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Introduction

Traveling wave solutions of parabolic equations occur, besides other examples of pattern
formation, in different areas of biology, chemistry and physics. They describe transport
phenomena such as spread of populations [39], nerve conduction [24], [19] as well as oscil-
latory modes in models of superconductivity [44].

This thesis deals with the numerical computation and stability of traveling wave solutions
(and more generally relative equilibria) of parabolic partial differential equations (PDEs)
on the real line

up = Atugy + f(u,ug), u:Rx[0,00) —R" AecR"™. (1)

Traveling waves are solutions which can be written in the form u(z,t) = @(z — Mt), where
4 : R — R™ denotes the waveform and A the velocity.

In a comoving frame v(¢,t) = u(€ + M, t) equation (1) is transformed into
vy = Avge + Ave + f(v,v¢), EER, ¢>0. (2)
For this equation %(£) is a stationary solution, i.e. (%, \) solves the second order ODE:
0= Av" + X' + f(v,0). (3)

It is of particular interest to examine stability with asymptotic phase of this stationary
solution for the dynamic equation (2), i.e. solutions of (2) with initial values close to @
that converge in a suitable norm to a shifted version of the profile .

For strongly parabolic systems on the real line, which we consider in this thesis, there exist
well known results [23], [49] which relate nonlinear and spectral stability. More precisely,
consider the linearization of the right hand side of (2) at the wave form @, given by

Au = Augy + (M + Do f (@, ty))ug + D1.f(@, tg)u.

Then “asymptotic stability with asymptotic phase” of the traveling wave is related to the
location of the spectrum of A. Thus, in order to gain information about the stability of
a traveling wave, one has to study properties of the spectrum of the generally unbounded
linear operator A in appropriate function spaces with appropriate norms. These are de-
termined by the type of perturbation w.r.t. which stability is considered. Note that these
operators may not only have discrete eigenvalues but continuous spectrum as well. Inves-
tigations of the spectrum of A have been conducted for many systems. To detect isolated
eigenvalues of finite multiplicity one often uses the so called Evans function [2], [57], [49],
which is an analytic function that measures the angle between subspaces of modes that
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decay for + — —oo and x — +oo. The location of the rest of the spectrum, the so
called essential spectrum is determined by the constant coefficient operators A* that are
obtained by letting = tend to 400 in the coefficients of A. The spectrum of A* can be
calculated from the so called dispersion relation [49], [23], [60]. In many applications nei-
ther the traveling wave nor its spectrum and the Evans function are known analytically.
Therefore one has to resort to numerical methods to approximate not only the wave but
the spectrum (or at least isolated eigenvalues of finite multiplicity) as well.

Suppose, the system (1) has a traveling wave with nonzero velocity. One is interested in
solving the Cauchy problem (1) for initial data u(-,0) = v" that are close to the wave @
or at least converge to it after sufficiently long time. One simulates the PDE (1) directly
by restricting it to a finite interval J = [r_,z4] and using finite boundary conditions.
Then one employs some method of discretization for the corresponding initial bounday
value problem. It may then happen, that the solution leaves the interval before it reaches
the traveling wave form, or it reaches the traveling wave form which then dies out when
reaching the finite boundary. Therefore one would like to work in a comoving frame, i.e.
solve equation (2) numerically. However, the velocity ) is generally unknown. This leads
to the idea of freezing the traveling wave as in [7] by introducing the unknown (time
dependent) velocity of the frame as an additional independent variable and by employing
a so called phase condition in order to deal with the additional degree of freedom. The
original PDE (1) is now transformed via u(x,t) = v(z — v(t),t) into a partial differential-
algebraic equation (PDAE)

U = AUZI + f('U,'Uz) =+ )\va Ve = )‘7 U('>O) = UO, 7(0) =0
I (4)

0= (0,v—0).
Here © is an appropriate reference function, for example ¢ = v°. The last equation in (4)
constitutes an additional algebraic constraint.

The purpose of this thesis is to investigate the asymptotic behavior ¢ — oo of such systems
for two cases: the continuous case on the whole line, which is dealt with in Chapter 1,
and the spatially discrete case, which arises from a simple spatial discretization with finite
differences on a finite interval. Here the discrete analog of (4) reads

valz = A<5+5—v)n + )‘(507))71 + f(vna 50”71)7 neJ= [n—7 n-‘r]? t>0 (5)
n="P v, +Q_(6ov)n_ + Pivn, + Q4 (dovn,) (6)
0="h > (60D)} (vn — bn) =: U(v). (7)

where d_, 04,9y denote forward, backward and central finite differences respectively, the
integers n+ determine the finite interval J and Py, Q4+ € R2™™ are suitable matrices (cf.
Section 2.2). The approximation properties of stationary solutions of (5)—(7) are examined
in Chapter 2.

Note that (1) and (4) are equivalent, whereas on finite intervals J, the DAE formulation
(5)—(7) is no longer equivalent to the direct discretization of the PDE (1) on J given by

u, = A(040_u)y + f(un,doun), neJ=[n_,ng, t>0

!
" 8
0= Pt +Q (0w + Py, + Qs (Sotin,). (®)
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This can be seen clearly in numerical computations: In the PDE case (8) (if the velocity
) is not zero) a pulse or front will eventually leave the compuational domain, whereas in
the PDAE case the wave form will stabilize in the interval (if the initial conditions are
reasonable), see [7] for numerical experiments.

Now the question arises, if the traveling wave solution is a stable solution of the PDAE (4)
under the same conditions which ensure its stability with asymptotic phase as a solution
of the PDE (1) (using the appropriate notion of stability in each case). The main result
Theorem 1.13 in Chapter 1 is a positive answer for the PDAE. In Chapter 4 we show an
analogous result in Theorem 4.2 for the differential algebraic equation (5)—(7) provided
the boundary matrices Py, (Q+ satisfy an appropriate regularity assumption.

In both cases the method of proof is quite similar; as in the stability proofs for the PDE
(see [60], [23], [36], [63]) we will use semigroup methods to define a solution of the nonlinear
system via a variation of constants formula. Then we use the properties of the spectrum
of the corresponding linear operator as well as the fact that the phase condition removes
the eigenvalue zero.

In Chapter 2 we prove that the discretized stationary equations

0=A(0+0-v)n + A(00V)n + f(vn,00vn), n€J=[n_,ny], t>0

n=P_v,_+Q_(00v)n_ + Pyrvn, + Q4 (dovn,) 9)
0="Y(v)

have a solution (@, )), that approximates the traveling wave (@, ). The dependence of
the error estimate on the grid size h and the size of the interval J is quantified. The
corresponding approximation results for discrete eigenvalues as well as resolvent estimates
for the discrete operators are proven in Chapter 3.

The numerical approach of approximating the derivatives by finite differences is widely
used [30], [13] besides other (global) methods such as Galerkin or (pseudo-)spectral meth-
ods [59], collocation [38] or finite elements [37]. Therefore the results concerning the ap-
proximation in dependence on h and 1" are interesting from a numerical analysis point of
view. We expect our results to hold in an analogous manner for these other discretization
methods.

In the thesis we need these results on the approximation of the wave as well as on the
spectral properties of the discretized system in order to prove resolvent estimates. These
are used in Chapter 4 for obtaining precise estimates of the discrete solution operator of
the linear equation.

The methods used in Chapters 2 and 3 are mainly dynamical systems tools, namely
exponential dichotomies for finite difference equations. These allow to decompose the
space of initial values into subspaces which give rise to solutions that decay exponentially
either in forward or backward z-direction.

Such methods have been used for discrete dynamical systems in [26], [4] and in [64] to
study connecting orbits of discrete systems on Z (i.e. without boundary conditions). The
numerical approximation of (3) gives rise to such a discrete dynamical system in space
which inherits many properties of the continuous system. Combining this with the meth-
ods, used in [26] in order to deal with boundary conditions, we can prove approximation
results for the traveling wave as well as for simple, isolated eigenvalues and for the resolvent
equation.
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The influence of the boundary conditions on the approximation of the wave in the contin-
uous case (i.e. without discretization) has been dealt with in [3], [60], and on the spectrum
in [6] and [51],[50]. The two latter papers also analyze the dependence of the essential
spectrum on boundary conditions. At the end of Chapter 3 we comment on similar spec-
tral behavior that is observed for spatially discretized systems in Chapter 5. If periodic
boundary conditions are used the eigenvalues of the system on the finite grid cluster near
the essential spectrum of the discrete operator on the infinite grid.

The freezing approach in [7] is not restricted to traveling waves. It is possible to deal with
general relative equilibria [9], [53] such as rotating waves on the real line and even spiral
waves in two space dimensions. We outline this more general approach here in order to
indicate, how the results of this thesis may be extended to more general equations.

Consider an evolution equation in a Banach space X of the form
up = F(u) (10)

with an equivariant right hand side F, i.e. a(y)F(u) = F(a(y)u) where
a:G — GL(X),y — a(v) denotes the action of a Lie group G on X. The equation (10)
can be transformed via the ansatz v(t) = a(v(t))u(t) into the equivalent system

v =F(v) —a(y) ey (y)ud, A= (11)

A traveling wave is a special type of a relative equilibrium of equivariant evolution equa-
tions, where the action is given by translation, [a(y)u](x) = u(z — ), v € R. Most of our
results concerning convergence and stability can be generalized to equivariant parabolic
equations on R. We will indicate the necessary modifications in the proofs for this case at
the end of the corresponding chapters.

Asindicated before, the theory becomes more difficult in higher space dimensions, although
the freezing approach works in this case as well. The main difficulty is the lack of a spectral
gap, since in this case the essential spectrum touches the imaginary axis [49]. Moreover,
the use of dynamical systems tools such as exponential dichotomies, relies on the fact that
the space is one dimensional.

In Chapter 5 we demonstrate the convergence properties of the solution of the boundary
value problem (9) (different intervals and grid sizes) as well as the behavior of the spectrum
under discretization for two different numerical examples. The first example is the scalar
Nagumo equation for which an exact traveling front solution is known. The second more
general example is the quintic complex Ginzburg Landau equation (QCGL), which is
equivariant w.r.t. the action of the group G = S! x R on R?. The action is given by
translation in the domain and rotation in the image, i.e.

[a(')/)u] (fL‘) = R—’Yru(x - 'Yt)v Y= (’77"7’%) € G, z €R, u(m) € sz R'y = (Z?j((::)) 7:;;1((,7))> .

In both cases, the numerical convergence behavior confirms the theoretical predictions
from Chapter 2.

For the convergence of the eigenvalues of the discrete system near zero similar compu-
tations are performed. The error of the eigenvalue and of the eigenfunction and the
corresponding invariant subspace (in the QCGL case) is computed for various values of
the grid size h and of the interval length.
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Furthermore the stability properties which are discussed in Chapter 4 are examined nu-
merically. We compare the spectral data with the rate of exponential convergence of the
solution of the time dependent system (5)—(7) towards the solution of the boundary value
problem (9).

At last, we show the spectrum (i.e. all eigenvalues) of the discrete operator on J for
different boundary conditions. These results have led to the conjectures concerning the
approximation of the essential spectrum in Chapter 3.

In Appendix A we summarize functional analytic tools as well as some well known facts for
exponential dichotomies. Several symbols that are used frequently in the text, especially
function spaces are listed in Appendix B.

In summary, this thesis gives a detailed study of the existence and stability of traveling
waves for a newly developed equation and a widely used numerical discretization. The
extension of our results to much more general patterns seems possible and provides new
questions.






Chapter 1

Stability of traveling waves as
PDAE solutions

In this chapter we deal with the stability of traveling wave solutions of parabolic systems
in one space dimension. After stating well known results about stability with asymptotic
phase, we prove stability for the PDAE formulation (cf. (4)). This PDAE contains an
additional phase condition that singles out a unique solution from the continuum of shifted
traveling waves.

We first introduce the appropriate notion of stability for traveling waves and state sufficient
conditions on the spectrum of the elliptic operator which ensure nonlinear stability. Note
that the existence of such a solution will always be assumed, existence proofs can be found
for example in [63], [11].

We employ semigroup theory for the solution of the PDE and generalize some of the results
to the special PDAE under consideration. As general references for the theory of analytic
semigroups and sectorial operators we use the monographs [23], [36], [46], [43]. For more
general theory on abstract PDAEs see [17].

XXX

In Chapter 4 a similar approach will be used to show the stability of a traveling wave
for a discretization of the PDAE (4) with finite differences and appropriate boundary
conditions.

Consider the following strongly parabolic PDE
up = Atgy + f(u,ug), u: RxRy - R™ A eR™™, (1.1)

where A > 0, i.e. (v, Av) >0 Vv € R™\ {0}. Assume that equation (1.1) has a traveling
wave solution u, i.e. u can be written as

u(z,t) =u(€), &=x— M, ucCi(R,R™), (1.2)

where the waveform u € Cf (R,R™) possesses bounded derivatives up to order 2 and has
the properties

EEfinooﬂ(f) = Uz, £Erinooﬂ'(ﬁ) =0. (1.3)
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In a comoving frame, i.e. for v(&,t) = u(€ + At,t) equation (1.1) reads
Ve = Avgg + ;\vg + f(v,vg), EeR, t>0 (1.4)

and @ is a stationary solution of this equation.

1.1 Stability with asymptotic phase

For such solutions the correct notion of stability is the so called “asymptotic stability
with asymptotic phase” which will be given in Definition 1.1 (see [63],[23],[49]). The
term “asymptotic phase” refers to the fact, that solutions starting close to the wave do
not necessarily converge to the wave itself but to some suitably shifted profile. This is
reasonable since with @, each shifted function @(-+y) is also a solution of (1.1). A numerical
procedure for computing the traveling wave has to single out one unique solution of this
family. This is done by employing a so called phase condition as discussed in later sections.

Definition 1.1 The wave (u, 5\) 1s called “asymptotically stable with asymptotic phase”
with respect to a norm ||| in a Banach space X, if for each € > 0 there exists 6 > 0 such
that for each solution v of (1.4) with v(-,0) € X and

lo(-,0) —all <6
there exists a phase shift v € R such that

lo(-,t) —a(-+y)|| <€, V>0
Jv(-,t) —

I

(-4+7)| =0, ast— occ.

The Banach space X will we specified later, for the moment we just assume that X satisfies
CP(R,R™) C X C L2(R,R™). Note also that the solution @ itself need not be an element
of X, rather Def. 1.1 assumes that v(-,t) —u(-—~) isin X for each y € Rand ¢t > 0. As has
been shown in [63], [60], [49],[18] asymptotic stability is determined by the linearization
of the right hand side of (1.1) about the traveling wave profile (%, \) which is given by

Au = Au" + Bu' + Cu. (1.5)
Here B: R — R™™ (C:R — R™™ are defined as follows
B(z) = M + D f(a(z), @' (x)), C(x) = D1 f(u(x),(2)).
Note that B and C converge as * — 400 to

lim B(x) = M + Daf(us,0) =: By, 1irﬂ1:1 C(z) = D1f(us,0) =: Cy.

r—+00

Sufficient conditions for asymptotic stability of (#, A) with asymptotic phase are (see The-
orem 1.8 below)
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Spectral condition (SC):
There exist ¢ > 0, 8 > 0, such that for s with Re s > —( the solutions A of the
quadratic eigenvalue problems

det(\2A+ ABx +Cy —sI) =0 (1.6)
satisfy: |Re A| > 0.

Eigenvalue condition (EC):
Considered as an operator in X the differential operator A has a simple eigenvalue
0 and there exists 8 > 0 such that there are no other isolated eigenvalues s of finite
multiplicity with Re s > —f.

Before we proceed to the main stability result for the PDAE, we note two important
consequences of these conditions that are used in the proof of the stability theorem 1.8
below. We recall the definitions for resolvent and (essential) spectrum in definition A.1 in
the appendix. The spectral condition (SC) implies that the essential spectrum oegs(A) is
contained in the left half plane as the following Theorem shows.

Theorem 1.2 Let B,C : R — R™™ be bounded, continuous matrix functions with

lim B(x)=: By, lim C(x)=:Cy

r—+o0 r—+o0

and let A € R™™ satisfy A > 0.
Consider the operator
Au = Au" + B(-)u' + C(-)u. (1.7)

in Lp(R,R™), 1 < p < oo, define the set
Sy ={s€C :det(—rk*A+ixBy + Cy — sI) = 0, for some k € R}.

and let M be the complement of the connected component of C \ {S+ US_} that contains
the right half plane.
Then the essential spectrum oess(A) satisfies

S_ US4 C 0ess(A) C M.

Note that the set St is a variety which is symmetric w.r.t. the real line. Theorem 1.2 as
stated above is a slight generalization of [23], Chapter 5, Thm. A.2 to non-symmetric A.

The eigenvalue condition (EC) ensures that the rest of the spectrum, i.e. all isolated
eigenvalues of finite multiplicity, except for the eigenvalue 0, have real part < —g < 0.
Due to translational invariance the eigenvalue 0 is always present. This can be seen by
differentiating the equation for the phase shifted solutions

0=Ad"(x + )+ Xt/ (z+ ) + f(u(z + ), @ (z + N)), z7€R

with respect to the parameter X\ at A = 0. One obtains Au’ = 0, thus the eigenfunction
corresponding to 0 is o’ if @’ € X.
The following estimate for the resolvent of A follows from (EC) ,(SC) :
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Lemma 1.3 Let A € R™™ with A > 0 and let A be given by (1.5). Then there exists an
open sector

Suc={s€C :|arg(s+w)| <(, s# —w}, where( > g

and a constant K > 0, such that for each s € S, ¢ and each u € C§°(R,R™) the following
estimate holds
2)1, 112 2 2
s llullz, + Isllv'llz, < KI£1IZ,

for
f=(sI —A)u.

Figure 1.1: The sector S, ¢ contained in the resolvent set

This has been shown in [60] for the symmetric case and the extension to the nonsymmetric
case is immediate. Together with the conditions (SC) and (EC) this shows that A is a
sectorial operator in Ls.

Definition 1.4 Let X be a Banach space and let A : D(A) — X be a linear operator on
X. A is called sectorial if

1. A is closed and densely defined
2. there exist ( € (5, m), M > 1, w € R, defining the closed sector
Suc={s€C : [arg(s + )| < ¢, 5% —w},

such that the resolvent set p(A) contains S, ¢ and obeys the following estimate

(s = M)~ <

S+ 1.
|s+w|’ VSES%C ( 8)

We recall the definition of the solution of a semilinear evolution equation with sectorial
operator A as given in [36], [60]. Note, that this is a modified version of the solution
definition in [23], which is necessary in order to guarantee the uniqueness of solutions (cf.
[35], [36])

Definition 1.5 Let A be a sectorial operator in Lo with D(A) = H? and g : H' — Ly. A
function u : [0,7) — H is called a solution of the autonomous equation

' =Au+g(u), u0)=u’ecH

in the interval (0,7), 7 € RU{oo} if
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1. g(u(-)) : [0,7) — Lo is continuous
2. w:[0,7) — H' is continuous, u(t) € H? fort € (0,7) and u(0) = u°

3. u/'(t) € Lo exists and u'(t) = Au(t) + g(u(t)) fort € (0,7)

For the nonlinear stability problem we have to deal with solutions of (1.4) of the form
@+ v only, where v is supposed to lie in the correct function space. If u solves (1.4) then
v = u — U solves

v = Avgg + Avg + g(v, vg) (1.9)

where
gv,w) = f(a+v,a" +w) — f(u,u)

Then we can define a solution of equation (1.1) as follows.

Definition 1.6 A function u is called a solution of equation (1.1) if v = u — @ solves
(1.9) in the sense of Definition 1.5.

Remark 1.7 Note that here we require only the difference to the traveling wave solution
to lie in Lo, e.g. traveling fronts do not lie in £o. For f € C' we obtain even @’ in H?:
From the PDE (1.4) we obtain that @’ solves the variational equation Au = 0 which implies
u' € C2. With z = (u, ) this equation is transformed to the first order equation Lz = 0 of
which z = (@/,4”) is a bounded solution. Since L has exponential dichotomies on R™, R*
(see Section A.3) this implies that (@', @”) is actually exponentially decaying for x — o0,
ie.
la(z) — us| < KeT2 aswell as  |Ja®(z)|| < Ke 2l k=1,2

for some p > 0. Thus @, a” are in £L5. With A%’ = 0 we obtain using the definition of A
in (1.5) that 4" € L as well, which implies @’ € H>.

From the resolvent estimate (1.8) and the two properties of the spectrum (EC) and (SC)
the nonlinear stability of the traveling wave solution follows. This has been shown in
[63],[60] for the special case, where f depends on u only, and is summarized in the following
theorem. Note that (EC) can be verified in certain situations (see [63], [12]).

Theorem 1.8 (Asymptotic stability of traveling waves) Let @ be a traveling wave
solution of (1.1) and assume that the conditions (SC) and (EC) hold. Assume further
that the map g : u — f(u —u) — f(u) is in CL(H!, L2).

Then the traveling wave solution u is asymptotically stable with asymptotic phase w.r.t.
|-l341. More precisely, there exist e > 0, M > 0 such that the equation (1.4) possesses for
each initial value u® = @+ v°, with v° € H' and ||v0||H1 < € a unique solution u = U+ v
with v(t) € H2 for t > 0, and there exists a v € R such that the exponential estimate

(- 8) = a(-+ )| < Me™[[o°]

holds fort > 0.

We consider the more general situation where f = f(u,u;) under the following main
nonlinearity assumption.
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Hypothesis 1.9 The function f € CLY(R™ x R™ R™) is of the form
fluuz) = fi(wug + fo(u),  fr € CHR™R™™), f» € C'(R™,R™)
where f1, fa, f1, f5 are globally Lipschitz.
Remark 1.10 Hypothesis 1.9 implies that fi, f5 are globally bounded and with
Dy f(u,w) = fi(u)(w,") + f3(u), Da2f(u,w) = fi(u),
we obtain for u,w, &y, 6, € R™

[D1f (u+ 0u, w + 0w) — D1f (u, w)|| < L({[0u]] + 16w]]),

”DQf(U—l-&“w—i-(Sw) —DQf(%w)H < LH(gu” (1.10)

Note that the above condition includes the nonlinearity f(u,u;) = —uu, of Burger’s
equation. Moreover, one can show that it implies the composition operator g : u +—

f(u,ug) to lie in CH(H!, Lo).

1.2 The PDAE formulation

If we transform equation (1.1) to a co-moving frame with unknown position (t), i.e. insert
v(z,t) = u(x +(t),t), we get

vy = Avge + f(0,05) + Avg, (1.11)

where A = ;. In order to compensate for this additional parameter we have to introduce
an additional phase condition ¥(v) = 0 which together with (1.11) forms a PDAE [7].
The actual position v can then be calculated by integration from the ODE

We use a phase condition which requires that the distance to a reference function u,

6(v) = llo(-+7) —ll,

attains its minimum at v = 0. This leads to the condition

0= Ug(v) = (0,0 —a) = /Rﬂ’(q:)T(v(x) —u(x)) dx. (1.12)

This is the same phase condition that was proposed in [15] for the computation of the
traveling wave by solving the following boundary value problem for (u, A)

0= Au" + f(u,u') + M\,
0= (d',u— ). (1.13)

Similar to the proof of Theorem 1.8 we will prove the asymptotic stability of (7, \) as a
stationary solution of the PDAE

vp = Avge + f(0,05) + Avg,  0(+,0) = u?

0=(i/,v— )

(1.14)
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under the same conditions which ensure asymptotic stability (with asymptotic phase) of
the family a(7y).

Before we give a precise definition of solution for the PDAE (1.14) we show how on a
formal level one can recover a solution u of (1.1) from a solution (v, A) of (1.14).

Let (v, A) be a solution of (1.14) and define v(t) by v(t) = A(t), v(0) = 0 and u(z,t) =
v(x —(t),t). Inserting this into the first equation of (1.14) we obtain that u solves (1.1).

The proper generalization of the notion of a solution for a semilinear PDAE is given in
the following definition.

Definition 1.11 Let A be a sectorial operator in Lo with D(A) = H?, ¢ € H' and
g:H" xR — Ly. A function (v, p) : [0,7) — H' x R is called a solution of

v =Av+g(v,p), v(0)=v"eH!
0=(,v)

in (0,7), 7 € (0,00] if the following conditions hold

1. g(v(-),p(+)) : [0,7) — Lo is continuous

2. v:[0,7) — H! is continuous, v(t) € H? fort € (0,7) and v(0) = v°

3. p is continuous in [0, T)

4. V'(t) € Lo exists and v'(t) = Av(t) + g(v(t), u(t)) fort € (0,7)

5. (,v(t)) =0Vt el0,7).
Using the ansatz v = u—1, t = A— X and defining ¢ = @’ and ¢ = @/, we get the equivalent
formulation of (1.14), namely

UVt = Av —|—g(’U,,lL),
0= ().

Here A is the linearization of (1.4) about (u, A), which has been defined in (1.5) and

(1.15)

9(v, ) = op+ w(v) + vapt,
where w : H' — L5 denotes the composition operator given by
wv) = flu+v, @ +v,) — f(u,a") — D1f(a,u)v — Daf (4, d)vy. (1.16)

Using this ansatz we define a solution of (1.14) via the transformed equation (1.15) and
Definition 1.11.

Definition 1.12 We call (u,\) a solution of (1.14) if the difference (u — @, A — ) is a
solution of (1.15) in the sense of Definition 1.11.
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1.2.1 Stability of the PDAE solution
The main result of this section is the following stability theorem for the PDAE (1.14).

Theorem 1.13 Let A € R™™ be given with A > 0 and assume that the function f €
CHR™ x R™ R™) satisfies Hypothesis 1.9.

Let (i, \) , @ € C¢ be a stationary solution of the PDAE (1.14), i.e.

0= Aa" + \a' + f(u,u)

0= (a',u— 1)

where @ # 0 is a given reference function with i — @ € H? and (0/,@') # 0. Furthermore,

assume that (EC) and (SC) hold.

