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1

Introduction

Traveling wave solutions of parabolic equations occur, besides other examples of pattern

formation, in different areas of biology, chemistry and physics. They describe transport

phenomena such as spread of populations [39], nerve conduction [24], [19] as well as oscil-

latory modes in models of superconductivity [44].

This thesis deals with the numerical computation and stability of traveling wave solutions

(and more generally relative equilibria) of parabolic partial differential equations (PDEs)

on the real line

ut = Auxx + f(u, ux), u : R × [0,∞) → R
n, A ∈ R

n,n. (1)

Traveling waves are solutions which can be written in the form u(x, t) = ū(x− λ̄t), where

ū : R → R
m denotes the waveform and λ̄ the velocity.

In a comoving frame v(ξ, t) = u(ξ + λ̄t, t) equation (1) is transformed into

vt = Avξξ + λ̄vξ + f(v, vξ), ξ ∈ R, t ≥ 0. (2)

For this equation ū(ξ) is a stationary solution, i.e. (ū, λ̄) solves the second order ODE:

0 = Av′′ + λv′ + f(v, v′). (3)

It is of particular interest to examine stability with asymptotic phase of this stationary

solution for the dynamic equation (2), i.e. solutions of (2) with initial values close to ū

that converge in a suitable norm to a shifted version of the profile ū.

For strongly parabolic systems on the real line, which we consider in this thesis, there exist

well known results [23], [49] which relate nonlinear and spectral stability. More precisely,

consider the linearization of the right hand side of (2) at the wave form ū, given by

Λu = Auxx + (λ̄I +D2f(ū, ūx))ux +D1f(ū, ūx)u.

Then “asymptotic stability with asymptotic phase” of the traveling wave is related to the

location of the spectrum of Λ. Thus, in order to gain information about the stability of

a traveling wave, one has to study properties of the spectrum of the generally unbounded

linear operator Λ in appropriate function spaces with appropriate norms. These are de-

termined by the type of perturbation w.r.t. which stability is considered. Note that these

operators may not only have discrete eigenvalues but continuous spectrum as well. Inves-

tigations of the spectrum of Λ have been conducted for many systems. To detect isolated

eigenvalues of finite multiplicity one often uses the so called Evans function [2], [57], [49],

which is an analytic function that measures the angle between subspaces of modes that
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decay for x → −∞ and x → +∞. The location of the rest of the spectrum, the so

called essential spectrum is determined by the constant coefficient operators Λ± that are

obtained by letting x tend to ±∞ in the coefficients of Λ. The spectrum of Λ± can be

calculated from the so called dispersion relation [49], [23], [60]. In many applications nei-

ther the traveling wave nor its spectrum and the Evans function are known analytically.

Therefore one has to resort to numerical methods to approximate not only the wave but

the spectrum (or at least isolated eigenvalues of finite multiplicity) as well.

Suppose, the system (1) has a traveling wave with nonzero velocity. One is interested in

solving the Cauchy problem (1) for initial data u(·, 0) = v0 that are close to the wave ū

or at least converge to it after sufficiently long time. One simulates the PDE (1) directly

by restricting it to a finite interval J = [x−, x+] and using finite boundary conditions.

Then one employs some method of discretization for the corresponding initial bounday

value problem. It may then happen, that the solution leaves the interval before it reaches

the traveling wave form, or it reaches the traveling wave form which then dies out when

reaching the finite boundary. Therefore one would like to work in a comoving frame, i.e.

solve equation (2) numerically. However, the velocity λ̄ is generally unknown. This leads

to the idea of freezing the traveling wave as in [7] by introducing the unknown (time

dependent) velocity of the frame as an additional independent variable and by employing

a so called phase condition in order to deal with the additional degree of freedom. The

original PDE (1) is now transformed via u(x, t) = v(x− γ(t), t) into a partial differential-

algebraic equation (PDAE)

vt = Avxx + f(v, vx) + λvx, γt = λ, v(·, 0) = v0, γ(0) = 0

0 = 〈v̂′, v − v̂〉. (4)

Here v̂ is an appropriate reference function, for example v̂ = v0. The last equation in (4)

constitutes an additional algebraic constraint.

The purpose of this thesis is to investigate the asymptotic behavior t→ ∞ of such systems

for two cases: the continuous case on the whole line, which is dealt with in Chapter 1,

and the spatially discrete case, which arises from a simple spatial discretization with finite

differences on a finite interval. Here the discrete analog of (4) reads

v′n = A(δ+δ−v)n + λ(δ0v)n + f(vn, δ0vn), n ∈ J = [n−, n+], t > 0 (5)

η = P−vn− +Q−(δ0v)n− + P+vn+
+Q+(δ0vn+

) (6)

0 = h

n+
∑

n=n−

(δ0v̂)
T
n (vn − v̂n) =: Ψ(v). (7)

where δ−, δ+, δ0 denote forward, backward and central finite differences respectively, the

integers n± determine the finite interval J and P±, Q± ∈ R
2m,m are suitable matrices (cf.

Section 2.2). The approximation properties of stationary solutions of (5)–(7) are examined

in Chapter 2.

Note that (1) and (4) are equivalent, whereas on finite intervals J , the DAE formulation

(5)–(7) is no longer equivalent to the direct discretization of the PDE (1) on J given by

u′n = A(δ+δ−u)n + f(un, δ0un), n ∈ J = [n−, n+], t > 0

η = P−un− +Q−(δ0u)n− + P+un+
+Q+(δ0un+

).
(8)
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This can be seen clearly in numerical computations: In the PDE case (8) (if the velocity

λ̄ is not zero) a pulse or front will eventually leave the compuational domain, whereas in

the PDAE case the wave form will stabilize in the interval (if the initial conditions are

reasonable), see [7] for numerical experiments.

Now the question arises, if the traveling wave solution is a stable solution of the PDAE (4)

under the same conditions which ensure its stability with asymptotic phase as a solution

of the PDE (1) (using the appropriate notion of stability in each case). The main result

Theorem 1.13 in Chapter 1 is a positive answer for the PDAE. In Chapter 4 we show an

analogous result in Theorem 4.2 for the differential algebraic equation (5)–(7) provided

the boundary matrices P±, Q± satisfy an appropriate regularity assumption.

In both cases the method of proof is quite similar; as in the stability proofs for the PDE

(see [60], [23], [36], [63]) we will use semigroup methods to define a solution of the nonlinear

system via a variation of constants formula. Then we use the properties of the spectrum

of the corresponding linear operator as well as the fact that the phase condition removes

the eigenvalue zero.

In Chapter 2 we prove that the discretized stationary equations

0 = A(δ+δ−v)n + λ(δ0v)n + f(vn, δ0vn), n ∈ J = [n−, n+], t > 0

η = P−vn− +Q−(δ0v)n− + P+vn+
+Q+(δ0vn+

)

0 = Ψ(v)

(9)

have a solution (ũ, λ̃), that approximates the traveling wave (ū, λ̄). The dependence of

the error estimate on the grid size h and the size of the interval J is quantified. The

corresponding approximation results for discrete eigenvalues as well as resolvent estimates

for the discrete operators are proven in Chapter 3.

The numerical approach of approximating the derivatives by finite differences is widely

used [30], [13] besides other (global) methods such as Galerkin or (pseudo-)spectral meth-

ods [59], collocation [38] or finite elements [37]. Therefore the results concerning the ap-

proximation in dependence on h and T are interesting from a numerical analysis point of

view. We expect our results to hold in an analogous manner for these other discretization

methods.

In the thesis we need these results on the approximation of the wave as well as on the

spectral properties of the discretized system in order to prove resolvent estimates. These

are used in Chapter 4 for obtaining precise estimates of the discrete solution operator of

the linear equation.

The methods used in Chapters 2 and 3 are mainly dynamical systems tools, namely

exponential dichotomies for finite difference equations. These allow to decompose the

space of initial values into subspaces which give rise to solutions that decay exponentially

either in forward or backward x-direction.

Such methods have been used for discrete dynamical systems in [26], [4] and in [64] to

study connecting orbits of discrete systems on Z (i.e. without boundary conditions). The

numerical approximation of (3) gives rise to such a discrete dynamical system in space

which inherits many properties of the continuous system. Combining this with the meth-

ods, used in [26] in order to deal with boundary conditions, we can prove approximation

results for the traveling wave as well as for simple, isolated eigenvalues and for the resolvent

equation.
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The influence of the boundary conditions on the approximation of the wave in the contin-

uous case (i.e. without discretization) has been dealt with in [3], [60], and on the spectrum

in [6] and [51],[50]. The two latter papers also analyze the dependence of the essential

spectrum on boundary conditions. At the end of Chapter 3 we comment on similar spec-

tral behavior that is observed for spatially discretized systems in Chapter 5. If periodic

boundary conditions are used the eigenvalues of the system on the finite grid cluster near

the essential spectrum of the discrete operator on the infinite grid.

The freezing approach in [7] is not restricted to traveling waves. It is possible to deal with

general relative equilibria [9], [53] such as rotating waves on the real line and even spiral

waves in two space dimensions. We outline this more general approach here in order to

indicate, how the results of this thesis may be extended to more general equations.

Consider an evolution equation in a Banach space X of the form

ut = F (u) (10)

with an equivariant right hand side F , i.e. a(γ)F (u) = F (a(γ)u) where

a : G → GL(X), γ → a(γ) denotes the action of a Lie group G on X. The equation (10)

can be transformed via the ansatz v(t) = a(γ(t))u(t) into the equivalent system

vt = F (v) − a(γ)−1aγ(γ)vλ, λ = γt. (11)

A traveling wave is a special type of a relative equilibrium of equivariant evolution equa-

tions, where the action is given by translation, [a(γ)u](x) = u(x− γ), γ ∈ R. Most of our

results concerning convergence and stability can be generalized to equivariant parabolic

equations on R. We will indicate the necessary modifications in the proofs for this case at

the end of the corresponding chapters.

As indicated before, the theory becomes more difficult in higher space dimensions, although

the freezing approach works in this case as well. The main difficulty is the lack of a spectral

gap, since in this case the essential spectrum touches the imaginary axis [49]. Moreover,

the use of dynamical systems tools such as exponential dichotomies, relies on the fact that

the space is one dimensional.

In Chapter 5 we demonstrate the convergence properties of the solution of the boundary

value problem (9) (different intervals and grid sizes) as well as the behavior of the spectrum

under discretization for two different numerical examples. The first example is the scalar

Nagumo equation for which an exact traveling front solution is known. The second more

general example is the quintic complex Ginzburg Landau equation (QCGL), which is

equivariant w.r.t. the action of the group G = S1 × R on R
2. The action is given by

translation in the domain and rotation in the image, i.e.

[a(γ)u](x) = R−γru(x− γt), γ = (γr, γt) ∈ G, x ∈ R, u(x) ∈ R
2, Rγ =

(

cos(γ) − sin(γ)
sin(γ) cos(γ)

)

.

In both cases, the numerical convergence behavior confirms the theoretical predictions

from Chapter 2.

For the convergence of the eigenvalues of the discrete system near zero similar compu-

tations are performed. The error of the eigenvalue and of the eigenfunction and the

corresponding invariant subspace (in the QCGL case) is computed for various values of

the grid size h and of the interval length.
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Furthermore the stability properties which are discussed in Chapter 4 are examined nu-

merically. We compare the spectral data with the rate of exponential convergence of the

solution of the time dependent system (5)–(7) towards the solution of the boundary value

problem (9).

At last, we show the spectrum (i.e. all eigenvalues) of the discrete operator on J for

different boundary conditions. These results have led to the conjectures concerning the

approximation of the essential spectrum in Chapter 3.

In Appendix A we summarize functional analytic tools as well as some well known facts for

exponential dichotomies. Several symbols that are used frequently in the text, especially

function spaces are listed in Appendix B.

In summary, this thesis gives a detailed study of the existence and stability of traveling

waves for a newly developed equation and a widely used numerical discretization. The

extension of our results to much more general patterns seems possible and provides new

questions.
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Chapter 1

Stability of traveling waves as

PDAE solutions

In this chapter we deal with the stability of traveling wave solutions of parabolic systems

in one space dimension. After stating well known results about stability with asymptotic

phase, we prove stability for the PDAE formulation (cf. (4)). This PDAE contains an

additional phase condition that singles out a unique solution from the continuum of shifted

traveling waves.

We first introduce the appropriate notion of stability for traveling waves and state sufficient

conditions on the spectrum of the elliptic operator which ensure nonlinear stability. Note

that the existence of such a solution will always be assumed, existence proofs can be found

for example in [63], [11].

We employ semigroup theory for the solution of the PDE and generalize some of the results

to the special PDAE under consideration. As general references for the theory of analytic

semigroups and sectorial operators we use the monographs [23], [36], [46], [43]. For more

general theory on abstract PDAEs see [17].

XXX

In Chapter 4 a similar approach will be used to show the stability of a traveling wave

for a discretization of the PDAE (4) with finite differences and appropriate boundary

conditions.

Consider the following strongly parabolic PDE

ut = Auxx + f(u, ux), u : R × R+ → R
m, A ∈ R

m,m, (1.1)

where A > 0, i.e. 〈v,Av〉 > 0 ∀v ∈ R
m \ {0}. Assume that equation (1.1) has a traveling

wave solution u, i.e. u can be written as

u(x, t) = ū(ξ), ξ = x− λ̄t, ū ∈ C2
b (R,R

m), (1.2)

where the waveform ū ∈ C2
b (R,R

m) possesses bounded derivatives up to order 2 and has

the properties

lim
ξ→±∞

ū(ξ) = u±, lim
ξ→±∞

ū′(ξ) = 0. (1.3)
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In a comoving frame, i.e. for v(ξ, t) = u(ξ + λ̄t, t) equation (1.1) reads

vt = Avξξ + λ̄vξ + f(v, vξ), ξ ∈ R, t ≥ 0 (1.4)

and ū is a stationary solution of this equation.

1.1 Stability with asymptotic phase

For such solutions the correct notion of stability is the so called “asymptotic stability

with asymptotic phase” which will be given in Definition 1.1 (see [63],[23],[49]). The

term “asymptotic phase” refers to the fact, that solutions starting close to the wave do

not necessarily converge to the wave itself but to some suitably shifted profile. This is

reasonable since with ū, each shifted function ū(·+γ) is also a solution of (1.1). A numerical

procedure for computing the traveling wave has to single out one unique solution of this

family. This is done by employing a so called phase condition as discussed in later sections.

Definition 1.1 The wave (ū, λ̄) is called “asymptotically stable with asymptotic phase”

with respect to a norm ‖· ‖ in a Banach space X, if for each ε > 0 there exists δ > 0 such

that for each solution v of (1.4) with v(·, 0) ∈ X and

‖v(· , 0) − ū‖ ≤ δ

there exists a phase shift γ ∈ R such that

‖v(· , t) − ū(·+γ)‖ ≤ ε, ∀t ≥ 0

‖v(· , t) − ū(·+γ)‖ → 0, as t→ ∞.

The Banach space X will we specified later, for the moment we just assume that X satisfies

C∞
0 (R,Rm) ⊂ X ⊂ L2(R,R

m). Note also that the solution ū itself need not be an element

of X, rather Def. 1.1 assumes that v(·, t)−ū(·−γ) is in X for each γ ∈ R and t ≥ 0. As has

been shown in [63], [60], [49],[18] asymptotic stability is determined by the linearization

of the right hand side of (1.1) about the traveling wave profile (ū, λ̄) which is given by

Λu = Au′′ +Bu′ + Cu. (1.5)

Here B : R → R
m,m, C : R → R

m,m are defined as follows

B(x) = λ̄I +D2f(ū(x), ū′(x)), C(x) = D1f(ū(x), ū′(x)).

Note that B and C converge as x→ ±∞ to

lim
x→±∞

B(x) = λ̄I +D2f(u±, 0) =: B±, lim
x→±∞

C(x) = D1f(u±, 0) =: C±.

Sufficient conditions for asymptotic stability of (ū, λ̄) with asymptotic phase are (see The-

orem 1.8 below)
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Spectral condition (SC):

There exist σ > 0, β > 0, such that for s with Re s ≥ −β the solutions λ of the

quadratic eigenvalue problems

det(λ2A+ λB± + C± − sI) = 0 (1.6)

satisfy: |Re λ| ≥ σ.

Eigenvalue condition (EC):

Considered as an operator in X the differential operator Λ has a simple eigenvalue

0 and there exists β > 0 such that there are no other isolated eigenvalues s of finite

multiplicity with Re s ≥ −β.

Before we proceed to the main stability result for the PDAE, we note two important

consequences of these conditions that are used in the proof of the stability theorem 1.8

below. We recall the definitions for resolvent and (essential) spectrum in definition A.1 in

the appendix. The spectral condition (SC) implies that the essential spectrum σess(Λ) is

contained in the left half plane as the following Theorem shows.

Theorem 1.2 Let B,C : R → R
m,m be bounded, continuous matrix functions with

lim
x→±∞

B(x) =: B±, lim
x→±∞

C(x) =: C±

and let A ∈ R
m,m satisfy A > 0.

Consider the operator

Λu = Au′′ +B(·)u′ + C(·)u. (1.7)

in Lp(R,Rm), 1 ≤ p ≤ ∞, define the set

S± = {s ∈ C : det(−κ2A+ iκB± + C± − sI) = 0, for some κ ∈ R}.

and let M be the complement of the connected component of C \ {S+ ∪ S−} that contains

the right half plane.

Then the essential spectrum σess(Λ) satisfies

S− ∪ S+ ⊂ σess(Λ) ⊂M.

Note that the set S± is a variety which is symmetric w.r.t. the real line. Theorem 1.2 as

stated above is a slight generalization of [23], Chapter 5, Thm. A.2 to non-symmetric A.

The eigenvalue condition (EC) ensures that the rest of the spectrum, i.e. all isolated

eigenvalues of finite multiplicity, except for the eigenvalue 0, have real part ≤ −β < 0.

Due to translational invariance the eigenvalue 0 is always present. This can be seen by

differentiating the equation for the phase shifted solutions

0 = Aū′′(x+ λ) + λ̄ū′(x+ λ) + f(ū(x+ λ), ū′(x+ λ)), x ∈ R

with respect to the parameter λ at λ = 0. One obtains Λū′ = 0, thus the eigenfunction

corresponding to 0 is ū′ if ū′ ∈ X.

The following estimate for the resolvent of Λ follows from (EC) ,(SC) :
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Lemma 1.3 Let A ∈ R
m,m with A > 0 and let Λ be given by (1.5). Then there exists an

open sector

Sω,ζ = {s ∈ C : | arg(s+ ω)| < ζ, s 6= −ω}, where ζ >
π

2

and a constant K > 0, such that for each s ∈ Sω,ζ and each u ∈ C∞
0 (R,Rm) the following

estimate holds

|s|2‖u‖2
L2

+ |s|‖u′‖2
L2

≤ K‖f‖2
L2

for

f = (sI − Λ)u.

PSfrag replacements

Sω,ζ
C

ρ(Λ)

σ(Λ)

−ω
ζ

Figure 1.1: The sector Sω,ζ contained in the resolvent set

This has been shown in [60] for the symmetric case and the extension to the nonsymmetric

case is immediate. Together with the conditions (SC) and (EC) this shows that Λ is a

sectorial operator in L2.

Definition 1.4 Let X be a Banach space and let Λ : D(Λ) → X be a linear operator on

X. Λ is called sectorial if

1. Λ is closed and densely defined

2. there exist ζ ∈ (π2 , π), M ≥ 1, ω ∈ R, defining the closed sector

S̄ω,ζ = {s ∈ C : | arg(s+ ω)| ≤ ζ, s 6= −ω},

such that the resolvent set ρ(Λ) contains S̄ω,ζ and obeys the following estimate

‖(sI − Λ)−1‖ ≤ M

|s+ ω| , ∀s ∈ S̄ω,ζ . (1.8)

We recall the definition of the solution of a semilinear evolution equation with sectorial

operator Λ as given in [36], [60]. Note, that this is a modified version of the solution

definition in [23], which is necessary in order to guarantee the uniqueness of solutions (cf.

[35], [36])

Definition 1.5 Let Λ be a sectorial operator in L2 with D(Λ) = H2 and g : H1 → L2. A

function u : [0, τ) → H1 is called a solution of the autonomous equation

u′ = Λu+ g(u), u(0) = u0 ∈ H1

in the interval (0, τ), τ ∈ R ∪ {∞} if
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1. g(u(·)) : [0, τ) → L2 is continuous

2. u : [0, τ) → H1 is continuous, u(t) ∈ H2 for t ∈ (0, τ) and u(0) = u0

3. u′(t) ∈ L2 exists and u′(t) = Λu(t) + g(u(t)) for t ∈ (0, τ)

For the nonlinear stability problem we have to deal with solutions of (1.4) of the form

ū+ v only, where v is supposed to lie in the correct function space. If u solves (1.4) then

v = u− ū solves

vt = Avxx + λ̄vx + g(v, vx) (1.9)

where

g(v, w) = f(ū+ v, ū′ + w) − f(ū, ū′)

Then we can define a solution of equation (1.1) as follows.

Definition 1.6 A function u is called a solution of equation (1.1) if v = u − ū solves

(1.9) in the sense of Definition 1.5.

Remark 1.7 Note that here we require only the difference to the traveling wave solution

to lie in L2, e.g. traveling fronts do not lie in L2. For f ∈ C1 we obtain even ū′ in H2:

From the PDE (1.4) we obtain that ū′ solves the variational equation Λu = 0 which implies

ū′ ∈ C2. With z = (u, u′) this equation is transformed to the first order equation Lz = 0 of

which z̄ = (ū′, ū′′) is a bounded solution. Since L has exponential dichotomies on R
−,R+

(see Section A.3) this implies that (ū′, ū′′) is actually exponentially decaying for x→ ±∞,

i.e.

‖ū(x) − u±‖ ≤ Ke∓%x as well as ‖ū(k)(x)‖ ≤ Ke−%|x|, k = 1, 2

for some ρ > 0. Thus ū′, ū′′ are in L2. With Λū′ = 0 we obtain using the definition of Λ

in (1.5) that ū′′′ ∈ L2 as well, which implies ū′ ∈ H2.

From the resolvent estimate (1.8) and the two properties of the spectrum (EC) and (SC)

the nonlinear stability of the traveling wave solution follows. This has been shown in

[63],[60] for the special case, where f depends on u only, and is summarized in the following

theorem. Note that (EC) can be verified in certain situations (see [63], [12]).

Theorem 1.8 (Asymptotic stability of traveling waves) Let ū be a traveling wave

solution of (1.1) and assume that the conditions (SC) and (EC) hold. Assume further

that the map g : u 7→ f(ū− u) − f(ū) is in C1(H1,L2).

Then the traveling wave solution ū is asymptotically stable with asymptotic phase w.r.t.

‖·‖H1. More precisely, there exist ε > 0, M > 0 such that the equation (1.4) possesses for

each initial value u0 = ū+ v0, with v0 ∈ H1 and ‖v0‖H1 ≤ ε a unique solution u = ū+ v

with v(t) ∈ H2 for t > 0, and there exists a γ ∈ R such that the exponential estimate

‖u(· , t) − ū(· + γ)‖ ≤Me−βt‖v0‖

holds for t ≥ 0.

We consider the more general situation where f = f(u, ux) under the following main

nonlinearity assumption.
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Hypothesis 1.9 The function f ∈ C1(Rm × R
m,Rm) is of the form

f(u, ux) = f1(u)ux + f2(u), f1 ∈ C1(Rm,Rm,m), f2 ∈ C1(Rm,Rm)

where f1, f2, f
′
1, f

′
2 are globally Lipschitz.

Remark 1.10 Hypothesis 1.9 implies that f ′1, f
′
2 are globally bounded and with

D1f(u,w) = f ′1(u)(w, ·) + f ′2(u), D2f(u,w) = f1(u),

we obtain for u,w, δu, δw ∈ R
m

‖D1f(u+ δu, w + δw) −D1f(u,w)‖ ≤ L(‖δu‖ + ‖δw‖),

‖D2f(u+ δu, w + δw) −D2f(u,w)‖ ≤ L‖δu‖.
(1.10)

Note that the above condition includes the nonlinearity f(u, ux) = −uux of Burger’s

equation. Moreover, one can show that it implies the composition operator g : u 7→
f(u, ux) to lie in C1(H1,L2).

1.2 The PDAE formulation

If we transform equation (1.1) to a co-moving frame with unknown position γ(t), i.e. insert

v(x, t) = u(x+ γ(t), t), we get

vt = Avxx + f(v, vx) + λvx, (1.11)

where λ = γt. In order to compensate for this additional parameter we have to introduce

an additional phase condition Ψ(v) = 0 which together with (1.11) forms a PDAE [7].

The actual position γ can then be calculated by integration from the ODE

γt = λ, γ(0) = 0.

We use a phase condition which requires that the distance to a reference function û,

δ(γ) = ‖v(· + γ) − û‖L2

attains its minimum at γ = 0. This leads to the condition

0 = Ψfix(v) = 〈û′, v − û〉 =

∫

R

û′(x)T (v(x) − û(x)) dx. (1.12)

This is the same phase condition that was proposed in [15] for the computation of the

traveling wave by solving the following boundary value problem for (u, λ)

0 = Au′′ + f(u, u′) + λu′,

0 = 〈û′, u− û〉. (1.13)

Similar to the proof of Theorem 1.8 we will prove the asymptotic stability of (ū, λ̄) as a

stationary solution of the PDAE

vt = Avxx + f(v, vx) + λvx, v(·, 0) = u0

0 = 〈û′, v − û〉 (1.14)
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under the same conditions which ensure asymptotic stability (with asymptotic phase) of

the family ū(γ).

Before we give a precise definition of solution for the PDAE (1.14) we show how on a

formal level one can recover a solution u of (1.1) from a solution (v, λ) of (1.14).

Let (v, λ) be a solution of (1.14) and define γ(t) by γt(t) = λ(t), γ(0) = 0 and u(x, t) =

v(x− γ(t), t). Inserting this into the first equation of (1.14) we obtain that u solves (1.1).

The proper generalization of the notion of a solution for a semilinear PDAE is given in

the following definition.

Definition 1.11 Let Λ be a sectorial operator in L2 with D(Λ) = H2, ψ ∈ H1 and

g : H1 × R → L2. A function (v, µ) : [0, τ) → H1 × R is called a solution of

v′ = Λv + g(v, µ), v(0) = v0 ∈ H1

0 = 〈ψ, v〉

in (0, τ), τ ∈ (0,∞] if the following conditions hold

1. g(v(·), µ(·)) : [0, τ) → L2 is continuous

2. v : [0, τ) → H1 is continuous, v(t) ∈ H2 for t ∈ (0, τ) and v(0) = v0

3. µ is continuous in [0, τ)

4. v′(t) ∈ L2 exists and v′(t) = Λv(t) + g(v(t), µ(t)) for t ∈ (0, τ)

5. 〈ψ, v(t)〉 = 0 ∀t ∈ [0, τ).

Using the ansatz v = u−ū, µ = λ−λ̄ and defining φ = ū′ and ψ = û′, we get the equivalent

formulation of (1.14), namely

vt = Λv + g(v, µ),

0 = 〈ψ, v〉. (1.15)

Here Λ is the linearization of (1.4) about (ū, λ̄), which has been defined in (1.5) and

g(v, µ) = φµ+ ω(v) + vxµ,

where ω : H1 → L2 denotes the composition operator given by

ω(v) = f(ū+ v, ū′ + vx) − f(ū, ū′) −D1f(ū, ū′)v −D2f(ū, ū′)vx. (1.16)

Using this ansatz we define a solution of (1.14) via the transformed equation (1.15) and

Definition 1.11.

Definition 1.12 We call (u, λ) a solution of (1.14) if the difference (u − ū, λ − λ̄) is a

solution of (1.15) in the sense of Definition 1.11.
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1.2.1 Stability of the PDAE solution

The main result of this section is the following stability theorem for the PDAE (1.14).

Theorem 1.13 Let A ∈ R
m,m be given with A > 0 and assume that the function f ∈

C1(Rm × R
m,Rm) satisfies Hypothesis 1.9.

Let (ū, λ̄) , ū ∈ C2
b be a stationary solution of the PDAE (1.14), i.e.

0 = Aū′′ + λ̄ū′ + f(ū, ū′)

0 = 〈û′, ū− û〉

where û 6= 0 is a given reference function with û− ū ∈ H2 and 〈û′, ū′〉 6= 0. Furthermore,

assume that (EC) and (SC) hold.

Then (ū, λ̄) is asymptotically stable, i.e. there exists δ > 0 such that for each u0 with

u0− ū ∈ H1, 〈û′, u0 − û〉 = 0 and ‖u0 − ū‖H1 < δ there exists a unique solution (u(t), λ(t))

of (1.14) on [0,∞) and the following exponential estimate holds for some K > 0, α > 0

‖u(t) − ū‖H1 + |λ(t) − λ̄| ≤ Ke−αt‖u0 − ū‖H1 ∀t ≥ 0. (1.17)

Thus in order to prove the stability of (ū, λ̄) as a solution of (1.14) it is sufficient to

consider the stability of the zero solution (ū, λ̄) = 0 of (1.15). In the next paragraph we

will solve this problem by directly analyzing the linearizations of the PDAE 1.15

Before following this path of proof we outline an alternative of proving stability which

solely uses well known results of stability of traveling waves ([23], [63], [49]). Let (v, λ)

be a solution of (1.14) then substituting v(x, t) by u(x+ γ(t), t) in the second equation of

(1.14) and differentiating w.r.t. t we obtain

0 = 〈û′, ux(· + γ(t), t)γt(t) + ut(· + γ(t), t)〉
= 〈û′, ux(· + γ(t), t) γt(t)〉 + 〈û′, Auxx(· + γ(t), t) + f(u(· + γ(t), t), ux(· + γ(t), t))〉.

This implies that (u, γ) solves

γt = g(u, γ), γ(0) = 0, (1.18)

where

g(u, γ) = −〈û′(· + γ), Auxx + f(u, ux)〉
〈û′(· + γ), ux〉

.

On the other hand, let u solve (1.1) and define γ(t) by solving (1.18). Then (v, λ), given

by v(·, t) = u(· + γ(t), t), λ(t) = γt(t), solves (1.14).

Therefore the stability of an equilibrium (v̄, λ̄) of (1.14) can be concluded from the stability

of a family of traveling wave solutions ū(· − γ) of (1.1). However, this works only if the

spatial domain is the whole real line. Since our ultimate goal is to prove in Chapter 4

stability of a traveling wave solution for the discretized system on a finite interval, we

prove the stability of (v, λ) directly. The methods developed here can then be transferred

to the discretized equations.
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1.3 The semilinear equation

For proving the stability of the zero solution of (1.15) we will reduce this PDAE to a

corresponding PDE by eliminating the parameter µ via the hidden constraint, which one

gets by differentiating the algebraic condition w.r.t. t.

This is analogous to the treatment of higher index DAEs. Using the definition of differential

index for PDAEs which is given in [33] the PDAE (1.15) is of index 2. This index definition

is completely analogous to the DAE case (see [22]). In order to be able to solve (1.15)

we need consistent initial values (v(0), µ(0)) which solve the algebraic condition as well as

an extra consistency equation obtained by differentiating the algebraic constraint w.r.t.

time. The solution of this projected equation can then be found using the well known

arguments [23], [36] in the context of analytic semigroups and sectorial operators.

We define a weighted norm for (v, µ) ∈ H1 × R by

‖(v, µ)‖w,H1 = w‖v‖H1 + |µ|

and denote the ball of radius δ in this norm around (v, µ) by

Bδ,w(v, µ) = {(u, λ) ∈ H1 × R : ‖(v − u, µ− λ)‖w,H1 ≤ δ}.

Consider a general semilinear equation

vt = Λv + µφ+ ϕ(v, µ), v(0) = v0

0 = 〈ψ, v〉, (1.19)

where the right hand side ϕ satisfies the following hypothesis:

Hypothesis 1.14 Assume that ϕ : H1 × R → L2 satisfies ϕ(0, 0) = 0 and there exist

%0,K,CL > 0 such that for all % < %0 and (v, µ), (u, λ) ∈ B%,1(0) the following inequalities

hold:

‖ϕ(v, µ) − ϕ(u, λ)‖L2
≤ CL(‖v − u‖H1 + max{‖v‖H1 , ‖u‖H1}|µ− λ|) (1.20)

‖ϕ(v, µ)‖L2
≤ K%(‖v‖H1 + |µ|). (1.21)

Now we can formulate the main stability theorem.

Theorem 1.15 Let Λ be the operator defined in (1.7) and assume that (EC) and (SC)

hold. Assume that ϕ satisfies Hypothesis 1.14 and that N (Λ) := span{φ}, ψ ∈ H1 and

〈ψ, φ〉 6= 0.

Then zero is a stable stationary solution of the PDAE (1.19). More precisely, there exists

ρ > 0 such that for each v0 with ‖v0‖H1 < ρ there exists a unique solution (v(t), µ(t)) on

(0,∞) of (1.19) which satisfies the exponential estimate

‖v(t)‖H1 + |µ(t)| ≤ Ce−νt‖v0‖H1 , ∀t ≥ 0, (1.22)

for some ν, C > 0.
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Here we consider the kernel of Λ in H2. Since φ = ū′ ∈ H2 by Remark 1.7, it makes no

difference if we consider it in H2 or H1.

Before we proceed with the proof of this stability theorem we show how the proof of

Theorem 1.13 follows from an application of Theorem 1.15 to the PDAE (1.15).

Proof of Theorem 1.13:

We show that ϕ(v, µ) = ω(v)+µvx (see (1.16)) satisfies (1.20). Clearly, ϕ(0, 0) = 0 by con-

struction and using Hypothesis 1.9 together with the Sobolev imbedding H1(R) ⊂ C(R),

from which we obtain ‖v‖∞ ≤ C‖v‖H1 we have for all (v, µ), (u, λ) ∈ B%,1(0) the following

estimates (we suppress the argument x in order to improve readability and denote by ‖·‖
the Euclidean norm in R

m):

‖ω(v) − ω(u)‖2
L2

=

∫

R

‖f(ū+ v, ū′ + vx) − f(ū+ u, ū′ + ux)

−D1f(ū, ū′)(v − u) −D2f(ū, ū′)(vx − ux)‖2 dx

=

∫

R

‖f1(ū+ v)(ū′ + vx) − f1(ū+ u)(ū′ + ux) − f ′1(ū)(ū
′, v − u) − f1(ū)(vx − ux)

+ f2(ū+ v) − f2(ū+ u) − f ′2(ū)(v − u)‖2 dx

≤ c

∫

R

‖(f1(ū+ v) − f1(ū+ u))ū′‖2 + ‖(f1(ū+ v) − f1(ū+ u))vx‖2

+ ‖(f1(ū+ u) − f1(ū))(vx − ux)‖2 + ‖f ′1(ū)(ū′, v − u)‖2

+ ‖f2(ū+ v) − f2(ū+ u)‖2 + ‖f ′2(ū)(v − u)‖2
dx

≤ cc1

∫

R

‖v − u‖2 + ‖v − u‖2‖vx‖2 + ‖u‖2‖vx − ux‖2 dx

≤ cc1(‖v − u‖2
L2

+ ‖v − u‖2
H1‖v‖2

H1 + ‖u‖2
H1‖v − u‖2

H1)

≤ c‖v − u‖2
H1

and

‖µvx − λux‖L2
≤ ‖vx‖L2

|µ− λ| + |λ|‖vx − ux‖L2

≤ ‖v‖H1 |µ− λ| + |λ|‖v − u‖H1 ≤ %‖(v − u, µ− λ)‖1,H1 .
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The consequence (1.10) of Hypothesis 1.9 leads for ‖v‖H1 + |µ| ≤ % to

‖ω(v)‖2
L2

≤
∫

R

‖f(ū+ v, ū′ + vx) − f(ū, ū′)

−D1f(ū, ū′)v −D2f(ū, ū′)vx‖2 dx

≤ 2

∫

R

∫ 1

0
‖[D1f(ū+ tv, ū′ + tvx) −D1f(ū, ū′)]v‖2 dt

+

∫ 1

0
‖[D2f(ū+ tv, ū′ + tvx) −D2f(ū, ū′)]vx‖2 dt dx

≤ 4L2

∫

R

∫ 1

0
t2(‖v‖ + ‖vx‖)2‖v‖2 dt+

∫ 1

0
t2‖v‖2‖vx‖2 dt dx

≤ 4

3
L2

∫

R

((‖v‖ + ‖vx‖)2 + ‖vx‖2)‖v‖2 dx

≤ 4L2‖v‖2
∞

∫

R

(‖v‖ + ‖vx‖)2 dx ≤ 4(Lc)2‖v‖2
H1‖v‖2

H1

≤ (2Lc%‖v‖H1)
2.

2

Remark 1.16 Note that most of the proofs below are valid as well, if the following weaker

variant of the eigenvalue condition (EC) is satisfied.

Weak eigenvalue condition (ECw):

Considered as an operator in X the differential operator Λ has a simple isolated

eigenvalue 0.

This includes the case of unstable traveling waves, where the whole construction of a

solution via semigroups works in the same way. Clearly, the stability result does not hold,

since the estimates for the solution operator of the linear equation are not exponentially

decaying in time in that case. In order to streamline the presentation we restrict ourselves

to the stable case Re (σ(Λ) \ {0}) < 0 and indicate the changes in the proofs that are

necessary for the unstable case.

In the following we always assume without further notice that for the operator Λ defined

in (1.7) the conditions (EC) and (SC) hold.

1.3.1 The linear inhomogenous equation

A first step will be the proof of a “variation of constants” formula for the linear inho-

mogeneous equation which will then lead to an integral representation of the solution of

(1.19).

We consider an inhomogenous linear equation of the type

vt = Λv + φµ+ r, v(0) = v0 (1.23)

0 = 〈ψ, v〉 (1.24)

where r : (0, τ) → L2. Assume that the initial value v0 ∈ H1 is consistent,i.e. 〈ψ, v0〉 = 0.
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The solution of the PDAE (1.23), (1.24) can be reduced to the solution of a corresponding

projected PDE as follows. We define the bilinear form a : H1 ×H1 → R via

a(u, v) =

∫

R

−ux(x)TAvx(x) + u(x)T (B(x)vx(x) + C(x)v(x)) dx

where A,B(·), C(·) are the bounded matrix functions defined in (1.5). For ψ ∈ H1 we get

via integration by parts

a(ψ, v) = 〈ψ,Λv〉 for v ∈ H2 (1.25)

and

|a(ψ, v)| ≤ Cψ‖v‖H1 . (1.26)

Furthermore the condition 〈ψ, φ〉 6= 0 implies

|〈ψ, φ〉−1| ≤ Cψ,φ (1.27)

and we define the projector P onto ψ⊥ along φ by

Pv = v − φ〈ψ, φ〉−1〈ψ, v〉. (1.28)

Under the assumptions (1.27) the boundedness of P follows for � ∈ {L2,H1} from

‖Pv‖� ≤ ‖v‖� + ‖φ‖�|〈ψ, φ〉−1||〈ψ, v〉| ≤ (1 + Cψ,φ‖φ‖�‖ψ‖L2
)‖v‖�.

Note that (1.25) implies for v ∈ H2

PΛv = Λv − φ〈ψ, φ〉−1a(ψ, v). (1.29)

With these definitions we have the following lemma:

Lemma 1.17 Let r ∈ C([0, τ),L2) and let the estimate (1.27) hold. If the pair (v, µ) is a

solution of (1.23), (1.24) on the interval (0, τ) with consistent initial conditions

v0 ∈ H1, 〈ψ, v0〉 = 0

then v is a solution on (0, τ) of the PDE

vt = P (Λv + r), v(0) = v0 ∈ H1 ∩R(P ) (1.30)

and µ satisfies on [0, τ)

µ(t) = −〈ψ, φ〉−1(a(ψ, v(t)) + 〈ψ, r(t)〉). (1.31)

Proof: Differentiating the algebraic condition (1.24) with respect to t ∈ (0, τ) we get

(1.31). Inserting this expression for µ into (1.23) one arrives at (1.30).

From the continuity of a(ψ, ·), v ∈ C([0, τ),H1) and r ∈ C([0, τ),L2) follows µ ∈ C([0, τ),R).

Conversely, from v being a solution of (1.30) equation (1.24) follows. And with (1.31) and

(1.29) we obtain from (1.30)

vt = P (Λv + r) = Λv − φ〈ψ, φ〉−1a(ψ, v) + Pr

= Λv + φ(µ+ 〈ψ, φ〉−1〈ψ, r〉) + r − φ〈ψ, φ〉−1〈ψ, r〉 = Λv + φµ+ r.
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2

We consider the operator PΛ in the subspace R(P ) ∩ L2. If we can show, that

ΛP := PΛ|R(P ) is sectorial then we can solve the linear inhomogenous equation (1.30) via

v(t) = eΛP tv0 +

∫ t

0
eΛP (t−s) Pr(s) ds

where the solution operator eΛP t is defined using the resolvent Rs(ΛP ) := (sI −ΛP )−1 as

the Dunford integral (see [36], [23])

eΛP t =
1

2πi

∫

Γ
estRs(ΛP ) ds (1.32)

and the curve Γ has to be defined appropriately.

Using this projected system we can now construct the solution of the PDAE (1.23),(1.24)

via a “variation of constants” formula (compare [23], Thm. 3.2.2 and [36], Thm. 6.2.3 for

the PDE case).

Lemma 1.18 Let r : [0, τ) → L2 be bounded and Lipschitz continuous and assume

ψ ∈ H1.

Then there exists τ > 0 such that a unique solution (v, µ) of

vt = Λv + µφ+ r,

0 = 〈ψ, v〉

on (0, τ) exists for initial values v(0) = v0 ∈ H1 ∩R(P ), namely

v(t) = eΛP tv0 +

∫ t

0
eΛP (t−s)P r(s) ds,

µ(t) = −〈ψ, φ〉−1(a(ψ, v(t)) + 〈ψ, r(t)〉), t ∈ [0, τ).

In order to prove this lemma we need resolvent estimates which justify the integral rep-

resentation in (1.32) and lead to estimates of eΛP t which are exponentially decaying in

t.

1.3.2 Resolvent estimates

We will discuss the resolvent estimates in the following three regions in C :

PSfrag replacements

Ωε

ΩC0

Ω∞

C

−β ε K
ζ

Figure 1.2: Regions for resolvent estimates

Ωε : |s| < ε, Re s ≥ −β

ΩC0
: ε ≤ |s| ≤ K, Re s ≥ −β

Ω∞ : |s| > K, | arg(s)| < ζ ∈ (π2 , π)
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As has been noted before, resolvent estimates have been shown for Λ in a sector in (1.3).

More precisely, for s ∈ %(Λ) and large |s| an estimate depending on |s|, and for s in a

compact set a uniform estimate has been shown in [6], [60]. This is summarized in the

following lemma.

Lemma 1.19 There exists a sector Sω,ζ ⊂ ρ(Λ) such that if we define v = Rs(Λ)r, then

there exists K > 0 such that for each s ∈ Sω,ζ with |s| > K

|s|2‖v‖2
L2

+ |s|‖v‖2
H1 ≤ C‖r‖2

L2
. (1.33)

For s in a compact set SC ⊂ ρ(L) we have a uniform estimate

‖v‖H2 ≤ C‖r‖L2
. (1.34)

Note, that from (EC) and (SC) we conclude that there exists K > 0 such that the estimate

(1.34) holds in ΩC0
and (1.33) in Ω∞.

