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Summary

Detailed information on DNA-binding transcription factors (the key players in the reg-
ulation of gene expression) and on transcriptional regulatory interactions of microorgan-
isms deduced from literature-derived knowledge, computer predictions, and global DNA
microarray hybridization experiments, has opened the way for the genome-wide analysis
of transcriptional regulatory networks. The large-scale reconstruction of these networks
allows the in silico analysis of cell behavior in response to changing environmental condi-
tions. Here, we mainly focus on the gene regulatory interactions of corynebacteria, which
are relevant in biotechnological production processes and human medicine.
In the framework of this thesis, we aim to a user-oriented software platform that supports

(i) the integration of existing knowledge, (ii) visualization capabilities, (iii) the generation
of novel hypotheses, and (iv) the possibility to share post-processed data with others.
Until now, there is no online database available that provides well-structured data on

corynebacterial gene regulatory networks. Five related systems, which are specialized
for other species are analyzed regarding their advantages and disadvantages. Not one
of these databases provide all the necessary methods to satisfactorily support the above
mentioned data processing tasks. None of the systems provide sufficient data exchange
methods, statistically sound transcription factor (TF) binding site (TFBM) predictions,
or comparative network analyses. Just one online database provides network visualization
capabilities, none an appropriate homology detection. All platforms contribute to the basic
requirements (i) data integration, (ii) raw data access, and (iii) graphical genome browsing.
Nevertheless, data access is often difficult and the generation of novel hypotheses is not
adequately addressed.
In this thesis, we present the corynebacterial reference database and analysis platform

CoryneRegNet, which outperforms the other approaches at several levels. It offers a novel
data structure to overcome typical data integration problems. First, CoryneRegNet was de-
signed for the non-pathogenic soil bacterium Corynebacterium glutamicum. By using our
ontology-based back-end, it could easily be extended by gene regulatory data on Corynebac-
terium efficiens, the human pathogens Corynebacterium diphtheriae, Corynebacterium
jeikeium, Mycobacterium tuberculosis, and the model organism Escherichia coli K-12. Sim-
ilar to the other platforms, CoryneRegNet provides a web-based user interface to access the
database content. Aside from this and in contrast to the related platforms, CoryneRegNet
offers a structured data exchange method for subsequent analyses by means of a SOAP-
based Web Service server. With PoSSuMsearch, we integrated a fast method for TFBM
predictions, which also provides statistically sound significance values for putative hits.
In contrast to all related platforms, the GraphVis feature allows (i) the visualization of
reconstructed gene regulatory networks as graphs, (ii) the interspecies comparison of these
graphs, and (iii) the projection of gene expression data onto these graphs. Unlike the
other systems, CoryneRegNet is directly connected to a genome annotation system that
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provides additional up to date information for selected genes and proteins. Contrary to
the related platforms, CoryneRegNet also supports (i) an appropriate homology detection,
(ii) a method to analyze regulatory networks in the context of gene expression studies to
predict putative contradictions, and (iii) a fast method for the automatic readjustment of
often inaccurately determined TFBMs.
With CoryneRegNet, biological data on transcriptional gene regulations in microorgan-

isms can easily be utilized for the generation of novel hypotheses and further bioinformatics
analyses. We demonstrate these applicabilities by means of four application cases, which
can not be directly addressed with other existing platforms.
CoryneRegNet is a comprehensive system for the integrated analysis of procaryotic gene

regulatory networks. It is a versatile systems biology platform to support the efficient
and large-scale analysis of transcriptional regulation of gene expression in microorganisms.
CoryneRegNet is publicly available at http://www.coryneregnet.de or via the Coryne-
Center portal at http://www.corynecenter.de.
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1 Introduction

1.1 Background & motivation

Microorganisms continuously have to handle changing environmental conditions to main-
tain their functional homeostasis and to overcome stress situations with detrimental con-
sequences for growth and survival [87]. Therefore, they evolved mechanisms to sense
alterations within their environmental surroundings and developed molecular strategies
co-ordinated by complex transcriptional regulatory networks to manage unfavorable condi-
tions. The complexity of such regulatory networks results from the interaction of numerous
transcription units consisting of a transcription factor (TF) and a defined set of regulated
target genes [125]. The most important components of these units are apparently the
DNA-binding transcription factors. They are responsible for sensing environmental and
intracellular signals to control cellular reproduction and growth [4–6]. Depending on the
growth conditions of a bacterial cell certain fractions of the total set of transcription fac-
tors are operating [110]. Some of them only control the expression of a single gene whereas
others organize the activation or repression of numerous target genes [125].
Transcription factors include a DNA-binding domain that possesses a secondary struc-

ture to recognize the operator sequences of regulated genes [100] (refer to Figure 1.1). These
sequences are more or less conserved (refer to Figure 1.2). In the following we denote such
a nucleotide sequence as transcription factor binding motif (TFBM or shortly BM). The by
far most widely used model to describe a set of BMs for a given TF is a position frequency
matrix (PFM). PFMs can be converted to position weight matrices (PWMs), also called
position-specific score matrices (PSSMs) by taking log-odds (see e.g. [107, 121]). In turn
the PWMs may be used to scan the upstream sequences of putative target genes in order
to predict novel TF-DNA interactions in silico. In Section 3.3 and Section 3.4 we give more
detailed information on PFMs, PWMs, and PWM-based TFBM predictions.
The availability of whole genome sequences provides the opportunity to define the total

set of DNA-binding transcription factors of an organism [20, 102]. This is a first step
not only in understanding the regulatory complexity of a certain bacterial cell but also for
reconstructing the global connectivity of a regulatory network to theoretically describe and
deduce gene expression pattern of a microorganism [60]. From a set of complete genome
sequences it has been deduced that large genomes include more transcription factors per
gene than small genomes [24]. The increase of genomic complexity is thus associated with
a more complex regulation of gene expression since the additional genetic information has
to be integrated into the existing regulatory network basically operating in a bacterial
cell. The transcriptional regulatory network of Escherichia coli K-12 so far is one of the
best characterized regulatory systems of a single cell. The total number of about 320
transcriptional regulators of E. coli were classified into eight distinct regulatory modules
with defined physiological functions [110]. Additional bioinformatics studies suggested a
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Figure 1.1: The secondary structure of the human transcription CAP-DNA com-
plex (1ber). Taken from http://gibk26.bse.kyutech.ac.jp/jouhou/image/dna-
protein/rna/rna.html.

Figure 1.2: The transcription factor binding sites of a regulator can slightly vary for dif-
ferent target genes. Taken from http://weblogo.berkeley.edu.

hierarchical and modular structure of the regulatory network, excluding circular feedback
loops on transcriptional level for this organism [8,83,84].
The genus Corynebacterium comprises a number of human pathogens, like Corynebac-

terium diphtheriae and Corynebacterium jeikeium, as well as the non-pathogenic soil bac-
teria Corynebacterium glutamicum and Corynebacterium efficiens that are widely used in
biotechnological production processes of food and feed additives [47, 59]. Because of their
relevance in biotechnology and medicine the genome sequences of C. glutamicum ATCC
13032, C. efficiens YS-314, C. diphtheriae NCTC 13129, and C. jeikeium K411 have re-
cently been determined [25, 67, 97, 124]. First comparative analyses revealed a high-level
conservation of orthologous genes in these genome sequences, indicating that the corynebac-
terial species have rarely undergone genome rearrangements and thus largely retained their
ancestral genome structure [94]. An initial step in understanding the transcriptional reg-
ulatory machinery of corynebacteria was the bioinformatics identification of the encoded
transcription factors [20]. A collection of 127 DNA-binding transcription factors was de-
tected in the genome sequence of C. glutamicum, whereas 103 regulators were identified
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Figure 1.3: A comparison of the content of transcription factors in four completely se-
quenced corynebacterial genomes. The Venn diagrams show the number of
shared and organism-specific genes among the genomes. Abbreviations: Cg,
C. glutamicum; Ce, C. efficiens; Cd, C. diphtheriae; Cj, C. jeikeium. Taken
from [20].

in C. efficiens, 63 in C. diphtheriae and 55 in C. jeikeium. The relation between these
numbers agrees well with the assumption that the quantity of transcription factors of an
organism is correlated to the genome size and the environmental surrounding a bacterial
cell is exposed to [24]. Accordingly, the physiological versatility of C. glutamicum results
in a considerably higher number of transcriptional regulators, and in consequence in a
more complex regulatory network by integrating and co-ordinating additional regulatory
subnetworks. According to amino acid comparisons and protein structure predictions the
repertoire of DNA-binding transcription factors of C. glutamicum, C. efficiens, C. diph-
theriae, and C. jeikeium were further on divided into 25 families of regulatory proteins.
A common set of only 28 regulators was encoded by all of the four genome sequences
and thus presumably includes the core set of DNA-binding transcription factors of these
bacteria [20] (refer to Figure 1.3). Despite the progress in bioinformatics prediction of
transcription factors, the reconstruction of regulatory networks is generally hindered by
the relatively low level of evolutionary conservation of other molecular network compo-
nents, for instance of the cognate operator sequence (binding motif) of a DNA-binding
transcription factor. However, developments in DNA microarray technology have allowed
the generation of genome-wide data sets experimentally characterizing the regulatory net-
works of corynebacteria [61,75,111].

1.2 Aims

The ambition of this post-genomic approach is first to decipher and reconstruct the tran-
scriptional regulatory network of C. glutamicum as a model organism and subsequently the
networks of C. diphtheriae, C. efficiens, and C. jeikeium. The goal is to develop an online
available database and analysis platform for corynebacterial gene regulatory networks that
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Figure 1.4: The biological concept of gene regulation in C. glutamicum. The model
presents the hierarchical and modular network structure of transcriptional reg-
ulatory interactions. It consists of five distinct transcription factor modules and
a module containing the main and alternative sigma factors involved in differ-
ential gene expression by sigma factor competition. A top level regulator is
the hyperphosphorylated guanosine nucleotide ppGpp, involved in sensing the
quality of the environment and the cellular resources. The amount of ppGpp
determines the cellular program and the role of sigma factor competition in
global regulation of gene expression. Taken from [11].

reflects the biological concept of these organisms, as suggested in [11] (refer to Figure 1.4).
The platform shall provide a solid basis for further regulatory network studies in the field
of systems biology.
In other words, within this thesis, we aim to a user-oriented software platform that

supports (i) the integration of existing knowledge, (ii) visualization capabilities, (iii) the
generation of novel hypotheses, and (iv) the possibility to share post-processed data with
others. To address these points, we developed CoryneRegNet, an ontology-based data
warehouse and analysis platform of corynebacterial transcription factors and gene regula-
tory networks.

1.3 Structure

In Chapter 2, we first introduce and compare related systems with respect to the database
content and to analysis features. We show that none of the existing platforms provide
(i) data on corynebacteria and (ii) sufficient data analysis capabilities. We discuss why
another platform is necessary. Subsequently, we describe which further visualization and
functional capabilities are required for (i) an integrated systems biology analysis of existing
knowledge, (ii) for the in silico generation and evaluation of new hypotheses, and (iii) for
the potential to share data with other platforms in a well-structured manner.
Afterwards, we describe how we addressed these requirements and how we implemented
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them in the systems biology platform CoryneRegNet in Chapter 3.
Here we first present the data integration procedure (Section 3.1). We start with the

system architecture and give technical details on the used libraries (Section 3.1.1). The
novel ontology-based data structure that helps to overcome the typical data integration
problems of the other related platforms is described in Section 3.1.2. An introduction to
Web Services and how CoryneRegNet and the systems biology community profits from
that technology is given in Section 3.1.3. Here we show how post-processed data can be
shared with other platforms in a well-structured way.
We explain the visualization functionalities of CoryneRegNet in Section 3.2 and this

is subdivided into two parts. First, the main web interface is described in Section 3.2.1.
Similar online representations are also provided by related systems, excluding the interfaces
to specific data analysis features, which are not offered by the others. In the second part,
the network visualization toolkit GraphVis is introduced (Section 3.2.2). A similar graph
visualization and analysis capability is not provided by other platforms.
In Section 3.3 we briefly introduce the fast and statistically sound TFBM prediction

software PoSSuMsearch and describe how it has been included into CoryneRegNet’s back-
end and front-end. With its integration, we provide an easy-to-use interface that helps to
generate novel hypotheses.
Since an accurate determination of TFBMs is essential for further predictions, in Sec-

tion 3.4 we present a method for the automatic readjustment of TFBMs. On top of the
PoSSuMsearch software, our approach provides faster and more accurate solutions than
existing platforms.
How one can use gene expression studies to detect putative contradictions or inconsis-

tencies in gene regulatory networks is described in Section 3.5. The corresponding COMA
feature is explained in detail. We discuss how the systems biology community can profit
from this functionality that is also not supported by related platforms.
A prerequisite for knowledge transfer from one model organism to other organisms is a

fast and accurate genome-scale homology prediction. In order to integrate such data into
CoryneRegNet, we developed a novel strategy for protein homology detection solely based
on the amino acid sequences. In Section 3.6 we present the software FORCE that heuris-
tically solves the weighted graph cluster editing problem. Subsequently, we demonstrate
its application to huge datasets and how it has been integrated into CoryneRegNet. We
show that our approach outperforms the most popular protein clustering tools.
Integrated systems biology platforms like CoryneRegNet or related systems are growing

software projects. CoryneRegNet was also subjected to continuous improvement. In Sec-
tion 3.7 we summarize the change in database content and the development of CoryneReg-
Net from the first release 1.0 to the current version 4.0. The ontology-based data structure
and the generic system architecture of CoryneRegNet helped to keep negative effects that
arouse from typical extension problems to a minimum.
Chapter 4 summarizes the results of this thesis. We discuss how CoryneRegNet meets

the requirements analyzed in Chapter 2. In Section 4.1 we demonstrate the key features of
CoryneRegNet by means of four application cases, which can not be directly addressed with
other existing platforms: (i) the reconstruction of the stress response of C. glutamicum at
transcriptional level in Section 4.1.1, (ii) the knowledge transfer from C. glutamicum to
C. diptheriae regarding the well-studied regulator DtxR in Section 4.1.2, (iii) the compar-

11



ison of the regulatory LexA network of C. glutamicum and E. coli in Section 4.1.3, and
(iv) the study of the transcriptional response of C. glutamicum to two different feeding
conditions by using gene expression data in Section 4.1.4.
We conclude that CoryneRegNet is a comprehensive systems biology platform for the

storage, visualization, reconstruction, and analysis of procaryotic gene regulatory networks
in Chapter 5. It outperforms other systems with related aims.

1.4 Availability

CoryneRegNet is publicly available at http://www.coryneregnet.de. A documentation
on how to develop a CoryneRegNet Web Service client is also available at the web site.
CoryneCenter can be entered via the portal web site http://www.corynecenter.de. The
protein cluster software FORCE including the source code and all used datasets can be
downloaded from http://gi.cebitec.uni-bielefeld.de/comet/force/. The transcrip-
tion factor binding motif reannotation web server MoRAine is online available at https:
//www.cebitec.uni-bielefeld.de/groups/gi/software/coryneregnet/moraine/.

1.5 Publications & cooperations

The database itself, some basic visualization features, and a description of the back-end and
the data import process has been published in [11] (CoryneRegNet 1.0). Following this, the
database content has been extended considerably and several data analysis features have
been developed and integrated. The subsequent releases 2.0, 3.0, and 4.0 are published
in [10, 12, 14]. The articles [10, 11] are ’highly accessed’ since publication at the BioMed
Central (BMC) web site. Finally, CoryneRegNet has been interconnected with GenDB
and EMMA. The comprehensive data analysis platform CoryneCenter was established and
published in [96]. The ontology-based database back-end was initially developed for the
ONDEX system, which is published in [71], while the large-scale protein cluster detection
software FORCE was published in [108,131]. A manuscript, which describes the MoRAine
web server has been submitted for publication [15].
This integrated systems biology project has partially been performed in cooperation

with other scientists at the Center for Biotechnology, Bielefeld. Karina Brinkrolf worked
on the sister project of CoryneRegNet and performed wet lab experiments. FORCE has
been developed in joint cooperation with Tobias Wittkop. A detailed description of all
cooperations is given in the Appendix in Section A on page 96.
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2 Requirements and related work

In the past years, several approaches for the storage, analysis, and reconstruction of gene
regulatory interactions have been implemented and established. This chapter gives a brief
introduction to platforms that are related to our aims. We discuss the advantages and
disadvantages of these systems. From this analysis, the requirements for CoryneRegNet
are deduced.

2.1 Related platforms

2.1.1 RegulonDB

RegulonDB is an internationally recognized and established reference database for the
procaryotic model organism Escherichia coli K-12. The provided amount of manually
curated and experimentally validated knowledge on the gene regulatory network and the
operon organization of E. coli is the largest currently available for any organism. The
current release 5.0 is synchronized with a second E. coli reference database: EcoCyc [70],
where the same information is offered. All data is gathered manually by the RegulonDB
curation team. Starting point is a list of publication abstracts, obtained from PubMed and
filtered by pertinent keywords. The manually extracted data on transcriptional regulatory
interactions is stored in an Oracle DBMS and continuously checked for inconsistencies.
An online interface allows querying the database content. For a gene of interest, all

annotated data is presented (gene product, position in the genome, molecular weight,
functional classification, and access to the corresponding gene/protein sequence). Further-
more, all known gene regulatory interactions are given along with a list of co-regulated
genes. Moreover, a visualization of the genomic context is offered, including the operon
organization, binding sites, promoters, and terminators (genome browser). A network
display tool allows a simple, circular, and graph-based visualization of the immediate
neighbors of the gene of interest within the global regulatory network (refer to Figure 2.4
on page 19). Moreover, RegulonDB integrates the Nebulon-tool [66], which predicts sets
of functionally related genes (clusters of potentially homologous proteins). It is based on
the co-occurrence of genes within bacterial operons. RegulonDB is publicly available at
http://regulondb.ccg.unam.mx/. It provides no data exchange methods, but a download
of tab-delimited flat-files [114].

2.1.2 MtbRegList

MtbRegList is a database dedicated to the gene regulation of the human pathogenic bac-
terium Mycobacterium tuberculosis. Its back-end stores 121 predicted and experimentally
validated ’regulatory DNA motifs’ (transcription factor binding motifs) along with a fre-
quently updated genome annotation from the TubercuList database [23].
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As for RegulonDB, an online interface allows querying the database content. For a
gene of interest, the gene annotation is available (gene product, position in the genome,
and access to the corresponding gene/protein sequence); obtained from TubercuList and
NCBI [127]. Furthermore, for all genes the web interface provides hyperlinks to corre-
sponding COG database entries [123], where possible. Also, similar to RegulonDB, one
can graphically navigate the genomic context, given a gene or a genetic region as a starting
point (genome browser). A network visualization is not supported. A method to search for
TFBMs stored in the database exists. The user can enter a ’signature’ (similar to a regular
expression) to retrieve a list of potentially matching motifs. MtbRegList is publicly avail-
able at http://pages.usherbrooke.ca/gaudreau/MtbRegList/www/index.php. It also
does not provide data exchange methods, but search results can be downloaded in XML
or tab-delimited text format [65].

2.1.3 PRODORIC

The database PRODORIC generally aims to the storage and analysis of procaryotic gene
regulations. Similar to RegulonDB and MtbRegList, all data is gathered by analyses of
scientific literature and subsequently stored in a database, which is based on the TRANS-
FAC database (see Section 2.1.5), but is extended to specific procaryotic characteristics.
PRODORIC includes all NCBI genome annotations of procaryotic organisms even if no
information on any transcriptional regulation is available. Mainly Bacillus subtilis, E. coli,
and Pseudomonas aeruginosa are supported.

As the other systems, PRODORIC also provides a web interface for querying the database
content, and moreover it allows to execute analysis features. Aside from the integrated
NCBI data, PRODORIC supports links to COG and to SWISS-PROT [7]. For a gene of
interest, the gene annotation is available (gene product, position in the genome, and ac-
cess to the corresponding gene/protein sequence), along with its regulators (the TFs that
control the gene) the corresponding TFBMs are available, which are subsequently used
to construct position weight matrices (PWMs). In total, PRODORIC covers regulatory
information on six organisms (with 2517 TFBMs and 149 PWMs). The PWMs can subse-
quently be used as input for the integrated TFBM matching software Virtual Footprint [92]
to predict further TF-DNA interactions. As in RegulonDB, a genome browser provides a
graphical representation of the genomic context at sequence level. A network visualization
is not supported. PRODORIC is publicly available at http://www.prodoric.de. As the
other systems, it does not provide data exchange methods. Not even data download as
flat-files is supported [93].

2.1.4 DBTBS

DBTBS is the database of transcriptional regulation in Bacillus subtilis. It is essentially a
compilation of transcription factors with their regulated genes as well as their recognition
sequences (TFBMs), which were experimentally characterized and reported in the liter-
ature. Annotated genes are linked to the Japanese BSORF database [44]. DBTBS also
supports the prediction of putative TFBMs within a given input sequence by using PWMs
and consensus patterns. Furthermore, DBTBS contributes to comparative genomics by
detecting potentially orthologous transcription factors in other procaryotic genomes. It
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provides a genome browser but no network visualization capabilities. DBTBS is publicly
available at http://dbtbs.hgc.jp. Again it does not provide data exchange methods.
Data download as flat-files is also not supported [64,85].