Then (@, ) is asymptotically stable, i.e. there exists § > 0 such that for each u® with
u—ue M, (@, u’ —a) =0 and |[u’ — @|,p < 0 there exists a unique solution (u(t), A(t))
of (1.14) on [0,00) and the following exponential estimate holds for some K > 0,a > 0

() = @ll, + AE) — A < Ke |’ — @, Vit > 0. (1.17)

Thus in order to prove the stability of (11,5\) as a solution of (1.14) it is sufficient to
consider the stability of the zero solution (w, \) = 0 of (1.15). In the next paragraph we
will solve this problem by directly analyzing the linearizations of the PDAE 1.15

Before following this path of proof we outline an alternative of proving stability which
solely uses well known results of stability of traveling waves ([23], [63], [49]). Let (v, A)
be a solution of (1.14) then substituting v(z,t) by u(xz +(t),t) in the second equation of
(1.14) and differentiating w.r.t. ¢ we obtain

0= (@, ua (- +7(), ) 7e(t) + we(- + (), 1))
= (0, ua (- + (1), 1) 1(8)) + (@, Auge (- + 7(8), 1) + f(ul- + (1), 1), ual- + (1), 1)))-

This implies that (u,~y) solves

% =g(u,7), 7(0)=0, (1.18)
where
(W (- +7), Auga + fu, uz))
(@ (- +7), uz)
On the other hand, let u solve (1.1) and define v(¢) by solving (1.18). Then (v, \), given
by v(-,t) = u(- +v(t),t), A(t) = 1(t), solves (1.14).

g(ua’}/) ==

Therefore the stability of an equilibrium (@, A) of (1.14) can be concluded from the stability
of a family of traveling wave solutions u(- — ) of (1.1). However, this works only if the
spatial domain is the whole real line. Since our ultimate goal is to prove in Chapter 4
stability of a traveling wave solution for the discretized system on a finite interval, we
prove the stability of (v, \) directly. The methods developed here can then be transferred
to the discretized equations.
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1.3 The semilinear equation

For proving the stability of the zero solution of (1.15) we will reduce this PDAE to a
corresponding PDE by eliminating the parameter p via the hidden constraint, which one
gets by differentiating the algebraic condition w.r.t. ¢.

This is analogous to the treatment of higher index DAEs. Using the definition of differential
index for PDAEs which is given in [33] the PDAE (1.15) is of index 2. This index definition
is completely analogous to the DAE case (see [22]). In order to be able to solve (1.15)
we need consistent initial values (v(0), ;(0)) which solve the algebraic condition as well as
an extra consistency equation obtained by differentiating the algebraic constraint w.r.t.
time. The solution of this projected equation can then be found using the well known
arguments [23], [36] in the context of analytic semigroups and sectorial operators.

We define a weighted norm for (v, u) € H! x R by

10, )|y 32 = wll0ll32 + 1
and denote the ball of radius ¢ in this norm around (v, ) by
B, 1) = {(u,2) € K x Rt (0 =1ty 10 = Al s < 0}
Consider a general semilinear equation

ve = Ao+ pg + (v, ), v(0) =°

0= (). (1.19)

where the right hand side ¢ satisfies the following hypothesis:

Hypothesis 1.14 Assume that ¢ : H' x R — Lo satisfies p(0,0) = 0 and there exist
00, K, Cr, > 0 such that for all p < oo and (v, i), (u, A) € By1(0) the following inequalities
hold:

le(v, 1) = @ (u, Ml 2, < Crlllv = ully + max{l|vfly, [Jullzn e = Al) (1.20)
oo, Wz, < Kelllollza + |pl)- (1.21)

Now we can formulate the main stability theorem.

Theorem 1.15 Let A be the operator defined in (1.7) and assume that (EC) and (SC)
hold. Assume that ¢ satisfies Hypothesis 1.1/ and that N'(A) := span{¢}, ¢ € H! and

(1, ¢) # 0.
Then zero is a stable stationary solution of the PDAE (1.19). More precisely, there exists

p > 0 such that for each v° with ||[v°],,1 < p there ezists a unique solution (v(t), u(t)) on
(0,00) of (1.19) which satisfies the exponential estimate

o)l + [u(t)] < Ce™ 00, VE >0, (1.22)

for some v,C > 0.
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Here we consider the kernel of A in H2. Since ¢ = @’ € H? by Remark 1.7, it makes no
difference if we consider it in H? or H'.

Before we proceed with the proof of this stability theorem we show how the proof of
Theorem 1.13 follows from an application of Theorem 1.15 to the PDAE (1.15).

Proof of Theorem 1.13:

We show that ¢(v, 1) = w(v)+ pv, (see (1.16)) satisfies (1.20). Clearly, ¢(0,0) = 0 by con-
struction and using Hypothesis 1.9 together with the Sobolev imbedding H!(R) C C(R),
from which we obtain ||v||,, < C||v[|41 we have for all (v, 1), (u, A) € B,,1(0) the following
estimates (we suppress the argument x in order to improve readability and denote by ||-||
the Euclidean norm in R™):

(o) iz, = [ 15+, + ) = Flat wd + )
— Dy (@ @) (0 — ) — Daf (@, @) (s — w)|? da
= [+ )@+ 00) = i+ 0@ ) = F@ (0 =) = (@0 )
4 o+ ) — ol ) — (@) (0 —w) do
< [ NG +v) = fla w)a P+ |l +o) = o+ w)e?

(i@ +u) = f1(@) (v — ua)|? + 1f1(@) (@0 — w)||?
+ I f2(@ + v) = fal@+w)|® + || f(@) (v —w)|* da

2 2 2 2 2
SCQAQU—M-+M—UHWM!+MMH%—UM da

2 2 2 2 2
< cer(llv = ullz, + v = ulzallvlzn + llullllv = wlzn)

< cllv — ullFy
and

lpsve = Aetall gy < Mol gy i = N + A ll[ow = il
< el lie = A+ Ml = ullys < oll(w =10 = M|y



1.3. The semilinear equation 17

The consequence (1.10) of Hypothesis 1.9 leads for [|v||;,1 + |p| < o to
(@I, < [ 1@+ 0. + )~ f0.)
- le(@,ﬂ/)v - DQf(’EL?a/)UJCHZ dx
1
< 2/ / |[D1f (@ + tv, @' + tv,) — Dy f(a,a)]v|?* dt
R Jo

1
+ / |[Da2f (@ + tv,d + tvy) — Dof(u, ' )]v,|? dt da
0

1 1
<412 /R /0 (o] + lfos])2lo]? dt + /0 2(o]?lus]? dt da

4
SL? / (loll + ool + ol o]? da
R
< 4L|v])%, /R (ol + o2 do < 4L [0l2 o]l2

< (2Leol|vll4)*.

IN

Remark 1.16 Note that most of the proofs below are valid as well, if the following weaker
variant of the eigenvalue condition (EC) is satisfied.

Weak eigenvalue condition (ECw):
Considered as an operator in X the differential operator A has a simple isolated
eigenvalue 0.

This includes the case of unstable traveling waves, where the whole construction of a
solution via semigroups works in the same way. Clearly, the stability result does not hold,
since the estimates for the solution operator of the linear equation are not exponentially
decaying in time in that case. In order to streamline the presentation we restrict ourselves
to the stable case Re (o(A) \ {0}) < 0 and indicate the changes in the proofs that are
necessary for the unstable case.

In the following we always assume without further notice that for the operator A defined
in (1.7) the conditions (EC) and (SC) hold.

1.3.1 The linear inhomogenous equation

A first step will be the proof of a “variation of constants” formula for the linear inho-
mogeneous equation which will then lead to an integral representation of the solution of
(1.19).

We consider an inhomogenous linear equation of the type

ve=Av+ou+r, v(0)=1° (1.23)
0= (), ) (1.24)

where 7 : (0,7) — L. Assume that the initial value v° € H! is consistent,i.e. (1,v%) = 0.
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The solution of the PDAE (1.23), (1.24) can be reduced to the solution of a corresponding
projected PDE as follows. We define the bilinear form a : H' x H! — R via

a(u,v) = /R—ux(x)TAvx(x) + u(z) (B(z)ve(x) + C(z)v(x)) dz

where A, B(+),C(-) are the bounded matrix functions defined in (1.5). For v € H! we get
via integration by parts

a(y,v) = (¥, Av) for v e H? (1.25)
and
la(y, v)] < Cyllvllsp- (1.26)
Furthermore the condition (1, ¢) # 0 implies
(), 0) ' < Cyo (1.27)
and we define the projector P onto ¢ along ¢ by
Pv=uv—¢(1h, d) ", ). (1.28)

Under the assumptions (1.27) the boundedness of P follows for o € {£5, H!'} from

1Pl < [[vlls + 181118, 6) 7 {1, 0)] < (14 Cyplills el ) 10l

Note that (1.25) implies for v € H?

PAv = Av — ¢(h, ®) ta(v,v). (1.29)

With these definitions we have the following lemma:

Lemma 1.17 Let r € C([0,7), L2) and let the estimate (1.27) hold. If the pair (v, p) is a
solution of (1.23), (1.24) on the interval (0,7) with consistent initial conditions

00 e HY, (1,0°) =0
then v is a solution on (0,7) of the PDE
vy =P(Av+7), v(0)=21"cH NR(P) (1.30)
and p satisfies on [0, T)

ult) = =, 0) " (a(, 0(t) + (0, 7(2)))- (1.31)

Proof:  Differentiating the algebraic condition (1.24) with respect to ¢ € (0,7) we get
(1.31). Inserting this expression for p into (1.23) one arrives at (1.30).

From the continuity of a(¢, -), v € C([0,7), H') and r € C([0,7), L2) follows u € C([0,7),R).

Conversely, from v being a solution of (1.30) equation (1.24) follows. And with (1.31) and
(1.29) we obtain from (1.30)

vy = P(Av+71) = Av — ¢(, ¢) ta(ih,v) + Pr
= Av+ @+ (1, 9) " (W, 7)) + 1 — ¢, 6) (0, 7) = Av+ G+ 7.
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We consider the operator PA in the subspace R(P) N L. If we can show, that
Ap = PAjg(p) is sectorial then we can solve the linear inhomogenous equation (1.30) via

t
v(t) = eMpty0 +/ AP (t=s) Pr(s) ds
0
where the solution operator e*7? is defined using the resolvent Rg(Ap) := (sI — Ap)~! as

the Dunford integral (see [36], [23])

1
At = — | e Ry(Ap)d 1.32
e omi )¢ TislAp) ds (1.32)

and the curve I' has to be defined appropriately.

Using this projected system we can now construct the solution of the PDAE (1.23),(1.24)
via a “variation of constants” formula (compare [23], Thm. 3.2.2 and [36], Thm. 6.2.3 for
the PDE case).

Lemma 1.18 Let r: [0,7) — Ly be bounded and Lipschitz continuous and assume

e H.

Then there exists T > 0 such that a unique solution (v, ) of

ve=Av+ pudp+r,
0=(¢,v)

on (0,7) exists for initial values v(0) = v° € H' N R(P), namely
v(t) = P04 /Ot AP Py (s) ds,
ult) = —(, &)~ (a(w, v(8) + (0,7 (1), t€[0,7).
In order to prove this lemma we need resolvent estimates which justify the integral rep-

resentation in (1.32) and lead to estimates of ¢! which are exponentially decaying in
t.

1.3.2 Resolvent estimates

We will discuss the resolvent estimates in the following three regions in C:

C
Qe :|s|<e, Res>—p

|
&

() K
&y
N
)
3

Qc, €< |s|] <K, Res>—p

Qoo @ |8| > K, |arg(s)| < ¢ € (§,7)

Figure 1.2: Regions for resolvent estimates
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As has been noted before, resolvent estimates have been shown for A in a sector in (1.3).
More precisely, for s € o(A) and large |s| an estimate depending on |s|, and for s in a
compact set a uniform estimate has been shown in [6], [60]. This is summarized in the
following lemma.

Lemma 1.19 There exists a sector S, ¢ C p(A) such that if we define v = Rs(A)r, then
there exists K > 0 such that for each s € S, ¢ with |s| > K

21,112 2 2
s llollz, + Islllollze < Clirllz,- (1.33)
For s in a compact set Sc C p(L) we have a uniform estimate
[0l < Clirll ., (1.34)
Note, that from (EC) and (SC) we conclude that there exists K > 0 such that the estimate
(1.34) holds in ¢, and (1.33) in Qu.

These results will be used to show corresponding estimates for the projected system, which
then lead to estimates for solutions of a bordered system by introducing an appropriate
parameter u:

Lemma 1.20 Let r € Lo, then v € H? solves the resolvent equation

(sI — PAN)v = Pr (1.35)
and [ satisfies
p=—(,¢) " a(y,v) (1.36)
if and only if the pair (v, u) € H2 X R is a solution of the bordered system
(sI — A)v — ¢pu = Pr (1.37)
(1, vy =0. (1.38)

Proof: Let (v, 1) be a solution of (1.35),(1.36), then v € R(P), i.e. (1,v) = 0 and using
(1.29) we get

Pr = (sI — PA)v = (sI — A)v + ¢, d) 'a(t),v) = (s — A)v + dp.
Conversely, left multiplication of (1.37) with ¢ gives
0= <¢7 (SI - A)”) + <¢7 ¢>:U’ = 8<¢7U> - a(w7v) + <¢, ¢>/J“

This implies with (1.38) equation (1.36). Inserting this expression into (1.37) one arrives
at (1.35). O

The projection P has the effect, that zero is removed from the spectrum of Ap. Note
that in the proof of Thm. 2.18 in [60] and Ex. 6 in [23] which deal with the stability of
relative equilibria, a special projection with v being the left zero eigenfunction of A has
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been used to achieve the same effect. We emphasize that this assumption is not made
here. In numerical approximations we cannot assume to know even approximately the left
eigenfunction (see Chapter 4).

In the following we will prove estimates of the solutions of (1.37), (1.38) in the regions
Qc, Qcy, Qoo which will ensure the existence of the integrals in (1.32).

Lemma 1.21 Let A be the operator defined in (1.5) and assume that (EC) and (SC) hold.
Let N'(L) = span{¢} and assume that 1) € H' obeys condition (1.27).

Then there exist constants Cr, K > 0 such that for each s € Q¢c, U Qo there exists a
solution (v, 1) of (1.37),(1.38) for which the following estimates hold

[ollz0 + [l < Crlirlg,, as s € Qg (1.39)

and
20 12 2 2 2
s|“llvllz, + Islllvllf + [u]” < Crllrllz,, as s € Q. (1.40)

Proof: By Lemma 1.19 there exists K > 0 such that the resolvent estimate (1.34) holds in
the bounded set ¢, and (1.33) holds in Q. For s € p(A) we can solve equation (1.37)
by taking ¢u to the right hand side and get

v =Rs(A)(Pr+ ou).
By inserting v into (1.38) we obtain
p=—(, Ro(M)9) ™ (1), Ro(A) Pr)

which leads to
v=QRs(A)Pr

where the projector @ is defined by
Qu =w = Ry(A)¢ (¥, Ro(A)) ™ (u, w).
In order to estimate p and ) we need a lower bound of |(¢, Rs(A)¢)|. Use
6 = Ry(A)Ad — sR,(A)g = —sRy(A)¢ (1.41)
and multiply with ¢ from the left. This gives

<wa ¢> = _S<wv R (A)¢>

which implies
[, Rs(M)9)| ™" = Il (0, 9)| " < [5|Cys. (1.42)
Together with |s| < C' we can estimate @) by

1Qully < llwlly + IRs(A)llpr [0, Rs(8)0)| (¥, w)| < Cllwllya-

Using the uniform estimate || Rs(A)Pr{l;n < Ck||r|4 from (1.34) we obtain

[0l < NQRs(M)Prllypn < CQCRIPr,, < Clirll,,:
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It remains to estimate yu:

| < [, Ro(8)) ||, R(A) Pr)| < [s|Cop |9l 2, CrCPITIl, < Clirll -
For s € Q equation (1.33) states

CR CR
[Rs(A)rllz, < gl!r\lgw and  [[Rs(A)rl3p < —=|Irll,-

B Vs
From this follows with (1.42)

Cr

IQull, < e, + 75

101l 2, 151Co,g] (1, w)| < Callwll,,

as well as
Cr

mnmmcww,wﬂ < Cqlwliyp-

1Qullzp < llwllp +

Thus we obtain

Cr C
lvll, < CQHCPHTHEQ < gHrHcg

and similarly

C

5]

[0l < 17l 2,

Note that the above result is still true, if we use in (1.41) for € small the weaker condition
|Ad| o, < € instead of Agp = 0.

It remains to prove a resolvent estimate in ). for a sufficiently small €, i.e. to find a
solution of (1.37),(1.38). This will be constructed in a similar fashion as in the proof of
Theorem 3.7 in [64]. Therefore we need some results concerning exponential dichotomies
for ODEs, which are summarized in the Appendix.

Lemma 1.22 Under the same assumptions as in Lemma 1.21, there exists € > 0 such that
(1.37),(1.38) possesses a unique solution (v, ) for s € B(0) which satisfies the following
uniform estimate in s

lollya + il < Kllrllz,. (1.43)

Proof: Using z = (v,v") we can transform (1.37),(1.38) into the first order system

L(s)z =R — ®u, (1.44)
(T, 2) =0 (1.45)

where
L(s)z =2 — M(-,s)z, with M(x,s) = <A_1(SIO— C(2)) —A_{B(x)> , (1.46)

_ 0 _ 0 _ (¥
ne () e (0) wa e ()
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Here A, B(-), C(-) are the matrices defined in (1.5). It has been shown in Lemma 3.30, [60]
and [28] that (SC) implies that the matrices M*(s) = lim, .+ M(z,s) are hyperbolic
for all s € C with Re s > —f3. Thus for these s the operator L(s) has exponential
dichotomies on both half-axes R* with data (K., a+,n4). This implies that the operators
L(s) are Fredholm operators of index 0 ([49], Remark 3.3). Thus it is sufficient to show
the solvability of (1.44), (1.45) for s = 0. Then a regular perturbation argument can be
used to conclude the solvability for s € B¢(0), where € > 0 has to be small enough.

As in the proof of Theorem 3.7 in [64] we construct solutions z* of (1.44) for s = 0 on
each half line using the ansatz

2 = 8(-,0)2F +55(R— dp)

where S denotes the solution operator of the linear equation (A.11) and 5%(r) is the
corresponding solution of the linear inhomogeneous equation on R* as given in (A.17) in
2T (z), >0
27 (z), <0
27(0) = 27(0) € N(P_(0)) N R(P.(0)) and if z solves the phase condition (1.45).

This is equivalent to (cf. Proof of Theorem 3.7 in [64])

the appendix. The function z(z) = is a solution, if

Teq. 5.0 = (§) (1.47)

where T : R™ x R™ x R — R?™ x R is given by

I -1 Q
TZ(@ A E)

with
Q= [57(®)](0) - [5~(2)](0),
©= /0 U(z)'S(x,0) dx, A= /00 U(x)T'S(x,0) dz,
oo 0
0 00
== /_ V()" [57(P)](x) do — ; U(x)" [57(@))(x) da
and

p=[sT(R))(0) - [~ (R)](0)

i=— [ v ()@ o - | T U ()75 (R))(x) de

The injectivity of T' can be shown in the same way as in the proof of Theorem 3.7 in [64].
In the following we indicate only the main steps. From the eigenvalue condition (EC)
we have N (L(0)) = span{¢}. For the transformed system this yields the nondegeneracy
condition

2= M0)z =Py = pu=0, andz:c<$,>,c€R. (1.48)

This implies the injectivity of T', since for any solution of T'(zy , 2y, ) = 0 we can construct

v(z) = S(x,0)25 + [5(®))(z),for 2 >0
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which would then yield a bounded solution of
2 — M(0)z = Pp.

From the nondegeneracy condition (1.48) follows p = 0 and v = ¢¢ and from (¢, ¢) # 0
we obtain ¢ = 0.

Since T' is a map between finite dimensional spaces, it follows that T is invertible. Thus
there exists a solution of (1.47) which can be estimated for R € L9 as follows:

1o I + Nz | + [ul < €01 + lloll) < ClIR| .
since we have from (A.18)
[l < CI®l, 155 (R)z, < ClI¥Il, IR,

and
ol < IE(R)O)] + 1[5~ (R)O0)]] < C|IR]|,-

From this, and by using the dichotomy estimates, we obtain
12l 2, + |ul < ClR]|,-
Finally, using the definition of z and R we obtain for v and u the desired estimate (1.43).

O

A particular consequence of the uniform estimate in Q. U{¢, and the s dependent estimate
in Q. are the following sectorial estimates:

Corollary 1.23 There exist C > 0 and a sector S, 9 C p(Ap) witha >0, 0 € (5,7) such
that for all s € S, 9 for
v=(sI — PA)"'Pr

the estimates

C C
v < —Irll ~.s v < ————=|Ir 1.49
P, < i glles vlho < =il (1.49)
hold.
Proof: We summarize the estimates (1.43),(1.39), (1.40) in
[l + [ < Cllrll,,, for s € QU Qg (1.50)
and
s l[0l1Z, + Islllollza + [l < ClirlZ,,  for s € Qu, (1.51)

where C' > 0 does not depend on r and s.

Thus we can construct a sector as depicted in Figure 1.3(a) such that the estimates (1.49)
hold for some a € (0, 3). O

Similar estimates with a € R can be shown in the case where unstable eigenvalues exist.
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ee Lemma 1.3)

(a) Overview of regions for estimates (b) Path of integration

Figure 1.3: Path of integration for definition (1.32)

1.3.3 Estimates of the solution operator

The estimates (1.50), (1.51) show that Ap is sectorial. Therefore an application of [23],
Theorem 1.3.4 and Theorem 1.4.3 or of [36], Theorem 4.5.10, Corollary 4.5.11 and Theorem
4.5.14 implies that the solution operator e*F? is well defined via (1.32) and satisfies the
corresponding estimates for sectorial operators. We summarize this fact in the following
lemma.

Lemma 1.24 Assume that the sectorial operator Ap satisfies (1.49). Assume further that
for v, which occurs in the definiton of P in (1.28), condition (1.26) holds.

Then Pt is well defined via (1.32) and for r € Lo N R(P) the exponential estimates
le* Pt rllp, < Ke™[rlg,, e rlln < Ke™t 2|1, (1.52)
hold for some K > 0. Fort > 0 the derivative w.r.t. t exists and

d Apt A
—eMrt = A pelrt,
dt P

1 1
Note that A3err! = eMPEAZ implies with (1.52) [|e*Pir|l, < Ke |r||, for r € HL.

Since a > 0, the above estimates are exponentially decaying for t — oo. This will be used
in the proof of the stability theorem 1.15.

The definition (1.32) is valid for an unstable equilibrium as well. Then the above estimates
are not decaying anymore. Nevertheless e*P? allows an estimate by e®. The path T' C Sa0

in (1.32) can be chosen as follows (see Figure 1.3(b))

Y_(t) = —a+te ™ t<0

I'= t), t € R}, where v(t) = .
{3(1), £ € R}, where (1) {w):_aﬁew’ o
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where o € (0,a) and 6 € (F,7).

In order to ensure regularity of the solution of the inhomogenous equation in Lemma 1.18
we use Theorem 6.2.1 and Theorem 6.2.3 in [36] (cf. Lemma 3.2.1 in [23]). Below we state
a version which has been adapted to the function spaces used here. For the definition and
main properties of the Bochner integral see [36], Section 4.2.

Lemma 1.25 Letr: [0,T] — Ly be Bochner integrable and bounded. Fort € [0,T] define
t
R(t) = / MPt=3) Pr(s) ds
0

Then R € C([0,T],H*) N C((0,T), L2) with R(t) € D(Ap) fort € (0,T), R(0) =0 and

%R(t) = ApR(t) + Pr(t), forte(0,T).

Now we can prove Lemma 1.18 using the above Lemma and the estimates (1.52).

Proof of Lemma 1.18: Using Lemma 1.17 we reduce the solution of (1.23),(1.24) to the
solution of (1.30). Note that by definition R(P) = {v € L2 : (¢,v) = 0} and by Lemma
1.25 we get that v defined by (1.30) satisfies conditions 2. and 4. of Definition 1.11. From
the continuity of a(1),-) and the properties of r follows p € C([0,7),R) and therefore
(v, ) is continuous from [0, 7) into Lo as well. O

Using the result for the inhomogeneous equation we can prove now a “variation of con-
stants” formula along the lines of Theorem 3.2.2 and Lemma 3.3.2 in [23] taking into
account the modified definition of solution due to [35] as in Thm. 6.4.3 in [36].

Lemma 1.26 Let 7 € (0,00] be given such that ¢ : H' x R — Lo is locally Lipschitz, i.e.
there exists p > 0 such that for (u,\), (v, ) € B, 1(0)

HQO(U, )‘) - @(Uau)H£2 < KL(HU - ’UHH1 + |A — /,L|)

Then any solution (v, ) of
vr = Av + pd + (v, 1),
0=(¥,v)
on (0,7) with consistent initial value v(0) = v° € H! NR(P) satisfies

(1.53)

U(t) _ eAptvo +/0 eAP(t—S)P (p('u(s),u(s)) ds (1‘54)

uit) = =(,0) " (a(®, v(1) + (¥, o (0(t), kD)), t € [0,7)
where P is the projector defined in (1.28).
Conversely, if v : [0,7) — H! is continuous, v(0) € H! N R(P) and if (1.54) holds, then
(v, p) is a solution of (1.53) on (0, 7).

Proof: The first part follows from Lemma 1.18 applied to r(s) = ¢(v(s), u(s)) and the
definition of solution 1.11. that @(v(-), u(+)) is locally Lipschitz

le(v(s), u(s)) = @), w(t))llz, < Clt = 5]
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and ¢(v(-), u(+)) is Bochner integrable (cf. Thm. 6.4.3 in [36]).

Conversely, if (v, pt) is a solution of the integral equation (1.54) then the regularity estimate
in Lemma 1.25 implies that v is continuous from [0, 7) to H!. Using the representation of
w in (1.54) this implies the continuity of x in [0, 7). O

1.3.4 Local existence and uniqueness

Lemma 1.26 will be used to establish the local existence of a solution of the PDAE (1.53).
We can now formulate a local existence result similar to Theorem 3.3.3 in [23].

Lemma 1.27 Let P the projection defined in (1.28) and ¢ : U — Ly, U C H! x R be
giwven with ¢(0,0) = 0 and assume that (1.20) holds for all (v, i), (u, A) € B;1(0) for some
p>0.

Then there exist § > 0 and a weight w > 1 such that for any consistent initial condition
00 € HY N R(P) with ||v°||,n < & the following holds.

There exists a solution 1’ of the consistency condition

H ==, 0) " a(, ") + (W, (", 1)) (1.55)
and there ezists T = 7(vg) > 0 such that (1.53) has a solution (v, u) with
1w(@); pE g <P VEE (0, 7). (1.56)

Proof: For p € (0,min{C7, p}] we obtain from (1.20) for each w > 1 and all
(v, 1), (u, A) € B,(0) the inequality

1
(v, 1) — p(u, Ml , < CL(llv — ullg + = Al). (1.57)

Choose w > max(4Cy ¢(Cy + 9]l -,CL),1), 6 € (0, £) and define S, = {p : || < p}. In
order to show the solvability of the consistency equation (1.55) for v with [|[v°,1 < we
prove that g : Sg — Sg given by

(1) = = (¥, 0) " (a(,0°) + (W, p(v°, 1))
maps S into itself and is contracting. For i € S, we have with (1.26),(1.27) and (1.57)

90)] < 11 8) 1o, 00) + (00 1)) < Cop g Cud + 1911, C(6 + D) < 5.