These results will be used to show corresponding estimates for the projected system, which

then lead to estimates for solutions of a bordered system by introducing an appropriate

parameter µ:

Lemma 1.20 Let r ∈ L2, then v ∈ H2 solves the resolvent equation

(sI − PΛ)v = Pr (1.35)

and µ satisfies

µ = −〈ψ, φ〉−1a(ψ, v) (1.36)

if and only if the pair (v, µ) ∈ H2 × R is a solution of the bordered system

(sI − Λ)v − φµ = Pr (1.37)

〈ψ, v〉 = 0. (1.38)

Proof: Let (v, µ) be a solution of (1.35),(1.36), then v ∈ R(P ), i.e. 〈ψ, v〉 = 0 and using

(1.29) we get

Pr = (sI − PΛ)v = (sI − Λ)v + φ〈ψ, φ〉−1a(ψ, v) = (sI − Λ)v + φµ.

Conversely, left multiplication of (1.37) with ψ gives

0 = 〈ψ, (sI − Λ)v〉 + 〈ψ, φ〉µ = s〈ψ, v〉 − a(ψ, v) + 〈ψ, φ〉µ.

This implies with (1.38) equation (1.36). Inserting this expression into (1.37) one arrives

at (1.35). 2

The projection P has the effect, that zero is removed from the spectrum of ΛP . Note

that in the proof of Thm. 2.18 in [60] and Ex. 6 in [23] which deal with the stability of

relative equilibria, a special projection with ψ being the left zero eigenfunction of Λ has
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been used to achieve the same effect. We emphasize that this assumption is not made

here. In numerical approximations we cannot assume to know even approximately the left

eigenfunction (see Chapter 4).

In the following we will prove estimates of the solutions of (1.37), (1.38) in the regions

Ωε,ΩC0
,Ω∞ which will ensure the existence of the integrals in (1.32).

Lemma 1.21 Let Λ be the operator defined in (1.5) and assume that (EC) and (SC) hold.

Let N (L) = span{φ} and assume that ψ ∈ H1 obeys condition (1.27).

Then there exist constants CR,K > 0 such that for each s ∈ ΩC0
∪ Ω∞ there exists a

solution (v, µ) of (1.37),(1.38) for which the following estimates hold

‖v‖H1 + |µ| ≤ CR‖r‖L2
, as s ∈ ΩC0

(1.39)

and

|s|2‖v‖2
L2

+ |s|‖v‖2
H1 + |µ|2 ≤ CR‖r‖2

L2
, as s ∈ Ω∞. (1.40)

Proof: By Lemma 1.19 there exists K > 0 such that the resolvent estimate (1.34) holds in

the bounded set ΩC0
, and (1.33) holds in Ω∞. For s ∈ ρ(Λ) we can solve equation (1.37)

by taking φµ to the right hand side and get

v = Rs(Λ)(Pr + φµ).

By inserting v into (1.38) we obtain

µ = −〈ψ,Rs(Λ)φ〉−1〈ψ,Rs(Λ)Pr〉

which leads to

v = QRs(Λ)Pr

where the projector Q is defined by

Qw = w −Rs(Λ)φ 〈ψ,Rs(Λ)φ〉−1〈ψ,w〉.

In order to estimate µ and Q we need a lower bound of |〈ψ,Rs(Λ)φ〉|. Use

φ = Rs(Λ)Λφ− sRs(Λ)φ = −sRs(Λ)φ (1.41)

and multiply with ψ from the left. This gives

〈ψ, φ〉 = −s〈ψ,Rs(Λ)φ〉

which implies

|〈ψ,Rs(Λ)φ〉|−1 = |s||〈ψ, φ〉|−1 ≤ |s|Cψ,φ. (1.42)

Together with |s| ≤ C we can estimate Q by

‖Qw‖H1 ≤ ‖w‖H1 + ‖Rs(Λ)φ‖H1 |〈ψ,Rs(Λ)φ〉|−1|〈ψ,w〉| ≤ CQ‖w‖H1 .

Using the uniform estimate ‖Rs(Λ)Pr‖H1 ≤ CK‖r‖H1 from (1.34) we obtain

‖v‖H1 ≤ ‖QRs(Λ)Pr‖H1 ≤ CQCR‖Pr‖L2
≤ C‖r‖L2

.
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It remains to estimate µ:

|µ| ≤ |〈ψ,Rs(Λ)φ〉−1||〈ψ,Rs(Λ)Pr〉| ≤ |s|Cψ,φ‖ψ‖L2
CRCP ‖r‖L2

≤ C‖r‖L2
.

For s ∈ Ω∞ equation (1.33) states

‖Rs(Λ)r‖L2
≤ CR

|s| ‖r‖L2
, and ‖Rs(Λ)r‖H1 ≤ CR

√

|s|
‖r‖L2

.

From this follows with (1.42)

‖Qw‖L2
≤ ‖w‖L2

+
CR
|s| ‖φ‖L2

|s|Cψ,φ|〈ψ,w〉| ≤ CQ‖w‖L2
,

as well as

‖Qw‖H1 ≤ ‖w‖H1 +
CR
√

|s|
‖φ‖L2

√

|s|Cψ,φ|〈ψ,w〉| ≤ CQ‖w‖H1 .

Thus we obtain

‖v‖L2
≤ CQ

CR
|s| CP ‖r‖L2

≤ C

|s|‖r‖L2

and similarly

‖v‖H1 ≤ C
√

|s|
‖r‖L2

.

2

Note that the above result is still true, if we use in (1.41) for ε small the weaker condition

‖Λφ‖L2
< ε instead of Λφ = 0.

It remains to prove a resolvent estimate in Ωε for a sufficiently small ε, i.e. to find a

solution of (1.37),(1.38). This will be constructed in a similar fashion as in the proof of

Theorem 3.7 in [64]. Therefore we need some results concerning exponential dichotomies

for ODEs, which are summarized in the Appendix.

Lemma 1.22 Under the same assumptions as in Lemma 1.21, there exists ε > 0 such that

(1.37),(1.38) possesses a unique solution (v, µ) for s ∈ Bε(0) which satisfies the following

uniform estimate in s

‖v‖H1 + |µ| ≤ K‖r‖L2
. (1.43)

Proof: Using z = (v, v′) we can transform (1.37),(1.38) into the first order system

L(s)z = R− Φµ, (1.44)

〈Ψ, z〉 = 0 (1.45)

where

L(s)z = z′ −M(·, s)z, with M(x, s) =

(

0 I

A−1(sI − C(x)) −A−1B(x)

)

, (1.46)

R =

(

0

−A−1Pr

)

, Φ =

(

0

−A−1φ

)

and Ψ =

(

ψ

0

)

.
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Here A,B(·), C(·) are the matrices defined in (1.5). It has been shown in Lemma 3.30, [60]

and [28] that (SC) implies that the matrices M±(s) = limx→±∞M(x, s) are hyperbolic

for all s ∈ C with Re s > −β. Thus for these s the operator L(s) has exponential

dichotomies on both half-axes R
± with data (K±, α±, π±). This implies that the operators

L(s) are Fredholm operators of index 0 ([49], Remark 3.3). Thus it is sufficient to show

the solvability of (1.44), (1.45) for s = 0. Then a regular perturbation argument can be

used to conclude the solvability for s ∈ Bε(0), where ε > 0 has to be small enough.

As in the proof of Theorem 3.7 in [64] we construct solutions z± of (1.44) for s = 0 on

each half line using the ansatz

z± = S(·, 0)z±0 + s̄±(R− Φµ)

where S denotes the solution operator of the linear equation (A.11) and s̄±(r) is the

corresponding solution of the linear inhomogeneous equation on R
± as given in (A.17) in

the appendix. The function z(x) =

{

z+(x), x ≥ 0

z−(x), x < 0
is a solution, if

z−(0) = z+(0) ∈ N (P−(0)) ∩R(P+(0)) and if z solves the phase condition (1.45).

This is equivalent to (cf. Proof of Theorem 3.7 in [64])

T (z−0 , z
+
0 , µ) =

(

ρ

δ

)

(1.47)

where T : R
m × R

m × R → R
2m × R is given by

T =

(

I −I Ω

Θ Λ Ξ

)

with

Ω = [s̄+(Φ)](0) − [s̄−(Φ)](0),

Θ =

∫ 0

−∞
Ψ(x)TS(x, 0) dx, Λ =

∫ ∞

0
Ψ(x)TS(x, 0) dx,

Ξ = −
∫ 0

−∞
Ψ(x)T [s̄−(Φ)](x) dx−

∫ ∞

0
Ψ(x)T [s̄+(Φ)](x) dx

and

ρ = [s̄+(R)](0) − [s̄−(R)](0)

δ = −
∫ 0

−∞
Ψ(x)T [s̄−(R)](x) dx−

∫ ∞

0
Ψ(x)T [s̄+(R)](x) dx

The injectivity of T can be shown in the same way as in the proof of Theorem 3.7 in [64].

In the following we indicate only the main steps. From the eigenvalue condition (EC)

we have N (L(0)) = span{φ}. For the transformed system this yields the nondegeneracy

condition

z′ −M(0)z = Φµ =⇒ µ = 0, and z = c

(

φ

φ′

)

, c ∈ R. (1.48)

This implies the injectivity of T , since for any solution of T (z−0 , z
+
0 , µ) = 0 we can construct

v(x) = S(x, 0)z±0 + [s̄±(Φ)](x), for ± x ≥ 0
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which would then yield a bounded solution of

z′ −M(0)z = Φµ.

From the nondegeneracy condition (1.48) follows µ = 0 and v = cφ and from 〈φ, ψ〉 6= 0

we obtain c = 0.

Since T is a map between finite dimensional spaces, it follows that T is invertible. Thus

there exists a solution of (1.47) which can be estimated for R ∈ L2 as follows:

‖z−0 ‖ + ‖z+
0 ‖ + |µ| ≤ C(‖δ‖ + ‖ρ‖) ≤ C‖R‖L2

,

since we have from (A.18)

‖δ‖ ≤ C‖Ψ‖L2
‖s̄±(R)‖L2

≤ C‖Ψ‖L2
‖R‖L2

and

‖ρ‖ ≤ ‖[s̄+(R)](0)‖ + ‖[s̄−(R)](0)‖ ≤ C‖R‖L2
.

From this, and by using the dichotomy estimates, we obtain

‖z‖L2
+ |µ| ≤ C‖R‖L2

.

Finally, using the definition of z and R we obtain for v and µ the desired estimate (1.43).

2

A particular consequence of the uniform estimate in Ωε∪ΩC0
and the s dependent estimate

in Ω∞ are the following sectorial estimates:

Corollary 1.23 There exist C > 0 and a sector S̄a,θ ⊂ ρ(ΛP ) with a > 0, θ ∈ (π2 , π) such

that for all s ∈ S̄a,θ for

v = (sI − PΛ)−1Pr

the estimates

‖v‖L2
≤ C

|s+ a|‖r‖L2
, ‖v‖H1 ≤ C

√

|s+ a|
‖r‖L2

(1.49)

hold.

Proof: We summarize the estimates (1.43),(1.39), (1.40) in

‖v‖H1 + |µ| ≤ C‖r‖L2
, for s ∈ Ωε ∪ ΩC0

(1.50)

and

|s|2‖v‖2
L2

+ |s|‖v‖2
H1 + |µ|2 ≤ C‖r‖2

L2
, for s ∈ Ω∞, (1.51)

where C > 0 does not depend on r and s.

Thus we can construct a sector as depicted in Figure 1.3(a) such that the estimates (1.49)

hold for some a ∈ (0, β). 2

Similar estimates with a ∈ R can be shown in the case where unstable eigenvalues exist.
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Sω,ζ (see Lemma 1.3)
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Ω∞

ε

Γ

K

(a) Overview of regions for estimates
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Sω,ζ (see Lemma 1.3)
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K

(b) Path of integration

Figure 1.3: Path of integration for definition (1.32)

1.3.3 Estimates of the solution operator

The estimates (1.50), (1.51) show that ΛP is sectorial. Therefore an application of [23],

Theorem 1.3.4 and Theorem 1.4.3 or of [36], Theorem 4.5.10, Corollary 4.5.11 and Theorem

4.5.14 implies that the solution operator eΛP t is well defined via (1.32) and satisfies the

corresponding estimates for sectorial operators. We summarize this fact in the following

lemma.

Lemma 1.24 Assume that the sectorial operator ΛP satisfies (1.49). Assume further that

for ψ, which occurs in the definiton of P in (1.28), condition (1.26) holds.

Then eΛP t is well defined via (1.32) and for r ∈ L2 ∩R(P ) the exponential estimates

‖eΛP t r‖L2
≤ Ke−αt‖r‖L2

, ‖eΛP t r‖H1 ≤ Ke−αtt−
1

2 ‖r‖L2
(1.52)

hold for some K > 0. For t > 0 the derivative w.r.t. t exists and

d

dt
eΛP t = ΛP eΛP t.

Note that Λ
1

2

P eΛP t = eΛP tΛ
1

2

P implies with (1.52) ‖eΛP t r‖H1 ≤ Ke−αt‖r‖H1 for r ∈ H1.

Since α > 0, the above estimates are exponentially decaying for t→ ∞. This will be used

in the proof of the stability theorem 1.15.

The definition (1.32) is valid for an unstable equilibrium as well. Then the above estimates

are not decaying anymore. Nevertheless eΛP t allows an estimate by eαt. The path Γ ⊂ Sa,θ
in (1.32) can be chosen as follows (see Figure 1.3(b))

Γ = {γ(t), t ∈ R}, where γ(t) =

{

γ−(t) = −α+ te−iθ, t ≤ 0

γ+(t) = −α+ teiθ, t > 0
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where α ∈ (0, a) and θ ∈ (π2 , π).

In order to ensure regularity of the solution of the inhomogenous equation in Lemma 1.18

we use Theorem 6.2.1 and Theorem 6.2.3 in [36] (cf. Lemma 3.2.1 in [23]). Below we state

a version which has been adapted to the function spaces used here. For the definition and

main properties of the Bochner integral see [36], Section 4.2.

Lemma 1.25 Let r : [0, T ] → L2 be Bochner integrable and bounded. For t ∈ [0, T ] define

R(t) =

∫ t

0
eΛP (t−s) Pr(s) ds

Then R ∈ C([0, T ],H1) ∩ C1((0, T ),L2) with R(t) ∈ D(ΛP ) for t ∈ (0, T ), R(0) = 0 and

d

dt
R(t) = ΛPR(t) + Pr(t), for t ∈ (0, T ).

Now we can prove Lemma 1.18 using the above Lemma and the estimates (1.52).

Proof of Lemma 1.18: Using Lemma 1.17 we reduce the solution of (1.23),(1.24) to the

solution of (1.30). Note that by definition R(P ) = {v ∈ L2 : 〈ψ, v〉 = 0} and by Lemma

1.25 we get that v defined by (1.30) satisfies conditions 2. and 4. of Definition 1.11. From

the continuity of a(ψ, ·) and the properties of r follows µ ∈ C([0, τ),R) and therefore

ϕ(v, µ) is continuous from [0, τ) into L2 as well. 2

Using the result for the inhomogeneous equation we can prove now a “variation of con-

stants” formula along the lines of Theorem 3.2.2 and Lemma 3.3.2 in [23] taking into

account the modified definition of solution due to [35] as in Thm. 6.4.3 in [36].

Lemma 1.26 Let τ ∈ (0,∞] be given such that ϕ : H1 × R → L2 is locally Lipschitz, i.e.

there exists ρ > 0 such that for (u, λ), (v, µ) ∈ Bρ,1(0)

‖ϕ(u, λ) − ϕ(v, µ)‖L2
≤ KL(‖u− v‖H1 + |λ− µ|).

Then any solution (v, µ) of
vt = Λv + µφ+ ϕ(v, µ),

0 = 〈ψ, v〉 (1.53)

on (0, τ) with consistent initial value v(0) = v0 ∈ H1 ∩R(P ) satisfies

v(t) = eΛP tv0 +

∫ t

0
eΛP (t−s)P ϕ(v(s), µ(s)) ds

µ(t) = −〈ψ, φ〉−1(a(ψ, v(t)) + 〈ψ,ϕ(v(t), µ(t))〉), t ∈ [0, τ)

(1.54)

where P is the projector defined in (1.28).

Conversely, if v : [0, τ) → H1 is continuous, v(0) ∈ H1 ∩ R(P ) and if (1.54) holds, then

(v, µ) is a solution of (1.53) on (0, τ).

Proof: The first part follows from Lemma 1.18 applied to r(s) = ϕ(v(s), µ(s)) and the

definition of solution 1.11. that ϕ(v(·), µ(·)) is locally Lipschitz

‖ϕ(v(s), µ(s)) − ϕ(v(t), µ(t))‖L2
≤ C|t− s|
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and ϕ(v(·), µ(·)) is Bochner integrable (cf. Thm. 6.4.3 in [36]).

Conversely, if (v, µ) is a solution of the integral equation (1.54) then the regularity estimate

in Lemma 1.25 implies that v is continuous from [0, τ) to H1. Using the representation of

µ in (1.54) this implies the continuity of µ in [0, τ). 2

1.3.4 Local existence and uniqueness

Lemma 1.26 will be used to establish the local existence of a solution of the PDAE (1.53).

We can now formulate a local existence result similar to Theorem 3.3.3 in [23].

Lemma 1.27 Let P the projection defined in (1.28) and ϕ : U → L2, U ⊂ H1 × R be

given with ϕ(0, 0) = 0 and assume that (1.20) holds for all (v, µ), (u, λ) ∈ Bρ̂,1(0) for some

ρ̂ > 0.

Then there exist δ > 0 and a weight w > 1 such that for any consistent initial condition

v0 ∈ H1 ∩R(P ) with ‖v0‖H1 ≤ δ the following holds.

There exists a solution µ0 of the consistency condition

µ0 = −〈ψ, φ〉−1(a(ψ, v0) + 〈ψ,ϕ(v0, µ0)〉) (1.55)

and there exists τ = τ(v0) > 0 such that (1.53) has a solution (v, µ) with

‖(v(t), µ(t))‖w,H1 < ρ̂ ∀t ∈ (0, τ). (1.56)

Proof: For ρ ∈ (0,min{CL, ρ̂}] we obtain from (1.20) for each w > 1 and all

(v, µ), (u, λ) ∈ Bρ,w(0) the inequality

‖ϕ(v, µ) − ϕ(u, λ)‖L2
≤ CL(‖v − u‖H1 +

1

w
|µ− λ|). (1.57)

Choose w > max(4Cψ,φ(Cψ + ‖ψ‖L2
CL), 1), δ ∈ (0, ρ

4w ) and define Sρ = {µ : |µ| ≤ ρ}. In

order to show the solvability of the consistency equation (1.55) for v0 with ‖v0‖H1 ≤ δ we

prove that g : S ρ
4
→ S ρ

4
given by

g(µ) = −〈ψ, φ〉−1(a(ψ, v0) + 〈ψ,ϕ(v0, µ)〉)

maps S ρ
4

into itself and is contracting. For µ ∈ S ρ
4

we have with (1.26),(1.27) and (1.57)

|g(µ)| ≤ |〈ψ, φ〉−1||a(ψ, v0) + 〈ψ,ϕ(v0, µ)〉| ≤ Cψ,φ(Cψδ + ‖ψ‖L2
CL(δ +

1

w
|µ|)) < 1

8
ρ.

Similarly (1.27) and (1.57) imply

|g(µ) − g(λ)| ≤ |〈ψ, φ〉−1||〈ψ,ϕ(v0, µ) − ϕ(v0, λ)〉| ≤ Cψ,φ‖ψ‖L2

CL
w

|µ− λ| ≤ 1

4
|µ− λ|.

Thus the fixed point µ0 of g exists and lies in S ρ
4
, and with w‖v0‖ + |µ0| ≤ ρ

4 + ρ
4 follows

(v0, µ0) ∈ B ρ
2
,w(0). Choose τ > 0 such that

‖(eΛP t − I)v0‖H1 <
ρ

8w
, ∀t ∈ (0, τ) (1.58)

KCL

∫ τ

0

e−αs√
s
ds <

w

4(w + 1)
(1.59)
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where K,α are the constants from (1.52). Using Lemma 1.26, it is sufficient to find a

solution of the integral equation (1.54). For (v, µ) ∈ C([0, τ ],H1 × R) we define the norm

‖(v, µ)‖τw,H1 = sup
t∈[0,τ ]

‖(v(t), µ(t))‖w,H1

and denote the set of functions which stay for t ∈ [0, τ ] in a weighted ρ
2 -ball around (v0, µ0)

by S, i.e.

S = { (v, µ) ∈ C([0, τ ],H1 × R) : ‖(v − v0, µ− µ0)‖τw,H1 ≤ ρ

2
}.

Then condition (1.57) holds for all (v, µ) ∈ S.

For (v, µ) ∈ S we define G(v, µ) : [0, τ ] → L2 × R by

G(v, µ)(t) =

(

eΛP tv0 +
∫ t

0 eΛP (t−s)ϕ(v(s), µ(s)) ds

−〈ψ, φ〉−1 (a(ψ, v(t)) + 〈ψ,ϕ(v(t), µ(t))〉)

)

and show that G maps S into itself and is strictly contracting.

From (1.59) follows

(

CL
ρ

2
+ w‖ϕ(v0, µ0)‖L2

)

K

∫ τ

0

e−αs√
s
ds <

ρ

8

and for t ∈ [0, τ ] we have with (1.58)

‖G(v, µ)(t) − (v0, µ0)‖H1,w ≤ w‖(eΛP t − I)v0‖H1 + w

∫ t

0
‖eΛP (t−s)ϕ(v(s), µ(s))‖H1 ds

+ | − 〈ψ, φ〉−1(a(ψ, v(t)) + 〈ψ,ϕ(v(t), µ(t))〉) − µ0|

<
ρ

8
+ w

∫ t

0
Ke−α(t−s) 1√

t− s
‖ϕ(v(s), µ(s))‖L2

ds

+ |〈ψ, φ〉−1(a(ψ, v0) + 〈ψ,ϕ(v0, µ0)〉) + µ0|
+ |〈ψ, φ〉−1|(|a(ψ, v(t) − v0)| + |〈ψ,ϕ(v(t), µ(t)) − ϕ(v0, µ0)〉|)

≤ ρ

8
+ (CL

ρ

2
+ w‖ϕ(v0, µ0)‖L2

)K

∫ τ

0

e−αs√
s
ds+ Cψ,φ(Cψ + ‖ψ‖L2

CL)
ρ

w

<
ρ

8
+
ρ

8
+
ρ

4
=
ρ

2
.

G is contracting for (u, λ), (v, µ) ∈ S since we have for t ∈ [0, τ ] by (1.57) and (1.59)

‖G(u, λ)(t) −G(v, µ)(t)‖w,H1 ≤ w

∫ t

0
‖eΛP (t−s)(ϕ(u(s), λ(s)) − ϕ(v(s), µ(s)))‖H1d s

+ |〈ψ, φ〉−1| (|a(ψ, u(t) − v(t))| + |〈ψ,ϕ(u(t), λ(t)) − ϕ(v(t), µ(t))〉|)

≤ w

∫ t

0
Ke−α(t−s) 1√

t− s
‖ϕ(u(s), λ(s)) − ϕ(v(s), µ(s))‖L2

ds

+ Cψ,φ(Cψ‖u(t) − v(t)‖H1 + ‖ψ‖L2
CL

1

w
‖(u, λ) − (v, µ)‖τw,H1)

≤ KCL

∫ τ

0

e−αs√
s
ds ‖(u, λ) − (v, µ)‖τw,H1

+
1

w
Cψ,φ(Cψ + ‖ψ‖L2

CL)‖(u, λ) − (v, µ)‖τw,H1

<
1

2
‖(u, λ) − (v, µ)‖τw,H1 .
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Taking the supremum over t gives ‖G(u, λ) −G(v, µ)‖τw,H1 ≤ 1
2‖(u, λ) − (v, µ)‖τw,H1 . Using

the contraction mapping theorem we get a fixed point (v, µ) ∈ S which is a solution of the

integral equation (1.54) and thus a solution of (1.53) which satisfies the estimate (1.56).

2

1.3.5 Proof of the stability theorem

Now we can give the proof of Theorem 1.15 which is similar to the proof of Theorem 5.5.1

in [23].

Proof: Choose the weight w as in Lemma 1.27 and choose ν ∈ (0, α) and σ > 0 so small

that

wKσ

∫ ∞

0

e−(α−ν)s
√
s

ds ≤ 1

4
and σCψ,φ‖ψ‖L2

≤ 1

4
.

Choose ρ ≤ wσ, then (1.21) implies

‖ϕ(v, µ)‖L2
≤ σ‖(v, µ)‖w,H1 for ‖(v, µ)‖w,H1 ≤ ρ.

If ‖v0‖H1 ≤ δ = ρ
4wK , v0 ∈ R(P ) then from Lemma 1.27 follows that there exists τ > 0

such that a solution (v, µ) of exists on (0, τ) with ‖(v(t), µ(t))‖w,H1 ≤ ρ.

Then we have with the estimates (1.52) for some C ≥ 1

‖(v(t), µ(t))‖w,H1 ≤ w‖eΛP tv0‖H1 + w

∫ t

0
‖eΛP (t−s)Pϕ(v(s), µ(s))‖H1 ds

+ |〈ψ, φ〉−1(a(ψ, v(t)) + 〈ψ,ϕ(v(t), µ(t))〉)|

≤ wCe−αt‖v0‖H1 + wC

∫ t

0

1√
t− s

e−α(t−s)‖ϕ(v(s), µ(s))‖L2
ds

+ Cψ,φ(Cψ‖v(t)‖H1 + ‖ψ‖L2
σ‖(v(t), µ(t))‖w,H1)

≤ ρ

4
+ Cσ

∫ ∞

0

1√
s
e−αs ds‖(v, µ)‖τw,H1 + Cψ,φ(

Cψ
w
ρ+ ‖ψ‖L2

σρ)

≤ 3

4
ρ.

Since the PDAE (1.14) is autonomous, this leads to τ = ∞ using the usual arguments: If

(0, τ∗) is the maximal interval of existence of a solution (v, µ) of (1.53) with ‖v(t), µ(t)‖w,H1

≤ ρ, then by the above estimate we have ‖v(t), µ(t)‖w,H1 ≤ 3
4ρ. Thus we can solve (1.14)

at τ0 = τ∗ − τ
2 , where τ is given by Lemma 1.27 and therewith continue the solution to

τ̃ > τ∗, which contradicts the maximality of τ∗. From this the existence of (v, µ) in (0,∞)

follows with ‖(v(t), µ(t))‖w,H1 < ρ for all t ∈ [0,∞).

It remains to prove the exponential estimate. Define

n(t) = sup
s∈[0,t]

{eνs‖(v(s), µ(s))‖w,H1}.



30 Chapter 1. Stability of traveling waves as PDAE solutions

Then we obtain

‖(v(t), µ(t))‖w,H1eνt ≤ wKe(ν−α)t‖v0‖H1

+ wKσ

∫ t

0

1√
t− s

e−α(t−s)eνt‖(v(s), µ(s))‖w,H1 ds

+ Cψ,φ(Cψeνt‖v(t)‖H1 + ‖ψ‖L2
σeνt‖(v(t), µ(t))‖w,H1)

≤ wK‖v0‖H1 + wKσ

∫ t

0

1√
t− s

e(ν−α)(t−s)eνs‖(v(s), µ(s))‖w,H1 ds

+ Cψ,φ(Cψeνt‖v(t)‖H1 + ‖ψ‖L2
σeνt‖(v(t), µ(t))‖w,H1)

≤ wK‖v0‖H1 +
1

4
n(t) + Cψ,φ(Cψ

1

w
+ ‖ψ‖L2

σ)n(t)

< wK‖v0‖H1 +
3

4
n(t).

Taking the supremum on both sides gives n(t) < 4wK‖v0‖H1 < ρ for t ≥ 0, and choosing

C = 4wK the estimate (1.22) follows. 2

Remark 1.28 There is an alternative way of proving the above stability result which uses

the linearity of g in µ, i.e. one assumes, that ϕ(v, µ) is of the following form

ϕ(v, µ) = ϕ̃(v) + Svµ,

where S : H1 → L2 is the linear operator Sv = vx. One can eliminate µ from (1.19)

directly using

µ(t) = −〈ψ, φ− Sv〉−1(a(ψ, v(t)) + 〈ψ, ϕ̃(v(t))〉).
Setting g(t, v) = P (ϕ̃(v) + Svµ(t)) = P (ϕ̃(v) + Svϕ(v(t))), it remains to consider the

nonautonomous system

vt = PΛv + g(t, v), v(0) = v0.

This method is similar to the stability proof in [23], Ex. 6, [60], Thm. 2.17. where a

special projection with the left eigenfunction has been used in order to remove the zero

eigenvalue. For this choice resolvent estimates for the projected system are not necessary

since the operator PΛ equals the restriction of Λ to R(Λ).

Remark 1.29 To complete the stability discussion, one needs an instability result similar

to Thm. 5.1.3 in [23] which states that if Re (σ(L)) > 0, then the solution (ū, λ̄) of (1.14)

is unstable. More precisely, there exist ε0 > 0 and a sequence of initial data {(un, λn) with

‖(un, λn)‖1,H1 → 0 as n→ ∞ but supt≥0 ‖u(t) − ū‖ ≥ ε0, where u denotes the solution of

(1.14) with u(0) = un. With the tools at hand, it seems possible to show such a result in

a similar fashion as in [23], but we have not pursued the details of the proof.

1.4 Stability of relative equilibria

1.4.1 Abstract framework

A natural extension of the question of stability of traveling waves is the stability of relative

equilibria of equivariant evolution equations in Banach spaces. We explain the abstract
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concept (based on [9], [47], [7]) without going into details of the numerical implementation.

Consider a general evolution equation

ut = F (u), u(0) = u0,

F : Y ⊂ X 7−→ X
(1.60)

where Y is a dense subspace of the Banach space X.

Assume that F is equivariant w.r.t. a (noncompact) Lie group G acting on X via a

homomorphism

a : G→ GL(X), γ 7→ a(γ)

where

a(γ1 ◦ γ2) = a(γ1)a(γ2), a(
�
) = I,

�
= unit element in G.

Equivariance means that the following relation holds

F (a(γ)u) = a(γ)F (u) ∀u ∈ Y, γ ∈ G

a(γ)(Y ) ⊂ Y ∀γ ∈ G.

We assume that for any v ∈ X the map

a(·)v : G→ X, γ 7→ a(γ)v

is continuous and it is continuously differentiable for any v ∈ Y with derivative denoted

by

aγ(γ)v : TγG→ X, λ 7→ [aγ(γ)v] λ.

Here we use TγG to denote the tangent space of G at γ. Note that in general we can neither

expect the action a to be differentiable from G into GL(X) nor the map γ 7→ a(γ)u to be

differentiable for any fixed u ∈ X.

Such systems have been widely studied in the context of bifurcation theory for equivariant

dynamical systems (see the monograph [9]). In a series of papers [18],[52],[53] a center

manifold reduction theory has been developed for (1.60) especially for the case where

differentiability is an issue.

In contrast to this reduction ansatz, it is more convenient for numerical purposes to extend

the equation. This has been done for traveling waves in (1.14) by adding an additional

parameter and a phase condition (see [7], [47]). In that case the Lie group is G = R and

the action is given by [a(γ)u](x) = u(x− γ).

Example 1.30 In the numerical applications in Chapter 5 we will consider a more general

example, where γ = (γr, γt) ∈ G = S1 × R with (γr, γt) ◦ (γ̃r, γ̃t) = (γr + γ̃r, γt + γ̃t). The

action is given by

[a(γ)u](x) = R−γru(x− γt),

where

Rϕ =

(

cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

)

(1.61)

denotes the rotation about the angle ϕ.



32 Chapter 1. Stability of traveling waves as PDAE solutions

Then using the transformation v(t) = a(γ)u(t) one obtains an equivalent formulation of

(1.60) (see [7]), namely

vt = F (v) − a(γ−1)[aγ(γ)v]γt. (1.62)

The evolution of γ(t) then describes the motion on the group.

Introducing Lagrange parameters λ(t) = γt(t) ∈ TγG we consider

vt = F (v) − a(γ−1)[aγ(γ)v]λ (1.63)

γt = λ (1.64)

0 = π(v, λ) (1.65)

with a phase condition π : Y ×TγG→ R
p, p = dimG which has to satisfy some regularity

conditions.

We denote the derivative of the left multiplication with γ by dγl

γl : G→ G, g 7→ γ ◦ g, dγl(g) : TgG→ Tγ◦gG, µ 7→ Dγl(g)µ

and the derivative of the right multiplication with γ by dγr

γr : G→ G, g 7→ g ◦ γ, dγr(g) : TgG→ Tg◦γG, µ 7→ Dγr(g)µ.

Note that dγ�(
�
) is a linear homeomorphism between the Lie algebra T � G and TγG for

� ∈ {l, r}. Differentiating the relation

a(γ)(a(g)v) = a(γ ◦ g)v

with respect to g at g =
�
, one obtains for µ ∈ T � G, v ∈ Y

a(γ)[aγ(
�
)v]µ = [aγ(γ)v](dγl(

�
)µ), (1.66)

and similarly

[aγ(
�
)a(γ)v]µ = [aγ(γ)v](dγr(

�
)µ). (1.67)

Using (1.66), defining µ ∈ T � G via λ = dγl(
�
)µ and setting ψ(v, µ) = π(v, dγl(

�
)µ),

equation (1.62) is transformed into

vt = F (v) − [aγ(
�
)v]µ (1.68)

γt = dγl(
�
)µ (1.69)

0 = ψ(v, µ). (1.70)

Note that the first equation does not depend explicitly on γ any more, thus it suffices

to consider the first and the last equation as a PDAE and address equation (1.69) in a

postprocessing step.

The fixed phase condition (1.12), generalizes in this setting to

0 = ψfix(v) = 〈[aγ(
�
)û]µ, v − û〉 ∀µ ∈ T � G

where û 6= 0 is a given reference function with û− v̄ ∈ H2.
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Definition 1.31 We define (v̄, µ̄) to be a relative equilibrium of the PDE (1.60) if (v̄, µ̄)

is an equilibrium of (1.68), i.e.

0 = F (v̄) − [aγ(
�
)v̄]µ̄. (1.71)

Note that in [9] the whole group orbit O(v̄) = {a(γ)v̄, γ ∈ G} is called a relative equilib-

rium.

If (v̄, µ̄) is a relative equilibrium of (1.60) and γ(t) solves

γt = dγl(
�
)µ̄,

then (v̄, λ̄(t) = dγl(t)(
�
)µ̄) satisfies (cf. (1.63))

0 = F (v̄) − a(γ(t)−1)[aγ(γ(t))v̄]λ̄(t),

and ū(t) = a(γ(t))v̄ solves (1.60).

Spectral problem

The corresponding spectral problem, which gives information about stability of the PDAE

solution (v̄, µ̄) can be derived as follows. With (v̄, µ̄) all functions in the family {(a(γ)v̄, z(γ)µ̄)}γ∈G,

where

z(·)µ̄ : G→ T � G, γ 7→ dγr(
�
)−1dγl(

�
)µ̄,

are solutions of (1.71), since we obtain with (1.66) and (1.67) for ṽ = a(γ)v̄

0 = F (v̄) − [aγ(
�
)v̄]µ̄

= F (a(γ)−1ṽ) − [aγ(
�
)a(γ)−1ṽ]µ̄

= a(γ)−1F (ṽ) − a(γ)−1[aγ(γ)a(γ)
−1ṽ](dγl(

�
)µ̄)

= a(γ)−1
(

F (ṽ) − [aγ(
�
)ṽ](dγr(

�
)−1dγl(

�
)µ̄)
)

.

For µ̃ = z(γ)µ̄ ∈ T � G this is equivalent to

0 = F (ṽ) − [aγ(
�
)ṽ]µ̃.

Differentiating the equation

0 = F (a(γ)v̄) − [aγ(
�
)a(γ)v̄](z(γ)µ̄)

with respect to γ at γ =
�

and denoting the corresponding derivative of z(·)µ̄ by zγ(
�
)µ,

we obtain for µ ∈ T � G

0 = DF (a(
�
)v̄)[aγ(

�
)v̄]µ− [aγ(

�
)[aγ(

�
)v̄]µ](z(

�
)µ̄) − [aγ(

�
)a(

�
)v̄](zγ(

�
)µ̄)µ

= DF (v̄)[aγ(
�
)v̄]µ− [aγ(

�
)[aγ(

�
)v̄]µ]µ̄− [aγ(

�
)v̄](zγ(

�
)µ̄)µ.

Note that if the group G is Abelian, then z(γ) = dγr(
�
)−1dγl(

�
) is the identity in T � G,

and we have

0 = DF (v̄)[aγ(
�
)v̄]µ− [aγ(

�
)[aγ(

�
)v̄]µ]µ̄.

Thus all functions w̄ = [aγ(
�
)v̄]µ,µ ∈ T � G are eigenfunctions of the linear operator

Λw = DF (ū)w − [aγ(
�
)w]µ̄ (1.72)
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corresponding to the eigenvalue 0. Of course, the operator has to be defined in an appro-

priate function space.

In the numerical examples in Chapter 5 the group G will always be Abelian.

We expect that the spectrum of the operator Λ gives information about stability in this

general case as well. At the end of this Chapter we give the expected stability result for

the parabolic case.

1.4.2 Realization

For numerical computations we choose a basis {e1, . . . , ep} in the Lie algebra T � G, where

p is the dimension of G. Writing µ =
∑p

i=1 µie
i and defining Siv = −aγ(

�
)vei, the

generalization of equation (1.14) now reads

vt = F (v) +

p
∑

i=1

µiSiv,

0 = Ψ(v, ~µ).

(1.73)

Here Ψ(v, ~µ) = ψ(v,
∑p

i=1 µie
i) is a map from Y × R

p to R
p and ~µ denotes the vector

(µ1, . . . , µp) ∈ R
p. An example of such a phase condition is given by the following gener-

alization of the fixed phase condition in (1.13).

0 = (Ψfix(v))i = 〈Siv0, u− v0〉, i = 1, . . . , p.

Another possibility mentioned in [7] is the orthogonality of vt and the group orbit

{a(γ)v : γ ∈ G} at γ =
�
:

〈aγ(
�
)vµ, vt〉 = 0 ∀µ ∈ T � G.

Using the differential equation (1.68) we rewrite this as

ψorth(v, µ) = 〈aγ(
�
)vη, F (v) − aγ(

�
)vµ〉 = 0 ∀η ∈ T � G.

Setting Ψorth(v, ~µ) = ψorth(v,
∑p

i=1 µie
i) this leads to the condition

0 = (Ψorth(v, ~µ))i = 〈Siv, vt〉 = 〈Siv, F (v) −
p
∑

j=1

µjSjv〉, i = 1, . . . , p.

Using this phase condition, the resulting PDAE is of differentiation index 1 (generalizing

the notion for DAEs [22] to PDAEs; for a different definition which focuses on consistent

initialisation by Cauchy data, see [33]), whereas it is of index 2 for Ψfix (as mentioned be-

fore). After discretization this leads to a DAE of differentiation index 2 and 1 respectively.

We will not discuss the phase condition Ψorth any further in this thesis.

The operator Λ in (1.72) is given by

Λv = DF (ū)v +

p
∑

j=1

µ̄jSjv

and the functions w̄ = Siū, i = 1, . . . , p are eigenfunctions of Λ, corresponding to the

eigenvalue 0.

To simplify notation, we drop the arrow which distinguishes between µ ∈ T � G and ~µ ∈ R
p

in the following, if no confusion is possible.
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Realization for the parabolic PDE

Now we consider these stability problems for the parabolic PDE (1.1). Assume that the

operators Si in (1.73) are linear differential operators of order ≤ 1. and the generalization

(1.73) of the PDAE (1.14) reads

vt = Avxx +

p
∑

i=1

µi(S
0
i v + S1

i vx) + f(v, vx)

0 = Ψ(v, µ)

(1.74)

where µ ∈ R
p, S0

i , S
1
i ∈ R

m,m, i ∈ {1, . . . , p}. The linear operator Λ is given by

Λu = Au′′ +Bu′ + Cu (1.75)

where

B(x) = D2f(ū(x), ū′(x)) +

p
∑

i=1

µ̄iS
1
i , C(x) = D1f(ū(x), ū′(x)) +

p
∑

i=1

µ̄iS
0
i .

Example 1.32

For Example 1.30 we have [aγ(
�
)v]e1 = vx, [aγ(

�
)v]e2 = Rπ

2
v i.e. S1

1 = I, S0
2 = Rπ

2
,S0

1 =

S1
2 = 0 and µr, µt ∈ R. Thus the equation (1.74) reads

vt = Avxx + µtvx + µrRπ
2
v + f(v, vx)

0 = 〈v̂′, v − v̂〉, 0 = 〈Rπ
2
v, v − v̂〉

and the operator Λ in (1.75) is given by

Λv = Av′′ + (µtI +D2f(v̄, v̄′))v′ + (µrRπ
2

+D1f(v̄, v̄′))v.

The general stability problem

The stability theory in this chapter as well as the approximation results in the following

chapters can be generalized to this case.

In this situation we can formulate the generalization of the stability Theorem 1.13 using

the following generalized eigenvalue condition:

Eigenvalue condition (EC’) :

Assume that the differential operator Λ in (1.75) has an eigenvalue 0 of multiplicity

p and there exists β > 0 such that there are no other isolated eigenvalues s of finite

multiplicity with Re s ≥ −β.

We suspect the following generalization of Theorem 1.13 to be true.

Theorem 1.33 Let A ∈ R
m,m be given with A > 0 and assume that the PDE (1.1) is

equivariant w.r.t. the action a(γ) of a group G of dimension dimG = p. Assume further

that the function f ∈ C1(Rm × R
m,Rm) satisfies Hypothesis 1.9.
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Let (ū, µ̄) ∈ C2
b (R,R

m) × R
p be a stationary solution of the PDAE (1.74), i.e.

0 = Aū′′ +
p
∑

i=1

µ̄i(S
0
i ū+ S1

i ū
′) + f(ū, ū′)

0 = 〈Sj û, ū− û〉 = 0, j = 1, . . . , p

where û 6= 0 is a given reference function with Sj û ∈ H1, j = 1, . . . , p, û − ū ∈ H1 and

for which the p× p matrix

〈[S1(û), . . . , Sp(û)], [S1(ū), . . . , Sp(ū)]〉 = (〈Si(û), Sj(ū)〉)i,j=1,...,p

is nonsingular. Furthermore, assume that (EC’) and (SC) hold.

Then (ū, µ̄) is asymptotically stable, i.e. there exists δ > 0 such that for each u0 with

u0 − ū ∈ H1, 〈Sj û, u0 − û〉 = 0, j = 1, .., p and ‖u0 − ū‖H1 < δ there exists a unique

solution (u(t), µ(t)) of (1.14) on [0,∞) and the following exponential estimate holds for

some ν,K > 0

‖u(t) − a(γ)ū‖H1 + ‖µ(t) − µ̄‖ ≤ Ke−νt‖u0 − ū‖H1 ∀t ≥ 0 (1.76)

where γ is the solution of

γt = dγl(
�
)µ̄, γ(0) =

�
.

In order to prove this theorem, one has to adapt the proof of Theorem 1.13 to the general

case. For a similar adaptation see e.g. the generalization of the proof of Theorem 2.18

which deals with the asymptotic stability of a family of equilibria, as indicated in [23] at

the end of Exercise 6 in Chapter 5.
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Chapter 2

Approximation via difference

equations

In this chapter we will prove convergence results for the numerical approximation of trav-

eling wave solutions of (1.1) with finite differences on an equidistant grid. Furthermore

we consider the approximation of isolated eigenvalues of finite multiplicity and we derive

resolvent estimates for the discretized system.

We apply the linear results of the preceding section to prove several approximation results

� approximation of the traveling wave solution and it’s velocity

� approximation of simple eigenvalues

� resolvent estimates in compact sets which do not contain eigenvalues

� resolvent estimates for large absolute values of the resolvent parameter.