2.1.5 TRANSFAC

Although TRANSFAC is a commercial platform, which is distributed by BIOBASE (http:
//www.biobase.de) and focuses on eucaryotic organisms (human, mouse, Arabidopsis
thaliana, Drosophila melanogaster, and Saccharomyces cerevisiae), it shall be introduced
here because it provides similar data analysis functionalities as the above mentioned sys-
tems.
The data is manually curated and gathered by analyzing scientific literature. TRANS-

FAC stores TFs, genes, and TFBMs. The entries presented at the web site are hyperlinked
to corresponding databases (NCBI, DATF: Database of Arabidopsis Transcription Fac-
tors [56], Drosophila DNase I Footprint Database [18], and FlyBase [37]). For a given TF,
all genes that are under direct transcriptional control of the TF are presented along with
the corresponding TFBMs. These motifs are subsequently used to construct PWMs. As for
PRODORIC, the PWMs can subsequently be used as input for the integrated motif match-
ing software features MATCH [69], and P-MATCH: [27]. TRANSFAC does not provide a
network visualization. Unlike the afore mentioned systems, a genome browser is also not
directly integrated. TRANSFAC is available online at http://www.gene-regulation.com
under a commercial license. Again, this system does not provide any data exchange meth-
ods [88,129,130].

2.1.6 Summary

Here we summarize the related platforms by means of a compacted view on the database
content and on the analysis features.

Database content

The afore mentioned databases store data on gene regulations for the following organisms:

• RegulonDB: Escherichia coli K-12

• MtbRegList: Mycobacterium tuberculosis H37Rv

• PRODORIC: Bacillus subtilis, Escherichia coli K-12, Pseudomonas aeruginosaATCC
15692, and Pseudomonas aeruginosa PAO1

• DBTBS: Bacillus subtilis

• TRANSFAC: Homo sapiens (human), Mus musculus (mouse), Arabidopsis thaliana,
Drosophila melanogaster (fruit fly), and Saccharomyces cerevisiae (yeast)

Note that we exclude those organisms from consideration where just a few gene regu-
latory interactions are available (this solely effects PRODORIC). Not one of the systems
provide data on that species this work aims to: corynebacteria and closely related microor-
ganisms.
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Data analysis features

Table 2.1 compares and summarizes the main data analysis and visualization features of
the related platforms. We will use this summary to compile a list of necessary and desirable
functionalities for our system in the next section.

Table 2.1: Summary and comparison of related database systems and analysis platforms,
which are dedicated to gene regulation. Note that raw data access in MtbRegList
is granted by means of XML, but separate for each entry.

Feature RegulonDB MtbRegList PRODORIC DBTBS TRANSFAC

Genome browser + + + +
Network visualization +

Network analysis
Raw data access + (+) +

Data exchange methods
BM prediction + + + +

2.2 Requirement analysis

Figure 2.1: Overview of the data structure of the RegulonDB 1.0 database back-end.
Taken from [62] .

All the databases use special purpose data structures at the back-end level. Figure 2.1
shows an overview of the data structure of the first release of RegulonDB [62]. The contin-
uously growing amount of available data and novel models of gene regulation have caused
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Figure 2.2: Overview of the data structure of the PRODORIC database back-end. Taken
from [93]. .

the necessity to adapt these structures. Between 1998 and 2006, the data structure of Reg-
ulonDB has been changed and extended several times in order to fit the novel knowledge
into the specialized data structure. These stepwise changes are reported in [113–117]. The
back-end organization of the PRODORIC database is shown in Figure 2.2.
Both the schemata of RegulonDB and PRODORIC illustrate the high specialization

of the data structures. Even though both systems are specialized for the same purpose,
namely modeling procaryotic gene regulation, two circumstances effect the transfer of real-
world models to in silico models. (i) The database designers act on slightly different
assumptions about the nature of the real-world features that have to be modeled. This
partially depends on the topic-specific know-how at that point of time when the data
structures are formulated. (ii) When new information and novel experimental results on
the modeled concepts are available the designers have to adapt the database back-end in a
way to fit the new concepts into the schemata. This mainly entails modifications in both
the import process of the data into the database and the querying procedure. Furthermore,
the front-end has to be altered in order to query, display, and analyze the novel information.
To overcome these problems, we propose to use an ontology-based data structure that is
explained in Section 3.1.2 on page 23.
From the summary in Table 2.1 (page 16) we can gather direct impressions of the basic

functionalities, not including obvious standard capabilities:

• Genome browser: A genome browser visualizes the genomic context of a gene of inter-
est, ideally along with known sequence features (TFBMs, gene start/stop positions,
etc.). All the afore mentioned databases make use of an own implementation that
is specialized for the specific database structure. A graphical comparison of genome
browsers (including the CoryneRegNet visualization described in Section 3.2.1) is
given in Figure 2.3. All except for the PRODORIC viewer also visualize TFBMs and
the operon structure. The browsers of RegulonDB and MtbRegList support image
maps, which allow the user to directly navigate to sequence features by clicking on
them. TRANSFAC does not provide a genome browser. We address this point in
Section 3.2.1 on page 27.
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Figure 2.3: This figure illustrates the genome browsers of RegulonDB (A), MtbRegList
(B), PRODORIC (C), DBTBS (D), and CoryneRegNet (E). The screenshots
have been taken from the corresponding web sites (see text). Displayed genes:
cmk-rpsA of E. coli in (A); gmhA of M. tuberculosis in (B), (C), and (E); pel
of B. subtilis in (D).

• Network visualization: If we consider genes as nodes and transcriptional interactions
between genes as labeled, directed edges, one can imagine networks (graphs). These
can be visualized by utilizing adequate graph layout algorithms. Figure 2.4 shows
the network visualization of RegulonDB, the only platform that supports such a
capability. Unfortunately, the graph layout can not be changed (e.g. to reflect the
hierarchical network structure). Furthermore, the genes (nodes) in the graph can not
be navigated by clicking on them. In Section 3.2.1 (page 27) we present a considerably
improved graph visualization feature.

• Raw data access: The provided data normally is stored using a relational database

18



Figure 2.4: This screenshot shows the gene regulatory network of the nitrate regulator
NarL in E. coli visualized with RegulonDB.

management system (e.g. MySQL, PostgreSQL). This supports an efficient data
processing but hinders the direct access of external users. Therefore, all datasets
are extracted in (more or less) regular time intervals and stored as tab-delimited flat
files, which are subsequently offered for download at the web site. We contribute to
this point in Section 3.1.3 on page 25.

• BM prediction: The prediction of putative TFBMs allows (i) the identification of
further gene regulatory interactions of a TF of interest, and thus (ii) the transfer of
regulatory networks of a model organism to other closely related species. A variety
of tools have been developed in the last years to attack this problem (for example
Virtual Footprint and MATCH, mentioned in the previous section). These model
BMs of a TF as PWMs and subsequently use them to scan the upstream sequences
of putative target genes for matching sequence motifs. Although this is an important
feature, all related platforms lack (i) a statistically sound but fast method and (ii) a
method that helps to validate and readjust the often imprecise determined TFBMs.
We present the integration of an improved BM prediction in Section 3.3 (page 35)
and show its benefits by means of an application case in Section 4.1.2 (page 72). A
suitable automatic BM reannotation method is presented and discussed in Section 3.4
(page 37).

Aside the functions provided by the already established systems, we consider the follow-
ing features as valuable extensions to gene regulatory databases:

• Data exchange methods: Usually, interconnections between different data sources
are realized by HTML-links to other web pages or by regular, manual downloads and
a subsequent integration of the corresponding data. This is both time-consuming
and error-prone. By integrating SOAP-based Web Services, the data can be post-
processed easily and hence be presented in a different way, and, most importantly, it
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is always up to date. Using Web Services, the user would not even recognize that the
data is downloaded from another service. A publicly available Web Service server
offers methods to query data from the database. Neither direct access to the DBMS
server is necessary, nor any knowledge about the data structure in the back-end. All
API information is provided as so-called Web Service Definition Language (WSDL))
files. In Section 3.1.3 on page 25 the benefits of a Web Service integration into
CoryneRegNet are discussed in detail. We demonstrate these benefits in Section 4.1.4
on page 77 by means of an application example.

• Network analysis: Bacterial gene regulatory networks normally show a hierarchical
structure that is mostly conserved between closely related species [4, 6, 82]. Hence,
graph comparison capabilities (for both known and predicted networks) are a highly
desirable feature. Such a function assists scientists with the cross-species knowledge
transfer and hence with the identification of novel promising targets for wet lab
analyses. On top of that, the projection of gene expression levels (measured e.g.
with DNA microarrays) onto graphs helps to gain a first overview of experimental
data. Simple contradictions or inconsistencies in the context of known or predicted
gene regulatory networks could become obvious within seconds. We address this
point in Section 3.2.2 (page 32). The network comparison capabilities as well as the
projection of microarray results onto graphs are described in detail.

As consequences or enhancements of the afore mentioned requirements, we also consider
the following points as being necessary:

• Homology detection: In order to provide graph comparison functionality at the front-
end side, it is necessary to have a mapping between homologous proteins/genes.
The simplest way would be the integration of corresponding data from the COG or
the SCOP [3] databases. Unfortunately, both standard repositories omit data on
corynebacteria and on specific mycobacterial strains. Hence, either the installation
of an existing software or the development of a novel, easy-to-integrate method is
desirable. In Section 3.6 (page 48) we address this point and present a novel homology
detection method that outperforms other popular approaches.

• Contradictions/inconsistencies in gene expression experiments: Assume we have given
a (possibly incomplete) gene regulatory network and the operon organization of an or-
ganism. Further, we have given a potentially genome-wide transcriptional expression
study (e.g. a microarray experiment). Now, one can scan the experimental results
for contradictions in the relative gene expression levels concerning (i) operons and
(ii) the known regulatory network. For example, one could imagine that a repressing
transcription factor is upregulated, but one of its target genes is not downregulated
(as expected); that would be a hint for further (hidden or unknown) transcriptional
regulatory relationships. In Section 3.5 on page 45 we present the COMA feature,
which addresses this requirement.
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3 CoryneRegNet

In this chapter, we describe CoryneRegNet, an ontology-based data warehouse that satisfies
the requirements for a corynebacterial gene regulatory database and analysis platform that
were outlined in the previous chapter.

3.1 Data integration

A prerequisite to systems biology is the integration of heterogeneous experimental and an-
notation data, which is stored in numerous life-science databases. Efficient data handling
and integration is encumbered by a wide range of problems. Frequently, the explicit specifi-
cation of data that should be integrated during future research and database development
is not available beforehand. At present, most databases are implemented on relational
database management systems; they store data by using specialized data structures, which
leads to two problems during data processing.

1. Attribute names are often not self-explanatory and equivalent attributes have differ-
ent names in different databases. Therefore, problems with attribute values might
occur when using, for instance, unequal units in different data sources [76].

2. The main problem, however, affects the querying procedure, since it requires detailed
semantic knowledge about the content of specific database tables. When extending
an embedded database by new data, the data structure of the back-end needs to be
changed, which usually affects the import procedures and the front-end applicability
as well as the stability and integrity of the whole system [103].

In the case of the below mentioned systems GenDB and EMMA, a special interface called
BRIDGE [51, 52] has been developed, to overcome the data exchange problems. A more
general and more widely used and accepted technique is the application of SOAP-based
Web Services. These have recently been implemented e.g. by the European Bioinformatics
Institute [104] and BRENDA [9].
For CoryneRegNet, the starting point of data integration is a collection of different flat

files that store the genome annotations, predicted operons, gene regulations and the mem-
bership of transcription factors to their families. In order to supply the researchers’ need
for structured information and appropriate visualization along with knowledge recombina-
tion for usage in further analyses and integrated easy-to-use bioinformatics methods, such
as TFBM prediction, an important task is to find a way to import existing data into a sin-
gle data scheme, with respect to expandability of the data repository by data of unknown
and unspecified structure. Our approach to address the mentioned challenges converts all
data sources into a common ontology-based, graph-like data structure, denoted integrated
ontologies (also recently used in the ONDEX system [71]).
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In the following, we first describe the overall system architecture of CoryneRegNet.
Subsequently, we contribute to the special data structure of the database back-end and
the benefits from integrating the genome annotation system GenDB [90] and the microarray
storage and analysis platform EMMA [36, 79] into CoryneRegNet by using SOAP-based
Web Services. Last, we describe how the systems biology community can profit from the
integrated Web Service server.

3.1.1 System architecture

Figure 3.1: The system architecture of CoryneRegNet. Since it is a data warehouse, all
time-consuming calculations are performed at data warehousing. The results
are then transformed into an ontology-based data structure and imported to the
MySQL database server (Back-End). An Apache web server processes the user
requests, queries the database, and constructs the corresponding web pages.
It further provides the SOAP-based Web Services for GenDB, EMMA, and
other applications and also queries them as a client. A Java Applet is used for
network visualization and analysis (Front-End).

Figure 3.1 illustrates the system architecture of CoryneRegNet, which is designed as a
web-based software environment that is publicly available. The complete genome sequences
of all integrated microorganisms along with the genome annotations have been downloaded
from NCBI in GenBank format and imported into CoryneRegNet. Furthermore, biological
data relevant to transcriptional regulations were imported into the database as derived from
literature knowledge (included in the database as PubMed link), computer predictions, and
experimental studies. The data import process was realized by running a parser that was
implemented in Java. The parser software additionally integrates the imported data into
a single ontology-based data structure and converts it into a relational data model. The
output are tab-delimited flat-files that in turn are input files for the MySQL built-in import
procedure and finally used to fill the CoryneRegNet database.
Since CoryneRegNet is a data warehouse, all time-consuming calculations are regularly

performed at import process. First, the upstream region of each gene is extracted and
stored in a separate table of the database and additionally in a flat file in FASTA format
for integration with the PoSSuMsearch software. The CoryneRegNet import program
includes all-vs.-all BLAST [2] results for all gene and protein sequences in the database
using an E-value (expected number of higher scoring hits in random sequences) threshold
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of 10−6 for genes and 10−10 for proteins. This calculation has to be performed just once
when a new genome annotation is added and is also used as input for the protein cluster
prediction software FORCE. The results are re-used in later import procedures, in contrast
to the PoSSuMsearch suffix array, which has to be re-created during every data warehousing
process because the upstream sequences that are used in this pre-calculation step depend
on the imported operon tables. In addition, all PWMs are recalculated.
For the web front-end PHP 5 (http://www.php.net) is used. It runs on an Apache

server 2.0.49 (http://www.apache.org), which queries the database management sys-
tem MySQL 4.1.9 (http://www.mysql.org). All diagram graphics are created with Jp-
Graph 1.20.3 (http://www.aditus.nu/jpgraph) and GD Graphics Library 2.0 (http:
//www.boutell.com/gd). Operon information for corynebacterial genomes is based on the
VIMSS operon prediction [106]. The sequence logo painter is implemented in Java 5 (http:
//java.sun.com), as is the graph-based network visualization tool GraphVis that uses an
academic license version of the yFiles Java graph library (http://www.yworks.com). Tran-
scription factor binding sites are modeled by position weight matrices and are reannotated
by means of MoRAine (https://www.cebitec.uni-bielefeld.de/groups/gi/software/
coryneregnet/moraine/, refer to Section 3.4, page 37). The PWM matching tool PoS-
SuMsearch [16] (also refer to Section 3.3, page 35) can be downloaded separately from http:

//bibiserv.techfak.uni-bielefeld.de/possumsearch. Protein clusters are obtained
by using the FORCE heuristic (http://gi.cebitec.uni-bielefeld.de/comet/force/,
also refer to Section 3.6, page 48). CoryneRegNet further provides a SOAP-based Web
Service server and also queries the GenDB/EMMA services as a client by using the Nu-
SOAP library for PHP (http://sourceforge.net/projects/nusoap). The correspond-
ing WSDL files, example scripts etc. are available at http://www.CoryneCenter.de. The
entire system was developed and runs on servers configured with Solaris 9/Sun OS 5.9.
CoryneRegNet itself is tested and runs under Windows XP/Vista, Linux and Solaris OS
5.9 with Internet Explorer 6.0+, Mozilla Firefox 1.5+, or Opera 8.0+. In order to use the
GraphVis features, Java 5+ has to be installed and configured.

3.1.2 Ontology-based data structure

Generally, any kind of biological data can be considered as an ontology, which consists
of concepts that are linked through relations. Accordingly, the goal was to integrate het-
erogeneous data related to transcriptional regulation into a database in such a way that
they fit into a single ontology-based data structure. In principle, technical and semantic
data integration can be performed during data import. If a mechanism exists that ensures
the correct semantics of the relations, then different data sources from different levels of
biological hierarchy can be integrated into the same database scheme.
An ontology-based data structure consists of concepts that are linked through relations.

The integrated data can be regarded as a set of structured and named concepts, whereas the
data sources are so-called controlled vocabularies (CVs) [72]. During the data warehousing
(import) process, CoryneRegNet creates a dataset concept for each biological entity (genes,
proteins, transcription factors, etc.) and a dataset relation for each linkage between two
concepts (refer to from_concept and to_concept in Figure 3.2). All concepts and rela-
tions are typed, using concept classes and relation types that are organized internally as
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Figure 3.2: Entity Relationship (ER) diagram representing the data structure used for
the construction of CoryneRegNet. The ER was implemented in the DBMS
MySQL and is divided into two main parts: the generalized data structure
(GDS) and the ontology-based data structure. Rectangles represent entities,
rhombi represent relations between two entities, and circles represent attributes
of entities. The entities Concept and Relation, which are the main components
of the ontology-based data structure, are located in the center of the ER di-
agram. They store all essential data on genes, proteins, etc. as well as every
linkage between them. They are typed (Concept_class and Relation_type)
and link to the controlled vocabulary (CV ) they have been extracted from.
Furthermore, they link to their generalized attributes (GDS_relation and
GDS_concept) and to associated sequences (entity Sequence). Alternative
names and accessions are stored in the tables of the entities Concept_name
and Concept_accession.
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specialization trees. Furthermore, the database back-end stores the CV from which the
concepts and relations are extracted and the unique accessions and names they have in
the source databases. Additionally, attached attributes are saved in a generalized data
structure (GDS) to overcome the earlier mentioned attribute handling problem with val-
ues from heterogeneous data sources. Figure 3.2 shows the Entity Relationship diagram
of CoryneRegNet, which was implemented in MySQL and which is similar to that of the
ONDEX (ONtological inDEXing) [71] data structure.
Using an ontological structure mainly impacts the querying procedure, which remains

unchanged when extending the data repository by new data integrated from various data
sources. For example for CoryneRegNet 2.0, we added three corynebacterial genome anno-
tations to the database back-end. But the process still is very similar to the first release,
which contained only a single genome annotation. To include the data, the import manager
creates a concept for every biological entity and a relation for every connection between
two concepts. In addition, we formulate a new concept class organism and a new relation
type belongs_to_organism. Consequently, each biological concept (gene, protein, etc.)
is linked to the concept organism by a relation of type belongs_to_organism. The re-
sult is a database that contains more information but appears unchanged to all querying
front-end programs. One example: When using the release 1.0 front-end (designed for
a single organism) with the release 2.0 database content (four organisms) to display all
genes having ’DtxR’ in their names list, the output is a simple list of four genes (one for
each corynebacterial species), as the release 1.0 front-end does not distinguish between the
species. The important point is that the front-end can access the extended database.

3.1.3 Web Services

Generally, Web Services can be defined as software interfaces that interact via a network
connection using XML-based messages. These either contain queries (function calls) or
the corresponding results. While the transfer is usually performed using HTTP, the SOAP
protocol can be used to describe the message structure. The description of an entire
Web Service is conducted by using the Web Service Description Language (WSDL). Any
software that is written in a programming language, which offers a SOAP interface can
retrieve data directly from that service. Such a program can internally handle all queried
data as if the data would be stored in local data structures and memory. Hence, using
SOAP-based Web Services, the end-user of an integrated platform even does not recognize
that the data is obtained from another system. More general information on Web Services
and SOAP can be found in [32,128].
Most interconnections of biological online databases are still realized by using HTML-

links to other web pages or by regular, manual downloads and a subsequent integration
of the corresponding data. The introduction of Web Services has opened the way to
overcome this workaround and to directly integrate, combine, and visualize appropriate
data where it is most expedient. The major advantages of Web Services in automatic
biological knowledge processing are:

1. No flat files need to be provided by the distributed platforms, so no extra parsers
need to be written.
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2. All data is stored in the distributed systems and not copied into a local repository.
Storage requirements are decreased but data transfer costs may increase.