Similarly (1.27) and (1.57) imply
_ L 1
l9(1) = gV < (8, &) "M (W, (0, 1) = (0%, V)| < Cppllll ey~ e = Al < glp = Al
Thus the fixed point p” of g exists and lies in Se, and with w|[v%|| 4 |p°] < £ + £ follows
4
(0, u0) € B%w((]). Choose 7 > 0 such that

(2Pt — D)l < 8% vt € (0,7) (1.58)

T e—OZS w

d
o Vs U T awr )

KCy, (1.59)
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where K, « are the constants from (1.52). Using Lemma 1.26, it is sufficient to find a
solution of the integral equation (1.54). For (v, u) € C([0, 7], H! x R) we define the norm

1w, Wz = sap [[(v(E), 1) ||y 201
te(0,7]

and denote the set of functions which stay for ¢ € [0, 7] in a weighted £-ball around (09, 1%
by S, i.e.

S={(v,n) €C([0,7], H' xR) : (v =", pp = p)ll}, 5 <

N

}-

Then condition (1.57) holds for all (v, u) € S.
For (v,p) € S we define G(v, ) : [0,7] — L2 x R by
Glo.)(t) = ( a0 Jy A Iel0(s) () )
—(, )" (a(,0(t)) + (&, p(u(t), 1(1))))
and show that G maps S into itself and is strictly contracting.

From (1.59) follows

p
(Crg +wlle@®, 1) z,)

and for ¢ € [0, 7] we have with (1.58)

G, ) () = (0, 1) 31 0 < w]| (€7 = D)0l +w/0 e~ ip(u(s), u(s)) |2 ds
+ | = (W, 0) " (aly, v(8)) + (W, (u(t), u(t))) — 1|

t
1Y —a(t—s 1
< g +w/0' Ke (t )m‘|¢(v(8)7u(s))‘|£2 dS

+ (1, ) (a(, 0°) + (¥, (0%, 1)) + 1]
+ (0, 0) " (alwp, v(t) — 0O)] + [, o (u(t), u(t) — o(v°, 10))])

p T —OLS p
<L (Cuf+ ullol i) K [ st CuplCu+ 11,02
PP B P
S8t8Ti T

G is contracting for (u, A), (v, u) € S since we have for ¢ € [0, 7] by (1.57) and (1.59)

t
G ANE) = Gou ) Olluger < w [ 164 p(u(s). A)) = olos) ls))rad s
10,07 (la( u®) = o)+ (. (ult) AB) = 2(0(0). sON)
< [ K ptu(s). As) = olols) o),

1
+ Cpp(Cyllu(t) = o)l + 192, Crll(w, A) = (v, 1)l 300)

T 7&5

0o Vs
1 T
+ 2 Cup(Cy + 1Yl 2, Ol (u, A) = (v, 1) [l 20

< KCp ds [ (u, ) = (v, 1)llg 01

1 T
< 5”(”7 >‘) - (’U, M)Hwﬂ-ﬂ'
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Taking the supremum over ¢ gives [|G(u, A) — G(v, p)][3, 200 < Hl(u, A) = (v, )|l7 71+ Using
the contraction mapping theorem we get a fixed point (v, 1) € S which is a solution of the
integral equation (1.54) and thus a solution of (1.53) which satisfies the estimate (1.56).

O

1.3.5 Proof of the stability theorem

Now we can give the proof of Theorem 1.15 which is similar to the proof of Theorem 5.5.1
in [23].

Proof: Choose the weight w as in Lemma 1.27 and choose v € (0,«) and ¢ > 0 so small
that

o0 a—v)s

em(omv)s
o s

Choose p < wo, then (1.21) implies

1
9l <

K =.
wKo 1

1
dsgz and  oCy g

I, m)llz, < ol )l pn for [[(o, )y 20 < p-

If [[00)n < 6 = $2%, v" € R(P) then from Lemma 1.27 follows that there exists 7 > 0
such that a solution (v, u) of exists on (0, 7) with |[(v(t), u(t))l, 700 < p-

Then we have with the estimates (1.52) for some C' > 1

1(0(®), 1)l p0r < w00 |pn + w/ot 12779 Po(u(s), ()l ds
+ (8, 0) ™ (a(, 0() + (W, (v(t), u(1))))]
< wCe™ ¥y +wC /Ot ﬁe_a(m)I\w(v(S),u(S))HLQ ds
+ Cy o (Cyllo(@) g + 191 2,010 (E), ()] 301)

1 —as T Clp
+ CU/O No ds|(v, Wllip 2 + Cps (=P + 1Yl 2,00)

<

=W D

IN

p-

Since the PDAE (1.14) is autonomous, this leads to 7 = oo using the usual arguments: If
(0, 7) is the maximal interval of existence of a solution (v, y) of (1.53) with [[v(t), u(t)|,, 21
< p, then by the above estimate we have ||v(t), u(t)]],, 301 < 3p. Thus we can solve (1.14)
at 79 = T« — 5, where 7 is given by Lemma 1.27 and therewith continue the solution to
7 > Ti, which contradicts the maximality of 7. From this the existence of (v, ) in (0, c0)

follows with [|(v(t), u(t))l,, 201 < p for all £ € [0, 00).

It remains to prove the exponential estimate. Define

n(t) = sup {e”[|(v(s), 1(5) 21 }-
s€0,t]



30 Chapter 1. Stability of traveling waves as PDAE solutions

Then we obtain

1) ) e < WK™ 0],

t
ke [ e I (u(a). i) o

+ Cyp(Cpe” lv(®) g + 9]l o™ (W (L), 1))l 300
1 — —S) VS
_Se(” =67 (0(s), 1(3)) ]y s ds

+ Cy o (Cue” o)y + ¥ g, 0e” (0 (8), ()] 200)

1 1
< WKl + 00 + CoolCoe + ] ,0)n(t)

t
< wK||0Y)4 + wKa/
0

3
< 'U}KH’UOHHl + Zn(t)

Taking the supremum on both sides gives n(t) < 4wK|[v°[|;;1 < p for ¢ > 0, and choosing
C = 4wK the estimate (1.22) follows. O

Remark 1.28 There is an alternative way of proving the above stability result which uses
the linearity of g in p, i.e. one assumes, that ¢(v, ) is of the following form

o(v, ) = ¢(v) + Svp,

where S : ‘H! — L5 is the linear operator Sv = v,. One can eliminate y from (1.19)
directly using

() = =, & — So) " (a(y, (1) + (&, G(u(1)))).

Setting g(t,v) = P(@(v) + Svu(t)) = P(p(v) + Sve(v(t))), it remains to consider the
nonautonomous system
vy = PAv + g(t,v), v(0) =2°.

This method is similar to the stability proof in [23], Ex. 6, [60], Thm. 2.17. where a
special projection with the left eigenfunction has been used in order to remove the zero
eigenvalue. For this choice resolvent estimates for the projected system are not necessary
since the operator PA equals the restriction of A to R(A).

Remark 1.29 To complete the stability discussion, one needs an instability result similar
to Thm. 5.1.3 in [23] which states that if Re (¢(L)) > 0, then the solution (@, \) of (1.14)
is unstable. More precisely, there exist ey > 0 and a sequence of initial data {(uy,, A,) with
[(tns An)ll1 200 — 0 as n — oo but supy>q [[u(t) — ul| > €9, where u denotes the solution of
(1.14) with u(0) = u,. With the tools at hand, it seems possible to show such a result in
a similar fashion as in [23], but we have not pursued the details of the proof.

1.4 Stability of relative equilibria

1.4.1 Abstract framework

A natural extension of the question of stability of traveling waves is the stability of relative
equilibria of equivariant evolution equations in Banach spaces. We explain the abstract
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concept (based on [9], [47], [7]) without going into details of the numerical implementation.
Consider a general evolution equation

uy = F(u), u(0)=1u’,

(1.60)
F:YCcX+— X

where Y is a dense subspace of the Banach space X.

Assume that F is equivariant w.r.t. a (noncompact) Lie group G acting on X via a
homomorphism

a:G— GL(X), v~ a(y)

where

a(yi oy2) = a(m)a(y2), a(l) =1, = unit element in G.

Equivariance means that the following relation holds

F(a(y)u) = a(y)F(u) YueY,y€qG
a)Y)CcY Vyed.

We assume that for any v € X the map
a(-)v:G— X, v—a(y)v

is continuous and it is continuously differentiable for any v € Y with derivative denoted
by
ay(Y)v : T,G — X, A [ay(7)v] A

Here we use T, G to denote the tangent space of G at . Note that in general we can neither
expect the action a to be differentiable from G into GL(X) nor the map v — a(y)u to be
differentiable for any fixed u € X.

Such systems have been widely studied in the context of bifurcation theory for equivariant
dynamical systems (see the monograph [9]). In a series of papers [18],[52],[53] a center
manifold reduction theory has been developed for (1.60) especially for the case where
differentiability is an issue.

In contrast to this reduction ansatz, it is more convenient for numerical purposes to extend
the equation. This has been done for traveling waves in (1.14) by adding an additional
parameter and a phase condition (see [7], [47]). In that case the Lie group is G = R and
the action is given by [a(7)u](z) = u(x — 7).

Example 1.30 In the numerical applications in Chapter 5 we will consider a more general
example, where v = (yr, ) € G = ST X R with (v, 7) © (3, 5) = (v +Frs vt +2). The
action is given by

la(y)ul(z) = R, u(z =),

where

o= (1) o)) (La1)

denotes the rotation about the angle .
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Then using the transformation v(t) = a(vy)u(t) one obtains an equivalent formulation of
(1.60) (see [7]), namely

v = F(v) —a(y" ey (y)vln- (1.62)
The evolution of ~(¢) then describes the motion on the group.

Introducing Lagrange parameters A(t) = v:(t) € T,G we consider

v = F(v) = a(y™")ay(y)v]A (1.63)
Y= A (1.64)
0= n(0, \) (1.65)

with a phase condition 7 : Y x T,G — RP, p = dim G which has to satisfy some regularity
conditions.

We denote the derivative of the left multiplication with ~ by dvy;

N:G—=G, g—yog,  du(g): TyG — ThoyG, = Dyilg)p
and the derivative of the right multiplication with + by d-~,

Vi G— G, g—goy,  dy(9) :TyG — Tyor G,  p— Dyr(g)p.

Note that dv,(1) is a linear homeomorphism between the Lie algebra T3G and T,G for
o € {l,r}. Differentiating the relation

a(y)(a(g)v) = a(yog)v

with respect to g at g = 1, one obtains for p € T1G, v € Y

a(Y)[ay(D)v]p = lay (y)0)(dvi(1)p), (1.66)
and similarly
[ay(D)a(y)v]p = [ay (7)v](dyr (D)p). (1.67)

Using (1.66), defining p € T1G via A = dvy(1)p and setting (v, u) = w(v,dy(1)p),
equation (1.62) is transformed into

v = F(v) = [ay(1)v]p (1.68)
Y= dy(l)p (1.69)
0=¢(v, ). (1.70)

Note that the first equation does not depend explicitly on v any more, thus it suffices
to consider the first and the last equation as a PDAE and address equation (1.69) in a
postprocessing step.

The fixed phase condition (1.12), generalizes in this setting to
0 = Yax(v) = {[ay (L)@ p,v —4) Yp € TG

where @ # 0 is a given reference function with & — v € H?2.
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Definition 1.31 We define (v, i) to be a relative equilibrium of the PDE (1.60) if (v, i)
is an equilibrium of (1.68), i.e.

0= F(v) — [ay(1)7] L. (1.71)
Note that in [9] the whole group orbit O(v) = {a(v)v, v € G} is called a relative equilib-

rium.

If (o, i) is a relative equilibrium of (1.60) and ~(¢) solves
Ve = dy(1)p,
then (7, \(t) = d;(t)(1)71) satisfies (cf. (1.63))
0= F(v) — aly(t)™)ay (+(1))0]A(),
and @(t) = a(y(t))v solves (1.60).

Spectral problem

The corresponding spectral problem, which gives information about stability of the PDAE
solution (v, fi) can be derived as follows. With (v, i) all functions in the family {(a(v)v, z(v)@) }yea,
where

(Vi G = ThG, vy — dy, (1) dy(1)j,

are solutions of (1.71), since we obtain with (1.66) and (1.67) for v = a(y)v

I
T

=a
For i = z(y)n € T1G this is equivalent to

0= F(9) - [a, (1)
Differentiating the equation

0= F(a(7)v) = [ay(1)a(y)v](2(7)7)

with respect to v at 7 = 1 and denoting the corresponding derivative of z(-)i by 2z, (1),
we obtain for p € T1G

0 = DF(a(1)0)[a (1)) — [ay(1)[a (1)2la) (z(1)R) — [ay (1)a(1)7])(z (1) p)u
= DF(®)[a, (1)) — [ay (1)[a5 )0l - a5 (1)2] (2, (D))

Note that if the group G is Abelian, then z(y) = dv,(1)~!dv,/(1) is the identity in T3 G,
and we have

0 = DF(®)[ay (@)l - ay(1)[a, (1)l

Thus all functions @ = [a~(1)?]p,u € T1G are eigenfunctions of the linear operator

Aw = DF(u2)w — [ay(1)w]f (1.72)
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corresponding to the eigenvalue 0. Of course, the operator has to be defined in an appro-
priate function space.

In the numerical examples in Chapter 5 the group G will always be Abelian.

We expect that the spectrum of the operator A gives information about stability in this
general case as well. At the end of this Chapter we give the expected stability result for
the parabolic case.

1.4.2 Realization
For numerical computations we choose a basis {e!, ..., eP} in the Lie algebra Ty G, where

p is the dimension of G. Writing u = Y.¥_, e’ and defining Sijv = —a,(1)ve’, the
generalization of equation (1.14) now reads

p
v = F(v)+ Y miSiv,
=1

0=W(v, ).

(1.73)

Here U(v, i) = (v, Y7 | pie’) is a map from Y x RP to RP and [i denotes the vector
(p1, ..., pp) € RP. An example of such a phase condition is given by the following gener-
alization of the fixed phase condition in (1.13).

0= (Tgae(v))i = (S’ u—2%), i=1,...,p.
Another possibility mentioned in [7] is the orthogonality of v; and the group orbit
{a(y)v:v € G} at vy=1:
(ay(L)vp,v) =0 V€ TG,

Using the differential equation (1.68) we rewrite this as

Qborth(vnu') = <a7(]1)vna F(U) - a’)/(]l)v:u> =0 V77 € ThG.
Setting Wopen (v, @) = Yorth (v, Y by pie') this leads to the condition

p
0= (\I]()rth(’l),/j)% = <SZ"U,’Ut> = <S’ZU7F(U) - Z/’L]Sjv>7 i= 17 - D
j=1

Using this phase condition, the resulting PDAE is of differentiation index 1 (generalizing
the notion for DAEs [22] to PDAEs; for a different definition which focuses on consistent
initialisation by Cauchy data, see [33]), whereas it is of index 2 for Vg, (as mentioned be-
fore). After discretization this leads to a DAE of differentiation index 2 and 1 respectively.
We will not discuss the phase condition W, any further in this thesis.

The operator A in (1.72) is given by

p
Av = DF(Z_L)’U + Z ﬂijU
j=1

and the functions w = S;u, ¢ = 1,...,p are eigenfunctions of A, corresponding to the
eigenvalue 0.

To simplify notation, we drop the arrow which distinguishes between u € T1G and ji € RP
in the following, if no confusion is possible.
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Realization for the parabolic PDE

Now we consider these stability problems for the parabolic PDE (1.1). Assume that the
operators S; in (1.73) are linear differential operators of order < 1. and the generalization
(1.73) of the PDAE (1.14) reads

p
vy = Avgy + ZM%(SZOU + 57,1'02) + f(vavm)

— (1.74)
0="V(v,p)
where p € RP, S, S} € R™™ i€ {1,...,p}. The linear operator A is given by
Au = Au” + Bu' + Cu (1.75)

where
B(x) = Daf(u(z), @' (x)) + > @S}, C(x)=Dif(ule), () + Y  ms;.
i=1 1=1

Example 1.32
For Ezample 1.30 we have [a(1)v]e! = v,, [a,(1)v]e? = Rzv i.e. St=1,959= R%,S? =
S =0 and p, e € R. Thus the equation (1.74) reads

vy = Avgy + MUz + ,U/TR%’U + f(’l}, Uz)

0= (0, v—19), 0= (Rzv,v — 1)

and the operator A in (1.75) is given by

Av = A" + (I + Do f(0,0"))v" + (ur Rz + D1 f(0,9"))v.

The general stability problem

The stability theory in this chapter as well as the approximation results in the following
chapters can be generalized to this case.

In this situation we can formulate the generalization of the stability Theorem 1.13 using
the following generalized eigenvalue condition:

Eigenvalue condition (EC’) :
Assume that the differential operator A in (1.75) has an eigenvalue 0 of multiplicity
p and there exists § > 0 such that there are no other isolated eigenvalues s of finite
multiplicity with Re s > —£.

We suspect the following generalization of Theorem 1.13 to be true.

Theorem 1.33 Let A € R™™ be given with A > 0 and assume that the PDE (1.1) is
equivariant w.r.t. the action a(y) of a group G of dimension dim G = p. Assume further
that the function f € CY(R™ x R™ R™) satisfies Hypothesis 1.9.
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Let (i, ji) € CZ(R,R™) x RP be a stationary solution of the PDAE (1.74), i.e.

p

0=Aa"+> p(SPu+ Sta') + f(a, @)
=1

0= (Sji,u—a)=0, j=1,...,p

where @ # 0 is a given reference function with S;a € HY, j=1,...,p, 4 —u € H' and
for which the p x p matriz

{[S1(@), ..., Sp(@)], [S1(@), ..., Sp(@)]) = ({Si(@), Sj(@)))ij=1,...p
is nonsingular. Furthermore, assume that (EC’) and (SC) hold.

Then (u,fi) is asymptotically stable, i.e. there exists § > 0 such that for each u® with
u —u e H, (Sja,u’ —a) =0, j =1,.,p and ||[u® — all;n < & there exists a unique
solution (u(t), u(t)) of (1.14) on [0,00) and the following exponential estimate holds for
some v, K >0

lu(t) = a(y)allyp + llp(t) — Al < Ke™lu’ = allyp VE >0 (1.76)

where v is the solution of
Ve =dy(@)p, ~(0)=1.

In order to prove this theorem, one has to adapt the proof of Theorem 1.13 to the general
case. For a similar adaptation see e.g. the generalization of the proof of Theorem 2.18
which deals with the asymptotic stability of a family of equilibria, as indicated in [23] at
the end of Exercise 6 in Chapter 5.
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Chapter 2

Approximation via difference
equations

In this chapter we will prove convergence results for the numerical approximation of trav-
eling wave solutions of (1.1) with finite differences on an equidistant grid. Furthermore
we consider the approximation of isolated eigenvalues of finite multiplicity and we derive
resolvent estimates for the discretized system.

We apply the linear results of the preceding section to prove several approximation results

e approximation of the traveling wave solution and it’s velocity
e approximation of simple eigenvalues
e resolvent estimates in compact sets which do not contain eigenvalues

e resolvent estimates for large absolute values of the resolvent parameter.

A general principle for proving the invertibility of the occuring linear operators, is to show
the invertibility of a nearby operator which is linked via its h-flow to a continuous system
that has well known properties.

2.1 Auxiliary results

We define a discrete interval in Z U {£o0}
J=[n_,ny]={n€Z: n_ <n<ng, where ny € ZU{too} }
as well as extended intervals
Jr=[n_yny+1], = —1nyg], Je=[n_ —1,ny +1]
and a corresponding equidistant grid with grid size h > 0 and shift g € R

Gihzo = {zn: ©p=2z0+nh, ne J}.
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We denote sequences in a Banach space X which are indexed by J by
X7 = {(z0)nes 2n € X}
It is well known that X7 provided with the supremum norm

2]l oo = sup [|2zn]|
ne

is a Banach space which we denote by S;(X). If X is clear from the context, we drop the
dependency on X.

We consider the spatial discretization of the stationary equation
0=Au" + M+ f(u,u'), z€eR, u(z) e R™ (2.1)

on the grid G ;, , which uses second order finite difference operators for the approximation
of the derivatives of u at =,

ul, & (Sou)n, ur & (610_u)n,

where u,, = u(xy) and dp : Sy, — Sy, 64 : Sy, — Sy, 6_: S — Sy are defined as usual
by

1 1 1
(Gou)n = %(Um—l — Un—1), (64u)n = E(un-i-l — Up), (0—u)n = E(un — Un—1)-
We obtain the following difference equation on J
A(040_u)pn + A(dow)n + f(un, (dou)y) =0, n € J. (2.2)
Remark 2.1 The error estimates for u € C*(R,R™) are given by:
1(Bou)n — v/ (wn)|| < Ch*¢pp, with ¢, = max [[u®(©)].
E€[Tn—1,2n41]
and
(050w — " (z,)|| < Ch*¢p, with ¢, = max [[u® ().
G[wn—hwn-o-l]
Note that from ||a®) (z)|| < Ce?1*l, k =1,..., 4 follows:
[(So@)n — @ (x2)|| < Ch2e™MM 11(646 1)y — @ (x| < Ch2e™2IM,

For sequences u,v € Sj(R™), J = [n_,n]| we define

s
<U,, v)r,s = Z h'U,TU, <U, U>h = <U,, U)n_,n+
n=r

and introduce norms which include the approximations of higher derivatives by

121100 = 2l + 10+2l0es  N12llo00 = l[2ll1,00 + 116402 -

One has to keep in mind that the supremum is taken in different intervals for the different
difference operators.
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In particular, the space of bounded biinfinite sequences is denoted as
loo = Sz(X) ={z e XZ: 2]l o = sup ||2n|| < oo}
nez
If necessary, we can embed each z € S;(X) in Sz(X) by setting z, = 0 for n € Z\ J. This
will be done without any further notice.

We further introduce suitably scaled discrete approximations to the Lo-norm, the H'-norm
and the H?-norm by

ng
2,1 2 2 1
I2llz,, = (> hllzl®)z, 12l = (lzllz, , + 19+2[1Z, )2,

n=n-—

1
I2llz = (=50 + 16+0-211Z, )7
and denote X“ employed with these norms by
Lon(J,X), Hi(J,X) and Hi(J,X).

If no confusion is possible, we drop the dependency on X (in the following we will always
use X =R™or X =C™) as well as on J if J =Z.

In order to simplify notation we will often use the following abbreviations

121l 2y, = N2l M2l 2y, = 2022 (2.3)

The general method for all approximation results will be the following: we transform the
discrete system (2.2) via z, = (un, (0_u),) into a difference equation of the form

Nypzpi1 — Kpzn =1y (2.4)

and use the corresponding first order transformation of the continuous system in order to
prove important properties of (2.4). The estimates for (2.4) will be transformed back to the
original system by using the following facts about the norms: If z = (u,§_u) € S (R?*™)
then

[ullg oo < Cllzlli oo llullyz < Cllzllyg (2.5)
and for r = (0, hg) € S;(R*™)
Il = Bllglass Iy, = Pllgl,, (26)

hold.

We will prove a stability inequality for the transformed system and conclude a stability
inequality for the original system. The convergence of the solution of the original system
is then proved using consistency and stability.

The main tool for constructing solutions of the discrete equations are “exponential di-
chotomies”. For a definition of exponential dichotomy in the continuous case see A.5.
The definition of an exponential dichotomy for difference equations is given below.
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In order to obtain exponential dichotomies for the finite difference approximation (2.2) of
(2.1) use the fact that both are linked via the time-h map of the flow of the continuous
system. This link has been used in [64] for proving the existence and approximation
property of connecting orbits for the discrete system on the whole line.

Consider the linear difference equation

Znt1 = Mpzn, neJ (2.7)

with M,, € R** for all n € J. If the matrices M,, are invertible for all n € J then the map
® : J? — RFF given by

My 1 My, for n > m
®(n,m) =<1, for n=m
Mt M1, forn<m

is a solution operator for (2.7), which has the cocycle property
O(n,)®(l,m) =®(n,m) YIm,née.l.

Definition 2.2 (Exponential dichotomy)

The linear difference equation (2.7) has an exponential dichotomy with data (K, «, P) on
J C Z if M, is invertible for all n € J and there exist a bound K > 0, a rate o > 0 and
projectors P, such that the following holds

®(n,m)P,, = P,®(n,m) (2.8)

and the Green’s function

) P, >
G(n, m) — (n7 m) ms fO?" n=m (29)
—®(n,m)(I — Py), forn<m
satisfies an exponential estimate
IG(n,m)|| < Ke®n=ml  n meJ. (2.10)

The connection between the two definitions via the time h-map follows directly from the
definition: If we define x,, = xog + hn for fixed xp and ®(n,m) = S(x,, x,,) we obtain the
following lemma.

Lemma 2.3 Let the linear differential operator L from (A.11) given by
Lz=2 Mz, zc€JCR, M:J—R™
have an exponential dichotomy with data (Kj,ay,m7) on J = R R.

Then the difference operator

Lz = (zpy1 — ®(n+ 1,n)2n) s

has an exponential dichotomy on J = 7%, Z with data (K ;, azh, P?) where P = m;(xy).

Furthermore, the discrete Green’s function defined in (2.9) is given by

S(xp, zm)mr(Tm), forn>m (2.11)
—S(xn, 2m) — 75(xm)), forn <m. .

G(n,m) = {
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Note that for L : Sz — Sy,
N(E) = {(@(m.0)2)uez, =€ N(By) NR(E )}
= {(S(@n, 20)2)nez, 2 € N(7 (20)) NR(7 " (x0))}
and if N'(L) = span{¢!,..., @7} then ¢(z) = S(x,&)d* ().

A main tool will be a “roughness theorem” (see [40]) which allows to transfer an exponential dichotomy of
the constant coefficient operators L™ = 2/ — Mz, M> = lim,_, 1. M (x) to the variable
coefficient operator L.

2.1.1 The linear difference equation

The existence of exponential dichotomies ensures that certain boundary value problems
can be solved that arise later in the construction of solutions of more general equations.