A general principle for proving the invertibility of the occuring linear operators, is to show

the invertibility of a nearby operator which is linked via its h-flow to a continuous system

that has well known properties.

2.1 Auxiliary results

We define a discrete interval in Z ∪ {±∞}

J = [n−, n+] = {n ∈ Z : n− ≤ n ≤ n+, where n± ∈ Z ∪ {±∞} }

as well as extended intervals

Jr = [n−, n+ + 1], Jl = [n− − 1, n+], Je = [n− − 1, n+ + 1]

and a corresponding equidistant grid with grid size h > 0 and shift x0 ∈ R

GJ,h,x0
= {xn : xn = x0 + nh, n ∈ J}.
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We denote sequences in a Banach space X which are indexed by J by

XJ = {(zn)n∈J , zn ∈ X}.

It is well known that XJ provided with the supremum norm

‖z‖∞ = sup
n∈J

‖zn‖

is a Banach space which we denote by SJ(X). If X is clear from the context, we drop the

dependency on X.

We consider the spatial discretization of the stationary equation

0 = Au′′ + λu′ + f(u, u′), x ∈ R, u(x) ∈ R
m (2.1)

on the grid GJ,h,x0
which uses second order finite difference operators for the approximation

of the derivatives of u at xn

u′n ≈ (δ0u)n, u′′n ≈ (δ+δ−u)n,

where un = u(xn) and δ0 : SJe → SJ , δ+ : SJr → SJ , δ− : SJl
→ SJ are defined as usual

by

(δ0u)n =
1

2h
(un+1 − un−1), (δ+u)n =

1

h
(un+1 − un), (δ−u)n =

1

h
(un − un−1).

We obtain the following difference equation on J

A(δ+δ−u)n + λ(δ0u)n + f(un, (δ0u)n) = 0, n ∈ J. (2.2)

Remark 2.1 The error estimates for u ∈ C4(R,Rm) are given by:

‖(δ0u)n − u′(xn)‖ ≤ Ch2ψn, with ψn = max
ξ∈[xn−1,xn+1]

‖u(3)(ξ)‖.

and

‖(δ+δ−u)n − u′′(xn)‖ ≤ Ch2φn, with φn = max
ξ∈[xn−1,xn+1]

‖u(4)(ξ)‖.

Note that from ‖ū(k)(x)‖ ≤ Ce−ρ|x|, k = 1, . . . , 4 follows:

‖(δ0ū)n − ū′(xn)‖ ≤ Ch2e−%h|n|, ‖(δ+δ−ū)n − ū′′(xn)‖ ≤ Ch2e−%h|n|.

For sequences u, v ∈ SJ(R
m), J = [n−, n+] we define

〈u, v〉r,s =

s
∑

n=r

huT v, 〈u, v〉h = 〈u, v〉n−,n+

and introduce norms which include the approximations of higher derivatives by

‖z‖1,∞ = ‖z‖∞ + ‖δ+z‖∞, ‖z‖2,∞ = ‖z‖1,∞ + ‖δ+δ−z‖∞.

One has to keep in mind that the supremum is taken in different intervals for the different

difference operators.
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In particular, the space of bounded biinfinite sequences is denoted as

l∞ = SZ(X) = {z ∈ XZ : ‖z‖∞ = sup
n∈Z

‖zn‖ <∞}.

If necessary, we can embed each z ∈ SJ(X) in SZ(X) by setting zn = 0 for n ∈ Z\J . This

will be done without any further notice.

We further introduce suitably scaled discrete approximations to the L2-norm, the H1-norm

and the H2-norm by

‖z‖L2,h
= (

n+
∑

n=n−

h‖zn‖2)
1

2 , ‖z‖H1
h

= (‖z‖2
L2,h

+ ‖δ+z‖2
L2,h

)
1

2 ,

‖z‖H2
h

= (‖z‖2
H1

h
+ ‖δ+δ−z‖2

L2,h
)

1

2

and denote XJ employed with these norms by

L2,h(J,X), H1
h(J,X) and H2

h(J,X).

If no confusion is possible, we drop the dependency on X (in the following we will always

use X = R
m or X = C

m) as well as on J if J = Z.

In order to simplify notation we will often use the following abbreviations

‖z‖1,L2,h
= ‖z‖H1

h
, ‖z‖2,L2,h

= ‖z‖H2
h
. (2.3)

The general method for all approximation results will be the following: we transform the

discrete system (2.2) via zn = (un, (δ−u)n) into a difference equation of the form

Nnzn+1 −Knzn = rn (2.4)

and use the corresponding first order transformation of the continuous system in order to

prove important properties of (2.4). The estimates for (2.4) will be transformed back to the

original system by using the following facts about the norms: If z = (u, δ−u) ∈ SJr(R
2m)

then

‖u‖2,∞ ≤ C‖z‖1,∞, ‖u‖H2
h
≤ C‖z‖H1

h
(2.5)

and for r = (0, hg) ∈ SJ(R
2m)

‖r‖∞ = h‖g‖∞, ‖r‖L2,h
= h‖g‖L2,h

(2.6)

hold.

We will prove a stability inequality for the transformed system and conclude a stability

inequality for the original system. The convergence of the solution of the original system

is then proved using consistency and stability.

The main tool for constructing solutions of the discrete equations are “exponential di-

chotomies”. For a definition of exponential dichotomy in the continuous case see A.5.

The definition of an exponential dichotomy for difference equations is given below.
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In order to obtain exponential dichotomies for the finite difference approximation (2.2) of

(2.1) use the fact that both are linked via the time-h map of the flow of the continuous

system. This link has been used in [64] for proving the existence and approximation

property of connecting orbits for the discrete system on the whole line.

Consider the linear difference equation

zn+1 = Mnzn, n ∈ J (2.7)

with Mn ∈ R
k,k for all n ∈ J . If the matrices Mn are invertible for all n ∈ J then the map

Φ : J2 → R
k,k given by

Φ(n,m) =











Mn−1 · · · · ·Mm, for n > m

I, for n=m

M−1
n · · · · ·M−1

m−1, for n < m

is a solution operator for (2.7), which has the cocycle property

Φ(n, l)Φ(l,m) = Φ(n,m) ∀ l,m, n ∈ J.

Definition 2.2 (Exponential dichotomy)

The linear difference equation (2.7) has an exponential dichotomy with data (K,α, P ) on

J ⊂ Z if Mn is invertible for all n ∈ J and there exist a bound K > 0, a rate α > 0 and

projectors Pn such that the following holds

Φ(n,m)Pm = PnΦ(n,m) (2.8)

and the Green’s function

G(n,m) =

{

Φ(n,m)Pm, for n ≥ m

−Φ(n,m)(I − Pm), for n < m
(2.9)

satisfies an exponential estimate

‖G(n,m)‖ ≤ Ke−α|n−m|, n,m ∈ J. (2.10)

The connection between the two definitions via the time h-map follows directly from the

definition: If we define xn = x0 + hn for fixed x0 and Φ(n,m) = S(xn, xm) we obtain the

following lemma.

Lemma 2.3 Let the linear differential operator L from (A.11) given by

Lz = z′ −Mz, x ∈ J ⊂ R, M : J → R
m,m

have an exponential dichotomy with data (KJ , αJ , πJ) on J = R
±,R.

Then the difference operator

L̂z = (zn+1 − Φ(n+ 1, n)zn)n∈Ĵ ,

has an exponential dichotomy on Ĵ = Z
±,Z with data (KJ , αJh, P

J) where P Jn = πJ(xn).

Furthermore, the discrete Green’s function defined in (2.9) is given by

G(n,m) =

{

S(xn, xm)πJ(xm), for n ≥ m

−S(xn, xm)(I − πJ(xm)), for n < m.
(2.11)
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Note that for L̂ : SZ → SZ

N (L̂) = {(Φ(n, 0)z)n∈Z, z ∈ N (P−
0 ) ∩R(P+

0 )}
= {(S(xn, x0)z)n∈Z, z ∈ N (π−(x0)) ∩R(π+(x0))}

and if N (L) = span{φ1, . . . , φp} then φi(x) = S(x, ξ)φi(ξ).

A main tool will be a “roughness theorem” (see [40]) which allows to transfer an exponential dichotomy of

the constant coefficient operators L∞ = z′ −M∞z, M∞ = limx→±∞M(x) to the variable

coefficient operator L.

2.1.1 The linear difference equation

The existence of exponential dichotomies ensures that certain boundary value problems

can be solved that arise later in the construction of solutions of more general equations.

We use a slightly adapted version of Lemma 1.1.6 in [26] or Lemma 2.7 in [42].

Lemma 2.4 Let the linear difference operator

L : SJr → SJ , z 7→ (zn+1 −Mnzn)n∈J

have an exponential dichotomy with data (K,β, P ) on J = [n−, n+] ⊂ Z where n± = ±∞
is allowed.

For each r ∈ SJ there exists a unique solution z̃ ∈ SJr of the inhomogenous equation

(Lz)n = rn, n ∈ J (2.12)

Pn−zn− = ρ− ∈ R(Pn−) if n− ∈ Z (2.13)

(I − Pn+
)zn+

= ρ+ ∈ R(I − Pn+
) if n+ ∈ Z. (2.14)

It is given by

z̃n = R−
n (ρ−) +R+

n (ρ+) + ŝn(r), n ∈ J,

z̃n++1 = Mn+
z̃n+

+ rn+

where ŝ is defined with G from (2.9) as follows:

ŝn(r) =

n+−1
∑

m=n−

G(n,m+ 1) rm, n ∈ J (2.15)

and

R±
n (ρ) =

{

Φ(n, n±)ρ, in case ± n± <∞
0, otherwise

.

Furthermore, the following estimate holds for n ∈ J

‖ŝn(r)‖ ≤ K Cβ‖r‖∞, where Cβ =
1 + e−β

1 − e−β
. (2.16)

In addition, if r ∈ L2,h(J) then

‖ŝn(r)‖ ≤ K

√

C2β

h
‖r‖L2,h

∀n ∈ J (2.17)
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and

‖ŝ(r)‖L2,h
≤ KCβ ‖r‖L2,h

. (2.18)

In case ±n± <∞ we obtain for the boundary terms the estimates

‖R±
n (ρ±)‖ ≤ Ke−β|n−n±|‖ρ±‖ (2.19)

as well as

‖R±(ρ±)‖L2,h
≤ K

√

hC2β‖ρ±‖. (2.20)

Proof: For r ∈ SJ we get from the exponential dichotomy

‖ŝn(r)‖ ≤ K

n+−1
∑

m=n−

e−β|n−m−1|‖rm‖ ≤ K‖r‖∞
∞
∑

m=−∞
e−β|n−m| ≤ KCβ‖r‖∞.

The L2,h estimate is completely analogous to the continuous case: For r ∈ L2,h we have

‖ŝn(r)‖2 ≤ K2





n+
∑

m=n−+1

e−
β
2
|n−m|

(

e−
β
2
|n−m|‖rm−1‖

)





2

≤ K2
∞
∑

m=−∞
e−β|n−m|

n+
∑

m=n−+1

e−β|n−m|‖rm−1‖2

≤ K2 Cβ

n+−1
∑

m=n−

e−β|n−m−1|‖rm‖2.

Summing over all n ∈ J gives

‖ŝ(r)‖2
L2,h

= h

n+−1
∑

n=n−

‖ŝn(r)‖2 ≤ K2Cβ h

n+−1
∑

n=n−

n+
∑

m=n−+1

e−β|n−m|‖rm−1‖2

= K2Cβ h

n+
∑

m=n−+1

‖rm−1‖2
n+−1
∑

n=n−

e−β|n−m|

≤ K2C2
β h

n+−1
∑

m=n−

‖rm‖2 ≤ (KCβ)
2‖r‖2

L2,h
.

For r ∈ L2,h(J) one obtains

‖ŝn(r)‖2 ≤ K2





n+
∑

m=n−+1

e−β|n−m|‖rm−1‖





2

≤ K2
∞
∑

m=−∞
e−2β|n−m|

n+−1
∑

m=n−

|rm|2 ≤ 1

h
K2 C2β‖r‖2

L2,h

It remains to estimate the boundary terms. From the dichotomy estimates we obtain

directly (2.19) which imply

‖R±(ρ±)‖2
L2,h

≤
n+
∑

n=n−

h‖Φ(n, n±)ρ±‖2 ≤ K2‖ρ±‖2h

n+
∑

n=n−

e−2β|n−n±| ≤ K2‖ρ±‖2hC2β .
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2

Note that the Cβ does not depend on the interval J but only on the dichotomy data. Note

further that Chα is of order O( 1
h
) for small h.

We can now use the above lemma to construct solutions on half intervals J± of Z which

match in a special way at 0. This is similar to Lemma 1.1.6 in [26] or Lemma 2.7 in [42].

Lemma 2.5 Let the linear difference operator

L : SZ → SZ, z 7→ (zn+1 −Mnzn)n∈Z

have exponential dichotomies on Z
− and Z

+ with data (K−, β−, P−) and (K+, β+, P
+).

Consider the boundary value problems

Lzn = rn, n ∈ J− = [n−,−1]

P−
n−zn− = ρ− ∈ R(P−

n−), (2.21)

(I − P−
0 )z0 = η− ∈ N (P−

0 )

and

Lzn = rn, n ∈ J+ = [0, n+]

P+
0 z0 = η+ ∈ R(P+

0 ), (2.22)

(I − P+
n+

)zn+
= ρ+ ∈ N (P+

n+
).

Then for each r ∈ SZ there exists N > 0 such that for ±n± > N exist unique solutions

z̃±(r) ∈ SJ±
r

on J−
r = [n−, 0] and J+

r = [0, n+ + 1] which are given by

z̃−n (r) = Φ(n, n−)ρ− + Φ(n, 0)η− + ŝ−n (r), n ∈ [n−, 0] (2.23)

z̃+
n (r) = Φ(n, 0)η+ + Φ(n, n+)ρ+ + ŝ+n (r), n ∈ [0, n+], z̃+

n++1 = Mn+
z̃n+

+ rn+
(2.24)

Here ŝ−(r) ∈ SJ− and ŝ+(r) ∈ SJ+ are the special solutions of Lz = r on J− and J+

defined in (2.15), which read

ŝ−n (r) =

n−1
∑

m=n−

Φ(n,m+ 1)P−
m+1 rm −

−1
∑

m=n

Φ(n,m+ 1)(I − P−
m+1) rm, n ∈ [n−, 0],

ŝ+n (r) =
n−1
∑

m=0

Φ(n,m+ 1)P+
m+1 rm −

n+−1
∑

m=n

Φ(n,m+ 1)(I − P+
m+1) rm, n ∈ [0, n+].

For β = αh the we can estimate the solutions z̃± as follows:

Corollary 2.6 If β = αh then the partial solutions z̃± defined in Lemma 2.5 obey the

estimate

‖z̃−‖∞ ≤ C(
1

h
‖r‖∞ + ‖ρ−‖ + ‖η−‖)

‖z̃+‖∞ ≤ C(
1

h
‖r‖∞ + ‖η+‖ + ‖ρ+‖)

(2.25)
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and for r ∈ L2,h additionally

‖z̃−‖L2,h
≤ C(

1

h
‖r‖L2,h

+ ‖ρ−‖ + ‖η−‖)

‖z̃+‖L2,h
≤ C(

1

h
‖r‖L2,h

+ ‖η+‖ + ‖ρ+‖)

(2.26)

Proof: Applying the estimate (2.16) we get with β = hα

‖ŝ±(r)‖∞ ≤ K

h
‖r‖∞

and for r ∈ L2,h with (2.18)

‖ŝ±(r)‖L2,h
≤ K

h
‖r‖L2,h

It remains to estimate the boundary terms. By application of (2.19) to J = [0, n+] we

obtain for n ∈ [0, n+]

‖Φ(n, 0)η+‖ ≤ K−e−hα+|n+−n|‖η+‖ ≤ C‖η+‖
and with C2αh ≤ C

h
and (2.20)

‖Φ(·, 0)η+‖L2,h
≤ K+

√

hC2α+h ≤ C‖η+‖.

In a similar fashion one gets

‖Φ(·, n+)ρ+‖� ≤ C‖ρ+‖, for � ∈ {∞,L2,h}.
The estimate for the boundary terms of z̃− is analogous. Thus the estimates (2.25) and

(2.26) hold. 2

In the following we transfer the proof in [26] and [60] to the discrete case along the lines

of the method used in [64] and [65].

We define a class of functions for which all derivatives decay exponentially and give some

convergence results for it.

Definition 2.7 We define a function g : I → R
m, I ⊂ R to be in Eρ(I,Rm) if there exists

K > 0 such that

‖g(x)‖ ≤ Ke−%|x| and ‖g′(x)‖ ≤ Ke−%|x|.

Note that ū′ is in this class (see Remark 1.7). Similar to [64] we have the following Lemma.

Lemma 2.8 Let g ∈ Eρ(R+,Rm) and g̃ ∈ SZ be given

‖g(xm) − g̃m‖ ≤ Che−%xm , xm = x0 +mh

Then the estimates

‖
∫ ∞

0
g(x) dx− h

n+−1
∑

m=0

g̃m‖ ≤ c(x0 + h2 + e−%xn+ ) (2.27)

and

‖
∫ ∞

x0

g(x) dx− h

n+−1
∑

m=0

g̃m‖ ≤ c(h2 + e−ρxn+ ) (2.28)

hold.
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Proof:

‖
∫ ∞

0
g(x) dx− h

n+−1
∑

m=0

g̃m‖ ≤ ‖
∫ xn+

0
g(x) dx− h

n+−1
∑

m=0

g(xm)‖

+ h

n+
∑

m=0

‖g(xm) − g̃m‖ +

∫ ∞

xn+

‖g(x)‖ dx.

The last term can be estimated by
∫ ∞

xn+

‖g(x)‖ dx ≤ K

%
e−%xn+ .

Choose x∗, h0 small enough such that for all 0 ≤ x0 ≤ x∗, h < h0. The estimate for the

first term is

‖
∫ xn+

0
g(x) dx− h

n+
∑

m=0

g(xm)‖

≤ ‖
∫ x0

0
g(x) dx‖ +

n+−1
∑

m=0

∫ xm+1

xm

‖g(x) − g(xm)‖ dx

≤ x0‖g‖∞ + C1

n+−1
∑

m=0

h sup
ξ∈[xm,xm+1]

‖g′(ξ)‖

≤ x0‖g‖∞ + hn+C2

∞
∑

m=0

e−%mh ≤ x0‖g‖∞ + C2h
2 1

1 − e−%h

≤ C3(x0 + h2).

(2.29)

Decrease h0 further, such that we have for the second term

h

n+
∑

m=0

‖g(xm) − g̃m‖ ≤ Ch2

n+
∑

m=0

e−%xm ≤ Ch2.

If we start the integration in (2.29) at x0 instead of 0 we see directly that the first error

term in (2.29) vanishes and we arrive at (2.28). 2

Note that the same can be done with a function g : R
− → R, and for a general g : R → R

the estimate (2.27) follows by combining the estimates for R
+ and R

−.

With the help of Lemma 2.8 we can prove the convergence of the solutions to the dis-

crete linear boundary value problem (2.12)-(2.14) to corresponding continuous expressions.

Consider the solutions s± of (A.16) for J = R
± defined in (A.17) by

[s−(r̄)](0) =

∫ 0

−∞
S(0, x)π−(x) r̄(x)dx and [s+(r̄)](0) = −

∫ ∞

0
S(0, x)(I − π+(x)) r̄(x)dx

or more generally

s±(r̄)(0) =

∫

R±
Gc(0, x)r̄(x)dx.

The operators s± are approximated by the solution operators of the corresponding discrete

system (2.12) given in (2.15) as the following Lemma shows.
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Lemma 2.9 Let r̄ : R → R
m and r̂ ∈ SJ(R

m) be given with ‖r̄‖∞ <∞, ‖r̄′‖∞ <∞ and

‖r̂n − hr̄(xn)‖ ≤ Ch2 ∀n ∈ J

Then for each ε > 0 there exist h0, T > 0, such that for x0 < h < h0, hn+ > T the

estimate

‖s±(r̄)(0) − ŝ±0 (r̂)‖ ≤ ε

holds.

Proof: For x > 0 we set g(x) = Gc(0, x)r̄(x) and g̃m = 1
h
G(0,m)r̂m = 1

h
Gc(x0, xm)r̂m and

obtain the following estimates:

‖g(x)‖ ≤ ‖Gc(0, x)‖‖r̄(x)‖ ≤ Ke−αx‖r̄‖∞
‖g′(x)‖ ≤ ‖ d

dx
Gc(0, x)‖‖r̄(x)‖ + ‖Gc(0, x)‖‖r̄′(x)‖

≤ ‖Gc(0, x)‖(‖M(x)‖‖r̄(x)‖ + ‖r̄′(x)‖) ≤ Ke−αx(‖M‖∞‖r̄‖∞ + ‖r̄′‖∞)

as well as

‖g̃m − g(xm)‖ ≤ ‖Gc(x0, xm)
1

h
r̂m −Gc(0, xm)r̄(xm)‖

≤ ‖(Gc(x0, 0) − I)Gc(0, xm)‖‖r̄(xm)‖ + ‖Gc(x0, xm)‖‖ 1

h
r̂m − r̄(xm)‖

≤ C0x0e
−αxm + C1he

−αxm ≤ Che−αhm.

Thus we can apply Lemma 2.8 from which the statements of Lemma 2.9 follow. 2

The main linear result in this section deals with the existence of solutions (z, λ) ∈ SJr(R
k)×

R
p of the following linear inhomogenous boundary value problem

zn+1 − M̂nzn − V̂nλ = rn, n ∈ J = [n−, n+] (2.30)

B−zn− +B+zn+
= η ∈ R

k, (2.31)

Π̂(z) = ω ∈ R
p (2.32)

where

M̂n = Φ(n+ 1, n) = S(xn+1, xn), xn = x0 + hn. (2.33)

Here S(x, ξ) denotes the solution operator of the linear nonautonomous equation Lz =

z′ −M(·)z.

Hypothesis 2.10 L has exponential dichotomies on R
± with data (K±, α±, π±) and

N (L) = span{φ1, . . . , φp}.

Hypothesis 2.11 The matrix

(

B−X̂s
− B+X̂

u
+

)

∈ R
k,k (2.34)

is nonsingular, where the columns of X̂s
− span the stable subspace Xs

− of M− and the

columns of Xu
+ span the unstable subspace of M+ and M± = limx→±∞M(x).
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The phase condition Π̂ : SJ(R
k) → R

p is the discrete approximation of the linear integral

condition 〈ψ, v〉 = 0 in (1.19) and is given by

Π̂(z) = h

n+
∑

n=n−

ψ̂(xn)
T zn, (2.35)

where ψ̂ : R → R
k,p is a given reference function which satisfies the following hypothesis.

Hypothesis 2.12 Assume that ψ̂ ∈ Eρ(R,Rk,p) (see Definition 2.7) and that the p × p

matrix defined using φi from Hypothesis 2.10 by

F =

∫

R

ψ̂(x)T [φ1(x), . . . , φp(x)] dx. (2.36)

is nonsingular.

Hypothesis 2.13 The matrices V̂n are of the form

V̂n = hV (xn) + O(h2) ∈ R
k,p (2.37)

for some continuous function V ∈ L2(R,R
k,p) for which the following nondegeneracy con-

dition holds. The matrix E given by

E =

∫

R

[ψ1, . . . , ψp](x)
TV (x) dx ∈ R

p,p

is nonsingular, where N (L∗) = span{ψ1, . . . , ψp}. (for the definition of the adjoint oper-

ator L∗ see (A.14))

Now we can formulate the main linear existence result from which we obtain the existence

of solutions of (2.30)–(2.32) as well as corresponding estimates. This lemma will be used

in all of our approximation results which follow in the next sections.

Lemma 2.14 Consider (2.30)–(2.32) and let Hypotheses 2.10–2.13 be satisfied.

There exist h0 > 0, T > 0 such that for h < h0 and ±hn± > T the equation (2.30) - (2.32)

has a unique solution (z̃, λ̃) ∈ SJr(R
k) × R

p for any r ∈ SJ(R
k), η ∈ R

k, ω ∈ R
p.

Furthermore the following estimate holds for � ∈ {∞,L2,h}:

‖z̃‖1,� + ‖λ̃‖ ≤ c(
1

h
‖r‖� + ‖η‖ + ‖ω‖) (2.38)

Remark 2.15 Note that in the traveling wave case we have p = 1. But in order to be

able to deal with more general symmetries (compare 1.4) we prove the result for general

p ≥ 1. This allows to prove approximation results for the general case (see 2.3.1) where

the dimension p of the group G is larger than one.

Proof: From Hypothesis 2.10 and Lemma 2.3 one obtains that the operator L̂z : SZ → SZ

defined by

L̂z = (zn+1 − M̂nzn)n∈Z
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possesses exponential dichotomies on Z
± with data (K±, α±h, P±) and

N (L̂) = span{q̂1, . . . , q̂p}, where q̂i = φi|J , i = 1, . . . , p.

We use Lemma 2.5 to define partial solutions on J− = [n−, 0] and J+ = [0, n+] and

construct for each r ∈ SJ

z̃−n = ŝ−n (r + V̂ λ) + Φ(n, 0)z−0 + Φ(n, n−)ρ−, n ∈ [n−, 0],

z̃+
n = ŝ+n (r + V̂ λ) + Φ(n, 0)z+

0 + Φ(n, n+)ρ+, n ∈ [0, n+],

z̃+
n++1 = M̂n+

z̃+
n+

+ rn+

with

z−0 ∈ N (P−
0 ), z+

0 ∈ R(P+
0 ), ρ− ∈ R(P−

n−), ρ+ ∈ N (P+
n+

).

We define z̃ ∈ SJr by

z̃n =







z̃−n , for n ∈ [n−,−1]

z̃+
n , for n ∈ [0, n+ + 1]

(2.39)

which is a solution of (2.30)-(2.32) if the following system is solved

z̃−0 = z̃+
0 ∈ R

k (2.40)

B−z̃n− +B+z̃n+
= η ∈ R

k (2.41)

Π̂(z̃) = ω ∈ R
p. (2.42)

Note that the parameter λ ∈ R
p is hidden in the definition of z̃±n and is yet to be deter-

mined.

PSfrag replacements

P+

P−
I − P+

I − P−

Xs
− 3 zs

↑ χ−

R(P−
n−) 3 ρ−

zu ∈Xu
+

χ+ ↑
ρ+ ∈N (P+

n+
)

Z3 ⊕ Z1 = N (P−
0 )

∈

ζ− + η = z0
−

R(P+
0 ) = Z2 ⊕ Z1

∈

z0
+ = ζ+ + η

Figure 2.1: Overview over dichotomy estimates

We decompose R
k as follows: Let Z1 = R(P+

0 ) ∩ N (P−
0 ). According to Hypothesis 2.10

we have dim(Z1) = p, we complement Z1 by subspaces Z2 and Z3 such that

R(P+
0 ) = Z1 ⊕ Z2, N (P−

0 ) = Z1 ⊕ Z3
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Since dim(Z1⊕Z2⊕Z3) = k+
s +k−u −p = k−p there exists a subspace Z4 with dimZ4 = p

such that Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4 = R
k is a complete decomposition of R

k.

We can change the projectors P±
0 in such a way that (see [42], Prop. 2.3)

N (P+
0 ) = Z3 ⊕ Z4, R(P−

0 ) = Z2 ⊕ Z4,

without changing the other dichotomy data.

From the choice of z−0 , z
+
0 follows

(I − P−
0 )z̃−0 = z−0 ∈ N (P−

0 ) = Z3 ⊕ Z1

P+
0 z̃

+
0 = z+

0 ∈ R(P+
0 ) = Z2 ⊕ Z1.

We use the ansatz z−0 = ζ− + η−, z+
0 = ζ+ + η+, where ζ− ∈ Z3, ζ+ ∈ Z2, η± ∈ Z1 and

from (2.40) we obtain η+ = η− =: η. Equation (2.40) now reads

ζ− − ζ+ + Φ(0, n−)ρ− − Φ(0, n+)ρ+ + (ŝ−0 (V̂ ) − ŝ+0 (V̂ ))λ = ŝ+0 (r) − ŝ−0 (r).

The left hand side of this equation has no component in Z1. We transform the boundary

values ρ−, ρ+ to coordinates (zs, zu) which are independent of J as follows: Denote by Es
−

the projector onto Xs
− along Xu

− and by Eu
+ the projector onto Xu

+ along Xs
+, where Xs,u

±
are defined in Hypothesis 2.11. We define the transformations

χ− : R(P−
n−) → Xs

−, ρ− 7→ zs, χ+ : N (P+
n+

) → Xu
+, ρ+ 7→ zu

by

χ− = I + Es
− − P−

n− , χ+ = I − Es
+ + P+

n+
.

From the roughness theorem A.6 we have lim
x→±∞

π±(x) = Es
± and with P±

n = π±(x0 +hn)

the invertibiliy of χ− and χ+ follows for ±hn± > T , T large and h, x0 → 0 as well as the

estimates

‖χ−1
± ‖ ≤ 1

1 − ‖P±
n± − Es

±‖
≤ 2. (2.43)

Furthermore, for all (zs, zu) ∈ Xs
− ×Xu

+ we have

‖(I − Es
−)χ−1

− zs‖ ≤
‖P−

n− − Es
−‖‖zs‖

1 − ‖P−
n− − Es

−‖
, ‖Es

+χ
−1
+ zu‖ ≤

‖P+
n+

− Es
+‖‖zu‖

1 − ‖P+
n+

− Es
+‖

. (2.44)

Defining the maps c : Z3 × Z2 × R
p → SZ(Rk) and d : Xs

− ×Xu
+ → SZ(Rk) by

cn(ζ−, ζ+, λ) =

{

Φ(n, 0)ζ− + ŝ−n (V̂ )λ, n < 0

Φ(n, 0)ζ+ + ŝ+n (V̂ )λ, n ≥ 0
, (2.45)

dn(zs, zu) =

{

d−n (zs), n < 0

d+
n (zu), n ≥ 0,

(2.46)

where d±n (η) = Φ(n, n±)χ−1
± η,

we can rewrite z̃ defined in (2.39) as follows

z̃n = cn(ζ−, ζ+, λ) + dn(zs, zu) + Φ(n, 0)η +

{

ŝ−n (r), n ∈ [n−,−1]

ŝ+n (r), n ∈ [0, n+],

z̃n++1 = M̂n+
z̃n+

+ rn+
.
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Using (2.46) equation (2.40) now reads

ζ− − ζ+ + (ŝ−0 (V̂ ) − ŝ+0 (V̂ ))λ+ d−0 (zs) − d+
0 (zu) = ŝ+0 (r) − ŝ−0 (r). (2.47)

Define Q̂ ∈ SZ(Rm,p) by

Q̂n =

{

Φ(n, 0)(I − P−
0 )[φ1(x0), . . . , φ

p(x0)], n < 0,

Φ(n, 0)P+
0 [φ1(x0), . . . , φ

p(x0)], n ≥ 0.
(2.48)

Since the columns of Q̂0 span a basis of N (P−
0 )∩R(P+

0 ) we can write η ∈ Z1 as η = Q̂0κ

for some κ ∈ R
p. We obtain for the boundary conditions (2.41)

B−cn−(ζ−, ζ+, λ) +B+cn+
(ζ−, ζ+, λ) +B−d

−
n−(zs) +B+d

+
n+

(zu)

+ (B−Φ(n−, 0) +B+Φ(n+, 0)) Q̂0κ

= η − (B+(ŝ+n+
(r) −B−ŝ

−
n−(r)).

and the phase condition (2.42) reads

Π̂(c(ζ−, ζ+, λ)) + Π̂(d(zs, zu)) + Π̂(Q̂κ) = ω − Π̂(ŝ(r)).

We summarize the equations in

T





(ζ−, ζ+, λ)

(zs, zu)

κ



 =







ŝ+0 (r) − ŝ−0 (r)

η −
(

B+(ŝ+n+
(r) −B−ŝ−n−(r)

)

ω − Π̂(ŝ(r))






(2.49)

where T : (Z2 ×Z3 ×R
p)× (Xs

−×Xu
+)×R

p → (Z2 ⊕Z3 ⊕Z4)×R
k×R

p has the following

structure

T =





X σ 0

∆ Y %

Θ Λ Z





where

X(ζ−, ζ+, λ) = ζ− − ζ+ + (ŝ−0 (V̂ ) − ŝ+0 (V̂ ))λ

σ(zs, zu) = Φ(0, n−)χ−1
− zs − Φ(0, n+)χ−1

+ zu

∆(ζ−, ζ+, λ) = B−cn−(ζ−, ζ+, λ) +B+cn+
(ζ−, ζ+, λ)

Y (zs, zu) = B−χ
−1
− zs +B+χ

−1
+ zu,

Θ(ζ−, ζ+, λ) = h

n+
∑

n=n−

ψ̂(xn)
T cn(ζ−, ζ+, λ)

Λ(zs, zu) = Π̂(d(zs, zu)) = h

n+
∑

n=n−

ψ̂(xn)
Tdn(zs, zu)

ρ(κ) = (B−Φ(n−, 0) +B+Φ(n+, 0))Q̂0κ

Z(κ) = Π̂(Q̂κ) = h

n+
∑

n=n−

ψ̂(xn)
T Q̂nκ.
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We have to show the invertibility of T as well as an estimate of the inverse of T . The

terms σ, ρ can be estimated using the exponential dichotomy of L̂ by

‖σ‖ ≤ Ke−αhmin(−n−,n+) → 0 as hmin{−n−, n+} → ∞

and using R(Q̂0) = R(P+
0 ) ∩N (P−

0 ) we get

‖%‖ ≤ ‖B−‖‖Φ(n−, 0)Q̂0‖ + ‖B+‖‖Φ(n+, 0)Q̂0‖
= ‖B−‖‖Φ(n−, 0)(I − P−

0 )Q̂0‖ + ‖B+‖‖Φ(n+, 0)P
+
0 Q̂0‖

≤
(

K−eα−hn− +K+e−α+hn+

)

‖Q̂0‖
→ 0 as hmin{−n−, n+} → ∞

The boundedness of the operators ∆,Λ,Θ will be shown as follows: The term ‖cn(ζ−, ζ+, λ)‖
can be estimated for all n ∈ J using Lemma 2.6 and the estimate ‖V̂ ‖∞ ≤ Ch‖V ‖∞ which

follows from (2.37) by

‖cn(ζ−, ζ+, λ)‖ ≤
{

‖Φ(n, 0)(I − P−
0 )ζ−‖ + ‖s̃−n (V̂ )‖‖λ‖, for n < 0

‖Φ(n, 0)P+
0 ζ+‖ + ‖s̃+n (V̂ )‖‖λ‖, for n ≥ 0

≤
{

K−eα−hn‖ζ−‖ + C‖V ‖∞‖λ‖, for n < 0

K+e−α+hn‖ζ+‖ + C‖V ‖∞‖λ‖, for n ≥ 0

≤ K(‖ζ−‖ + ‖ζ+‖ + ‖λ‖).

Therefore we get for ∆

‖∆(ζ−, ζ+, λ)‖ ≤ ‖B−‖‖cn−(ζ−, ζ+, λ)‖ + ‖B+‖‖cn+
(ζ−, ζ+, λ)‖

≤ K(‖ζ−‖ + ‖ζ+‖ + ‖λ‖).

The properties of ζ in Hypothesis 2.12 ensure that the map Π̂ : SJ(R
k) → R

p is uniformly

bounded in J . Using the dichotomy estimates again we obtain

‖Θ(ζ−, ζ+, λ)‖ ≤ K‖c(ζ−, ζ+, λ)‖∞ ≤ K‖Π̂‖(‖ζ−‖ + ‖ζ+‖ + ‖λ‖)

and finally

‖Λ(zs, zu)‖ = ‖Π̂(d(zs, zu))‖ ≤ K‖(zs, zu)‖.

From (2.44) and Hypothesis 2.11 follows that Y has a uniformly bounded inverse, therefore

it remains to show the invertibility of the remaining operators on the diagonal X and Z.

Application of Lemma 2.9 shows that X and Z converge for x0, h → 0 and ±hn± → ∞
to X̄ and Z̄ given by

X̄(ζ−, ζ+, λ) = ζ− − ζ+ + (s−(V )(0) − s+(V )(0))λ,

where

s−(V )(x) =

∫ x

−∞
S(x, ξ)π−(ξ)V (ξ) dξ −

∫ 0

x

S(x, ξ)(I − π−(ξ))V (ξ) dξ, for x ≤ 0

s+(V )(x) =

∫ x

0
S(x, ξ)π+(ξ)V (ξ) dξ −

∫ ∞

x

S(x, ξ)(I − π+(ξ))V (ξ) dξ, for x ≥ 0
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and

Z̄(κ) =

∫

R

ψ̂(x)T [φ1(x), . . . , φp(x)] dx κ.

The invertiblity of the operator Z̄ is ensured by Hypothesis 2.12 and the invertibility

of X̄ follows from the nondegeneracy condition Hypothesis 2.13 similar to [3], [60] by

multiplying the equation

0 = ζ− − ζ+ + (s−(V )(0) − s+(V )(0))λ

from the left by [ψ1, . . . , ψk]. Then we obtain that X and Z are invertible for x0, h small

enough and ∓hn± large enough with a uniform bound for the inverse.

Summing up the estimates for the right hand side in (2.49) we get for ±hn± > T

‖ζ−‖ + ‖ζ+‖ + ‖λ‖ + ‖zs‖ + ‖zu‖ + ‖κ‖
≤ C

(

‖ŝ+0 (r)‖ + ‖ŝ−0 (r)‖) + ‖η‖ + ‖B+ŝ
+
n+

(r)‖ + ‖B−ŝ
−
n−(r)‖ + ‖ω‖ + ‖Π̂(ŝ(r))‖

)

With the estimate (2.16) for ŝ± in Lemma 2.5 and the properties of Π̂ one obtains

‖ζ−‖ + ‖ζ+‖ + ‖λ‖ + ‖zs‖ + ‖zu‖ + ‖κ‖ ≤ C(
1

h
‖r‖∞ + ‖η‖ + ‖ω‖) (2.50)

and additionally for r ∈ L2,h using (2.17) with β = αh

‖ζ−‖ + ‖ζ+‖ + ‖λ‖ + ‖zs‖ + ‖zu‖ + ‖κ‖ ≤ C(
1

h
‖r‖L2,h

+ ‖η‖ + ‖ω‖). (2.51)

From Corollary 2.6 we get estimates of the partial solution z̃− ∈ SJ− for � ∈ {L2,h,∞}

‖z̃−‖� ≤ C(
1

h
‖r + V̂ λ‖� + ‖z−0 ‖ + ‖ρ−‖) ≤ C(

1

h
‖r‖� + ‖λ‖ + ‖z−0 ‖ + ‖ρ−‖)

using ‖V̂ ‖∞ ≤ h‖V ‖∞ as well as ‖V̂ ‖L2,h
≤ Ch‖V ‖L2

.

Now (2.43), (2.50) and for r ∈ L2,h (2.51) yield for � ∈ {L2,h,∞}

‖z−0 ‖ ≤ ‖ζ−‖ + ‖Q̂0‖‖κ‖ ≤ C(
1

h
‖r‖� + ‖η‖ + ‖ω‖)

and

‖ρ−‖ = ‖χ−1
− zs‖ ≤ 2‖zs‖ ≤ C(

1

h
‖r‖� + ‖η‖ + ‖ω‖)

giving the desired estimate of z̃−. Similar estimates hold for z̃+, which leads for � ∈
{L2,h,∞} to

‖z̃|J‖� ≤ C(
1

h
‖r‖� + ‖η‖ + ‖ω‖).

It remains to consider the contribution at n+ + 1. We have

‖z̃n++1‖ ≤ ‖Mn+
‖‖z̃+

n+
‖ + ‖rn+

‖ ≤ C(
1

h
‖r‖∞ + ‖η‖ + ‖ω‖)

for h < 1. This implies for r ∈ L2,h with ‖r‖∞ ≤ 1√
h
‖r‖L2,h

‖z̃‖L2,h
≤ ‖z̃|J‖L2,h

+
√
h‖z̃n++1‖ ≤ C(

1

h
‖r‖L2,h

+ ‖η‖ + ‖ω‖).
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Thus we can estimate (z̃, λ̃) for � ∈ {L2,h,∞} by

‖z̃‖� + ‖λ̃‖ ≤ C(
1

h
‖r‖� + ‖η‖ + ‖ω‖) = C‖(r, η, ω)‖∗�.

Using the difference equation (2.30) and

V̂n = hV (xn) + O(h2), M̂n = I + O(h)

which hold by (2.37) and (2.33), this can be improved for h small enough to the ‖·‖1,∞
resp. ‖·‖H1

h
estimates (2.38). Since for � ∈ {L2,h,∞} we obtain, again using ‖V̂ ‖L2,h

≤
Kh‖V ‖L2

,

‖δ+z̃‖� =
1

h
‖(z̃n+1 − z̃n)n∈J‖� ≤

1

h
‖((M̂n − I)z̃n + V̂nλ+ rn)n∈J‖�

≤ 1

h
(sup
n∈J

(‖M̂n − I‖)‖z‖� + h‖V ‖�‖λ‖ + ‖r‖�)

≤ 1

h
(Ch‖(r, η, ω)‖∗� + ‖r‖�) ≤ C̃‖(r, η, ω)‖∗�.

2

Remark 2.16 If the operator L possesses an exponential dichotomy on the whole line R

then Lemma 2.14 holds with p = 0, i.e. the phase condition (2.32) and the parameter λ

do not occur. The estimate (2.38) simplifies to

‖z̃‖1,� ≤ C(
1

h
‖r‖� + ‖η‖), � ∈ {∞,L2,h}

A solution of a small perturbation of (2.30) can be estimated as well.

Corollary 2.17 Let (z∆, λ∆) be a solution of the perturbed equation

zn+1 − (M̂n + ∆Mn)zn − (V̂n + ∆Vn)λ = rn, n ∈ J = [n−, n+] (2.52)

B−zn− +B+zn+
= η ∈ R

k, (2.53)

Π̂(z) = ω ∈ R
p (2.54)

where M̂, V̂ , Π̂ and B± are defined in Lemma 2.14 and the error terms can be estimated

by

‖∆M‖∞ ≤ σ(h, T )h, ‖∆V ‖L2,h
≤ σ(h, T )h,

where limh→0, T→∞ σ(h, T ) = 0.

Then (z∆, λ∆) can be estimated by

‖z∆‖H1 + |λ∆| ≤ 1

h
‖r‖L2,h

+ ‖η‖ + ‖ω‖. (2.55)

Proof: By (2.52) we obtain

zn+1 − M̂nzn − V̂nλ = rn + ∆Mnzn + ∆Vnλ.
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Applying the estimate (2.38) results in

‖z‖H1
h

+ ‖λ‖ ≤ 1

h
(‖r‖L2,h

+ ‖(∆Mnzn)n∈J‖L2,h
+ ‖∆V ‖L2,h

λ) + ‖η‖ + ‖ω‖

≤ 1

h
(‖r‖L2,h

+ hσ(h, T )‖z‖L2,h
+ hσ(h, T )‖λ‖) + ‖η‖ + ‖ω‖

≤ σ(h, T )(‖z‖L2,h
+ ‖λ‖) +

1

h
‖r‖L2,h

+ ‖η‖ + ‖ω‖

≤ 1

2
(‖z‖L2,h

+ ‖λ‖) +
1

h
‖r‖L2,h

+ ‖η‖ + ‖ω‖

for h < h0, T > T0. This implies

‖z‖H1
h

+ ‖λ‖ ≤ 2(
1

h
‖r‖L2,h

+ ‖η‖ + ‖ω‖).