3. No updates or adjustments of the federated database scheme are necessary.

4. The repositories do not need to be actively synchronized.

Recently, the access to biomedical Web Services has been published for a growing number
of online resources. Some popular examples are: several databases and data analysis
services of the EBI, the BRENDA database, KEGG [68], OLS (Ontology Lookup Service)
[33], and PathwayExplorer [91].
However, with the existing Web Services no microarray experiments or information on

microbial gene regulatory networks can be accessed. Moreover, providing methods for
retrieving the necessary data is only the first step towards a successful integrated analysis.
The next step, which for the biologist may be more important, is to build a tool on top of
this, which allows for convenient data mining and provides suitable visualizations of the
integrated data sets. No application is yet known to us that uses Web Services to retrieve
data for an integrated analysis of microarray experiments and gene regulatory networks
coupled to the genome annotation, and provides a user interface for interactively viewing,
browsing, and analyzing the data at the same time.
In the following, we briefly describe the GenDB and the EMMA Web Services. We

describe how we use SOAP to integrate the two data sources with CoryneRegNet to provide
new analysis methods and how CoryneRegNet profits from the combined power of all three
systems in one platform, which is called CoryneCenter.
Since both GenDB and EMMA are implemented in Perl, they provide servers utilizing

the SOAP::Lite library (http://www.soaplite.com).

Client for GenDB and EMMA

CoryneRegNet benefits on several aspects from the direct connection to GenDB and
EMMA:

• For a gene of interest, more accurate and up to date annotation data from GenDB
is displayed in the detailed view of a gene (EC numbers for enzymes, Gene Ontology
numbers, etc.).

• Using the GenDB Web Service, all target genes of a transcription factor are linked to
KEGG pathways and a list of regulated pathways is presented. This allows insights
into the general nature of a transcription factor.

• The build-in network visualization Applet GraphVis now features the projection of
stimulon data (gene expression levels) extracted from EMMA to the size of the con-
cerned nodes, which represent the genes.

Usually, this kind of interconnections are realized by utilizing HTML-links or by regular,
manual downloads of the corresponding data. Using Web Services the user even does not
recognize that the data is downloaded from another service. The data is always up to
date and it can be post-processed much more easily. As for all distributed platforms, the
disadvantage is the dependence on a working internet connection.
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Server

The publicly available Web Service server offers several methods to query data from
CoryneRegNet. Neither direct access to the MySQL server is necessary, nor any knowledge
about the data structure in the back-end. All API information is provided as WSDL file.
The WSDL file for the interface of CoryneRegNet is automatically generated on demand
by that PHP/SOAP script, which also implements the Web Service functions. After a
requirements analysis with biologists, who use CoryneRegNet, we decided to provide the
following methods:

• getOrganisms: Compares a given string to all organism names in the database and
returns the unique organism identifier for all matches.

• getTfGeneIDs: Returns all identifiers of genes that code for transcription factors, for
a given organism ID.

• getGeneID: Genes can have ambiguous IDs in different databases and most of them
are additionally stored in CoryneRegNet. This methods returns unique internal gene
IDs, given an ambiguous one.

• regulates: For a given gene G, all genes that are regulated by G are returned, includ-
ing additional information (evidence, regulation type, PubMedID, etc.).

• isRegulatedBy: For a given gene G, all genes that regulate G are returned, including
additional information.

• getOperonByGeneID: Returns operon information for a given gene ID.

Now, it is possible to retrieve the most important data from CoryneRegNet directly from
any software that is written in a programming language, which offers a SOAP interface.
Such a program can internally handle all queried data as if the data would be stored in
local data structures and memory.
A detailed documentation (with examples) on how to implement a CoryneRegNet Web

Service client is available at the CoryneRegNet and CoryneCenter web sites.

3.2 Visualization

3.2.1 User interface

Web-based user interfaces to biological databases often support the following tasks: (i)
browsing by listing or navigating through database entries, (ii) searching by identifying
entries based on restrictions on the values of data fields within the database, (iii) visu-
alizing by presenting a visual representation of the data, and (iv) querying by specifying
a special search using a query building interface [49]. As well as other gene regulatory
databases, such as PRODORIC, CoryneRegNet also emphasizes browsing, searching and
visualizing. After login, the entry page of CoryneRegNet shows a statistical summary
of the data currently integrated into the database and provides the possibility to browse
the organisms (Figure 3.3). Alternatively, the user can start searching the database using
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Figure 3.3: Screenshot of the CoryneRegNet main search form.

criteria that were obtained through a requirements analysis with potential users. The cri-
teria are implemented following the typical search mask style of the other gene regulatory
databases mentioned in Chapter 2. The search results are presented in a table-based style
including gene and protein identifiers and names, the regulator type (if the specific protein
is a transcription factor), the functional module the gene belongs to, and the transcrip-
tional regulations the gene is involved in. The user may acquire additional information on
specific elements by clicking on them. A typical detailed view of data regarding a tran-
scription factor gene is presented in Figures 3.4, 3.5, and 3.6. It is possible to navigate to
other entries of CoryneRegNet, to the genome annotation system GenDB and to the NCBI
Entrez Gene database by following the respective links.

Statistics

Statistical analyses, which are performed on-the-fly during browsing the statistics pages
of CoryneRegNet, are integrated as visualization into the web interface, thereby reflecting
the sum total of the current database content as well as species-specific evaluations:

• Quantities of regulator types and families

• Distribution of the number of transcription factors regulating a gene

• Distribution of the number of co-regulating transcription factors
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Figure 3.4: Screenshot of the CoryneRegNet details page (part 1) for the gene sdhCD
(cg0445). Shown is the main part including the genome browser and essential
information about the gene: operon organization, organism, gene regulations,
further gene annotations available from GenDB, and known stimulons that
effect the gene expression level of sdhCD.

• Number of co-regulators and regulations for each transcription factor

• Distribution of transcription factor binding site distances from the translational start
of a gene, and

• Distribution of PWM lengths.

Similar analyses have been performed for E. coli and published e.g. in [5,102]. For example
Figure 3.7 plots the distribution of the number of TFs vs. the number of genes they control.
Babu et al. found similar results for E. coli [5]. As another example, Figure 3.8 plots the
distances of the TFBMs from the target gene start positions. One can see that repressors
tend to dock more closely to the gene start than activators.

Genome browser

The details page of CoryneRegNet also visualizes the selected gene region. When searching
a gene, a genome viewer automatically generates a linear display on the top of the details
page, showing the position of the selected gene within its genomic surrounding. When the
selected gene is part of an operon, all members of this operon appear in their chromoso-
mal arrangement and are specifically colored. TFBMs are shown in front of the selected
gene or, if the gene is part of an operon, in front of the first gene of the corresponding
transcription unit. An operon is clearly defined as a group of two or more genes that
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Figure 3.5: Screenshot of the CoryneRegNet details page (part 2) for the gene dtxR
(cg2103), which encodes a repressor of C. glutamicum responsible for the reg-
ulation of the iron metabolism. Shown are that KEGG pathways that are
predicted to be regulated (obtained by using the GenDB Web Service). Fur-
thermore, some essential information about the gene itself is given followed by
the PWM of the repressor and the sequence logo.

are transcribed as a polycistronic unit. The respective operon information of E. coli has
been adopted from RegulonDB, whereas the VIMSS operon predictions [106] have been
used for corynebacteria, but manually curated afterwards. The graphical design of the
genome viewer uses an image map, allowing direct access to other gene details pages of
CoryneRegNet by clicking on them (refer to the top of Figure 3.4).

Sequence logos

Sequence logos are a graphical method for displaying patterns in a set of aligned se-
quences [118] and, accordingly, provide suitable tools for the characterization of DNA-
binding sequence motifs of transcriptional regulators [31, 112]. Since sequence logos dis-
play both significant residues and subtle sequence patterns, one can determine not only
the consensus sequence for DNA binding of a transcriptional regulator but also the relative
frequency of bases and the information content (measured in bits) at every position in a
nucleotide sequence. To create sequence logos from the TFBMs gathered in CoryneReg-

30



Figure 3.6: Screenshot of the CoryneRegNet details page (part 3) for the gene dtxR
(cg2103). Shown is the binding site prediction (TFBScan) start form (top)
and the start form for the GraphVis applet that visualizes the gene regu-
latory network of dtxR up to a certain depth threshold (bottom). Besides,
one can optionally view further known gene/protein identifiers, candidates for
homologous genes/proteins, the protein cluster dtxR is assigned to, and the
nucleotide/amino acid sequences.

Figure 3.7: This figure plots the distribution of the number of transcription factors vs. the
number of genes they control.

Net, the pre-calculated position frequency matrices (PFMs) are used for the computation.
The PFMs are automatically updated during data warehousing as new TFBMs are inte-
grated into the database. The logo geometry is stored in XML files generated by means
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Figure 3.8: This figure plots the distances of the TFBMs from the target gene start posi-
tions. Note that some TFs can dock within the coding region of the gene they
control (negative values at the x-axis). The red points represent the number
of repressions for the respective distances, the green points for the activations.
The black curve is the sum of both.

of JDOM (http://www.jdom.org), also allowing the graphical design of other logo types,
such as hidden Markov model (HMM) logos [119]. In principle, the height of each char-
acter representing the DNA binding motif is made proportional to its frequency, and the
characters are then stacked on top of each other for each position in the aligned nucleotide
sequences [118]. Here, we use colored bars for underrepresented logo characters at each
position of the motif to improve the visualization of the sequence logos. The height of an
entire stack is proportional to the information content Ii of the motif at position i, and
the letters are sorted so the most common one is on top of the stack. Ii is defined as the
difference between the maximal nucleotide entropy Emax and the observed entropy Eobs
in a certain column i of a PFM. If we assume a uniform distribution of the N nucleotides,
the information content at position i and hence the stack height in the logo is as follows:

Ii = Emax − Eobs = 2− (−
∑

σ∈{A,T,C,G}

fσi · log2 fσi) [bits],

where fσi is the frequency of nucleotide σ at position i. Note that for N = 4 nucleotides
Emax = log2N = log2 4 = 2 [bits]. In addition, the mean information content of the DNA
binding motif is calculated and indicated graphically (refer to the examples in Figure 3.5
on page 30, and Figure 4.7 on page 77).

3.2.2 GraphVis

The user can visualize a transcriptional regulatory network at every navigation point using
a result table or a detailed frame as starting point. The user has to define a graph depth
cut-off and whether genes from hierarchical regulations should be included into the graph
(refer to the GraphV is button in Figure 3.6). Graph construction starts with the selected
set of genes, propagates through the regulatory network and adds more genes into the graph
until the depth cut-off has been reached. The network visualization toolkit is a Java Applet.
Due to security restrictions, it can not query the database server directly. Instead, it sends
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its requests to a PHP script that redirects the query to the back-end and subsequently
sends the results back to the applet. The user obtains the same details on genes, proteins
and regulatory interactions as in the browser-based view of CoryneRegNet. The main
advantage is the graphical overview of the reconstructed regulatory network, where nodes
in the graph represent genes and edges represent regulatory relationships. The user can
zoom into the graph, layout the graph by using different styles, remove selected elements
from the graph or retrieve detailed information on selected genes. The user can extend the
displayed graph by using an import wizard that provides a similar search mask as for the
table-based web front-end. Furthermore, it is possible to visualize predicted transcriptional
regulatory networks, and to compare them with evidenced graphs. Another practical aspect
is that GraphVis also provides the interspecies comparison of regulatory networks.
In the following, we first introduce the comparative graph layouters that help with

the interspecies network comparison, and afterwards we briefly describe the projection of
experimental gene expression (i.e. microarray) results to visualized graphs.

Homology-based graph layouting

Figure 3.9: Visualization of the regulatory networks of DtxR of C. glutamicum (left side)
and C. diphtheriae (right side) by using a force-based comparative graph layout.

In order to compare depth-1 gene regulatory networks, special graph layouters are nec-
essary. Assume two sets of target genes A = {a1, . . . , an} and B = {b1, . . . , bm} of two
transcription factors tA and tB. Furthermore, we have given sequence-based similarities
s : A × B → R between all pairs of genes. Consider a pair a, b as a homology a ∼ b,
if s(a, b) exceeds a certain threshold. Let HA := {a ∈ A | ∃b ∈ B, a ∼ b} be the
set of those genes regulated by tA that have at least one homology partner in B, and
HB := {b ∈ B | ∃a ∈ A, a ∼ b} respectively. We denote the set of those genes in A without
any homology partners in B with NA := A \HA, and NB := B \HB respectively.
The most simple layout style is illustrated in the application cases in Figure 4.6 (page 76),

and Figure 4.8 (page 78). The genes of NA and NB are organized as semicircles on the
left and the right side. Those genes from HA and HB are arranged clique-wise in the
middle and connected by an undirected (black colored) edge that illustrates their potential
homology.
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Figure 3.10: The same visualization as in Figure 3.9 but with homology edges (black).

A better visualization avoids homology edges. Such a graph layout is shown in Figures 3.9
and 3.10. The genes of NA and NB are organized as semicircles again but now below tA

and tB (the blue nodes in the middle). Note that in Figure 3.10 all homology edges are
horizontal. Just by the position of a node, the user can easily find its homology partners,
even without the corresponding (black) edges (refer to Figure 3.9).
The main idea is, to position the cliques of genes of HA to positions similar to those of

their partners in HB, relative to the root nodes tA and tB. In order to provide good graph
layouts within reasonable response times, we implemented a heuristical solution that is
based on physical intuition, and initially was introduced by Fruchterman and Reingold,
and subsequently extended e.g. for BioLayout [46,53].
The main idea of these layout algorithms is to arrange all nodes on a 2-dimensional

plane to fit aesthetic criteria: e.g. an even node distribution in a frame and inherent
symmetry reflection. The graphs’ nodes are interpreted as magnets (or electrical charges
of the same kind) and edges are replaced by rubber bands to form a physical system. The
nodes are initially placed randomly, for example, and then left to the forces of the system,
so that the magnetical repulsion and the bands’ attraction forces on the nodes move the
system to a minimal energy state. While a physical system provides the motivation for
these algorithms, in the actual implementation the nodes need not move according to exact
physical laws.

Expression level visualization

As already mentioned in Section 3.1.3, CoryneRegNet supports data exchange by utilizing
Web Services. Gene expression data that is stored and managed in the EMMA system can
be queried and visualized with GraphVis. Aside microarray data from EMMA, the user
also has the following possibilities to provide data:

• TAB-delimited flat file

• MS Excel file.

• Usage of stimulon data from the CoryneRegNet database.
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The GraphVis Applet first extracts the M-values (measure of differential gene expression)
for all the genes of a given dataset. Subsequently, the node size s of all corresponding
genes in a given visualized regulatory network is changed relative to the M-value m (with
−∞ < m < ∞). This is done by setting s = sold · (| m | +1), where sold is the node
size before the variation. Furthermore, the nodes of those genes with m < 0 (m > 0) are
modified to have a red (green) dotted border. Figure 3.15 on page 46 and Figure 4.9 on
page 79 illustrate this visualization style. It helps to find putative inconsistencies or even
contradictions in visualized gene regulatory networks (also refer to the application case in
Section 4.1.4 on page 77).

3.3 Binding site prediction

The typical user of CoryneRegNet looks for answers to many different questions, most
of which cannot be anticipated. As new questions arise, the bioinformatics community
is usually quick to develop algorithms and software packages to attack these problems.
For CoryneRegNet, there is no need to re-invent the wheel; instead, our focus is to inte-
grate the best available special-purpose tool for a particular task and merge the obtained
results into the existing knowledge base. Here we describe the integration of the motif
matching software PoSSuMsearch [16] from http://bibiserv.techfak.uni-bielefeld.

de/possumsearch/ that provides a fast and statistically sound method to detect tran-
scription factor binding sites in a collection of DNA sequences. CoryneRegNet provides an
easy-to-use interface to PoSSuMsearch, for example by the TFBScan button on its title
page.
In what follows, let Σ := {A, T,C,G} be the DNA alphabet. There are many models

to describe the DNA motif a particular transcription factor binds to. By far the most
widely used one is a position frequency matrix (PFM). A PFM can be converted to a
position weight matrix (PWM): For a motif of length m, a PWM is a 4 × m matrix
S = (Sc,i)c∈Σ,1≤i≤m of real numbers (weights or scores). A PWM allows to assign a score
s(w) to any length-m DNA sequence window w = (w1, ..., wm) by setting

s(w) =
m∑
i=1

Swi , i.

We say that the PWM S matches w if s(w) ≥ t for a suitably defined score threshold t.
The idea is that the matches are good candidates for real TFBMs if we properly choose
the scores Sij (generally as log-odds scores between nucleotide distributions of true binding
sites on the one hand and a background distribution on the other hand) and the threshold
t (ideally based on statistical considerations of both type-I and type-II error; see e.g. [107]).
A typical use case would look as follows: Assume that it is known that a certain tran-

scription factor regulates certain genes and that the binding sequences upstream of these
genes are also known. From these sequences, we can build a PWM model and use it to
look for further matches upstream of potentially regulated genes (e.g., those found to be
co-differentially expressed in microarray analyses). We might also be interested in doing
a genome-wide search for the motif, although without any contextual information, motif
occurrences are generally not meaningful. The computational problem remains the same:
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PWM Matching Problem For a given PWM S of length m, threshold t, and a DNA
sequence g = (g1, ..., gn), n ≥ m, identify all positions i with s(gi, . . . , gi+m−1) ≥ t and
report their scores.
Two algorithms that solve this problem are given below, in order of increasing complexity

and decreasing running time (on typical large-scale DNA data):

Sliding window scoring and variations For each starting position i ∈ {1, . . . , n−m+ 1},
in increasing order, compute the window score si := s(gi, . . . , gi+m−1) by summing m
values and report (i, si) if si ≥ t. The time complexity is obviously O(mn). Time can be
saved by stopping the evaluation of si before all m positions have been scored as soon as
it becomes clear that the threshold t cannot be reached. This is referred to as lookahead
scoring, which is most beneficial if the evaluation frequently stops after only one or two
positions for each window. However, the first positions of the PWM are rarely the most
discriminative ones, and more time can be saved by evaluating to positions not from left
to right, but by a suitably determined permutation of the positions; a heuristic rule may
be found in [132].

Enhanced suffix array search (ESAsearch) Instead of permuting the positions of the
PWM, we may choose a different evaluation order of the text positions such that windows
that share many prefix characters are evaluated together: Let Gi := (gi, ..., gn) be the i-th
suffix of g. Now order the suffixes lexicographically, i.e., find the permutation p of {1, ..., n},
called the suffix array of g, such that Gp(1) < Gp(2) < . . . < Gp(n). Additional tables, lcp
and skp, that contain the longest common prefix (lcp) lengths between lexicographically
adjacent suffixes, and the array position of the next smaller lcp length, respectively, are
also created. Together with p, they form the enhanced suffix array. The enhanced suffix
array needs to be pre-computed only once for the whole sequence content of the database
and enables subsequent fast searches: Scoring sequence windows in lexicographic order
with lcp-information allows to re-use partial prefix scores without recomputing them. For
example, assume that sequence windows w1 = ACCAG and w2 = ACCAT are adjacent;
their lcp length is 4. Knowing the partial score of the length-4 prefix of w1, we only need to
add the T −score at position 5 to obtain the score for w2. Using the skp-table, large parts
of the text that can never reach the threshold because low prefix scores can be skipped in
constant time.
PoSSuMsearch implements (non-permuted) lookahead scoring and ESAsearch; the latter

one being generally fastest on long DNA sequences because of the ability to skip large parts
of the sequence. CoryneRegNet contains 130 PWMs in the form of nucleotide frequency
count matrices and 19 MB of upstream sequence data (1.8 MB alone for C. glutamicum).
To our knowledge, PoSSuMsearch is the only available software package that is fast enough
to provide interactive response times for large-scale PWM searches and at the same time
integrates exact statistics: The score threshold t for matching is automatically computed
based on the tolerable frequency of hits in random sequences (p-value) by an efficient and
exact lazy-evaluation method [17].

Integration in CoryneRegNet PoSSuMsearch interacts with CoryneRegNet as follows:
During data warehousing, the enhanced suffix array for each of the four corynebacteria
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is created to allow the use of ESAsearch instead of a slower window-sliding algorithm.
Before a search is started, CoryneRegNet computes the background distribution (nucleotide
content frequencies) of the search space and the log-odds PWM on-the-fly and passes them
to PoSSuMsearch via temporary files. PoSSuMsearch is executed using a system call from
the PHP front-end. It temporarily creates tab-delimited flat files storing the matching
results which are read by the font-end and deleted afterwards.
An application case and an evaluation is given in Section 4.1.2 on page 72. The user

interface to PoSSuMsearch is available as TFBScan feature at the CoryneRegNet web site
(refer to Figure 3.6 on page 31). The user has to choose a p-value threshold, a background
model, and a target organism.