We use a slightly adapted version of Lemma 1.1.6 in [26] or Lemma 2.7 in [42].
Lemma 2.4 Let the linear difference operator
L:8Sy, — 8,2 (2nt1 — Mpzn)nes

have an exponential dichotomy with data (K, (3, P) on J = [n_,n4] C Z where ny = +00
s allowed.

For each r € Sy there exists a unique solution zZ € Sy, of the inhomogenous equation

(Lz)p=1Tpn, meJ (2.12)
P, zy =p_ e R(P,_) ifn_ €Z (2.13)
(I =Py )z, =p+ €ERUI—P,,) ifng €Z. (2.14)

It is given by
Zn= Ry (p-) + Ry (p1) +3u(r), nel,
Zni41 = Mn+ Zny + Ty
where § is defined with G from (2.9) as follows:

ny—1
Sn(r) = Z Gn,m+1)ry,, neJ (2.15)

m=n—

and

R:I:( ) _ @(nvn:t)P, in case =+ ny < o0 .
! 0, otherwise

Furthermore, the following estimate holds for n € J

1 -8
Sn(r)|| £ K Cp||7| 4 » whereC:L‘i. 2.16
B oo B 1— e Jé]
In addition, if r € Lap(J) then
. Cap
J3nt) < K42 gy, Vme (2.17)
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and
16, , < KCs il (2.18)
In case £ny < oo we obtain for the boundary terms the estimates
IR ()| < Ke Prsljpg | (2.19)
as well as
1B (p)llz,, < E/hCagllp=l- (2.20)

Proof: For r € S; we get from the exponential dichotomy

ny—1 [e9)
In () <& D e Pl | < Krlly, Yo e < KCglIr| -
m=n_—_ m=—0o0

The Ly, estimate is completely analogous to the continuous case: For r € L) we have

2

N4
lsn(I? < K2 >0 e sl (e sl )
m=n_-+1
o] 4
S DI D D
m=—o00 m=n_+1
ny—1
<K*Cp Y el 12,
m=n—
Summing over all n € J gives
ny—1 ny—1 ng
Ao\ (]2 A 2 —Bn— 2
1802, =h 3 I P < KCan Y S eIl |
n=n_ n=n_ m=n_+1
n4 n+—1
=Kk 3 Armal® 3 e
m=n_+1 n=n_
ny—1
2 2
S K2C[23 h Z HTWH S (KCB)2HTHLQ’}L'
m=n—
For r € Ly ,(J) one obtains
n4 2
3P < K2 Y e ey
m=n_+1
o0 TL.Q_*I 1
2 —28In—m| 2 -2 2
<K*Y e Y Irml* < 2K Cogllrlz,,
m=—0o0 m=n_—_

It remains to estimate the boundary terms. From the dichotomy estimates we obtain
directly (2.19) which imply

n4 n4
2 _ —
IR (02, < D hll@(nna)psl® < K2 ps]h Y el < K2|ps||*hCas.

n=n— n=n—
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Note that the Czg does not depend on the interval J but only on the dichotomy data. Note
further that Chq is of order O(3) for small h.

We can now use the above lemma to construct solutions on half intervals J* of Z which
match in a special way at 0. This is similar to Lemma 1.1.6 in [26] or Lemma 2.7 in [42].

Lemma 2.5 Let the linear difference operator
L: SZ — Sz, Z = (Zn+1 — ann)nEZ

have exponential dichotomies on Z~ and Z* with data (K_,3_,P~) and (K, B+, PT).
Consider the boundary value problems
Lzp=r,, neJ =[n_,—1]
Py 2z =p_ €R(P]), (2.21)
(I = Py )z =n- € N(Fy)

and

Lzp=r1n, neJt=][0,n]
P20 =ny € R(P), (2.22)
(I_ P?:L:_)ZnJr = P+ € N(Prj;_)

Then for each r € Sz there exists N > 0 such that for £ny > N exist unique solutions
#(r) e Syx on Jo =[n_,0] and JF =1[0,n4 + 1] which are given by

50 (1) = D(nyn_)p— + B(n,0)n- + 5, (r), n € [0 (2.23)
ZN:(T) = <I>(n, 0)77+ + (I)(TL, n+)p+ + §2—(7’), ne [07 TL+], 27—1:4—1 = Mn+§n+ + Tny (2'24)

Here 5= (r) € Sj- and 87 (r) € S;+ are the special solutions of Lz = r on J~ and J*
defined in (2.15), which read

n—1 -1

5, (r)= Z Q(n,m+1)P, T — Z Q(n,m+1)I P, 1) rm, n€[n_,0],
m=n_—_ m=n
n—1 T’L+—1

) =) ®m,m+ )P rm— > ®m,m+1)IT =Pl ) rm,  ne0,ny].
m=0 m=n

For 3 = ah the we can estimate the solutions 2% as follows:

Corollary 2.6 If 3 = ah then the partial solutions 3% defined in Lemma 2.5 obey the
estimate 1

127 lloe < C(lIrlloe + llo=1l + lIn-11)

1 (2.25)

177 Mloe < CG N7 loo + mell + Nl 11)
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and for r € Lo}, additionally

_ 1
1271z, = CGAITle, , + llo=1 =+ llm-11)
(2.26)

- 1
18y, < CG Ly, + el + ol
Proof: Applying the estimate (2.16) we get with 3 = ha

K
E G
and for r € Lo, with (2.18)

K
At
155y, < 5 Wy,

It remains to estimate the boundary terms. By application of (2.19) to J = [0,n] we
obtain for n € [0, n4]

1©(n, 0y || < K e "etlme=rl|in || < Oy |
and with Con, < € and (2.20)

1@C, 004l 2y, < By hCo0,n < Cling |-

In a similar fashion one gets

1D(,np)p+ll, < Cllp+ll,  for o€ {00, Lan}.

The estimate for the boundary terms of 2~ is analogous. Thus the estimates (2.25) and
(2.26) hold. O

In the following we transfer the proof in [26] and [60] to the discrete case along the lines
of the method used in [64] and [65].

We define a class of functions for which all derivatives decay exponentially and give some
convergence results for it.

Definition 2.7 We define a function g : I — R™, I C R to be in E,(I,R™) if there exists
K > 0 such that
lg(@)]| < Ke~@e! and ||¢'(z)| < Ke™¢lal.

Note that @ is in this class (see Remark 1.7). Similar to [64] we have the following Lemma.
Lemma 2.8 Let g € E,(RT,R™) and § € Sz, be given

19(xm) = gml| < Che™ %™, 2y = 20 + mh

Then the estimates

00 ny—1
[ gte) do = 3 gl < clao + 12 + ) (2.27)
0 m=0
and
00 ny—1
1 gla)do—h Y gall < (b 4 ) (229
o m=0

hold.
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Proof:

TL+1 n+1

I atwrde = Xl <1 [ o) e 3 o

1S 9(em) = Gl + / lo(@)]l d.
m=0 Zn

+

The last term can be estimated by

00
K
/ lg()|| do < —e™#n+.
Tn 1%

+

Choose x4, hg small enough such that for all 0 < x¢p < z.,h < hg. The estimate for the
first term is

H/ dx—hz ()|
< / dxu+n+21 / lg(z) — g(m)]| dx

ny—1 (229)
<aollgle +C1 DR sup g (@)l

m=0 56 Im,l'm+1]

oo
< 2o]lgllog +hsCa Y ™0™ < wollgllog + Coh® 5

m=0

< Cg(mo + hz).

Decrease hg further, such that we have for the second term

n4 n4
R llg(m) = Gml < Ch2 D 72 < O,

m=0

If we start the integration in (2.29) at xo instead of 0 we see directly that the first error
term in (2.29) vanishes and we arrive at (2.28). O

Note that the same can be done with a function g : R~ — R, and for a general g : R — R
the estimate (2.27) follows by combining the estimates for R™ and R™.

With the help of Lemma 2.8 we can prove the convergence of the solutions to the dis-
crete linear boundary value problem (2.12)-(2.14) to corresponding continuous expressions.
Consider the solutions s* of (A.16) for J = R* defined in (A.17) by

0 0o
:/_ S(0,x)7 (x) #(z)dz and [sT(7)](0) = —/0 S(0,2)(I — 7" (x)) 7(x)dz

or more generally
sE(7)(0) = G.(0,z)7(x)dz.
RE
The operators s* are approximated by the solution operators of the corresponding discrete

system (2.12) given in (2.15) as the following Lemma shows.
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Lemma 2.9 Let 7 : R — R™ and 7 € S;(R™) be given with ||F]|,, < 0o, |||, < 0o and
an - hf(xn)H < Ch2 Vn e J

Then for each € > 0 there exist ho, T > 0, such that for xro < h < hg, hny > T the

estimate
s (7)(0) = 55 (A)]| < e

holds.
Proof: For z > 0 we set g(z) = G(0,2)7(z) and gm = +G(0,m)fm, = +Ge(20, T )Fm and
obtain the following estimates:
lg(@)[| < [|Ge(0, 2)[[[[7(2)[| < Ke™ |7l
g’ ()]l < II%GC(OJ)IIHF(@II + [1Ge(0, 2)[[|7 ()]
< NGe(0, ) (IM @) [ 17 (@) + 17 (@)]]) < Ke™ (| M]| o [l + 117l 0)
as well as

- L. _
1gm = g(@m) | < Ge(@o, 2m) 5 Tm — Ge(0, 2m)T(m) |

_ 1, _
< [(Gel20,0) = DGO, z) [T (@m) || + [Ge(@o, 2m)l[ll 3 Fm = T(zm)|
< Cozoe ™ + Crhe “®m < Che~ ™,

Thus we can apply Lemma 2.8 from which the statements of Lemma 2.9 follow. O

The main linear result in this section deals with the existence of solutions (z, A) € S, (R¥)x
RP of the following linear inhomogenous boundary value problem

Zntl — Mpzn — VoA =1n, neJ= [n_,n] (2.30)
B_z, +Biz,, =n €RF (2.31)
M(z)=w €RP (2.32)
where A
M, =®(n+1,n)=5(Tnt+1,%n), Tn = o+ hn. (2.33)

Here S(z,&) denotes the solution operator of the linear nonautonomous equation Lz =

2= M(")z.

Hypothesis 2.10 L has exponential dichotomies on RT with data (KT, o 7%) and
N(L) = span{g, ..., &},

Hypothesis 2.11 The matriz
(B_X® B XY)eRM (2.34)

is nonsingular, where the columns of X5 span the stable subspace X* of M_ and the
columns of X span the unstable subspace of My and M4 = lim,_ 4o M(x).



2.1. Auxiliary results 47

The phase condition IT : S;(R¥) — R? is the discrete approximation of the linear integral
condition (¢, v) = 0 in (1.19) and is given by

n4
(z) =h Y (wn) 2, (2.35)
n=n-—
where @@ : R — R¥P is a given reference function which satisfies the following hypothesis.

Hypothesis 2.12 Assume that ¢ € E,(R,R*P) (see Definition 2.7) and that the p X p
matriz defined using ¢* from Hypothesis 2.10 by

F = /Rz;(x)TW(x), L¢P (2)] d. (2.36)
18 nonsingular.
Hypothesis 2.13 The matrices V,, are of the form
Vi = hV (z,) + O(h?) € Rk (2.37)

for some continuous function V € La(R,R*P) for which the following nondegeneracy con-
dition holds. The matriz E given by

= 2TV (z) dx p.p
E_/R[wl,...,q/;p]( V'V (z) de € R

is nonsingular, where N'(L*) = span{w', ... ¢P}. (for the definition of the adjoint oper-
ator L* see (A.14))

Now we can formulate the main linear existence result from which we obtain the existence
of solutions of (2.30)—(2.32) as well as corresponding estimates. This lemma will be used
in all of our approximation results which follow in the next sections.

Lemma 2.14 Consider (2.30)—(2.32) and let Hypotheses 2.10-2.13 be satisfied.

There exist ho > 0, T' > 0 such that for h < ho and £hny > T the equation (2.30) - (2.32)
has a unique solution (2,\) € Sy (RF) x RP for any r € Sy(R¥), n € R¥, w € RP.

Furthermore the following estimate holds for o € {oo, Lop}:
~ 5 1
11110 + IAN < el M7l + llnll + llll) (2.38)

Remark 2.15 Note that in the traveling wave case we have p = 1. But in order to be
able to deal with more general symmetries (compare 1.4) we prove the result for general
p > 1. This allows to prove approximation results for the general case (see 2.3.1) where
the dimension p of the group G is larger than one.

Proof: From Hypothesis 2.10 and Lemma 2.3 one obtains that the operator Lz:8; — Sy
defined by

ffz = (ZnJrl - ann)nEZ
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possesses exponential dichotomies on Z* with data (K1, aih, P¥) and
N(L) = span{ql, ...,G"}, where (ji — gf)@, i=1,...,p.

We use Lemma 2.5 to define partial solutions on J~ = [n_,0] and J* = [0,n;] and
construct for each r € S

w
Il

S = 8 (r VA + (0, 0)z + B(non_)p—, n e [n_,0]

w
Il

Ay §7J1F(T + VA) + (I)(Tl, 0)2’8_ + (I)(n7 n+)p+7 n e [07 n+]7

=+
Mmrzn+ + rny

s+
Z?’L++1

with
s EN(BY), % € RIB), p- € R(Py), py € N(PL).

We define z € S, by

Z, for n € [n_, —1]
5, = (2.39)
zt,  forne[0,ng +1]

which is a solution of (2.30)-(2.32) if the following system is solved

Zy =2 €RF (2.40)
B_Z, +BiZ, =n €RF (2.41)
[M(z)=w €R". (2.42)

Note that the parameter A € R” is hidden in the definition of ZF and is yet to be deter-

mined.

X% 5z Z3s® Z = N(Fy) R(PJ):ZQ@Zl 2w €XY
T x- v w x+ 1
R(P, ) 3p- C4+n=2" 2 =C+n py EN(P)

p+

Figure 2.1: Overview over dichotomy estimates

We decompose R¥ as follows: Let Z; = R(Py") NN(Py ). According to Hypothesis 2.10
we have dim(Z;) = p, we complement Z; by subspaces Zy and Z3 such that

R(PY)=21® 2y, N(Py)=21& 23
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Since dim(Z, & Zo® Z3) = kI +k; —p = k — p there exists a subspace Z; with dim Z, = p
such that Z; ® Zo ® Zs ® Z4 = RF is a complete decomposition of RE.

We can change the projectors PofE in such a way that (see [42], Prop. 2.3)
NE) =23 © Zs, R(Fy) = 22© Za,
without changing the other dichotomy data.

From the choice of z;, zar follows

(I-Py)zy =2y €N(Fy)=2Z3® 7
Przf =2 eREP) =2 2.

We use the ansatz z, = (-~ + 1, zar = (4 + 14, where (_ € Z3, (4 € Z3, nt € Z1 and
from (2.40) we obtain 1y = n_ =: n. Equation (2.40) now reads

G = G+ 2(0,n-)p— — @0, 14 )4 + (35 (V) = 35 (V))A = 37 (r) — 35 ().
The left hand side of this equation has no component in Z;. We transform the boundary
values p_, p4 to coordinates (zs, 2,,) which are independent of J as follows: Denote by E*
the projector onto X* along X and by EY the projector onto X along X, where X
are defined in Hypothesis 2.11. We define the transformations

X—:R(Prj_)_}Xiu p— = Zs, X+N(P17,++)_>X4urv P+ Zu
by
x-=I1+E —-P,, x+ =1—-E;+Pf.
From the roughness theorem A.6 we have lim 7% (z) = E4 and with Pf = 7% (29 + hn)

r—Fo00

the invertibiliy of y_ and x4 follows for £hny > T, T large and h,xg — 0 as well as the
estimates

1
-1
X < <2. 2.43
Furthermore, for all (2, 2z,) € X* x XY we have
1P, — EZ[]|z]] 1P, — E3 2l
I—E%)xlz) < —= , Eixila| < — . (244
Defining the maps ¢ : Z3 X Zs x R? — S7(RF) and d : X* x X% — Sz(R¥) by
®(n,0)C_ + & (V)A\, n<0
Cn(c—a C—H )‘) = ( )C A:b_< I ) ) (245>
O(n,0)(+ + 57 (V)A, n>0
d. , <0
dn(zsy2u) =4 - (25), m (2.46)
di(zy), m>0,

where df(n) = ®(n, ni)xfn,

we can rewrite Z defined in (2.39) as follows

Zn = Cn(C_,C+, )\) + dn(zsazu) + q)(na 0)77 + {%E_ )
S (r)

Znp+1 = Mn Zn, + 10,
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Using (2.46) equation (2.40) now reads
G- = G+ (8o (V) = 8 (VDA + dg (25) = dif (2a) = 55 (r) = 35 (). (2.47)

Define Q € Sz(R™P) by

. [on,00I - P)é (z0), ..., ¢P(x0)], n <O,
Qn = {(b(n,O)PJ[gbl(zo), PP (o)), 0> 0. (2.48)

Since the columns of Qy span a basis of N'(P; ) NR(Py) we can write n € Z; as 1 = Qok
for some x € RP. We obtain for the boundary conditions (2.41)

B—Cnf (C—a C-H )‘) + B+Cn+ (C— C—f—? ) + B- d;z_ (28) + B+dr+z+ (ZU)
+(B-®(n_,0) + B1®(n,0)) Qor
— (B4(8;,(r) = B-3,_(r)).

and the phase condition (2.42) reads

~ A~

TI(e(C_, ¢y A)) 4 T1(d(25, 20)) + TH(QK) = w — TI(3(r)).

We summarize the equations in

(¢ G N) 8 (r) =8y (r)
T ( (20, 2) ) = [0 (B+ G0 - B3 () (2.49)
w w — TI(5(r))
where T': (Zy x Zz x RP) x (X2 x X)X RP — (Zo @ Z3 @ Zy) ¥ R* x RP has the following
structure
X o 0
=AY p
© A Z
where
X(Coy G A) = (o = G+ (85 (V) = 55 (M)A
(ZSa u) (I)( ) lzs - (I)(Oa n+)XJ_rlzu
A((-,(y,A) = B_cy (C Gy A) + Byen (€, ¢4, A)
Y (2s,24) = B Zs + B+X+ Zu

O(C-, ¢, A) =h Z b(@n) en(C, iy N)

n=n—

A(Z«Sv Zu) = ﬂ<d(287 ZU)) =h Z Qﬁ(xn)Tdn(Zs; Zu)

n=n-—

p(r) = (B-®(n_,0) + B1®(ny,0))Qor

Z(r) =THQr) = h Y W(xn)" Qur.

n=n-—
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We have to show the invertibility of T" as well as an estimate of the inverse of T'. The
terms o, p can be estimated using the exponential dichotomy of L by

|o|| < Ke~ohmin=n—n+) (0 as hmin{—n_,n,} — oo
and using R(Qo) = R(Py) NN (Py ) we get
loll < [IB-[l[|®(n—, 0)Qoll + || B+ [l|®(n+, 0)Qo
= | B_|[[|®(n,0)(I = Py )Qoll + | B+l[|®(n+, 0) Py Qol|
< (Koo 4 Koo ) Qo
— 0 as hmin{—n_,ny} — o
The boundedness of the operators A, A, © will be shown as follows: The term ||cy, (¢—, (4, A)||

can be estimated for all n € J using Lemma 2.6 and the estimate ||V||, < Ch|V|, which
follows from (2.37) by

[@(n,0)(I = By )6l + 15 (V)AL for n <0
|2, )P el + 15 (VINIAL for n > 0
- {K_eah"uc_u + VIl IM, forn <0

T K G|+ CV M, forn >0

< KIS+ NGl + 11D

[len (G-, ¢ A < {

Therefore we get for A

IAC-, G M < IB-[llen_(G=, G M+ 1Bl len (¢ ¢4, ]
< KGNS+ TIAID-

The properties of ¢ in Hypothesis 2.12 ensure that the map II : S 7(R¥) — RP is uniformly
bounded in J. Using the dichotomy estimates again we obtain

1006, G, NI < Klle(G, Gy Moo < EITTNCNC I+ 1G4+ A1)

and finally
A (25, 20) || = [ITI(d(2s, 2u)) || < K[ (25, 20)|-

From (2.44) and Hypothesis 2.11 follows that ¥ has a uniformly bounded inverse, therefore
it remains to show the invertibility of the remaining operators on the diagonal X and Z.

Application of Lemma 2.9 shows that X and Z converge for xg,h — 0 and £hn4 — oo
to X and Z given by

X(G= Gy A) = 6= = G+ (7 (V)(0) = s (V)(0))A,

T 0
s (V)(z) = / S, §m (HV(E) dE —/ S, (I =7 (§)V(E) dE, for z <0
sT(V)(x) = /Ox Sz, )T (V(€) d€ — /Oo Sz, I — 7T (§)V(E) dg, forz >0
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and

Z(w) = /R D) 16M @), ..., ¢#(2)] dx .

The invertiblity of the operator Z is ensured by Hypothesis 2.12 and the invertibility
of X follows from the nondegeneracy condition Hypothesis 2.13 similar to [3], [60] by
multiplying the equation

0=¢- =+ (s (V)(0) = sT(V)(0))A

from the left by [1)!, ..., *]. Then we obtain that X and Z are invertible for xq, h small
enough and Fhn4 large enough with a uniform bound for the inverse.

Summing up the estimates for the right hand side in (2.49) we get for £hny > T

GG 1T AT+ Tzs I+ llzull 4 [l]]
< C(H%T(T‘)II +lIsg (I + Il + 1 B+55, ()1 + 1B=5,_ ()l + [lwll + Hfl(§(7"))\|)

With the estimate (2.16) for 4 in Lemma 2.5 and the properties of IT one obtains
1
=1+ llG I+ AN sl Tzall + sl < € lIrllog + il =+ llwl]) (2.50)
and additionally for r € Lo, using (2.17) with 5 = ah
1
=+ G I+ MM+ lzsll + Nzall +isll < €Tl , + N0l + llwl])- (2.51)
From Corollary 2.6 we get estimates of the partial solution 2= € S;- for o € {L3,, 00}
- 1 - - 1 _
1271l < Cllir + VAL, + llzg | + llo-11) < CClirll + I+ lizg | + llo-11)

using ||Vl < AV as well as [[V],, < ChI[V|,.
Now (2.43), (2.50) and for r € Ly, (2.51) yield for o € {Ly,, 00}

_ - 1
lzo [ < ll6= 1 + I Qollllsll = CIrlle + llnll + llwl))

and ]
lo— Il = lIx= 2l < 2f|zs]| < C(llrlls + lnll + llwl])

giving the desired estimate of Z~. Similar estimates hold for Z¥, which leads for ¢ €
{Eg’h, OO} to

~ 1
121, 1l, < CClirlle + Hlnll + ).

It remains to consider the contribution at n4 + 1. We have
- - 1
2l < 1Moy 1230+ D | < C(lIllog + lInll + 1))

for h < 1. This implies for r € Ly, with ||r|| < ﬁHTHEM

. . i 1
12, < 12, , + VAllZn 4]l < Cllrlle, , + lnll + llwl)-
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Thus we can estimate (2, \) for o € {£3},00} by

~ Y 1 *
1Zlle + A< CClIrlle + llnll + llwll) = Clir, n, w)lls-
Using the difference equation (2.30) and

Vi, = hV (zn) + O(h?), M, =1+ O(h)

which hold by (2.37) and (2.33), this can be improved for h small enough to the |[-[|;

resp. HHH}l estimates (2.38). Since for ¢ € {L4 4,00} we obtain, again using HVHLM <
Kh|[Vz,,
- L. . 1., - .
10+2ll = 3 1(Znr1 = Zn)nesllo < 3 (M = I)Zn + Ve + 70 )nello

1 .
< E(SEE(”M” — IDlz[l, + RV AN+ lI7ll,)

1 * = *
< 5 (Chll(rym W) lo +I7lle) < Clitr, n,w)lls.

Remark 2.16 If the operator L possesses an exponential dichotomy on the whole line R
then Lemma 2.14 holds with p = 0, i.e. the phase condition (2.32) and the parameter A
do not occur. The estimate (2.38) simplifies to

3 1
I1Zll10 = € lIrlls +limll), o € {00, L2.n}

A solution of a small perturbation of (2.30) can be estimated as well.

Corollary 2.17 Let (22, \) be a solution of the perturbed equation

g1 — (My + AM)zn — (Vu + AVIA =1y, neJ=[n_,ny] (2.52)
B_z, +Biz,, =n €RF (2.53)
Mz)=w €RP (2.54)

where M, V,f[ and By are defined in Lemma 2.14 and the error terms can be estimated
by

|AM]|, < o(h, T, [AV],,, <o(h,T)h,
where limy_.o 700 0(h,T) = 0.

Then (22, \2) can be estimated by

1
1225l + N3] < Sl gy, + Il + - (2.55)

Proof: By (2.52) we obtain

Zn+l — ann - Vn)\ =7, +AM,z, + AV, )\
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Applying the estimate (2.38) results in

1
12llzgy + A< 7y, + 1(AMaz0)ne sz, , + 1AV, A) + 0] + @]

IN

1
5 UIrllgy, +ho(h Tzl , + ho (R, TYIAN) + linll + llw]

IN

1
o(h, T)(I2ll gy, + UMD + 2l gy, + llll [l

IN

1 1
Szl , HIAD + 7l , + [0l + llwl

for h < hg, T > Ty. This implies

1
12l + A< 2G5 M7l , + llnll + llel])-

2.2 Approximation of the traveling wave

As motivated above, the discretized equation will be transformed to a first order system.
Using the results for the linear difference equation the following main approximation result
for the traveling wave solution can be proved by using the fixed point Theorem A.3 which
is stated in the appendix. Let (@, A) € C}(R,R™) x R be a solution of (2.1), i.e.

Ad" + \d' + f(u,a’) =0
with lim, 4o a(2) = us.

Consider the corresponding discrete boundary value problem (2.2) with affine-linear bound-
ary conditions and a phase condition, given by

A(040_u)p + A(0ou)n + f(un, (ou)n) =0, nelJ (2.56)
P_u,_ + Q—(50U)n, + P+Un+ + Q+(50u)n+ =" (2'57)
T (u) = 0. (2.58)

The phase condition V.S 7(R™) — R is the discrete approximation of the integral condi-
tion (1.12) and is given by

U(u) = (Sott,u— ), =h Y (So@t)h (un — iin) = 0, (2.59)

n=n—

where 4 : R — R™ is a given reference function which satisfies the following hypothesis.

Hypothesis 2.18 Assumei—u € HY(R,R™), @' € Eo(R,R™), (@, @) # 0 and (0,6 — i)
0.