2

2.2 Approximation of the traveling wave

As motivated above, the discretized equation will be transformed to a first order system.

Using the results for the linear difference equation the following main approximation result

for the traveling wave solution can be proved by using the fixed point Theorem A.3 which

is stated in the appendix. Let (ū, λ̄) ∈ C4
b (R,R

m) × R be a solution of (2.1), i.e.

Aū′′ + λ̄ū′ + f(ū, ū′) = 0

with limx→±∞ ū(x) = u±.

Consider the corresponding discrete boundary value problem (2.2) with affine-linear bound-

ary conditions and a phase condition, given by

A(δ+δ−u)n + λ(δ0u)n + f(un, (δ0u)n) = 0, n ∈ J (2.56)

P−un− +Q−(δ0u)n− + P+un+
+Q+(δ0u)n+

= η (2.57)

Ψ̃(u) = 0. (2.58)

The phase condition Ψ̂ : SJ(R
m) → R is the discrete approximation of the integral condi-

tion (1.12) and is given by

Ψ̃(u) = 〈δ0û, u− û〉h = h

n+
∑

n=n−

(δ0û)
T
n (un − ûn) = 0, (2.59)

where û : R → R
m is a given reference function which satisfies the following hypothesis.

Hypothesis 2.18 Assume û−ū ∈ H1(R,Rm), û′ ∈ Eα(R,Rm), 〈û′, ū′〉 6= 0 and 〈û′, ū− û〉 =

0.

The phase condition Ψ̃ is a discrete approximation of the integral condition (1.12).
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Hypothesis 2.19 The boundary condition (2.57) is satisfied at the stationary points u±,

i.e.

η = P−u− + P+u+.

Assume further, that the following regularity condition holds

det

(

(

P− Q−
)

(

Y s
−

Y s
−Λs−

)

(

P+ Q+

)

(

Y u
+

Y u
+Λu+

))

6= 0. (2.60)

where Y s
−, Y

u
+ and Λs−,Λ

u
+ are defined in A.8.

In the following we list the general assumptions on the operator Λ and the nonlinearity f

which will be used throughout the thesis.

Hypothesis 2.20 The operator Λ satisfies the assumptions (SC) and (ECw) (see Remark

1.16) and the nonlinearity f satisfies Hypothesis 1.9.

Then the following theorem holds.

Theorem 2.21 Assume that Hypotheses 2.20, 2.19 and are 2.18 are satisfied.

Then there exist % > 0, T > 0, h0 > 0 such that for h < h0 and ±hn± > T the boundary

value problem (2.56)-(2.58) has a unique solution (ũ, λ̃) in a neighborhood B%(ū, λ̄) =

{(u, λ) ∈ SJe × R : ‖ū− u‖2,∞ + |λ̄− λ| < %} which obeys the following estimate for

C > 0, α > 0

‖ū|J − ũ‖
2,∞ + |λ̄− λ̃| ≤ C(h2 + e−αhmin{−n−,n+}). (2.61)

Proof: A solution of (2.56)–(2.58) is a zero of the operator F : SJe(R
m)×R → SJ(R

m)×
R

2m × R where

F (u, λ) =





(A(δ+δ−u)n + λ(δ0u)n + f(un, δ0un))n∈J
P−un− +Q−(δ0u)n− + P+un+

+Q+(δ0u)n+
− η

Ψ̃(u)



 .

The derivative at the exact traveling wave (ū|J , λ̄) then reads

DF (ū, λ̄)(u, λ) =





(A(δ+δ−u)n +Bn(ū|J , λ̄)(δ0u)n + Cn(ū|J )un +Dn(ū|J )λ)n∈J
P−un− +Q−(δ0u)n− + P+un+

+Q+(δ0u)n+

Π̃(u)





(2.62)

where, setting wn = (δ0u)n = 1
2h(un+1 − un−1),

Bn(u, λ) = λI +D2f(un, wn), Cn(u) = D1f(un, wn), Dn(u) = (δ0u)n,

Π̃(u) = h

n+
∑

n=n−

(δ0û)
T
nun.

We want to apply the fixed point Theorem A.3 to F with Y = SJe(R
m) × R, Z =

SJ(R
m) × R

2m × R, with norms

‖(u, λ)‖Y = ‖u‖2,∞ + |λ|, ‖(r, η, ω)‖Z = ‖r‖∞ + ‖η‖ + |ω|
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at the approximative zero ȳ = (ū, λ̄).

Using Lemma 2.8 we obtain from Hypothesis 2.18 the estimate

‖Ψ̃(ū|J )‖ ≤ C(h2 + e−αhmin{−n−,n+}).

Together with the approximation properties of the difference operators and the exponential

convergence of ū towards the stationary points this implies consistency

‖F (ū|J , λ̄)‖
Z
≤ sup

n∈J
‖A(δ+δ−ū)n + λ̄(δ0ū)n + f(ūn, (δ0ū)n)‖ (2.63)

+ ‖P−ūn− +Q−(δ0ū)n− + P+ūn+
+Q+(δ0ū)n+

‖ + ‖Ψ̃(ū|J )‖
≤ sup

n∈J
‖Aū′′n + λ̄ū′n + f(ūn, ū

′
n)‖ + O(h2)e−%hn

+ ‖P−u− + P+u+ − η‖ + ‖P−(ūn− − u−)‖ + ‖P+(ūn+
− u+)‖

+ ‖Q−ū
′
n−‖ + O(h2)‖ū′′‖∞ + ‖Q+ū

′
n+

‖ + O(h2)‖ū′′‖∞
+ ‖Ψ̃(ū|J )‖

≤ C(h2 + ‖ūn− − u−‖ + ‖ūn+
− u+‖ + ‖ū′n−‖ + ‖ū′n+

‖ + h2‖ū′′‖∞)

+ ‖Ψ̃(ū|J )‖
≤ C(h2 + e−α̃T ).

From Hypothesis 1.9 we obtain the estimates

‖Bn(ũ, λ̃) −Bn(ū|J , λ̄)‖ ≤ |λ̃− λ̄| + ‖D2f(ũn, w̃n) −D2f(ūn, w̄n)‖
≤ C(|λ̃− λ̄| + ‖ũn − ūn‖ + ‖δ0(ũn − ūn)‖

‖Cn(ũ, λ̃) − Cn(ū|J , λ̄)‖ = ‖D1f(ũn, w̃n) −D1f(ūn, w̄n)‖
≤ C(‖ũn − ūn‖ + ‖δ0(ũn − ūn)‖)

‖Dn(ũ) −Dn(ū|J )‖ ≤ C‖δ0(ũn − ūn)‖
from which follows

‖(DF (ũ, λ̃) −DF (ū|J , λ̄))(u, λ)‖∞ ≤ sup
n∈J

‖Bn(ũ, λ̃) −Bn(ū|J , λ̄)‖‖δ0u‖∞

+ sup
n∈J

‖Cn(ũ, λ̃) − Cn(ū|J , λ̄)‖‖u‖∞ + sup
n∈J

‖Dn(ũ) −Dn(ū|J )‖|λ|

≤ C(‖ũ− ū‖1,∞ + |λ̃− λ̄|)(‖u‖1,∞ + |λ|).

(2.64)

In order to show the invertibility of DF (ū|J , λ̄) we transform the variational equation

DF (ū, λ̄)(u, λ) = (g, η, ω) (2.65)

to first order using zn = (un, vn), vn = (δ−u)n and obtain for (z, λ) the equivalent equation

Λ̃(z, λ) = (r, η, ω), (2.66)

where wn = (δ0u)n = 1
2(vn+1 + vn) and

Λ̃(z, λ) =





Γ(z, λ)

P−un− +Q−wn− + P+un+
+Q+wn+

Π̂(z)



 ,

rn =

(

0

hgn

)

, Π̂(z) = h

n+
∑

n=n−

(

(δ0û)n
0

)T

zn.
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The operator Γ : SJr(R
2m) × R → SJ(R

2m) is given by

(Γ(z, λ))n = Nnzn+1 −Knzn −Wnλ

where

Nn =

(

I −hI
0 E+

n

)

, Kn =

(

I 0

−hCn E−
n

)

, Wn = −
(

0

h(δ0ū|J )n

)

and

Bn = Bn(ū|J , λ̄), Cn = Cn(ū|J , λ̄), E±
n = A± h

2
Bn. (2.67)

We consider Λ̃ as an operator from SJr(R
2m) × R, ‖(z, λ)‖1,∞ = ‖z‖1,∞ + |λ| into

SJ(R
2m) × R

2m × R, ‖(r, η, ω)‖∗∞ = 1
h
‖r‖∞ + ‖η‖ + |ω|.

In order to relate (2.66) with a corresponding continuous system we consider a perturbation

of Λ̃ which is given by

Λi(z, λ) =





(N̂zn+1 − K̂nzn − Ŵnλ)n∈J
(P− Q−)zn− + (P+ Q+)zn+

Π̂(z)



 (2.68)

where

K̂n =

(

I hI

−hĈn A− hB̂n

)

, Ĉn = D1f(ūn, ū
′
n), B̂n = λ̄I +D2f(ūn, ū

′
n)

N̂ =

(

I 0

0 A

)

, Ŵn = −
(

0

hū′n

)

.

Using for w̄n = (δ0ū)n the estimate ‖w̄n − ū′n‖ ≤ Ch2 as well as Hypothesis 1.9, we obtain

‖Bn − B̂n‖ = ‖D2f(ūn, w̄n) −D2f(ūn, ū
′
n)‖ ≤ Ch2

‖Cn − Ĉn‖ = ‖D1f(ūn, w̄n) −D1f(ūn, ū
′
n)‖ ≤ Ch2.

Thus we have the estimates

‖Nn − N̂‖ =

∥

∥

∥

∥

(

0 −hI
0 h

2Bn

)∥

∥

∥

∥

≤ Ch

and

‖K̂n −Kn +Nn − N̂‖ ≤ h(‖Cn − Ĉn‖ + ‖Bn − B̂n‖) ≤ Ch3

as well as

‖Wn − Ŵn‖ = ‖h(v̄n − w̄n)‖ =
h2

2
‖(δ+δ−ū)n‖ ≤ Ch2.

In the last inequality we have used the relation

wn − vn = (δ0u)n − (δ−u)n =
h

2
(δ+δ−u)n =

h

2
(δ+v)n.



58 Chapter 2. Approximation via difference equations

The above estimates imply that Λi is an order h perturbation of Λ̃:

‖(Λ̃ − Λi)(z, λ)‖∗∞ ≤ 1

h
sup
n∈J

(

‖(Nn − N̂)zn+1 − (Kn − K̂n)zn‖

+‖(Wn − Ŵn)λ‖
)

+ ‖Q−(wn− − vn−)‖ + ‖Q+(wn+
− vn+

)‖

≤ sup
n∈J

(‖Nn − N̂‖‖δ+zn‖) +
1

h
sup
n∈J

(

‖K̂n −Kn +Nn − N̂‖‖zn‖
)

+
1

h
sup
n∈J

‖Wn − Ŵn‖|λ| +
h

2
(‖Q−‖‖(δ+v)n−‖ + ‖Q+‖‖(δ+v)n+

‖)

≤ Ch(‖δ+z‖∞ + ‖z‖∞ + |λ|).

Define M̂n = S(xn+1, xn), where S denotes the solution operator of the linear equation

Lz = r̄, where Lz = z′ −M(·)z (2.69)

where

M(x) =

(

0 I

−A−1C(x) −A−1B(x)

)

= N̂−1

(

0 I

−C(x) −B(x)

)

(2.70)

and A,B,C define the operator Λ in (1.5).

Then the operator

Λ̂i(z, λ) =





(N̂zn+1 − N̂M̂nzn − Ŵnλ)n∈J
(P− Q−)zn− + (P+ Q+)zn+

Π̂(z)





is a order h perturbation of Λi, since

M̂n = S(xn+1, xn) = I + hM(xn) + h2En (2.71)

and the equality (cf. (2.68))

K̂n = N̂(I + hM(xn)),

lead to

‖Λi − Λ̂i‖
∗
∞ ≤ 1

h
sup
n∈J

‖K̂n − N̂M̂n‖‖z‖∞ ≤ Ch‖E‖∞‖z‖∞. (2.72)

Setting V̂n = N̂−1Ŵn, the equation Λ̂i(z, λ) = (r, η, ω) can be equivalently written as

zn+1 − M̂nzn − V̂nλ = N̂−1rn

(P− Q−)zn− + (P+ Q+)zn+
= η (2.73)

Π̂(z) = ω.

In order to apply the linear Lemma 2.14 to (2.73) we show that Hypotheses 2.11,2.12 and

2.13 are satisfied.

The spectral condition (SC) and the eigenvalue condition (EC) ensure that equation (2.69)

possesses exponential dichotomies on R
± with data (K±, α±, π±) and we have N (L) =

span{z̄′}.
From the solvability condition (2.60) follows that Hypothesis 2.11 is satisfied for B± =

(P± Q±), since the invariant subspaces of M± = limx→±∞M(x) are given by Xs
− = W s

−(0)

and Xu
− = W u

+(0) which are defined in Definition A.8 (compare Lemma 3.29 in [60]).
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The definition of V̂n in (2.68) and the definition of N̂ shows that Hypothesis 2.13 is satisfied

with

V (x) =

(

0

−A−1ū′(x)

)

(2.74)

and

‖V (x)‖ ≤ C‖ū′(x)‖ ≤ Ce−α|x|.

Application of Lemma 2.8 shows that Π̃(ū′|J ) converges for h → 0,±hn± → ∞ to 〈û′, ū′〉,
i.e.

h

n+
∑

n=n−

(δ0û)
T
n ū

′
n →

∫

R

û(x)T ū′(x) dx.

Thus it follows from Hypothesis 2.18 that Hypothesis 2.12 is satisfied.

The nondegeneracy condition in Hypothesis 2.13 follows from the fact that N (Λ) =

span{ū′}. In this case

Au′′ +Bu′ + Cu+ λū′ = 0

implies u = aū′, a ∈ R and λ = 0. Since A is nonsingular this is equivalent to

z′ −M(·)z − V (·)λ = 0 =⇒ z = az̄, a ∈ R and λ = 0.

As has been shown in [3], Proposition 2.1, this is equivalent to Hypothesis 2.13.

By applying Lemma 2.14 to (2.73) and multiplying with the bounded matrix N̂ we obtain

the invertibility of Λ̂i as well as the uniform bound for the inverse

‖Λ̂−1
i (r, η, ω)‖1,∞ ≤ c(

1

h
‖r‖∞ + ‖η‖ + |ω|) = c‖(r, η, ω)‖∗∞.

Using the perturbation estimates (2.72) as well as (2.72) the invertibility of Λ̃ follows with

the same bound for a probably different constant c.

Note that, if z = (u, δ−u) then Γ(z, λ) has the following structure

(Γ(z, λ))n =

(

(hvn+1 − (un+1 − un))n∈J
h(A(δ+δ−u)n +Bn(δ0u)n + Cnun +Dnλ)

)

.

This implies for any z of the form z = (u, δ−u) (i.e. the first m rows Γ(z, λ) are zero) for

� ∈ {H1
h, (1,∞)}

‖Λ̂(z, λ)‖∗� =
1

h
‖Γ(z, λ)‖� + ‖Π̂(z)‖

+ ‖P−un− +Q−
1

2
((δ−u)n−+1 + (δ−u)n−) + P+un+

+Q−
1

2
((δ−u)n++1 + (δ−u)n+

)‖

= ‖A(δ+δ−u)n +Bn(δ0u)n + Cnun +Dnλ‖� + ‖Π̃u‖
+ ‖P−un− +Q−δ0un− + P+un+

+Q−δ0un+
‖

= ‖DF (ū, λ̄)(u, λ)‖�.

Together with

‖z‖1,∞ = ‖z‖∞ + ‖δ+z‖∞ ≤ c(‖u‖∞ + ‖δ0u‖∞ + ‖δ+δ−u‖∞) = c‖u‖2,∞
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and ‖z‖H1
h
≤ c‖u‖H2

h
it follows that DF (ū|J , λ̄)) is also invertible with

‖DF (ū|J , λ̄)(r, η, ω)‖
2,∞ ≤ c(‖g‖∞ + ‖η‖ + |ω|).

Therefore we can find σ > 0 with

‖DF (ū|J , λ̄)−1‖∗
2,∞ ≤ 1

σ
,

i.e. for h < h0 and ±hn± > K condition (A.6) is satisfied. Using (2.64) we obtain ρ > 0

such that for (ũ, λ̃) ∈ Uρ((ū|J , λ̄)) = {(u, λ) : ‖u− ū‖1,∞ + |λ| ≤ ρ}

‖DF (ũ, λ̃) −DF (ū|J , λ̄)‖∞ ≤ σ

2
,

which implies (A.5) with κ = σ
2 .

Application of the nonlinear perturbation Theorem A.3 now gives the existence of a zero

(ũ, λ̃) of F and the desired stability inequality

‖u1 − u2‖2,∞ + |λ1 − λ2| ≤ C‖F (u1, λ1) − F (u2, λ2)‖∞
for (u1, λ1), (u2, λ2) ∈ Uδ((ū|J , λ̄)). Together with the consistency estimate (2.63) this

leads to estimate (2.61). 2

Besides the ‖·‖∞ estimate (2.61) we obtain a ‖·‖L2,h
estimate in the following corollary.

Corollary 2.22 The constants %, T, h0 in Theorem 2.21 can be choosen such that the

solution (ũ, λ̃) obeys the following estimate for C > 0, α > 0

‖ū|J − ũ‖H2
h

+ |λ̄− λ̃| ≤ C(h2 + e−αhmin{−n−,n+}). (2.75)

Proof: In order to estimate the difference (u∆, λ∆) = (ū|J − ũ, λ̄− λ̃) in the ‖·‖∗H2
h

norm

we show that (u∆, λ∆) solves a linear equation to which Corollary 2.17 can be applied.

For (ū, λ̄) and (ũ, λ̃) we have

A(δ+δ−ũ)n + λ̃(δ0ũ)n + f(ũn, δ0ũn) = 0, n ∈ J

Aū′′n + λ̄ū′n + f(ūn, ū
′
n) = 0.

Thus (u∆, λ∆) solves

A(δ+δ−u)n +B∆
n (δ0u)n + C∆

n un +D∆
n λ = gn

P−un− +Q−(δ0u)n− + P+un+
+Q+(δ0u)n+

= η

〈δ0û, u〉h = ω

(2.76)

where wn(t) = ũn + t(ūn − ũn) and

B∆
n =

1

2
(λ̄+ λ̃) +

∫ 1

0
D2f(wn(t), δ0wn(t)) dt,

C∆
n =

∫ 1

0
D1f(wn(t), δ0wn(t)) dt, D∆

n =
1

2
δ0(ũ+ ū|J )n

gn = A(ū′′n − (δ+δ−ū)n) + λ̄(ū′n − (δ0ū)n) + f(ūn, ū
′
n) − f(ūn, δ0ūn)

η = P−(ūn− − ū−) +Q−(δ0ū|J )n− + P+(ūn+
− ū+) +Q+(δ0ū|J )n+

ω = 〈δ0û, ū− û〉h.
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Furthermore, we have the estimates

‖B∆
n −Bn‖ ≤ 1

2
|λ̃− λ̄| +

∫ 1

0
‖D2f(wn(t), δ0wn(t)) −D2f(ūn, δ0ūn)‖ dt

‖C∆
n − Cn‖ ≤

∫ 1

0
‖D1f(wn(t), δ0wn(t)) −D1f(ūn, δ0ūn)‖ dt

‖D∆
n −Dn‖ ≤ 1

2
‖δ0(ũ− ū|J )n‖ ≤ K(h2 + e−αT )

as well as

sup
t∈(0,1)

‖D1f(ūn + t(ũn − ūn), δ0(ūn + t(ũn − ūn))) −D1f(ūn, δ0ūn)‖

≤ c(‖ũn − ūn‖ + ‖δ0(ũ− ū)n‖) ≤ c‖ũ− ū‖1,∞

and

sup
t∈(0,1)

‖D2f(ūn + t(ũn − ūn), δ0(ūn + t(ũn − ūn))) −D2f(ūn, δ0ūn)‖

≤ c‖(ũn − ūn)‖ ≤ c‖ũ− ū‖∞.

which follow from (1.10).

Equation (2.76) is transformed via z = (u, δ−u) into the system

zn+1 −M∆
n zn − V ∆

n λ = rn

P−un− +Q−(δ0u)n− + P+un+
+Q+(δ0u)n+

= η

〈δ0û, u〉h = ω

(2.77)

where

M∆
n =

(

I − h2(E+
n

∆
)−1C∆

n h(E+
n

∆
)−1E−

n
∆

−h(E+
n

∆
)−1C∆

n (E+
n

∆
)−1E−

n
∆

)

, E±
n

∆
= A± h

2
B∆
n ,

V ∆
n = −h

(

hI

I

)

(E+
n

∆
)−1D∆

n , rn = h

(

hI

I

)

(E+
n

∆
)−1gn.

Then (2.71) and (2.37) imply

M̂n −M∆
n =

(

h2(E+
n )−1Cn − (E+

n
∆

)−1C∆
n ) h(I − (E+

n
∆

)−1E−
n

∆
)

−h((E+
n )−1Cn − (E+

n
∆

)−1C∆
n ) (E+

n )−1E−
n − (E+

n
∆

)−1E−
n

∆

)

.

Using the above estimates, as well as

(A+ hB)−1 = A−1 − hA−1BA−1 +O(h2), (A+ hB)−1(A− hB) = I − 2hA−1B+O(h2)

we obtain

‖M̂n −M∆
n ‖ =

(

O(h2) O(h2)

−h(err(h, T ) + O(h)) h(err(h, T ) + O(h))

)

and

‖V̂n − V ∆
n ‖ = h‖

(

hI

I

)

(E+
n )−1Dn − (E+

n
∆

)−1D∆
n ‖ = h(err(h, T ) + O(h)),
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where err(h, T ) denotes the discretization error and err(h, T ) ≤ c(h2 + e−αT ).

By applying Corollary 2.17 to (2.77) we obtain the following H1
h estimate of (z̄|J − z̃, λ̄− λ̃)

for each r ∈ L2,h

‖z∆‖H1
h

+ |λ∆| ≤ c(
1

h
‖r‖L2,h

+ ‖η‖ + |ω|).

This yields the H2
h estimate for (u∆, λ∆), since via the estimates in Remark 2.1 for the

difference operators and (1.10) we get

‖u∆‖H2
h

+ |λ∆| ≤ c(‖g‖L2,h
+ ‖η‖ + |ω|)

≤ c(‖(A(ū′′n − (δ+δ−ū)n) + λ̄(ū′n − (δ0ū)n) + f(ūn, ū
′
n) − f(ūn, δ0ūn))n∈J‖L2,h

+ ‖P−(ūn− − ū−) +Q−(δ0ū)n− + P+(ūn+
− ū+) +Q+(δ0ū)n+

‖
+ |〈δ0û|J , (ū− û)|J 〉h|)

≤ c(h2 + e−αhmin(−n−,n+)).

2

2.3 Extensions

The above results can be extended in different directions. First it is possible to consider

more general symmetries as has been indicated in section 1.4 already. Second, one can

generalize the above results to prove theorems about the discretization of “connecting

orbits” on finite intervals, extending the results in [64].

2.3.1 Generalization to higher symmetries

In this section we indicate how the proofs in section 2.2 have to be modified for more

general symmetries, i.e. in order to prove approximation of relative equilibria as described

in section 1.4. In the simplest case the generalization (1.73) of the PDE, which describes

stationary solutions of (1.14), reads

A(δ+δ−u)n +

p
∑

i=1

µi(S
0
i u+ S1

i (δ0u)n) + f(un, (δ0u)n) = 0, n ∈ J

P−un− +Q−(δ0u)n− + P+un+
+Q+(δ0u)n+

= η

h

n+
∑

n=n−

(ŵin)
T (un − ûn) = 0, i = 1, . . . , p

(2.78)

where ŵin = S0
i ûn + S1

i (δ0û)n ∈ R
m,p.

In this setting the discretization of the operator Λ given in (1.75) which decides upon

stability is given by

L̂u = A(δ+δ−u)n +Bn(δ0u)n + Cnun,
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where with w̄n = (δ0ū)n

Bn = D2f(ūn, w̄n) +

p
∑

i=1

µ̄iS
1
i , Cn = D1f(ūn, w̄n) +

p
∑

i=1

µ̄iS
0
i ,

Dn = D1f(ūn, w̄n) +

p
∑

i=1

µ̄iS
0
i .

The equation (2.62) can then be written as

DF (ū, λ̄)(u, λ) =





(A(δ+δ−u)n +Bn(δ0u)n + Cnun +Dnλ)n∈J
P−un− +Q−(δ0u)n− + P+un+

+Q+(δ0u)n+

Π̃(u)





In order to generalize the approximation result Theorem 2.21 we have to check the ap-

proximation properties of

‖B̂n −Bn‖, ‖Ĉn − Cn‖, ‖Ŝin − Sin(ū|J )‖,

where

B̂n = D2f(ūn, ū
′
n) +

p
∑

i=1

µiS
1
i , Ĉn = D1f(ūn, ū

′
n) +

p
∑

i=1

µiS
0
i ,

Ŝin = (S0
i ū|J )n + (S1

i ū
′
|J )n.

(2.79)

It remains to check Hypothesis 2.12, which requires that the matrices
∫

R

[S1(û)(x), . . . , [Sp(û)](x)]T [S1(ū)(x), . . . , Sp(ū)(x)] dx ∈ R
p,p

are nonsingular. This follows, since N (L) = span{Siū, i = 1, . . . , s} = R(S(ū)) (see

section 1.4), where Siū = −aγ(
�
)ūei.

Example 2.23 For the example 1.30 where

u(x) ∈ R
2, x ∈ R, [a(γ)u](x) = R−γru(x− γt), γ = (γr, γt) ∈ G = R × S1

equation (1.74) reads

ut = Auxx + f(u, ux) + λtux + λrRπ
2
u

and we obtain for the discretization S1
1 = I, S0

2 = Rπ
2
, S0

1 = S1
2 = 0. Therefore the discrete

system (2.78) is given by

A(δ+δ−u)n + λt(δ0u)n + λrRπ
2
un + f(un, (δ0u)n) = 0, n ∈ J

P−un− +Q−(δ0u)n− + P+un+
+Q+(δ0u)n+

= η

h

n+
∑

n=n−

(

(δ0û)
T
n

(Rπ
2
ûn)

T

)

(un − ûn) = 0 ∈ R
2.

With N (L) = span{ū′, Rπ
2
ū} we have that

∫

R

(

ū′(x)T

Rπ
2
u(x)T

)

(

φ1(x) φ2(x)
)

dx ∈ R
2,2
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is invertible for all linearly independent φ1, φ2 ∈ N (L). Thus Hypothesis 2.12 is satisfied.

Hypothesis 2.13 is satisfied as well, since in this case

V (x) =

(

0

−A−1[S0
1 ū+ S1

1 v̄, . . . , S
0
p ū+ S1

p v̄]

)

=

(

0

−A−1[ū′, Rπ
2
ū]

)

and the matrix
∫

R

[ū′(x), Rπ
2
ū(x)]TA−1[ū′(x), Rπ

2
ū(x)] dx = 〈[ū′, Rπ

2
ū], A−1[ū′, Rπ

2
ū]〉

is invertible.

2.3.2 Discretization of connecting orbits

The method we used above for the proof of the approximation theorems for the traveling

wave can be used to extend the approximation result for connecting orbits as discussed in

[64], to boundary value problems. In the following we outline the results and indicate the

line of proof without giving details.

Consider a parameter dependent ODE

z′ = G(z, λ), x ∈ R, λ ∈ R
p, z(x) ∈ R

k (2.80)

which will be compared later with a difference equation arising from a one step method.

Special solutions of (2.80) are given by the following definition

Definition 2.24 (connecting orbit) A solution z̄ ∈ C1
b (R,R

k) of (2.80) at parameter

λ = λ̄ with

lim
x→±∞

z̄(x) = z̄±

is called a connecting orbit between the limiting values z̄− and z̄+. The pair (z̄, λ̄) is a

connecting orbit pair (COP) between z̄− and z̄+.

COPs aris as are intersections of stable and unstable manifolds and they are robust w.r.t.

perturbations if these intersection is transversal. This leads to the following nondegeneracy

condition for COPs.

Definition 2.25 (nondegenerate) A COP (z̄, λ̄) of the system (2.80) is called nonde-

generate if the matrices M± = limx→±∞Gz(z̄(x), λ̄) are hyperbolic (i.e. there are no

purely imaginary eigenvalues), and for the number k±s of stable and k±u of unstable eigen-

values of M± we have p = k+ 1− k−u − k+
s = k−s − k+

s , and for any solution (z0, λ0) of the

variational equation

z′ −Gz(z̄, λ̄)z −Gλ(z̄, λ̄)λ = 0,

we have

λ0 = 0 and z0 = αz̄′, α ∈ R.

The following lemma [3], Prop. 3.1, gives an equivalent condition:
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Lemma 2.26 A COP (z̄, λ̄) of (2.87) is nondegenerate if and only if we have for the

linear operator

L : C1
b → Cb, z 7→ z′ −Gz(z̄, λ̄)z

� dimN (L) = dimN (L∗) = 1

� if span{ψ} = N (L∗) then

〈ψ,Gλ(z̄, λ̄)〉 :=

∫

R

ψTGλ(z̄(x), λ̄) dx 6= 0. (2.81)

In this setting the linear operator L is the linearization of a G operator about the equi-

librium (z̄, λ̄), i.e.

Lz = z′ −M(x)z, where M(x) = Gz(z̄(x), λ̄)

As before, we denote the corresponding solution operator by S.

In this situation Lemma 2.3 can be slightly extended, since φz(z̄(x), λ̄, h) solves the equa-

tion Lz = 0, see Lemma 3.3 in [64].

Lemma 2.27 Consider the nonlinear parameter dependent equation

z′ = G(z, λ) (2.82)

with flow φ(z, λ, x). If the operator L has an exponential dichotomy with data (K,α, π)

on J then the corresponding difference equation defined via the h-flow of (2.82)

zn+1 = φz(z̄(xn), λ̄, h)zn = S(xn+1, xn)zn, n ∈ Z (2.83)

has an exponential dichotomy on J with data (K,αh, P ) where Pn = π(xn).

Note that if (z̄, λ̄) is a COP of equation (2.80) and we define z̄n = (ū(xn), ū
′(xn)), n ∈ Z,

then (z̄|J , λ̄) is a connecting orbit for the discrete system

0 = A(δ+δ−u)n + λ(δ0u)n + f(un), n ∈ Z. (2.84)

Now we consider a one-step method for (2.80) given by

zn+1 = ψh(zn, λ)

with order p, i.e.

‖φ(z, λ, h) − ψh(z, λ)‖ ≤ Chp.

For the explicit Euler method one can show for (z, λ) in compact sets the estimate

‖φ(z, λ, h) − ψh(z, λ)‖ ≤ Ch2.

We define the operator

L̂ : SZ × R
l → SZ ; (z, λ) 7→ (zn+1 − ψh(zn, λ))n∈Z
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and consider the restriction of Γh to a finite interval J = [n−, n+] with boundary condition

b(zn− , zn+
) = 0,

and a phase condition Ψ(z) = 0, where Ψ is defined by

Ψ(z) = 〈δ0ẑ, z − ẑ〉h =
∑

n∈Z

(δ0ẑ)
T
n (zn − ẑn) = 0,

where ẑ : R → R
m is an appropriate reference function. We summarize the equations in

the operator FJ,h : SJ × R
l → SJ × R

k × R, defined by

FJ,h(z, λ) =





L̂(z, λ)

b(zn− , zn+
)

Ψ(z)



 .

The derivative DFJ,h(z̄, λ̄) : SJ × R
l → SJ × R

k × R of FJ,h at (z̄, λ̄) is then given by

DFJ,h(z̄, λ̄)(z, λ) =





(zn+1 − M̂nzn − V̂nλ)n∈J
D1b(z̄n− , z̄n+

)zn− +D2(z̄n− , z̄n+
)zn+

〈ψ̂|J , z〉h



 , (2.85)

where

M̂n = S(xn+1, xn) = φz(z̄(xn), λ̄, h), V̂n = φλ(z̄(xn), λ̄, h), ψ̂(x) = δ0ẑ(x).

The conditions on b and Ψ are chosen in such a way, that Hypotheses 2.11 and 2.12 hold,

and (a variant of) Lemma 2.14 can be applied.

Hypothesis 2.28 The k × k matrix
(

D1b(z̄n− , z̄n+
)X−

s D2(z̄n− , z̄n+
)X+

u

)

is nonsingular, where the columns of X̂s
− span the stable subspace Xs

− of M− and the

columns of Xu
+ span the unstable subspace of M+. Furthermore, we assume that the

boundary condition is satisfied at the stationary points, i.e.

b(z−, z+) = 0.

For the phase condition we assume the same Hypothesis 2.12 as in Lemma 2.14. The sim-

plest possibility is to take ẑ = z̄. However, this is not useful for the numerical compuations,

since z̄ is the unknown solution we are looking for.

Then for the approximation of the nondegenerate COP by a discrete boundary value

problem the following theorem holds.

Theorem 2.29 Let (z̄, λ̄) be a nondegenerate COP of equation (2.80) and let Hypotheses

2.28 and 2.12 be satisfied.

There exist h0, T > 0, K > 0, ρ > 0, such that for h < h0, ±n± > T , the discrete boundary

value problem FJ,h(z, λ) = 0 has a unique solution (z̃, λ̃) ∈ SJ × R
l in the neighborhood

Bρ(z̄|J , λ̄) = {(z, λ) ∈ SJ × R
l : ‖z − z̄|J‖∞ + |λ− λ̄| ≤ ρ} which obeys the following

estimate

‖z̄|J − z̃‖H1
h

+ ‖λ̄− λ̃‖ ≤ K(hp + ‖b(z̄n− , z̄n+
)‖ + |Ψ(z̄|J )|). (2.86)
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In the following we indicate the main steps of the proof which is similar to the proof of

Theorem 2.21.

We apply the fixed point Theorem A.3 to the following situation: Y = SJ ×R
l, Z = SJ ×

R
k+l, with norm ‖(z, η, ω)‖Z = 1

h
‖z‖+ ‖η‖+ ‖ω‖ ȳ = (z̄, λ̄) and F : SJ ×R

p → SJ ×R
k+l

is given by L̂(z, λ).

The inhomogenous equation DF (z̄, λ̄) = (r, η, ω) in J has the form (2.30)–(2.32) where

M̂n and V̂n are defined in (2.85). Lemma 2.14 implies the existence of a unique zero

(z̃, λ̃) ∈ SJ × R
l which obeys the estimate (2.38).

Thus we can use Theorem A.3 and obtain for each large enough J and small enough h a

unique solution (z̃, λ̃) ∈ SJ(R
k) × R

l.

It remains to check Hypotheses 2.10–2.13:

Since the COP (z̄, λ̄) is assumed to be nondegenerate, we obtain that the matrices M±

are hyperbolic and N (L) = span{z̄′}. The solvability condition of the boundary condition

Hypothesis 2.11 is equivalent to Hypothesis 2.28. As has been proven in [64], we have

V̂n = hGλ(z̄, λ̄) + O(h2), thus Hypothesis 2.13 holds. We have Ψ(z̄|J ) = 0 and

Ψ(z̄′|J ) = h

n+
∑

n=n−

(z̄′n)
T z̄′n = ‖z̄′|J‖

2

L2,h

≥ δ > 0,

which implies with N (L) = span{z̄′}, that the matrix F defined in (2.36), which in this

case is just a number, is nonsingular.

Application of a variant of Lemma 2.14 shows the existence of a unique solution (z̃, λ̃) of

the boundary value problem (1.13) in Bρ which can be estimated by (2.86).

Note that for the approximation of the traveling wave we could apply the previous lemma

directly. Since (ū, λ̄) solve (2.1) we obtain that (z̄, λ̄) with z̄ = (ū, ū′) is a solution of the

first order equation

z′ = G(z, λ), where G(z, λ) =

(

v

−A−1(λv + f(u, v))

)

, (2.87)

which one obtains from (2.1) via the transformation z = (u, u′) = (u, v). The partial

derivatives of G are given by

Gz(z̄, λ̄) =

(

0 I

−A−1D1f(ū, ū′) −A−1(λ̄I +D2f(ū, ū′))

)

= M(·)

and

Gλ(z̄, λ̄) =

(

0

−A−1ū′

)

= V (·),

where M(·) and V (·) are defined in (2.70) and (2.74). The nondegeneracy condition

(2.81) corresponds to Hypothesis 2.13 and (z̄, λ̄) is a nondegenerate COP of (2.87) with

limx→±∞ z̄(x) = (u±, 0) (see [60], [3]).
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Chapter 3

Resolvent estimates and

approximation of eigenvalues

In this chapter we prove resolvent and eigenvalue estimates for the discretized system on

a finite interval. At the end of the chapter we present a result on the essential spectrum

for the discretized operator on the whole line, which is the discrete analog of Theorem 1.2,

as well as some conjectures concerning the influence of the boundary conditions on the

essential spectrum for the discrete operator.

3.1 Resolvent estimates

In this section we construct solutions for the resolvent equation in the discrete setting

using a similar method as in [6].

In the following we consider the discrete resolvent equation for u ∈ SJe(C
m) on the grid

GJ,h,x0
with right hand side ĝ ∈ SJ(C

m)

A(δ+δ−u)n +Bn(δ0u)n + (Cn − sI)un = ĝn, n ∈ J (3.1)

where

Bn = λ̃I +D2f(ũn, (δ0ũ)n), Cn = D1f(ũn, (δ0ũ)n)

with boundary conditions

P−un− +Q−δ0un− + P+un+
+Q+δ0un+

= η, P±, Q± ∈ R
2m,m (3.2)

for s in different regions of C .

Here (ũ, λ̃) ∈ SJe(R
m) × R denotes the solution of (2.56)–(2.58) which approximates the

exact traveling wave solution as estimated in (2.61).

We have to discuss the invertibility of the linear operators Fs : SJe(C
m) → SJ(C

m)×C
2m

defined by

Fsu =

(

(A(δ+δ−u)n +Bn(δ0u)n + (Cn − sI)un)n∈J
P−un− +Q−(δ0u)n− + P+un+

+Q+(δ0u)n+

)

.
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Our standing assumption in this chapter is the following: The operator Λ defined in

(1.5) satisfies the conditions of the stability Theorem 1.13, i.e. (SC) and (EC) hold, with

N (Λ) = span{φ}, and Hypothesis 1.9 holds.

Similar to the continuous case we consider the resolvent in several different regions of C

(cf. Figure 3.1). The quantities ε, C0 will be determined later while δ > 0 will be chosen

such that | argµ| ≤ π
2 − δ for all eigenvalues µ of A. For s in a compact set which does not

contain zero, a similar method as in the proof of the approximation Theorem 2.21 can be

used. Although in Chapter 2 we have formulated Lemma 2.14 for ĝ ∈ R
m only, the same

holds for ĝ ∈ C
m as well. For large |s| a different approach is necessary, since the analogy

between the discrete and the continuous system is no longer valid.

PSfrag replacements
Ωε

ΩC0

Ωh
C0

Ωh
∞

C

−β

σ

Figure 3.1: Regions for resolvent estimates

Ωε : |s| < ε, Re s ≥ −β
ΩC0

: |s| ∈ [ε, C0], Re s ≥ −β

Ωh
C0

: |s| ∈ (C0,
C0

h2
], | arg(s)| ≤ π

2
+

2

3
δ

Ωh
∞ : |s| > C0

h2

3.1.1 Compact subsets

We estimate the resolvent for s in the compact set

ΩC0
= {s ∈ C : Re s ≥ −β, and |s| ∈ [ε, C0]}

where ε > 0 using the same approach as for the traveling wave in Section 2.2. These

estimates will hold for any given pair of positive constants ε, C0. The following condition

is similar to (2.60).

Hypothesis 3.1 Assume that the following regularity condition holds

det

(

(

P− Q−
)

(

Y s
−(s)

Y s
−(s)Λs−(s)

)

(

P+ Q+

)

(

Y u
+(s)

Y u
+(s)Λu+(s)

))

6= 0 ∀s ∈ ΩC0
, (3.3)

where Y s
−(s), Y u

+(s) and Λs−(s),Λu+(s) are defined in Definition A.8.

Theorem 3.2 Consider the boundary value problem (3.1)-(3.2) and let Hypothesis 3.1 be

satisfied.

Then there exist C > 0, T > 0, h0 > 0 such that for h < h0 and ±hn± > T the resolvent

equation (3.1)-(3.2) possesses for each s ∈ ΩC0
and every ĝ ∈ SJ a unique solution ũ ∈ SJe

wich obeys for � ∈ {∞,L2,h} the following estimate

‖ũ‖2,� ≤ C(‖ĝ‖� + ‖η‖). (3.4)
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Proof: We transform equation (3.1), (3.2) using zn = (un, δ−un) = (un, vn) to the equiv-

alent equation (cf. (2.66))

Λ̃(s)z = (r̂, η)

where with wn = 1
2(vn + vn+1),

Λ̃(s)(z, λ) =

(

Γ(s)z

P−un− +Q−wn− + P+un+
+Q+wn+

)

, r̂n =

(

0

hĝn

)

and

(Γr(s)z)n = Nnzn+1 −Kn(s)zn, n ∈ J

with

Nn =

(

I −hI
0 E+

n

)

, Kn(s) =

(

I 0

h(sI − Cn) E−
n

)

, E±
n = A± h

2
Bn. (3.5)

As before we show that Λ̃(s) is a perturbation of

Λi(s)z =

(

(N̂zn+1 − K̂n(s)zn)n∈J
(P− Q−)zn− + (P+ Q+)zn+

)

where

K̂n(s) =

(

I hI

h(sI − Ĉn) A− hB̂n

)

(3.6)

and N̂ , Ĉn, B̂n are defined in (2.68).

Similar to section 2.2 the estimate ‖Nn − N̂‖ ≤ ch holds, and using (2.61) we get with

‖Cn − Ĉn‖ ≤ c(h2 + e−αT ), ‖Bn − B̂n‖ ≤ c(h2 + e−αT )

the uniform estimate

‖K̂n(s) −Kn(s) +Nn − N̂‖ ≤ Ch (h2 + e−αT ).

This leads to

‖(Λ̃(s) − Λi(s))z‖∗∞ ≤ 1

h
sup
n∈J

‖(Nn − N̂)zn+1 − (Kn(s) − K̂n(s))zn‖

+ ‖Q−(wn− − vn−)‖ + ‖Q+(wn+
− vn+

)‖

≤ sup
n∈J

(‖Nn − N̂‖‖δ+zn‖) +
1

h
sup
n∈J

(‖K̂n(s) −Kn(s) +Nn − N̂‖‖zn‖)

+ ‖Q−‖‖vn−+1 − vn−‖ + ‖Q+‖‖vn++1 − vn+
‖

≤ sup
n∈J

Ch‖δ+zn‖ +
1

h
sup
n∈J

Ch (h2 + e−αT )‖zn‖ + Ch(‖δ+zn−‖ + ‖δ+zn+
‖)

≤ C(h‖δ+z‖∞ + (h2 + e−αT )‖z‖∞) ≤ σ(h, T )‖z‖1,∞

where limh→0,T→∞ σ(h, T ) = 0 uniformly for all s ∈ C .

The operators Λi(s) are perturbations of Λ̂i(s) defined by

Λ̂i(s)z =

(

(N̂zn+1 − N̂M̂n(s)zn)n∈J
(P− Q−)zn− + (P+ Q+)zn+

)
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with M̂n(s) = S(xn+1, xn, s), where S(·, ·, s) denotes the solution operator corresponding

to the differential operator L(s)

L(s) = z′ −M(·, s)z, where

M(x, s) =

(

0 I

A−1(sI − C(x)) −A−1B(x)

)

.