3.4 MoRAine - Binding site reannotation

Obviously, an important prerequisite for the construction of PWMs is an accurate annota-
tion of TFBMs. The determination of TFBMs in wet lab experiments is time-consuming
and error-prone. Nowadays, the position within the double-stranded DNA sequence to
which a TF binds is determined by electrophoretic mobility shift assays (EMSA) [58],
DNAse footprinting [48], ChIP-chip [122], or mutations of putative TFBMs and subse-
quent expression studies. All of these methods lack a precise identification that is accurate
to one base pair (bp). Generally, TFs bind the double-stranded DNA and it is a matter of
interpretation which strand of the DNA sequence is annotated (for example, the binding
sequence AGGCAT on the forward strand is equivalent to the sequence ATGCCT on the
reverse strand). Conceptually, this poses no problem, since given either motif, its reverse
complement is easily computed. However, a practical problem occurs when a motif from
either strand-based on approximate knowledge of its position is entered in a database and
subsequently used blindly for PWM construction. This does happen in practice, especially
for regulatory databases that integrate information from other sources, e.g., RegulonDB.
Here all TFBMs are given 5′ → 3′ (forward) relative to the target gene.
Since the stored motif is essentially chosen from a random strand, subsequently con-

structed PWMs may show a poor information content (e.g., a mixture of AGGCAT and
ATGCCT instead of either motif) that consequently leads to bad binding motif predictions
from the PWM.
In this section, we introduce MoRAine, an algorithm and software that assists with

automatic TFBM reannotation. All motifs with experimental evidence underlying a PWM
are evaluated with reference to their similarity to all other motifs. The goal is to reannotate
the TFBMs by switching the strand and possibly shifting them a few positions in order to
maximize the information content of the resulting adjusted PWM.
First, we give some definitions. Then we show that both methods implemented in

MoRAine significantly increase the matrix quality by means of two examples calculated
with the MoRAine web server version. In one example, we adjust the TFBMs of the
regulator NarL of E. coli. We show that the corresponding sequence logo looks very
similar to the manually reannotated, which is stored in the PRODORIC database. We
discuss the same for the regulator MalT. Subsequently, we show that the PWMs resulting
from the adjusted TFBMs significantly improve the prediction performance. MoRAine-
adjusted PWMs increase the accuracy and decrease both the false negative and the false
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positive rates. We finally introduce the MoRAine web server, an easy-to-use alternative for
the computation of sequence logos, since it directly integrates PWM quality improvement.
The stand-alone version of MoRAine can easily be included into a database back-end (i) as
quality assurance and (ii) to additionally provide adjusted PWMs for subsequent TFBM
predictions. Hence, we integrated MoRAine into CoryneRegNet.

Definitions

Again, in what follows, let Σ := {A,T,C,G} be the DNA alphabet.
As already mentioned, the most widely used model to describe a set of TFBMs for

a given TF is a position frequency matrix (PFM), defined as follows: Given a set of n
TFBMs of length m over the alphabet Σ, a position frequency matrix F = (fσj) for a set
of n TFBMs of length m is a |Σ| ×m matrix, where fσj is the frequency of symbol σ at
position j.
Information content based sequence logos can be used to judge the PFM quality [31].

The information content Ij for column j of a PFM F is defined as

Ij := log2 |Σ|+
∑
σ∈Σ

fσj · log2 fσj [bits].

Ij reaches its maximum if and only if all symbols at position j agree; for |Σ| = 4, the
maximal value is 2 bits (also refer to Section 3.2.1, page 30). The mean information
content I(F ) for a whole frequency matrix F is

I(F ) :=
1
m

m∑
j=1

Ij .

We use the mean information content as quality measure and denote it shortly with I if
the matrix F is fixed.

3.4.1 Methods

Information content maximization

We start with a set of DNA sequences that extend l bp to the left and r bp to the right
of the annotated TFBMs and set m+ := m + l + r to the length of the given sequences.
Given a set of n sequences of length m+, we first calculate the set M of every possible
motif of length m = m+− l− r derived by the operations shift and switch applied to every
sequence. The operation shift provides every substring of length m for a given motif of
length m+, and the operation switch its reverse complements. This leads to a set Si of
|Si| = |M | = 2 · (l+ r+ 1) motifs of length m for each input sequence i, with i = 1, . . . , n.
The goal of this work is to find a set of motifs C that contains exactly one motif from

each Si and maximizes the information content of the corresponding frequency matrix FC .
We propose two heuristic algorithms (cg and km) based on clustering to find such a motif
set C. Both utilize one of two similarity functions (simC or simS).

As introduced above, the goal is to find a set of motifs C that contains exactly one motif
from each Si and maximizes the information content of the corresponding PFM FC . Here,
we describe two heuristic clustering algorithms to find such a motif set C.
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Similarity Measures

For our clustering algorithm, we need a similarity function sim that measures the similarity
between one motif and an existing cluster and thus helps to evaluate to which cluster of
TFBMs a new TFBM is assigned. We use two different functions.

Motif-cluster similarity To measure the similarity between a single TFBM s and an
existing non-empty cluster C ′, we calculate I for the frequency matrix constructed from
all TFBMs of C ′, including s itself. We denote this function as simC.

Motif-seed similarity Following another strategy, each cluster is represented by a seed
motif. Here we calculate I for the frequency matrix built from only the seed motif and the
new TFBM. We denote this function as simS; it is faster to evaluate, but less accurate
than simC.

These definitions apply only if the cluster C ′ to which a new motif s from a set Si is to
be assigned does not yet contain another motif from Si. Otherwise, the similarity is set to
−∞; this ensures that each cluster contains only one motif from every set Si.

Clustering strategies

The goal is to partition the set of motifs into |M | = 2·(l+r+1) clusters, where each cluster
contains exactly n motifs, one of each Si (i = 1, . . . , n) and thus is a putative solution. We
describe two clustering strategies.

Variant of k-means with random seeds In this particular application, the number |M |
of clusters is known; so we use a variation of the k-means algorithm [57]. In the end, we
pick the cluster with the highest mean information content I.

We start with a random set of |M | (out of n|M |) motifs (the seeds) that form the initial
clusters (see below for details on how to choose the initial seeds). Then, the following
procedure is iterated until convergence: Each motif, in arbitrary but fixed order, is assigned
to the cluster that maximizes the similarity (simC or simS) value. This results in |M |
clusters, each consisting of n motifs. A new seed sequence is chosen for each cluster as
the sequence that best represents the cluster. This continues until no more changes occur
for the seed sequence set; see Algorithm 1 for details. This strategy can be repeated for
different initial seeds and addition orders.

Cluster growing Since each motif of each Si must be in a different cluster, each Si is used
in turn as a set of initial seeds. Subsequently, the other motifs are added to their most
similar cluster, similarly to the first iteration of the km algorithm, but this procedure is not
iterated. Finally, the best solution obtained from the n different starting configurations is
reported (see Algorithm 2 for details).
Note that both clustering strategies (the km and cg) can be combined with both sim-

ilarity functions (simC and simS). The implications for running time and quality are
discussed below.
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Algorithm 1 Clustering with km
Input: sim, all sets Si, with i = 1, . . . , n, |Si| = |M |
Output: Set of motifs C with maximal information content I
1: oldseeds← {}
2: seeds← {|M | arbitrary elements of

⋃n
i=1 Si}

3: while seeds 6= oldseeds do
4: initialize clusters Cj , with j = 1, . . . , |M |, with one seed per cluster
5: oldseeds← seeds
6: for i← 1 to n do
7: for all motifs m in Si do
8: assign m to cluster Cj with maximal sim(m,Cj) over j = 1, . . . , |M |
9: seeds = {}

10: for all clusters Cj do
11: find motif m ∈ Cj with maximal

∑
m′∈Cj

simS(m,m′)
12: add m to seeds
13: C ← Cj , with maximal I(FCj ) over j = 1, . . . , |M |
14: return (C, I(FC))

Algorithm 2 Clustering with cg
Input: sim, all Si, with i = 1, . . . , n
Output: Set of motifs C with maximal information content I
1: Ibest ← 0, Cbest ← {}
2: for i = 1 to n do
3: seeds← Si
4: initialize clusters Cj , j = 1, . . . , |M |, with one seed per cluster
5: for each k 6= i do
6: for all motifs m in Sk do
7: assign m to Cj with maximal sim(m,Cj) over j = 1, . . . , |M |
8: C ← Cj , with maximal I(FCj ) over j = 1, . . . , |M |
9: if I(FC) ≥ Ibest then

10: Ibest ← I, Cbest ← C
11: return (Cbest, Ibest)

3.4.2 Results

Information content improvement

We implemented MoRAine in JAVA. It is open source and can be downloaded at https:
//www.cebitec.uni-bielefeld.de/groups/gi/software/coryneregnet/moraine/.
Furthermore, MoRAine can be used as a web application. The user can copy and paste

lists of TFBMs in FASTA format. Using such a list as input, the MoRAine web server
calculates (i) the adjusted TFBMs and (ii) the corresponding sequence logos using the
Berkley web logo library [31]. The adjusted TFBMs can be downloaded in FASTA format
and used to build adjusted PFMs.
Figure 3.11 illustrates two example outputs of the MoRAine web server for the tran-

scriptional regulators NarL and MalT of E. coli. One can see that the average information
content is significantly improved. For NarL, we allowed to shift the motifs by at most one
position to the left or to the right (l = r = 1). Therefore, we added one base pair to the
left and to the right of the annotated TFBMs as flanking sequences. We provide both
examples as application cases at the MoRAine web site.
The manually curated database of procaryotic transcriptional regulations PRODORIC
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Figure 3.11: A comparison of the sequence logos constructed from the original database
TFBMs (left side) and the adjusted TFBMs by using MoRAine (right side).
The corresponding transcription factors are NarL (top) and MalT (bottom),
both from E. coli. The 75 TFBMs for NarL and the 20 TFBMs for MalT have
been extracted from RegulonDB. For NarL, we allowed to shift the motifs by
at most one position to the left or to the right. The figure was taken as a
screenshot from the MoRAine website.

Table 3.1: This table summarizes the information content improvement and the run-
ning times of MoRAine for different l- and r-values and all four search
method/similarity function combinations.

Difference (%) Time (s)
l = r cg/simC cg/simS km/simC km/simS cg/simC cg/simS km/simC km/simS

0 26.1 27.0 26.5 26.8 0.6 0.7 1.2 1.1
1 50.9 54.4 50.1 52.3 0.7 2.3 7.2 4.0
2 57.5 63.6 57.6 62.4 0.8 4.2 45.9 8.3
3 60.0 69.5 64.6 64.7 1.0 8.4 128.0 12.8
4 65.3 70.1 65.0 69.3 1.1 11.9 198.3 19.5
5 66.3 73.0 68.8 73.3 1.3 16.8 298.3 30.5
6 66.6 73.1 74.3 74.9 1.8 23.9 427.0 34.4
7 68.0 78.7 73.5 78.4 2.0 30.1 505.4 42.6

also provides TFBMs and sequence logos for NarL at http://www.prodoric.de/matrix.
php?matrix_acc=MX000003 and MalT at http://www.prodoric.de/matrix.php?matrix_
acc=MX000139. As in most databases, also in RegulonDB, each TFBM is annotated in
5′ → 3′ direction relative to the regulated target gene. Similar to our automated approach,
the database annotators of PRODORIC improved the TFBMs annotations manually. They
utilized the same operations to the TFBMs as MoRAine, namely shift and switch. Ad-
ditionally, they removed or shortened TFBMs if necessary and beneficial. In the case of
NarL both adjusted sequence logos look the same. In the case of MalT, the PRODORIC
annotators choose (i) to shorten the motifs from 10 bps to 6 bps and (ii) to use the reverse
complement TFBM sequences. We can reproduce this annotation by using the 10 bps
TFBMs of MalT as input for MoRAine and set the user defined parameters l = r = 2.

An impression of how the running time scales with the number of input sequences is
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Figure 3.12: This plot illustrates the running times of MoRAine for different numbers of
input TFBMs for l = r = 2. Note that both axes are log-scaled.

illustrated in Figure 3.12 (for l = r = 2). The fastest combination of search algorithm
and similarity function is (cg/simC). In order to decide which combination of search
strategy and similarity function performs best in general, we compared the runtimes and
the average improvement of the mean information content for several values of l and r. We
used 1165 TFBMs of 85 transcription factors of Escherichia coli obtained from RegulonDB.
The results are summarized in Table 3.1 The combination (cg/simC) has the best runtime,
but to gain the best information content improvement, one should use the combinations
(cg/simS) or (km/simS). Figure B.1 (page 97) in Appendix Section B illustrates the
relation between runtime and quality improvement for all combinations. In order to find
good solutions shortly, it is recommendable to use the combination (cg/simS), which often
provides the best improvement and still has an appropriate runtime.

Adjusted TFBMs lead to better binding site predictions

As explained in Section 3.3 (page 35), PFMs and PWMs derived from TFBMs are often
used to predict further TFBMs in a given set of DNA sequences, generally in sequences up-
stream of putatively regulated target genes or operons. In the following, the in Section 3.3
introduced software PoSSuMsearch is used to evaluate the prediction performance of (i)
PWMs constructed from the original TFBMs extracted from the RegulonDB database and
(ii) the MoRAine-adjusted PWMs. We show that by using MoRAine for preprocessing,
the classification performance is significantly increased.
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Datasets. We use the afore mentioned 1165 extracted TFBMs for 85 transcription factors
from RegulonDB and construct 85 PWMs. Additionally, we obtained 3341 upstream se-
quences of all transcription units (TUs) of E. coli from CoryneRegNet. In CoryneRegNet,
an upstream region is defined as that DNA sequence −560 to +20 bps upstream to the
start codon of a TU (a gene, or an operon respectively). For every PWM we split these
sequences into two sets: those with a known TFBM for the corresponding regulator (true
positive) and those without a known TFBM, which we assume to be true negatives.

Classification performance. For each PWM, both forward and reverse strand of up-
stream sequences are used to predict TFBMs with PoSSuMsearch, using different p-value
thresholds. For each threshold, we measure the fraction of false positives (FP := number
of incorrectly predicted motifs in relation to all predicted motifs), false negatives (FN :=
number of not predicted motifs in relation to the number of all motifs in the reference list),
and the accuracy (ACC := number of correctly predicted motifs in relation to all motifs
in the reference list).

Figure 3.13: Percentage of accurately predicted motifs for different p-value thresholds,
for l = r = 3. For other values of l and r refer to Figure B.1 in Appendix
Section B, page 97. For the reference curve we used original PFMs learned
from original database TFBMs.

Figure 3.13 shows the ACC for all PWMs adjusted with MoRAine for l = r = 3, for the
four combinations of search algorithms and similarity functions, in comparison to the ACC
obtained with the original PWMs built from the original database TFBMs (the reference
curve). The measured relative ACC is plotted at different p-value thresholds. The ACC
obtained with adjusted PWMs is always higher than with original PWMs. The ACC
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for adjusted PWMs versus original PWMs for 0 ≤ l = r ≤ 7 is plotted in Figure B.2
(page 98) in Appendix Section B. The prediction performance using adjusted PWMs
always outperforms the reference. Generally the combination (cg/simS) performs best.

Figure 3.14: False negative (FN) vs. false positive (FP) rates for different p-value thresh-
olds for l = r = 3. For other values of l and r refer to Figure B.3 in Appendix
Section B, page 98. For the reference curve we used original PFMs learned
from original database TFBMs.

Figure 3.14 plots the FN versus the FP rate (l = r = 3). The plots show that predictions
based on adjusted PWMs outperform those based on original PWMs. The point where the
FN rate equals the FP rate is at ≈ 0.65 (adjusted PWMs) and ≈ 0.85 (original PWMs).
Again, one can see that the combination (cg/simS) performs best. FN versus FP rates
for 0 ≤ l = r ≤ 7 are plotted in Figure B.3 (page 98) in Appendix Section B. There is a
visible gap in performance between l = r = 0 and l = r = 1. Increasing l and r further
has smaller effects.

3.4.3 Conclusions

Gene regulatory protein-DNA interactions are stored in databases, such as RegulonDB,
CoryneRegNet, PRODORIC, or TRANSFAC, along with annotated transcription factor
binding sites. These binding sites are manually curated and extracted from scientific
literature. Usually, the corresponding binding sequences are stored 5′ → 3′ relative to the
target gene. Since the exact determination of the TFBM positions down to one basepair
is difficult and the annotation of the TFBM strands is sometimes neglected, some of these
TFBMs are manually reannotated (e.g. in PRODORIC for the regulators NarL and MalT
in E. coli). This is both time-consuming and error-prone. Note that e.g. for l = r = 0
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in ≈35% of all cases MoRAine suggests to switch the strand annotation from forward to
reverse.
It should be mentioned that the presented algorithms are heuristics selected for their

good running time performance and scalability and do not guarantee an optimal solution
in all cases. The observed increase in information content, however, suggests that we
generally get useful reannotations, and the speed of the algorithm allows it to be run on a
non-dedicated web server.
Summarizing, MoRAine is a software that supports the automatic reannotation of TF-

BMs to increase the mean information content of a corresponding PFM. We provide a
web server to facilitate using MoRAine and to compute sequence logos from transcription
factor binding sites. We have demonstrated that a reliable strand annotation is neces-
sary and helps to improve the PWM-based prediction performance. MoRAine-adjusted
PWMs provide significantly more accurate classifications. Hence, MoRAine is used for the
reannotation of TFBMs that are subsequently included in CoryneRegNet.

3.5 COMA - Contradictions in microarrays

The COMA feature is a novel option in the CoryneRegNet front-end to facilitate consis-
tency checks in microarrays with known regulatory networks.

3.5.1 Method

Table 3.2: Artificial corynebacterial stimulon. This table shows a small, artificial stimulon,
which can be applied to the consistency check feature of CoryneRegNet. Expres-
sion values are given as M-values. In the last column, we list those transcription
factors, which control the gene in the first column. We denote (R) as repression
and (A) as activation respectively. Refer to Figure 3.15 for a visualization.

Gene GeneID Operon M-value Regulated by
ramB cg0444 - 1.9 (R) ramB, (A) ramA
sdhCD cg0445 OP_cg0445 -1.8 (R) ramB, (R) ripA, (A) dtxR , (A) ramA
sdhA cg0446 OP_cg0445 1.8 (R) ramB, (R) ripA, (A) dtxR , (A) ramA
sdhB cg0447 OP_cg0445 -2.5 (R) ramB, (R) ripA, (A) dtxR , (A) ramA
- cg0448 OP_cg0445 -1.7 (R) ramB, (R) ripA, (A) dtxR , (A) ramA

ramA cg2831 - -1.6 (R) ramA

In order to analyze a microarray experiment in the context of stored gene regulatory
networks, the user has three possibilities to enter gene expression data:

• Copy+paste into a text field.

• Upload a TAB-delimited flat file.

• Usage of stimulon data from the CoryneRegNet database.

For further analyses we discretize the expression levels to upstimulations and downstim-
ulations respectively. We denote an upstimulation with ′+′ and a downstimulation with
′−′ respectively. The same can be done to an activation or repression of a target gene by
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Figure 3.15: An artificial stimulon. This screenshot shows the improved network analysis
and visualization feature GraphVis. Presented is the artificial stimulon of
Table 3.2 projected onto the underlying gene regulatory network. The nodes
represent genes and the edges gene regulations. Red nodes are repressors,
green nodes activators, and blue nodes dual regulators. Gray nodes are target
genes. A red edge represents a repression and a green edge an activation.
The nodes sizes are relative to the expression value (M-value): the bigger the
node, the more the differential expression of the respective gene. Genes can
be upstimulated (green dotted node border) or downstimulated (red dotted
border). The big multi-node represents an operon. The circular node inside
the operon is that gene, which is preceded by a transcription factor binding
site.

a regulator. Let g ∈ {+,−} be the stimulation state of a gene G. Let t ∈ {+,−} be the
stimulation state of the transcription factor T , which regulates G. Let r ∈ {+,−} be the
type of the known regulation of G by T . Now consider the algebraic signs in the following
equation: t · g = r. If the equation is incorrect (e.g. ′ +′ · ′−′ = ′+′) we define this
as an inconsistency. Following this, for every gene G of a given microarray experiment
with expression state g, CoryneRegNet queries the database and retrieves all transcrip-
tion factors T , which regulate G. Subsequently, we check for all transcription factors the
expression state t and the regulation relationship r and apply the above explained incon-
sistency test. For every inconsistent measurement, we also report, if other transcription
factors regulate the gene G and hence possibly could explain the inconsistent expression
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level. Furthermore, we test, if all genes within all predicted operons in CoryneRegNet are
regulated identical (all ′+′ or all ′−′) and report them otherwise.
For simplification, we explain this by means of an artificial example. Consider the small

stimulon experiment in Table 3.2 and its visualization in Figure 3.15. One can see 3
putative contradictions: (i) The gene sdhA is upregulated, while all the other genes in the
same predicted operon are downregulated. (ii) The gene ramB is upregulated, but the
activator ramA is downregulated. (iii) The gene sdhA is upregulated, while the activator
ramA is downregulated and the repressor ramB is upregulated.

3.5.2 Results

Figure 3.16: Result of the COMA feature applied to an artificial stimulon. This screenshot
shows the result page of the COMA feature if applied to the artificial stimulon
of Table 3.2. There are three putative contradictions: two for sdhA (cg0446)
and one for ramB (cg0444). For both genes, there are further transcriptional
regulators listed that possibly could resolve the contradictions.

The integrated COMA feature facilitates with consistency checks in microarray results.
The method provides hints for incorrectly predicted operons, missing gene regulatory in-
teractions, and putative mistakes in the experimental setup. Microarray results can be
uploaded or copy+pasted easily and subsequently are checked for consistency with the
known gene regulations of the integrated bacteria.
If the experimental gene expression results given in Figure 3.15 and Table 3.2 are

copy+pasted into the COMA feature input textfield, we retrieve the same results au-
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tomatically (refer to the screenshot shown in Figure 3.16). For such an expression profile,
one would argue if something went wrong with the experiment, or if there are further
yet unknown regulatory interactions. It is obvious that the method also helps with the
improvement of the predicted operons.

