most genes, with a steady state reached
after the starting node has reached its steady state. The lack of interaction between cascades
means subtrees in the cascade could be switched, and the resulting topologically rearranged
network produces an almost identical time series (see Figure 5.2). In other words, there are too
many network topologies that can produce the same time series in this category, meaning the
evolutionary algorithm is not sufficiently constrained. There are several possibilities to further
constrain the time series of such networks, that are discussed below in Section 5.4.
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The reconstruction procedure did not work well for networks in this category. The time
series did not contain enough information to constrain the number of possible solutions, in that
many network topologies can reproduce the time series of the target network, due to the cascade
structure of the target networks. However, our analysis suggests that this cascade structure is
typical for networks exhibiting this kind of output.

1

2 3

45 6

1

2 3

4 5 6

Figure 5.2: The topology of networks in the category ‘Monotonic increase’ is usually a cascade of nodes
from the starting node with little interaction between cascades. This means that ‘sub-cascades’ can be
switched, such as between nodes 2 and 3, without any large difference in the time series of the network.
The result is that many networks can reproduce the time series of a target network of this category and
there is little chance of the exact topology of the target network being correctly reconstructed using the
methods discussed here (although the type of topology can be).

5.3.2 Negative feedback

The reconstruction procedure was applied to 3 networks in this category. For each target network,
the reconstruction procedure was repeated at least 10 times. The distance measure between the
time series of the target and predicted networks varied between reconstruction attempts. For
approximately half the attempts, the distances were relatively low,∼ 0.5, corresponding to very
similar time series. For the other half, the distance was between 0.5 and 2.0.

A manual comparison of network topologies was done for all networks in this category. For
clarity, only one is discussed here, however the results apply to all three. The network (Number
p03 n10 4967) consisted of ten nodes (see Figure 5.3).

The main part of the network that determines the dynamics of this network is the negative
feedback loop, where the starting node (node 1) activates both node 7 and node 10. Node 10 then
strongly activates the rest of the network. When node 7 begins to be expressed, it then represses
node 10 and the subsequent connected nodes.

A small problem in terminology arises when describing the structure of this network, which
must be elaborated upon to avoid confusion. Specifically, we use the term ‘feed-forward motif’
and ‘feedback loop’ when describing the same parts of a network but we mean different things.
A feed-forward motif is a network structure consisting of three nodes such as in Figure 5.4. Note
that the edges are not differentiated between positive and negative regulatory interactions, but the
direction of the edges is what defines the feed-forward motif. The feed-forward motif can have
different functions depending on the sign of the interactions Mangan & Alon (2003). Now when
we use the term ‘feedback’, we are describing a more general feature, for example, a node that
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Figure 5.3: Network number p03n10 4967 and the resulting time series. Activating interactions have

the arrow and repressing interactions have the arrow. The starting node (node 1) has a self loop
and begins with a positive expression which drives the network out of the null steady state. After node 1
initially activates node 10 and subsequently activating the rest of the network, node 7 eventually represses
node 10 and the subsequent nodes.

activates its own expression exhibits ‘positive feedback’. The network structure in Figure 5.4
could display positive or negative feedback depending on the sign (positive or negative) of the
interactions. For example, if the edge from node 2 to 3 is negative, then the structure exhibits neg-
ative feedback. Thus we differentiate between a specific topological structure, the feed-forward
motif, and properties of the network structure, such as negative and positive feedback.

The subnetwork structure (ormotif) consisting of nodes 1, 7, and 10 is termed a feed-forward
motif (Figure 5.4 and previous paragraph) (Mangan & Alon, 2003). The feed-forward motif
is one of three motifs that occurs more often in theE. coli transcriptional regulation network
compared to randomised networks with the same edge distribution, when ignoring the signs of
the edges (Shen-Orret al., 2002). The motif can perform an information-processing function
depending on the signs of the interactions (activation or inhibition), such as a sign-sensitive
transcription accelerator (speeding up the transcription rate in one direction e.g. off to on), or
a sign sensitive delay, or can generate pulses of transcription activity (Manganet al., 2003;
Mangan & Alon, 2003; Kashtanet al., 2004). Pulse generation is also the function observed in
the network examined here, which depends on a specific edge being negative.

All networks that display a pulse of transcription activity have the feed-forward motif or a
very similar motif directly connected to the starting node. Approximately half the reconstruction
attempts on the target network p03n10 4967 showed this motif, often only with one or two
edges different. In many cases, the exact motif was present but involving different nodes, with
the equivalent nodes in the target network immediately adjacent to the feed-forward motif.