The phase condition ¥ is a discrete approximation of the integral condition (1.12).
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Hypothesis 2.19 The boundary condition (2.57) is satisfied at the stationary points uy,
i.e.
n=PFP_u_+ Piu;.

Assume further, that the following reqularity condition holds

det <(P Q-) (YfAS> (P Q) (Yﬁi» £0. (2.60)

where Y2, Y and A%, AY are defined in A.S.

In the following we list the general assumptions on the operator A and the nonlinearity f
which will be used throughout the thesis.

Hypothesis 2.20 The operator A satisfies the assumptions (SC) and (ECw) (see Remark
1.16) and the nonlinearity f satisfies Hypothesis 1.9.

Then the following theorem holds.

Theorem 2.21 Assume that Hypotheses 2.20, 2.19 and are 2.18 are satisfied.

Then there exist o > 0, T > 0, hg > 0 such that for h < hg and £hny > T the boundary
value problem (2.56)-(2.58) has a unique solution (@i, \) in a neighborhood B,(@,\) =
{(u,A) € Sy. xR : ||u—ully + A=A < o} which obeys the following estimate for
C>0,a>0 7

@), —all, _+ XA < CO(h? + emohmin{=n—n+}y, (2.61)

Proof: A solution of (2.56)—(2.58) is a zero of the operator F': Sy, (R™) x R — S;(R™) x
R2™ x R where

(A((5+5_’U,)n + )\((Sou)n + f(un; 50“71))716]
F(u,A) = | P-un_ + Q- (dot)n_ + Prun, + Q+(ot)ny — 1
W (u)

The derivative at the exact traveling wave (i, A) then reads

(A(646-u)n + Bn(u),, \)(dou)n + Cn (), )un + Dn(t), )N nes
DF(u, \)(u, \) = P_u,_ + Q_(60u)n_ + Prun, + Q4 (d0w)n,
(2.62)
where, setting wy, = (dou), = %(Un_l,_l — Up_1),

B, (u,\) = A + Do f(up,wy), Cp(u) = Dif(un,wy), Dn(u)= (dou)n,

n4
(u) = h Y (Solt)ptn.
n=n—
We want to apply the fixed point Theorem A.3 to F with ¥ = S; (R™) xR, Z =
S7(R™) x R?™ x R, with norms

1w Mlly = llully oo + AL Mm@z = 7l + 10l + ||
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at the approximative zero § = (1, \).
Using Lemma 2.8 we obtain from Hypothesis 2.18 the estimate
()| < O(h> + e=emintonons)

Together with the approximation properties of the difference operators and the exponential
convergence of u towards the stationary points this implies consistency

IF (@, M, < sup [ A(10-@)n + A(Bo@)n + f (tin, (S0} (2.63)

+ | Pottn + Q- (80 + Pitin, + Q- (6o, || + 1T ()|

< sup ||Aal + M, + f (T, @) + O(h?)e=ohn
neJ

FIPou_ + Pruy — || + | P-(tn. —u )| + || Py (tin, —uy)|
1Q-tp_[| + OWA)|a" |l oo + Q|| + OB?)|a" o

+ [ (a,)]
< OO [l —ue | + [T, —ug | + 75|+ 175, ||+ k2[la"])
+ ([ ()|

< C(h? +e9T),

From Hypothesis 1.9 we obtain the estimates
HBn(ﬂ, 5\) - Bn(ﬂba S‘)H < |5\ - 5\‘ + ||D2f(am7j)n) - sz(ﬂn,’u_)n)H
< C(A = Al + ||t — | + (|00 (T — @) |
1Cn (i, A) = Coa@ty s M| = || D1 f (Gn, @) = D f (i, )|
< C(Hﬂn - an” + ”50(1111 - an)”)
1D (@) — D () || < Cll00(tin — @)l
from which follows
I(DF (@, \) = DF(a),, A)) (1, M)l 0 < sup 1B (@, X) = Ba(@, Al |60l

+Slég||0n(aa5‘) (U|,, MHlull o +SI£HDn(fL)—Dn(U|,,)|||/\! (2.64)

< O(la —ally o0 + 1A = M) (Il 0 + |A])-

In order to show the invertibility of DF(w,, \) we transform the variational equation

DF(u, M)(u, A) = (9,7, w) (2.65)
to first order using z,, = (un,vy), vy = (6_u), and obtain for (z, A) the equivalent equation
Az, ) = (r,n,w), (2.66)
where w,, = (dou), = %(Un_i,_l + v,) and
i I'(z,2)
A(Za )‘) — P_Un7 + Q_U)n7 + P+un+ + Q+wn+ 5
1(z)

(). w5
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The operator I' : S (R?™) x R — S;(R?>™) is given by

(T(2,N),, = Nnzngr — Kpzp — Wi

where
I —hl I 0 0
N = <0 Ej[) = <—hCn E,;) v Wn=— (h(éouJ)n>
and
- - h
Bn = Bu(u,,\), Cn=0Cy(u,,\), Ei=A%+ 3 Bn- (2.67)

We consider A as an operator from S; (R?™) x R, ||(z, \)
Sy (R¥™) x R*™ x R, [|(r,n, )% = £lIrllo + 10l + |-

= [l2ll1,00 + [Al into

Hl,oo

In order to relate (2.66) with a corresponding continuous system we consider a perturbation
of A which is given by

(Nzn-‘rl - ann - WnA)nEJ

Ai(z,A) = | (P~ Q-)zn_ + (P Q1)2n, (2.68)
I1(z)
where
o 1 hl - o, A < -
Fon = <_hén A— th) ’ Cn = le(un’un)’ Bp =M+ D2f(unaun)

o (I 0\ 0
=0 e )

Using for w,, = (8o@),, the estimate ||w,, — || < Ch? as well as Hypothesis 1.9, we obtain

HBn - Bn” = ”DQf(ﬂmwn) - D2f(7m7141)” < Ch2
HCn - én” = Hle(ﬂmwn) - le(fm%)H < Ch*.

Thus we have the estimates

(T

h
0 5Bn
and
|Ky — K+ Ny — N|| < h(|C, — Col| + | B — Byl|) < Ch?
as well as
. h2 )
IWn = Wall = [|h(tn = @n)l| = - [[(6+0-u)n|| < CR”.

In the last inequality we have used the relation

h h
Wy, — Uy, = (bou)p, — (0_u)y = 5(5+5_u)n = 5((5+v)n.
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The above estimates imply that A; is an order h perturbation of A:
< * 1 - N
1A = Ad) (2 Mlloo < 7 sup (II(Nn = N)zng1 — (Kn — Kn) 2|
ne

(W = Wa)A) + 1Q— (wn = v )]l + @4 (wny = v,

A 1 N A
< sup(|[ N = N[0 22])) + 3 sup ([l = o + Noy = N |20
neJ neJ

+ 350D (W = WA+ 5 (1Q- 1 0)a |+ 141510}, )
< Ch([0+ 2]l o + 121l + [AD)-
Define M,, = S (Zn+1,Tn), where S denotes the solution operator of the linear equation
Lz =7, where Lz =2 — M()z (2.69)
where
v@ = (Lo —atw) =V (Lo —aw) O
and A, B, C define the operator A in (1.5).

Then the operator

R (Nan — NM,z, — Wn)\)neJ
Ai(z, M) = (fl*CQ*)ZH—A%’(Iﬁ*C2+)Zn+
11(z)
is a order h perturbation of A;, since
M, = S(Tnt1,2n) =1+ hM(z,) + h2E,, (2.71)
and the equality (cf. (2.68))
K, =N+ hM(zx,)),
lead to )
1Ai = Adfloe < Sup [ K — NMy |||zl < ChIE| ]2l - (2.72)

Setting V,, = N~1W,,, the equation Ai(z, A) = (r,n,w) can be equivalently written as
Zn4l — ann - VnA = N_lrn
(P- Q-)zn_ +'(}ﬁ-62+)zn+ =7 (2.73)
(z) = w.

In order to apply the linear Lemma 2.14 to (2.73) we show that Hypotheses 2.11,2.12 and
2.13 are satisfied.

The spectral condition (SC) and the eigenvalue condition (EC) ensure that equation (2.69
possesses exponential dichotomies on R* with data (K*,a®,7%) and we have N(L) =

span{z'}.
From the solvability condition (2.60) follows that Hypothesis 2.11 is satisfied for By =

(P+ Q+), since the invariant subspaces of M* = lim, 1., M (z) are given by X* = W3 (0)
and X* = W(0) which are defined in Definition A.8 (compare Lemma 3.29 in [60]).
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The definition of V}, in (2.68) and the definition of N shows that Hypothesis 2.13 is satisfied

with
Vie) = <—A_(1)u/(ac)) (2.74)
and
IV (2)| < C|li'(z)] < Ce

Application of Lemma 2.8 shows that l:[(ﬂf ,) converges for h — 0,2hny — oo to (', ay,
i.e.

RS (ot — /R ()77 (2) da.

n=n-—
Thus it follows from Hypothesis 2.18 that Hypothesis 2.12 is satisfied.

The nondegeneracy condition in Hypothesis 2.13 follows from the fact that N(A) =
span{a’}. In this case
Au” + By + Cu+ i’ =0

implies u = at/, a € R and A = 0. Since A is nonsingular this is equivalent to
2= M()z—V()A=0 = z=2az, acRand A = 0.

As has been shown in [3], Proposition 2.1, this is equivalent to Hypothesis 2.13.

By applying Lemma 2.14 to (2.73) and multiplying with the bounded matrix N we obtain
the invertibility of A; as well as the uniform bound for the inverse

. 1 .
A7 o @)l o < e lIrllog + lInll + lwl) = ell(rm, @)
Using the perturbation estimates (2.72) as well as (2.72) the invertibility of A follows with

the same bound for a probably different constant c.

Note that, if z = (u,d_u) then I'(z, \) has the following structure

_ (hvn — (un - un))nE
(L2, A)n = <h(A(5+5u):l+ Bn(d—(i)rill)n + Cnui+ D”/\)> '

This implies for any z of the form z = (u,d_u) (i.e. the first m rows I'(z, \) are zero) for
o€ {H}, (1,00)}

AN = 110G N, + )]

NPt + @ 5((- a1+ (6w + Prt, +Q (0 w1 + (0},

= [|A(6+0-u)n + Bn(dou)n + Crup + DpAll, + ||1:[uH
+ ||Pfun_ + Q_boun_ + P+un+ + Q760Un+ H
= | DF(a, \)(u, A)

lo-

Together with

1211100 = 12lloe + 19+2]l0e < elltelloe + I00ull oo + [16+0-ulloe) = cllully o
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and ||Z”H}L < c||uHH% it follows that DF (@, A)) is also invertible with

IDF @@, A)(r,m,w)ll, o < elllgllo + 71l + w).

2,00
Therefore we can find o > 0 with
N 1
IDFG, N, <
i.e. for h < hg and +hny > K condition (A.6) is satisfied. Using (2.64) we obtain p > 0
such that for (@, ) € Uy((@),,A)) = {(u, A) : [Ju— ully o + A < p}

IDF (@i, A) — DF(a,, \)|_ < g
which implies (A.5) with x = §.

Application of the nonlinear perturbation Theorem A.3 now gives the existence of a zero
(a, \) of F and the desired stability inequality

|ur — uzlly oo + [A1 — A2 < Cf|F(u1, A1) — F(uz, A2)|| o
for (u1, A1), (u2,A2) € Us((1|,,\)). Together with the consistency estimate (2.63) this
leads to estimate (2.61). O

Besides the |-, estimate (2.61) we obtain a [|-[|,  estimate in the following corollary.

Corollary 2.22 The constants o,T,ho in Theorem 2.21 can be choosen such that the
solution (i, \) obeys the following estimate for C > 0,a > 0

), — ﬂIIH% + A=A < C(h? + ¢~ ohmin{=n—ni}) (2.75)

Proof: In order to estimate the difference (ua,Aa) = (4], — @, A — A) in the H||;}i norm

we show that (ua,Aa) solves a linear equation to which Corollary 2.17 can be applied.
For (@, \) and (%, \) we have

A48 )y + M) + f(tin, dolin) =0, n € J
Aull + M), + f(tn, 1) = 0.
Thus (ua, Aa) solves
A(316_u)y + B5 (Sou)n + Couy + DEX = gy,

P_u,_+ Q* (50U)n_ + P+un+ + Q+(50u)n+ =n (276)
<(50’LAL, U>h =w

where wy,(t) = @y, + t(ay — Uy,) and

B2 = 14X+ / D f(walt), () dt,

/ Dy f(wn(t), Bown (1)) dt, DR = Sho(i+ 1, )
gn = Aty — (64:6-1)n) + A(ity, — (S0t)n) + [ (tin, Uy,) — f(tin, Sotin)
n=P_ (un, - ) + Q- (8ot )n_ + Py (tin, —ts) + Q4 (S0t )n,

w = (0ot, & — U),.
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Furthermore, we have the estimates
1. 1
B2 = Bull < 533+ [ 1D2f(wn(0), 80 (1)) ~ D (o, Soia)|
0
1
IC = Cull S/ [ D1f (wn(t), down(t)) — Dy f (tn, dotin)l| dt
0
1 - _
1D = Dyl| < SlI0o(@ = @y, )l < K (h* +e7)
as well as
sup || D1 f(tn + t(tn — n), 60(Un + t(ln — Uyp))) — D1 f(tin, dotin)||
te(0,1)
< c([|tn — ]| + [[00(@ — w)nl]) < cllt —ully o
and
Szlp) HD2f(an + t(an - ﬂn)a 50(ﬂn + t(ﬂn - ﬂn))) - Dgf(ﬂn, 5Uﬂn)”
t€(0,1
< cf[(tn — )|l < cfla - all-
which follow from (1.10).
Equation (2.76) is transformed via z = (u,d_u) into the system
Zn+1 — MnAZ’ﬂ - VnA)‘ =Tn
P_u,_ —+ Q*(éou)n_ + P+un+ + Q+(50U)n+ =0 (277>

(B0, u)), = w
where

12+ A\=1A +A\—1 A
"o\ -E ey E TS ) "

hl Ay _ hl Ay
VI R e (A e

Then (2.71) and (2.37) imply

"\ CR(BN)TIC, — (BEA)TIOR) (BB, — (BB,

n

W, — M2 = <h2<E:>—1cn — (BN R (BB

Using the above estimates, as well as

(A+rB) ' = A" —hAT'BAT  + O(h?), (A+hB) Y (A—hB)=1-2nrA"'B+0O(h?)

we obtain
. B O(h?) O(h?)
M, — M| = (—h(err(h, T)+O(h)) h(err(h,T) + O(h))>

and

hi

o
19— via = ("}

) (B) "Dy — (B> D = herr(h,T) + O(h)).
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where err(h, T) denotes the discretization error and err(h,T) < c(h? + e=°T).

By applying Corollary 2.17 to (2.77) we obtain the following H} estimate of (z, =2, A= A)
for each r € Lo,

1
A A
125l + AT < (3 lIrll gy, + Nl + 1w]).

This yields the H3 estimate for (ua,Aa), since via the estimates in Remark 2.1 for the
difference operators and (1.10) we get

luallye +12al < cllgllz,, + 0l + w])
< c(|[(A(ay — (8+0-a)n) + M@y, — (80@)n) + f(@n, @) — f(Tn, 60Tn))nedllz,,
+ [P (. — ) + Q- (60w)n_ + Pi(tn, — Uy) + Q4 (d0)n |
+ [(Goty,, (@ —a);,), 1)
< ¢(h? + e~ ohmin(=n_ni)y

2.3 Extensions

The above results can be extended in different directions. First it is possible to consider
more general symmetries as has been indicated in section 1.4 already. Second, one can
generalize the above results to prove theorems about the discretization of “connecting
orbits” on finite intervals, extending the results in [64].

2.3.1 Generalization to higher symmetries

In this section we indicate how the proofs in section 2.2 have to be modified for more
general symmetries, i.e. in order to prove approximation of relative equilibria as described
in section 1.4. In the simplest case the generalization (1.73) of the PDE, which describes
stationary solutions of (1.14), reads

p
A0S u)n + Y pi(SPu+ S} (Sow)n) + f(tn, (Sou)n) =0, neJ

i=1
P_up_ + Q- (dou)n_ + Prup, + Q+(5OU)n+ =1 (2.78)
N
h Y () (up — i) =0, i=1,...,p

where @, = SY4, + S} (5ot), € R™P.

In this setting the discretization of the operator A given in (1.75) which decides upon
stability is given by
Lu = A(640_u)p + Bp(Sot)n + Crin,
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where with w,, = (dot),

p
S}, Cn=Dif(in, @) + Y fiSY,
i=1

By, = Dz f (tin, wn) +

Ivh

s
Il
—

D,, = D1 f(iin, 0y) + 5.

&leﬁ

s
Il
—

The equation (2.62) can then be written as

B (A(5+67U)n + Bn(50u)n + Chuy, + Dn)\)nGJ
F(u, \)(u, A) = | P-up_ + Q,((Sgu)n_:l— Piup, + Q+(5ou)n+
II(u)

In order to generalize the approximation result Theorem 2.21 we have to check the ap-
proximation properties of

HBn - Bn”» ”én - Cn”a H‘ngz - sz@h)”:

where

p
B = Um n +Zﬂz Cn:le(ﬂnvﬂ;z)"i_ZNiSzov
= (2.79)

n 2

Sy, = (S, )n + (S-lu’J)n.

It remains to check Hypothesis 2.12, which requires that the matrices

/R[Sl(ﬂ)(:z:), ISP ()T [SY (@) (x), . . ., SP()(z)] dz € RPP

are nonsingular. This follows, since N (L) = span{S;u, i = 1,...,s} = R(S(u)) (see
section 1.4), where S;ii = —a.(1)ue’.

Example 2.23 For the example 1.50 where
u(x) € R* z € R, [a(v)u)(z) = Ry u(z =), v= (4, 7) €EG =R x S
equation (1.74) reads
up = Augy + f(u,ug) + Apug + ArRzu

and we obtain for the discretization S = I, 59 = Rz, S9 = Sl =0. Therefore the discrete
system (2.78) is given by

A(040-u)p + M (dou)p + )\TR%un + f(un, (dou)y) =0, neJ
P_up_ +Q- (50U) + Pitn, + Q4 (dou)n, =1

(o) R
h Z <Rfun >(un—un)—0€R2.

With N'(L) = span{t’, Rzu} we have that

/R (RZS:;T)T> (p1(z) ¢a(x)) do € R??
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is invertible for all linearly independent ¢1, d2 € N(L). Thus Hypothesis 2.12 is satisfied.

Hypothesis 2.13 is satisfied as well, since in this case

and the matrix
/&W%@%Rgu@ﬂTAWu%m,R%u@m]dz::qUﬁRguLAWu@RguD

1s tnvertible.

2.3.2 Discretization of connecting orbits

The method we used above for the proof of the approximation theorems for the traveling
wave can be used to extend the approximation result for connecting orbits as discussed in
[64], to boundary value problems. In the following we outline the results and indicate the
line of proof without giving details.

Consider a parameter dependent ODE
7 =G(z,)\), zeR, AeRP, z(x) e RF (2.80)

which will be compared later with a difference equation arising from a one step method.
Special solutions of (2.80) are given by the following definition

Definition 2.24 (connecting orbit) A solution z € C}(R,R¥) of (2.80) at parameter
A= X with
o, 70 = 2

is called a connecting orbit between the limiting values Z_ and zZy. The pair (Z,\) is a
connecting orbit pair (COP) between z_ and Zy .

COPs aris as are intersections of stable and unstable manifolds and they are robust w.r.t.
perturbations if these intersection is transversal. This leads to the following nondegeneracy
condition for COPs.

Definition 2.25 (nondegenerate) A COP (2, \) of the system (2.80) is called nonde-
generate if the matrices My = lim, .1+ G,(2(x),\) are hyperbolic (i.e. there are no
purely imaginary eigenvalues), and for the number kZ of stable and k= of unstable eigen-
values of My we have p=k+1—k, — kI =k; — kT, and for any solution (29, o) of the
variational equation

27— GL(Z,\)z — GA(Z, )\ = 0,

we have
M =0 and zy=aZ, aeR.

The following lemma [3], Prop. 3.1, gives an equivalent condition:
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Lemma 2.26 A COP (2,)\) of (2.87) is nondegenerate if and only if we have for the
linear operator
L:Cl—Cy 22 —G.(2,\)z

e dimN (L) =dimN(L*) =1
e if span{yp} = N(L*) then

(), G (5, 3)) = / VTG (3(x), 3) do £ 0. (2.81)
R
In this setting the linear operator L is the linearization of a G operator about the equi-
librium (z, A), i.e.
Lz=7% — M(x)z, where M(z)=G.(2(z),\)

As before, we denote the corresponding solution operator by S.

In this situation Lemma 2.3 can be slightly extended, since ¢,(Z(x), A, h) solves the equa-
tion Lz = 0, see Lemma 3.3 in [64].

Lemma 2.27 Consider the nonlinear parameter dependent equation
2 =G(z,\) (2.82)

with flow ¢(z,\,x). If the operator L has an exponential dichotomy with data (K, a, )
on J then the corresponding difference equation defined via the h-flow of (2.82)

Zn+1 = ¢z(2($n)7 5\7 h)Zn = S(xn—i-laxn)zn’ nez (283)

has an exponential dichotomy on J with data (K, ah, P) where P, = m(zy,).

Note that if (z,A) is a COP of equation (2.80) and we define z,, = (i(xy), @ (zy)), n € Z,
then (Z,,A) is a connecting orbit for the discrete system

0=A(040_u)y + Aoou)n + f(un), n€Z. (2.84)
Now we consider a one-step method for (2.80) given by
Znt1 = Yn(Zn; A)

with order p, i.e.
H¢(Z, )\7 h) - ’lﬂh(Z, >\)H < ChP.

For the explicit Euler method one can show for (z,\) in compact sets the estimate

H¢(Za A, h) - wh(z’)‘)H < Ch2.

We define the operator

L:SzxR = Sz5 (2,)) = (2011 — Yn(2n, N))nez
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and consider the restriction of I'j, to a finite interval J = [n_, n4] with boundary condition
b(zn_,2n.) =0,

and a phase condition ¥(z) = 0, where ¥ is defined by

U(z) = (0022 — 2), = Y _(602)} (2n — 2n) =0,
nez

where Z : R — R™ is an appropriate reference function. We summarize the equations in
the operator Flyj : Sy x R! — S; x RF x R, defined by

L(z,\)
Fin(z,A) = | b(zn_, 2n,)
U(z)

The derivative DF (2, A) : Sy x Rl — S; x RF x R of Fyp at (Z, 5\) is then given by

B (Zn—i-l - ann - Vn)\)nEJ
DFJyh('g? A)(27A) = le(zn_azn.t,.)zn_ + DQ(zn_aZn+)Zn+ s (285)
<¢‘J7 Z>h

where

~ A —

M, = S($n+1a xn) = ¢z(2($n)a 5‘7 h)7 Vo = ¢/\(5($n)7 A, h)a 72)(1‘) = 502(:13)

The conditions on b and ¥ are chosen in such a way, that Hypotheses 2.11 and 2.12 hold,
and (a variant of) Lemma 2.14 can be applied.

Hypothesis 2.28 The k x k matriz
(D1b(Zn_, 2 )Xy Da(Zn_, 20, ) Xi)

is nonsingular, where the columns of X* span the stable subspace X* of M_ and the
columns of XY span the unstable subspace of M, . Furthermore, we assume that the
boundary condition is satisfied at the stationary points, i.e.

b(z_,z4) =0.

For the phase condition we assume the same Hypothesis 2.12 as in Lemma 2.14. The sim-
plest possibility is to take Z = Z. However, this is not useful for the numerical compuations,
since Z is the unknown solution we are looking for.

Then for the approximation of the nondegenerate COP by a discrete boundary value
problem the following theorem holds.

Theorem 2.29 Let (2, \) be a nondegenerate COP of equation (2.80) and let Hypotheses
2.28 and 2.12 be satisfied.

There exist hg,T > 0, K > 0, p > 0, such that for h < hg, 2n+ > T, the discrete boundary
value problem Fjp(z,A) = 0 has a unique solution (Z, 5\) € Sy x R! in the neighborhood
By(7,,A) = {(z,A) € S; x R Iz =z, + 1A - A < p} which obeys the following
estimate .

12, = 2l + A=Al < KP4+ [[b(z0_, zn )]l + 12(2,)1)- (2.86)
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In the following we indicate the main steps of the proof which is similar to the proof of
Theorem 2.21.

We apply the fixed point Theorem A.3 to the following situation: ¥ = S; xR, Z = S x
R, with norm [[(z,n,w)ll z = g1l + Il + ]| 7 = (2,1) and F : Sy x R? — Sy x R¥!
is given by L(z, \).

The inhomogenous equation DF(z,\) = (r,n,w) in J has the form (2.30)—(2.32) where

MnNand V,, are defined in (2.85). Lemma 2.14 implies the existence of a unique zero
(2,)\) € S; x R! which obeys the estimate (2.38).

Thus we can use Theorem A.3 and obtain for each large enough J and small enough h a
unique solution (Z,\) € S;(RF) x RL.

It remains to check Hypotheses 2.10-2.13:

Since the COP (%, \) is assumed to be nondegenerate, we obtain that the matrices M™*
are hyperbolic and N (L) = span{z’}. The solvability condition of the boundary condition
Hypothesis 2.11 is equivalent to Hypothesis 2.28. As has been proven in [64], we have
Vi = hGA(Z, A) + O(h?), thus Hypothesis 2.13 holds. We have U(z,) =0 and

s
z I\T = 2
Uz )=h > (z)'7z = ||z|’J||£2JL > 5> 0,
n=n—

which implies with N (L) = span{z’}, that the matrix F' defined in (2.36), which in this
case is just a number, is nonsingular.

Application of a variant of Lemma 2.14 shows the existence of a unique solution (Z, \) of
the boundary value problem (1.13) in B, which can be estimated by (2.86).

Note that for the approximation of the traveling wave we could apply the previous lemma
directly. Since (@, \) solve (2.1) we obtain that (z,\) with Z = (u,%’) is a solution of the
first order equation

2 =G(z,)), where G(z,A)= <_A1(M“+ f(u,v))>, (2.87)

which one obtains from (2.1) via the transformation z = (u,u’) = (u,v). The partial
derivatives of G are given by

_ % 0 I
G2 ) = <_A_1D1f(u7ul) — AT (M + DQf(u,u’))> =M0)
and
G/\(Za 5‘) = (_A91u/> = V())

where M(-) and V(-) are defined in (2.70) an
(2.81) corresponds to Hypothesis 2.13 and (z, A
lim, 400 Z2(2) = (ux,0) (see [60], [3]).

d (2.74). The nondegeneracy condition
) is a nondegenerate COP of (2.87) with
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Chapter 3

Resolvent estimates and
approximation of eigenvalues

In this chapter we prove resolvent and eigenvalue estimates for the discretized system on
a finite interval. At the end of the chapter we present a result on the essential spectrum
for the discretized operator on the whole line, which is the discrete analog of Theorem 1.2,
as well as some conjectures concerning the influence of the boundary conditions on the
essential spectrum for the discrete operator.