3.6 FORCE - Protein sequence clustering

To extend the comparative features of CoryneRegNet, we need adequate data on gene and
protein clusters. The integration of this information widens the scope of CoryneRegNet
and assists the user with the reconstruction of unknown regulatory interactions.
Here we describe the clustering problem and the techniques that we used to attack

it, along with appropriate scoring schemes for the given purpose. An evaluation of the
clustering model and the final implementation is given afterwards.

3.6.1 Method

The clustering problem

High-throughput genome sequencing projects have generated massive amounts of DNA and
protein sequence data, and will do so more rapidly in the near future. One major challenge
continues to be determining protein functions based solely on amino acid sequences. Large-
scale pairwise sequence comparison directly results in pairwise similarity measures between
protein sequences and is an efficient method to transfer biological knowledge from known
proteins to newly sequenced ones. The most widely used method to search for sequence
similarities is BLAST [2]. Three challenges arise:

1. Deriving a quantitative similarity measure from the sequence comparison that models
homology as well as possible; frequently this is based on the negative logarithm of
the BLAST E-value.

2. Inventing a clustering strategy that is sufficiently error-tolerant, since experience
shows that sequence similarity alone does not lead to perfect clusterings. A common
approach is to use a graph-based model, where proteins are represented as nodes and
the similarities as weighted edges.

3. Implementing the chosen clustering strategy efficiently.

We note that many approaches do treat the three challenges separately. Here,

1. we use a family of different similarity functions, based on negative logarithms of
BLAST E-values and sequence coverage.

2. we show that weighted graph cluster editing is an adequate model to identify protein
clusters. But weighted graph cluster editing is known to be NP-hard [108].

3. we present a heuristic called FORCE to solve the problem. We show that it provides
excellent quality results in practice when compared with an exponential-time exact
algorithm, but has a running time that makes it applicable to massive datasets.
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The weighted graph cluster editing problem

To specify the clustering model, we need the following definition: An undirected simple
graph G = (V,E) is called transitive if

for all triples uvw ∈
(
V

3

)
, uv ∈ E and vw ∈ E implies uw ∈ E.

A transitive graph is a union of disjoint cliques, i.e., of complete subgraphs. Each clique
represents, in our case, a protein cluster. Since the initial graph, derived from protein
similarity values and a similarity threshold, may not be transitive, we need to modify it.
This leads to the following computational problems.

Graph cluster editing problem (GCEP) Given an undirected graph G = (V,E), find a
transitive graph G∗ = (V,E∗), with minimal edge modification distance to G, i.e.,
where |E \ E∗|+ |E∗ \ E| is minimal.

Weighted graph cluster editing problem (WGCEP) To respect the similarity between
two proteins, we modify the penalty for deleting and adding edges. First we con-
struct a similarity graph G = (V,E) consisting of a set of objects V and a set of
edges E := {uv ∈

(
V
2

)
: s(uv) > t}. Here s :

(
V
2

)
→ R denotes a similarity function

and t a user-defined threshold. The resulting cost to add or delete an edge uv is set
to cost(uv) := |s(uv) − t|. The cost to transform a graph G = (V,E) into a graph
G′ = (V,E′) is consequently defined as cost(G→ G′) := cost(E \E′) + cost(E′ \E).
As in the GCEP, the goal is to find a transitive graph G∗ = (V,E∗), with cost(G→
G∗) = min {cost(G→ G′) : G′ = (V,E′) transitive}.

It can be easily seen that the WGCEP is NP-hard, since it is a straightforward general-
ization of the GCEP, where s :

(
V
2

)
→ {−1, 1} and t = 0. The GCEP has been proved to

be NP hard several times, e.g., in [35,120].

The FORCE heuristic

We present an algorithm called FORCE that heuristically solves the WGCEP for a con-
nected component and thus for a whole graph. FORCE is motivated by a physically
inspired force-based graph layout algorithm developed by Fruchterman and Reingold [46].
The main idea of this approach is to find an arrangement of the vertices in a two-
dimensional plane that reflects the edge density distribution of the graph, i.e., vertices
from subgraphs with high intra-connecting edge weights should be arranged close to each
other and far away from other nodes. This layout is then used to define the clusters by
Euclidean single-linkage clustering of the vertices’ positions in the plane. To improve the
solution, we implemented an additional postprocessing phase. All in all the algorithm
proceeds in three main steps: (i) layouting the graph, (ii) partitioning, and (iii) postpro-
cessing.

Layout phase The goal in this phase is to arrange the vertices in a two-dimensional
plane, such that the similarity values are respected. Subsets of nodes with high edge-
density should be arranged next to each other, and far away from other nodes. To find a
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layout that satisfies this criterion, we use a model inspired by physical forces, i.e., nodes
can attract and repulse each other. Starting with an initial layout (a circular layout with
user defined radius ρ and random order), the nodes affect each other depending on their
similarity and current position, which leads to a displacement vector for each node and a
new arrangement. Since this model is only inspired by physical forces without friction, it
does not include acceleration.
For a user-defined number of iterations R, the interaction between every pair of nodes

and thus the displacement for every node is calculated; then all nodes are simultaneously
moved to their new position.
We compute the displacements as follows: As described in Algorithm 3, the strength

fu←v of the effect of one node v to another node u (i.e., the magnitude of the displacement
of u caused by v) depends on the Euclidean distance d(u, v), on the cost to add or delete
the edge and a user defined attraction or repulsion factor fatt, frep. More formally,

fu←v =


cost(uv) · fatt · log(d(u, v) + 1)

|V |
for attraction,

cost(uv) · frep

|V | · log(d(u, v) + 1)
for repulsion.

Two nodes attract each other if s(uv) > t and repulse each other otherwise. One can
see that with increasing distance, attraction strength increases while repulsion strength
decreases.
To improve convergence to a stable position with minimal interactions, we added a

cooling parameter, also inspired by the algorithm of Fruchterman and Reingold. In our
implementation, this means that if the displacement distance exceeds a maximal magnitude
Mi in iteration i, which starts at an initial value M0 and decreases with every iteration i,
the movement is limited to it.

Figure 3.17: The layout process of a graph with 41 nodes after (A) 3, (B) 10, and (C) 90
iterations.

The output of this phase is a two-dimensional array pos containing the x-y-position of
each node. The Figures 3.17 and 3.18 illustrate the layout process and its convergence for
two components with 41 and 10 nodes, respectively.

Partitioning phase Using the positions of the vertices from the layout phase, we define
clusters by geometric single-linkage clustering, parameterized by a maximal node distance
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Figure 3.18: The layout process of a graph with 10 nodes after (A) 3, (B) 10, and (C) 40
iterations.

Algorithm 3 Graph layouting
Input: similarity matrix (Sij)1≤i<j≤n with Sij := s(ij) − t; circular layout radius ρ, at-

traction factor fatt, repulsion factor frep, number of iterations R
Output: node positions pos = (pos[1], . . . , pos[n]); each pos[i] ∈ R2.
1: pos = arrangeAllNodesCircular(ρ) B initial layout
2: for r = 1 to R do
3: B Compute displacements ∆ for iteration r
4: initialize array ∆ = (∆[1], . . . ,∆[n]) of displacement vectors to ∆[i] = (0, 0) for

all i
5: for i = 1 to n do
6: for j = 1 to i− 1 do
7: if Si,j > 0 then
8: fi←j = log(d(i, j) + 1) · Si,j · fatt B attraction strength
9: else

10: fi←j = (1/ log(d(i, j) + 1)) · Si,j · frep B repulsion strength
11: ∆[i] += fi←j · (pos[j]− pos[i])/d(i, j)
12: ∆[j] −= fi←j · (pos[j]− pos[i])/d(i, j)
13: B Move nodes by capped displacement vectors
14: for i = 1 to n do
15: ∆[i] = (∆[i]/‖∆[i]‖) ·min{‖∆[i]‖,M(r)}
16: pos[i] += ∆[i]
17: return pos

δ. As described in Algorithm 4, we start with an arbitrary node v1 ∈ V and define a new
cluster cv1 . A node i belongs to cv1 if there exist nodes v1 = i0, . . . , iN = i ∈ V with
d(ij , ij+1) ≤ δ for all j = 0, . . . , N − 1. Nodes are assigned to cv1 until no further nodes
satisfy the distance cutoff. Then the next, not yet assigned, node v2 ∈ V is chosen to start
a new cluster until every node is assigned to some cluster. We denote with Gδ :=

⋃m
j=1 cvj

the resulting graph obtained by adding all edges between two nodes of the same cluster
and deleting all edges between two nodes of different clusters. To find a good clustering
we calculate cost(G→ Gδ) for different δ. Starting with δ ← δinit := 0 we increase δ by a
step size σ up to a limit δmax := 300. Experimentation shows that it is beneficial to also
increase the step size, i.e. to start with σ ← σinit := 0.01 and increase it by multiplying
with a user-defined factor fσ := 1.1. The solution with lowest cost is returned as the
resulting clustering. Algorithm 4 returns the clustering in terms of an n × n adjacency
matrix E∗ ∈ {0, 1}n×n and the transformation cost c∗.

Postprocessing phase Although the best clustering is not guaranteed to be the optimal
one, we often obtain a close to optimal solution in practice. To further improve the results
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Algorithm 4 Partitioning the layouted graph
Input: layout positions pos, initial and maximal clustering distances δinit, δmax, initial

step size σinit, step size factor fσ, similarity matrix (Sij)1≤i<j≤n to compute costs
Output: best found n×n adjacency matrix E∗ describing a clustering, associated cost c∗

1: δ = δinit, σ = σinit, c∗ =∞, E∗ = (0)n×n

2: while δ ≤ δmax do
3: construct auxiliary graph Gδ = (V,Eδ) with Eδ := {uv : d(u, v) ≤ δ}
4: detect connected components of Gδ
5: compute transitively closed adjacency matrix E′ from Eδ
6: if cost(E′) < c∗ then
7: E∗ = E′; c∗ = cost(E′)
8: σ = σ · fσ; δ = δ + σ
9: return (E∗, c∗)

we use a two-step postprocessing heuristic. We denote with cost(C) the cost to obtain the
clustering C.

1. To reduce the number of clusters and especially the number of singletons, the first
step is to join two clusters if this reduces the overall cost:
Let C := (c1, . . . , cn) be the clustering obtained from the partitioning phase, ordered
by size. For all cluster pairs 1 ≤ i < j ≤ n we calculate cost (c1, . . . , ci ∪ cj , . . . , cn)
until we find a clustering C ′ :=

(
c1, . . . , ci′ ∪ cj′ , . . . , cn

)
with cost(C ′) < cost(C).

Let
(
c′1, . . . , c

′
n−1

)
be the sorted vector C ′. Repeat to attempt joining more clusters

until no more join is beneficial.

2. Similar to the Restricted Neighborhood Search Clustering [74], we move a vertex
from one cluster to another if this move reduces the overall cost:
As above, let C := (c1, . . . , cn) be the clustering obtained from step 1, ordered by
size. For i, j ∈ {1, . . . , n}, i 6= j, and every k ∈ ci, we tentatively move k from ci

to cj and calculate cost (c1, . . . , ci \ {k}, . . . , cj ∪ {k}, . . . , cn), until we find the first
such modified clustering with lower cost than cost(C). We sort the resulting clusters
again by size and use them as a new start configuration for the next iteration until
no more reassignments are beneficial.

Analysis The worst-case running time of FORCE is given by the addition of those of the
three main phases.
Layouting runs in Θ(R · n2), where R denotes the number of iterations and n is the

number of nodes in the graph. Since R is determined by evolutionary training (see below),
it might grow with n, but we set an upper bound for R to Rmax = 500 that in practice
suffices even for very large datasets.
Partitioning runs in O(D · n2), where D is the number of different δ-values used. This

is seen as follows: Each δ-value requires the construction of an auxiliary graph in O(n2)
time, the discovery of its connected components in O(|V |+ |Eδ|) = O(n2) time, setting E′

to the transitive closure of Eδ and computing its cost, which is also possible in O(n2) after
detecting connected components.
During postprocessing, each iteration takes O(n2) time, since the number of clusters is

bounded by n. The total time is thus O(P · n2), where P is the number of postprocessing
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iterations. While theoretically P can grow with n, in practice we observe only a small
number of iterations until no more improvement occurs.
Thus for all practical purposes, the overall runtime of FORCE is quadratic in the number

of nodes.

Evolutionary parameter training There are several user-defined parameters to assign,
such as the number of iterations R, the attraction and repulsion scaling factors fatt, frep,
the magnitude M0, and the initial circular layout radius ρ. A practical method to find
good values is evolutionary training. FORCE implements such a strategy in two different
ways.
First, a good parameter combination is determined that can be applied to most of the

graphs. This is done during a pre-computation on a training data set. Since, however, the
optimal parameter constellation depends on the specific graph, we additionally apply such
a training algorithm to each graph. FORCE allows to specify the number of generations
to train and thus to adjust runtime and the quality of the result.
Training works as follows: First we start with a set of 25 randomly generated parameter

sets and the initial parameters mentioned above. The parameter sets are sorted by the
cost to solve the WGCEP on the given graph. For each generation, we use the best
10 parameter constellations as parents, to generate 15 new combinations. In order to
obtain fast convergence to a good constellation, as well as a wide spectrum of different
solutions without running into local minima, FORCE splits these 15 new combinations
into 3 groups, with 5 members each. The first group consists of parameters obtained
only by random combinations of the 10 best already known parameter constellations. The
next group is generated with random parameters, while the third group is obtained by
a combination of the previous methods. To reduce the runtime for small or very easy
to compute solutions, we added a second terminating condition: If at most two different
cost appear while calculating the 25 start parameters, the best one is chosen. No more
generations are computed.

Similarity functions for amino acid sequences and parameter choices

Similarity functions Any attempt to (optimally) solve the WGCEP would be in vain if
the target function did not model our goal appropriately. As mentioned earlier, the main
challenge is to identify appropriate similarity functions and thresholds. We have used a
variety of similarity functions that we describe below.
Assume we are given a set of proteins V and a BLAST output file containing multiple

high-scoring pairs (HSPs) in both directions. For two proteins u and v we denote with
(u ← v)i and (u → v)j , where i = 1, . . . , k and j = 1, . . . , l, the corresponding k HSPs in
one and l HSPs in the other direction, respectively.
We consider the following three similarity functions.

Best hit (BeH) This widely used method concentrates on the E-value of a single HSP:
For both directions, one looks for the best hit, i.e., the HSP with lowest E-value. To
obtain a symmetric similarity function s :

(
V
2

)
→ R, the negative logarithm of the

worst (largest) of the two E-values is taken as similarity measure between u and v.
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The resulting symmetric similarity function is then defined as

s (uv) := − log10

(
max

{
min

i=1,...,k
E-value ((u← v)i) , min

j=1,...,l
E-value

(
(u→ v)j

)})
.

Sum of hits (SoH) This approach is similar to BeH, but additionally includes every HSP
with an E-value smaller than a thresholdm = 10−2. We use this threshold as penalty
for every additional HSP. This leads to the similarity function

s (uv) := − log10

max

m−(k−1) ·
k∏

i=1

E-value
(
(u← v)i

)
, m−(l−1) ·

l∏
j=1

E-value
(

(u→ v)j

)
 .

Coverage (Cov) The third approach integrates the lengths of a HSP into the similarity
function. To determine the coverage, we need the following indicator function:

Iuv(i) :=

1 if in u the position i is covered by any HSP (u← v)n=1,...,k or (u→ v)m=1,...,l ,

0 otherwise.

The coverage can now be defined as

coverage (uv) := min

 1
|u|

|u|∑
i=1

Iuv(i),
1
|v|

|v|∑
i=1

Ivu(i)

 .

In order to obtain a good similarity function, we control the influence of the coverage
on the overall similarity function by a user-defined factor f , and set

s(uv) := s′(uv) + f · coverage(uv).

Here s′ :
(
V
2

)
→ R denotes one of the previously presented similarity functions, BeH

or SoH.

Parameter choices The initial parameters obtained from the pre-processing training are
R = 186, fatt = 1.245, frep = 1.687, M0 = 633, and ρ = 200 for the protein cluster-
ing problem. Furthermore, we apply evolutionary training to each problem instance, as
described earlier.

Integration into CoryneRegNet Using the FORCE heuristic, we calculated protein clus-
ters for all organisms integrated in CoryneRegNet (altogether 22,797 proteins). Based on
cluster size distribution, we empirically determined a comparatively high threshold of 30
(which can be explained by the relatively close evolutionary relationship of most organisms
in CoryneRegNet) and similarity function SoH to create the FORCE input files based on
the all-vs-all BLAST results that are generated during CoryneRegNet’s data warehousing
process.
The results computed by FORCE are parsed into the object oriented back-end and

further on translated into the ontology-based data structure of CoryneRegNet. We added
a new concept class FORCECluster and a relation type b_fc (belongs to FORCECluster),
which links the proteins to their clusters. Finally, we adapted the CoryneRegNet back-end
to import the new data into the database and the web-front-end to present the clusters.
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3.6.2 Results

There are several approaches to cluster protein families. One of the earliest approaches
that took the transitivity concept formally into account was ProClust [105]; however, the
concept of editing the graph was not present in this work. The SYSTERS database [78],
now at release 4, is based on a set-theoretic SYSTEmatic ReSearching approach and has
existed for some time, but seems to have received little updates since early 2005. One of
its main features is that it uses family-specific similarity thresholds to define clusters. It
does not, however, employ a transitivity concept. In 2006, Paccanaro et al. [101] presented
a comparison of the most popular cluster detection methods, like MCL [39], hierarchical
clustering [43], GeneRAGE [40], and their own spectral clustering approach, which per-
forms best when evaluated on a subset of the SCOP database. To evaluate our clustering
model, we use the same datasets and performance figure. We furthermore include the
recently published Affinity Propagation method in our comparison [45]. Additionally, we
evaluate our approach against the COG database.
Here we first describe the datasets used for the subsequent evaluation. First the ASTRAL

dataset from SCOP, as used in [101], is introduced. We also describe a considerably larger
dataset obtained from the COG database. BLAST is used for all-against-all similarity
searches in all datasets that can also be downloaded from the FORCE website.

Evaluation datasets

SCOP and Astral95 SCOP is an expert, manually curated database that groups proteins
based on their 3D structures. It has a hierarchical structure with four main levels (class,
fold, superfamily, family). Proteins in the same class have the same type(s) of secondary
structures. Proteins share a common fold if they have the same secondary structures in
the same arrangement. Proteins in the same superfamily are believed to be evolutionarily
related, whereas proteins in the same family exhibit a clear evolutionary relationship [3].
We take the SCOP superfamily classification as ground truth against which we evaluate the
quality of a clustering generated by a given algorithm, using reasonable quality measures,
such as the F-measure (see below). Since the complete SCOP dataset contains many
redundant domains that share a very high degree of similarity, most researchers choose
to work with the ASTRAL compendium for sequence and structure analysis in order to
generate non-redundant data [26]. ASTRAL allows to select SCOP entries that share no
more sequence similarity than a given cutoff, removing redundant sequences.
We extracted two subsets of the ASTRAL dataset of SCOP v1.61 with a cutoff of 95

percent, which means that no two protein sequences share more than 95% of sequence iden-
tity. We consider ASTRAL95 as the best possible available reference for remote homology
detection on a structural basis.
The two subsets are exactly those used in Paccanaro et al.’s work [101]. The first

comprises 507 proteins from six different SCOP superfamilies, namely Globin-like, EF-
hand, Cupredoxins, (Trans)glycosidases, Thioredoxin-like, and Membrane all-alpha. We
refer to this dataset as ASTRAL95_1_161.
Due to the fact that SCOP is continuously updated, we decided to evaluate both the

original data from [101] (SCOP v1.61) and more recent data from the current SCOP
version (SCOP v1.71). The novel version is slightly different. For example, the superfamily
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Membrane all-alpha has been removed in the meantime and most of its proteins are assigned
to different superfamilies. Also, several other proteins have been reassigned to one of the
five other superfamilies. This provides another dataset of 589 sequences from the remaining
5 superfamilies, which we refer to as ASTRAL95_1_171.
The second subset consists of 511 sequences from 7 superfamilies, namely Globin-like,

Cupredoxins, Viral coat and capsid proteins, Trypsin-like serine proteases, FAD/NAD(P)-
binding domain, MHC antigen-recognition domain, and Scorpion toxin-like. We refer to
this as ASTRAL95_2_161 and ASTRAL95_2_171 respectively. SCOP can be found
at http://scop.mrc-lmb.cam.ac.uk/scop/, while the protein sequences are available at
http://astral.berkeley.edu/.

COG The Cluster of Orthologous Groups (COG) of proteins database is a repository
whose main goal is a phylogenetic classification of proteins encoded by complete genomes.
It currently consists of 192,187 procaryotic protein sequences from 66 complete genomes
distributed across the three domains of life.
COG contains clusters in which at least three individual proteins (or groups of paralogs),

originating from three different species, are each other’s best BLAST hit in both directions.
This strategy is believed to generate clusters of groups of orthologous proteins.
We consider COG as the best possible representation of orthology detection, based on

sequence data alone. We refer to this dataset as the COG dataset. COG can be found at
http://www.ncbi.nlm.nih.gov/COG/, while the protein sequences are available at ftp:

//ftp.ncbi.nih.gov/pub/COG/COG/myva.