For the target networks examined in this work, the rest of the network connected to the feed-
forward motif was usually a cascade. This meant that, as above, the time series for these nodes
could be effectively reproduced by the reconstructed networks, but the topology could not. This
limitation is probably a result of the simple model used in this work where an initial node starts
with a self loop and quickly reaches a steady state. This is equivalent to a single constant input,
which contains little information. Improved designs are outlined in the discussion, Section 5.4.

85



5.3. NETWORK RECONSTRUCTION CHAPTER 5. RESULTS AND DISCUSSION

1

2

3

Figure 5.4: The feed-forward motif: this network structure, ormotif, occurs many more times in the
transcription factor network ofE. coli than could be attributed to chance. In this figure, arrows mean
a positive or negative interaction. Depending on if the interactions are positive or negative, the feed-
forward motif can perform several different functions, such as a sign-sensitive transcription acceleration
(speeding up the transcription rate), or a sign-sensitive delay, or it can generate pulses of transcription
activity (Manganet al., 2003; Mangan & Alon, 2003; Kashtanet al., 2004).
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Figure 5.5: Target network p03n10 4967 and the best scoring networks from three reconstruction at-

tempts. Activating interactions have the arrow and repressing interactions have the arrow. The
target network is circled where the reconstruction algorithm has correctly predicted the topology, the
feed-forward motif of nodes 1,7 , and 10, and the cascade of 3 and 8 from node 10. In two of the three
reconstructed networks, node 9 is activated directly by node 10, as in the target network. The distances of
the time series of the three reconstructed networks to the target time series are 0.22, 0.73, and 0.36 for the
reconstructed network 1, 2, and 3 respectively.

5.3.3 Oscillations

In contrast to the previous two categories, the reconstruction procedure could not produce net-
works that closely replicated the time series of the target network, i.e., the distance measure
between the target and predicted time series was always relatively high, the lowest being 1.4, but
most were∼ 3.0. As the time series could not be replicated, the topology of the target network
could not be reconstructed.

The time series could not be replicated because the topology that produces oscillations is
relatively rare when randomly generating networks are considered, therefore, relatively few ran-
domly generated networks display this category of dynamics. For a network to display oscilla-
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tions using the model of gene regulation used in this work, a very specific subnetwork structure
must be present. This structure was present in all the randomly generated networks that dis-
played oscillation. The subnetwork consists of a unidirectional loop, with one edge a repressing
interaction and the rest activating interactions (see Figure 5.6).

This subnetwork structure is highly specific for producing oscillations. This meant that dur-
ing the reconstruction procedure, if no network in the first generation of evolved networks dis-
played oscillations or cycles, then the evolution procedure would try to fit the time series of a
network with the category ‘monotonic increase’, however it is unlikely that the evolution algo-
rithm can get out of this local ‘optima’ in sufficient time. In addition, there is no gradual path in
the solution space from oscillating to non-oscillating networks. When this subnetwork is present,
then the time series may show oscillations, however if it is absent then the network cannot pro-
duce oscillations. Thus the problem in reconstructing this category of networks is the rarity of
the network structures that produce oscillations in the time series.

1

3

2 4

Figure 5.6: An oscillation producing network. The network on the left produces the oscillating time series
on the right. All randomly generated networks producing oscillations had a similar subnetwork, consisting
of a unidirectional loop with one edge a repressing interaction () and the rest activating interactions ().

5.4 Discussion

Figure 5.7 summarises the results of the evolution procedure applied to the three categories of
networks. For the first network category, monotonic increase, the target time series could be
replicated by the predicted networks produced by the evolution algorithm, however the network
topologies predicted were only in type similar to the target network topology. This is because
there are many networks that can produce the same time series. For example, in the cascade
shown in the left column in Figure 5.7, the nodes activated by Node 2 could instead be activated
by Node 4, and vice versa. In other words the subnetworks could be switched with little no-
ticeable difference in the time series. Because of this, there is little chance that the evolutionary
algorithm will find a network that happens to closely match the target network.

For networks showing negative feedback in the dynamics, the time series could be reproduced
by the reconstructed networks, and the important network motif that determined the network be-
haviour, the feed-forward motif, could be reconstructed in approximately half the reconstruction
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attempts. Other nodes that are directly connected to the feed-forward motif were also correctly
reconstructed in many cases.

Target networks that display oscillations in the time series could not be reconstructed because
network motifs that produce oscillations are very rare in randomly generated networks. The result
is that the time series of networks of this category could not be reproduced by reconstructed
networks, making it impossible for the topology to be reconstructed.