3.1 Resolvent estimates

In this section we construct solutions for the resolvent equation in the discrete setting
using a similar method as in [6].

In the following we consider the discrete resolvent equation for v € S, (C™) on the grid
G bz, With right hand side g € S;(C™)

A(040_u)p + Bp(dou)n + (Cr, — sDup = Gn, neJ (3.1)
where

By, = M + Dy f(tn, (60@)n), Cpn = D1f(in, (dot)n)

with boundary conditions
P_uy + Q-0oun_ + Piuy, + Q4idoun, =7, Py,Qy € R*™™ (3.2)

for s in different regions of C.

Here (@, \) € Sy, (R™) x R denotes the solution of (2.56)—(2.58) which approximates the
exact traveling wave solution as estimated in (2.61).

We have to discuss the invertibility of the linear operators F : S; (C™) — S;(C™)x C?™
defined by
Py ((A((5+(5_u)n + By (dou)pn, + (Cp, — SI)un)neJ> '
s P_u,_ + Q_(ou)n_ + Prun, + Q1 (dou)n.
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Our standing assumption in this chapter is the following: The operator A defined in
(1.5) satisfies the conditions of the stability Theorem 1.13, i.e. (SC) and (EC) hold, with
N(A) = span{¢}, and Hypothesis 1.9 holds.

Similar to the continuous case we consider the resolvent in several different regions of C
(cf. Figure 3.1). The quantities €, Cy will be determined later while § > 0 will be chosen
such that |argu| < 5 —0 for all eigenvalues 4 of A. For s in a compact set which does not
contain zero, a similar method as in the proof of the approximation Theorem 2.21 can be
used. Although in Chapter 2 we have formulated Lemma 2.14 for § € R™ only, the same
holds for g € C™ as well. For large |s| a different approach is necessary, since the analogy
between the discrete and the continuous system is no longer valid.

Qc: |s|<e Res>-—p0 Qh
QCO : ‘S‘ S [6, CO], Re s > _ﬁ ’ Q¢ ”
C T2 o
ho. 0 .
Q¢ ¢ 15l € (Co, 53], Jarg(s)l < 5+ 30 R >
Qh . CO
o0 * ‘S‘ > ﬁ

Figure 3.1: Regions for resolvent estimates
3.1.1 Compact subsets

We estimate the resolvent for s in the compact set
Qc, ={s€C: Res>—4, and |s] € [¢,Co]}

where € > 0 using the same approach as for the traveling wave in Section 2.2. These
estimates will hold for any given pair of positive constants €, Cy. The following condition
is similar to (2.60).

Hypothesis 3.1 Assume that the following regqularity condition holds
Y?3(s) Yi(s)
det ((P_ Q-) (YE(S)AS_(S)> (Py Qy) (Yf(S)Ai(S) #0Vs€Qq,  (3.3)
where Y2(s),Y(s) and A% (s), A% (s) are defined in Definition A.S.
Theorem 3.2 Consider the boundary value problem (3.1)-(3.2) and let Hypothesis 3.1 be
satisfied.

Then there exist C > 0, T > 0, hg > 0 such that for h < hg and £hny > T the resolvent
equation (3.1)-(3.2) possesses for each s € Q¢, and every § € S; a unique solution @ € Sy,
wich obeys for o € {o0, Lo} the following estimate

[ally < Clgl, + lInlh)- (3-4)
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Proof: 'We transform equation (3.1), (3.2) using z, = (un,0—uy) = (up, v,) to the equiv-
alent equation (cf. (2.66))

where with w,, = %(vn + Unt1)s

N B I'(s)z (0
A(S)(Z7 )\> B (P_un +Q-w,_ + P+un+ + Q+w”+> T <hgn>

and
(L (8)2)n = Nnzng1 — Kn(8)zn, neJ

with
(I —hI B I 0 £ h
N, = <0 E:f) , Kn(s) = (h(sl— ) Eg) , B =A%+ §Bn' (3.5)

As before we show that A(s) is a perturbation of

e (Nzns1 — Kn(8)2n)nes
Ai(s) ((p_ Q-)zn_ + (P4 Q+)Zn+)

where ; .
Ka(s) = (h(s[ —C,) A- th> (36)
and N, Cy,, B,, are defined in (2.68).
Similar to section 2.2 the estimate || N;,, — N|| < ch holds, and using (2.61) we get with
ICn = Call < e(h® +e7T), || By = Bull < e(h? +e7°7)
the uniform estimate
| Kn(s) — Kn(s) + N, — N|| < Ch (h? +e7oT),

This leads to

A

I(A(s) = Ai(s))z]l% < %ilég I(Nn = N)znt1 = (Kn(s) = Kn(s))2n]

Q- (wn_ —vn )| + |Q+ (wny — vp, )|
- 1 A -
< sup(|| Ny = N|[[|d+2nl]) + 5 sup([[Kn(s) — Kn(s) + Na = Nl|[|znl])
neJ neJ

FNQ-llvn_+1 = vn_[| + 1@+l [|vny 41 — vn |l

h
< C(ll0s2llog + (h* + €7 )2l o) < o(h, T)]2

1
< sup Ch|[61 2n|| + 5 sup Ch (h* + e~ || 20| + Ch([6420_|| + 16420 1)
neJ neJ

Hl,oo
where limy, .o 700 0(h,T) = 0 uniformly for all s € C.

The operators A;(s) are perturbations of A;(s) defined by

. o)y — (Nzn+1 —NMn<S)Zn)n€J
Ai(s) ((P_ Q_)zn_ + (Py Q+)Zn+)
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with M, (s) = S(2n41, Tn, s), where S(-, -, s) denotes the solution operator corresponding
to the differential operator L(s)

L(s)=2"—M(-,s)z, where

M(z,s) = (A‘l(sIO— C(x)) —A_{B(x)) '
In fact, the expansion (cf. (2.50))
S(Tpi1,Tn,8) = I+ hM(zpn,8) + h2Ep(s)
and the definition of K,, (cf. (3.6))
Ko(s) = N(I+hM(z,,s)),
lead to

A * 1 N PN
[Ais) = Ails)lloo = 5 sup ([ Knls) = NMa(s)ll2lloc < CRIE()ocll2 oo
n
For s € Q¢, the error term E(s) is uniformly bounded in s. Note that for arbitrary large

|s| this does not hold any more, therefore this case is dealt with separately in subsection
3.1.2.

The operators L(s) have exponential dichotomies on R with data (K, «,w(s)) if s € Q¢,
lies in the resolvent of L(0), i.e. s € p(L(0)) N Q¢, and the dichotomy constants K, a do
not depend on s (see [6]).

Thus we can apply the linear Lemma 2.14 with k = 2m, p = 0 to the explicit version of

Ai(s)(z,A\) = (7,n) which reads
Znil — Mp(s)zn = N7,
(P- Q-)zn_ + (P+ Q4)zn, =1

Hypothesis 3.1 ensures that Hypothesis 2.11 holds and the other Hypotheses are void in
the case p = 0. We obtain that (3.7) is solvable for each r € S for h < hg, £nsh > T,
ENS QCO.

(3.7)

Applying Lemma 2.14 to (3.7) we obtain using that N is independent of s and h, that
the operators A;(s) considered as operators from S, (C2™), [[[I7 , to S4(C 2y x C2 |13,
where ||(r,n)[|5 = 3|7l +|nll, © € {L2,,, 00} are invertible for any s € Q¢, with a uniform
bound, i.e.

1Ai(s)~ (r)ll, < Cl(rm) 1S Vs € Q-

Transforming these estimates back using (2.5),(2.6), we obtain the existence of a solution
of (3.1),(3.2) as well as (3.4). O

3.1.2 |s| large

In the case of |s| large we cannot relate the discrete resolvent equation (3.1), (3.2) to
corresponding continuous systems uniformly in s. Instead we prove its solvability directly
by modifying some of the techniques for the continuous case in [6].
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From A > 0 we find some § > 0 such that |arg(p)] < 5 —6 Vu € o(A™). Let /2
be the principal branch of the square root defined for z = re’®, ¢ € (—m,7),r > 0 by

Vz = \/Fei%. Let B2 be the corresponding matrix square root defined for B € C™™
with o(B) € C \ R™. For z € C with |arg(z)| < § + g and pu € o(A™1) we obtain
|arg(2%p + 1) < |arg(z2p)| < 2(5 + g) +5—-6=m— %. Therefore the following matrix
function is well defined

+ g (3.8)

AR = 2

(I +AT)IAT, |2 > C. (3.9)
(1+2[%)2

Note that for |z| large and |arg(z)] < § + g both definitions coincide, since then we
have |arg(2?)| < m, arg(o(51 + A™')) < m and |arg(o(I + 22A71))| < m and hence the

functional equation (22)%(Z%I+ A_l)% =+ zQA_l)% holds.

As in Chapter 3 we assume that the matrices P+, Q+ in the boundary conditions are
divided into a Neumann and a Dirichlet part as follows:

Hypothesis 3.3 The matriz (Q_Q4) is of rank r € [0,2m] and we assume that the
boundary conditions are partitioned into a Dirichlet and Neumann part, i.e. the matrices
(Py,Q+) € R2™2m haye the following structure

P _ P:{:V Qg PN N R™™ PD R2mfr,m 3.10
( :I:vQ:I:)_ Pf 0 ) inie ) ie ( )

Assume that there exists C > 0 such that the matrices

N _ NN Py

have uniformly bounded inverses for

, or |z|>C. (3.12)

Wl >

z2e€C: arg(z)ﬁ%%—

Discussion of Hypothesis 3.3

Remark 3.4 Note that the following statements are equivalent

1. T'(2) has a uniformly bounded inverse for all |arg(z)| < § + % and for |z| > C.

NA-3 _ONA-3 N g-1 _ N 4-1
2. The matrices I'g = (Q—Pil) ’ Q]-;j;l 2) and T, = (Q% QYA > are
- +

nonsingular and I'(z) is nonsingular for |arg(z)| < § + g, z #0.
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z

I 0
This equivalence follows from I'y = I'(0) and I'(2) ~ ((HZ(I)Q)% I) ' as |z| — oo. The

nonsingularity of I'g corresponds to the corresponding condition (see Theorem 2.1 in [6])
which is necessary for resolvent estimates on finite intervals for large |s| in the continuous
case. The nonsingularity of I's, will be used in Chapter 4.

For A = I the matrix A(z) has the form A(z) = af for some a € C. Therefore it remains
to check the invertibility of

Q¥ —qY

pbpb -

For the boundary conditions which are used in the numerical computations in Chapter 5
we obtain:

Neumann b.c. dou,_ = doupn, =0, 7= 2m:

om0 (oo () - (40 2)

Then Hypothesis 3.3 requires the invertiblity of A(z) in the domains 3.12, which is
always satisfied.

periodic b.c. u,_ = up,,d00U,_ = doUpn,, 7 =m:

P ()= ()0 () 0= () ro= (3 ) (4 ).

and again Hypothesis 3.3 holds true.

Dirichlet b.c. u,_ =u, =0,r=0:

) () amen ()

Here Hypothesis 3.3 is automatically satisfied.

We consider s € C in the following two regions Qho, Q. (cf. Figure 3.1)

C T 20
ho _ . =0 2, 27
O, ={seC: |s|e (G, ol lag(s) < T+ 3 } (3.13)
C
Ok = {s cC: |s| > h_g} (3.14)

where the constant Cy will be chosen later.

In order to simplify the presentation we will restrict ourselves to diagonalizable A. The
main result of this section is the following resolvent estimate, which will be used together
with the estimates in Theorem 3.2 in Chapter 4.

Theorem 3.5 Consider the resolvent equation (3.1)-(3.2) with diagonalizable A > 0 and
assume that Hypothesis (3.3) holds.

Then Cy can be chosen such that there exist ¢ > 0, T > 0, hg > 0 such that for h < hg
and £hny > T and s restricted by (3.13) or (3.14) the following holds. The resolvent
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equation (3.1) with boundary conditions (3.2) possesses for each g € S;(C™) and each
n=N,nP), N e C"nP € C*™ " 4 unique solution u € Sy (C™). Furthermore, u
can be estimated for o € {Ly}, 00} by

2 2 2 A 112 Ny 2 2Dy 2 h
|s[“Nulls + [sllloxulls < cllgls + Isllln™ 1"+ [s[*[ln™]7),  fors€ Q¢ (3.15)

o 2 2
512 lfag, 115 + 1116+ (e ) I1E < eClgls + Isln™ 1™+ [sPInP %), for se Q. (3.16)

Note that similar estimates have been obtained directly using energy estimates in [60],
Lemma 4.9 for Dirichlet and periodic boundary conditions.

Before we start with a series of Lemmas which are needed for the proof of Theorem 3.5,
we give a short outline:

The equation (3.1), (3.2) is transformed to first order via the scaled transformation
(U, %(LUH) = (un,vy). The transformed system is approximated by constant coefficient

operators L(s, p)zn = zny1 — M(s, p)zn, for small h and large p. The matrices M (s, p) are
hyperbolic for s € ng U Q" . This will imply that ﬁ(s, p) has exponential dichotomies
on Z. In order to obtain estimates for the solution of the corresponding boundary value
problem for large ph we need to take into account the structure of the right hand side
of the transformed system. Therefore we cannot apply the linear theory in Chapter 2
directly. Nevertheless the proofs follow the lines in Section 2.1.1.

Using the assumption that A is diagonalizable, we can pretransform (3.1),(3.2) as follows
Let U € C™™ be given such that UAU! = A = diag(p1, ..., ftm) and define B, =
UB, UL, C,=UC,U L forne Jaswellas P = P,UL, Qi =Q.U"L. Thenu e Sy
solves (3.1),(3.2) if and only if w = Uu solves

A(846-w)n + Bu(69w)n + (Cp — sT)wp = U,
wan_ + Q*éown_ + p+wn+ + Q+5Own+ =n.

The relation A(z) = U~ A(2)U, where A(z) is defined by (3.8),(3.9) with A instead of A,
leads to

m):(Q%;)U —@g%zw):(@%(z) —Qg§<z>) <fg g)

Thus Hypothesis 3.3 is invariant under diagonalization. In the following we drop the
tildes and assume w.l.o.g. that A is diagonal. Transformation to first order via z, =

(U, %(LU,L) = (Un,vpn), n=n_,...,ny + 1, for some p > 0 leads to the equation
Nu(p)zns1 — Kn(s,p)en =7Tn, neJ=[n_,ny| (3.17)
R(p)s =1 (3.18)
where

(1 —hpl B 1 0 £ h
R R B T R

n n

R(p)z = B_(p)zn_ + B*ZTL—+1 + Bi(p)zn, + B+Zn++1 (3.19)
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and

0 Py QY - 0 Q¥ LpN
T B = (r 2vE B = 2%t R 7 ,
(i) 20=(op °5) 2= ) - ()

We consider the explicit formulation of (3.17) which is given by

- h _
(Ls. )= <h5’1> Ef ', neJ (3.20)
where
(L(Sv p)z)n = Zp+1 — Mn(87 P)Zm (321)

(3.22)

_ I+ h2Ef ' (sI—Cy) hpE} 'E;
Mo(s,p) = Na(p) ™ Kn(s,p) = ( of - G

Lt (sl = Cy) EF'E;

n

In order to obtain solutions of (3.20), (3.18) we will use the following constant coefficient
difference equation, given by

. h
(Lis. )2 = <h§1> Gny mEJ (3.23)
where
(L<87 P)Z')n = Zn+1 — M(Sa P)Zna (324)
. o hoA=l T
M(s,p) = N(p) ' K(s,p) = I + hp (S%pA—l 0> (3.25)
P
and

o T —hpI\ ., . (1 0
As we will show later, L(s, p) is a small perturbation of L(s, p) for |s| large. If we set

s=pc®, p=1/ls

then we obtain vit) 11
- hpe A=+ I
M(s,p) =1+ hp < 020 -1 0) :

We will prove in the next lemma that the matrices M (s,p) are hyperbolic for s € Qféo

and s € Q" . Then L(s, p) possesses an exponential dichotomy on Z, which will be used
to construct a solution of (3.23), (3.18).

The following lemma deals with the eigenvalues of matrices which have the same structure
as M (s, p).

Lemma 3.6 Consider

M =1+ kN(k), where N(k) = <H5 é)
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with kK > 0, and S € C™™ a nonsingular diagonal matriz. Then there exist §,Cy > 0
such that the following holds: If either (k < Co and arg(c(S)) < m—36) or k > Cy then
M is a hyperbolic matriz with m stable eigenvalues v,; and m unstable eigenvalues v, ;,
i=1,...,m.

Moreover, there exist a,a > 0, € € (0,Cy] such that for i = 1,...,m, the following
estimates hold:

ak?® > |t i| > ak?, % < w4l < % for k > Cy (3.26)
lvuil > 1+« v i < H% for k € [e,Cy], arg(o(S)) <m—20¢

(3.27)
il > 14 ak, lvs i < 1 +1a for k € (0,¢), arg(o(S)) <m—9

(3.28)

Proof: Let u € C be an eigenvalue of S with eigenvector u. Then A is an eigenvalue of
N (k) with eigenvector v if and only if A is a solution of

N Xep—p=0 (3.29)

~1
and v = ()\Su u) The solutions of (3.29) are given by

3 N

(kp £ /K22 + 4p), if K >0, |arg(p)| <7 —34,
o

Ay = 3.30
* L1+ ), if k> Cp. (3.30)

Note that both definitions coincide on the common domain of definition, and that

VEA U+ 4p), if k>0, |arg(p)| <7 -4,

m 14 A if k> Coy

ek

)\4_—)\_:

implies a lower estimate
|Af — A_| > cmax(k,1), for some ¢ > 0. (3.31)

The eigenvalues vy of M are given by v = 1+ kAy. From A_A\y = —p A_ 4+ Ay = kp
and (3.29) we obtain 1+ rxA_ = (1 4+ rAy) "L

We consider vy for x in three different regions:

1. Large k:
Use the expansion 1+ z =1+ % 4+ O(2?) to obtain

K 4 92 .
|1+I€)\+|:|1+7(1+ 1+W)|Zom if & > Cp.

This implies |, ;| > ax?, as well as |vs;| < ﬁ fork > Cp,i=1,...,m.
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2. Small &, |arg(p)| <7 —9§
For small x and |arg(u)| < m — ¢ we have the expansion
(2 2

2 2
2“+n\/ﬁ 14 28 1+’€—2H+/<c\/ﬁ(1+%+(’)(/£4)) = 1+r/+O0(K?).

1+l‘€)\+ =1+ 4

From |arg(u)| < 7 — 0 we obtain Re /i > 0 and hence [vy ;| > 1+ ak, |vg;| < @
for some a > 0 and k € (0,¢).

3. k in the compact set « € [¢,Cy, |arg(p)| <7 —06
Let k > 0, |arg(u)| < m —§. In particular Re g > 0. Then Re y/k?u? +4p > 0 by
definition. Hence Re A} = Re % + Re \/x2u% + 4y > Re % > ck for some ¢ > 0.
Therefore Re (1 4+ kAy) > 1+ ck? and |1 + kA4 | > 1. Since k varies in a compact
interval this proves the assertion (3.27).

By application of the previous Lemma with S = e**¥ A~ and k = ph we obtain that
the constant coefficient operators L(s, p) possess an exponential dichotomy on Z if s €

Q}CLb U ng as the following corollary shows.

Corollary 3.7 Assume that A > 0 is diagonal. Then there exist Cy,€,0 > 0 such that the
operators L(s, p) possess exponential dichotomies on Z if s = p*e*? is restricted by (3.13)
or (3.14). The dichotomy data are (K, 3, P), where K is independent of p and h, and for
some o > ()

§=m((ph)  forp> 0. (3.32)
f=m(i+a)  forpell, Y pl< T2, (3.33)
B =1In(1+aph) for p € [Co, %], 0] < g + g (3.34)

and the projector P is given by

(As = M)A (A = Ay~
"= <_Au(As — M)A, Ag(As — Au)1> : (3.35)

Here As and A, are defined by
AS = diag(/\_J)i:l,m,m, Au = diag()\+7i)i:1,._,,m (336)

where \y; are defined for each i =1,...,m by (3.30) with u = p; € o(e*9A~1).

Proof: Denote the eigenvalues of A~! by re~ 2% then the eigenvalues of €2’ A~1 are given

by re?(®=%) and for || < T + % and [2¢] < § — J we obtain 2|0 — ¢| < 7T — %. Then

2i0A—1

application of Lemma 3.6 with S =e implies that the matrix M (s,p) given by

210 A —1
hip A I> (3.37)

I+ hp ( Q20 41
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is hyperbolic for |0 < 7 + %. Furthermore, the m stable eigenvalues v, ; = 1 + hpAs; and

the m unstable eigenvalues v, ; = 1/8_’@-1, i =1,...,m can be estimated using (3.26)—(3.28)
by
e C
Vil = a(ph)?, el < TR for p > 7" (3.38)
1 e C
il > 1+, il < o forpE - (3.39)
€
‘l/u,i’ Z 1 + Oéph, ‘Vs,i’ S m, fOI‘ P c [C(), E] (340)

The matrices M (s, p) can be transformed to diagonal form via TD = M (s, p)T with

D= (%S D01> , Dys=1+kA;, D,=I1+kA,, &=ph (3.41)
and
(T ST\ e (A 0 Ay, 5.42)
(A, A = 0 Ae—Aa) ) A, 1) :

Note the relations

AyAs = ANy =—S, A+ A,=rS, D,=D;!

1 (3.43)
AuDy = —A,, Ay = (D, —1I).
K

From this the existence of an exponential dichotomy on Z for the constant coefficient
operators L(s, p) follows by Remark 2.5 in [42] with data (K, §, P) with § = —Invg where
lusil <vs <1, i=1,...,m and P is defined in (3.35). O

Using the exponential dichotomy, the Green’s function is given by (2.9) where in this case
the dichotomy projector P and the matrix M are constant. The following Lemma is an
adaptation of Lemma 2.4 to the current situation.

Lemma 3.8 Let s be restricted by (3.13) or (3.14). Then there exist ho,T > 0 such
that for h < hg,tnih > T and for each g € S;(C™) there exists a unique solution
z € 87,(C?™) of the boundary value problem

2

(L(s,p)2)n = (}ZII) gn, med (3.44)
P

Pz, =p_ € R(P) (3.45)

(I = P)zn, = py € R(I - P) (3.46)

where P is the dichotomy projector defined in (3.35). The solution has the form

~ m o oA A - A h2I\ |
Zn = Z}’Llo —+ Zn(g), n e J, Zng41 = MZn+ —+ <QI> In, (347)
P

where

2™ = ®(n,n_)p_ + ®(n,ny)py, (3.48)

n



80 Chapter 3. Resolvent estimates and approximation of eigenvalues

I _ﬁ — n.m hpl\ .

n=n—

:%( nzl O(n,m + 1)P <h”I> Z (n,m+1)(I - P) (hil)gm)

m=n_—_ m=n

In order to obtain the necessary estimates of Z, especially for the case hp > Cy, we have
to take into account the special structure of the right hand side. Therefore we diagonalize
equation (3.44) using the transformation T given in (3.42). For w, = T~!z, equation

(3.23) reads
D, 0 h, 1 (hpl\ .
Wp+1 — (0 D_1> Wy, = ;T ! < I >gn, nEJ:[n_,n+].

S
In order to be able to distinguish estimates in the different components we introduce

the following vector norm notation. For z = (u,v) € R™ x R™, ||z|,e. = (Z“) means
v

[ull = 7, [[0]] = ny and ||

C . .
vee < ( u) means the componentwise estimates ||u|| < ¢, and
Cy

|lv|| < ¢,. With this notation we obtain the following estimates for the Green’s function.

Lemma 3.9 Let |0(Ds)| < vs < 1. Then the following holds.
hpl c Vs 1
¢ 1P < —— o > .
oo vr ()] < sy (a2 nze

I
ch(n,m+ 1)(I — P) <h§1> < m <p1h(11 Vs)> Y p<m (3.51)

and

vec

vec

4 n—n_—1
|P(n, n)T—|| o < (plh(l s Vs)> yrn-—1,

, (3.52)
d(n,ny)T 7
[D(r, 1) T oo < (plh(l — ys)> s
where T'= (T_, T4) with T' defined by (3.42).
Proof: With
®(n,m)=TD"™T~' P=TET™' FE°= <é 8) (3.53)

we obtain using Dy = I + hpAg

s (1)1 (55" ()

T (R

_ DS n—m—1 -1
- (ﬁ(l)s—])> Ds (As—Au)
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as well as

$(n,m + 1)(I — P) <W> _

This implies the estimates (3.50), (3.51). Similarly with (3.31)

’ - -D
®(n,n_)T- =TM" " T 'T_ = ( I) Dy = < Lin . I)> prn-—t

Au p_h(DS -
and
®(n,ny )Ty = TM" ™ T7IT, = ~1) pran -1 D+
s 1) L4 + A, s ﬁ(Ds _I) s
lead to (3.52). O

The special solution is estimated in the following Lemma.

Lemma 3.10 Let s be restricted by (3.13) or (3.14). Then there ezist ¢, hg,T > 0 such
that for h < hg,+n+h > T for each § € S;(C™) the special solution 2(§) € Sj(C*™)
gwen by (3.49) can be estimated for o € {Ly}, 00} by
PN C i
12(@)l, < ;HQHQ- (3.54)

Moreover, we obtain
N AT
M2, (9)|| e < C< w1 ) 19l (3.55)
p ' p?