Evaluation of the WGCEP model

To show that the WGCEP model is adequate for protein homology clustering, we evaluate
our algorithm in the same way as Paccanaro et al. did in their article [101], using the so-
called F-measure to quantify the agreement of FORCE’s result with the reference clustering
provided by the ASTRAL dataset.
We first explain the F-measure, which equally combines precision and recall. Let K =

(K1, . . . ,Km) be the clustering obtained from the algorithm and C = (C1, . . . , Cl) the
reference clustering. Furthermore, we denote with n the total number of proteins and with
ni, nj the number of proteins in the cluster Ki and Cj , respectively. Following this, nji is
the number of proteins in the intersection Ki ∩ Cj . The F-measure is defined as

F (K,C) :=
1
n

l∑
j=1

nj · max
1≤i≤m

(
2nji

ni + nj

)
.

As mentioned earlier, Paccanaro et al. previously compared the most popular protein
clustering tools against their own spectral clustering: GeneRAGE, TribeMCL, and Hierar-
chical clustering. Since there is no need to replicate existing results, we use the same data
(ASTRAL95_1_161 and ASTRAL95_2_161).
Table 3.3 summarizes the results: Using FORCE, we obtain slightly better agreements

than with spectral clustering. The best combination of similarity function parameters and
score threshold for the ASTRAL95_1_161 dataset were Cov-scoring using f = 20 and
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Table 3.3: Evaluation of protein clustering tools. The F-measure (between 0 and 1) mea-
sures the agreement between a clustering resulting from a given algorithm and a
reference clustering provided with the dataset. An F-measure of 1 indicates per-
fect agreement. ASTRAL95_1_161 and ASTRAL95_2_161 refer to the two
datasets of SCOP v1.61 used by Paccanaro et al. for spectral clustering [101].
All reported values, except for our algorithm FORCE and for Affinity Propaga-
tion, are from the same reference.

Dataset Method F-measure
ASTRAL95_1_161 FORCE 0.85
ASTRAL95_1_161 Spectral clustering 0.81
ASTRAL95_1_161 Affinity Propagation 0.65
ASTRAL95_1_161 GeneRAGE 0.47
ASTRAL95_1_161 TribeMCL 0.32
ASTRAL95_1_161 Hierarchical clustering 0.26
ASTRAL95_2_161 FORCE 0.89
ASTRAL95_2_161 Spectral clustering 0.82
ASTRAL95_2_161 Affinity Propagation 0.69
ASTRAL95_2_161 GeneRAGE 0.54
ASTRAL95_2_161 TribeMCL 0.52
ASTRAL95_2_161 Hierarchical clustering 0.42

BeH as a secondary scoring function, and t = −2.2. For the ASTRAL95_2_161 dataset,
this was Cov-scoring with f = 19 and SoH as secondary scoring function with t = −1.6.
Note that in the present context, we do not consider it as cheating to optimize the sim-

ilarity function and threshold: We want to check how far the WGCEP model can retrieve
the biologically correct clustering under ideal conditions. The same kind of optimization
was applied by Paccanaro et al. in [101]. Table 3.3 also shows the F-measures for the
Affinity Propagation (AP) approach, which was recently published in [45]. We used the
same data and also varied necessary input parameters to evaluate against the best possible
performance of AP. For ASTRAL95_1_161, this was Cov-scoring with f = 20 and SoH as
secondary scoring function with fixed preference pre = 600, and damping factor df = 0.8.
For ASTRAL95_2_161, this was Cov-scoring with f = 14 and SoH as secondary scoring
function with pre = 600, and df = 0.75. For both datasets, AP performs worse than
Spectral clustering.
Figure 3.19 exemplarily illustrates the obtained clustering results for two similarity func-

tions and dataset ASTRAL95_1_161. A similar picture was presented by Paccanaro et.
al in figure 3 in [101] (here it is given in Figure 3.20). One can see that the classification
is very good for the superfamilies Globin-like, EF-hand, Cupredoxins, (Trans)glycosidases.
Thioredoxin-like and Membrane all-alpha are split into several clusters. Note that for
Globin-like (left column) using similarity function SoH (B), the superfamily is split into
two clusters, where the second (the lower one) represents a family. Further note that in
the actual version of SCOP (v1.71), the superfamily Membrane all-alpha has been removed
and the proteins have been assigned to other superfamilies. Thus, our heuristic correctly
partitions this superfamily.
We generated images in the same style for all datasets and provide them in the Appendix

in Section C (page 99).
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Figure 3.19: Graphical summary of the obtained clustering results of FORCE for the two
similarity functions (A) BeH and (B) SoH, and dataset ASTRAL95_1_161.
We used MATLAB scripts provided by Paccanaro et al. to create images
similar to those of Figure 3.20. Each row corresponds to a cluster. Green bars
represent a protein assignment to a cluster; each protein is present in only one
of the clusters. Boundaries between superfamilies are shown by vertical red
lines and boundaries between families within each superfamily are shown by
dotted blue lines.

We additionally evaluate the FORCE heuristic with the newest ASTRAL95 datasets
(ASTRAL95_1_171 and ASTRAL95_2_171). Table 3.4 shows the resulting F-measures
for a variety of similarity functions and parameter choices. All of these achieve higher
F-measures than Spectral clustering, or Affinity Propagation.
In the Appendix in Section D (page 104), we provide F-measures of FORCE for a wide

range of thresholds and coverage factors, for all used datasets and similarity functions.
Good clustering quality is also reached by using other thresholds and similarity measures
for all test datasets. In the Appendix in Section D (page 104), we give F-measures for a
range of thresholds, but with fixed coverage factor f = 20, for dataset ASTRAL95_1_161,
and similarity function BeH. In Appendix Section E (page 107), we provide F-measures
for Affinity Propagation for a wide range of parameters and coverage factors, for all used
datasets and similarity functions.
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Figure 3.20: Graphical summary of the obtained clustering results of GeneRage, Hi-
erarchical Clustering, TribeMCL, and Spectral Clustering for dataset AS-
TRAL95_1_161. Taken from [101].

Table 3.4: Evaluation of the WGCEP model. The best F-measures for each dataset and
each similarity function. ASTRAL95_1_161 and ASTRAL95_2_161 are as in
Table 1. ASTRAL95_1_171 and ASTRAL95_2_171 refer to the updated AS-
TRAL95 data of SCOP v1.71. BeH or SoH denote the similarity function, while
the coverage factor f represents the influence of the coverage to the similarity.

Dataset Similarity Factor f Threshold F-measure
ASTRAL95_1_171 SoH 18 -3.0 0.91
ASTRAL95_1_171 BeH 15 -3.4 0.90
ASTRAL95_2_161 SoH 19 -1.6 0.89
ASTRAL95_2_171 SoH 15 -3.2 0.88
ASTRAL95_2_161 BeH 14 -2.4 0.87
ASTRAL95_2_171 BeH 13 -2.6 0.85
ASTRAL95_1_161 BeH 20 -2.2 0.85
ASTRAL95_1_161 SoH 20 -1.8 0.83

Evaluation of the heuristic

After evaluating the WGCEP as a reasonable clustering paradigm, we address the per-
formance of the FORCE heuristic: We compare the running time and solution quality
against a slow but exact algorithm on the large COG dataset. A recently developed fixed-
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parameter (FP) algorithm for the WGCEP [108] extends ideas of previously developed FP
algorithms for the (unweighted) GCEP by Gramm et al. [54, 55] and Dehne et al. [34],
and has a running time of O(3k + |V |3 log |V |), if there exists a transitive projection of
cost at most k. This allows us to find the optimal solution for a WGCEP, given a graph
G = (V,E) up to size |V | ≈ 50 in appropriate time. To our knowledge, the implementation
of this algorithm is the fastest available exact WGCEP solving program.
In order to compare the two approaches we use the COG dataset, split into connected

subgraphs using similarity function SoH and a threshold of 10. We extracted 1 244 con-
nected components (with |V | ≤ 3 387). For the evaluation, we restricted the maximal run
time to 48 hours. The FP algorithm thus could only be applied to 825 components with
|V | ≤ 56. For the remaining components, the FP algorithm was terminated unsuccessfully
after 48 hours. Due to the large number of graphs, we abstained from applying FP to
graphs with |V | ≥ 100, because it is very likely that the runtime would exceed 48 hours.

Figure 3.21: Comparison of the running times of FORCE against the exact fixed-parameter
algorithm described in [108]. Plotted is the running time (y-axis in seconds)
for different graph sizes (x-axis). Solely for visualization purposes, we describe
the size of a graph on the x-axis as |V | · |E|. All graphs have been constructed
from procaryotic COG protein sequence comparisons using BeH as scoring
function. Note that both axes are scaled logarithmically. The green points
correspond to FORCE running times and the red points to the FP algorithm
running times, respectively.

Figure 3.21 illustrates a running time comparison of the FP (red) and the heuristic
algorithm (green). FORCE has been configured to use one generation of evolutionary
parameter training for each graph. All time measurements were taken on a SunFire 880
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with 900 MHz UltraSPARC III+ processors and 32 GB of RAM. One can see that for large
graphs (|V | · |E| ≥ 100 000), FORCE is much faster than the exact FP algorithm. Note
that the axes are logarithmically scaled.

Figure 3.22: Relative cost deviations (y-axis in %) of the FORCE solutions from the
optimal solutions found by the exact fixed-parameter algorithm described in
[108]. The x-axis is as in Figure 3.21 (logarithmically scaled).

We evaluate the quality of the FORCE heuristic by comparing the relative cost increase
of the reported solution, with respect to the provably optimal solution. For 814 out of the
825 comparable components, the heuristic determines the optimal solution. The optimal
cost over all 825 components is 171,986.8, while FORCE finds a solution with a total cost
of 172,244.6, which is a difference of 0.15%. Figure 3.22 illustrates these numbers. Note
that most of the data points lie on the x-axis and hence indicate that the optimal solution
was found.
In addition to the direct running time and quality comparison, we make all connected

components and clustering results of the COG dataset available on the FORCE website,
using the following similarity functions and thresholds: BeH/10, BeH/20, SoH/10, SoH/20.
These choices do not reproduce the original COG clustering; we obtain the following F-
measures: 0.64 (BeH/10), 0.56 (BeH/20), 0.61 (SoH/10), and 0.53 (SoH/20). It should be
noted that (i) the COG clustering problem has very different properties than the SCOP
clustering problem, and (ii) here we have not optimized in any way the scoring function
and threshold.

61



3.6.3 Conclusions

We have shown that the WGCEP is an adequate model for remote protein homology
clustering from sequence-based similarity measures and can outperform existing clustering
approaches. Part of this effect is certainly attributable to the class of similarity functions
that we consider. Nevertheless, in this particular application, the WGCEP paradigm (or
rather our implementation) even outperforms the Affinity Propagation approach, for which
we use the same class of similarity functions and a similar parameter optimization as for
our approach.
We described FORCE, a heuristic algorithm for the NP-hard weighted graph cluster

editing problem. Compared to the currently most efficient exact (exponential-time) fixed-
parameter algorithm for this problem, we have empirically demonstrated that FORCE
regularly provides solutions that are optimal, although no guarantee is given by the algo-
rithm. In contrast to the exact algorithm, FORCE can solve the problem for graphs with
several thousands of nodes in reasonable time.
We emphasize that FORCE can cluster any set of objects connected by any kind of

similarity function using the concept of editing a graph into a transitive graph with mini-
mum cost changes. The integrated evolutionary parameter training method ensures good
performance on any kind of data.
Several issues remain to be resolved with the cluster editing or transitive projection ap-

proach. One disadvantage of the method is that it uses the same threshold for all clusters
to determine the cost of adding or removing edges. The authors of SYSTERS [78] report
an interesting approach to choose thresholds in a dynamical way. Finding a way of incor-
porating dynamic thresholds into cluster editing would certainly enhance its applicability.
The other issue we need to discuss is more global and applies to any clustering algorithm

and concerns the choice of parameters. For evaluating the WGCEP model with the SCOP
datasets, we have optimized similarity function and threshold by using the known truth as
a reference and thus determined that there exists a (reasonably simple) similarity function
that models the truth rather well. In practice, given an unknown dataset, we do not know
which parameters lead to the unknown truth. Therefore we need to find properties of the
resulting clustering (beyond the target function) that tell us something about the quality
of the clustering. For CoryneRegNet, we were able to use the cluster size distribution, as
we had expert biological support. In other cases, it is an open challenge to find properties
of the clustering that can be easily verified by knowledgeable experts in the field.

3.7 Database content and development

CoryneRegNet was and still is subject to continuous improvement. Table 3.5 summarizes
the development of the database content from the first release 1.0 to the current version
4.0. One can see that beside novel visualization and analysis features, also the amount of
available data increased continuously.
At the Center for Biotechnology at Bielefeld University, we still perform experiments with

corynebacteria and now also with Mycobacterium tuberculosis. CoryneRegNet is used to
predict gene regulatory networks for mycobacteria mainly based on the knowledge from
C. glutamicum. Therefor, the genomes of Mycobacterium tuberculosis CDC1551 and My-
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Table 3.5: Database content development and growth of CoryneRegNet from the first re-
lease 1.0 to the current version 4.0. Abbreviations: Ver, CoryneRegNet version;
Org, organisms; Genes, genes; TFs, transcription factors; Reg. genes, regulated
genes; Regs, regulations; BM, binding motifs; PWM, position weight matrices;
Stim, stimulons; Clust, protein clusters.

Ver. Org Genes TFs Reg. genes Regs BM PWM Stim Clust
1.0 1 3,058 53 331 430 192 23 - -
2.0 4 10,432 64 499 607 274 29 - -
3.0 5 14,737 213 1,632 2,912 1,522 130 - -
4.0 7 22,920 213 1,632 2,912 1,522 130 8 4,548

Table 3.6: This table briefly summarizes the stimulons that are integrated in CoryneReg-
Net.

Organism Short description Nr. of genes Publication
C. glutamicum ∆DtxR (cg2103) vs. wildtype 255 [22]
C. glutamicum ∆LtbR (cg1486) vs. wildtype 50 [21]
C. glutamicum ∆McbR (cg3253) vs. wildtype 134 [111]
C. glutamicum ∆SigM (cg3420) vs. wildtype 37 [95]
C. glutamicum ∆SsuR (cg0012) vs. wildtype 29 [75]
C. glutamicum Grown on acetate/propionate vs. acetate 160 [61]
C. glutamicum res167 transition vs. res167 exponential 111 [80]
C. jeikeium Wildtype vs. wildtype + vanillylalcohol 93 [19]

cobacterium tuberculosis H37Rv have been included into CoryneRegNet 4.0. Previously,
with release 3.0, we integrated the complete genome annotation of the procaryotic model
organism E. coli K-12 deposited in GenBank [127] and substantial data on transcriptional
gene regulation provided by RegulonDB (refer to Section 2.1.1 on page 13). The database
content is updated as soon as novel and experimentally verified data is available. Since we
already did this continuously in the past, the number of regulations, regulators, binding
motifs, etc. for the releases 3.0 and 4.0 do not differ in the last two rows of Table 3.5.
If a microarray experiment has been performed in wet lab, EMMA can be used for

storing and analyzing the results. The Web Service client of CoryneRegNet can be used
for the projection of gene expression levels to a visualized gene regulatory network to
check for consistency with known regulatory pathways and to gain new insights. Beside
the possibility to use unpublished, short-dated, and often transient expression data from
EMMA, we additionally imported, verified, and published corynebacterial stimulon data
directly into the CoryneRegNet database. A stimulon is a set of genes and we integrated
that genes where the M-value |m| > 1. Table 3.6 summarizes the available experiments.
Further microarray results can be included easily upon request.
As mentioned earlier in Section 3.1.2 (page 23), the back-end of CoryneRegNet is imple-

mented by using an ontology-based data structure. It mainly consists of typed concepts
and relations which are attached to values stored in a generalized data structure. In the
following we describe the database content in terms of these vocabularies.
Table 3.7 summarizes the concept classes of CoryneRegNet. Given is the ID, a short

description and the number of concepts that are of the corresponding type (concept class).
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Table 3.7: Concept classes in CoryneRegNet.

ID Short description Nr. of concepts
CoryneRegNetModule Functional module 12
ForceCluster Protein cluster 4,548
Gene Gene 22,920
Operon Operon 2,945
Organism Organism 7
Protein Protein 22,189
SF Sigma factor 2
Stimulon Stimulon 8
TF Transcription factor 606

Table 3.8: Relation types in CoryneRegNet.

ID Short description Nr. of relations
1goop First gene of an operon 2,945
b_fc Belongs to protein cluster 16,282
b_mod Belongs to a functional module 557
b_op Belongs to an operon 8,675
b_org Belongs to an organism 48,682
en_by Encoded by (gene) 22,796
ex_by Expressed by (transcription/sigma factor) 1,480
ortho Ortholog to (gene/protein) 231,763
para Paralog to (gene/protein) 60,143
re_by Repressed by (transcription factor) 1,432
stim_down Downstimulated by (stimulon) 183
stim_up Upstimulated by (stimulon) 686

For example, the back-end stores information on 4,548 concepts of type ForceCluster
(protein cluster). Note that e.g. the class TF is a specialization of the class Protein (also
see Section 3.1.2, page 23).
An outline of the ontological relations is presented in Table 3.8. Listed is the ID, the

description, and the number of relations that are of the specific relation type. For exam-
ple 8,675 concepts of the type Gene are connected to concepts of type Operon by using
relations of type b_op. More informal: 8,675 genes are organized in 2,945 operons (refer
to row four of Table 3.8).
Every concept is unambiguously defined by its ID and concept class. To simplify the

attachment of attributes we use a generalized data structure and link every concept to an
attribute of a certain type (attribute_name; also refer to Section 3.1.2). A summary of all
attribute types is given in Table 3.9. Since, e.g. every gene has a start/stop position, and is
located either at forward or backward strand we have stored 22,920 gene start/stop/strand
values. The nucleotide content NCM is stored for every gene and every organism what
leads to 22,798 attributes of type NCM . Note that we just calculated the nucleotide
content for ’real’, coding genes (as annotated in the NCBI database). CoryneRegNet
furthermore computes the nucleotide content of coding/noncoding regions (CNCM , and
NCNCM respectively) for all of the seven organisms as background model for the binding
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Table 3.9: Attribute types for ontological concepts.

ID Short description Nr. of concepts
CNCM Nucleotide content of coding regions 7
COST Codon start position 22,920
GECPL Gene located at complementary strand? 22,920
GEEN Gene end/stop position 22,920
GEST Gene start position 22,920
NCM Nucleotide content 22,798
NCNCM Nucleotide content of noncoding regions 7
OPCPL Operon located at complementary strand? 2,945
PWM Position Weight Matrix 130
RT Regulator Type 577

Table 3.10: Attribute types for ontological relations.

ID Short description Nr. of relations
BEV Evidence for binding (experimental, predicted?) 2,912
BLEV BLAST E-Value 291,906
BM Binding motif 1,522
MK Binding motif known? 2,912
MVAL M-value (for a stimulated gene) 873
PMID PubmedID (literature evidence for a regulation) 3,667

site prediction feature (see Section 3.3 on page 35). Also for that purpose the 130 available
PWMs are stored in attributes of type PWM .

All attributes for relations are also typed (mainly gene regulations, stimulations, and
homologies). An overview is presented in Table 3.10. For example 291,906 BLAST E-values
are available for pairwise all-vs.-all gene/protein comparisons. In this case, a concept of
class Gene is linked to another concept of class Gene by using a relation of type ortho
(or para). To that relation, an attribute of type (attribute_name) BLEV is linked and
the corresponding E-value is stored in the table GDS_CONCEPT (refer to the ER-
diagram in Figure 3.2 on page 24). Another example would be one of the 873 M-values
that are stored for relations of type stim_up (or stim_down) which in turn connect pairs
of concepts of the concept classes Gene and Stimulon.

Here, one can see the power of the used ontology-based data structure. Such a generic
back-end organization helps enormously, if a database project is started but if the nature
of future data is unclear. When no triangular relations are necessary, the integration of
any kind of data is possible. Even relations that link more than two concepts together
are indirectly supported by creating an interjacent concept (of an intermediate concept
class) and by linking all the concepts to the interjacent one. In the case of CoryneRegNet,
from the very first beginning with release 1.0 (just one organism, no stimulons, no protein
clusters, no PWMs etc.) up to release 4.0 (seven integrated species), we never modified
the data structure of the back-end again.
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4 Results and discussion

CoryneRegNet has been developed to facilitate the integrated analysis of corynebacterial
gene regulatory networks. In Section 2.2 (page 16), we summarized the database content
and the analysis features of related platforms and concluded with a requirement analysis.
Now, we first briefly compare the database content of CoryneRegNet with that of the
related systems. Subsequently, we describe how CoryneRegNet contributes to the required
data analysis features.