This shows that, under the network model used in this work, it is possible to reconstruct
networks, depending on what kind of dynamics the network produces. In other words, there has
to be enough information in the time series.

Discussed below is future work designed to address the problem of including more informa-
tion in the time series.

Monotic increase to 
steady state

Activation followed by 
negative feedback

Osc i l l a t i ons

Time series reproduced by 
evolutionary algorithm

Network topology reproduced by 
evolutionary algorithm

Typical network structure

yes yes nono

no nopartially

1

3

2 4

1

2

3

1

2 3 4

5 6 78 9

Figure 5.7: The table summarizes the results of this chapter. For the network category ‘monotonic in-
crease’, the evolutionary algorithm produced networks that could reproduce the time series of the target
network. However, the topology of the target network was a series of cascades with little interaction be-
tween the cascades which meant that many network topologies could produce the time series. Thus, there
was little consistency between the solutions. For the network category ‘negative feedback’, the target net-
works usually had a feed-forward motif, and the algorithm had considerable success in reconstructing this
part of the network, as well as nodes immediately connected to this structure. For the network category
‘oscillations’, the time series could not be reproduced by the algorithm and, thus, nor the network topol-
ogy, which is apparently due to the highly specific subnetwork structure needed to produce oscillations.

5.5 Future work

There are several immediate possibilities for improving the reconstruction process. One is to use
the idea of D’Haeseleeret al.(2000) where external inputs is modeled, such as artificially chang-
ing the expression of a specific gene at a specific time step, corresponding to an environmental
signal. This would add more information to the network time series and constrain the number of
possible networks topologies, making accurate reconstruction of the target network more likely.
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Experimentally, this would involve an artificial or natural gene construct that responds to some
added signal.

Another possibility is to use ‘knockout’ experiments where each gene is sequentially de-
stroyed and the time series recorded. Knockout experiments are a standard experimental proce-
dure and would be an ideal way to further test the reconstruction procedure presented here.

Further evaluating the reconstruction method presented here with other forms of experimental
data will aid in designing a procedure for evaluating other gene-network reconstruction methods
such as those discussed in Chapter 1. The overarching question of this entire project concerns the
unknown regulators in a network. The biggest problem using microarray data to build models of
gene-expression networks is not the noise of the sample, nor the intrinsic noise of the biological
phenomena. It is the fact that microarrays only measure “fingerprints” of the real network. In
addition, building models using only such data makes the assumption that measured mRNA
levels correspond approximately to protein levels in the cell that in turn regulate mRNA levels.
While this may be a reasonably valid assumption in prokaryotes, for eukaryotes it is not (Gygi
et al., 1999).

Crucial measurements that are not made are the actual concentration of the protein for which
the mRNA is translated, the resulting variant if different exon combinations are possible, post-
translational modification, protein localisation, its current state (for example bound by an in-
hibitor protein), and many others, as e.g. the recent discovery of the impact of small RNA strands
(microRNA) on all levels of genomic regulation (Ambros, 2001). That is, the RNA world likely
plays a very important role in gene regulation that currently is not well understood. Noise starts
to look unimportant against all the missing data.

The result is a network with many unknown nodes and edges (Fig. 5.8). This is the direction
of future work: assuming it ispossiblefor a network to be reconstructed from experimental data,
what affect do unmeasured nodes have on the reconstructed networks? The first step, undertaken
in this section, is to investigate the limitations of reconstruction methods whenall genes (nodes)
in the network are visible, and to set up a framework for comparing different reconstruction
methods.

Figure 5.8: Microarrays only measure a fraction of the real gene regulatory network. Not measured are
protein concentrations, post translational modification and localisation, etc. Future work will be directed
at addressing this question using previously published gene regulatory reconstruction algorithms and the
algorithm presented here.

89



Chapter 6

Closing comments

This thesis has regarded the genomic machinery of a cell as a network. A simplification, but
a useful one, as (in this thesis) it partitions the task of understanding the cellular interaction
network into two distinct problem areas (Figure 6.1).

?
?

? 1 2

?

??

Figure 6.1: This thesis has addressed two problems in piecing together a network of cellular interactions:
1) Reconstructing the function of genes (coloured circles) that are uncharacterised; and 2) Investigating
the limits of gene regulatory networks reconstruction methods using microarray experiments. This can be
be thought of as 1) reconstructing the nodes in a network, and 2) reconstructing the edges in a network.