In fact, the expansion (cf. (2.50))

S(xn+1, xn, s) = I + hM(xn, s) + h2En(s)

and the definition of K̂n (cf. (3.6))

K̂n(s) = N̂(I + hM(xn, s)),

lead to

‖Λi(s) − Λ̂i(s)‖
∗
∞ ≤ 1

h
sup
n∈J

‖K̂n(s) − N̂M̂n(s)‖‖z‖∞ ≤ Ch‖E(s)‖∞‖z‖∞.

For s ∈ ΩC0
the error term E(s) is uniformly bounded in s. Note that for arbitrary large

|s| this does not hold any more, therefore this case is dealt with separately in subsection

3.1.2.

The operators L(s) have exponential dichotomies on R with data (K,α, π(s)) if s ∈ ΩC0

lies in the resolvent of L(0), i.e. s ∈ ρ(L(0)) ∩ ΩC0
and the dichotomy constants K,α do

not depend on s (see [6]).

Thus we can apply the linear Lemma 2.14 with k = 2m, p = 0 to the explicit version of

Λ̂i(s)(z, λ) = (r̂, η) which reads

zn+1 − M̂n(s)zn = N̂−1r̂n

(P− Q−)zn− + (P+ Q+)zn+
= η.

(3.7)

Hypothesis 3.1 ensures that Hypothesis 2.11 holds and the other Hypotheses are void in

the case p = 0. We obtain that (3.7) is solvable for each r ∈ SJ for h < h0,±n±h > T ,

s ∈ ΩC0
.

Applying Lemma 2.14 to (3.7) we obtain using that N̂ is independent of s and h, that

the operators Λ̂i(s) considered as operators from SJr(C
2m), ‖·‖∗1,� to SJ(C

2m)×C
2m, ‖·‖∗�,

where ‖(r, η)‖∗� = 1
h
‖r‖�+‖η‖, � ∈ {L2,h,∞} are invertible for any s ∈ ΩC0

with a uniform

bound, i.e.

‖Λ̂i(s)−1(r, η)‖� ≤ C‖(r, η)‖∗� ∀s ∈ ΩC0
.

Transforming these estimates back using (2.5),(2.6), we obtain the existence of a solution

of (3.1),(3.2) as well as (3.4). 2

3.1.2 |s| large

In the case of |s| large we cannot relate the discrete resolvent equation (3.1), (3.2) to

corresponding continuous systems uniformly in s. Instead we prove its solvability directly

by modifying some of the techniques for the continuous case in [6].
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From A > 0 we find some δ > 0 such that | arg(µ)| < π
2 − δ ∀µ ∈ σ(A−1). Let

√
z

be the principal branch of the square root defined for z = reiφ, φ ∈ (−π, π), r > 0 by√
z =

√
rei

φ
2 . Let B

1

2 be the corresponding matrix square root defined for B ∈ C
m,m

with σ(B) ⊂ C \ R
−. For z ∈ C with | arg(z)| ≤ π

4 + δ
3 and µ ∈ σ(A−1) we obtain

| arg(z2µ+ 1)| < | arg(z2µ)| ≤ 2(π4 + δ
3) + π

2 − δ = π − δ
3 . Therefore the following matrix

function is well defined

∆(z) =
1

(1 + |z|2) 1

2

(I + z2A−1)
1

2A− 1

2 , | arg(z)| ≤ π

4
+
δ

3
. (3.8)

For |z| large we have Re (σ( 1
z2
I +A−1)) > 0 and we define for some C > 0

∆(z) =
z

(1 + |z|2) 1

2

(
1

z2
I +A−1)

1

2A− 1

2 , |z| > C. (3.9)

Note that for |z| large and | arg(z)| < π
4 + δ

3 both definitions coincide, since then we

have | arg(z2)| < π, arg(σ( 1
z2
I +A−1)) < π and | arg(σ(I + z2A−1))| < π and hence the

functional equation (z2)
1

2 ( 1
z2
I +A−1)

1

2 = (I + z2A−1)
1

2 holds.

As in Chapter 3 we assume that the matrices P±, Q± in the boundary conditions are

divided into a Neumann and a Dirichlet part as follows:

Hypothesis 3.3 The matrix (Q−Q+) is of rank r ∈ [0, 2m] and we assume that the

boundary conditions are partitioned into a Dirichlet and Neumann part, i.e. the matrices

(P±, Q±) ∈ R
2m,2m have the following structure

(P±, Q±) =

(

PN± QN±
PD± 0

)

, PN± , Q
N
± ∈ R

r,m, PD± ∈ R
2m−r,m (3.10)

Assume that there exists C > 0 such that the matrices

Γ(z) =

(

QN−∆(z) −QN+∆(z)

PD− PD+

)

(3.11)

have uniformly bounded inverses for

z ∈ C : arg(z) ≤ π

4
+
δ

3
, or |z| ≥ C. (3.12)

Discussion of Hypothesis 3.3

Remark 3.4 Note that the following statements are equivalent

1. Γ(z) has a uniformly bounded inverse for all | arg(z)| ≤ π
4 + δ

3 and for |z| ≥ C.

2. The matrices Γ0 =

(

QN−A
− 1

2 −QN+A− 1

2

PD− PD+

)

and Γ∞ =

(

QN−A
−1 −QN+A−1

PD− PD+

)

are

nonsingular and Γ(z) is nonsingular for | arg(z)| ≤ π
4 + δ

3 , z 6= 0.
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This equivalence follows from Γ0 = Γ(0) and Γ(z) ∼
(

z

(1+|z|2)
1
2

I 0

0 I

)

Γ∞ as |z| → ∞. The

nonsingularity of Γ0 corresponds to the corresponding condition (see Theorem 2.1 in [6])

which is necessary for resolvent estimates on finite intervals for large |s| in the continuous

case. The nonsingularity of Γ∞ will be used in Chapter 4.

For A = I the matrix ∆(z) has the form ∆(z) = αI for some α ∈ C . Therefore it remains

to check the invertibility of
(

QN− −QN+
PD− PD+

)

.

For the boundary conditions which are used in the numerical computations in Chapter 5

we obtain:

Neumann b.c. δ0un− = δ0un+
= 0, r = 2m:

Q− =

(

I

0

)

, Q+ =

(

0

I

)

, P− = P+ =

(

0

0

)

: Γ(z) =

(

∆(z) 0

0 ∆(z)

)

.

Then Hypothesis 3.3 requires the invertiblity of ∆(z) in the domains 3.12, which is

always satisfied.

periodic b.c. un− = un+
, δ0un− = δ0un+

, r = m:

P− =

(

0

I

)

, P+ =

(

0

−I

)

, Q− =

(

I

0

)

, Q+ =

(

−I
0

)

: Γ(z) =

(

∆(z) 0

0 I

)(

I I

I −I

)

,

and again Hypothesis 3.3 holds true.

Dirichlet b.c. un− = un+
= 0, r = 0:

P− =

(

I

0

)

, P+ =

(

0

I

)

, Q− = Q+ =

(

0

0

)

: Γ(z) = I.

Here Hypothesis 3.3 is automatically satisfied.

We consider s ∈ C in the following two regions Ωh
C0

, Ωh
∞ (cf. Figure 3.1)

Ωh
C0

=
{

s ∈ C : |s| ∈ (C0,
C0

h2
], | arg(s)| ≤ π

2
+

2δ

3

}

(3.13)

Ωh
∞ =

{

s ∈ C : |s| > C0

h2

}

(3.14)

where the constant C0 will be chosen later.

In order to simplify the presentation we will restrict ourselves to diagonalizable A. The

main result of this section is the following resolvent estimate, which will be used together

with the estimates in Theorem 3.2 in Chapter 4.

Theorem 3.5 Consider the resolvent equation (3.1)-(3.2) with diagonalizable A > 0 and

assume that Hypothesis (3.3) holds.

Then C0 can be chosen such that there exist c > 0, T > 0, h0 > 0 such that for h < h0

and ±hn± > T and s restricted by (3.13) or (3.14) the following holds. The resolvent
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equation (3.1) with boundary conditions (3.2) possesses for each ĝ ∈ SJ(C
m) and each

η = (ηN , ηD)T , ηN ∈ C
r, ηD ∈ C

2m−r a unique solution u ∈ SJe(C
m). Furthermore, u

can be estimated for � ∈ {L2,h,∞} by

|s|2‖u‖2
� + |s|‖δ+u‖2

� ≤ c(‖ĝ‖2
� + |s|‖ηN‖2

+ |s|2‖ηD‖2
), for s∈ Ωh

C0
(3.15)

|s|2‖u|J‖
2
� + |s|‖δ+(u|J )‖2

� ≤ c(‖ĝ‖2
� + |s|‖ηN‖2

+ |s|2‖ηD‖2
), for s∈ Ωh

∞. (3.16)

Note that similar estimates have been obtained directly using energy estimates in [60],

Lemma 4.9 for Dirichlet and periodic boundary conditions.

Before we start with a series of Lemmas which are needed for the proof of Theorem 3.5,

we give a short outline:

The equation (3.1), (3.2) is transformed to first order via the scaled transformation

(un,
1
ρ
δ−un) = (un, vn). The transformed system is approximated by constant coefficient

operators L̂(s, ρ)zn = zn+1 − M̂(s, ρ)zn, for small h and large ρ. The matrices M̂(s, ρ) are

hyperbolic for s ∈ Ωh
C0

∪ Ωh
∞. This will imply that L̂(s, ρ) has exponential dichotomies

on Z. In order to obtain estimates for the solution of the corresponding boundary value

problem for large ρh we need to take into account the structure of the right hand side

of the transformed system. Therefore we cannot apply the linear theory in Chapter 2

directly. Nevertheless the proofs follow the lines in Section 2.1.1.

Using the assumption that A is diagonalizable, we can pretransform (3.1),(3.2) as follows

Let U ∈ C
m,m be given such that UAU−1 = Ã = diag(µ1, . . . , µm) and define B̃n =

UBnU
−1, C̃n = UCnU

−1 for n ∈ J as well as P̃± = P±U−1, Q̃± = Q±U−1. Then u ∈ SJ
solves (3.1),(3.2) if and only if w = Uu solves

Ã(δ+δ−w)n + B̃n(δ0w)n + (C̃n − sI)wn = Uĝn,

P̃−wn− + Q̃−δ0wn− + P̃+wn+
+ Q̃+δ0wn+

= η.

The relation ∆(z) = U−1∆̃(z)U , where ∆̃(z) is defined by (3.8),(3.9) with Ã instead of A,

leads to

Γ(z) =

(

Q̃N− ∆̃(z)U −Q̃N+ ∆̃(z)U

P̃D− U P̃D+ U

)

=

(

Q̃N− ∆̃(z) −Q̃N+ ∆̃(z)

P̃D− P̃D+

)(

U 0

0 U

)

.

Thus Hypothesis 3.3 is invariant under diagonalization. In the following we drop the

tildes and assume w.l.o.g. that A is diagonal. Transformation to first order via zn =

(un,
1
ρ
δ−un) = (un, vn), n = n−, . . . , n+ + 1, for some ρ > 0 leads to the equation

Nn(ρ)zn+1 −Kn(s, ρ)zn = r̂n, n ∈ J = [n−, n+] (3.17)

R(ρ)z = η̂ (3.18)

where

Nn(ρ) =

(

I −hρI
0 E+

n

)

, Kn(s, ρ) =

(

I 0
h
ρ
(sI − Cn) E−

n

)

, E±
n = A± h

2
Bn,

R(ρ)z = B−(ρ)zn− + B̂−zn−+1 +B+(ρ)zn+
+ B̂+zn++1 (3.19)
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and

r̂n =

(

0
h
ρ
ĝn

)

, B±(ρ) =

(1
ρ
PN±

1
2Q

N
±

PD± 0

)

, B̂± =

(

0 1
2Q

N
±

0 0

)

, η̂ =

(1
ρ
ηN

ηD

)

.

We consider the explicit formulation of (3.17) which is given by

(L̃(s, ρ)z)n =
h

ρ

(

hρI

I

)

E+
n
−1
ĝn, n ∈ J (3.20)

where

(L̃(s, ρ)z)n = zn+1 −Mn(s, ρ)zn, (3.21)

Mn(s, ρ) = Nn(ρ)
−1Kn(s, ρ) =

(

I + h2E+
n
−1

(sI − Cn) hρE+
n
−1
E−
n

h
ρ
E+
n
−1

(sI − Cn) E+
n
−1
E−
n

)

. (3.22)

In order to obtain solutions of (3.20), (3.18) we will use the following constant coefficient

difference equation, given by

(L̂(s, ρ)z)n =
h

ρ

(

hρI

I

)

ĝn, n ∈ J (3.23)

where

(L̂(s, ρ)z)n = zn+1 − M̂(s, ρ)zn, (3.24)

M̂(s, ρ) = N̂(ρ)−1K̂(s, ρ) = I + hρ

(

h
s
ρA−1 I
s
ρ2
A−1 0

)

(3.25)

and

N̂(ρ) =

(

I −hρI
0 A

)

, K̂(s, ρ) =

(

I 0
h
ρ
sI A

)

.

As we will show later, L̂(s, ρ) is a small perturbation of L̃(s, ρ) for |s| large. If we set

s = ρ2e2iθ, ρ =
√

|s|

then we obtain

M̂(s, ρ) = I + hρ

(

hρe2iθA−1 I

e2iθA−1 0

)

.

We will prove in the next lemma that the matrices M̂(s, ρ) are hyperbolic for s ∈ Ωh
C0

and s ∈ Ωh
∞. Then L̂(s, ρ) possesses an exponential dichotomy on Z, which will be used

to construct a solution of (3.23), (3.18).

The following lemma deals with the eigenvalues of matrices which have the same structure

as M̂(s, ρ).

Lemma 3.6 Consider

M = I + κN(κ), where N(κ) =

(

κS I

S 0

)
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with κ > 0, and S ∈ C
m,m a nonsingular diagonal matrix. Then there exist δ, C0 > 0

such that the following holds: If either (κ ≤ C0 and arg(σ(S)) ≤ π − δ) or κ > C0 then

M is a hyperbolic matrix with m stable eigenvalues νs,i and m unstable eigenvalues νu,i,

i = 1, . . . ,m.

Moreover, there exist α, a > 0, ε ∈ (0, C0] such that for i = 1, . . . ,m, the following

estimates hold:

aκ2 ≥ |νu,i| ≥ ακ2,
α

κ2
≤ |νs,i| ≤

a

κ2
for κ > C0 (3.26)

|νu,i| ≥ 1 + α, |νs,i| ≤
1

1 + α
for κ ∈ [ε, C0], arg(σ(S)) ≤ π − δ

(3.27)

|νu,i| ≥ 1 + ακ, |νs,i| ≤
1

1 + ακ
for κ ∈ (0, ε), arg(σ(S)) ≤ π − δ

(3.28)

Proof: Let µ ∈ C be an eigenvalue of S with eigenvector u. Then λ is an eigenvalue of

N(κ) with eigenvector v if and only if λ is a solution of

λ2 − λκµ− µ = 0 (3.29)

and v =

(

λS−1u

u

)

. The solutions of (3.29) are given by

λ± =







1
2

(

κµ±
√

κ2µ2 + 4µ
)

, if κ > 0, | arg(µ)| ≤ π − δ,
κµ
2

(

1 ±
√

1 + 4
µκ2

)

, if κ > C0.
(3.30)

Note that both definitions coincide on the common domain of definition, and that

λ+ − λ− =







√

κ2µ2 + 4µ
)

, if κ > 0, | arg(µ)| ≤ π − δ,
κµ
2

√

1 + 4
µκ2 , if κ > C0

implies a lower estimate

|λ+ − λ−| ≥ cmax(κ, 1), for some c > 0. (3.31)

The eigenvalues ν± of M are given by ν± = 1 + κλ±. From λ−λ+ = −µ ,λ− + λ+ = κµ

and (3.29) we obtain 1 + κλ− = (1 + κλ+)−1.

We consider ν± for κ in three different regions:

1. Large κ:

Use the expansion
√

1 + z = 1 + z
2 + O(z2) to obtain

|1 + κλ+| = |1 +
µκ2

2
(1 +

√

1 +
4

µκ2
)| ≥ ακ2 if κ > C0.

This implies |νu,i| ≥ ακ2, as well as |νs,i| < 1
ακ2 for κ > C0, i = 1, . . . ,m.
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2. Small κ, | arg(µ)| ≤ π − δ

For small κ and | arg(µ)| ≤ π − δ we have the expansion

1+κλ+ = 1+
κ2µ

2
+κ

√
µ

√

1 +
κ2µ

4
= 1+

κ2µ

2
+κ

√
µ(1+

κ2µ

8
+O(κ4)) = 1+κ

√
µ+O(κ2).

From | arg(µ)| ≤ π− δ we obtain Re
√
µ > 0 and hence |νu,i| ≥ 1 +ακ, |νs,i| ≤ 1

1+ακ

for some α > 0 and κ ∈ (0, ε).

3. κ in the compact set κ ∈ [ε, C0], | arg(µ)| ≤ π − δ

Let κ > 0, | arg(µ)| ≤ π − δ. In particular Re µ > 0. Then Re
√

κ2µ2 + 4µ ≥ 0 by

definition. Hence Re λ+ = Re κµ
2 + Re

√

κ2µ2 + 4µ ≥ Re κµ
2 ≥ cκ for some c > 0.

Therefore Re (1 + κλ+) ≥ 1 + cκ2 and |1 + κλ+| > 1. Since κ varies in a compact

interval this proves the assertion (3.27).

2

By application of the previous Lemma with S = e2iθA−1 and κ = ρh we obtain that

the constant coefficient operators L̂(s, ρ) possess an exponential dichotomy on Z if s ∈
Ωh
C0

∪ Ωh
∞ as the following corollary shows.

Corollary 3.7 Assume that A > 0 is diagonal. Then there exist C0, ε, δ > 0 such that the

operators L̂(s, ρ) possess exponential dichotomies on Z if s = ρ2e2iθ is restricted by (3.13)

or (3.14). The dichotomy data are (K,β, P ), where K is independent of ρ and h, and for

some α > 0

β = ln(α(ρh)2) for ρ >
C0

h
, (3.32)

β = ln(1 + α) for ρ ∈ [
ε

h
,
C0

h
], |θ| ≤ π

4
+
δ

3
, (3.33)

β = ln(1 + αρh) for ρ ∈ [C0,
ε

h
], |θ| ≤ π

4
+
δ

3
(3.34)

and the projector P is given by

P =

(

(Λs − Λu)
−1Λs −(Λs − Λu)

−1

−Λu(Λs − Λu)
−1Λs Λs(Λs − Λu)

−1

)

. (3.35)

Here Λs and Λu are defined by

Λs = diag(λ−,i)i=1,...,m, Λu = diag(λ+,i)i=1,...,m (3.36)

where λ±,i are defined for each i = 1, . . . ,m by (3.30) with µ = µi ∈ σ(e2iθA−1).

Proof: Denote the eigenvalues of A−1 by re−2iφ, then the eigenvalues of e2iθA−1 are given

by re2i(θ−φ) and for |θ| < π
4 + δ

3 and |2φ| ≤ π
2 − δ we obtain 2|θ − φ| < π − δ

3 . Then

application of Lemma 3.6 with S = e2iθA−1 implies that the matrix M̂(s, ρ) given by

I + hρ

(

hρ e2iθA−1 I

e2iθA−1 0

)

(3.37)
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is hyperbolic for |θ| < π
4 + δ

3 . Furthermore, the m stable eigenvalues νs,i = 1 + hρλs,i and

the m unstable eigenvalues νu,i = ν−1
s,i , i = 1, . . . ,m can be estimated using (3.26)–(3.28)

by

|νu,i| ≥ α(ρh)2, |νs,i| ≤
α

(ρh)2
, for ρ >

C0

h
(3.38)

|νu,i| ≥ 1 + α, |νs,i| ≤
1

1 + α
, for ρ ∈ [

ε

h
,
C0

h
] (3.39)

|νu,i| ≥ 1 + αρh, |νs,i| ≤
1

1 + αρh
, for ρ ∈ [C0,

ε

h
]. (3.40)

The matrices M̂(s, ρ) can be transformed to diagonal form via TD = M̂(s, ρ)T with

D =

(

Ds 0

0 D−1
s

)

, Ds = I + κΛs, Du = I + κΛu, κ = ρh (3.41)

and

T =

(

−I −I
Λu Λs

)

, T−1 =

(

(Λs − Λu)
−1 0

0 (Λs − Λu)
−1

)(

−Λs −I
Λu I

)

. (3.42)

Note the relations

ΛuΛs = ΛsΛu = −S, Λs + Λu = κS, Du = D−1
s ,

ΛuDs = −Λs, Λs =
1

κ
(Ds − I).

(3.43)

From this the existence of an exponential dichotomy on Z for the constant coefficient

operators L̂(s, ρ) follows by Remark 2.5 in [42] with data (K,β, P ) with β = − ln νs where

|νs,i| < νs < 1, i = 1, . . . ,m and P is defined in (3.35). 2

Using the exponential dichotomy, the Green’s function is given by (2.9) where in this case

the dichotomy projector P and the matrix M̂ are constant. The following Lemma is an

adaptation of Lemma 2.4 to the current situation.

Lemma 3.8 Let s be restricted by (3.13) or (3.14). Then there exist h0, T > 0 such

that for h < h0,±n±h > T and for each ĝ ∈ SJ(C
m) there exists a unique solution

z̃ ∈ SJe(C
2m) of the boundary value problem

(L̂(s, ρ)z)n =

(

h2I
h
ρ
I

)

ĝn, n ∈ J (3.44)

Pzn− = ρ− ∈ R(P ) (3.45)

(I − P )zn+
= ρ+ ∈ R(I − P ) (3.46)

where P is the dichotomy projector defined in (3.35). The solution has the form

z̃n = zhom
n + ẑn(ĝ), n ∈ J, z̃n++1 = M̂ z̃n+

+

(

h2I
h
ρ
I

)

ĝn+
(3.47)

where

zhom
n = Φ(n, n−)ρ− + Φ(n, n+)ρ+, (3.48)
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and

ẑn(ĝ) =
h

ρ

n+
∑

n=n−

G(n,m+ 1)P

(

hρI

I

)

ĝn (3.49)

=
h

ρ
(
n−1
∑

m=n−

Φ(n,m+ 1)P

(

hρI

I

)

ĝm −
n+−1
∑

m=n

Φ(n,m+ 1)(I − P )

(

hρI

I

)

ĝm).

In order to obtain the necessary estimates of ẑ, especially for the case hρ > C0, we have

to take into account the special structure of the right hand side. Therefore we diagonalize

equation (3.44) using the transformation T given in (3.42). For wn = T−1zn equation

(3.23) reads

wn+1 −
(

Ds 0

0 D−1
s

)

wn =
h

ρ
T−1

(

hρI

I

)

ĝn, n ∈ J = [n−, n+].

In order to be able to distinguish estimates in the different components we introduce

the following vector norm notation. For z = (u, v) ∈ R
m × R

m, ‖z‖vec =

(

nu
nv

)

means

‖u‖ = nu, ‖v‖ = nv and ‖z‖vec ≤
(

cu
cv

)

means the componentwise estimates ‖u‖ ≤ cu and

‖v‖ ≤ cv. With this notation we obtain the following estimates for the Green’s function.

Lemma 3.9 Let |σ(Ds)| < νs < 1. Then the following holds.
∥

∥

∥

∥

Φ(n,m+ 1)P

(

hρI

I

)∥

∥

∥

∥

vec

≤ c

max(ρh, 1)

(

νs
1
ρh

(1 − νs)

)

νn−m−1
s , n ≥ m (3.50)

∥

∥

∥

∥

Φ(n,m+ 1)(I − P )

(

hρI

I

)∥

∥

∥

∥

vec

≤ c

max(ρh, 1)

(

1
1
ρh

(1 − νs)

)

νm−n
s , n < m (3.51)

and

‖Φ(n, n−)T−‖vec ≤
(

νs
1
ρh

(1 − νs)

)

νn−n−−1
s ,

‖Φ(n, n+)T+‖vec ≤
(

1
1
ρh

(1 − νs)

)

νn+−n
s ,

(3.52)

where T = (T−, T+) with T defined by (3.42).

Proof: With

Φ(n,m) = TDn−mT−1, P = TEsT−1, Es =

(

I 0

0 0

)

(3.53)

we obtain using Ds = I + hρΛs

Φ(n,m+ 1)P

(

hρI

I

)

= T

(

Dn−m−1
s 0

0 0

)

T−1

(

hρI

I

)

= −
(

−I −I
Λu Λs

)(

Dn−m
s (Λs − Λu)

−1

0

)

=

(

I

−Λu

)

Dn−m
s (Λs − Λu)

−1

=

(

Ds
1

(ρh)(Ds − I)

)

Dn−m−1
s (Λs − Λu)

−1
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as well as

Φ(n,m+ 1)(I − P )

(

hρI

I

)

= T

(

0 0

0 Dm−n+1
s

)

T−1

(

hρI

I

)

=

(

−I
Λs

)

Dm−n
s (Λs − Λu)

−1

=

(

−I
1

(ρh)(Ds − I)

)

Dm−n
s (Λs − Λu)

−1.

This implies the estimates (3.50), (3.51). Similarly with (3.31)

Φ(n, n−)T− = TM̂n−n−T−1T− =

(

−I
Λu

)

Dn−n−
s =

( −Ds
1
ρh

(Ds − I)

)

Dn−n−−1
s

and

Φ(n, n+)T+ = TM̂n−n+T−1T+ =

(

−I
Λs

)

Dn+−n
s =

(

−I
1

(ρh)(Ds − I)

)

Dn+−n
s

lead to (3.52). 2

The special solution is estimated in the following Lemma.

Lemma 3.10 Let s be restricted by (3.13) or (3.14). Then there exist c, h0, T > 0 such

that for h < h0,±n±h > T for each ĝ ∈ SJ(C
m) the special solution ẑ(ĝ) ∈ SJ(C

2m)

given by (3.49) can be estimated for � ∈ {L2,h,∞} by

‖ẑ(ĝ)‖� ≤
c

ρ2
‖ĝ‖�. (3.54)

Moreover, we obtain

‖M̂ ẑn+
(ĝ)‖

vec
≤ c

(

h2 + h
ρ

+ 1
ρ2

h
ρ

+ 1
ρ2

)

‖ĝ‖∞. (3.55)

Proof: Using the estimates (3.50), (3.51) we obtain for n ∈ J for ẑ(ĝ) = (û, v̂) with νs < 1

‖ûn‖ ≤ c

max(ρh, 1)

h

ρ

n+−1
∑

m=n−

ν−|n−m|
s ‖ĝm‖ ≤ cu(h, ρ)

1 + νs
1 − νs

‖ĝ‖∞ (3.56)

where cu(h, ρ) = ch
ρmax(ρh,1) . Then we obtain

‖ûn‖ ≤ c

ρ2
‖ĝ‖∞, ∀n ∈ J (3.57)

provided we can show

cu(h, ρ)
1 + νs
1 − νs

≤ c

ρ2
. (3.58)

For ρh > C0 this holds, since by (3.38)

cu(h, ρ)
1 + νs
1 − νs

≤ c

ρ2

α(ρh)2 + 1

α(ρh)2 − 1
≤ c

ρ2
.
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For ρh < ε we obtain (3.58) using (3.40)

cu(h, ρ)
1 + νs
1 − νs

≤ c
h

ρ

2 + αρh

αρh
≤ c

ρ2
,

and (3.39) implies for ρh ∈ [ε, C0]

cu(h, ρ)
1 + νs
1 − νs

≤ c

ρ2
.

The estimate of the second coordinate is even easier. From the second coordinate of (3.50),

(3.51) and c
ρ2 max(ρh,1)

≤ c
ρ2

we obtain

‖v̂n‖ ≤ c

ρ2

1 − νs
max(ρh, 1)

(

n−1
∑

m=n−

νn−m−1
s ‖ĝm‖ +

n+−1
∑

m=n

νm−n
s ‖ĝm‖

)

≤ c

ρ2
‖ĝ‖∞(1 − νs)

(1 − ν
n−n−
s

1 − νs
+

1 − ν
n+−n
s

1 − νs

)

≤ c

ρ2
‖ĝ‖∞(2 − (νn−n−

s + νn+−n
s ))

≤ c

ρ2
‖ĝ‖∞.

(3.59)

The estimates (3.57), (3.59) imply (3.54) with � = ∞. The L2,h estimate is similar to the

estimate in Lemma 2.4. From (3.56) we find

‖ûn‖2 ≤ cu(h, ρ)
2
(

n+−1
∑

m=n−

ν−|n−m|
s ‖ĝm‖

)2
≤ cu(h, ρ)

2
∞
∑

m=−∞
ν−|n−m|
s

n+−1
∑

m=n−

ν−|n−m|
s ‖ĝm‖2

≤ cu(h, ρ)
2 1 + νs
1 − νs

n+−1
∑

m=n−

ν−|n−m|
s ‖ĝm‖2 ≤ cu(h, ρ)

c

ρ2

n+−1
∑

m=n−

ν−|n−m|
s ‖ĝm‖2

which implies by summation over all n ∈ J with (3.58)

‖û‖2
L2,h

=

n+
∑

n=n−

h‖ûn‖2 ≤ ch

ρ2
cu(h, ρ)

n+
∑

n=n−

n+−1
∑

m=n−

ν−|n−m|
s ‖ĝm‖2

≤ ch

ρ2
cu(h, ρ)

n+−1
∑

m=n−

‖ĝm‖2
n+
∑

n=n−

ν−|n−m|
s

≤ ch

ρ2
cu(h, ρ)

1 + νs
1 − νs

n+−1
∑

m=n−

‖ĝm‖2 ≤
( c

ρ2

)2
h

n+−1
∑

m=n−

‖ĝm‖2 =
( c

ρ2

)2
‖ĝm‖2

L2,h
.
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Similarly, (3.59) implies with cv(h, ρ) = (ρ2 max(ρh, 1))−1

‖v̂n‖2 ≤ ccv(h, ρ)
2(1 − νs)

2
[(

n−1
∑

m=n−

νn−m−1
s ‖ĝm‖

)2
+
(

n+−1
∑

m=n

νm−n
s ‖ĝm‖

)2]

≤ ccv(h, ρ)
2(1 − νs)

2
[

n−1
∑

m=−∞
νn−m−1
s

n−1
∑

m=n−

νn−m−1
s ‖ĝm‖2 +

∞
∑

m=n

νm−n
s

n+−1
∑

m=n

νm−n
s ‖ĝm‖2

]

≤ ccv(h, ρ)
2(1 − νs)

2
[ 1

1 − νs

n−1
∑

m=n−

νn−m−1
s ‖ĝm‖2 +

1

1 − νs

n+−1
∑

m=n

νm−n
s ‖ĝm‖2

]

≤ ccv(h, ρ)
2(1 − νs)

[

n−1
∑

m=n−

νn−m−1
s ‖ĝm‖2 +

n+−1
∑

m=n

νm−n
s ‖ĝm‖2

]

which leads to

‖v̂‖2
L2,h

=

n+
∑

n=n−

h‖v̂n‖2 ≤ ccv(h, ρ)
2(1 − νs)h

n+
∑

n=n−

[

n−1
∑

m=n−

νn−m−1
s ‖ĝm‖2 +

n+−1
∑

m=n

νm−n
s ‖ĝm‖2

]

≤ ccv(h, ρ)
2(1 − νs)h

n+−1
∑

m=n−

‖ĝm‖2
[

n+
∑

n=m+1

νn−m−1
s +

m
∑

m=n−

νm−n
s

]

≤ ccv(h, ρ)
2h

n+−1
∑

m=n−

‖ĝm‖2 =
c

ρ4
‖ĝ‖2

L2,h
.

Finally the estimate (3.55) follows from the definition of M̂ in (3.37)

‖M̂ ẑn+(ĝ)‖vec ≤ c

(

(1 + (ρh)2)‖ûn+
‖ + ρh‖v̂n+

‖
ρh‖ûn+

‖ + ‖v̂n+
‖

)

≤ c

(

h2 + h
ρ

+ 1
ρ2

h
ρ

+ 1
ρ2

)

‖ĝ‖∞.

2

Remark 3.11 Note that for ρh < C0 no special structure of the right hand side is needed

for the estimate of the special solution ẑ(ĝ). In this case we can use the dichotomy

constants for L̂ given in Corollary 3.7 directly to obtain with Lemma 2.4 the estimate

‖ẑ(ĝ)‖� ≤ Cβ(h
2 +

h

ρ
)‖ĝ‖�, � ∈ {∞,L2,h},

where Cβ is the constant defined in (2.16) via the dichotomy exponent β wich is defined

in (3.32)–(3.34). Using

Cβ =
2 + α

α
≤ c, for ρ ∈ [

ε

h
,
C0

h
]

Cβ =
2 + αρh

αρh
≤ c

ρh
, for ρ ∈ (C0,

ε

h
)

we obtain for � ∈ {∞,L2,h}

‖ẑ(ĝ)‖� ≤ c(h2 +
h

ρ
)‖ĝ‖� ≤

cC0

ρ2
‖ĝ‖� for ρ ∈ [

ε

h
,
C0

h
]

‖ẑ(ĝ)‖� ≤
C

ρh
(h2 +

h

ρ
)‖ĝ‖� ≤ C(ε+ 1)

1

ρ2
‖ĝ‖� for ρ ∈ (C0,

ε

h
).
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However for ρh > C0 we have Cβ < c wich leads only to

‖ẑ(ĝ)‖� ≤ c(h2 +
h

ρ
)‖ĝ‖�.

Inserting the ansatz for z̃ in (3.8) into the boundary conditions we obtain the following

lemma.

Lemma 3.12 Let s be restricted by (3.13) or (3.14) and assume Hypothesis 3.3. Then

there exists h0, T > 0 such that the following holds. If h < h0 and ±hn± > T then for

each ĝ ∈ SJ(C
m) there exists a unique solution z̃ ∈ SJr(C

2m) of (3.23) which satisfies

the boundary conditions (3.18), i.e.

R(ρ)z = η̂ =

(1
ρ
ηN

ηD

)

. (3.60)

The solution z̃ ∈ SJr(C
2m) can be estimated for � ∈ {L2,h,∞} as follows

‖z̃‖� ≤ c(
1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖�), for s ∈ Ωh

C0
, (3.61)

‖z̃|
Ĵ
‖� ≤ c(

1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖�), for s ∈ Ωh

∞, Ĵ = [n− + 1, . . . , n+]. (3.62)

Proof: Inserting the ansatz (3.47) into the boundary condition (3.60) one obtains

B−(ρ)(ρ− + Φ(n−, n+)ρ+) + B̂−(Φ(n− + 1, n−)ρ− + Φ(n− + 1, n+)ρ+)

+B+(ρ)(Φ(n+, n−)ρ− + ρ+) + B̂+M̂(Φ(n+, n−)ρ− + ρ+)

= η̂ −
(

B−(ρ)ẑn−(ĝ) + B̂−ẑn−+1(ĝ) +B+(ρ)ẑn+
(ĝ) + B̂+

[

M̂ ẑn+
(ĝ) +

(

h2I
h
ρ
I

)

ĝn+

]

)

.

This equation has to be solved for ρ− and ρ+. We can write ρ± = T±ξ±, ξ± ∈ C
m where

T = (T− T+). After rearranging terms we obtain from the previous equation

Rρ(ξ−, ξ+) + ∆Rρ(ξ−, ξ+) = η̂ − Fρ(ĝ) (3.63)

where

Rρ(ξ−, ξ+) = B−(ρ)T−ξ− + B̂−Φ(n− + 1, n−)T−ξ− +B+(ρ)T+ξ+ + B̂+M̂T+ξ+

∆Rρ(ξ−, ξ+) =
(

B−(ρ)Φ(n−, n+) + B̂−Φ(n− + 1, n+)
)

T+ξ+

+ (B+(ρ) + B̂+M̂)Φ(n+, n−)T−ξ−

Fρ(ĝ) =
(

B−(ρ)ẑn−(ĝ) + B̂−ẑn−+1(ĝ) +B+(ρ)ẑn+
(ĝ) + B̂+

[

M̂ ẑn+
(ĝ) +

(

h2I
h
ρ
I

)

ĝn+

]

)

With (3.53) and M̂ = TDT−1 as well as T−1T− =
(

I
0

)

, T−1T+ =
(

0
I

)

and

TD =

(

−I −I
Λu Λs

)(

Ds 0

0 D−1
s

)

=

(

−Ds −D−1
s

ΛuDs ΛsD
−1
s

)
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these terms can be calculated as follows:

Rρ(ξ−, ξ+) =

(1
ρ
PN−

1
2Q

N
−

PD− 0

)

T−ξ− +

(

0 1
2Q

N
−

0 0

)

TD

(

I

0

)

ξ−

+

(1
ρ
PN+

1
2Q

N
+

PD+ 0

)

T+ξ+ +

(

0 1
2Q

N
+

0 0

)

TD

(

0

I

)

ξ+

=

(( 1
ρ
PN−

1
2Q

N
−

PD− 0

)(

−I
Λu

)

+

(

0 1
2Q

N
−

0 0

)(

−I
Λu

)

Ds

)

ξ−

+

((1
ρ
PN+

1
2Q

N
+

PD+ 0

)(

−I
Λs

)

+

(

0 1
2Q

N
+

0 0

)(

−I
Λs

)

D−1
s

)

ξ+

= B
(

ξ−
ξ+

)

where

B =

(−1
ρ
PN− + 1

2Q
N
−Λu(I +Ds) − 1

ρ
PN+ + 1

2Q
N
+Λs(I +D−1

s )

−PD− −PD+

)

= −
(1
ρ
PN− − 1

2Q
N
− (Λu − Λs)

1
ρ
PN+ + 1

2Q
N
+ (Λu − Λs)

PD− PD+

)

.

The last equation follows from Λu(I + Ds) = Λu − Λs wich is implied by (3.43). From

(3.30) we get with z = 1
2ρhe

iθ, δ(θ, z) = 2eiθ(1 + |z|2) 1

2 and the definition of ∆(z) in

(3.8),(3.9)

Λu − Λs =

{

((ρhe2iθ)A−1 + 4I)
1

2 eiθA− 1

2 , if ρh > 0, |θ| ≤ π
4 + δ

3 ,

ρhe2iθA−1(1 + 4
(ρh)2

e−2iθA)
1

2 , if ρh > C0

= δ(θ, z)∆(z).

With these notations the matrix B reads B = SBs where

S =

(

−δ(θ, z)Ir 0

0 −I2m−r

)

, (3.64)

and

Bs =

(

2
ρδ(θ,z)P

N
− +QN−∆(z) 2

ρδ(θ,z)P
N
+ −QN+∆(z)

PD− PD+

)

.

From Hypothesis 3.3 and (3.13), (3.14) we obtain that

B̂s =

(

QN−∆(z) −QN+∆(z)

PD− PD+

)

has a uniformly bounded inverse. From c1 max(1, |z|) ≤ |δ(θ, z)| ≤ c2 max(1, |z|) we find

1

|δ(θ, z)| ≤ cmin
(

1,
1

ρh

)

≤ c. (3.65)

Therefore the difference ‖Bs − B̂s‖ can be estimated by

‖Bs − B̂s‖ ≤ 2

ρ|δ(θ, z)|
(

‖PN− ‖ + ‖PN+ ‖
)

≤ c

ρ
,



86 Chapter 3. Resolvent estimates and approximation of eigenvalues

which tends to zero as ρ→ ∞. Choosing C0 in (3.13) large enough, we obtain ‖B−1‖ ≤ C

for some C > 0.

For the error term ∆Rρ we get

∆Rρ(ξ−, ξ+) = (B−(ρ)Φ(n−, n+) + B̂−Φ(n− + 1, n+))T+ξ+

+ (B+(ρ) + B̂+M̂)Φ(n+, n−)T−ξ−

=
(

(1
ρ
PN−

1
2Q

N
−

PD− 0

)

TD(n−−n+) +

(

0 1
2Q

N
−

0 0

)

TD(n−−n++1)
)

(

0

ξ+

)

+
(

(1
ρ
PN+

1
2Q

N
+

PD+ 0

)

TD(n+−n−) +

(

0 1
2Q

N
+

0 0

)

TD(n+−n−+1)
)

(

ξ−
0

)

=

(1
ρ
PN−

1
2Q

N
−

PD− 0

)(

−I
Λs

)

D(n+−n−)
s ξ+ +

(

0 1
2Q

N
−

0 0

)(

−I
Λs

)

D(n+−n−−1)
s ξ+

+

(1
ρ
PN+

1
2Q

N
+

PD+ 0

)(

−I
Λu

)

D(n+−n−)
s ξ− +

(

0 1
2Q

N
+

0 0

)(

−I
Λu

)

D(n+−n−+1)
s ξ−

= ∆B
(

ξ−
ξ+

)

where

∆B = B
(

0 D
(n+−n−)
s

D
(n+−n−)
s 0

)

= SBs
(

0 D
(n+−n−)
s

D
(n+−n−)
s 0

)

.

Here S denotes the scaling matrix defined in (3.64). Furthermore ν
(n+−n−)
s vanishes as

n+ − n− → ∞ and

‖Bs‖ ≤ c(
1

ρ|δ(θ, z)| + ‖∆(z)‖) ≤ c(
1

ρ
+ C) ≤ c

implies that ∆Bs = S−1∆B vanishes as n+ − n− → ∞.

The right hand side of (3.63) can be rewritten as follows:

Fρ(ĝ) =

(1
ρ
PN−

1
2Q

N
−

PD− 0

)

ẑn−(ĝ) +

(

0 1
2Q

N
−

0 0

)

ẑn−+1(ĝ) +

(1
ρ
PN+

1
2Q

N
+

PD+ 0

)

ẑn+
(ĝ)

+

(

0 1
2Q

N
+

0 0

)

(

M̂ ẑn+
(ĝ) +

(

h2I
h
ρ
I

)

ĝn+

)

=

(1
ρ
PN−

1
2Q

N
−

PD− 0

)(

ûn−
v̂n−

)

+

(

0 1
2Q

N
−

0 0

)(

ûn−+1

v̂n−+1

)

+

(1
ρ
PN+

1
2Q

N
+

PD+ 0

)(

ûn+

v̂n+

)

+

(

0 1
2Q

N
+

0 0

)

[

(

γu
γv

)

+

(

h2I
h
ρ
I

)

ĝn+

]

=

(1
ρ
PN− ûn− + 1

2Q
N
− (v̂n− + v̂n−+1) + 1

2Q
N
+ (γv + h

ρ
ĝn+

) + 1
ρ
PN+ ûn+

PD− ûn− + PD+ ûn+

)

where we used the notation M̂ ẑn+
(ĝ) = (γu, γv)

T . Using (3.56), (3.59), (3.55) we obtain

‖Fρ(ĝ)‖vec ≤ c

(

1
ρ2

+ h
ρ

1
ρ2

)

‖ĝ‖∞.
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Then the scaled version of Fρ(ĝ) can be estimated by
∥

∥

∥

∥

∥

(

1
δ(θ,z)Ir 0

0 I2m−r

)

Fρ(ĝ)

∥

∥

∥

∥

∥

≤ c
(

min(1,
1

ρh
)
( 1

ρ2
+
h

ρ

)

+
1

ρ2

)

‖ĝ‖∞ ≤ c

ρ2
‖ĝ‖∞.