Table 4.1: Comparison of the database content of related platforms for procaryotic gene
regulatory networks (refer to Section 2.2) at organism level. Note that we ex-
clude TRANSFAC and those organisms from consideration where only a few
gene regulations are available.

Organism RegulonDB MtbRegList PRODORIC DBTBS CoryneRegNet

Bacillus subtilis + +
C. diphtheriae +
C. efficiens +
C. glutamicum +
C. jeikeium +
E. coli + + +
M. tuberculosis CDC1551 +
M. tuberculosis H37Rv + +
Pseudomonas aeruginosa +

Table 4.1 summarizes the database content of CoryneRegNet and that of the related
systems at organism level. Since TRANSFAC focuses on eucaryotes with no exception, we
do not consider it here. Also, we exclude those organisms from consideration, where just
the NCBI genome annotation and only a few gene regulatory interactions are available (this
solely effects PRODORIC). RegulonDB focuses on E. coli. PRODORIC and CoryneRegNet
also include corresponding data. The integrated E. coli data in both PRODORIC and
CoryneRegNet was provided by RegulonDB and hence is congruent in all systems, if seen
solely from the data content perspective. PRODORIC is the only data repository that
covers data on Pseudomonas aeruginosa. The data on Bacillus subtilis in PRODORIC
has mainly been extracted from DBTBS, which focuses on that organism. MtbRegList
specializes on Mycobacterium tuberculosis H37Rv data, but does not include data on the
strain CDC1551. CoryneRegNet is the only repository for corynebacterial species and
therefore it is a reference database.
In the following, we summarize our contributions to each point mentioned in the require-

ment analysis in Section 2.2 (page 16).

• Genome browser: In the detailed view of a gene, the genomic context is visualized
along with known sequence features: TFBMs, gene start/stop positions, and operon
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organization (refer to Figure 3.4 on page 29). Most of the related platforms provide
similar features (also refer to Figure 2.3 on page 18).

• Network visualization: CoryneRegNet incorporates a considerable network visualiza-
tion by means of the Java applet GraphVis. It supports various graph layout styles
and graph-based analysis features. GraphVis has been discussed in Section 3.2.2 on
page 32. From the related systems only RegulonDB provides a network visualization
(refer to Figure 2.4 on page 19) by using a fixed circular graph layout style.

• Raw data access: Principally, raw data access could be supported. Since CoryneReg-
Net provides Web Service based data access (see below), it is not necessary to support
manual data download on the web site.

• BM prediction: The user has the possibility to start PWM-based TFBM predictions
by using the integrated tool PoSSuMsearch. The advantages over other tools are
(i) the on-the-fly calculation of p-values that indicate statistical significance for a
putative BM and (ii) the very short response times. For a given TF, one can scan
for BMs in the upstream sequences of other genes. For a given gene, the user can
scan for BMs of all TFs in the database of a certain organism. The user interface
is depicted in Figure 3.6 on page 31, while PoSSuMsearch and its integration is de-
scribed in Section 3.3 on page 35. To further improve the PWM-based classification
performance of putative TFBMs, we developed MoRAine (refer to Section 3.4 on
page 37). In comparison to others, our approach of the joint usage of MoRAine and
PoSSuMsearch outperforms the tools that are integrated in the related platforms in
speed and accuracy. In the application case in Section 4.1.2 on page 72 we demon-
strate the power of our approach. How MoRAine improves the TFBM prediction
performance is evaluated in detail in Section 3.4.2 on page 40.

• Data exchange methods: By using SOAP-based Web Services, data on further gene
annotations of a gene of interest is queried from GenDB automatically. The user does
not even recognize that the data is downloaded from another service. Additionally,
CoryneRegNet provides a client to the EMMA system, which enables the user to
retrieve gene expression data for further analyses. Aside from this, CoryneRegNet
offers a Web Service server to share the database content with others in a well-
structured way. The corresponding Web Service description is provided as a WSDL-
file from the CoryneRegNet or the CoryneCenter web site. A detailed description of
CoryneRegNet’s data exchange methods is given in Section 3.1.3 on page 25. Not
one of the related platforms provides such an important functionality for integrated
systems biology analyses.

• Network analysis: As mentioned earlier, bacterial gene regulatory networks nor-
mally show a hierarchical structure (clearly seen e.g. in Figure 4.2 on page 71)
that is reasonably conserved between closely related species. The GraphVis fea-
ture of CoryneRegNet provides network comparison capabilities for both known and
predicted networks. Aside from the BM prediction functionality, this assists scien-
tists with cross-species knowledge transfer and hence with the identification of novel
promising targets for wet lab analyses. Furthermore, it is possible to project gene
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expression levels onto graphs, which helps to gain a first overview of experimental
data. Beside these very special features, various graph layouting methods are avail-
able that e.g. clearly depict the hierarchical network structure. The main network
analysis features are described in Section 3.2.2 on page 32 and have been applied in
the Sections 4.1.3 and 4.1.4 (pages 75 and 77). Again, there is no equivalent data
analysis functionality offered by other related systems.

• Homology detection: With FORCE we developed and integrated a powerful protein
sequence clustering tool that helps to identify protein families across several species.
It is based on weighted graph cluster editing, provides good results in practice, and
can be applied on a large scale. FORCE is discussed in Section 3.6 on page 48. It
outperforms the most popular protein homology detection tools, as we demonstrated
in Section 3.6.2 on page 55. None of the related platforms has appropriate homology
information directly included in the database.

• Contradictions/inconsistencies in gene expression experiments: For a given microar-
ray experiment, one can scan the experimental results for contradictions in the rel-
ative gene expression levels concerning (i) operons and (ii) the known regulatory
network by using the COMA feature. It is listed (i) whether all genes within an
operon are regulated in a rectified way (all up or all down) and (ii) if an experiment
hints for unknown transcriptional interactions due to contradictions to the stored
networks (refer to Figure 3.15 on page 46). The COMA feature is described in detail
in Section 3.5 on page 45. Again, such an integrated analysis of novel experimental
data in the context of proven knowledge is not supported by related platforms.

With CoryneRegNet, we presented a comprehensive data analysis platform for corynebac-
terial gene regulatory networks that fulfills all the developed requirements (refer to Sec-
tion 2.2). Aside from these special aims, its web-based user interface supports the standard
tasks that are also offered by all other related systems: (i) browsing by navigating through
the database entries and (ii) searching by identifying entries based on restrictions on the
values of data fields within the database.
In a future release of CoryneRegNet, it could be beneficial to integrate a motif discovery

tool. In this case, the user could upload a microarray result and it would be possible for
CoryneRegNet to extract the upstream regions of differentially expressed genes. With the
stored gene regulatory networks at hand, the user has a powerful toolkit for the prediction
of novel TFBMs. Tompa et al. analyzed a variety of software that is publicly available for
this purpose [81,126].
The data stored in the back-end of CoryneRegNet is manually curated and mainly ex-

tracted from scientific literature. This work is very time-consuming and error-prone. An
intelligent text mining component would ease this work, which is the most important
prerequisite for a structured data management.
The next logical step would be to extend CoryneRegNet to a reference database for all

procaryotic organisms by integrating more data into the back-end. This data would be
available to the whole scientific community via the Web Service server and could be used
for further external analyses by other software developers. To handle the huge amount of
data, one would need (i) more compute power or (ii) a method to scatter the data over
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several databases and to combine them on demand. The probably most beneficial strategy
for such a federated database system would be to distribute all data separated by genus
(one server for acidobacteria, one for actinobacteria, etc.).
With CoryneRegNet, we developed a platform, which is specialized for gene regulatory

interactions of procaryotes. Although any kind of biological data can be stored in the
ontology-based back-end in general, the front-end (especially the graph visualization tool
GraphVis) is designed for transcriptional regulatory interactions. The integration of e.g.
protein-protein interactions into CoryneRegNet’s database would be simple, but the web
interface as well as GraphVis would need to be extended in order to visualize the corre-
sponding data. Generally, the more levels of abstraction used for such a system, the more
data can be integrated and analyzed. However, one has to pay for every novel level with (i)
runtime and (ii) usability. Hence, when respecting the aims and objectives of CoryneReg-
Net it is more beneficial to provide a special purpose tool rather than an all-rounder that
is user-unfriendly in practice. With the SOAP-based Web Service server, CoryneRegNet
offers a well-suited method to query the data for further integrated analyses, as we demon-
strated with the CoryneCenter platform (refer to the application example in Section 4.1.4
on page 77).
A disadvantage of the integrated Web Service access to external data sources is the

dependency on the online reachability of the connected components. For CoryneRegNet,
this means to have no additional microarray results or no genome annotation data available
when one of the systems, EMMA or GenDB, is not accessible. To avoid this risk, one would
have to store external data in the local repository in regular time intervalls using import
programs. A compromise would be to use both techniques in parallel: periodic downloads
from the external data but usage of the Web Services when possible. More memory-
efficient but less extensive would be to query the external data by using the Web Service
on demand and to store just the queried data locally afterwards. Here the problem is to
recognize modifications in the external repository.
The back-end’s design as a data warehouse has mainly two consequences: (i) The user

has no possibility to enter own data. (ii) The import process is time-consuming and
has to be performed again whenever new data is available. The first point is desired
since only curated (published) data is to be stored in the database persistently. But we
address this point by providing the possibility to upload own gene expression data, binding
motifs, or upstream sequences temporarily for an integrated analysis with the data stored
in CoryneRegNet. We contribute to the second point by using incremental procedures for
time-consuming import computations where possible. An import operation is only started
if necessary, in order to speed-up the data warehousing process. For example BLAST as
well as FORCE calculations are performed only when a novel organism has to be integrated.
Aside these running time considerations, the back-end design as data warehouse has

practical disadvantages for the database curators at the moment. Although we simplified
the import procedure to the execution of three programs, which parse the raw data flat
files, this process is complex and has to be supported by technical staff. In a future release,
we will provide a special web interface that allows the curators to modify the database
content and to execute the import scripts directly from the user interface. Ideally, the
above mentioned text mining component would be directly integrated into such a front-
end. RegulonDB provides such a feature for database curators.
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The usage of a Java Applet for network visualizations (GraphVis) allows the implemen-
tation of various graph layout and graph analysis functionalities. At the same time this
strategy causes disadvantages. Due to security restrictions for Java Applets, GraphVis
has no access to external data sources. Instead of querying the database server (MySQL)
directly, we implemented a workaround via the Apache server. GraphVis sends all requests
to a PHP script that in turn queries the database and provides the results (refer to Sec-
tion 3.2.2 on page 32). The same problem occurs for the Applet’s Web Service connections
to GenDB and EMMA. We use the same workaround via the Apache. This is both in-
tricate and time-consuming. Until now we found no practical way to solve this problem.
The only possibility would be to disable the security restrictions at end-user side but this
is not reasonable.
To speed-up convergence and improve the results, the embedded protein sequence clus-

tering software FORCE should be extended to layout the cluster graphs not just in two but
n dimensions. Furthermore, FORCE arranges all nodes in a circle as the first step of the
layouting process (refer to Section 3.6 on page 48). One can attack this problem, e.g. by
using Ant Colony Clustering (ACC) for an initial node placement. ACC could be used for
a rough pre-clustering of the nodes and the force-based layout can be used for fine-tuning
afterwards. The other way round (first FORCE and ACC for fine-tuning) is also possible.
Since FORCE can cluster any kind of objects as long as an appropriate similarity function
is available, one could also think about other areas of application; e.g. metabolic profiling
of human breath (we recently discussed a corresponding platform in [13]).

4.1 Application cases

In the following sections, we exemplarily show the applicability of CoryneRegNet. We
illustrate how it helps to address typical questions that biotechnological researchers ask
for by means of four use cases, which can not be addressed directly using other existing
platforms.

4.1.1 Reconstruction of the SOS and stress response module of
C. glutamicum

We used CoryneRegNet to reconstruct and visualize the transcriptional regulatory network
of the SOS and stress response module of C. glutamicum (see Figures 4.1 and 4.2). The
module currently includes six DNA-binding transcription factors and 42 regulated genes.
Since sigma factors play a key role in regulating gene expression when the cell is exposed to
stress conditions and switches in part to the program "maintenance and survival" [98,99],
the regulatory network is apparently linked to components of the sigma factor competition
module. Thus, the reconstructed network reveals a hierarchical scheme also including the
top level regulator ppGpp, synthesized by the Rel protein and influencing expression of the
sigma factors SigH and SigB [63,99]. The reconstructed network allowed us to characterize
the transcription factor module "SOS and stress response" in more detail: Several genes
are under dual control by a DNA-binding transcription factor and by the alternative sigma
factor SigH, whereas the groEL2 gene is co-regulated by two transcription factors. The
network is additionally characterized by a number of autoregulatory loops (Figure 4.1) in
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Figure 4.1: This screenshot of GraphVis shows the reconstruction of the SOS and stress
response module of C. glutamicum. The graph was generated by using the
compact circular layout mode. Nodes represent genes included in this functional
module. Color code: red node and line, repressor and repressing regulatory
interaction; green node and line, activator and activating regulatory interaction;
green node and blue line, sigma factor and sigma factor interaction; blue node,
dual regulator; gray node, regulated target gene preceded by a transcription
factor binding site; gray box, regulated target gene that is part of an operon
and not preceded by a transcription factor binding site.

Figure 4.2: This screenshot of GraphVis shows the reconstruction of the SOS and stress
response module of C. glutamicum using the hierarchical layout mode. The
top level regulation of gene expression is indicated by the blue node of the gene
rel that is responsible for the cellular amount of ppGpp. Color code: refer to
the legend of Figure 4.1.

71



which the transcription factor regulates its own expression. Regarding regulatory network
motifs, the presence of feed-forward loops is apparent when considering the regulatory
action on gene expression of both a transcriptional regulator (HspR or ClgR) and an
alternative sigma factor (SigH). This is consistent with observations in E. coli that feed-
forward loop motifs tend to be implemented within modules, whereas bi-fan motifs seem
to be responsible for the connection between different physiological modules [110]. Two
types of feed-forward loops are present in the reconstructed network of the SOS and stress
response module, namely the coherent type 1 and the incoherent type 1 motif [86]. In a
coherent type 1 feed-forward loop all the regulatory connections are activating (SigH, ClgR,
ClpP1-ClpP2), while in the incoherent type 1 motif one of the regulatory links represses the
activity of the target node (SigH, HspR, DnaK). It is also apparent that the reconstructed
regulatory network is composed of two distinct submodules reflecting different responses
of the cell upon exposure to environmental stresses (Figure 4.2). The SOS response is
induced by DNA damage and under control of the LexA protein, while the heat-shock and
oxidative stress response is induced by denaturation and/or inactivation of proteins and is
under SigH control [87]. Accordingly, the reconstruction and visualization of the SOS and
stress response module of C. glutamicum by CoryneRegNet reflects the hierarchical and
modular scheme of the cell’s transcriptional regulatory system.

4.1.2 Transfer of the global regulatory network of DtxR from
C. glutamicum to C. diphtheriae

First comparative studies revealed a high-level conservation of orthologous genes for coryne-
bacteria [94] that may also be reflected in the structure of their transcriptional regulatory
networks. The bioinformatics identification of the total sets of DNA-binding transcription
factors was an initial step in defining the regulatory machinery of these bacteria and re-
vealed different quantities of transcription factors depending on the habitat of the organism
and its genome size [20]. One transcription factor conserved in all four species is DtxR,
the diphtheria toxin repressor of C. diphtheriae, which has been subject to several genetic
studies over the last years. Recently, the orthologous protein of C. glutamicum has been
characterized on transcriptional level using DNA microarray technology [22]. Supported
by bioinformatics analysis of the genome sequence of C. glutamicum a 19-bp palindromic
sequence was identified in the upstream region of differentially expressed genes and was
verified by DNA band shift assays in vitro. By this means the DtxR protein of C. glutam-
icum is directly activating or repressing the transcription of at least 64 genes with function
in iron transport and utilization as well as in central carbohydrate metabolism and in
transcriptional regulation [22]. In this study we report on the bioinformatics prediction
of the regulatory network of DtxR of C. diphtheriae with CoryneRegNet. We use experi-
mental data on DtxR binding sites of C. glutamicum to calculate a PWM. This matrix is
applied to search for possible DtxR target sites in the non-coding regions of the genome
sequence of C. diphtheriae with the TFBScan option. Here we do not consider reverse or
complementary hits although this would be possible. Since we already know part of the
C. diphtheriae network, we can evaluate the promise of such an approach.
We vary the p-value cut-off between 10−7 (extremely strict) to 10−4 (relatively loose);

Figure 4.3 shows the search results for 10−5. Using the methods from [107] we predict
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Table 4.2: For different p-value cut-offs, the table shows the expected number of hits due to
chance (E-value) based on the effective search space size of 1.3 MB, the expected
coverage of real binding sites (E(Coverage), an optimistic estimate based on the
assumption that the PWM is the correct model), the number of detected hits at
this threshold (Hits), the coverage of known true binding sites (Coverage), and
the remaining number of hits to investigate (To study). That number should be
compared to the E-value.

p-value E-value E(Coverage) Hits Coverage To Study
10−7 0.13 26% 3 3/32 = 9.4% 0
10−6 1.3 48% 8 7/32 = 21.9% 1
10−5 13 73% 22 9/32 = 28.1% 13
10−4 130 90% 83 24/32 = 75% 59

Figure 4.3: Results of a search of transcription factor binding sites with the integrated
TFBScan tool.

the number of hits due to chance and the fraction of identified true binding sites at this
threshold, assuming that the PWM is an accurate model. The results are shown in Table
4.2. Choosing a p-value cut-off of 10−6 (E-value of 1.3), we find almost a quarter of
the known regulated genes and are left with one hit for further study, which the E-value
predicts to be due to chance. The statistics suggest that we should find almost half of
the true regulated genes, but this prediction is based on the assumption that the true
binding sites are independent samples from the frequency matrix, which is not true for
two reasons: First and foremost, we are using the C. glutamicum PWM for predictions of
binding sites in C. diphtheriae, where the binding motif is different. This is the price we pay
for moving from one organism to a different one. Second, true binding sites do not behave
according to a simple probabilistic model, and therefore the expected coverage prediction
can only be true up to an order of magnitude. Taking these caveats into account, the
integrated TFBScan of CoryneRegNet is a valuable tool to predict regulatory networks in
taxonomically related microorganisms by using PWMs of experimentally defined regulons.
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Figure 4.4: Comparative visualization of the DtxR regulons of C. diphtheriae (top left),
C. glutamicum (top right), C. jeikeium (bottom right), and C. efficiens (bottom
left). The graph was generated by using the circular layout style with a depth
cut-off of 1. Color code: refer to legend of Figure 4.1

As a second feature of CoryneRegNet, we use the graph visualization tool GraphVis to
display the DtxR regulons of all four corynebacterial genomes with a depth cut-off of 1.
These regulatory networks are displayed in Figure 4.4. They are based on experimental
data and bioinformatics predictions [22] stored in the database. DtxR is located in the
center of each graph connected to the target genes by green or red arrows indicating
activation or repression, respectively. Furthermore, one can see the differentiation between
genes preceded by transcription factor binding sites (circles) and genes located in operons
(squares). In order to extend the information content of the graph the depth cut-off can
be varied for single nodes by using the ’extend graph’ option in the GraphVis applet.
In Figure 4.5 we extended the graph of the DtxR regulon of C. glutamicum for cg1120,
coding for the transcription factor RipA, disclosing a regulatory sub-network of the DtxR
regulon in C. glutamicum. The direct extension of the graph within the GraphVis Java
applet enables the user to dynamically reconstruct and visualize the hierarchical structure
of regulatory networks. These networks can further be compared based on homologies
between the proteins. Figure 4.6 shows such a comparative layout. It is also possible to
visualize a predicted network (by using the TFBScan feature; refer to Section 3.3, page 35)
and to compare it with another one, stored in the database. This is an easy way to reveal
potential targets for further wet lab experiments.
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Figure 4.5: Dynamic extension of the regulatory network of DtxR of C. glutamicum. The
graph is extended at the transcription factor RipA, which is encoded by cg1120.
The sub-regulatory network of this repressor (red nodes and red lines) is vi-
sualized including genes co-regulated by DtxR (blue node) and cg1120. Color
code: refer to the legend of Figure 4.1

4.1.3 Reconstruction and comparison of the LexA regulons in
C. glutamicum and E. coli

Figure 4.8 illustrates the reconstruction and comparison of the LexA regulons from C. glu-
tamicum and E. coli by means of the homology layouter of CoryneRegNet. Generally,
bacteria respond to DNA damage by increasing the expression of a number of genes,
resulting in DNA repair and an enhanced rate of survival. In many species, this tran-
scriptional response is negatively regulated by the LexA protein that binds to a regulatory
DNA sequence termed SOS box. The nucleotide sequence of the SOS box is strongly con-
served among taxonomic closely related bacterial species, but the LexA recognition motifs
are different in distantly related microorganisms [89]. This observation is apparent when
comparing the sequence logos calculated for the SOS boxes of C. glutamicum and E. coli
(Figure 4.7). In addition to differences in the DNA binding motif of LexA, also the gene
content of the LexA regulon varies among bacterial species. For instance, in silico analysis
and experimental studies in proteobacteria revealed that a LexA core regulon structure
comprises, among others, the lexA, recA, recN and uvrA genes [41,42]. Comparison of the
LexA regulons of C. glutamicum and E. coli with the homology layouter of CoryneRegNet
also identifies lexA, recA, recN and uvrA as the small common set of LexA-regulated genes
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Figure 4.6: Visualization of the regulatory networks of DtxR of C. glutamicum (left side)
and C. diphtheriae (right side) by using a comparative graph layout. The genes
in the middle part are connected due to a positive sequence-based homology
detection. Color code: refer to the legend of Figure 4.1

in these distantly related bacteria (refer to Figure 4.8). The recX gene located downstream
of recA in both species was not classified into the common set of LexA-regulated genes
due to the low level of amino acid sequence similarity that was below the E-value thresh-
old of 10−10. Consequently, homology-based network reconstruction and comparison may
provide valuable insights into the gene composition, the genetic core and the evolution of
transcriptional regulatory networks.
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Figure 4.7: Sequence logos generated by CoryneRegNet. The graphics display sequence
logos of the DNA binding site (SOS box) of the LexA protein from C. glutam-
icum (A) and E. coli (B). The height of the stacks indicates the information
content at each position of the motif in bits. The blue bar to the left of the
y-axis indicates the mean information content of the motif. According to the
evolutionary history of the LexA-binding sequence, the DNA binding sites in
C. glutamicum and E. coli are apparently different with respect to the motif
size and sequence [89].