Chapters 2 and 3 dealt with understanding the nodes of the network, in this case, by predicting
the function of uncharacterised genes using homology and phenotype information. This approach
is akin to classical genetics in that we go from phenotype to genotype, instead of the other way
around that has become more common in the molecular age. It is an approach that exploits
evolution, in that the statistical significance, or ‘surprise’ value, becomes greater the longer the
divergence time for similar genes or proteins. In other words, genes remaining similar over
geologically long time periods in phylogenetically distant organisms implies a preservation of
function. And with techniques exploiting evolution in this manner, the more genomes (or other
data sets) one has, the more robust and useful the predictions. This general approach has been
used recently on microarray data. Normally microarray data require several statistical processing
steps, and the conclusions drawn are usually tentative. However, in Stuartet al. (2003) the
authors gathered as much microarray data for a single species as was feasible and looked for
co-occurrence of gene pairs. This technique has been done before on single experiments, and the
conclusions were always tentative due to the relatively small data sets. However, by looking for
co-occurrence of gene expression levels that are the same in many disparate experiments from
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many different research groups dealing with different stresses and developmental conditions, the
chance of finding such co-occurrences by chance alone diminishes rapidly. In other words, to
detect a weak signal you just need a bigger data set. Approaches of this nature are expected to
become more common as biological data sets become larger and more diverse.

In this author’s opinion, the most interesting results from Genetrawler were from investigat-
ing the assimilatory sulfur reduction phenotype. Here, several genes were detected, not from
adjusting the thresholds, but from adjusting the e-value threshold. All the genes detected in such
a manner (excluding the known core pathway genes) all relied on the sulfur reduction pathway
as all the proteins encoded by these genes used a sulfur-metal group as a co-factor. These genes
are dependent on the pathway, and the dependency has been preserved enough over the course
of evolution for this method to detect.

As with any prediction method, the predictions require experimental verification. This was
not performed in this work due to lack of resources and time. However, one experimental proto-
col for validating the functional predictions made by Genetrawler are gene knockouts, which are
a standard laboratory exercise. In fact, they have been used previously to confirm the usefulness
of a similar method (Levesqueet al., 2003). A limitation is that the validation requires the effect
of the gene knockout to be observable, which will not be the case for every gene and phenotype.
And in cases such as pathway dependency discussed above, removal of such a pathway is highly
likely to be lethal.

Chapters 4 and 5 tackled the problem of reconstructing the topology of gene regulatory net-
works from microarray experiments. Actually, it investigated the limitations of this kind of
approach. Since the microarray experiments were idealised (we assumed no experimental er-
ror), and the simulated time series rather long compared to (currently) realistic time series, the
hope for network reconstruction on real experimental data seems limited. There are, however,
some extra points worth discussing that both offer reasons for optimism and give more reasons
for skepticism. As discussed previously in Section 5.5, microarray experiments only measure
a fraction of the real interaction network. We don’t know how much information processing
occurs via ncRNAs in eukaryotes, but it appears substantial. That is why this work is directed
at prokaryotes, where the correlation between transcription concentration and protein concentra-
tion is higher. However protein-protein interactions in prokaryotes are not measured. On the plus
side, the networks used in this work had only one continuous input signal. Providing multiple
input signals would constrain the networks further and improve the reconstruction capability of
this approach. Using artificial gene knockouts and measuring the transcription time series could
provide extra useful data and also constrain the possible numbers of networks that could fit the
time series. Thus, both methods presented here can use the same experimental verification: gene
knockouts. For prokaryotes, this procedure is well established and reasonably reliable.

A reason for optimism is that, in our case, we assume no interactions are previously known.
However, for most regulatory networks there is at least a small part characterised. If these known
interactions were included, it may be enough to substantially constrain the possible networks and
thus provide useful network topology predictions.

In conclusion, we have presented a useful tool for working biologists for predicting the func-
tion of bacterial genes, and demonstrated some limitations on gene regulatory network recon-
struction methods using microarray data.
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Appendix