Proof: Using the estimates (3.50), (3.51) we obtain for n € J for 2(§) = (4, 0) with vy < 1

TL+—1

c h e 1+v
|| € ——————— =G| < culh *[|g 3.56
linll < oy 2 Y il S ) N (59
where ¢, (h, p) = ﬁm. Then we obtain
N C A
[[in]| < Fllgllw VneJ (3.57)
provided we can show
1+ v, c
h < —. .
cu( ,p)l_ys = (3.58)
For ph > Cj this holds, since by (3.38)
1+vs _ calph)?+1 ¢
h < — < —.
cul ’p)l—vs ~ pra(ph)? -1~ p?
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For ph < € we obtain (3.58) using (3.40)

)

1+ v, <cﬁ 2+aph<£
2

CU(h’p)l—]jS — p O[ph —p

and (3.39) implies for ph € [e, Cp]

14 v c
< —
5

S

The estimate of the second coordinate is even easier. From the second coordinate of (3.50),

(351) and m S p% we obtain

ny—1

R c 1—v
Jonll < s on D) (Z i Nl + 3 "gm|)
m=n—
c .. 1—ve™™ 1—pt"
< _
< 2 lll( Vs)< I w—y ) (3.59)
C . _ _
< 1l (2 = (i )
C i
< 1l

The estimates (3.57), (3.59) imply (3.54) with o = co. The Ly}, estimate is similar to the
estimate in Lemma 2.4. From (3.56) we find

ny— 1 ny— 1
Janl? < caho (3 v gnl)” < culhp 3o v S v
m=n_— m=—0o0 m=n_—
1+ TL+*1 n+71
14 e “ & —|n— N
< cu(h,p)? =" 3 v gl < cuthip) 5 D v gl
17”‘3 m=n_—_ p m=n_—

which implies by summation over all n € J with (3.58)

ny ng—1
~112
lallz,, = Z hllanl* < —Cu (hop) D D0 v " gl
n=n_ n=n_m=n_
ny—1
S w(hp) D gml ZV‘" ™
m=n_ n=n_

ny—1 ny—1

Zh o) T 3 Nl < () 5 X Nl = () a2,

m=n— m=n_—_

\ /\
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Similarly, (3.59) implies with ¢, (h, p) = (p? max(ph,1))~*

n—1 ny—1
r 2
lonll” < ceo(hy p)2(1 = v [ (30 Ve gl ) +(Z /i)
T m=n_
- ny—1
< ceahup?1- v 3 3 gl Z 3 ?]
m——oo m=n_—_
ny—1
< cey(hy )’ (1 = )% T > vl ?|
m=n—_
ny—1
< ceo(hyp)2(1 = vy) [Z U D ?|
m=n_—_
which leads to
ny— 1
~112
01, = 3 blinlP < ceolho 21— vt S [Z Wl 3 v
n=n— n=n— m=n—
ny—1 n4 m
< ceolh pP(1=v)h 3 Ngml?| D0 vim e Y v
m=n_ n=m-+1 m=n_
n+—1
A 12 Cian2
< ceollp)h 3 lgmll® = 3101, .
m=n—

Finally the estimate (3.55) follows from the definition of M in (3.37)

N ~ h 1
s ra (1+ (ph)*)tin || + ph|On, | e AN
M < R + R + < P P )
| Z’n-‘r(g)Hvec >c ( Ph||un+H + ”Un+|| >c % + p% HgHoo

Remark 3.11 Note that for ph < Cjy no special structure of the right hand side is needed
for the estimate of the special solution Z(g). In this case we can use the dichotomy
constants for L given in Corollary 3.7 directly to obtain with Lemma 2.4 the estimate

o N
12@)]l, < Ca(h® + ;)HQHW o€ {oo, Lon},

where Cjp is the constant defined in (2.16) via the dichotomy exponent 8 wich is defined
n (3.32)—(3.34). Using

2
Cp = Zagc, forpe[h CI;O]
2+ aph c
=———< —, f Co, —
ﬂ Oéph _ph7 Orpe( O)h)
we obtain for o € {00, Lo}
NN h R CCO Co
12@)ls < e(h® + ;)ll 9lle < —-llglls for p € [h - )

o/ C h . 1.
12@)N, < —(h* + p)llgllo < C(6 + 1)?“9“0 for p € (Co,

~ ph E)
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However for ph > Cy we have Cz < ¢ wich leads only to
orn 9 hyy.
1@, < e(h” + ;)Ilgllo-

Inserting the ansatz for Z in (3.8) into the boundary conditions we obtain the following
lemma.

Lemma 3.12 Let s be restricted by (3.13) or (3.14) and assume Hypothesis 3.3. Then
there exists hg, T > 0 such that the following holds. If h < hg and £hny > T then for
each § € S;(C™) there exists a unique solution 2 € S; (C*™) of (3.23) which satisfies
the boundary conditions (3.18), i.e

lnN
Rz == (71 ). (3.60)
The solution € S;,(C*™) can be estimated for o € {La,00} as follows

- 1 1.
121l < C(;HUNH + P + FHQHQ), for s € O, (3.61)

A

- 1 1 .
I, < e I+ P 1+ gl fors€ O T =l +1n (362

Proof: Inserting the ansatz (3.47) into the boundary condition (3.60) one obtains

B_(p)(p- + ®(n—,ny)py) + B(®(n_+1,n_)p_ + ®(n_ +1,n4)py)
+ B4 (p)(@(n4 )P +p1) + By M(®(ny,n)p- + py)

2
=17 — <B_ (p)2n_(9) + B_Z,_41(9) + B+(p)2n+ (9) + B—l— [Mévu (9) + <hﬁ[I> §n+]> :
p

This equation has to be solved for p_ and p. We can write p+ = T &y, &4 € C™ where
T = (T- T,). After rearranging terms we obtain from the previous equation

Rp(€,&4) + ARy(E-, &) = 11 — Fp(9) (3.63)

where

Ry (&-, f ) B_(p )T & +B ®(n_+1,n )T +By(p)Tés + By MTy &y
AR (5 ( (Tl_, n+) + B_CI)(n_ + 1,n+))T+§+
(B+(P) + By M)®(ny,n )T ¢

. o ) N 2. AW
Fp(9) = (B— (P)2n_(9) + B-2n_41(9) + B1(p)2n, (9) + By [M2n, (9) + < @I> gn+])
With (3.53) and M = TDT! as well as T7'T_ = (§), T~'Ty = (9) and

(-1 -I\(Ds 0\ (-D;, -D;!
TD_(AU A5><0 D;l)_(AuDs ASD—1>

s
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these terms can be calculated as follows:

1pN 1AN 1
R,(§-,&4) = (’fg 2Q‘>T§+<8 2%— TD é _

)
(R IR ESE
=5(&)

where ) L 0 1
g (3PN +3QYA(I+Dy) —PY +3QYA (T + D7)
—pb —pP
(AP LQV(A - A IPY QN (A - AL
pP PP '

The last equation follows from A, (I + Ds) = A, — As wich is implied by (3.43). From
(3.30) we get with z = Sphe, §(6,2) = 2e"(1 + |z|2)% and the definition of A(z) in
(3.8),(3.9)

if ph >0, 0] < T+ 8,
if ph > Cy

)
1
2

phegleA 1+ e 219A) ’

{ ((phe®?) A~ 1+4I)2e’9A 2
(ph)2
5(0

With these notations the matrix B reads B = SBs where

S <—(5(96 z)1y —12(7)71_7«) , (3.64)

and

Py

B, — <p5<29,z> Y QAR en Y - QYAR )> .
S PD
From Hypothesis 3.3 and (3.13), (3.14) we obtain that

5,— (V40 ~9520))

has a uniformly bounded inverse. From ¢; max(1, |z|) < ]6(0, z)| < ca max(1, |z|) we find

1 1
W < cmln(l p_h) <ec. (3.65)

Therefore the difference ||Bs — B|| can be estimated by

~ C
1B, — B|| < PN+ ||PY])) < >

2
PHOBI
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which tends to zero as p — oo. Choosing Cj in (3.13) large enough, we obtain ||B~!|| < C

for some C > 0.

For the error term AR, we get
)@(n_,ny) + B-®(n_ +1,ny))T4 &y

Ry(&-.&4) = (B-(p
+ (B+(p) + BLM)®(ny,n_ )¢
1pN lQ 0 lQN 0
=((r = 2 (n——ny) 29— (n——ny+1)
(25 oo (o 307 o) ()
ipy 1Q¥Y 0 Q¥ [
p-t 2%+ (ny—n-) 2 (ny—n—+1)
(g 257 (o 25 o) ()
P 3Q 0 3QY
=(r = 2¥- (ny—n-) 2 (ng—n—_-1)
Cpo 25 (a0 e (o 200 (1) o e
IpN 1NN (I 0 1Q -
pt+ 2%+ (ny—n_) 2%+ (ny—n_+1)
(o ) () pees (007 () e
)
=AB
<§+
where ( ) (
ny—n_ ny—n_
Dyt 0 Dg 0
(n+=n-) Vanishes as

Here S denotes the scaling matrix defined in (3.64). Furthermore vy

ny —n_ — oo and
B < el +IAG) < e+ O) < ¢
71006, 2)] ;
implies that AB; = S~!AB vanishes as n, —n_ — 00

The right hand side of (3.63) can be rewritten as follows

LpN loN 0 LN lpN 1N
N[t 29—\ (a4 3 N[t 294 ) (4
B0 = (o 70 )@+ () M) aa@ (g 70 )50
0 iQ h2IY .
+<0 2 +> (MZM <h]>gn+)
(o )G @) ) (25 ()
PP 0 o 0 On_ 41 PP 0 O,
1
2@
(o FIC) + ()
:<%PNA+% QX (0n_ 4 n_s1) + 3@ (o + 59, ) + PNUM)
P2y, + Py,
= (Yu, o). Using (3.56), (3.59), (3.55) we obtain

where we used the notation M2, L(9)

&+ 2
1Ep(@)llyee < € (” 1 ”) 19100
o
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Then the scaled version of F,(g) can be estimated by

. 0
5(0,2)°T F(6
' ( 0 IQm—T) p(g)

Equation (3.63) is equivalent to

1 N 1
_ — L o A )
(Bs + ABy) <§+> = ( p‘sgfb) ) + (5(970) L > Fp(9),

thus we can estimate the solution (£_, &) using (3.65) by

. 1
< c(mln(l, —
p

1 1
(6=, &4)| < c(;HnNH + InP || + p—QHQHw)- (3.66)

hom _ (uhom Uhom

The homogenous solution z , ) can be estimated using (3.52) as follows:

The estimates

Vs n—m_—
T N L E e C e
ph : (3.67)
[@(n, 74 ) llvee = 1R 1 ) T4 S llyee < { 1 4 AN (1|
ph(l Vs)
imply for all n € J
lun®™ | < e(wy ™= 1= ]|+ vi M=) < eligs || + 1) (3.68)
and for n € J = [n_ +1,n4]
om 1 —vs n—m_— ny—n
lon™ < e h (™" THIE N+ v 7€) < eClle= ]l + e (3.69)

From (3.38)—(3.40) and (3.26) we obtain

1— g

ph
The estimates (3.68) and (3.54) lead for Z,, = (tUy, 0y,) defined in (3.47) for all n € J to

lon®™ || < c

(v tlle- N +ve+ 7 llgw ) < elmax(1, ph) [l +1I€+ ). (3.70)

. - . 1.
]| < JJub™| + 1|2]l o < c(lE=]l + 1141 + ﬁ”gnoo)
< (I + 1P+ = Jall)
T p? 7
and for n € J = [n_ +1,n4]
. ) 1
[Fnll < 0B + 112llo0 < c(llé=]l + 1€+l + FHQHOO)
< (1 + Pl + = ll).
Y p7 e
Finally pih(z/;l — 1) < emax(1, ph) implies with (3.70)

. . 1 1,
1T < llop2™ + 112l < cmaX(l,ph)(;llnNH + 0"l + ;HQHOO)
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and from

HMzhom

(ph) vl n_ (ph)2 Ny —n—
msc(<(1_ysw ) eI+ ((1 )> )

and with ny —n_ > 1 end up with

1ML 20| < cCl€=Il + NIEw1)- (3.71)

Together with (3.55) we obtain (3.75) for ¢ = oo

By (3.39),(3.40) we obtain for p € (C’o, 2] the estimate 5 2 < c as well as
ph > Cj by (3.40). This leads to

1—hu2 < h for

n4 n4
om 2 n—m— ny—m
"™y, < e( D RO+ Y0 20Tl |?)
n=n_ n=n_ (3.72)

h
< erms (&P + g+ 17) < ellle-I” + llg+1?)-

In the restricted intervall J = [n_ + 1,n,] we obtain in the same way

n4
e, <ol 3o IR e Y e ), @y

n=n_-+1 n=n_-+1

<C(Ilf—ll + &+ )

and with (3.26) we arrive at

hom 1 2
I, , < (e I I + gl ) (3.74)

< e(max(1, (ph)?)||€-|* + H£+|| ?).
Using (3.54),(3.55), (3.72),(3.74) and (3.66) we obtain (3.61) with ph < Cy

1Zll,, = !\Z\\£2 o 12y, + VR Mz + HMﬁmH)
h
< ¢ 2||9|| +max(L, ph) € || + |41 + (h* + = PR )HgHg“)
1 .
< C(;HUNH + 0 + ;HchQ,h)-

In the same way (3.54),(3.72),(3.73) and (3.66) lead to (3.62). O

Remark 3.13 The restriction to .J in (3.62) is necessary, since from (3.55),(3.70) and
(3.71) we obtain for s € Q" only

- 1 L.
1Z]lo < emax(1, (ph)Q)(;HnNH + 0 + p_2||g||<>)‘ (3.75)

From the above estimates the invertibility of (3.20),(3.18) now follows from a regular
perturbation argument.
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Lemma 3.14 Let A > 0 be diagonalizable and assume Hypothesis 3.3 Then there exist
€,Co, ho, T > 0, such that for s restricted by (3.13) or (3.14) and h < hg, +nih > T
the following holds. For each § € S;j(C™), there exists a unique solution z € S; (C™) of
(3.20), (3.18) which can be estimated for o € {Lap, 00} in the following way

1 L.
I2[l, < C(;H??NH + I + ﬁ”gHo)v for s € Q¢ (3.76)

1 1,. A
12,1l < C(;llanl + 0"+ ;HQHO), fors € W, J=[n_+1,n4]. (3.77)
Proof: Write (3.20) as

~ h2I 1 .
tnst — NI(5, p)n = <h I) B o+ (Ma(s,9) — N(5,p)on,  m€J

and define the space
N 2m 2m ~ hQI ~ o m
S:{(Tan)ESJr((C )XR P Trn = QI gn;s nEJT’a gESJr(C )}
p
equipped with the norm

n Ak 1. N D 1. A ;1,77N N m D 2m—r
H(Tﬂ?)Ho:;Hn | +1n ||+?HQH<>7 n=\"p ) eR™ n” e R

Then Lemma 3.12 implies that the operator A(p) : S; — S defined by

v (LG p)>
A= ’
< R(p)
where L(s, p), R(p) are defined in (3.24), (3.18), is nonsingular for s € ng U QL with a

uniform bound for the inverse for s € Q}CEO. Using (3.22), (3.25) we obtain for z = (u,v)

2
(My(s,p) — M(s,p))zn = <h@II> {(S(E;_l . A*l) — Cp)up + (%(E;—lE; —1))vy|.
P

Combinining this with the error estimate
1 1 P 1

_ _ 1
—NSEFT =AY = Coun + (B(EFTE; = D)val < c(h+ = + =)||zn
Jallts( ) = CJun + (5 Donll < elht 5 + )l

implies for p > Cy
E(Sap)_ﬁ(svp) r
0 U

Taking h small and p large and using ||E,‘Z“_1|| < ¢ we find that the system (3.20), (3.18)
has a unique solution for s € Q’éo which can be estimated by (3.76). In a similar way we

*

Lis
< elh+ 29l

o

obtain the existence of a unique solution of (3.20),(3.18) for s € Q" which satisfies the
estimate (3.77). O

The estimate (3.15),(3.16) now follows for ¢ € {L3 ), 00} directly with [[6_u||, = [[d+ull,
which implies

1
2 2 2 2
Julls + ?||5+UH<> < c(flulls + vl5)-
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3.1.3 Eigenvalues of finite multiplicity

The aim of this section is an approximation theorem for simple, isolated eigenvalues.

Let (i, A) be the solution of (2.1) and ¢ € H*(R,C™) an eigenfunction of A which corre-
sponds to the simple eigenvalue o, i.e. (u,s) = (¢,0) solves

Au" + B()u' + (C(-) —su=0, z€R.
The corresponding discrete boundary value problem on the grid G ;, reads

0=A(0+0_u)p + Bn(dou)n + (Cp, — sDuy,, neJ (3.78)
with homogenous boundary conditions
0=P_up_ +Q_doun_ + Pruy, + Q4doun, (3.79)

and a linear phase condition

n4
L=h Y, = (a,,u), (3.80)

n=n—

where @ € £,(R — C™) is a given normalizing function which satisfies |(4, ¢)| > 0 as well
as (4, ¢) = 1.

Here we can drop the eigenvalue condition (EC) and consider unstable eigenvalues as well.

Theorem 3.15 Consider the boundary value problem (3.78), (3.79) and assume, that for
Py, Q+ the solvability condition (3.3) holds with s = o.

Then there exist K > 0, p > 0, T > 0, hg > 0, such that for h < hg and thn+ >
T there exists a unique solution (0,5) of the boundary value problem (3.78)-(3.80) in a
neigborhood By(¢,0) := {(v,s) € Sz(C™) x C : ||¢, —v||__ + |0 — s| < p}, which satifies
for o € {00, Lo} the following estimate

16y, = 0lly, + 1o =8| < K(h? +eoT). (3.81)

Proof: Similar to the proof of Theorem 2.21 we apply the fixed point Theorem A.3 to the
operator ' : Sy (C™) x C — S;(C™) x C*™ x C

(A(040-u)p + Bn(douw)n + (Cp — sI)up)ney
F(u,s) = P_up_ 4+ Q_doun_ + Pyup, + Q1 00uUn,
<IAL, u>h -1

Therefore we have to discuss for given (§,n,w) € S;(C™) x C?™ x C solutions of the
equation
DF(¢y,,0)(u,\) = (g,n,w), (3.82)
where the derivative of I at (¢|,,0) € S;(C™) x C reads
(A(040-u)p, + Bp(dou)n + (Cp — o)ty — pnX)ney

DF(¢|Ja U)(uv )‘) = P_up_ +Q _doun_ + P+un+ + Q+6Oun+
<fL, u>h
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By transformation of (3.82) to first order using z, = (un,d—un) = (un,vn) we obtain the
equivalent equation for the operator A : S; (C?™) x C — S;(C?™) x C?™ x C

Az, A) = (7,m,w), (3.83)

where z = (¢ ,,6-¢),) and

. f/(é, o)(z,A)

Az, \) = | Poup_ + Q,wn_A—i— Py, +Qiwn,

11(z)
with
1 ) 0 - .
wn = (@owhn = G (nsrton), Fn= (e ) 1) = (i),

and .

L(z,0)(2,\) = (Nnznt1 — Kn(0)2n — Va(2)A),,c (3.84)
where

o= (0 k= (e ) m= ()

and E are defined in (3.5).

As before we compare this to a corresponding system

R (Nzn-‘rl - knzn - Wn)‘)nEJ
AN = [ (P2 Q) + (P Q).
()

where I hI 0
Hn = <h(o[ ~-C,) A- th> » Wn= <h¢n>
and N, Cy,, B, are defined in (2.68). As in the previous section the estimates
IN, — N|| < Ch

and X X
|K, — K, + N, — N|| < Ch (h? + e~ °T)

hold. With the equality W,, = W, (2) this leads to
1A = A) (2 )1 < 0, T)(12] 0 + IAD
where limy, o 700 0(h, T) = 0. The equation (3.83) is equivalent to
Zn4l — ann — N_1Wn>\ = N_lfn, neJd
(P- Q-)zn_ + (Py Q4)zn, =1
(z) = w
where Mn = S(@n+1,zn) and S is the solution operator corresponding to the linear differ-

ential operator L, given by (cf. (A.20)).

/ 1 0 I
Loz =2z —M(,0)z, with M(z,0)= (A—l(aI—C(x)) —A—lB(w)>
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The spectral condition (SC) implies that these operators have exponential dichotomies on
R*. From the simplicity of the eigenvalue o follows N(A — oI) = span{¢}. As in the
proof of Theorem 2.21, this implies the nondegeneracy Hypothesis 2.13. By the definition
of II (cf. (3.80)) and |(ii, #)| > 0 we obtain directly that Hypothesis 2.12 is satisfied.

Now Lemma 2.14 yields the existence of a solution (v, s) of (3.82) which can be estimated
by (2.38). As in the proof of Theorem 2.21 this implies that DF(¢|,,0)) is invertible as
well with

IDE(),,0)(r,nw)ll, o < clllglla + [Inll + lw]).

Using the same arguments as in the proof of Theorem 3.15 we arrive at (3.81). O

3.2 Essential spectrum

In this section we state some results about the approximation of the essential spectrum
for the continuous and the discrete case.

In the continuous case, the essential spectrum can be controlled by the constant coefficient
operators L4. For the corresponding problem on a finite inverval, the choice of boundary
conditions determines which sort of spectrum is approximated for increasing intervals
J — R. As has been shown in [50] (see [51] for a short overview over the results), for
periodic boundary conditions the essential spectrum is approximated whereas separated
boundary conditions lead to the approximaton of the so called absolute spectrum.

3.2.1 Influence of discretization

Similar to (1.2) in the continuous case, the essential spectrum is determined from the
constant coefficient operators obtained by letting n — 400 in the coefficient. This is a
general result for discrete operators which has been shown in [10] for the scalar case. We
state a version of Theorem 4.3 in [10] where we use the result of Corollary 4.10 in [10] for
51,82 > 0.

Theorem 3.16 Let A" : Sz(R) — Sz(R) be given by

52
(M), = Z ok,
k=—s1
where afL ER fork=0,1,....,81 + S92, $1,80 >0, n € Z and

: kK _ k
ngrinooan = O

Define the curves

52
Ei:{se(c: 5= Z e ook wER}

k=—s1

and denote by Iy the interior of ¥+ (i.e. C \ I is the open connected component of
C \ X_ UX, which is unbounded).
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Then the essential spectrum oess(A") satisfies
YS_UYL Cows(A) CEZ_US UI_UILL.

Note, that the proof proceeds along the same lines as the proof of Theorem 1.2 (Thm. A.2
in [23]). Consider the discrete operators A" : Sz — Sz given by

(M), = (064 u)n + bp(Sow)n + cntn (3.85)

where a € R, b, c € Sz(R). Applying Theorem 3.16 to A" we obtain with s; = so = 1 and

1 1 2
ot = ﬁaj: Ebn’ ol = —ﬁa+bn,

the following Corollary.

Corollary 3.17 Consider the operators A" in Ly, or Sz, given by (3.85) and define
Si={seC: s= %(cos(w) —1a+ £sin(w)by +cx, weR}

Then the essential spectrum of A" satisfies

YUY, Coes(A") € U X, U {interior of ¥_} U {interior of ¥, }

Similar to Theorem 1.2 this result can be adapted to the matrix case.

Lemma 3.18 Consider the operators A" in Loy or Sz defined by
(A"u), = A(6_6,u)n + Bn(ou)n + Cptn, n €7, (3.86)
y where By, Cy, are given in (2.67) and define
i ={se€C: det(&(cos(w) —1)A+ £ sin(w)By + Cx —sI) =0, weR}.

Denote the interior of C \ X_UX, by I (i.e. C\ I is the open connected component of
C \ ©_ UX, which is unbounded). Then the essential spectrum of A" satisfies

Y_ UYL Coes(AM) C I

3.2.2 Influence of boundary conditions in the continuous case

The numerical computations in Chapter 5 suggest that the eigenvalues of the restriction
Ah‘ , of the discrete operator A" on the whole lattice Z approximate in a certain sense
the essential spectrum creSS(Ah) as the interval size tends to infinity. This is observed for
periodic boundary conditions whereas for Dirichlet or Neumann boundary conditions the

eigenvalues of A" change dramatically.

s

A first step to understand this phenomenon is to recall the results concerning the influence
of the boundary conditions on the spectrum of the operator in the continuous case. These
have been given in [50], where it has been clarified in which way the choice of bound-
ary conditions influences the essential spectrum. For periodic boundary conditions the
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essential spectrum is approximated, whereas for separated boundary conditions, such as
Dirichlet or Neumann conditions, the so called absolute spectrum is approximated.

Consider the restriction of the operator A which has been defined in (1.7) to an interval
J = [-T,T] given by

Av" + B(')’Ul + C’(.)fu,x cJ
v\ man () < e (H09) ) o)

In order to state the corresponding theorems of [50], we need some more definitions:

Definition 3.19 (Absolute spectrum) Denote the 2m solutions of the quadratic eigen-
value problems (1.6) at s =0 by l/i:t, 1=1,...,2m, i.e. solutions of

det(\?A+ By +Cy — sI) =0

Sort them by real part: Re (vi) < ... < Re (vg,). Then each s € C where Re (vjh) =
Re (Viﬂ) belongs to the absolute spectrum oaps of L.

The absolute spectrum plays a role in the case of separated boundary conditions.
Definition 3.20 (Separated boundary conditions) Boundary conditions of the form
B_z,_ +Byzn, =1

are called separated if

I
By = (gﬁ) € R?™?™  gnd B! = BIf =0 ¢ R™™,
+

Neumann and Dirichlet boundary conditions are separated boundary conditions.

The definition of essential spectrum used in [51], [50] differs slightly from our definition:
Instead of considering the spectrum of A directly, they use the so called B-spectrum of
the family of corresponding first order operators

L(s)z=2 +M(,8)z, z€R, M:RxC — C?™*m (3.88)
with boundary conditions

B_z(z_)+ Biz(zy) =n, Bi=(Pr Qi) R
which is given by (see Definition 3.2 in [50]):

Definition 3.21 The spectrum X of the family of operators {L(s)}scc consists of those
points s € C where L(s) : H? — Lo is not invertible.

The point spectrum Xy consists of those s € ¥ for which L(s) is a Fredholm operator of
index zero.

The essential spectrum is defined as Yess = X\ Xpy.
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One can show that s ¢ g if, and only if the operator L(s) has exponential dichtomies
on R*. As has been discussed in [51], [50], the spectrum ¥ of the family L(s) coincides
with the spectrum o of A. Note, that the definition of ¥ is slightly different from opy:
By definition ¥ consists of all points where L(s) is Fredholm of index 0 whereas opy
consists of all isolated eigenvalues of A of finite multiplicity. Therefore Yess and oegs are
different as well (cf. Definition A.1). This difference is removed by Hypothesis 3 in [50]
which requires that all eigenvalues in C \ X4 are isolated eigenvalues of finite multiplicity.
This will be our standing hypothesis for the rest of the section. In order to formulate the
convergence results one more definition is necessary for the family of first order operators
corresponding to Ay given by

Ly(s)z=2 +M(-,8)z, xz€J, M:JxC — C?m2m, (3.89)
The extrapolated essential spectral set is introduced in [50], Definition 5.7 as follows.