Equation (3.63) is equivalent to

(Bs + ∆Bs)
(

ξ−
ξ+

)

=

(

− 1
ρδ(θ,z)η

N

ηD

)

+

(

1
δ(θ,z)Ir 0

0 I2m−r

)

Fρ(ĝ),

thus we can estimate the solution (ξ−, ξ+) using (3.65) by

‖(ξ−, ξ+)‖ ≤ c
(1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖∞

)

. (3.66)

The homogenous solution zhom = (uhom, vhom) can be estimated using (3.52) as follows:

The estimates

‖Φ(n, n−)ρ−‖vec = ‖Φ(n, n−)T−ξ−‖vec ≤
(

νs
1
ρh

(1 − νs)

)

νn−n−−1
s ‖ξ−‖,

‖Φ(n, n+)ρ+‖vec = ‖Φ(n, n+)T+ξ+‖vec ≤
(

1
1
ρh

(1 − νs)

)

νn+−n
s ‖ξ+‖

(3.67)

imply for all n ∈ J

‖uhom
n ‖ ≤ c(νn−n−

s ‖ξ−‖ + νn+−n
s ‖ξ−‖) ≤ c(‖ξ+‖ + ‖ξ+‖) (3.68)

and for n ∈ Ĵ = [n− + 1, n+]

‖vhom
n ‖ ≤ c

1 − νs
ρh

(

νn−n−−1
s ‖ξ−‖ + νn+−n

s ‖ξ+‖
)

≤ c(‖ξ−‖ + ‖ξ+‖). (3.69)

From (3.38)–(3.40) and (3.26) we obtain

‖vhom
n− ‖ ≤ c

1 − νs
ρh

(

ν−1
s ‖ξ−‖ + νn+−n−

s ‖ξ+‖
)

≤ c(max(1, ρh)‖ξ−‖ + ‖ξ+‖). (3.70)

The estimates (3.68) and (3.54) lead for z̃n = (ũn, ṽn) defined in (3.47) for all n ∈ J to

‖ũn‖ ≤ ‖uhom
n ‖ + ‖ẑ‖∞ ≤ c

(

‖ξ−‖ + ‖ξ+‖ +
1

ρ2
‖ĝ‖∞

)

≤ c
(1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖∞

)

and for n ∈ Ĵ = [n− + 1, n+]

‖ṽn‖ ≤ ‖vhom
n ‖ + ‖ẑ‖∞ ≤ c(‖ξ−‖ + ‖ξ+‖ +

1

ρ2
‖ĝ‖∞)

≤ c
(1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖∞

)

.

Finally 1
ρh

(ν−1
s − 1) ≤ cmax(1, ρh) implies with (3.70)

‖ṽn−‖ ≤ ‖vhom
n− ‖ + ‖ẑ‖∞ ≤ cmax(1, ρh)

(1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖∞

)
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and from

∥

∥

∥
M̂zhom

n+

∥

∥

∥

vec
≤ c
(

(

(ρh)2ν
n+−n−
s

(1 − νs)ν
n+−n−−1
s

)

‖ξ−‖ +

(

(ρh)2ν
n+−n−
s

(1 − νs)ν
n+−n−
s

)

‖ξ+‖
)

and with n+ − n− > 1 end up with

‖M̂zhom
n+ ‖ ≤ c(‖ξ−‖ + ‖ξ+‖). (3.71)

Together with (3.55) we obtain (3.75) for � = ∞.

By (3.39),(3.40) we obtain for ρ ∈ (C0,
C0

h
] the estimate h

1−ν2
s
< c as well as h

1−ν2
s
< h for

ρh > C0 by (3.40). This leads to

‖uhom‖2

L2,h
≤ c
(

n+
∑

n=n−

hν2(n−n−)
s ‖ξ−‖2 +

n+
∑

n=n−

hν2(n+−n)
s ‖ξ+‖2)

≤ c
h

1 − ν2
s

(‖ξ−‖2 + ‖ξ+‖2) ≤ c(‖ξ−‖2 + ‖ξ+‖2).

(3.72)

In the restricted intervall Ĵ = [n− + 1, n+] we obtain in the same way

‖vhom
|
Ĵ

‖2

L2,h

≤ c
(

n+
∑

n=n−+1

h
(1 − νs)

2

(ρh)2
ν2(n−n−−1)‖ξ−‖2 +

n+
∑

n=n−+1

hν2(n+−n)‖ξ+‖2), (3.73)

≤ c
(

‖ξ−‖2 + ‖ξ+‖2)

and with (3.26) we arrive at

‖vhom‖2

L2,h
≤ ch

( 1 − νs
(ρh)2ν2

s (1 + νs)
‖ξ−‖2 +

1

1 − ν2
s

‖ξ+‖2) (3.74)

≤ c
(

max(1, (ρh)2)‖ξ−‖2 + ‖ξ+‖2).

Using (3.54),(3.55), (3.72),(3.74) and (3.66) we obtain (3.61) with ρh < C0

‖z̃‖L2,h
≤ ‖ẑ‖L2,h

+ ‖zhom‖L2,h
+
√
h(‖M̂zhom

n+
‖ + ‖M̂ ẑn+

‖)

≤ c(
1

ρ2
‖ĝ‖ + max(1, ρh)‖ξ−‖ + ‖ξ+‖ + (h2 +

h

ρ
+

1

ρ2
)‖ĝ‖L2,h

)

≤ c
(1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖L2,h

)

.

In the same way (3.54),(3.72),(3.73) and (3.66) lead to (3.62). 2

Remark 3.13 The restriction to Ĵ in (3.62) is necessary, since from (3.55),(3.70) and

(3.71) we obtain for s ∈ Ωh
∞ only

‖z̃‖� ≤ cmax(1, (ρh)2)(
1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖�). (3.75)

From the above estimates the invertibility of (3.20),(3.18) now follows from a regular

perturbation argument.
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Lemma 3.14 Let A > 0 be diagonalizable and assume Hypothesis 3.3 Then there exist

ε, C0, h0, T > 0, such that for s restricted by (3.13) or (3.14) and h < h0, ±n±h > T

the following holds. For each ĝ ∈ SJ(C
m), there exists a unique solution z ∈ SJr(C

m) of

(3.20), (3.18) which can be estimated for � ∈ {L2,h,∞} in the following way

‖z‖� ≤ c(
1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖�), for s ∈ Ωh

C0
(3.76)

‖z|
Ĵ
‖� ≤ c(

1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖�), for s ∈ Ωh

∞, Ĵ = [n− + 1, n+]. (3.77)

Proof: Write (3.20) as

zn+1 − M̂(s, ρ)zn =

(

h2I
h
ρ
I

)

E+
n
−1
ĝn + (Mn(s, ρ) − M̂(s, ρ))zn, n ∈ J

and define the space

S =
{

(r̂, η̂) ∈ SJr(C
2m) × R

2m : r̂n =

(

h2I
h
ρ
I

)

ĝn, n ∈ Jr, ĝ ∈ SJr(C
m)
}

equipped with the norm

‖(r̂, η̂)‖∗� =
1

ρ
‖ηN‖ + ‖ηD‖ +

1

ρ2
‖ĝ‖�, η̂ =

(1
ρ
ηN

ηD

)

, ηN ∈ R
m, ηD ∈ R

2m−r.

Then Lemma 3.12 implies that the operator Λ̂(ρ) : SJr → S defined by

Λ̂ =

(

L̂(s, ρ)

R(ρ)

)

where L̂(s, ρ), R(ρ) are defined in (3.24), (3.18), is nonsingular for s ∈ Ωh
C0

∪ Ωh
∞ with a

uniform bound for the inverse for s ∈ Ωh
C0

. Using (3.22), (3.25) we obtain for z = (u, v)

(Mn(s, ρ) − M̂(s, ρ))zn =

(

h2I
h
ρ
I

)

[

(s(E+
n
−1 −A−1) − Cn)un + (

ρ

h
(E+

n
−1
E−
n − I))vn

]

.

Combinining this with the error estimate

1

ρ2
‖(s(E+

n
−1 −A−1) − Cn)un + (

ρ

h
(E+

n
−1
E−
n − I))vn‖ ≤ c(h+

1

ρ2
+

1

ρ
)‖zn‖

implies for ρ > C0

∥

∥

∥

∥

(

L̃(s, ρ) − L̂(s, ρ)

0

)(

r̂

η̂

)∥

∥

∥

∥

∗

�
≤ c(h+

1

ρ
)‖ĝ‖�.

Taking h small and ρ large and using ‖E+
n
−1‖ ≤ c we find that the system (3.20), (3.18)

has a unique solution for s ∈ Ωh
C0

which can be estimated by (3.76). In a similar way we

obtain the existence of a unique solution of (3.20),(3.18) for s ∈ Ωh
∞ which satisfies the

estimate (3.77). 2

The estimate (3.15),(3.16) now follows for � ∈ {L2,h,∞} directly with ‖δ−u‖� = ‖δ+u‖�
which implies

‖u‖2
� +

1

ρ2
‖δ+u‖2

� ≤ c(‖u‖2
� + ‖v‖2

�).
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3.1.3 Eigenvalues of finite multiplicity

The aim of this section is an approximation theorem for simple, isolated eigenvalues.

Let (ū, λ̄) be the solution of (2.1) and φ ∈ H2(R,Cm) an eigenfunction of Λ which corre-

sponds to the simple eigenvalue σ, i.e. (u, s) = (φ, σ) solves

Au′′ +B(·)u′ + (C(·) − sI)u = 0, x ∈ R.

The corresponding discrete boundary value problem on the grid GJ,h,x0
reads

0 = A(δ+δ−u)n +Bn(δ0u)n + (Cn − sI)un, n ∈ J (3.78)

with homogenous boundary conditions

0 = P−un− +Q−δ0un− + P+un+
+Q+δ0un+

(3.79)

and a linear phase condition

1 = h

n+
∑

n=n−

ûHn un = 〈û|J , u〉h (3.80)

where û ∈ Eρ(R → C
m) is a given normalizing function which satisfies |〈û, φ〉| > 0 as well

as 〈û, φ〉 = 1.

Here we can drop the eigenvalue condition (EC) and consider unstable eigenvalues as well.

Theorem 3.15 Consider the boundary value problem (3.78), (3.79) and assume, that for

P±, Q± the solvability condition (3.3) holds with s = σ.

Then there exist K > 0, ρ > 0, T > 0, h0 > 0, such that for h < h0 and ±hn± >

T there exists a unique solution (ṽ, s̃) of the boundary value problem (3.78)-(3.80) in a

neigborhood Bρ(φ, σ) := {(v, s) ∈ SZ(Cm) × C : ‖φ|J − v‖∞ + |σ − s| < ρ}, which satifies

for � ∈ {∞,L2,h} the following estimate

‖φ|J − ṽ‖
2,� + |σ − s̃| ≤ K(h2 + e−αT ). (3.81)

Proof: Similar to the proof of Theorem 2.21 we apply the fixed point Theorem A.3 to the

operator F : SJe(C
m) × C → SJ(C

m) × C
2m × C

F (u, s) =





(A(δ+δ−u)n +Bn(δ0u)n + (Cn − sI)un)n∈J
P−un− +Q−δ0un− + P+un+

+Q+δ0un+

〈û, u〉h − 1



 .

Therefore we have to discuss for given (ĝ, η, ω) ∈ SJ(C
m) × C

2m × C solutions of the

equation

DF (φ|J , σ)(u, λ) = (ĝ, η, ω), (3.82)

where the derivative of F at (φ|J , σ) ∈ SJ(C
m) × C reads

DF (φ|J , σ)(u, λ) =





(A(δ+δ−u)n +Bn(δ0u)n + (Cn − σI)un − φnλ)n∈J
P−un− +Q−δ0un− + P+un+

+Q+δ0un+

〈û, u〉h



 .
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By transformation of (3.82) to first order using zn = (un, δ−un) = (un, vn) we obtain the

equivalent equation for the operator Λ̃ : SJr(C
2m) × C → SJ(C

2m) × C
2m × C

Λ̃(z, λ) = (r̂, η, ω), (3.83)

where z̄ = (φ|J , δ−φ|J ) and

Λ̃(z, λ) =





L̃(z̄, σ)(z, λ)

P−un− +Q−wn− + P+un+
+Q+wn+

Π̂(z)





with

wn = (δ0u)n =
1

2
(vn+1 + vn), r̂n =

(

0

hĝn

)

, Π̂(z) = 〈û, u〉h

and

L̃(z̄, σ)(z, λ) = (Nnzn+1 −Kn(σ)zn − Vn(z̄)λ)
n∈Ĵ (3.84)

where

Nn =

(

I −hI
0 E+

n

)

, Kn(s) =

(

I 0

h(sI − Cn) E−
n

)

, Wn(z) =

(

0

hun

)

and E±
n are defined in (3.5).

As before we compare this to a corresponding system

Λ̂i(z, λ) =





(N̂zn+1 − K̂nzn − Ŵnλ)n∈J
(P− Q−)zn− + (P+ Q+)zn+

Π̂(z)





where

K̂n =

(

I hI

h(σI − Ĉn) A− hB̂n

)

, Ŵn =

(

0

hφn

)

and N̂ , Ĉn, B̂n are defined in (2.68). As in the previous section the estimates

‖Nn − N̂‖ ≤ Ch

and

‖K̂n −Kn +Nn − N̂‖ ≤ Ch (h2 + e−αT )

hold. With the equality Ŵn = Wn(z̄) this leads to

‖(Λ̃ − Λi)(z, λ)‖∗∞ ≤ %(h, T )(‖z‖1,∞ + |λ|)

where limh→0,T→∞ %(h, T ) = 0. The equation (3.83) is equivalent to

zn+1 − M̂nzn − N̂−1Ŵnλ = N̂−1r̂n, n ∈ J

(P− Q−)zn− + (P+ Q+)zn+
= η

Π̂(z) = ω

where M̂n = S(xn+1, xn) and S is the solution operator corresponding to the linear differ-

ential operator Lσ given by (cf. (A.20)).

Lσz = z′ −M(·, σ)z, with M(x, σ) =

(

0 I

A−1(σI − C(x)) −A−1B(x)

)
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The spectral condition (SC) implies that these operators have exponential dichotomies on

R
±. From the simplicity of the eigenvalue σ follows N (Λ − σI) = span{φ}. As in the

proof of Theorem 2.21, this implies the nondegeneracy Hypothesis 2.13. By the definition

of Π̂ (cf. (3.80)) and |〈û, φ〉| > 0 we obtain directly that Hypothesis 2.12 is satisfied.

Now Lemma 2.14 yields the existence of a solution (v, s) of (3.82) which can be estimated

by (2.38). As in the proof of Theorem 2.21 this implies that DF (φ|J , σ)) is invertible as

well with

‖DF (φ|J , σ)(r, η, ω)‖
2,∞ ≤ c(‖g‖∞ + ‖η‖ + |ω|).

Using the same arguments as in the proof of Theorem 3.15 we arrive at (3.81). 2

3.2 Essential spectrum

In this section we state some results about the approximation of the essential spectrum

for the continuous and the discrete case.

In the continuous case, the essential spectrum can be controlled by the constant coefficient

operators L±. For the corresponding problem on a finite inverval, the choice of boundary

conditions determines which sort of spectrum is approximated for increasing intervals

J → R. As has been shown in [50] (see [51] for a short overview over the results), for

periodic boundary conditions the essential spectrum is approximated whereas separated

boundary conditions lead to the approximaton of the so called absolute spectrum.

3.2.1 Influence of discretization

Similar to (1.2) in the continuous case, the essential spectrum is determined from the

constant coefficient operators obtained by letting n → ±∞ in the coefficient. This is a

general result for discrete operators which has been shown in [10] for the scalar case. We

state a version of Theorem 4.3 in [10] where we use the result of Corollary 4.10 in [10] for

s1, s2 > 0.

Theorem 3.16 Let Λh : SZ(R) → SZ(R) be given by

(Λhu)n =

s2
∑

k=−s1
αknun,

where αkn ∈ R for k = 0, 1, ..., s1 + s2, s1, s2 > 0, n ∈ Z and

lim
n→±∞

αkn = αk±.

Define the curves

Σ± =
{

s ∈ C : s =

s2
∑

k=−s1
e−ikωαk±, ω ∈ R

}

and denote by I± the interior of Σ± (i.e. C \ I is the open connected component of

C \ Σ− ∪ Σ+ which is unbounded).
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Then the essential spectrum σess(Λ
h) satisfies

Σ− ∪ Σ+ ⊂ σess(Λ
h) ⊂ Σ− ∪ Σ+ ∪ I− ∪ I+.

Note, that the proof proceeds along the same lines as the proof of Theorem 1.2 (Thm. A.2

in [23]). Consider the discrete operators Λh : SZ → SZ given by

(Λhu)n = a(δ−δ+u)n + bn(δ0u)n + cnun (3.85)

where a ∈ R, b, c ∈ SZ(R). Applying Theorem 3.16 to Λh we obtain with s1 = s2 = 1 and

α±1
n =

1

h2
a± 1

h
bn, α0

n = − 2

h2
a+ bn,

the following Corollary.

Corollary 3.17 Consider the operators Λh in L2,h or SZ given by (3.85) and define

Σ± =
{

s ∈ C : s = 2
h2 (cos(ω) − 1)a+ i

h
sin(ω)b± + c±, ω ∈ R

}

Then the essential spectrum of Λh satisfies

Σ− ∪ Σ+ ⊂ σess(Λ
h) ⊂ Σ− ∪ Σ+ ∪ {interior of Σ−} ∪ {interior of Σ+}

.

Similar to Theorem 1.2 this result can be adapted to the matrix case.

Lemma 3.18 Consider the operators Λh in L2,h or SZ defined by

(Λhu)n = A(δ−δ+u)n +Bn(δ0u)n + Cnun, n ∈ Z, (3.86)

y where Bn, Cn are given in (2.67) and define

Σ± =
{

s ∈ C : det
(

2
h2 (cos(ω) − 1)A+ i

h
sin(ω)B± + C± − sI

)

= 0, ω ∈ R
}

.

Denote the interior of C \ Σ− ∪ Σ+ by I (i.e. C \ I is the open connected component of

C \ Σ− ∪ Σ+ which is unbounded). Then the essential spectrum of Λh satisfies

Σ− ∪ Σ+ ⊂ σess(Λ
h) ⊂ I.

3.2.2 Influence of boundary conditions in the continuous case

The numerical computations in Chapter 5 suggest that the eigenvalues of the restriction

Λh|J of the discrete operator Λh on the whole lattice Z approximate in a certain sense

the essential spectrum σess(Λ
h) as the interval size tends to infinity. This is observed for

periodic boundary conditions whereas for Dirichlet or Neumann boundary conditions the

eigenvalues of Λh|J change dramatically.

A first step to understand this phenomenon is to recall the results concerning the influence

of the boundary conditions on the spectrum of the operator in the continuous case. These

have been given in [50], where it has been clarified in which way the choice of bound-

ary conditions influences the essential spectrum. For periodic boundary conditions the



94 Chapter 3. Resolvent estimates and approximation of eigenvalues

essential spectrum is approximated, whereas for separated boundary conditions, such as

Dirichlet or Neumann conditions, the so called absolute spectrum is approximated.

Consider the restriction of the operator Λ which has been defined in (1.7) to an interval

J = [−T, T ] given by

ΛJv =





Av′′ +B(·)v′ + C(·)v, x ∈ J

(P−Q−)

(

v(x−)

v′(x−)

)

+ (P+Q+)

(

v(x+)

v′(x+)

)



 . (3.87)

In order to state the corresponding theorems of [50], we need some more definitions:

Definition 3.19 (Absolute spectrum) Denote the 2m solutions of the quadratic eigen-

value problems (1.6) at s = 0 by ν±i , i = 1, . . . , 2m, i.e. solutions of

det(λ2A+ λB± + C± − sI) = 0

Sort them by real part: Re (ν±1 ) ≤ . . . ≤ Re (ν±2m). Then each s ∈ C where Re (ν±m) =

Re (ν±m+1) belongs to the absolute spectrum σabs of L.

The absolute spectrum plays a role in the case of separated boundary conditions.

Definition 3.20 (Separated boundary conditions) Boundary conditions of the form

B−zn− +B+zn+
= η

are called separated if

B± =

(

BI
±

BII
±

)

∈ R
2m,2m, and BI

− = BII
+ = 0 ∈ R

m,m.

Neumann and Dirichlet boundary conditions are separated boundary conditions.

The definition of essential spectrum used in [51], [50] differs slightly from our definition:

Instead of considering the spectrum of Λ directly, they use the so called B-spectrum of

the family of corresponding first order operators

L(s)z = z′ +M(·, s)z, x ∈ R, M : R × C → C
2m,2m (3.88)

with boundary conditions

B−z(x−) +B+z(x+) = η, B± = (P± Q±) ∈ R
2m,2m

which is given by (see Definition 3.2 in [50]):

Definition 3.21 The spectrum Σ of the family of operators {L(s)}s∈C consists of those

points s ∈ C where L(s) : H2 → L2 is not invertible.

The point spectrum Σpt consists of those s ∈ Σ for which L(s) is a Fredholm operator of

index zero.

The essential spectrum is defined as Σess = Σ \ Σpt.
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One can show that s /∈ Σess if, and only if the operator L(s) has exponential dichtomies

on R
±. As has been discussed in [51], [50], the spectrum Σ of the family L(s) coincides

with the spectrum σ of Λ. Note, that the definition of Σpt is slightly different from σpt:

By definition Σpt consists of all points where L(s) is Fredholm of index 0 whereas σpt

consists of all isolated eigenvalues of Λ of finite multiplicity. Therefore Σess and σess are

different as well (cf. Definition A.1). This difference is removed by Hypothesis 3 in [50]

which requires that all eigenvalues in C \Σess are isolated eigenvalues of finite multiplicity.

This will be our standing hypothesis for the rest of the section. In order to formulate the

convergence results one more definition is necessary for the family of first order operators

corresponding to ΛJ given by

LJ(s)z = z′ +M(·, s)z, x ∈ J, M : J × C → C
2m,2m. (3.89)

The extrapolated essential spectral set is introduced in [50], Definition 5.7 as follows.

Definition 3.22 (Extrapolated essential spectral set) The extrapolated essential spec-

tral set of a family of operators {LJ(s)} is defined as the complement of all points s ∈ C

for which exist a neighbourhood U(s), a minimal interval length T0 > 0 and a maximal

order l ∈ N such that {LJ(s)} has eigenvalues at most of order l in U(s) for T ≥ T0, or

in short notation:

Σext = C \ {s : ∃U(s) ⊂ C , l ∈ N, T0 > 0 such that {LJ(s)} has eigenvalues at most of

order l in U(s) for T ≥ T0.}

The definition in [50] uses the Evans function [2], but as shown in Lemma 4.2 in [50]

the zeros of the Evans function correspond to the eigenvalues of LJ(s). A more heuristic

description of Σess is the following:

The extrapolated essential spectral set Σext consists of those points in C where infinitely

many eigenvalues of LJ accumulate as the interval size tends to infinity.

The main theorems in [50] now state the following under some additional hypotheses,

which are satisfied for Λ:

The eigenvalues of the restriction of Λ to the finite interval J with periodic boundary

conditions accumulate at the essential spectrum of Λ as T tends to infinity (Proposition

4 in [50]), i.e.Σper
ext ⊂ Σess .

If one additional reducibility condition (Hypothesis 6 in [50]) is satisfied, then equality

holds, i.e. Σper
ext = Σess.

An analogous result, Proposition 5 in [50], holds for separated boundary conditions. The

eigenvalues of the restriction of Λ on the finite interval J with separated boundary condi-

tions accumulate at the absolute spectrum of Λ as T tends to infinity, i.e. Σsep
ext ⊂ Σabs.

If again a reducibility condition (Hypothesis 8 in [50]) holds, then Theorem 5 in [50] states

Σsep
ext = Σabs.

These results, which clarify the influence of the boundary conditions can be observed

in the numerical computations. In the following we give an example how the essential

and the absolute spectrum can be calculated for a given PDE and discuss later how the

above theorems should be transferred to the discrete case. This discussion will be mostly

heuristic, but helps to understand some of the spectral pictures in Chapter 5.
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Example 3.23 The essential spectrum of a scalar linear operator

Λu = u′′ + λ̄u′ + f ′(ū)u, f : R → R

is bounded by a parabola in the left half plane: Theorem 1.2 implies that that the essential

spectrum is located by the following curves parametrized by ω ∈ R

s±(ω) = −ω2 + iλ̄ω + f ′(u±). (3.90)

which are parabolas over the imaginary axis. The essential spectrum σess of Λ lies to the

left of the rightmost of the curves s−, s+. Hence the spectral gap between zero and the

essential spectrum is at least min(f ′(u−), f ′(u+)).

For the Nagumo equation, where f(u) = u(1− u)(u−µ), µ ∈ (0, 1
2) (see (5.15) in Chapter

5) we obtain with‘ f ′(u−) = −µ and f ′(u+) = µ − 1 that σess is bounded by s− and the

spectral gap in this case is 1
4 for µ = 1

4 . This is the parameter value used in the numerical

computations.

The linearized operators of first order L(s) read

L(s)z = z′ −M(·, s)z, where M(x, s) =

(

0 1

s− f ′(ū(x)) −λ̄

)

and the eigenvalues of M±(s) = limx→∞M(·, s) are given by

ν+
±(s) = − λ̄

2
±
√

λ̄2

4
+ s− f ′(u+), ν−±(s) = − λ̄

2
±
√

λ̄2

4
+ s− f ′(u−).

The absolute spectrum which has been defined in Definition 3.19, consists of points s ∈ C

where Re ν+
− = Re ν+

+ and Re ν−− = Re ν−+ , i.e. were

λ̄2

4
+ s− f ′(u±) < 0.

In the Nagumo case, this gives with λ̄ = −
√

2
4

σabs = (−∞,max(f ′(u−), f ′(u+)) − λ̄2

4
].

Thus from λ̄ 6= 0 the essential and the absolute spectrum differ. For the Nagumo system

with µ = 1
4 this reads σabs = (−∞,− 9

32 ].

Corollary 3.17 yields that the essential spectrum of the discrete operator on the whole line

is enclosed by shifted ellipses with semi-major axis of size 2
h2 and semi-minor axis of size

λ̄
h
. These are parametrized by

σ−(ω) =
2

h2
(cos(ω) − 1) + λ̄

i

h
sin(ω) − µ

σ+(ω) =
2

h2
(cos(ω) − 1) + λ̄

i

h
sin(ω) + µ− 1.

The observations in the previous section lead to the following assumption (which we will

not formulate as a Theorem, since we have no proof)

The eigenvalues of the linear discrete operators Λh
J : SJe(R

m) → SJ(R) given by

ΛhJu = (A(δ+δ−u)n +Bn(δ0u)n + Cnun)n∈J

subject to periodic boundary conditions accumulate at the essential spectrum of the op-

erator Λh defined on the whole lattice Z (see (3.86)).
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Chapter 4

Stability of the discretized system

In this Chapter we analyze stability of traveling wave solutions for a discretized version of

the frozen system from Chapter 1 (cf. equation (4.2)). In particular, we show asymptotic

stability of the steady state that has been shown to exist in Chapter 2. This is an overall

justification of the freezing method and is in accordance with the numerical results in

Chapter 5.

Here we have to take into account the additional boundary conditions which constitute

additional algebraic conditions besides the phase condition. Thus we cannot follow the

lines of Chapter 1 directly, rather the Dirichlet part of the boundary conditions and the

phase condition are both used to reduce the DAE to an ODE. We transform the system

with equilibrium (ũ, λ̃), to a semilinear DAE with equilibrium u ≡ 0, λ = 0. The solution

of this equation can be estimated (uniformly in h and J) using the solution of a reduced

ODE. As in Chapter 1 we obtain exponential estimates for the solution operator of the

corresponding linear equation using its integral representation and resolvent estimates

which follow from the resolvent estimates of the previous chapter.

4.1 The nonlinear time dependent system

Consider the spatial discretization of the time dependent PDE

ut = Auxx + λux + f(u, ux) (4.1)

on the grid GJ,h,x0
with finite differences, given by

u′n = A(δ+δ−u)n + λ(δ0u)n + f(un, δ0un), n ∈ J, t > 0 (4.2)

η = Ru (4.3)

0 = 〈δ0û, u|J − û|J 〉h. (4.4)

Here û ∈ Eα(R,Rm) is a given reference function which satisfies Hypothesis 2.18. As in

Chapter 2, the boundary conditions are assumed to be linear, i.e. R : SJe(R
m) → R

2m

reads

Ru = P−un− +Q−(δ0u)n− + P+un+
+Q+(δ0un+

), P±, Q± ∈ R
2m,m. (4.5)
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We also need Hypothesis 3.3 for the boundary conditions, since we use the resolvent

estimates of Chapter 3.

Consider a general DAE of the form

(πu)′ = fdiff(u, λ), u(0) = u0, λ(0) = λ0

0 = falg(u, λ)
(4.6)

where fdiff : SJe(R
m) × R → SJ(R

m), falg : SJe(R
m) × R → R

2m+1, and π : SJe(R
m) →

SJ(R
m) denotes the restriction to J defined by

π : (un−−1, . . . , un++1) 7→ (un− , . . . , un+
). (4.7)

The proper notion of a solution of (4.6) is the following (cf. Definition 1.11).

Definition 4.1 A function (u, λ) : [0, τ) → SJe(R
m) × R is called a solution of (4.6) in

(0, τ), τ ∈ R ∪ {∞} if

1. fdiff(u(·), λ(·)) : [0, τ) → SJ is continuous

2. (u, λ) : [0, τ) → SJe(R
m) × R is continuous

3. (πu)′(t) exists, (πu)′(t) = fdiff(u(t), λ(t)) ∈ SJ(R
m) for t ∈ (0, τ),

and (u(0), λ(0)) = (u0, λ0)

4. falg(u(t), λ(t)) = 0 ∀t ∈ [0, τ).

Assume that (ũ, λ̃) is an equilibrium of (4.6), i.e. 0 = fdiff(ũ, λ̃),0 = falg(ũ, λ̃). As in

Section 1.2 we are interested in the stability of (ũ, λ̃) as a stationary solution of (4.2)–(4.4).

This system is a differential algebraic equation (DAE) of differentiation index 2 [22] (cf.

Section 5.1). In particular, initial values have to satisfy additional consistency conditions,

which are defined as follows: Denoting the boundary conditions which constitute the

Neumann and the Dirichlet part by

RNu = PN− un− +QN− δ0un− + PN+ un+
+QN+ δ0un+

,

RDu = PD− un− + PD+ un+
.

(4.8)

equation (4.3) is split into one part that does not depend on the external variables

un−−1, un++1 and one part depending on u|J . Then (4.3) reads

RNu = ηN , (4.9)

RDπu = ηD. (4.10)

The initial values u0, λ0 are then called consistent if they solve the algebraic constraints

(4.3),(4.4) as well as the equations which are obtained by differentiating (4.10),(4.4) w.r.t.

time t and inserting (4.2):

RD(Aδ+δ−u+ λ δ0u+ f(u, δ0u)) = 0 (4.11)

〈ψ̃, Aδ+δ−u+ λ δ0u+ f(u, δ0u)〉h = 0. (4.12)

The main result of this chapter is the following stability theorem, which is the discrete

analog of Theorem 1.13. Recall that the system (4.2)–(4.4) has a stationary solution (ũ, λ̃)

close to the original wave by Theorem 2.21.
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Theorem 4.2 Assume that the linear operator Λ defined in (1.7) and the nonlinearity

f satisfy the conditions of Theorem 1.13. Assume further that Hypotheses 3.3, 3.1, 2.18

hold.

Then there exist h0 > 0, T > 0 such that for h < h0, ∓hn± > T the stationary solution

(ũ, λ̃) ∈ SJ(R
m) × R of (4.2)–(4.4) is asymptotically stable.

More precisely, there exist K, ν, ρ, h0, T > 0 such that for h < h0, ∓hn± > T the following

statements hold for � = ∞ and also for � = L2,h if additonally e−αT < c
√
h for some

c > 0, where α denotes the constant in Hypothesis 2.18:

For each consistent (u0, λ0) ∈ SJe(R
m) × R (i.e. (4.3), (4.4), (4.11), (4.12) are satisfied)

with ‖u0 − ũ‖1,� + |λ0 − λ̃| ≤ ρ, there exists a unique solution (u, λ) of (4.2)–(4.4) with

initial condition (u(0), λ(0)) = (u0, λ0) which obeys the estimate

‖u(t) − ũ‖1,� + |λ(t) − λ̃| ≤ Ke−νt(‖u0 − ũ‖1,� + |λ0 − λ̃|). (4.13)

Remark 4.3 Combining the estimate (4.13) with the approximation result (2.61), we

obtain for h > h0,±n± > T and a sufficiently large τ0 > 0:

‖u(t) − ū‖1,∞ + |λ(t) − λ̄| ≤ K(e−νt + h2 + e−αhmin{−n−,n+}) ∀t > τ0.

Remark 4.4 We will show later that if one prescribes the initial value u0 on the grid J

and the so called essential conditions (4.10),(4.4) are satisfied, then the external points

u0
n−−1, u

0
n++1 of u0 and the initial parameter λ0 can be chosen in such a way, that (u0, λ0)

solves (4.3), (4.4), (4.11), (4.12).

The system (4.2)–(4.4) has the special structure of an inital boundary value problem with

an additional constraint. Therefore we will reduce the algebraic constraints directly and

try to match the semigroup approach developed in Chapter 1 as far as possible, using the

resolvent estimates which have been proven in Chapter 3. The proof of Theorem 4.2 will

proceed along the same lines as the proof of Theorem 1.13.

Note that the standard (P)DAE methods [21], [22] either rely on the transformation of

the DAE into Weierstrass form or deal with general PDAEs [17], [34]. In the latter case it

is difficult to check the abstract conditions for the special system considered here, whereas

the transformation into Weierstrass form needs detailed information about the spectrum.

But we have detailed information about the resolvent only. For a rather up-to-date account

on DAE theory see [45].

As in Chapter 1 we transform the system (4.2)–(4.4) into a semilinear equation which has

0 as a stationary solution and prove a stability result for this system.

4.2 The semilinear equation

Let (ũ, λ̃) be a solution of the boundary value problem (4.2)-(4.4). Inserting the ansatz

u = ũ+ v, λ = λ̃+ µ into (4.2) we obtain

v′n = A(δ+δ−v)n +Bn(δ0v)n + Cnvn + (δ0ũ)nµ+ ϕ̂n(v, µ), n ∈ J (4.14)

= (Λhv)n + δ0ũn µ+ ϕ̂n(v, µ)
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where Bn, Cn are given by (cf. (3.1)):

Bn = λ̃I +D2f(ũn, (δ0ũ)n), Cn = D1f(ũn, (δ0ũ)n),

and ϕ̂ : SJe(R
m) × R → SJ(R

m) is defined by

ϕ̂n(v, µ) = ω̂n(v) + δ0vn µ, n ∈ J (4.15)

where

ω̂n(v) = f(ũn + vn, δ0ũn + δ0vn) − f(ũn, δ0ũn) −D1f(ũn, δ0ũn)vn −D2f(ũn, δ0ũn)δ0vn.

The boundary condition (4.3) is transformed into

0 = Rv, (4.16)

and the phase condition (4.4) reads

0 = 〈δ0û, v|J 〉h. (4.17)

Then (0, 0) is a stationary solution of (4.14), (4.16), (4.17) and the stability of (ũ, λ̃) is

now equivalent to the stability of (0, 0). Using the notations ψ̃ = δ0û, φ̃ = δ0ũ we have to

prove the stability of the zero solution of a semilinear equation of the form

πv′ = Λhv + φ̃µ+ ϕ̂(v, µ), (4.18)

0 = RNv, (4.19)

0 = RDπv, (4.20)

0 = 〈ψ̃, πv〉h. (4.21)

where ϕ̂n : SJe ×R → SJ , φ̃, ψ̃ ∈ SJ and v ∈ SJe . For (v, µ) ∈ SJ ×R we use the notation

B1,�
ρ ((v, µ)) = {(u, λ) ∈ SJe × R : ‖v − u‖1,� + |µ− λ| ≤ ρ}.

where � ∈ {∞,L2,h}. Recall the definition of ‖·‖1,L2,h
= ‖·‖H1

h
in (2.3).

As in Chapter 1 the main assumptions on ϕ̂ are summarized in the following hypothesis.

Hypothesis 4.5 Assume that ϕ̂ : SJe × R → SJ satisfies ϕ̂(0, 0) = 0 and that there

exist ρ0, CL > 0 such that the following holds: There exist h0, T > 0 such that for h < h0,

±n±h > T for all (v, µ), (u, λ) ∈ B1,�
ρ (0), � ∈ {∞,L2,h} with ρ < ρ0, the uniform estimates

‖ϕ̂(v, µ) − ϕ̂(u, λ)‖� ≤ CL(‖v − u‖1,� + max(‖v‖1,�, ‖u‖1,�)|µ− λ|) (4.22)

‖ϕ̂(v, µ)‖� ≤ Kρ(‖v‖1,� + |µ|) (4.23)

hold, where CL,K are independent of h, J = [n−, n+].

For the semilinear equation (4.18)–(4.21), the consistency conditions (4.11),(4.12) read

0 = RD(Λhv + φ̃µ+ ϕ̂(v, µ)), (4.24)

0 = 〈ψ̃,Λhv + φ̃µ+ ϕ̂(v, µ)〉h. (4.25)

The main result of this chapter is the following stability theorem for the zero solution of

the DAE (4.18)–(4.21), which is the discrete analog of Theorem 1.15.
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Theorem 4.6 Let Λ satisfy the same conditions as in Theorem 1.15 and let ϕ̂ satisfy

Hypothesis 4.5. Assume further that ψ̃ = δ0û, where û satisfies Hypothesis 2.18 and that

the boundary conditions satisfy Hypotheses 3.1,3.3.

Then there exist h0 > 0, T > 0, C > 0 such that for h < h0, ∓hn± > T the stationary

solution 0 ∈ SJe × R of (4.14),(4.16),(4.17) is asymptotically stable.

More precisely, there exist K, ν, ρ, h0, T > 0 such that for h < h0, ∓hn± > T the following

statements hold for � = ∞ and also for � = L2,h if additionally e−αT < c
√
h for some

c > 0, where α denotes the constant in Hypothesis 2.18:

For each consistent initial value (v0, µ0) ∈ SJe × R (i.e. (4.3), (4.4), (4.11), (4.12) are

satisfied) with ‖v0‖1,�+ |µ0| < ρ there exists a unique solution (v, µ) of (4.14),(4.16),(4.17)

which obeys the estimate

‖v(t)‖1,� + |µ(t)| ≤ Ke−νt(‖v0‖1,� + |µ0|) ∀t ≥ 0. (4.26)

We will prove the above Theorem by reducing the DAE (4.18),(4.19)–(4.21) to an ODE

an a subspace of SJ where the so called essential algebraic conditions (4.20),(4.21) are

satisfied. We define this space as follows:

Sess
J = {u ∈ SJ(R

m) : RDu = 0, 〈ψ̃, u〉h = 0}. (4.27)

Remark 4.7 We will show in Lemma 4.18, that there exists δ > 0 such that for each

u0 ∈ Sess
J with ‖u0‖ ≤ δ, there exists a unique extension (v0, µ0) ∈ SJe ×R, which satisfies

πv0 = u0 and solves (4.3), (4.4), (4.11), (4.12).

Let us first show that Theorem 4.6 implies the stability result Theorem 4.2. The proof is

similar to the proof of Theorem 1.13 in Chapter 1.

Proof of Theorem 4.2:

For ϕ̂(v, µ) = ω̂(v)+µδ0v, (see (4.15)) we show that Hypothesis 4.5 is satisfied. We obtain

for v, u ∈ B1,∞
ρ (0)

‖ω̂n(v) − ω̂n(u)‖ = ‖f(ũn + vn, φ̃n + δ0vn) − f(ũn + un, φ̃n + δ0un)

−D1f(ũn, φ̃n)(vn − un) −D2f(ũn, φ̃n)(δ0vn − δ0un)‖
= ‖f1(ũn + vn)(φ̃n + δ0vn) − f1(ũn + un)(φ̃n + δ0un) − f ′1(ũn)(φ̃n, vn − un)

− f1(ũn)(δ0vn − δ0un) + f2(ũn + vn) − f2(ũn + un) − f ′2(ũn)(vn − un)‖
≤ c‖(f1(ũn + vn) − f1(ũn + un))φ̃n‖ + ‖(f1(ũn + vn) − f1(ũn + un))δ0vn‖

+ ‖(f1(ũn + un) − f1(ũn))(δ0vn − δ0un)‖ + ‖f ′1(ũn)(φ̃n, vn − un)‖
+ ‖f2(ũn + vn) − f2(ũn + un)‖ + ‖f ′2(ũn)(vn − un)‖

≤ c(‖vn − un‖ + ‖vn − un‖‖δ0vn‖ + ‖un‖‖δ0(v − u)n‖) (4.28)

≤ c‖u− v‖1,∞.

This implies for all (v, µ), (u, λ) ∈ B
H1

h
ρ (0) using (4.28), Hypothesis 1.9 as well as the
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Sobolev imbedding ‖v‖∞ ≤ C‖v‖H1
h

(see A.4) for a generic constant c > 0:

‖ω̂(v) − ω̂(u)‖2
L2,h

=

n+
∑

n=n−

h‖ω̂n(v) − ω̂n(u)‖2

≤ ch

n+
∑

n=n−

‖vn − un‖2 + ‖vn − un‖2‖δ0vn‖2 + ‖un‖2‖δ0(v − u)n‖2

≤ c(

n+
∑

n=n−

h‖vn − un‖2 + ‖δ0v‖2
∞

n+
∑

n=n−

h‖vn − un‖2 + ‖u‖2
∞

n+
∑

n=n−

h‖δ0(v − u)n‖2)

≤ c(‖v − u‖2
L2,h

+ ‖v − u‖2
H1

h
‖v‖2

H1
h

+ ‖u‖2
H1

h
‖v − u‖2

H1
h
)

≤ c‖v − u‖2
H1

h
.

Furthermore, (1.20) leads for ‖v‖1,∞ ≤ ρ to

‖ŵn(v)‖ ≤ ‖f(ũn + vn, φ̃n + δ0vn) − f(ũn, φ̃n)

−D1f(ũn, φ̃n)vn −D2f(ũn, φ̃n)δ0vn‖

≤
∫ 1

0
‖[D1f(ũn + tvn, φ̃n + tδ0vn) −D1f(ũn, φ̃n)]vn‖ dt

+

∫ 1

0
‖[D2f(ũn + tvn, φ̃n + tδ0vn) −D2f(ũn, φ̃n)]δ0vn‖ dt

≤ c

∫ 1

0
t(‖vn‖ + ‖δ0vn‖)‖vn‖ dt+

∫ 1

0
t‖vn‖‖δ0vn‖ dt

≤ c(‖vn‖ + ‖δ0vn‖)‖vn‖ (4.29)

≤ c‖v‖1,∞‖v‖∞ ≤ cρ‖v‖1,∞.

Equation (4.29) implies for ‖v‖H1
h
≤ ρ

‖ŵ(v)‖2
L2,h

≤
n+
∑

n=n−

h‖ω̂n‖2 ≤ c

n+
∑

n=n−

h(‖vn‖ + ‖δ0vn‖)2‖vn‖2

≤ c‖v‖2
∞h

n+
∑

n=n−

(‖vn‖ + ‖δ0vn‖)2 ≤ c‖v‖2
H1

h
‖v‖2

H1
h

≤ cρ2‖v‖2
H1

h
.

These estimates show together with

‖µδ0v − λδ0u‖∞ ≤ ‖δ0v‖∞|µ− λ| + |λ|‖δ0(v − u)‖∞
≤ ‖v‖1,∞|µ− λ| + |λ|‖v − u‖1,∞ ≤ ρ(‖v − u‖1,∞ + |µ− λ|)

as well as

‖µδ0v − λδ0u‖L2,h
≤ ‖v‖H1

h
|µ− λ| + |λ|‖v − u‖H1

h
≤ ρ(‖v − u‖H1

h
+ |µ− λ|)

and ϕ̂(0, 0) = 0 that Hypothesis 4.5 holds.