A Genetrawler species classifications

Query:Bacillus subtilis,subsp. subtilis str. 168

Exclude genomes (without flagella): Include genomes (with flagella):
Archaeoglobus fulgidus Aquifex aeolicus
Bifidobacterium longum NCC2705 Borrelia burgdorferi
Chlamydia trachomatis D/UW-3/CX Campylobacter jejuni
Deinococcus radiodurans Escherichia coli UPEC-CFT073
Fusobacterium nucleatum subsp. nucleatum ATCC 25586Helicobacter pylori 26695
Haemophilus influenzae Rd Pseudomonas aeruginosa PAO1
Methanobacterium thermoautotrophicum Delta H Thermotoga maritima
Methanococcus jannaschii Vibrio cholerae
Methanopyrus kandleri AV19
Methanosarcina acetivorans str. C2A
Mycobacterium tuberculosis CDC 1551
Mycoplasma genitalium
Mycoplasma penetrans HF-2
Mycoplasma pneumoniae
Mycoplasma pulmonis
Neisseria meningitidis MC58
Pyrococcus abyssi
Pyrococcus furiosus DSM 3638
Pyrococcus horikoshii
Rickettsia prowazekii
Sulfolobus solfataricus
Sulfolobus tokodaii
Synechocystis sp PCC6803
Thermoplasma acidophilus
Thermoplasma volcanium
Thermosynechococcus elongatus BP-1
Xylella fastidiosa

Table A1: Species in Flagella analysis (Chapter 3.3.1).
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Query:Mesorhizobium loti

Exclude genomes (without nitrogen fixation): Include genomes (with nitrogen fixation):
Aeropyrum pernix K1 Anabaena sp.
Archaeoglobus fulgidus Bradyrhizobium japonicum USDA 110
Bacillus halodurans Chlorobium tepidum TLS
Bacillus subtilis,subsp. subtilis str. 168 Clostridium acetobutylicum ATCC824
Bifidobacterium longum NCC2705 Mesorhizobium loti
Borrelia burgdorferi Methanobacterium thermoautotrophicum Delta H
Brucella melitensis 16M Methanosarcina acetivorans str. C2A
Brucella melitensis biovar suis 1330 Methanosarcina mazei Goe1
Buchnera aphidicola str. Sg (Schizaphis graminum) Nostoc sp PCC7120 (Cyanobacteria)
Campylobacter jejuni Rhodopseudomonas palustris CGA009
Chlamydia trachomatis D/UW-3/CX Sinorhizobium meliloti 1021
Chlamydia trachomatis MoPn Nigg (replace muridum)
Chlamydophila pneumoniae AR39
Chlamydophila pneumoniae J138
Clostridium perfringens 13
Corynebacterium efficiens YS-314T
Corynebacterium glutamicum ATCC 13032
Deinococcus radiodurans
Escherichia coli UPEC-CFT073
Haemophilus influenzae Rd
Halobacterium sp. NRC-1
Helicobacter pylori 26695
Helicobacter pylori J99
Lactococcus lactis subsp. lactis
Leptospira interrogans serovar lai str. 56601
Listeria innocua
Listeria monocytogenes
Mycobacterium leprae
Mycobacterium tuberculosis CDC 1551
Mycobacterium tuberculosis H37Rv
Mycoplasma genitalium G37
Mycoplasma penetrans HF-2
Neisseria meningitidis MC58
Neisseria meningitidis Z2491
Oceanobacillus iheyensis HTE 831
Pasteurella multocida Pm70
Pseudomonas aeruginosa PAO1
Pseudomonas putida KT2440
Pyrobaculum aerophilum
Pyrococcus abyssi
Pyrococcus furiosus DSM 3638
Pyrococcus horikoshii OT3
Ralstonia solanacearum GM1000
Rickettsia conorii Malish 7
Rickettsia prowazekii strain Madrid E
Salmonella typhimurium LT2
Shewanella oneidensis MR-1
Shigella flexneri 2a str. 301
Staphylococcus aureus subsp. aureus Mu50
Staphylococcus aureus subsp. aureus MW2
Staphylococcus aureus subsp. aureus N315
Streptococcus agalactiae 2603V/R
Streptococcus agalactiae NEM316
Streptococcus mutans UA159
Streptococcus pneumoniae R6
Streptococcus pneumoniae TIGR4
Streptomyces coelicolor A3(2)
Sulfolobus solfataricus
Sulfolobus tokodaii
Thermoanaerobacter tengcongensis
Thermoplasma acidophilus
Thermoplasma volcanium
Thermotoga maritima
Treponema pallidum
Ureaplasma urealyticum
Vibrio cholerae
Wigglesworthia brevipalpis
Xanthomonas axonopodis pv. citri str. 306
Xanthomonas campestris pv. campestris str. ATCC 33913
Xylella fastidiosa
Yersinia pestis C092
Yersinia pestis KIM5 P12 (Biovar Mediaevalis)

Table A2: Species in Nitrogen Fixation analysis (Chapter 3.3.2).
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Query:Synechocystis sp.