4.1.4 Dissection of the global transcriptional response in microarray data
by comparing C. glutamicum grown on two different carbon sources

We use CoryneRegNet to display transcriptional differences in gene regulatory networks
which were detected by microarray analysis of C. glutamicum grown with either glucose
or acetate as sole source of carbon and energy. The metabolic utilization of glucose and
acetate and the cellular adaptation to these different carbon sources are principally different
and were subject of intensive investigations in the past (reviewed in [50]).
In C. glutamicum, sugars such as glucose are simultaneously taken up and activated

by the phosphoenolpyruvate:phosphotransferase system (PTS). The resulting sugar phos-
phates are metabolized by the glycolysis pathway forming acetyl-Coenzyme A (acetyl-
CoA), which then enters the tricarboxylic acid (TCA) cycle.
A different situation emerges when C. glutamicum is cultivated on acetate as sole carbon

and energy source. Acetate has to be activated by acetate kinase and phosphate acyltrans-
ferase. The formed acetyl-CoA enters the TCA cycle. Besides the uptake and activation of
acetate, the reactions of the glyoxylate shunt are necessary to replenish the tricarboxylic
acid cycle. Theses reactions, catalyzed by isocitrate lyase (ICL) and malate synthase
(MS), bypass the TCA cycle to avoid the oxidative decarboxylation steps and finally lead
to the formation of the acceptor molecule oxaloacetate from two molecules acetyl-CoA.
Oxaloacetate is needed for gluconeogenesis and to keep the TCA cycle running under
these conditions [77]. In addition, the reverse operation of glycolysis (gluconeogenesis) is
necessary to synthesize essential sugar phosphates.
The metabolic and regulatory switch between glucose and acetate consumption in C. glu-
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Figure 4.8: Comparative visualization of gene regulatory networks by using GraphVis.
The LexA regulatory networks involved in the SOS response of C. glutamicum
(left) and E. coli (right) were reconstructed, visualized and compared by in-
cluding homology data on the proteins that are part of each regulon. Black
lines represent the respective sequence similarities in the homology-based lay-
out mode of GraphVis, using the homology layouter. Color code: refer to the
legend of Figure 4.1

tamicum is well-studied. It has been shown that the glyoxylate shunt in C. glutamicum is
mainly controlled by transcriptional regulation of the genes aceA and aceB coding for ICL
and MS, respectively. Three different regulatory proteins that influence transcription by
interacting with the upstream regions of aceA and aceB have so far been identified: The
RamB protein acts as a negative transcriptional regulator on the two genes in presence of
glucose [29], RamA as a positive transcriptional regulator in the presence of acetate [30],
and GlxR as a negative regulator in the presence of cyclic AMP [73]. All three regulators
do not only address aceA and aceB but act as global regulators with regulatory networks
including several target genes. All of their known interactions, either experimentally de-
termined from in vitro experiments or predicted, are stored in CoryneRegNet and can be
used to dissect the complex data from microarray experiments.
In the this study, we analyze the transcriptional stimulon of C. glutamicum grown on

acetate as sole carbon and energy source. The different influences of each of the three known
regulators on their networks will be checked for consistency with the known or predicted
regulatory interactions in CoryneRegNet under in vivo conditions. For this purpose we
compare the transcriptome of acetate-grown cells to the transcriptome of glucose-grown
cells, using microarray hybridization results stored in EMMA.
In CoryneRegNet, the data of the microarray experiment can easily be mapped onto

regulatory networks. Figure 4.9 shows the gene regulatory networks of RamA, RamB and
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Figure 4.9: The screenshot shows the reconstruction of the gene regulatory networks of
RamA, RamB and GlxR and a simultaneous visualization of relative transcript
abundances obtained from comparative microarray analysis of C. glutamicum
grown on either acetate or glucose as sole carbon source. The blue node repre-
sents the gene of the selected regulator (RamA). Red dashed node borders in-
dicate a significantly reduced amount of transcript in the acetate grown culture
compared to the glucose grown culture, while green dashed node borders mean
a significantly enhanced amount of transcript in the acetate grown culture com-
pared to the glucose grown culture. Black bordered nodes show insignificantly
altered transcript levels. The size of the nodes is proportional to the relative
differential gene expression measured in the microarray experiment (m-value).
Color code: refer to the legend of Figure 4.1

GlxR indicating the relative transcript abundances of the genes encoding the regulatory
proteins and of their target genes in acetate-grown C. glutamicum cells relative to those
from glucose-grown cells. Nodes with green dashed borders indicate enhanced transcript
levels, while nodes with red borders describe decreased levels during growth on acetate.
The size of the nodes is proportional to the relative differential gene expression (m-value).
In this visualization, the RamA network shows a consistent answer to the stimulus. All

target genes except ramB showed elevated transcript levels, which correlates to the en-
hanced transcription of the ramA gene. These observations confirm the results of Cramer
and coworkers [29], who showed that RamA activates its target genes in the presence of
acetate and that the negative auto-regulation of RamA has no influence under this condi-
tion. Interestingly, the transcription level of the RamA target gene ramB was unaffected
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(or not detectable) in this experiment. This finding is in contrast to data from the RamB
protein quantification by immunoblotting during growth of C. glutamicum on different
carbon sources, where less RamB protein was found in acetate-grown cells than in glucose-
grown cells [28]. In addition, inspection of the RamB target genes showed that most genes
are not significantly detected as altered in their transcript levels, which is in accordance
to the unchanged ramB transcript level. It seems that the regulatory activity of RamB is
subdominant in this experiment.
However, the strongly decreased transcript levels of the RamB target genes ptsS and

ptsG encoding sucrose and glucose transport proteins of the PTS system, respectively,
could not be explained in this way and point to an additional regulatory network active
under acetate or glucose feeding conditions. Recently, the regulator SugR was identified
that represses transcription of PTS genes in the absence of sugar-phosphates in C. glutam-
icum. [38] Therefore the detected changes in the transcript level of ptsG and ptsS are most
probably due to a repression by SugR (which is slightly overexpressed) when the cells are
grown on acetate.
A regulatory effect of GlxR seems not to be dominant, because a consistent de-repression

of its regulon was not detected. For the glxR gene itself, unchanged transcript levels
were expected because the regulatory activity of the protein is thought to be due to an
interaction with the second messenger cAMP. It is known that intracellular cAMP levels
during growth on acetate are significantly lower than on glucose [73]. This implies that
the genes of the GlxR regulon should show enhanced transcript levels. This effect was not
consistently detected in the microarray analysis and might mean that the cAMP levels are
not different enough to provoke a detectable response in the GlxR regulatory network.
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5 Conclusion

Novel ultra-fast sequencing and large-scale post-genomic analysis techniques of complete
genome sequences recently generated a vast amount of experimental data. With the im-
pressive advances in global data generation by high-throughput technologies, systems biol-
ogy has emerged to use genome-wide data and cell-wide measurements in elucidating the
optimal design of new production strains by genome-scale modeling and simulation [1].
Accordingly, a major challenge in molecular biology is the development of suitable bioin-
formatics platforms for storage and evaluation of high-throughput data to make it feasible
to perform large-scale modeling and simulation studies. An apparent requirement in this
challenge is the ability to identify and reconstruct the global connectivity of transcriptional
regulatory interactions in a bacterial cell [109]. This asks for user-oriented software plat-
forms supporting (i) the integration of existing knowledge, (ii) visualization capabilities,
(iii) the generation of novel hypotheses, and (iv) the possibility to share this post-processed
data with others..
To address these tasks, several approaches have been implemented and established. Until

now, there is no platform available that provides data on gene regulations for C. glutam-
icum, C. diphthaeriae, C. efficiens, and C. jeikeium. We analyzed five related systems,
which are specialized for other organisms regarding their advantages and disadvantages.
Not one of these platforms provide all the necessary methods to satisfactorily support the
above mentioned data processing tasks.
To provide a comprehensive system for the integrated analysis of procaryotic gene regula-

tory networks we developed the online platform CoryneRegNet. The database contains in-
formation on DNA-binding transcription factors and on transcriptional regulatory interac-
tions of corynebacteria, mycobacteria, and E. coli. Also the results of global DNA microar-
ray hybridization experiments have been integrated as stimulons into the CoryneRegNet
data repository. A web-based user interface provides access to the database content, allows
various queries, and supports the reconstruction, visualization, validation, and prediction
of regulatory networks at different hierarchical levels. CoryneRegNet is moreover linked
to several databases (EMMA, GenDB, COG, GO, NCBI, etc.). Although CoryneReg-
Net initially was developed as a data warehouse of transcriptional regulatory networks of
C. glutamicum, its ontology-based design along with its programs and scripts has been
designed for a general applicability to other species. Hence, it has been extended with
genomic and transcriptional data on six more organisms, experimental results (stimulons),
and computer predictions (protein clusters, PWM-based binding motif predictions, etc.).
CoryneRegNet is connected to other data sources using SOAP-based Web Services and it
provides its own Web Service server.
CoryneRegNet is not just another system that is focused on corynebacteria. Generally,

its database content can be extended with data on any other organism. It provides features
that are not offered by other platforms: (i) graph visualization with different layout styles,
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(ii) comparative network visualizations, (iii) statistically sound and fast TFBM prediction,
(iv) reliable homology detection, (v) well-structured data exchange by using Web Services,
and (vi) network analysis in the context of experimental results.
In contrast to related platforms, CoryneRegNet provides all capabilities that are neces-

sary in modern systems biology: (i) data integration of existing knowledge, (ii) visualiza-
tion, (iii) the generation of novel hypotheses, and (iv) data exchange methods.
Consequently, CoryneRegNet is a versatile systems biology platform to support the ef-

ficient and large-scale analysis of transcriptional regulation of gene expression in microor-
ganisms.
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Abbreviations

BeH Best Hit
BM Binding Motif
BS Binding Site
B. subtilis Bacillus subtilis
C. diphthaeriae Corynebacterium diphthaeriae
C. efficiens Corynebacterium efficiens
cg Cluster growing
C. glutamicum Corynebacterium glutamicum
C. jeikeium Corynebacterium jeikeium
COG Cluster of Orthologous Groups of proteins
COMA COntradictions in MicroArrays (feature of CoryneRegNet)
CoryneRegNet Corynebacterial Regulatory Networks
Cov Coverage
DBMS Database Managment System
DNA DeoxyriboNucleic acid
EC number Enzyme Commission number
E. coli Escherichia coli
FORCE FORce based Cluster Editing (feature of CoryneRegNet)
GCEP Graph Cluster Editing Problem
HMM Hidden Markov Model
HSP High-Scoring Pair
km k-means
MoRAine Motif Re-Annotation (feature of CoryneRegNet)
M. tuberculosis Mycobacterium tuberculosis
NCBI National Center for Biotechnology Information
ONDEX ONtological inDEXing
PFM Position Frequency Matrix
PSSM Position Specific Scoring Matrix
PWM Position Weight Matrix
SCOP Structural Classification of Proteins
simC Motif-cluster similarity
simS Motif-seed similarity
SOAP Simple Object Access Protocol
SoH Sum of Hit
TF Transcription Factor
TFBS Transcription Factor Binding Site
TFBScan Transcription Factor Binding site Scan (feature of CoryneRegNet)
TFBM Transcription Factor Binding Motif
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WGCEP Weighted Graph Cluster Editing Problem
WSDL Web Service Definition Language
XML Extensible Markup Language
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A Cooperations

Large parts of the biological reconstruction of the database content have been performed
by Karina Brinkrolf, who worked on the sister project of CoryneRegNet at the wet lab
side. She furthermore helped to test most of the analysis and visualization features of
CoryneRegNet.
The interconnection to GenDB and EMMA, which finally has resulted in CoryneCenter

was performed in cooperation with Heiko Neuweger, who contributed to the implementa-
tion of the GenDB Web Service server. Dr. Michael Dondrup implemented the EMMA
Web Service server.
The work on FORCE has been performed together with Tobias Wittkop, conjointly in

all parts of development, implementation, evaluation, and publication.
The application cases in the Sections 4.1.1, 4.1.2, and 4.1.3 have been performed with

the help of Karina Brinkrolf, while the last application case in Section 4.1.4 was done with
the help of Dr. Andrea Hüser.
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B MoRAine motif readjustment results

Figure B.1: This image illustrates the average information content improvement plotted
against the necessary running time of MoRAine. Note that the y-axis is log-
scaled.
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Figure B.2: Accurately predicted motifs for different p-value thresholds, for 0 ≤ l = r ≤ 7.
For the reference curve we used original PFMs learned from original database
TFBMs.

Figure B.3: False negative (FN) vs. false positive (FP) rate for 0 ≤ l = r ≤ 7. For the
reference curve we used original PFMs learned from original database TFBMs.
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C Visualization of FORCE clustering
results

Graphical summary of the obtained clustering results of FORCE. We used MATLAB
scripts provided by Paccanaro to create images similar to those of Figure 3 in [101]. Each
row corresponds to a cluster. Green bars represent a protein assignment to a cluster; each
protein is present in only one of the clusters. Boundaries between superfamilies are shown
by vertical red lines; boundaries between families within each superfamily are shown by
dotted blue lines. To each figure is given the used similarity function and the dataset.

Figure C.1: Similarity function: BeH, dataset ASTRAL95_1_161
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Figure C.2: Similarity function: SoH, dataset ASTRAL95_1_161

Figure C.3: Similarity function: BeH, dataset ASTRAL95_2_161
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Figure C.4: Similarity function: SoH, dataset ASTRAL95_2_161

Figure C.5: Similarity function: BeH, dataset ASTRAL95_1_171
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Figure C.6: Similarity function: SoH, dataset ASTRAL95_1_171

Figure C.7: Similarity function: BeH, dataset ASTRAL95_2_171
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Figure C.8: Similarity function: SoH, dataset ASTRAL95_2_171
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D FORCE evaluation for varying
parameters

Clustering evaluation Quality evaluation for different scoring themes and datasets. This
table shows for the 50 best F-measures the threshold, the coverage factor, the used dataset
and the similarity function.

F-measure Threshold Coverage factor Dataset/Scoring sceme
0.911 18 -3 1v171SoH
0.899 15 -3.4 1v171BeH
0.896 17 -3 1v171BeH
0.895 15 -3.2 2v171SoH
0.888 20 -3.4 1v171BeH
0.887 13 -4 1v171BeH
0.885 14 -2.4 2v161BeH
0.885 12 -3.6 1v171BeH
0.882 20 -3.2 1v171BeH
0.881 17 -2.6 1v171SoH
0.880 19 -1.8 2v161BeH
0.880 16 -2.8 1v171SoH
0.879 17 -2.4 2v171SoH
0.878 11 -3 2v171SoH
0.878 16 -3.2 1v171BeH
0.878 19 -1.6 2v161SoH
0.877 13 -3 1v171BeH
0.877 18 -1.8 2v161SoH
0.877 16 -3.2 1v171SoH
0.876 20 -1.8 2v161BeH
0.875 8 -4.2 1v171SoH
0.875 6 -4 1v171BeH
0.874 18 -3.8 1v171BeH
0.874 20 -4 1v171BeH
0.874 14 -2 2v161SoH
0.874 19 -3.8 1v171BeH
0.873 15 -1.6 2v161SoH
0.873 18 -2.2 2v161BeH
0.873 15 -3.2 1v171BeH
0.873 16 -3 1v171SoH
0.873 18 -2.8 2v171SoH
0.872 12 -4 1v171SoH
0.872 7 -4 1v171BeH
0.872 19 -3.6 1v171BeH
0.872 4 -4 1v171SoH
0.871 15 -2.8 1v171SoH
0.870 10 -4 1v171BeH
0.870 13 -3.2 1v171SoH
0.870 7 -3.6 1v171BeH
0.870 10 -3.6 1v171SoH
0.869 16 -2.6 1v171SoH
0.868 8 -3.4 1v171SoH
0.868 14 -4 1v171BeH
0.867 14 -3.4 1v171BeH
0.867 18 -2 2v161BeH
0.866 5 -3.6 1v171SoH
0.866 18 -2.8 1v171SoH
0.866 13 -3.2 2v171SoH
0.866 19 -1.8 1v171SoH
0.865 11 -3 1v171SoH

In Figure D.1 all results are plotted, for every dataset/scoring theme separately as
heatmap.

Clustering evaluation for a fixed coverage In Figure D.2, we give F-measures for a range
of thresholds, but with fixed coverage factor f = 20, for dataset ASTRAL95_1_161, and
similarity function BeH.
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Figure D.1: Quality evaluation for different scoring themes and datasets. Plotted is the
coverage factor at the x-axis and the threshold at the y-axis. The achieved
F-measure is color-coded if it is > 0.5 (refer to the right bar beside the plots).
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Figure D.2: Quality evaluation for different thresholds, but with fixed coverage factor
f = 20, for dataset ASTRAL95_1_161, and similarity function BeH.
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E Affinity propagation evaluation for
varying parameters

Quality evaluation of Affinity Propagation for different scoring themes and datasets. This
table shows the 50 best F-measures for a wide range of parameter constellations and
coverage factors, for all used datasets and similarity functions.

F-measure Coverage factor preference pre damping factor df Dataset/Scoring sceme
0.709 13 700 0.80 2v171SoH
0.703 19 900 0.80 2v171SoH
0.702 16 800 0.80 2v171SoH
0.700 15 800 0.80 2v171BeH
0.699 13 800 0.80 2v171SoH
0.699 10 700 0.80 2v171SoH
0.699 14 800 0.80 2v171SoH
0.697 13 800 0.65 2v171BeH
0.697 17 800 0.80 2v171BeH
0.697 16 800 0.80 2v171BeH
0.697 15 800 0.80 2v171SoH
0.697 15 800 0.65 2v171SoH
0.697 11 700 0.80 2v171SoH
0.697 9 700 0.60 2v171SoH
0.697 15 800 0.60 2v171SoH
0.696 18 800 0.80 2v171BeH
0.695 11 700 0.80 2v171BeH
0.695 13 800 0.65 2v171SoH
0.695 13 800 0.70 2v171SoH
0.695 19 900 0.80 2v171BeH
0.695 19 800 0.60 2v171BeH
0.695 14 800 0.70 2v171SoH
0.694 20 900 0.80 2v171BeH
0.693 12 700 0.65 2v171SoH
0.693 12 700 0.60 2v171SoH
0.693 17 800 0.80 2v171SoH
0.692 9 700 0.80 2v171SoH
0.692 14 800 0.65 2v171SoH
0.691 20 800 0.70 2v171SoH
0.691 20 800 0.85 2v171SoH
0.691 11 700 0.65 2v171SoH
0.691 14 600 0.75 2v161SoH
0.690 9 700 0.65 2v171BeH
0.690 18 900 0.80 2v171SoH
0.690 20 900 0.80 2v171SoH
0.689 11 700 0.60 2v171BeH
0.689 20 800 0.90 2v171SoH
0.689 10 700 0.70 2v171BeH
0.689 15 800 0.70 2v171BeH
0.689 9 700 0.80 2v171BeH
0.688 15 800 0.70 2v171SoH
0.688 20 900 0.95 1v171BeH
0.687 16 800 0.65 2v171SoH
0.687 16 800 0.70 2v171SoH
0.687 18 900 0.80 2v171BeH
0.687 15 800 0.75 2v171SoH
0.687 20 900 0.70 2v171BeH
0.686 19 900 0.65 2v171BeH
0.686 12 700 0.65 2v171BeH
0.686 20 900 0.75 2v171SoH

In Figure E.1 all results are plotted, for every dataset/scoring theme separately as
heatmap, but for a fixed damping factor df = 0.8.
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Figure E.1: Quality evaluation of Affinity Propagation for different scoring themes and
datasets, for a fixed damping factor df = 0.8. Plotted is the coverage factor
at the x-axis and the preference pre at the y-axis. The achieved F-measure is
color-coded if it is > 0.4 (refer to the right bar beside the plots).
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