Finally, (v0, µ0) satisfies (4.16), (4.17) and (4.24), (4.25) if and only if (u0, λ0) satisfies

(4.3),(4.4) and (4.11),(4.12). 2
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In the following we will use equations (4.19), (4.24),(4.25) to reduce the system (4.18)–

(4.21) to an ODE in the space Sess
J where the essential initial conditions (4.20), (4.21) are

satisfied.

The proof of Theorem 4.6 needs several preparations which are done in the sections 4.2.1–

4.2.4.

4.2.1 The linear inhomogeneous equation

In the following we discuss the solution of the linear inhomogenous equation

πv′ = Λhv + µφ̃+ r (4.30)

together with the constraints (4.19)–(4.21) for r ∈ C(R+, SJ) with initial conditions

(v(0), µ(0)) = (v0, µ0) ∈ SJe × R.

The conditions (4.24), (4.25) are in this situation given by:

0 = RD(Λhv + φ̃µ+ r), (4.31)

0 = 〈ψ̃,Λhv + φ̃µ+ r〉h. (4.32)

Reduction to an ODE

The following lemma states conditions under which a consistent (v, µ) ∈ SJe × R can be

uniquely determined from a given u ∈ Sess
J with πv = u. Here only the limiting case

|z| → ∞ of Hypothesis 3.3 is needed.

Hypothesis 4.8 Assume that the matrices P±, Q± are partitioned into a Neumann and

a Dirichlet part as in (3.10) with rank(Q−Q+) = r ∈ [0, 2m] and assume that the matrix

(

QN−A
−1 −QN+A−1

PD− PD+

)

(4.33)

is nonsingular.

Lemma 4.9 For each u ∈ Sess
J and each r ∈ SJ there exists a unique extension (v, µ) ∈

SJe ×R such that πv = u and (4.19), (4.31), (4.32) hold. The map (u, r) 7→ (v, µ) is linear

in u and r. Moreover, for � ∈ {∞,L2,h} the following estimates hold

‖v‖2,� + |µ| ≤ c(
1

h2
‖u‖� + ‖r‖�). (4.34)

Proof: Let u ∈ Sess
J be given and set v = (vn−−1, un− , . . . , un+

, vn++1). It remains to

compute the external points vn−−1, vn++1 and µ from the equations (4.19), (4.31), (4.32)

which read

0 = PN− vn− +QN− δ0vn− + PN+ vn+
+QN+ δ0vn+

0 = PD− (Λhvn− + φ̃n−µ+ rn−) + PD+ (Λhvn+
+ φ̃n+

µ+ rn+
)

0 = 〈ψ̃,Λhv〉h + 〈ψ̃, φ̃〉hµ+ 〈ψ̃, r〉h.
(4.35)
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We use the relation

δ+δ−vn =
2

h
(δ0vn + δ−vn) =

2

h
(−δ0vn + δ+vn) (4.36)

as well as the definition of Λh in (4.14) to obtain the equivalent system for w = (w−, w+) =

(δ0vn− , δ0vn+
) and µ

M
(

w

µ

)

= Ruu+ Rrr (4.37)

where

M =





QN− QN+ 0

−PD− (A− h
2Bn−) PD+ (A+ h

2Bn+
) h

2 (PD− φ̃n− + PD+ φ̃n+
)

−ψ̃Tn−(A− h
2Bn−) ψ̃Tn+

(A+ h
2Bn+

) 1
2〈ψ̃, φ̃〉h



 ,

Ruu =











−PN− un− − PN+ un+

−PD− Aδ+un− − PD+ Aδ−un+
− h

2 (PD− Cn−un− + PD+ Cn+
un+

)

−ψ̃Tn−(Aδ+un− + h
2Cn−un−) − ψ̃Tn+

(Aδ−un+
+ h

2Cn+
un+

) − h
2

n+−1
∑

n=n−+1
ψ̃TnΛhun











,

Rrr = −1

2





0

h(PD− rn− + PD+ rn+
)

〈ψ̃, r〉h



 .

For h→ 0, −hn−, hn+ → ∞ the matrix M converges to

M̂ =





QN− QN+ 0

−PD− A PD+ A 0

−ψ̃Tn−A ψ̃Tn+
A 1

2〈û′, ū′〉



 (4.38)

which is invertible due to condition (4.33) and 〈û′, ū′〉 6= 0. Therefore the solution (ŵ, µ̂)

of M̂(w, µ)T = Ruu+ Rrr can be estimated by

‖ŵ‖ ≤ c(
1

h
‖u‖∞ + h‖r‖∞), (4.39)

and we obtain the same estimate for w = (w−, w+) with a different c. This implies,

together with the relations

vn−−1 = −2hw− + un−+1 = −2hw−, vn++1 = 2hw+ + un+−1 = 2hw+, (4.40)

the estimate

‖vn−−1‖ + ‖vn++1‖ ≤ ch‖w‖ ≤ c(‖u‖∞ + h2‖r‖∞). (4.41)

Furthermore, the relation

δ+vn+
= 2δ0vn+

− δ+un+−1 = 2w+, δ+vn−−1 = δ−vn− = 2w− (4.42)

leads with (4.39) to

‖δ+v‖∞ ≤ c(
1

h
‖u‖∞ + h‖r‖∞). (4.43)

Similarly, by (4.36) we find

δ+δ−vn− =
2

h
(−w− + δ+un−) = − 2

h
w−, δ+δ−vn+

=
2

h
(w+ − δ+un+−1) =

2

h
w+,
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which implies with (4.39)

‖δ+δ−v‖∞ ≤ c(
1

h2
‖u‖∞ + ‖r‖∞). (4.44)

Finally we obtain using (4.35)

|µ| ≤ |〈ψ̃, φ̃〉h|
−1

(|〈ψ̃,Λhv〉h| + |〈ψ̃, r〉h|) ≤ c(
1

h2
‖v‖∞ + ‖r‖∞).

Together with (4.41),(4.43),(4.44) this leads to (4.34) for � = ∞.

In a similar way the estimate for � = L2,h follows. 2

Define the space of consistent initial conditions by

Sco = {(v, µ) ∈ SJe × R : (v, µ) satisfies (4.19), (4.20), (4.21), (4.31), (4.32)}.

Then Lemma 4.9 implies that the map Sco → Sess
J , (v, µ) 7→ πv is invertible, with a uniform

bound for the inverse. Moreover, we can write (v, µ) as

v = Mvu+Rvr, µ = Mµu+Rµr, (4.45)

where Mv, Rv : SJ → SJe , Mµ, Rµ : SJ → R, are linear. Thus for any (v0, µ0) ∈ Sco the

solution of the DAE (4.30), (4.19)–(4.21) with inital values (v0, µ0) ∈ Sco is obtained from

the solution of the reduced ODE

u′ = (ΛhMv + φ̃Mµ)u+ (ΛhRv + φ̃Rµ + I)r, (4.46)

=: ΛhPu+ Πr

with inital value u0 = πv0 by

v(t) = Mvu(t) +Rvr(t), µ(t) = Mµu(t) +Rµr(t). (4.47)

Note that by construction Πr ∈ Sess
J . Therefore it is sufficient to consider (4.46) in Sess

J .

Thus we have reduced the bordered system (4.30) to an ODE in a similar fashion as in

Lemma 1.17. The inhomogenous ODE (4.46) in Sess
J is then solved as usual via

u(t) = ŜP (t)u0 +

∫ t

0
ŜP (t− s) r(s) ds,

where the operator ŜP (t) is defined via the Dunford integral

ŜP (t) =
1

2πi

∮

Γ
est(sI − ΛhP )−1 ds (4.48)

and Γ is a closed curve which encloses the spectrum of ΛhP . In the following section we

give estimates similar to (1.52) for the resolvent of the operator ΛhP : Sess
J → Sess

J , which

lead to estimates of ŜP (t).
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Resolvent estimates

We use the technique of Chapter 1 of proving resolvent estimates for the discretized system

in different regions Ωε,ΩC0
,Ωh

C0
,Ωh

∞ (cf. 1.2). These estimates will be used to estimate the

solution operator ŜP for the reduced system (4.46). The following Lemma shows that the

resolvent equations in Chapter 3 are equivalent to the resolvent equations for the operator

ΛhP . To this end we transform the resolvent equation for the projected operator Λh
P back

into a bordered equation. This is accomplished by reintroducing the algebraic variables.

A direct application of Lemma 4.9 leads to the following lemma.

Lemma 4.10 Let r ∈ SJ , then u ∈ Sess
J solves

(sI − ΛhP )u = Πr (4.49)

and

v = Mvu+Rvr, µ = Mµu+Rµr (4.50)

if and only if the pair (v, µ) ∈ Sco is a solution of the bordered system

(sπ − Λh)v − φ̃µ = r

Rv = 0

〈ψ̃, πv〉h = 0.

(4.51)

Using this equivalence, we obtain that the resolvent estimates in Chapter 3 imply a uniform

estimate in a compact set and an estimate for large |s| for equation (4.49).

Lemma 4.11 There exist C0 > 0 and h0, T > 0 such that for each h < h0, ±n± > T

there exists for each s ∈ ΩC0
∪Ωh

C0
∪Ωh

∞ and each ĝ ∈ SJ a solution (v, µ) of (4.51) which

can for � ∈ {∞,L2,h} be estimated by

‖v‖1,� + |µ| ≤ C‖ĝ‖�, as s ∈ ΩC0
(4.52)

|s|‖v‖� +
√

|s|‖v‖1,� ≤ C‖ĝ‖�, as s ∈ Ωh
C0

(4.53)

where C > 0 does not depend on r, s, h and T .

The construction of a solution of (4.51) for s ∈ Ωε together with a resolvent estimate will

proceed along the same lines as Lemma 1.22.

Lemma 4.12 Under the same assumptions as in the previous lemma, there exist C, ε > 0

and h0, T > 0 such that for each h < h0, ±n± > T the following holds. For each for s ∈ Ωε

and g ∈ SJ the resolvent equation (4.51) possesses a unique solution (v, µ) ∈ SJe ×R which

satisfies the following uniform estimate in s

‖v‖2,� + |µ| ≤ C‖g‖�, � ∈ {∞,L2,h}. (4.54)

Proof: We transform equation (4.51) to first order using z = (u, v), v = δ−u. With the

same abbreviations as in Chapter 3 we obtain the equivalent equation

Λ̃(z, µ) = (r, η, ω) (4.55)
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with wn = δ0vn and

Λ̃(z, µ) =







L̃(s)(z, µ)

P−un− +Q−wn− + P+un+
+Q+wn+

h
∑n+

n=n− ψ̃
T
nun






, rn =

(

0

hgn

)

.

Here L̃(s) is given by

(L̃(s)(z, µ))n = Nnzn+1 −Kn(s)zn −Wnµ

where

Nn =

(

I −hI
0 E+

n

)

, Kn(s) =

(

I 0

h(sI − Cn) E−
n

)

, Wn =

(

0

hφ̃n

)

and E±
n is defined in (3.5). Notice the similarity to the operator L̃(φ̃, s), which has been

defined in (3.84).

As in the previous chapters we show invertibility for a perturbation of Λ̃ which is given by

Λiz =







(N̂zn+1 − K̂n(s)zn − Ŵnµ)n∈J
(P− Q−)zn− + (P+ Q+)zn+

∑n+

n=n− hψ̃
T
nun







where

K̂n =

(

I hI

h(sI − Ĉn) A− hB̂n

)

, Ŵn =

(

0

hū′n

)

and N̂ , B̂n, Ĉn are defined in (2.68).

Using (2.61) we obtain for h < h0, ±hn± > T the estimates

‖K̂n(s) −Kn(s) +Nn − N̂‖ ≤ ch(h2 + e−αT )

as well as

‖Wn − Ŵm‖ = h‖δ0ũn − ū′n‖ ≤ c(h2 + e−αT ).

Together with

‖Nn − N̂‖ ≤ ch

this leads to

‖(Λ̃ − Λi)(z, µ)‖∗∞ ≤ ρ(h, T )(‖z‖1,∞ + |µ|)
where limh→0,T→∞ ρ(h, T ) = 0. (see the proof of Theorem 2.21).

In the same way as in Chapter 3, we use the fact that the spectral condition (SC) implies

that L(s) has exponential dichotomies on R
± for all s with Re s > −β. Thus, for these s

the operator

L̃(s)z = (zn+1 − N̂−1K̂n(s)zn)n∈Z

possesses an exponential dichotomy on Z
± with data (K±, α±h, P±) by Lemma 2.3. More-

over, the Hypothesis 2.11 follows from condition (2.60) for P±, Q± and (1.27) implies Hy-

pothesis 2.12. The definition of Ŵ together with Lemma 2.8 implies that Hypothesis 2.13

is satisfied as well. Application of Lemma 2.14 implies the existence of solutions of

Λi(z, µ) = (r, η, ω)

which can be estimated by (2.38) from which we obtain (4.54). 2
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Remark 4.13 Note that from (4.34) we obtain

‖ΛhPu‖� ≤ ‖(ΛhMv + φ̃Mµ)u‖� ≤
c

h2
‖u‖�, � ∈ {∞,L2,h}

which leads for the spectrum of ΛhP to the bound |σ(ΛhP )| < C1h
−2 for some C1 > 0. Thus,

using the estimates (4.52),(4.53) and (4.54) we obtain, similar to Lemma 1.21, resolvent

estimates for ΛhP in a sector and in an annular region (cf. Figure 4.1).

Corollary 4.14 There exist α > 0, φ ∈ (π2 , π), C1 > 0 such that s ∈ ρ(Λh) if s ∈ S̄α,φ
or |s| ≥ C1h

−2. Furthermore, for any C0 > C1 there exist K > 0 such that, defining the

annulus AhC1,C0
= {s ∈ C : |s| ∈ [C1

h2 ,
C0

h2 ] } the following estimates hold for � ∈ {∞,L2,h}
for s ∈ S̄α,φ ∪AhC1,C0

:

‖v‖� ≤
K

|s+ α|‖r‖�, ‖v‖1,� ≤
K

√

|s+ α|
‖r‖�. (4.56)

4.2.2 Estimates of the solution operator

From (4.56) an estimate of ŜP (t) which is uniform in h and T follows. Under the same

assumptions on Λ as in Lemma 1.21 we obtain:

Lemma 4.15 Let Λ satisfy the same assumptions as in Lemma 1.21 and assume that for

ψ̃ Hypothesis 2.18 holds.

Then there exist h0, T > 0 such that for � ∈ {∞,L2,h} all h < h0 and ±n±h > T the

solution operator ŜP (t) can be estimated by

‖ŜP (t)r‖� ≤ Ke−αt‖r‖�, ‖ŜP (t)r‖1,� ≤ Ke−αt
1√
t
‖r‖�. (4.57)

The proof is similar to the proof of Lemma 1.24. Note, that in this case it is suffient to

estimate the integral
1

2πi

∮

Γ
est(sI − ΛhP )−1 ds

along a closed curve, which encloses the spectrum of ΛhP .

We take a path Γ around the eigenvalues of ΛhP and can assume Re s < 0 ∀s ∈ Γ (see

Figure 4.1).

We introduce the following notation for a function g : Γ → R, where Γ = {γ(ξ) : ξ ∈ [0, l]}
is a closed curve

∮

Γ
g(z)|dz| :=

∫ l

0
g(γ(ξ))|γ′(ξ)| dξ.

We denote the resolvent by G(s) = (sI − ΛhP )−1 and obtain for r ∈ Sess
J with (4.56) for

� ∈ {∞,L2,h} for t > 0 the following:

‖ŜP (t) r‖� =

∥

∥

∥

∥

1

2πi

∮

Γ
estG(s)r ds

∥

∥

∥

∥

�
=

∥

∥

∥

∥

1

2πi

∮

Γ−α
estG(s)r ds

∥

∥

∥

∥

�

=

∥

∥

∥

∥

1

2πi

∮

Γ
e(s−α)tG(s− α)r ds

∥

∥

∥

∥

�
≤ 1

2π
e−αt

∮

Γ
|est|‖G(s− α)r‖�|ds|

≤ 1

2π
e−αt

∮

Γ

∣

∣

∣

∣

eλ

t

∣

∣

∣

∣

‖G(
λ

t
− α)r‖

�
|dλ| ≤ Ke−αt‖r‖�

∮

Γ

|eλ|
|λ| |dλ|

≤ Ce−αt‖r‖�.
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PSfrag replacements

C

σ(ΛhP )

C1

h2

C0

h2

−β

ΩC0

Ωh
C0

Ωh
C0

Γ

Figure 4.1: Path of integration

Here we have used the fact that we can move the curve Γ to the left up to Γ−α for α < β

small enough without changing the integral. Along the rays this is the standard estimate

for sectorial operators (see [36],[23]). Along the arc γ(ξ) = Reiξ, ξ ∈ [π2 + δ, 3π
2 − δ] we

obtain

∫ 3π
2
−δ

π
2
+δ

R|etReiξ |‖G(Reiξ)r‖� dξ ≤ ‖r‖�
∫ 3π

2
−δ

π
2
+δ

RetR cos(ξ) 1

R
dξ <

π

2
‖r‖�.

In a similar way we obtain

‖ŜP (t) r‖1,� ≤ Ce−αt
1√
t
‖r‖�.

Using this representation, the solution of the original inhomogenous equation can be ob-

tained, as the following Lemma shows.

Lemma 4.16 Let r ∈ C([0, τ), SJ) and assume that Hypothesis 2.12 holds.

If the pair (v, µ) ∈ C(R+,Sco) is a solution of (4.30) on the interval (0, τ) with consistent

initial values (v0, µ0) ∈ Sco then u = πv is a solution on (0, τ) of (4.46). Furthermore,

(v, µ) is given on [0, τ) by

v(t) = Mvu(t) +Rvr(t), µ(t) = Mµu(t) +Rµr(t). (4.58)

Remark 4.17 Setting y = (vec(vn− , . . . , vn+
, vn++1, vn−−1), µ), M = n+ − n− + 1 and

r = vec(ĝ) we can write (4.30),(4.19)–(4.21) in matrix notation as

B̃y′ = Ãy +

(

r

0

)

∈ R
m(M+3)+1 (4.59)

Ã =

(

A Φ

hΨT 0

)

, B̃ =

(

IMm 0

0 0

)

∈ R
m(M+3)+1,m(M+3)+1

The definition of A,B,Φ,Ψ will be given in section 5.1. This system can be dealt with

using standard DAE methods [21],[56]. We can define the solution operator of the linear
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homogenous equation B̃y′ = Ã via the generalized resolvent of the matrix pencil Ã − sB̃
by (see [56])

F(t) =
1

2πi

∮

Γ
est(Ã − sB̃)−1 ds.

Note that the equation

(Ã − sB̃)y =

(

r

0

)

, y ∈ C
(n+−n−+4)m+1, r ∈ C

(n+−n−+2)m

is equivalent to the resolvent equation (3.1), (3.2). Then transforming (4.59) into Kro-

necker canonical form, [21], [22], [56] one can obtain a solution of the inhomogenous

equation via a generalized “variation of constants” formula.

We did not pursue this ansatz, since it requires more knowledge on the Jordan structure

of the matrix pencil Ã − sB̃. Instead we have eliminated the boundary conditions and

the phase condition directly similar to Section 1.3.1. In our case this is feasible, since the

algebraic conditions are linear and do not depend on time.

4.2.3 The nonlinear system

In order to reduce the semilinear DAE (4.18)–(4.21) to an ODE we need a nonlinear version

of Lemma 4.9 which guarantees the solvability of the equations (4.19), (4.24), (4.25) which

define the transformation Sess
J 3 u → (v, µ) ∈ Sco. This corresponds to the first part of

the proof of Lemma 1.27.

Lemma 4.18 Assume the same as in Theorem 4.6. Then there exist h0, T > 0 such that

for all h < h0,±hn± > T the following statements hold for � = ∞ and for � = L2,h, if

additionally e−αT > c
√
h.

For each u ∈ Sess
J there exists a unique extension SJe × R 3 (v, µ) = (Tv(u), Tµ(u)) such

that πv = u, Tv(0) = 0,Tµ(0) = 0 and (4.19), (4.24), (4.25) hold.

Moreover, for the map ϕ̃ : Sess
J → Sess

J defined by

ϕ̃(u) = Λh(Tv(u) −Mvu) + φ̃(Tµ(u) −Mµu) + ϕ̂(Tv(u), Tµ(u)), (4.60)

where Mv,Mµ are the linear operators defined in Lemma (4.9), the following holds:

‖ϕ̃(u) − ϕ̃(v)‖� ≤ CL‖u− v‖1,�, (4.61)

and for each σ > 0 there exists ρ > 0 such that

‖ϕ̃(u)‖� ≤ σ‖u‖1,�, as ‖u‖1,� ≤ ρ. (4.62)

Proof: Let u ∈ SJ be given and set v = (vn−−1, un− , . . . , un+
, vn++1). It remains to

compute the external points vn−−1, vn++1 and µ from the equations (4.19), (4.24), (4.25)

which read

0 = PN− vn− +QN− δ0vn− + PN+ vn+
+QN+ δ0vn+

0 = PD− (Λhvn− + φ̃n−µ+ ϕ̂n−(v, µ)) + PD+ (Λhvn+
+ φ̃n+

µ+ ϕ̂n+
(v, µ))

0 = 〈ψ̃,Λhv + φ̃µ+ ϕ̂(v, µ)〉h

(4.63)
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Define the map χ : SJ × R
2m → SJe , (u,w) 7→ v, w = (w−, w+) by

vn = un, n = n−, . . . , n+, vn−−1 = −2hw− + un−+1, vn++1 = 2hw+ + un+−1.

Then δ0vn± = w± and we obtain

‖χ(u,w) − χ(u, z)‖L2,h
≤ ch

√
h‖w − z‖. (4.64)

The relation (4.42) leads to

‖χ(u,w) − χ(u, z)‖H1
h
≤ c

√
h‖w − z‖, (4.65)

and also to

‖χ(u,w)‖H1
h
≤ c(‖u‖H1

h
+ h‖w‖), ‖χ(u,w)‖1,∞ ≤ c(‖u‖∞ + ‖w‖). (4.66)

In the same way as in the proof of Lemma 4.9 we obtain with (4.36) the following system

which is equivalent to (4.63).

M
(

w

µ

)

= Ruu+ g(u,w, µ), (4.67)

where M, Ru are given by (4.37) and (cf. Rr in (4.37))

g(u,w, µ) = −1

2





0

h(PD− ϕ̂n−(χ(u,w), µ) + PD+ ϕ̂n+
(χ(u,w), µ))

〈ψ̃, ϕ̂(χ(u,w), µ)〉h



 .

For h < h0 ±hn± > T the matrix M is nonsingular and we can define G : SJ×R
2m×R →

R
2m × R by

G(u,w, µ) = M−1(Ruu+ g(u,w, µ)),

the fixed point of which is a solution of (4.67). To apply the parametrized contraction

mapping theorem A.2 we have to verify (A.1),(A.2). From (4.23),(4.66) we obtain

‖ϕ̂(χ(u, 0), 0)‖� ≤ Kρ‖χ(u, 0)‖1,� ≤ cρ‖u‖1,� (4.68)

which implies √
h‖ϕ̂(χ(u, 0), 0)‖∞ ≤ ‖ϕ̂(χ(u, 0), 0)‖L2,h

≤ cρ‖u‖H1
h

(4.69)

as well as with Cauchy-Schwarz, Hypothesis 2.18 and (4.66)

|〈ψ̃, ϕ̂(χ(u, 0), 0)〉h| ≤ c‖χ(u, 0)‖� ≤ cρ‖u‖1,�. (4.70)

Using (4.22) we obtain with (4.65) and (4.66)

‖ϕ̂(χ(u,w), µ) − ϕ̂(χ(u, z), λ)‖L2,h
≤ CL(‖χ(u,w) − χ(u, z)‖H1

h
(4.71)

+ max(‖χ(u,w)‖H1
h
, ‖χ(u, z)‖H1

h
)|µ− λ|)

≤ c(
√
h‖w − z‖ + (‖u‖H1

h
+ hmax(‖w‖, ‖z‖))|µ− λ|).

Equation (4.71) leads for ‖u‖H1
h
< ρ to

‖ϕ̂(χ(u,w), µ) − ϕ̂(χ(u, z), λ)‖L2,h
≤ c(

√
h+ ρ+ hδ)(‖w − z‖ + |µ− λ|)
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as well as for ‖u‖H1
h
≤

√
h‖u‖1,∞ <

√
hρ to

‖ϕ̂(χ(u,w), µ) − ϕ̂(χ(u, z), λ)‖L2,h
≤ c(

√
h(1 + ρ+ δ)(‖w − z‖ + |µ− λ|).

Thus (4.68), (4.69), (4.70) imply for ‖u‖H1
h
≤ ρ

‖g(u, 0, 0)‖ ≤ h(‖ϕ̂n−(χ(u, 0), 0)‖ + ‖ϕ̂n+
(χ(u, 0), 0)‖ + |〈ψ̃, ϕ̂(χ(u, 0), 0)〉h|)

≤ cρ‖u‖H1
h

(4.72)

as well as for ‖u‖1,∞ ≤ ρ

‖g(u, 0, 0)‖ ≤ cρ‖u‖1,∞. (4.73)

Similarly, with (4.71) we find

‖g(u,w, µ) − g(u, z, λ)‖ ≤ c(h‖ϕ̂(χ(u,w), µ) − ϕ̂(χ(u, z), λ)‖∞
+ |〈ψ̃, ϕ̂(χ(u,w), µ) − ϕ̂(χ(u, z), λ)〉h|)

≤ c‖ϕ̂(χ(u,w), µ) − ϕ̂(χ(u, z), λ)‖L2,h
.

(4.74)

It remains to estimate ‖Ruu‖: As in Chapter 1, the summation by parts formula (A.10)

〈ψ̃, Aδ−δ+u〉n−+1,n+−1 = −〈δ+ψ̃, Aδ+u〉n−,n+−2 + ψ̃Tn−A(δ+u)n− − ψ̃Tn+−1A(δ+u)n+−1

leads for Ĵ = [n− + 1, n+ − 1] with

〈ψ̃|
Ĵ
,Λhu〉

h
= 〈ψ̃|

Ĵ
, Aδ−δ+u〉

h
+ 〈ψ̃|

Ĵ
, Bδ0u〉

h
+ 〈ψ̃|

Ĵ
, Cu〉

h

to

|〈ψ̃|
Ĵ
,Λhu〉

h
| ≤ c‖u‖1,∞. (4.75)

Using Hypothesis 2.18 for ±hn± > T we find

|〈ψ̃|
Ĵ
,Λhu〉

h
| ≤ c(‖u‖H1

h
+ h−

1

2 e−αT ‖δ+u‖L2,h
) ≤ c(1 + h−

1

2 e−αT )‖u‖H1
h
.

This implies with the definition of Ru in (4.37) and (4.75)

‖Ruu‖ ≤ c(‖u‖1,∞ + |〈ψ̃|
Ĵ
,Λhu〉

h
|) ≤ c‖u‖1,∞

as well as

‖Ruu‖ ≤ c(h−
1

2 e−αT ‖δ+u‖L2,h
+
√
h‖u‖L2,h

+ |〈ψ̃|
Ĵ
,Λhu〉

h
|) ≤ c(1 + h−

1

2 e−αT )‖u‖H1
h
.

For ‖u‖1,∞ ≤ ρ we obtain with (4.73)

‖G(u, 0, 0)‖ ≤ c(‖u‖1,∞ + ‖g(u, 0, 0)‖) ≤ c(1 + ρ)‖u‖1,∞ ≤ c0ρ

and similarly, if h−
1

2 e−αT < c2 for ‖u‖H1
h
≤ ρ with (4.72)

‖G(u, 0, 0)‖ ≤ c(‖u‖H1
h

+ ‖g(u, 0, 0)‖) ≤ c(1 + ρ)‖u‖H1
h
≤ c0ρ

For (w, µ), (z, λ) ∈ Bδ(0) ⊂ R
2m+1 equation (4.74) leads for ‖u‖1,∞ ≤ ρ or ‖u‖H1

h
≤ ρ to

‖G(u,w, µ) −G(u, z, λ)‖ ≤ c1(
√
h+ ρ+ hδ)(|µ− λ| + ‖w − z‖).
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Choosing h, δ < 1 so small that
√
h + ( 1

2c0
+ h)δ < 1

c1
and ρ < min(1, δ

2c0
) we can apply

Theorem A.2 with q = 1
2 . This yields a unique solution (w̄, µ̄) ∈ Bδ(0) of (4.67). Equation

(A.4) implies with the continuity of G

‖Tv(u1) − Tv(u2)‖� + |Tµ(u1) − Tµ(u2)| ≤ c‖u1 − u2‖1,�, (4.76)

which implies with Tv(0) = 0, Tµ(0) = 0

‖Tv(u)‖� + |Tµ(u)| ≤ c‖u‖1,�. (4.77)

It remains to prove the Lipschitz estimates for ϕ̃. Using the definition of Tv(·), Tµ(·) and

Mv,Mµ and subtracting (4.31), (4.32) from (4.24), (4.25) we obtain that v∆ = Tv(u)−Mvu,

µ∆ = Tµ(u) −Mµu solves πv∆ = 0 and

0 = RNv∆

0 = RD(Λhv∆ + φ̃µ∆ + ϕ̂(Tv(u), Tµ(u))),

0 = 〈ψ̃,Λhv∆ + φ̃µ∆ + ϕ̂(Tv(u), Tµ(u))〉h.

Application of estimate (4.34) in Lemma 4.9 to (v∆, µ∆) leads to

‖Tv(u) −Mvu‖2,� + |Tµ(u) −Mµu| ≤ c‖ϕ̂(Tv(u), Tµ(u))‖�, � ∈ {∞,L2,h}.

Thus we have for ϕ̃ defined in (4.60) by (4.77) and (4.23)

‖ϕ̃(u)‖� ≤ ‖Λh(Tv(u) −Mvu)‖� + ‖φ̃(Tµ(u) −Mµu)‖� + ‖ϕ̂(Tv(u), Tµ(u))‖�
≤ c‖ϕ̂(Tv(u), Tµ(u))‖� ≤ Kρ(‖Tv(u)‖� + |Tµ(u)|)

which leads to

‖ϕ̃(u)‖∞ ≤ cρ‖u‖1,∞,

as well as for h−
1

2 e−αT < c2 to

‖ϕ̃(u)‖L2,h
≤ cρ‖u‖H1

h
.

In the same way we obtain for u1, u2 ∈ Sess
J that v∆ = Tv(u1)−Mvu1 − (Tv(u2)−Mvu2),

µ∆ = Tµ(u1) −Mµu1 − (Tµ(u2) −Mµu2) solves πv∆ = 0 and

0 = RNv∆

0 = RD(Λhv∆ + φ̃µ∆ + ϕ̂(Tv(u1), Tµ(u1)) − ϕ̂(Tv(u2), Tµ(u2))),

0 = 〈ψ̃,Λhv∆ + φ̃µ∆ + ϕ̂(Tv(u1), Tµ(u1)) − ϕ̂(Tv(u2), Tµ(u2))〉h.

Again, application of estimate (4.34) in Lemma 4.9 to (v∆, µ∆) implies for � ∈ {∞,L2,h}

‖Tv(u1) −Mvu1 − (Tv(u2) −Mvu2)‖2,� + |Tµ(u1) −Mµu1 − (Tµ(u2) −Mµu2)|
≤ c‖ϕ̂(Tv(u1), Tµ(u1)) − ϕ̂(Tv(u2), Tµ(u2))‖�.

Thus we obtain with (4.76) and (4.22)

‖ϕ̃(u1) − ϕ̃(u2)‖� ≤ ‖Λh(Tv(u1) −Mvu1 − (Tv(u2) −Mvu2))‖�
+ ‖φ̃(Tµ(u1) −Mµu1 − (Tµ(u2) −Mµu2))‖�

+ ‖ϕ̂(Tv(u1), Tµ(u1)) − ϕ̂(Tv(u2), Tµ(u2))‖�
≤ c‖ϕ̂(Tv(u1), Tµ(u1)) − ϕ̂(Tv(u2), Tµ(u2))‖�
≤ c‖u1 − u2‖1,�.
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2

As in the linear case we use transformations Tv, Tµ to reduce the semilinear DAE (4.18)–

(4.21) to an ODE in Sess
J as follows. Let (v(t), µ(t)) a solution of (4.18)–(4.21) for consistent

initial values (v0, µ0) ∈ Sco on (0, τ). Then differentiating (4.20), (4.21) w.r.t. time we

obtain by (4.18) that (v(t), µ(t)) solves (4.24), (4.25),i.e. (v(t), µ(t)) ∈ Sco for t ∈ (0, τ).

For u = πv we can insert v = Tv(u), µ = Tµ(u) into (4.18) to obtain

u′ = πv′ = Λhv + φ̃µ+ ϕ̂(v, µ)

= ΛhTv(u) + φ̃Tµ(u) + ϕ̂(Tv(u), Tµ(u))

= (ΛhMv + φ̃Mµ)u+ Λh(Tv(u) −Mvu) + φ̃(Tµ(u) −Mµu) + ϕ̂(Tv(u), Tµ(u))

= ΛhPu+ ϕ̃(u).

Conversely, if u solves the reduced ODE

u′ = ΛhPu+ ϕ̃(u), u(0) = u0 ∈ Sess
J ∩B1,�

δ (0) (4.78)

then Lemma 4.18 implies that v(t) = Tv(u(t)), µ(t) = Tµ(u(t)) is a solution of (4.18)–

(4.21) in B1,�
ρ (0) ⊂ Sco for some ρ > 0 in the sense of in the sense of (4.1). The above

arguments lead to the following lemma:

Lemma 4.19 Assume the same as in Theorem 4.6. Then there exist h0, T > 0 such that

for h < h0, ±n±h > T we have the following equivalence.

For each ρ > 0 there exists δ > 0 such that, if u ∈ C([0, τ), Sess
J ∩ B1,�

δ (0)) is a solution

on (0, τ) of (4.78) with u(0) = u0, then (v(t), µ(t)) = (Tv(u(t)), Tµ(u(t))) ∈ C([0, t),Sco)
is a solution of (4.18)–(4.21) on (0, τ) with v(0) = Tv(u

0), µ(0) = Tµ(u
0) and ‖v(t)‖1,� +

|µ(t)| ≤ ρ.

Conversely, there exists ρ > 0 such that if (v(t), µ(t)) ∈ C([0, t),S co) is a solution of

(4.18)–(4.21) on (0, τ) with v(0) = v0, µ(0) = µ0 with ‖v(t)‖1,� + |µ(t)| ≤ ρ, then u = πv

is a solution of (4.78) with ‖u(t)‖1,� < ρ.

4.2.4 The semilinear reduced system

Local existence and uniqueness

In this section we prove the solvability of the integral equation together with some esti-

mates. Note that the existence of a solution of (4.78) follows from standard ODE theory.

Lemma 4.20 Assume the same as in Lemma 4.19. There exists h0, T > 0 such that for

h < h0, ±hn± > T the following statements hold:

For each ρ > 0 there exist δ > 0 such that for each u0 ∈ Sess
J with ‖u0‖� < δ there exists

τ(h, J) > 0 such that a unique solution of (4.78) on (0, τ(h, J)) such that ‖u(t)‖1,� ≤ ρ

for t ∈ [0, τ(h, J)).
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Proof: For each fixed h, J = [n−, n+] we use the fact that all norms are equivalent, i.e.

we have

C1(h, J)‖u‖ ≤ ‖u‖� ≤ C2(h, J)‖u‖.
Moreover, by Lemma 4.18 there exists ρ > 0 such that for ‖u‖1,� < ρ the map ϕ̃ is

Lipschitz. Thus we can apply the standard Picard-Lindelöf theorem in R
n+−n−+1 to

obtain the existence of a solution of (4.78) for [0, τ(h, J)). We can further achieve that

‖u‖ ≤ C2(h, J)−1ρ in τ(h, J) such that ‖u‖� ≤ ρ for all t ∈ [0, τ(h, J)). 2

Stability for the reduced system

The stability of 0 as a solution of the reduced system is the usual Lyapunov type estimate.

We repeat it here, since we are interested not only in the stability of the solution of a

single DAE but we aim at a uniform stability estimate for a whole family of solutions of

DAEs corresponding to discretizations with different stepsizes and intervals. Therefore we

have to mimic the method of the continuous case as far as possible.

Lemma 4.21 Let ϕ̃ : Sess
J (Rm) → Sess

J (Rm) be given which satisfies (4.61),(4.62) in

B1,�
δ (0) and assume that (4.57) holds for the solution operator of the linear system.

Then there exist ρ, h0, T > 0 such that for any h < h0, ±n±h > T and any consistent

initial condition u0 ∈ Sess
J with ‖u0‖1,� ≤ ρ the following holds: There exists a unique

solution u of (4.78) which can be estimated by

‖u(t)‖1,� ≤ Ce−νt, ∀t ≥ 0. (4.79)

where ν, C > 0 are independent of h, J .

Proof: We choose ν ∈ (0, α) and σ > 0 so small that

Kσ

∫ ∞

0

e−(α−ν)s
√
s

ds ≤ 3

4

and δ > 0 so small (using (4.62)) that

‖ϕ̃(u)‖� ≤ σ‖u‖1,� for ‖u‖1,� ≤ δ.

Then for each h, J we find by Lemma 4.20 some ρ > 0 such that for u0 ∈ Sess
J with

‖u0‖1,� ≤ ρ a solution u of (4.78) exists on (0, τ(h, J)) with ‖u(t)‖1,� ≤ δ for t ∈ [0, τ(h, J).

This solution is given by the “variation of constants” formula

u(t) = ŜP (t)u0 +

∫ t

0
ŜP (t− s) ϕ̃(u(s)) ds

and the estimates (4.57) lead for C ≥ 1 to

‖u(t)‖1,� ≤ ‖ŜP (t)u0‖1,� +

∫ t

0
‖ŜP (t− s)ϕ̃(u(s))‖1,� ds

≤ Ce−αt‖u0‖1,� + C

∫ t

0

1√
t− s

e−α(t−s)‖ϕ̃(u(s))‖� ds

≤ δ

4
+ Cσ

∫ ∞

0

1√
s
e−αs ds ‖u‖τ1,�

≤ 3

4
δ.
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Since the ODE (4.78) is autonomous, this leads to τ(h, J) = ∞ using the usual arguments:

If (0, τ∗) is the maximal interval of existence of a solution u with ‖u(t)‖1,� ≤ δ, then by

the above estimate we have ‖u(t)‖1,� ≤ 3
4δ on (0, τ∗). Thus we can solve (4.78) for each

h, J with initial condition at t0 = τ∗ − τ
2 , where τ = τ(h, J) is given by Lemma 4.20. In

this way we continue the solution to τ̃ > τ∗, which contradicts the maximality of τ∗. From

this the existence of u in (0,∞) follows with ‖u(t)‖1,� < δ for all t ∈ [0,∞) and small

enough h and large enough J .

It remains to prove the exponential estimate. Define

n(t) = sup
s∈[0,t]

{eνs‖u(s)‖1,�}

then

‖u(t)‖1,�e
νt ≤ Ke(ν−α)t‖u0‖1,� +Kσ

∫ t

0

1√
t− s

e−α(t−s)eνt‖u(s)‖1,� ds

≤ K‖u0‖1,� +Kσ

∫ t

0

1√
t− s

e(ν−α)(t−s)eνs‖u(s)‖1,� ds

< K‖u0‖1,� +
1

4
n(t).

Taking the supremum on both sides gives n(t) < 4K‖u0‖1,� < δ for t ≥ 0 and we obtain

the estimate (4.79). 2

4.2.5 Proof of the stability theorem

Now the proof of the stability Theorem 4.6 is effortless: For any (v0, µ0) ∈ Sco ∩ B1,�
ρ (0)

we have u0 = πv0 ∈ Sco ∩B1,�
ρ (0) and using Lemma 4.21 we obtain a solution u of (4.78)

on (0,∞) which satisfies (4.79). By Lemma 4.19 we find that

v(t) = Tv(u(t)), µ(t) = Tµ(u(t))

solves (4.18)–(4.21) with v(0) = Tv(u
0) = v0, µ(0) = Tµ(u

0) = µ0. Moreover, the estimates

(4.77),(4.79) imply that (v, µ) can be estimated by (4.26).



117

Chapter 5

Numerical results

In this chapter we test the approximation results of Chapter 2 and 3 on two different

examples of reaction-diffusion equations for which exact solutions are known. We compare

the order of approximation for different grid sizes h and interval sizes J with the expected

behavior from Theorems 2.21 and 3.15. The essential spectrum for the continuous and the

discrete operator on the whole line is compared to the eigenvalues of the discrete operator

with periodic boundary conditions.

First we describe the implementation of the solution of the DAE resulting from the freezing

ansatz which results in the boundary value problem (2.56)–(2.58) for the wave. Then the

solution procedure for the spectral problem (3.78)–(3.80) is described.

Then we deal with the Nagumo equation which is a scalar example. The quintic Ginzburg-

Landau equation is a 2D example which has besides the translational symmetry an addi-

tional rotational symmetry.

5.1 Implementation

For a given interval J = [x−, x+] and number of grid points M + 1 we discretize the

PDAE (4.1) using finite differences for the spatial derivatives. We use the notation xj =

x− + hj, uj = u(xj) ∈ R
m, j = 0, . . . ,M , and sort differential and algebraic variables in

y = (vec(u0), . . . , vec(uM )) and z = (vec(uM+1), vec(u−1), µ) where µ ∈ R
p, y ∈ R

m(M+1)

and y ∈ R
2m+p (compare section 1.4.2). Here we use the vec notation for u ∈ SJ(R

m) :

vec(u) = ((u0)1, . . . , (u0)m, . . . , (uM )1, . . . , (uM )m). Then we obtain a DAE of the form

y′ = f(y, z) ∈ R
m(M+1)

0 = g(y, z) ∈ R
2m+p

(5.1)

where

f(y, z) =
(

A(δ+δ−u)j + f(uj , (δ0u)j) +

p
∑

k=1

µk(Sk(u))j

)

j=0,...,M
,

g(y, z) =

(

P−u0 +Q−(δ0u)0 + P+uM +Q+(δ0u)M − γ
(

∑M
j=0 hSk(û)

T
j (uj − ûj)

)

k=1,...,p

)

.
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and S(u) = (S1(u), ..., Sp(u)), Sk(u) ∈ R
m,M+1, k = 1, . . . , p. Since

gz(y
0, z0) =

1

2h

(

Q+ −Q− 0

0 0 0

)

∈ R
2m+p,2m+p

cis singular, this is a DAE of differentiation index 2 (see [22]) and we have to choose initial

values (y0, z0) which solve the consistency conditions

0 = g(y, z)

0 = Dg(y, z)f(y, z).
(5.2)

In order to illustrate the stability of the solution as has been proven in Chapter 4 we show

the time evolution of the wave and the parameter µ starting from some initial condition.

The resulting stationary solution (u, µ) can then be used as an initial value for the New-

ton’s method for solving the boundary value problem (2.56)–(2.58). It’s solution is then

compared to the exact solution for different grid sizes h and intervals J .

We solve (5.1) using a Matlab implementation of the Radau IIA method of order 5 [16] of

Hairer / Wanner [22] and compare the results with a θ method with fixed time steps.

For the following detailed description of the implementation we differentiate not between

differential and algebraic variables but between the wave u and the parameter µ and denote

the differential resp. the algebraic part of the right hand side of (5.1) by fdiff and falg

respectively. For v = (y, z) ∈ R
m(M+3)+p we have to solve the DAE

Bv′ = F (v) ∈ R
m(M+3)+p, v(0) = v0 (5.3)

where B =

(

Im(M+1) 0

0 0

)

and

F (v) =

(

fdiff(u, µ)

falg(u)

)

=



















...