Exclude genomes (without photosynthesis): Include genomes (with photosynthesis):
Aquifex aeolicus Anabaena sp.
Archaeoglobus fulgidus Chlorobium tepidum TLS
Bacillus subtilis,subsp. subtilis str. 168 Nostoc sp PCC7120 (Cyanobacteria)
Borrelia burgdorferi Prochlorococcus marinus str. MIT 9313
Campylobacter jejuni Rhodopseudomonas palustris CGA009
Chlamydia trachomatis D/UW-3/CX Synechocystis sp PCC6803
Chlamydia trachomatis MoPn Nigg (replace muridum)Thermosynechococcus elongatus BP-1
Escherichia coli UPEC-CFT073
Haemophilus influenzae Rd
Helicobacter pylori 26695
Helicobacter pylori J99
Methanobacterium thermoautotrophicum Delta H
Methanococcus jannaschii
Mycobacterium tuberculosis CDC 1551
Mycobacterium tuberculosis H37Rv
Mycoplasma genitalium G37
Neisseria meningitidis MC58
Neisseria meningitidis Z2491
Pseudomonas aeruginosa PAO1
Pyrococcus horikoshii OT3
Rickettsia prowazekii strain Madrid E
Thermotoga maritima
Vibrio cholerae
Xylella fastidiosa

Table A3: Species in Photosysnthesis analysis (Chapter 3.3.3).

Query:Corynebacterium glutamicum ATCC 13032

Exclude genomes (without ass. sulfur reduction):Include genomes (with ass. sulfur reduction):
Bifidobacterium longum NCC2705 Brucella melitensis 16M
Chlorobium tepidum TLS Corynebacterium efficiens YS-314T
Mycoplasma penetrans HF-2 Corynebacterium glutamicum ATCC 13032
Mycoplasma pneumoniae M129 Leptospira interrogans serovar lai str. 56601
Pasteurella multocida Pm70 Mycobacterium tuberculosis H37Rv
Pyrococcus furiosus DSM 3638 Pseudomonas aeruginosa PAO1
Staphylococcus aureus subsp. aureus Mu50 Salmonella typhimurium LT2
Staphylococcus aureus subsp. aureus MW2 Sinorhizobium meliloti 1021
Staphylococcus aureus subsp. aureus N315 Streptomyces coelicolor A3(2)

Xanthomonas axonopodis pv. citri str. 306
Xanthomonas campestris pv. campestris str. ATCC 33913

Table A4: Species in Assimilatory Sulfur Reduction analysis (Chapter 3.3.4).
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B GeneTrawler Manual

This manual describes in a step by step manner how to predict genes functionally involved in a
phenotype using the methods from Chapter 2.

Step 1:
Open a web browser and go to the link:
http://bibiserv.techfak.uni-bielefeld.de/genetrawler/ . The screen in Fig-
ure B1 should greet you.

Figure B1: The GeneTrawler welcome screen at http://bibiserv.techfak.uni-bielefeld.de/genetrawler/

Step 2:
Click on “Submission” on the panel on the right. The screen in Figure B2 should then appear.
Click on the field “Genome” and choose an organism from the scrolling chooser. An an

example here we will choose“Mesorhizobium loti” as our genome. Then choose a phenotype
from the scrolling chooser below the Genome chooser, in our example here we will choose
“Nitrogen fixation” (Figure B3). Once the organism and the phenotype have been chosen, push
the “Update” button. The selections will be submitted to the database and the table of phenotype
information will be updated.

Step 3:
Now that the genome and phenotype has been selected, choose the include threshold, ex-

clude threshold, and e value threshold, described in Section 2.1.3. For this example, leave the
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Figure B2: The submission screen.

parameters at the default setting.
The next step is to check the phenotype data. If the phenotype classifications are satisfactory,

push the “GeneTrawler” button at the top of the phenotype data table. A new window will open,
and after about 10 seconds (depending on you internet connection and how busy the database is)
the results will be displayed (Figure B4).

From the demonstration example here, 5 genes are predicted to be involved in nitrogen fix-
ation in “Mesorhizobium loti”, and all five have a nitrogen fixation annotation. A list of the
genomes classified as possesing and not possessing the phenotype are also shown.
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Figure B3: Choose the genome and phenotype to analyse.
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Figure B4: The results window. 5 genes are predicted to be involved in nitrogen fixation inMesorhizobium
loti with the default parameters. A list of genomes and their phenotype classification is also given.
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