A(δ+δ−u)j + f(uj , (δ0u)j) + (
∑p

k=1 Sk(u)µk)j , j = 1, . . . ,M
...

P−u0 +Q−(δ0u)0 + P+uM +Q+(δ0u)M − γ
(

∑M
j=0 hSk(û)

T
j (uj − ûj)

)

k=1,...,p



















.

The Jacobian at v is given by

DF (v) =

(

Dufdiff(u, µ) Dµfdiff(u, µ)

Dufalg(u) 0

)

=



























Y1 Z1 X1 φ1

X2 Y2 Z2
...

. . .
. . .

. . .
...

. . .
. . .

. . .
...

XM YM ZM φM
P− 1

2hQ− . . . − 1
2hQ+ P+

1
2hQ+ − 1

2hQ−
ψT1 . . . . . . . . . ψTM



























(5.4)

with

Xj =
1

h2
A− 1

2h
Bj , Yj = − 2

h2
A+ Cj , Zj =

1

h2
A+

1

2h
Bj ,
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where Bj , Cj are given as in (2.79) by

Bj = D2f(uj , δ0uj) +

p
∑

k=1

µkS
1
k Cj = D1f(uj , δ0uj) +

p
∑

k=1

µkS
0
k ,

ψi = (S1(û)i, . . . , Sp(û)i), φi = (S1(u)i, . . . , Sp(u)i) ∈ R
m,p, i = 1, . . . ,M.

The consistency condition (5.2) for the initial values v0 = (u0, µ0) yields a system of the

form

G(v0) =

(

falg(u
0)

Dufalg(u
0) fdiff(u0, µ0)

)

= 0.

This underdetermined system is solved by using a Gauss-Newton method starting from

suitable initial conditions. A better procedure, which allows to prescribe the initial values

at the inner points i = 1, . . . ,M , has been introduced in Chapter 4. Assume that η and

the matrices P±, Q± are blocked into a Neumann and a Dirichlet part as in (3.10). For

any given (u0, . . . , uM ) which satisfies the essential conditions (4.10),(4.4)

ηD = PD− u0 + PD+ uM ,

0 =
M
∑

j=0

hSk(û)
T
j (uj − ûj), k = 1, . . . , p

the remaining values (vec(u−1), vec(uM+1), µ1, . . . , µp) can be computed from (4.9), (4.11),(4.12),

here given by

ηN = PN− u0 +QN− δ0u0 + PN+ uM +QN+ δ0uM ,

0 = PD− (Aδ+δ−u0 + f(u0, δ0u0) +

p
∑

k=1

µkSk(u)0)

+ PD+ (Aδ+δ−uM + f(uM , δ0uM ) +

p
∑

k=1

µkSk(u)M )

0 =

M
∑

j=0

hSk(û)
T
j (Aδ+δ−uj + f(uj , δ0uj) +

p
∑

k=1

µkSk(u)j), k = 1, . . . , p.

However, we did not implement this procedure for determining consistent initial values.

The linear system (3.78)–(3.80) for the computation of discrete eigenvalues of the operator

Λ defined in (1.5), which has been discussed in section 3.1.3 reads for p = 1

(A− sB)u = 0 (5.5)

〈û, u〉 = ω (5.6)

where

A =

(

Dufdiff(ũ, µ̃)

R

)

=





















Y1 Z1 X1

X2 Y2 Z2

. . .
. . .

. . .
. . .

. . .
. . .

XM YM ZM
P− 1

2hQ− . . . − 1
2hQ+ P+

1
2hQ+ − 1

2hQ−




















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with

Ru = P−u1 +Q−
1

2h
(u2 − u0) + P+uM +Q+

1

2h
(uM+1 − uM−1).

Here (ũ, µ̃) denotes the numerical solution of (5.3). The equation (5.5) is the approxi-

mation of the spectral problem for the operator Λ which determines the stability of the

traveling wave and (5.6) is an appropriate normalizing condition which is needed to regu-

larize the eigenvalue problem.

Note that the boundary conditions and therewith the matrices P±, Q± need not be the

same as in equation (5.4) which defines approximation of the traveling wave. As has been

discussed in Section 3.2 already, the choice of boundary conditions has a great influence

on the eigenvalues. For the numerical tests we solve (5.5),(5.6) with Newton’s method,

starting from the exact eigenfunctions and eigenvalues which are known in the test cases.

Clearly, this is not an option when no initial values are known. In that case, one has to

use a general eigenvalue solver.

A natural generalization of (5.5) to more general symmetries, i.e. the case described in

Section 1.4.2 where p = dimN (Dufdiff(ũ, µ̃)) > 1 is given by

AV − BV D = 0 (5.7)

V̂ (V − V̂ ) = 0 (5.8)

where V = [v1, . . . , vp] ∈ R
m(M+3),p and D ∈ R

p,p. Here we compute a p-dimensional

invariant subspace which belongs to the p eigenvalues near zero. In this case in each

Newton step one has to solve linear equations of the form

AVδ − B(V Λδ + VδD) = AV − BV D
V̂ TVδ = V̂ T (V − V̂ )

for (Vδ,Λδ) ∈ R
m(M+3)+p,p × R

p,p. This is accomplished by using a Bartels-Stewart al-

gorithm which is described in [27], [5]. The error in the invariant subspace is measured

via the angle between the two subspaces V and V̂ . The cosines cos(θ1), .., cos(θp) of the

principal angles 0 ≤ θ1 ≤ . . . ≤ θp ≤ π
2 are given by the singular values of V T V̂ , provided

the two matrices are orthogonal. Then we define

dist(V, V̂ ) = sin(θp) =
√

1 − σ2
min, (5.9)

where σmin is the minimal singular value of V T V̂ (see [20], [27]).

For the computation of the whole spectrum we solve the generalized eigenvalue problem

(5.7) for V,Λ ∈ R
m(M+3)+p,m(M+3)+p with the standard Matlab eigenvalue solver which

is an implementation of the QZ algorithm. Here the additional condition (5.8) needed in

the application of Newton’s method is not necessary.

To examine the influence of the bordering of Λh which has been introduced in Chapter 4

in order to remove the eigenvalue near zero from the spectrum, we consider the following

bordered generalized eigenvalue problem

(Ã − sB̃)v = 0, v ∈ R
m(M+3)+p (5.10)

where

Ã =

(

A Φ

ΨT 0

)

, B̃ =

(

Im(M+1) 0

0 0

)
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and Ψ,Φ ∈ R
m(M+3),p are defined as in Section 4.2 by

Ψ =

(

vec(S1(ũ))
T . . . vec(Sp(ũ))

T

0 . . . 0

)

, Φ =

(

vec(S1(û))
T . . . vec(Sp(û))

T

0 . . . 0

)

.

The number of infinite eigenvalues of (5.5),(5.10) can be computed as follows. The mul-

tiplicity of s = ∞ corresponds to the multiplicity of λ = 0 of the problem

(λÃ − B̃)v = 0, v ∈ C
m(M+3)+p.

Since the span of the generalized eigenvectors corresponding to λ = 0 is given by N (B̃),

which has dimension 2m+ p, a principal vector w is defined by B̃w = Ãv where

v ∈ N (B̃) = span{em(M+1)+1, . . . , em(M+3)+p}. With the notation v = vec(v0, . . . , vM+1, v−1, µ), vn ∈
R
m, µ ∈ R

p and w = vec(w0, . . . , wM+1, w−1, λ), wn ∈ R
m, λ ∈ R

p we obtain that w is de-

fined by w0 = X1v−1 + (Φλ)0, wM = ZMvM+1 + (Φλ)M , wi = (Φλ)i, i = 1, . . . ,M − 1 if

v satisfies

0 = PN− v0 +QN− δ0v0 + PN+ vM +QN+ δ0vM , (5.11)

0 = PD− v0 + PD+ vM (5.12)

0 =
M
∑

j=0

hSk(û)
T
j vj , k = 1, . . . , p. (5.13)

The equations (5.12),(5.13) are satisfied automatically and (5.11) reduces to r conditions

0 = −QN−v−1 +QN+vM+1. (5.14)

There exist no further principal generalized eigenvectors, since Rw = 0 and (5.14) imply

v = 0. Thus the number of infinite eigenvalues is given by 2m+p+(2m+p−r) = 4m+2p−r.

m=1 m=2

b.c. r p=0 p=1 r p=0 p=2

Dirichlet 0 4 6 0 8 12

periodic 1 3 5 2 6 10

Neumann 2 2 4 4 4 8

Table 5.1: Number of ∞-eigenvalues

5.2 The Nagumo equation

The first example is the well known scalar Nagumo equation [25]

ut = uxx + u(1 − u)(u− λ), u(x, t) ∈ R, x ∈ R, t > 0, (5.15)

where λ ∈ (0, 1
2).

This equation is often used for testing algorithms since a traveling wave solution u(x, t) =

ū(x − µ̄t) connecting the stationary points u− = 0, u+ = 1 of this equation is explicitly

known

ū(x) =
(

1 + e
−x√

2

)−1

, µ̄ = −
√

2 (1
2 − λ) (5.16)
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besides other explicit solutions, such as pulses, sources and sinks [8], [1], which we do not

deal with here.

For the following computations we choose λ = 0.25 which leads to µ̄ ≈ −0.3536. The

exact profile on the interval [−40, 40] is displayed in Figure 5.1.
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Figure 5.1: Nagumo, traveling front

The time dependent system

The time evolution of the frozen wave u starting from a randomly perturbed step-like

initial profile, is shown in Figure 5.2 and compared to the corresponding traveling wave.

In Figure 5.3 the development of the parameter µ is displayed. We use the Radau IIA

method for the solution of the DAE which arises from a discretization with h = 0.1 on an

interval J = [−40, 40] with Neumann boundary conditions. We employ the fixed phase

condition (2.59) and use exact solution ū given in (5.16) for the reference function û.

PSfrag replacements
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u

(a) traveling

PSfrag replacements

tx
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Figure 5.2: Nagumo wave, evolution of u(t)

After a transient phase, the frozen wave is stabilized and the parameter µ converges to

the exact velocity µ̄. In contrast, the traveling wave shown in 5.2(a) travels to the left and

leaves the computational domain at t ≈ 50.
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Figure 5.3: Frozen wave, evolution of the parameter µ(t)

In Figure 5.4 we show the time evolution of the difference |µ(t) − µ̄| and ‖u(t) − ū|J‖∞
to the exact solution (ū, µ̄) defined in (5.16) of the boundary value problem (1.13). One

clearly observes exponential convergence in time until the error reaches machine precision

at t ≈ 80. The exponential rate of convergence in this region is about α ≈ −0.29. This

behavior matches the prediction from the stability result 4.6, and rate of convergence is in

good agreement with the spectral information, since in this case max(Re (σ(L) \ {0})) ≈
0.283 (cf. Figure 5.8).

Note that, although it is not covered by the theory in this thesis, we get similar results

using the orthogonality phase condition 0 = Ψorth. Since here the resulting DAE is of

index 1 only, we were able to perform the computations not only with the Radau and the

θ-method, but as well with the standard Matlab DAE solvers for index 1 DAEs ode15s

and ode23t [55],[54]. As expected, the results in this cases are similar to the ones reported

above.
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Figure 5.4: Nagumo, time evolution of |µ(t) − µ̄| and ‖u(t) − ū|J‖∞

Approximation of the traveling wave

Figures 5.5 and 5.6 show the approximation error of the traveling wave for periodic

and Neumann boundary conditions. The grid size h has been varied exponentially in
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Figure 5.5: Approximation error, Dirichlet b.c.

[10−4, 10−1] and the size of the symmetric interval linearly in [20, 80]. We observe, that

the convergence of the wave form ũ to the exact solution ū is linear in T and quadratic in

h. This is in good agreement with the prediction of the approximation Theorem 2.21. The

exponential factor in T is about α ≈ 0.35, i.e. ‖ū− ũ‖� ≤ K(h2 + e−αT ), � ∈ {∞,H2
h}.

The parameter µ converges twice as fast in h to the exact velocity µ̄; here we observe

|µ̄− µ̃| ≤ K(h4 + e−αT ), where α ≈ 0.5. This is a superconvergence phenomenon, which

has been studied in [48]. For very small grid sizes h < 10−3.5, the ‖ū− ũ‖H2
h

increases

slightly. This is due to the fact, that the equations which have to be solved in the Newton

Iteration become very ill conditioned. In later examples, this effect will become even more

prominent.

Comparison of 5.5 and 5.6 shows, that the behavior is similar for Neumann and Dirichlet

conditions. For small interval sizes, Neumann conditions perform worse than Dirichlet

conditions. It is well known [3],[48], that the order of convergence can be improved using

projection boundary conditions, but these have not been considered in this thesis.
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Figure 5.6: Approximation error, Neumann b.c.

Approximation of the eigenvalue 0

For the Nagumo equation the eigenvalue 0 which corresponds to the translational eigen-

mode ū′ (which is always present, since the equation (1.1) is equivariant w.r.t. translations)

is simple. Thus the approximation Theorem 3.15 can be applied directly.

In order to document the dependence of convergence on the grid size h and the inter-

val length T , we perform similar computations as above for the boundary value problem

(3.78),(3.79),(3.80) near the eigenvalue σ = 0. We use the numerical solution (ũ, µ̃) from

above as linearization point and the exact eigenfunction ū′ restricted to the grid as ref-

erence function û. As initial values we chose (v0, µ0) = (ū′|J , 0). As before, we vary h in

[10−4, 10−1] and T in [10, 80] and use homogenous Dirichlet boundary conditions.

The error in v which is displayed in Figure 5.7 decreases linearly in T and quadratically

in h. However, the error in the eigenvalue σh is constant for decreasing h in Figure 5.7(a).

The bad conditioning of the matrices for small h and large T is clearly visible. But since

the error in v is always larger, the overall behavior is still in accordance with the statement

of theorem 3.15.
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Figure 5.7: Eigenvalue near 0, approximation error, Dirichlet b.c.

The essential spectrum

In Figure 5.8 all eigenvalues of the generalized eigenvalue problem (5.5) with periodic

boundary conditions are displayed with black crosses. The solid parabolas are the curves

s± defined in (3.90) in Example 3.23. As has been discussed already there, the essential

spectrum of Λ lies in the part of the left half plane which is bounded by s−. Most

eigenvalues lie on an ellipsis, which encloses the essential spectrum of the discrete operator

Λh on the whole lattice Z defined by

(Λhu)n = (δ+δ−u)n + λ̄(δ0u)n + f ′(ūn)un, n ∈ Z.

This has been discussed in Example 3.23. The zoom into the region near 0 in Figure

5.8(b) shows a simple eigenvalue near zero, which is separated by a gap from the rest

of the spectrum. This gap is bounded by the parabola s−. Using Dirichlet boundary

conditions, one obtains the approximation of the absolute spectrum, which is given (cf.

Example 3.23) by σabs = (−∞,−0.28] This is shown in Figure 5.9(a). The zoom in Figure

5.9(b) displays the eigenvalues of the of the bordered generalized eigenvalue problem (5.10)
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Figure 5.8: Nagumo, spectra

as well. Here the bordering is given by Ψ = vec(δ0ũ)
T and Φ = vec(δ0û)

T . The spectrum

is the same, exept for the zero eigenvalue which is removed from the spectrum as expected.

The same is true for periodic boundary conditions. Note that the number of ∞-eigenvalues

depends on the choice of boundary conditions, we obtain the predicted quantity 4m+2p−r
(see Table 5.1).
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Figure 5.9: Nagumo, spectra
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5.3 The quintic complex Ginzburg Landau equation

The second example is the cubic quintic Ginzburg Landau equation [58], [62], [14]

ut = auxx+ δu+ g(u), g(u) = β|u|2u+γ|u|4u, u(x, t) ∈ C , δ ∈ R, a, β, γ ∈ C . (5.17)

This equation is an amplitude equation which describes the slow modulation in space and

time of the envelope of the finite wavelength pattern for traveling wave systems just above

the onset of a finite-wavelength instability. It shows a variety of coherent structures, like

stable pulse solutions, fronts, sources, sinks, etc. Moreover, the equation has regimes

where the behavior is intrinsically chaotic.

The equation is equivariant w.r.t. the group G = S1 × R with action

a(γ)u(x) = e−iγru(x− γt) for γ = (γr, γt) ∈ G

and thus the functions ū′ and iū are eigenfunctions of

Λu = auxx + δu+ µ̄tux + iµ̄ru+Dg(ū)u

corresponding to zero. Thus here the condition of zero being a simple eigenvalue of Λ

is not satisfied and the approximation results Theorem 2.21 and Theorem 3.15 do not

apply directly. For numerical computations we write (5.17) in real variables. Introducing

the two parameters µt and µr the operators arising from the symmetries (translation and

rotation) are then given by

S1u = Rπ
2
u, S2u = ux,

where Rϕ denotes the rotation defined in (1.61). For certain parameter values, this equa-

tion possesses stable rotating pulses (the so called Thual-Fauve pulse [58]) and unstable

pulses, as well as rotating and traveling fronts. All these solutions can be written (in

complex notation) in the form

u(x, t) = e−iµ̄rtū(x− µ̄tt),

where for the rotating pulses, we have µ̄t = 0. It depends on the choice of initial conditions

which type of solution is selected.
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Figure 5.10: QCGL, stable and unstable pulse
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Figure 5.11: QCGL, front

For the parameter set a = 1, δ = −0.1, β = 3 + i, γ = −2.75 + i, which has been used

in [58], we found numerically a stable pulse with rotational velocity µr ≈ −1.30 as well as

a rotating front. Here we used a grid size h = 0.1 and Dirichlet boundary conditions for

the pulse and Neumann boundary conditions for the front on the interval [−40, 40]. These

solutions are depicted on Figure 5.10(a) and 5.11.

Using Painlevé methods, some exact solutions have been constructed explicitly in [32].

With ξ = x− µ̄tt the explicit expression for an unstable pulse reads

u(x, t) = u0e
i(a0θ0ξ−µ̄rt)(cosh(kξ) − cosh(ρ))ia0

√

k sinh(ρ)

cosh(kξ) + cosh(ρ)
(5.18)

where u0, a0, θ0, ρ, µ̄r, µ̄t, k are parameters that can be computed explicitly from a, δ, β

and γ using quite complicated formulae which are given in [32] and which we do not want

to restate here. For the used parameter set, we have µ̄t = 0, µ̄r ≈ 0.0573 and all other

parameters are real. Starting a Newton iteration with this explicit solution we found an

unstable pulse with µ̃r ≈ 0.0573 for the discretized equation on J = [−40, 40] as well. This

solution is shown in Figure 5.10(b).

The time dependent system

The time evolution of the real part of the stable pulse is compared for the frozen and the

rotating system in Figure 5.12 on the interval J = [−40, 40] with grid size h = 0.1. We

start with the exact unstable pulse solution given in (5.18) and use Neumann boundary

conditions. After a transient phase until t ≈ 15, the rotating pulse rotates with a fixed

rotational velocity µ̄r. In contrast, the frozen pulse is stabilized. As is shown in Figure

5.14(a) the parameter µr converges to a fixed velocity µ̄r whereas the translational speed

µt stays at zero.

The comparison of the rotating and traveling with the frozen front in Figure 5.13 shows a

similar situation. The frozen wave stabilizes quickly, whereas the non-frozen front contin-

ues to rotate and travels out of the computational domain at t ≈ 60.

The parameters µt and µr converge to the same translational speed and rotational velocity

that are observed in the non-frozen system. This is displayed in Figure 5.14(b).
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Figure 5.15: QCGL, time evolution of |µ(t) − µ̃| and ‖u(t) − ũ‖∞

The rate of this convergence is discussed in Figure 5.15, where the time evolution of the

difference to the solution of the boundary value problem (2.56)–(2.58) is shown.

The error |µ(t) − µ̃| in the parameters µt, µr is displayed as well as the error in the

waveform ‖u(t) − ũ‖∞. As in the previous example, the exponential convergence in time

matches the prediction from the stability result Theorem 4.6. Here the convergence rate

of α ≈ 0.12 for the pulse and α ≈ 0.2 for the front is again in good agreement with the

spectral information (see Figure 5.18(a) and 5.20).

Approximation of the unstable pulse

As in the previous example we compare the approximation error of the solution of the

boundary value problem (2.56), (2.57),(2.58) with the estimates in Theorem 2.21. For

the unstable pulse the exact solution is explicitly given by (5.18). Figure 5.16 shows the

approximation error of the pulse for Dirichlet boundary conditions. The grid size h is

varied exponentially in [10−4, 10−1] and the size of the symmetric interval J linearly in

[20, 80]. As shown in Figure 5.16 the parameters µt, µr converge much faster than the

wave form ũ to the exact values. The rate of convergence of µr to µ̄r is of order 4 in h and

the exponential rate in T is α ≈ 0.5. In contrast, µt reaches quickly the range of machine

precision where rounding errors dominate and the bad conditioning of the equations in

the Newton iteration becomes prominent. The wave û itself converges as predicted with

quadratic order in h and with α ≈ 0.16 in T . This can be observed in ‖·‖H2
h

as well

as in ‖·‖∞ (see Figures 5.16(c), 5.16(d)). In all cases the overall behavior matches the

predictions made in Theorem 2.21.
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Figure 5.16: QCGL, approximation error for the unstable pulse
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Approximation of discrete eigenvalues

The corresponding linearization of the transformed equation at the exact solution ū =

(v̄, w̄) here reads

Λu = Auxx + µ̄tux + (δI +BM1 +GM2 + µ̄rRπ
2
)u

where

A = MRe (α), B = MRe (β), G = MRe (γ) with MRe (z) =

(

Re z −Im z

Im z Re z

)

and

M1 =

(

3v̄2 + w̄2 2v̄w̄

2v̄w̄ v̄2 + 3w̄2

)

, M2 =

(

5v̄4 + 6v̄2w̄2 + w̄4 4(v̄3w̄ + v̄w̄3)

4(v̄3w̄ + v̄w̄3) v̄4 + 6v̄2w̄2 + 5w̄4

)
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T
h

(b) |σr|

10
−3

10
−2

10
−1 40

60
80

100

10
−6

10
−4

10
−2

PSfrag replacements

|σh|

∠
([
v 1
,v

2
],

[ū
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Figure 5.17: QCGL, approximation error for the double zero eigenvalue
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In order to solve the eigenvalue problem (5.7),(5.8) we use a Newton method, starting

from V̂ = [û′|J , iû|J ]. Alternatively we use the function eigs of the Matlab implementa-

tion of Arpack [31] compute the two eigenvalues of smallest magnitude of the generalized

eigenvalue problem (5.7) iteratively.

The errors in the subspaces as defined in (5.9) and the absolute values of the two eigenval-

ues near 0 are shown in Figure 5.17 for the unstable pulse. Here σt denotes the eigenvalue

which belongs to the approximation of the translational eigenfunction ū′ and σr is the

eigenvalue which belongs to the approximation of the rotational eigenfunction iū. It can

be seen that the translations eigenvalue σt is in the range of machine precision, thus the

errors increase for decreasing h, since the condition of the eigenvalue problem gets worse.

The error in the rotational eigenvalue σr is nearly constant for different h, but decreases

for increasing T , as expected. For very small h and large T the increase in error due to

the conditioning becomes visible as well. The angle between the invariant subspace which

belongs to σt and σr and the span of restriction of the exact eigenfunctions ū′|J and iū|J
to the grid shows the expected behavior. It decreases quadratically in h and linearly in T

with a rate of ca. −0.32 until the range of machine precision is reached.

Note that the choice of boundary conditions decides about the multiplicity of zero. For

example, zero is a double eigenvalue for the pulse with periodic boundary conditions,

whereas it is a simple eigenvalue for the front, since iū is not periodic. For the continuous

operator the same is true: iū is not in L2 if ū is a front.

The essential spectrum

The dispersion relation (1.6) is given by

det(−κ2I + iκµ̄tI + µ̄rRπ
2

+ δI +BM±
1 +GM±

2 − sI) = 0 (5.19)

where M±
1 , M±

2 are given by inserting the stationary points (v±, w±) in M1,M2.

Similarly, the essential spectrum of the operator on the whole line is determined by (see

Lemma 3.18) the solutions s ∈ C of

det(
2

h2
(cos(κ)− 1)I +

i

h
sin(κ)µ̄tI + µ̄rRπ

2
+ δI +BM±

1 +GM±
2 − sI) = 0, κ ∈ R. (5.20)

Inserting the data µ̄t = 0, ū± = 0 of the (stable or unstable) pulse , we obtain M±
i = 0

and (5.19) simplifies to

det

(

−κ2 + δ − s −µ̄r
µ̄r −κ2 + δ − s

)

= 0, κ ∈ R.

Thus the essential spectrum of the linearization of the operator Λ on the whole line at an

pulse, consists of the two half lines which are given by

s±(κ) = −κ2 + δ ± iµ̄r

which is ±iµ̄+ [−∞, δ].

Similarly, the solution of (5.20) simplifies to

det

(

2
h2 (cos(κ) − 1) + δI − sI −µ̄r

µ̄r
2
h2 (cos(κ) − 1) + δI − sI

)

= 0, κ ∈ R
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which is solved by

Σh
±(κ) =

2

h2
(cos(κ) − 1) + δ ± iµ̄r.

This are line segments, given by ±iµ̄r + [− 4
h2 , δ].

In Figure 5.18 the solutions of the generalized eigenvalue problem (5.5) for the stable and

the unstable pulse are compared. The zoom near zero shows that for the stable pulse only

the (double) zero eigenvalue is present, whereas for the unstable pulse an eigenvalue with

real part > 0 exists as well. In order to approximate the essential spectrum, we have used

periodic boundary conditions (compare section 3.2), but the approximation of the lines

mentioned above is still rather coarse.

Note that one has to be careful interpreting the numerical for the whole spectrum. For

small grid sizes h and large T the condition of the eigenvalues of (5.5) becomes quite bad.
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In Figure 5.19 we compare solutions σ of the system (5.5) with the eigenvalues σb of the

bordered system (5.10). Here the bordering is given by Ψ =
(

δ0û iû
)

, Φ =
(

δ0ũ iũ
)

.

It can be clearly seen, that the zero eigenvalue is removed from the spectrum σb of the bor-

dered operator and that this procedure works for the unstable situation as well (although

there one cannot make use of it).

The same is shown in Figure 5.20 for the stable front. Here it becomes visible that the

bordering does not only remove zero from the spectrum, but has an effect on the other

eigenvalues as well. Nevertheless no additional eigenvalues are created on the right of the

spectral gap at ca. −0.22, as expected by the resolvent estimates (3.4), (3.15),(3.16).

For the number of infinite eigenvalues of the generalized eigenvalue problem we obtain the

predicted quantity 4m+ 2p− r (see Table 5.1).
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Appendix A

Auxiliary results

A.1 Functional analytic notions

First recall that s ∈ C is in the resolvent set of the operator L : D(L) ⊂ X → X, if L− sI
has a bounded inverse on X and that the essential spectrum σess(L) contains all s ∈ C

that are neither in the resolvent set nor eigenvalues of finite multiplicity.

Definition A.1 Let X be a Banach space and L : X ⊇ D(L) → X a linear operator.

1. The operator Rs(Λ) = (sI −L)−1 with domain D(Rs(Λ)) is called the resolvent of L

in s.

2. The resolvent set ρ(L) contains all λ ∈ C for which

� Rλ exists
� Rλ is bounded

� D(Rs(Λ)) = R(sI − L) is dense in X.

3. The complement of the resolvent set σ(L) = C \ρ(L) is called spectral set. It can be

divided into two subsets σ(L) = σess(L) ∪ σpt(L), where the point spectrum σpt(L)

contains all isolated eigenvalues of finite multiplicity and σess(L) = σ(L) \ σpt(L) is

called the essential spectrum.

A.2 Fixed point theorems

Parameter dependent contraction Lemma

Theorem A.2 Let X,Y be Banach spaces and F : (X × Y ) ⊃ B%(0) × Bδ(0) → Y be a

continuous mapping, which satisfies the following estimates for q ∈ [0, 1):

‖F (x, y1) − F (x, y2)‖ ≤ q‖y1 − y2‖ ∀x ∈ Bρ(0), y1, y2 ∈ Bδ(0) (A.1)

‖F (x, 0)‖ ≤ δ(1 − q) ∀x ∈ Bρ(0) (A.2)
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Then for each x ∈ Bρ(0) there exists a unique fixed point ȳ = g(x) of F (x, ·), i.e.

F (x, g(x)) = g(x) and the following estimate holds

‖y1 − y2‖ ≤ 1

1 − q
‖y1 − F (x, y1) − (y2 − F (x, y2))‖ ∀x ∈ Bρ(0), y1, y2 ∈ Bδ(0). (A.3)

Note that (A.3) implies the continuity of g in Bρ(0), since

‖g(x1) − g(x2)‖ ≤ 1

1 − q
‖g(x1) − F (x1, g(x1)) − (g(x2) − F (x1, g(x2)))‖

=
1

1 − q
‖F (x2, g(x2)) − F (x1, g(x2))‖.

(A.4)

Nonlinear perturbation theorem

(see [61], HS 50 or [3], Lemma 3.1)

Theorem A.3 Let F : Y ⊃ B%(ȳ) → Z be a C1 mapping between two Banach spaces Y

and Z and let (DF (ȳ))−1 ∈ L[Z, Y ] exist. Assume the following estimates for κ, σ > 0

‖DF (y) −DF (ȳ)‖Y→Z ≤ κ < σ ≤ 1

‖DF (ȳ)−1‖Z→Y

∀y ∈ B%(ȳ), (A.5)

‖F (ȳ)‖Z ≤ (σ − κ)%. (A.6)

Then F has a unique zero y0 in B%(ȳ) = {y : ‖y − ȳ‖Y ≤ %} and the following estimates

hold

‖y0 − ȳ‖Y ≤ 1

(σ − κ)
‖F (ȳ)‖Z (A.7)

‖y1 − y2‖Y ≤ 1

(σ − κ)
‖F (y1) − F (y2)‖Z ∀y1, y2 ∈ B%(ȳ). (A.8)

Discrete Sobolev embedding

We need a discrete version of the Sobolev embedding H1(R) ⊂ C(R) which has been proven

for intervals of length one in the appendix of [29]. Here we prove a modified version which

takes into account the variability of the interval length.

Lemma A.4 Let u ∈ SJ(C
m), then for any C > 1 there exists T > 0 such that for any

h > 0 and ±hn± > T the following discrete Sobolev inequality holds

‖u‖∞ ≤ C‖u‖H1
h
. (A.9)

Proof: With the notation

〈u, v〉r,s = h
s
∑

n=r

uHn vn, ‖u‖2
r,s = 〈u, u〉r,s

we have the following version of the summation by parts formula

〈u, δ+v〉r,s = −〈δ−u, v〉r+1,s+1 + uHs+1vs+1 − uHr vr. (A.10)



A.3. Exponential dichotomies for ordinary differential equations 139

Let

‖uk‖ = min
n∈J

‖un‖, ‖ul‖ = max
n∈J

‖un‖ = ‖u‖∞

and assume w.l.o.g. l > k. With (A.10) we obtain

‖ul‖2 − ‖uk‖2 = 〈u, δ−u〉k,l−1 + 〈δ+u, u〉k+1,l

≤ 2‖u‖L2,h
‖δ+u‖L2,h

≤ ‖u‖2
L2,h

+ ‖δ+u‖2
L2,h

.

Since

‖uk‖2 ≤ 1

h(n+ − n− + 1)

n+
∑

n=n−

h‖un‖2 ≤ 1

2T
‖u‖2

L2,h

we obtain for T ≥ 1
2(C2−1)

‖u‖2
∞ = ‖uk‖2 + ‖ul‖2 − ‖uk‖2 ≤ 1

2T
‖u‖2

L2,h
+ ‖u‖2

L2,h
+ ‖δ+u‖2

L2,h

≤ (1 +
1

2T
)‖u‖2

H1
h
≤ C2‖u‖2

H1
h
.

2

A.3 Exponential dichotomies for ordinary differential equa-

tions

In this section we repeat some well known results about exponential dichotomies for or-

dinary differential equations which can be found in [42], [60], and some facts about the

operator L defined in (1.46).

Definition A.5 (Exponential dichotomy)

The linear differential operator

Lz = z′ −M(·)z, x ∈ J ⊂ R, M(·) : J → R
m,m (A.11)

with solution operator S(x, ξ) has an exponential dichotomy (ED) in the interval

J = [x−, x+], x± ∈ R ∪ {±∞} with data (K,α, π) if there exist a bound K > 0, a rate

α > 0 and a function π : J 3 x 7→ π(x), π(x) a projector, such that the following holds

S(x, ξ)π(ξ) = π(x)S(x, ξ) (A.12)

and the Green’s function

Gc(x, ξ) =

{

S(x, ξ)π(ξ), x ≥ ξ

−S(x, ξ)(I − π(ξ)), x < ξ,

satisfies an exponential estimate

‖Gc(x, ξ)‖ ≤ Ke−α|x−ξ|, x, ξ ∈ J. (A.13)
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If J = (−∞, 0] then the kernel of the projector π(0) is given by

N (π(0)) = {z0 ∈ R
m : sup

x≤0
‖S(x, 0)z0‖ <∞}

and for J = [0,∞) the image of π(0) is given by

R(π(0)) = {z0 ∈ R
m : sup

x≥0
‖S(x, 0)z0‖ <∞},

(see [41], Section 2). If L has an exponential dichotomy on (−∞, 0] and [0,∞) with data

(K±, α±, π±), then the kernel of L is given by

N (L) = {S(·, 0)z0 : z0 ∈ N (π−(0)) ∩R(π+(0))}.

Note that, if L has exponential dichotomies on R
± with data (K±, α±, π±) then the adjoint

operator

L∗ : L2 → H2, z 7→ z′ +MT (·)z (A.14)

also has exponential dichotomies on R
± with projectors I − πT± and

N (L) = {S(x, 0)z0 : z0 ∈ R(π+) ∩N (π−)}.

Thus for φ ∈ N (L) we obtain the exponential estimate

‖φ(x)‖ ≤ Ke−α|x|, x ∈ R. (A.15)

Note that, Gc being a Green’s function means that the solution of the linear inhomogeneous

equation

Lz = r̄, x ∈ J (A.16)

is given by z(x) =
∫

J
G(x, ξ)r(ξ) dξ.

Thus if the operator L has exponential dichotomies on R
± with data (K±, α±, π±), then

solutions of (A.16) on J = R
± are given by

[s̄−(r̄)](x) =

∫ 0

−∞
G−
c (x, ξ)r̄(ξ) dξ

=

∫ x

−∞
S(x, ξ)P−(ξ)r̄(ξ) dξ −

∫ 0

x

S(x, ξ)(I − P−(ξ))r̄(ξ) dξ

[s̄+(r̄)](x) =

∫ ∞

0
G+
c (x, ξ)r̄(ξ) dξ

=

∫ x

0
S(x, ξ)P+(ξ)r̄(ξ) dξ −

∫ ∞

x

S(x, ξ)(I − P+(ξ))r̄(ξ) dξ.

(A.17)

Using the dichotomy estimates, these solutions can be estimated for r̄ ∈ L2 by (cf. Lemma

3.21 in [60])

‖s̄±(r̄)‖L2
+ ‖[s̄±(r̄)](0)‖ ≤ C‖r̄‖L2

. (A.18)

In order to infer the existence of exponential dichotomies on R
± for the operator L de-

fined in (1.46) from the existence of exponential dichotomies for the constant coefficient

operators L± = limx→∞ d
dx

−M(x), the following well known “Roughness Theorem” ([41],

[3]) is used. It describes the persistence of exponential dichotomies under perturbations

which decay for x→ ∞ to zero.
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Lemma A.6 Assume that the operator Lz = z′−M(·)z possesses an exponential dichotomy on

J = [x0,∞),x0 ∈ R with data (K,α, π). Consider the perturbed operator

L̃z = z′ − (M(·) + ∆(·))z

with ∆ ∈ C(J,Rm,m) and ‖∆(x)‖ → 0 as x→ ∞. Then L̃ has an exponential dichotomy auf

[x0,∞) with data (K̃, α̃, π̃), and

‖π̃(x) − π(x)‖ → 0 as x→ ∞.

It has been shown in [3], Lemma 2.1, the existence of exponential dichotomies for L on

R
± follows from the hyperbolicity of the matrices M± = limx→±∞M(x).

Corollary A.7 Assume that the matrix M ∈ C(R,Rm,m) has limits

M± = lim
x→±∞

M(x),

which are hyperbolic. Let Xs
± and Xu

± be the stable and unstable invariant subspace of

M±, respectively.

Then L has an exponential dichotomy on R
− = (−∞, 0] and R

+ = [0,∞) with data

(K±, α±, π±). The projectors π− and π+ satisfy

lim
x→−∞

(I − π−(x)) = Eu
−, lim

x→+∞
π+(x) = Es

+,

where Eu
− denotes the projector onto Xu

− and Es
+ the projector onto Xs

+.

If the number of stable and unstable eigenvalues of M± is m, then we have

dimN (π−(0)) = dimR(Eu
−) = m, dimR(π+(0)) = dimR(Es

+) = m.

Moreover, the operator L is a Fredholm operator of index k+
s − k−s = k−u − k+

u where k±u
resp. k±s denotes the number of unstable resp. stable eigenvalues of M±.

Instead of a single matrix function M(·) we often consider families of matrix functions

M(·, s), in general the hyperbolicity of the matrices M±(s) = limx→∞M(x, s) is related

to the characteristic equations (1.6) as follows. A solution (Y,Λ) ∈ R
m,p × R

p,p of the

quadratic eigenvalue problem

AY Λ2 +BY Λ + (C − sI)Y = 0, A,B,C ∈ R
m,m.

is related via linearization to the eigenvalue problem

M(s)W −WΛ

for the matrix

M(s) =

(

0 I

−A−1(C − sI) −A−1B

)

∈ R
2m,2m (A.19)

via

W =

(

Y

Y Λ

)

.
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Thus the spectral condition (SC) implies that the matrices M±(s) are hyperbolic for all s

with Re (s) > −β with m stable and m unstable eigenvalues (cf. Lemma 3.30 in [60]).

It has been shown in [3], [60] that this implies that the operators

L(s)z = z′ −M(·, s)z, with (A.20)

M(x, s) =

(

0 I

A−1(sI − C(x)) −A−1B(x)

)

possesses exponential dichotomies on both half lines R
± if Re (s) > −β.

Note that Λ − sI and L(s) are strongly related. As has been proven in [50], the Jordan-

block structures of Λ − sI and L(s) are the same, as well as the Fredholm properties.

In the following we fix the notation for the corresponding invariant subspaces and its

projectors.

Definition A.8 We denote the (orthogonal) projector onto the stable subspace of M−(s)

by Es
−(s), i.e. R(Es

−(s)) = R(W s
−(s)), for

W s
−(s) =

(

Y s
−(s)

Y s
−(s)Λs−(s)

)

∈ R
2m,m

where Y s
−(s),Λs−(s) solve the quadratic eigenvalue problem

AY Λ2 +B−Y Λ + (C− − sI)Y = 0

and Re σ(Λs−(s)) < 0.

Similarly, we denote the projector onto the unstable subspace of M+(s) by Eu
+(s), i.e.

R(Eu
+(s)) = R(W u

+(s)), for

W u
+(s) =

(

Y u
+(s)

Y u
+(s)Λu+(s)

)

where Y u
+(s),Λu+(s) solve the quadratic eigenvalue problem

AY Λ2 +B+Y Λ + (C+ − sI)Y = 0

and Re σ(Λu+(s)) > 0.

In case s = 0, we omit the s dependency, e.g. write just Y u
+ ,Λs−.
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Appendix B

Notation

D(P ) domain of definition of the operator P .

N (P ) nullspace or kernel of P .

R(P ) image or range of P .

‖P‖X→Y norm of a bounded operator P : X → Y : ‖P‖ = sup
x∈D(P )
x6=0

{

‖Px‖Y

‖x‖X

}

.

σ(L), %(L) spectrum and resolvent of an operator L

C(X,Y ) bounded continuous operators from X to Y with sup norm.

Ck(X,Y ) k-times continuous differentiable operators from X to Y .

Let K ∈ {R,C }
Ck(R,Kn) k-times continuous differentiable functions from R to K

n.

Ckb (R,Kn) functions, which possess continuous, bounded derivatives

f (j) = dj

dxj f up to order k equipped with the norm

‖f‖k,∞ =
k
∑

j=0

‖f (j)‖∞ =
k
∑

j=0

sup
x∈R

‖f (j)(x)‖.

Lp(R,Kn) Lebesgue integrable functions from R to K
n, with norm

‖f‖Lp
:=

(∫

R

‖f(x)‖p dx
) 1

p

, 1 ≤ p <∞.

〈u, v〉 L2 inner product, 〈u, v〉 =
∫

R
u(x)Hv(x) dx

Hk(R,Kn) Sobolev space of functions f ∈ L2(R,K
n), which possess

L2-integrable derivatives up to order k with norm

‖f‖Hk :=





k
∑

j=0

‖f (j)‖2

L2





1

2

=





∫

R

k
∑

j=0

‖f (j)(x)‖2
dx





1

2

.
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u′ derivative of a function u(x)

ux, ut partial derivatives of a function u(x, t).

B�
ρ(x) closed ball of radius ρ around x ∈ X: Bρ(x) = {y ∈ X : ‖x− y‖� ≤ ρ}

J, Je, discrete intervals: J = [n−, n+], Je = [n− − 1, n+ + 1],

Jr, Jl Jr = [n−, n+ + 1], Jl = [n− − 1, n+]

GJ,h,x0
equidistant finite grid GJ,h,x0

= {xn : xn = x0 + nh, n ∈ J}.
SJ(K

m) Banach space of sequences {zn}n∈J , zn ∈ K
m with

‖z‖∞ = supn∈J ‖zn‖
δ+, δ−, δ0 finite difference operators: δ+ : SJr → SJ , δ− : SJl

→ SJ , δ0 : SJe →
SJ

(δ+u)n = 1
h
(un+1 − un), (δ−u)n = 1

h
(un − un−1),

(δ0u)n = 1
2h(un+1 − un−1)

For z ∈ SJ :

‖·‖1,∞ ‖z‖1,∞ = ‖z‖∞ + ‖δ+z‖∞
‖·‖2,∞ ‖z‖2,∞ = ‖z‖1,∞ + ‖δ+δ−z‖∞
‖·‖L2,h

discrete L2-norm for z ∈ SJ : ‖z‖L2,h
= (
∑n+

n=n− h‖zn‖
2)

1

2

‖·‖H1
h
, ‖·‖1,L2,h

discrete H1-norm ‖z‖1,L2,h
= ‖z‖H1

h
= (‖z‖2

L2,h
+ ‖δ+z‖2

L2,h
)

1

2 ,

‖·‖H2
h
, ‖·‖2,L2,h

discrete H2-norm ‖z‖2,L2,h
= ‖z‖H2

h
= (‖z‖2

H1
h

+ ‖δ+δ−z‖2
L2,h

)
1

2

〈u, v〉r,s 〈u, v〉r,s =
∑s

n∈r h u
H
n vn

〈u, v〉h L2,h inner product in SJ , J = [n−, n+]: 〈u, v〉h = 〈u, v〉n−,n+

Eρ functions which decay with its derivative, i.e. g ∈ Eρ(J,Rm) if

‖g(x)(k)‖ ≤ Ke−%|x|, k = 0, 1 for some K > 0

vec(u) u ∈ SJ(R
m) : vec(u) = (uTn− , . . . , u

T
n+

) ∈ R
m(n+−n−+1)

O, o Landau symbols
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