Definition 3.22 (Extrapolated essential spectral set) The extrapolated essential spec-
tral set of a family of operators {Lj(s)} is defined as the complement of all points s € C
for which exist a neighbourhood U(s), a minimal interval length Ty > 0 and a mazimal
order | € N such that {L;(s)} has eigenvalues at most of order | in U(s) for T > Ty, or
in short notation:

Yt =C \{s: JU(s) CC, Il €N, Ty > 0 such that {L;(s)} has eigenvalues at most of
order | in U(s) for T > Ty.}

The definition in [50] uses the Evans function [2], but as shown in Lemma 4.2 in [50]
the zeros of the Evans function correspond to the eigenvalues of L ;(s). A more heuristic
description of Yeg is the following:

The extrapolated essential spectral set Yext consists of those points in C where infinitely
many eigenvalues of L; accumulate as the interval size tends to infinity.

The main theorems in [50] now state the following under some additional hypotheses,
which are satisfied for A:

The eigenvalues of the restriction of A to the finite interval J with periodic boundary
conditions accumulate at the essential spectrum of A as T' tends to infinity (Proposition
4 in [50]), i.e. X500 C Yegs -

ext

=

If one additional reducibility condition (Hypothesis 6 in [50]) is satisfied, then equality
holds, i.e. P& = Y.

ext

An analogous result, Proposition 5 in [50], holds for separated boundary conditions. The
eigenvalues of the restriction of A on the finite interval J with separated boundary condi-

tions accumulate at the absolute spectrum of A as T' tends to infinity, i.e. Yot C Zaps.

If again a reducibility condition (Hypothesis 8 in [50]) holds, then Theorem 5 in [50] states
Yo = Yabs-

ext T

These results, which clarify the influence of the boundary conditions can be observed
in the numerical computations. In the following we give an example how the essential
and the absolute spectrum can be calculated for a given PDE and discuss later how the
above theorems should be transferred to the discrete case. This discussion will be mostly
heuristic, but helps to understand some of the spectral pictures in Chapter 5.
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Example 3.23 The essential spectrum of a scalar linear operator
Au=u"+ '+ f(@)u, f:R—R

is bounded by a parabola in the left half plane: Theorem 1.2 implies that that the essential
spectrum is located by the following curves parametrized by w € R

s+(w) = —w? +idw + f/(ux). (3.90)

which are parabolas over the imaginary axis. The essential spectrum oess of A lies to the
left of the rightmost of the curves s_, sy. Hence the spectral gap between zero and the
essential spectrum is at least min(f'(u—), f'(uy)).

For the Nagumo equation, where f(u) = u(l—u)(u—p), u € (0,3) (see (5.15) in Chapter
5) we obtain with® f'(u—) = —p and f'(uy) = p — 1 that oess is bounded by s_ and the

spectral gap in this case is i for u = %. This is the parameter value used in the numerical
computations.

The linearized operators of first order L(s) read

o _ _ O 1
L(s)z=2"—M(-,s)z, where M(x,s)= (s _ () _5\)
and the eigenvalues of M*(s) = limg oo M (-, s) are given by
A 22 A \/5\2
+ _ _ - - _ - __ = - £
VE(s) = —5 4\ s Flu), vE(s) =5 4/ 5 +s— o)
The absolute spectrum which has been defined in Definition 3.19, consists of points s € C
where Re v = Re VI and Re v_ = Re vy, i.e. were
32
Z—l—s—f’(ui) < 0.
In the Nagumo case, this gives with \ = —@
!/ !/ 5\2
Oabs = (—oo,max(f (u—)?f (U+)) - Z]

Thus from X # 0 the essential and the absolute spectrum differ. For the Nagumo system
with 1 = § this reads o, = (—00, —25).

Corollary 3.17 yields that the essential spectrum of the discrete operator on the whole line
is enclosed by shifted ellipses with semi-major axis of size % and semi-minor axis of size

%. These are parametrized by
o_(w) = —(cos(w) — 1) + 5\% sin(w) — p
o4(w) = —(cos(w) — 1) + ;\% sin(w) + p — 1.

The observations in the previous section lead to the following assumption (which we will
not formulate as a Theorem, since we have no proof)
The eigenvalues of the linear discrete operators A : S (R™) — S, (R) given by

A}}’LL = (A((SJr(s*u)n + Bn((s(]u)n + Cnun)nEJ

subject to periodic boundary conditions accumulate at the essential spectrum of the op-
erator A" defined on the whole lattice Z (see (3.86)).
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Chapter 4

Stability of the discretized system

In this Chapter we analyze stability of traveling wave solutions for a discretized version of
the frozen system from Chapter 1 (cf. equation (4.2)). In particular, we show asymptotic
stability of the steady state that has been shown to exist in Chapter 2. This is an overall
justification of the freezing method and is in accordance with the numerical results in
Chapter 5.

Here we have to take into account the additional boundary conditions which constitute
additional algebraic conditions besides the phase condition. Thus we cannot follow the
lines of Chapter 1 directly, rather the Dirichlet part of the boundary conditions and the
phase condition are both used to reduce the DAE to an ODE. We transform the system
with equilibrium (@, 5\), to a semilinear DAE with equilibrium u = 0, A = 0. The solution
of this equation can be estimated (uniformly in h and J) using the solution of a reduced
ODE. As in Chapter 1 we obtain exponential estimates for the solution operator of the
corresponding linear equation using its integral representation and resolvent estimates
which follow from the resolvent estimates of the previous chapter.

4.1 The nonlinear time dependent system

Consider the spatial discretization of the time dependent PDE
up = Aty + Mg + fu, uy) (4.1)

on the grid G, o, with finite differences, given by

ul, = A(0416_u)y + XNdou)n + f(un, Soupn), meJ, t>0 (4.2)
n = Ru (
0—<(50U,U|J—ﬂ|J>h. 4

Here 4 € £,(R,R™) is a given reference function which satisfies Hypothesis 2.18. As in
Chapter 2, the boundary conditions are assumed to be linear, i.e. R : Sy (R™) — R?™
reads

Ru=P_u,_ + Q*(éou)n_ + P+un+ + Q+(50un+)a Py, Qi S RQm,m. (4'5)
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We also need Hypothesis 3.3 for the boundary conditions, since we use the resolvent
estimates of Chapter 3.

Consider a general DAE of the form
(mu)" = fag(u, A),  u(0) = u®, A(0) = \°
0= falg (U, >\)

where faig : Sz, (R™) x R — S;(R™), faig : Sy (R™) x R — R¥*™* and 7 : S (R™) —
S7(R™) denotes the restriction to J defined by

(4.6)

T (Un_ =1, Uny 1) = (Up_ sy Uny ). (4.7)
The proper notion of a solution of (4.6) is the following (cf. Definition 1.11).

Definition 4.1 A function (u,\) : [0,7) — Sy (R™) x R is called a solution of (4.6) in
(0,7), T € RU{o0} if

1. fag(u(-), () : [0,7) — Sy is continuous
2. (u,A) : [0,7) = Sy (R™) x R is continuous

3. (wu)'(t) emists, (mu)(t) = fag(u(t), A(t)) € S;(R™) fort € (0,7),
and (u(0),A(0)) = (u®, \)

4. fag(u(t), A(t)) =0Vt € [0,7).

Assume that (@, ) is an equilibrium of (4.6), i.e. 0 = fyg(@,A),0 = fag(@,A). As in
Section 1.2 we are interested in the stability of (7, \) as a stationary solution of (4.2)—(4.4).
This system is a differential algebraic equation (DAE) of differentiation index 2 [22] (cf.
Section 5.1). In particular, initial values have to satisfy additional consistency conditions,
which are defined as follows: Denoting the boundary conditions which constitute the
Neumann and the Dirichlet part by

RNU = Pivun_ + QJ_V(SOUn_ + P_{_Vun_‘_ + QJ_:,YCSOUn_‘_a

4.8
RDu:PPun_+Pfun+. (48)

equation (4.3) is split into one part that does not depend on the external variables
Up_—1,Un, +1 and one part depending on u,. Then (4.3) reads

RNy =™, (4.9)

RPru =qP. (4.10)

The initial values u°, \° are then called consistent if they solve the algebraic constraints

(4.3),(4.4) as well as the equations which are obtained by differentiating (4.10),(4.4) w.r.t.

time ¢ and inserting (4.2):

RP(A6,6_u+ Ndou + f(u,dou)) =0 (4.11)

(1h, A6 16w+ Xdou + f(u,dou)), = 0. (4.12)

The main result of this chapter is the following stability theorem, which is the discrete

analog of Theorem 1.13. Recall that the system (4.2)(4.4) has a stationary solution (i, A)
close to the original wave by Theorem 2.21.
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Theorem 4.2 Assume that the linear operator A defined in (1.7) and the nonlinearity
f satisfy the conditions of Theorem 1.13. Assume further that Hypotheses 3.3, 3.1, 2.18
hold.

Thep there exist hg > 0,7 > 0 such that for h < hg, Fhnt > T the stationary solution
(@, N) € S7(R™) x R of (4.2)-(4.4) is asymptotically stable.

More precisely, there exist K, v, p, hg, T > 0 such that for h < hg, Fhn+ > T the following
statements hold for ¢ = oo and also for o = Lg} if additonally e~ < evh for some
c > 0, where o denotes the constant in Hypothesis 2.18:

For each consistent (uo,)\f)) € S5, (R™) xR (i.e. (4.3), (4.4), (4.11), (4.12) are satisfied)
with [|u® —all; , 4+ [\ = X < p, there exists a unique solution (u,\) of (4.2)~(4.4) with
initial condition (u(0),X(0)) = (u®, \°) which obeys the estimate

lu(t) = ally o + M) = A < Ke™([|u® — ally , + A" = X]). (4.13)

Remark 4.3 Combining the estimate (4.13) with the approximation result (2.61), we
obtain for h > hg,£tny > T and a sufficiently large 9 > 0:

[u(t) = ailly o + [AE) = A < K(e7" 4 B2 e ohmintononidy yt > 5.

Remark 4.4 We will show later that if one prescribes the initial value u° on the grid .J
and the so called essential conditions (4.10),(4.4) are satisfied, then the external points
ud o ul o1 0f u® and the initial parameter A can be chosen in such a way, that (u°, \°)
solves (4.3), (4.4), (4.11), (4.12).

The system (4.2)—(4.4) has the special structure of an inital boundary value problem with
an additional constraint. Therefore we will reduce the algebraic constraints directly and
try to match the semigroup approach developed in Chapter 1 as far as possible, using the
resolvent estimates which have been proven in Chapter 3. The proof of Theorem 4.2 will
proceed along the same lines as the proof of Theorem 1.13.

Note that the standard (P)DAE methods [21], [22] either rely on the transformation of
the DAE into Weierstrass form or deal with general PDAEs [17], [34]. In the latter case it
is difficult to check the abstract conditions for the special system considered here, whereas
the transformation into Weierstrass form needs detailed information about the spectrum.
But we have detailed information about the resolvent only. For a rather up-to-date account
on DAE theory see [45].

As in Chapter 1 we transform the system (4.2)—(4.4) into a semilinear equation which has
0 as a stationary solution and prove a stability result for this system.

4.2 The semilinear equation

Let (a@,A) be a solution of the boundary value problem (4.2)-(4.4). Inserting the ansatz
u=1u+v, A=A+ p into (4.2) we obtain

Up = A(04:0-0)n + Bp(d0v)n + Cpvp + (So@)npt + nlv,p), n e J (4.14)
— (M) + Oin 1+ B0, 1)
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where B,,, C,, are given by (cf. (3.1)):
By = AL+ Dy f(itn, (§0@)n),  Cn = D1f(in, (b0@)n),
and ¢ : Sy, (R™) x R — S;(R™) is defined by
On(v, 1) = Op(v) + ovn pr, nedJ (4.15)
where
Wn(v) = f(Up + vn,y 00Ty + dovn) — f(Tn, Sotyn) — D1 f(Un, doln)vn — Daf(tn, doln)dovn.
The boundary condition (4.3) is transformed into
0 = Rv, (4.16)
and the phase condition (4.4) reads
0 = (dots, v, ), . (4.17)

Then (0,0) is a stationary solution of (4.14), (4.16), (4.17) and the stability of (a, \) is
now equivalent to the stability of (0,0). Using the notations 1) = dpt, ¢ = dpt we have to
prove the stability of the zero solution of a semilinear equation of the form

' = A+ + (v, ), (4.18)
0= RNv, (4.19)
0 = RP7v, (4.20)
0= (¢, mv),. (4.21)

where ¢, : Sy, xR — Sy, gzg,d; € Syand v € Sy,. For (v,u) € S; x R we use the notation
By (v, ) = {(u,A) € Sy xRzl —ully o + | = Al < p}.
where o € {00, L2} Recall the definition of [|-[|; »,, = HHH}L in (2.3).

As in Chapter 1 the main assumptions on ¢ are summarized in the following hypothesis.

Hypothesis 4.5 Assume that ¢ : S;, x R — Sy satisfies $(0,0) = 0 and that there
exist po, Cp > 0 such that the following holds: There exist hg, T > 0 such that for h < hg,
tnih > T forall (v, ), (u, A) € B})’O(O), o € {00, Lo} with p < po, the uniform estimates
16(v, 1) = &(u, M, < Cr(llo — ully o +max(|[v]l; o ully )l — Al (4.22)

60, )lle < Kp(llvlly o + |ul) (4.23)

hold, where Cr,, K are independent of h, J = [n_,n].

For the semilinear equation (4.18)—(4.21), the consistency conditions (4.11),(4.12) read
0= RP(A" + g + @(v, 1)), (4.24)
0= (%, A" + $pu + $(v, 1) (4.25)

The main result of this chapter is the following stability theorem for the zero solution of
the DAE (4.18)—(4.21), which is the discrete analog of Theorem 1.15.
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Theorem 4.6 Let A satisfy the same conditions as in Theorem 1.15 and let ¢ satisfy
Hypothesis 4.5. Assume further that ¢ = dpt, where U satisfies Hypothesis 2.18 and that
the boundary conditions satisfy Hypotheses 3.1,3.3.

Then there exist hg > 0,7 > 0, C > 0 such that for h < hg, Fhny > T the stationary
solution 0 € Sy, x R of (4.14),(4.16),(4.17) is asymptotically stable.

More precisely, there exist K, v, p, hg, T > 0 such that for h < hg, FhnyL > T the following
statements hold for o = oo and also for o = Lo} if additionally e~ T < ¢v/h for some
¢ > 0, where o denotes the constant in Hypothesis 2.18:

For each consistent initial value (v°,u°) € Sy, x R (i.e. (4.3), (4.4), (4.11), (4.12) are
satisfied) with ||’UOHL<>+|/L0’ < p there exists a unique solution (v, u) of (4.14),(4.16),(4.17)
which obeys the estimate

o)l 0 + 0] < Ke ™ ([[W°] o + %) vt > 0. (4.26)

We will prove the above Theorem by reducing the DAE (4.18),(4.19)—(4.21) to an ODE
an a subspace of S; where the so called essential algebraic conditions (4.20),(4.21) are
satisfied. We define this space as follows:

5% = {u e S;(R™): RPu=0, (4,u), =0}. (4.27)

Remark 4.7 We will show in Lemma 4.18, that there exists 6 > 0 such that for each
u® € S5 with [|u’]| < 6, there exists a unique extension (v°, u°) € S, x R, which satisfies
7’ = u® and solves (4.3), (4.4), (4.11), (4.12).

Let us first show that Theorem 4.6 implies the stability result Theorem 4.2. The proof is
similar to the proof of Theorem 1.13 in Chapter 1.

Proof of Theorem 4.2:
For ¢(v, u) = @(v) 4+ udov, (see (4.15)) we show that Hypothesis 4.5 is satisfied. We obtain
for v,u € By™(0)

| () = @n ()l = || f (@ + vn, bn + dova) — f (T + tin, $n + Sotn)
— Dy f (fin, @) (vn — tn) = Daf (m, én) (Jovn — doun) |

= [ f1 (@, + Un)(‘lzn + 0ovn) — f1(ln + un)(ﬁgn + doun) — fi (ﬁn)(éna Up — Un)

— f1(Tn) (dovn — doun) + fo(tlin + vp) — fo(tin + un) — fé(ﬁn)(vn - un)”
< c||(fi(@n + vn) = fi(ln + un))énu + |(f1(tn + vi) — fi(ln + un))dovn|

+ [ (f1 (i + tn) = fr(in)) (Sovn — Soun)|| + |1 (@n) (Gns vn — un) |

+ [ 2l + vn) = fo(tn +un) | + [ f3(@n) (vn — wn)|

< c([lon = unll + [lvn = unll[|dovall + l[unll{1do(v — w)nll) (4.28)

< cllu =l oo

1
This implies for all (v, u), (u,\) € BZ){’”(O) using (4.28), Hypothesis 1.9 as well as the
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Sobolev imbedding [|v]|,, < C”UHH}l (see A.4) for a generic constant ¢ > 0:

o) = (u)lz,, = Z & (v) = &n(w)]?

n=n_
n4
<ch Y lvn =l + lon = wnl*180vall* + un*lI60(v — w)a?
n=n_
n4 n4 n4
2 2 2 2 2
c( Y hllvn —unll® + 180vl5, D Bllvn = unll* + JullZ Y Rldo(v — u)n®)
n=n_ n=n_ n=n_

2 2 2 2 2
< c(l[o = ullz,, +llv =l vl + lullyg o = wll3g)
, h h h h

2
< cllv — “HH}L'

Furthermore, (1.20) leads for ||v <pto

Hl,oo

[ (W) < 1f (G + 0y G+ Sovn) — f (Gin, Gn)
- le(am an)vn - D2f(&m ng)ésovn”

1 ~ ~
< /[) ”[le(an + tUm ¢n + t(SO'Un) - le(am ¢n)]vn|| dt

1 ~ ~
+ /0 H [DZf(ﬂn + ton, On + t(sovn) — D2f(ﬂna an)](sOUnH dt

1 1
< / t(lon ]l + 150vn ) l[oal] df + / ol [5ovall dt
0 0

< c([[onll 4 [1d0vn)[vnll (4.29)

sollVlloe < cpllvlly oo

Equation (4.29) implies for ||v||H}11 <p

n4 n4
N 2 ~ 12 2
Iz, < D Allanl® < e D hlloall + 8ova])?[loall

n=n— n=n—

n
2 2 2
< cllollzh Y (loall + I10vall)? < ellollfa lollF

n=n-—
201,112
< cplolZ,
These estimates show together with

v — Mgty < 11600l 12— M+ [A]160(0 — )]
< olly ol = M+ Ao = uly oo < plo = ully o + 1 = A

as well as
e — Aol < vllg = M+ Nllo = sy < plllo = ullg, + 1= X)

and ¢(0,0) = 0 that Hypothesis 4.5 holds.

Finally, (v°, u°) satisfies (4.16), (4.17) and (4.24), (4.25) if and only if (u”, \°) satisfies
(4.3),(4.4) and (4.11),(4.12). m
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In the following we will use equations (4.19), (4.24),(4.25) to reduce the system (4.18)—
(4.21) to an ODE in the space S5 where the essential initial conditions (4.20), (4.21) are
satisfied.

The proof of Theorem 4.6 needs several preparations which are done in the sections 4.2.1—
4.2.4.

4.2.1 The linear inhomogeneous equation

In the following we discuss the solution of the linear inhomogenous equation

' = A4 pd+r (4.30)
together with the constraints (4.19)—(4.21) for r € C(R*,S;) with initial conditions
(v(0), 1(0)) = (%, 1) € Sy, x R.
The conditions (4.24), (4.25) are in this situation given by:

0=RP (A + ¢+ 1), (4.31)
0= (P, A0+ dp+r),. (4.32)

Reduction to an ODE

The following lemma states conditions under which a consistent (v,u) € Sy, x R can be

uniquely determined from a given v € S$* with 7v = w. Here only the limiting case

|z| — oo of Hypothesis 3.3 is needed.

Hypothesis 4.8 Assume that the matrices Py, Q+ are partitioned into a Neumann and
a Dirichlet part as in (3.10) with rank(Q_Q+) = r € [0,2m] and assume that the matriz

(QMl —Qﬁfﬂ)

D o (4.33)

is nonsingular.

Lemma 4.9 For each u € S§° and each r € Sj there exists a unique extension (v, ) €
Sy, xR such that mv = u and (4.19), (4.31), (4.32) hold. The map (u,r) +— (v, ) is linear
in w and r. Moreover, for o € {00, Lo} the following estimates hold

1
[Vllz0 + Il < el llulls + lIrlls)- (4.34)

Proof: Let v € S$° be given and set v = (vp_—1,Un_,...,Un,,Vpn,+1). It remains to
compute the external points v,__1,v,,+1 and p from the equations (4.19), (4.31), (4.32)
which read

0= Pivvn, + Q]_V(SOUn, + P_{_an+ + Qféovn+
0=PP(A", + ¢ pt+r )+ PPNy, + Gyt +70,) (4.35)
0= (P, A"v), + (b, @)1 + (P, 7).
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We use the relation

2 2
04 0_v, = E(éovn +d_vp) E(—égvn + 1) (4.36)
as well as the definition of A" in (4.14) to obtain the equivalent system for w = (w_,wy) =
(0ovn_,00vn, ) and p
M (Z) =Ru~+R"r (4.37)
where
QY QY 0
M= | -PP(A- %Bn_) PP(A+ gth %(Pquin_inqu) ,
_1/}3;_ (A - Ean) 1/15+(A+ §Bn+) §<¢7¢>h
—PNu,_ — Pfrvuw
iy — —PPAS u, — PPAS_u,, — L(PPC,_u,_ + PPC,, u, +1)
~ ~ ny— ~ )
_¢7TL’_ (Adyuy,_ + %Cnfunf) - 1#& (Ad_up, + %C’n+un+) -3 _ZH ¢5Ahun
1 0
R'r=—= | W(PPr,_+PPr,,)
<¢7 T>h
For h — 0, —hn_, hny — oo the matrix M converges to
A QY QY 0
M= |-PP4A PPA 0 (4.38)
- A Yl A @, W)

which is invertible due to condition (4.33) and (@/,u) # 0. Therefore the solution (w, i)
of M(w, )T = R"u + R"r can be estimated by

) 1
12l < e(5 llulloo + hllrlloo):

(4.39)
and we obtain the same estimate for w = (w_,w;) with a different ¢. This implies,
together with the relations
Up_—1 = —2hw_ 4+ up_41 = —2hw_, Uny 41 = 2hwy + up, 1 = 2hwy, (4.40)
the estimate
Fon 11l + lomy 111l < chlleoll < e(lullg + A7) (4.41)
Furthermore, the relation
d4n, = 200Un, — O4tUpn, 1 = 2wy, 04Uy 1 = 06_vUp_ = 2wW_ (4.42)
leads with (4.39) to
1
104 0llo0 < e llulloo + llrlloo)- (4.43)
Similarly, by (4.36) we find

(54_(5_’0,17 = %(—w_ + 5+Un7) = —gw_,

2 2
(5+(5_1)n+ = E(U)_A,_ — 5+Un+_1) = —

w
h+7
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which implies with (4.39)
1
19+6-v]loe < elizllulloe +lI7llo)- (4.44)

Finally we obtain using (4.35)

~1
|

ll < D, )yl ([, A0)y |+ (D, 1)y ]) < C(%Hvllw +lrlleo)-

Together with (4.41),(4.43),(4.44) this leads to (4.34) for ¢ = cc.

In a similar way the estimate for o = Ly, follows. O

Define the space of consistent initial conditions by
S8 ={(v,p) € Sy, x R: (v, ) satisfies (4.19), (4.20), (4.21), (4.31), (4.32)}.

Then Lemma 4.9 implies that the map S — S5, (v, u) + v is invertible, with a uniform
bound for the inverse. Moreover, we can write (v, i) as

v = Myu+ Ry, = Mu+ R,r, (4.45)
where M,, R, : Sy — Sy, M, R, : Sy — R, are linear. Thus for any (v%, u’) € §% the

solution of the DAE (4.30), (4.19)—(4.21) with inital values (v°, u%) € S is obtained from
the solution of the reduced ODE

u' = (A"M, + ¢M,)u + (A"R, + oR, + I)r, (4.46)
—=: Alu + TIr
with inital value u® = 7v° by
v(t) = Myu(t) + Ryr(t), p(t) = Myu(t) + R,r(t). (4.47)

Note that by construction IIr € S§®. Therefore it is sufficient to consider (4.46) in SG*.
Thus we have reduced the bordered system (4.30) to an ODE in a similar fashion as in
Lemma 1.17. The inhomogenous ODE (4.46) in S5 is then solved as usual via

u(t) = Sp(t)u’ + /Ot Sp(t —s) r(s) ds,

where the operator Sp(t) is defined via the Dunford integral

Sp(t) = }é eSt(sT — A~ ds (4.48)

- 211

and I' is a closed curve which encloses the spectrum of AFIS. In the following section we
give estimates similar to (1.52) for the resolvent of the operator A% : S5 — §%5 which
lead to estimates of Sp(t).
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Resolvent estimates

We use the technique of Chapter 1 of proving resolvent estimates for the discretized system
in different regions €2, Q¢,, ng, Qé‘o (cf. 1.2). These estimates will be used to estimate the

solution operator Sp for the reduced system (4.46). The following Lemma shows that the
resolvent equations in Chapter 3 are equivalent to the resolvent equations for the operator
A}jg. To this end we transform the resolvent equation for the projected operator A’IB back
into a bordered equation. This is accomplished by reintroducing the algebraic variables.
A direct application of Lemma 4.9 leads to the following lemma.

Lemma 4.10 Let r € S;, then u € ST solves
(s — AM)u =TIr (4.49)

and
v=Myu+ Ryr, p=DMu+R,r (4.50)
if and only if the pair (v, p) € S is a solution of the bordered system
(sm— Ay — du=r
Ruv=0 (4.51)
(1h, Tv), = 0.

Using this equivalence, we obtain that the resolvent estimates in Chapter 3 imply a uniform
estimate in a compact set and an estimate for large |s| for equation (4.49).

Lemma 4.11 There exist Cy > 0 and ho,T > 0 such that for each h < hg, +ny > T
there exists for each s € Q¢ UQ%O UQ" and each g € S a solution (v, ) of (4.51) which
can for o € {oo, Loy} be estimated by

[olly 0 + [ul < Cllglls,  as s € Qe (4.52)
[slllvlls + Vislllvll e < Clialls, — as s € Qg (4.53)

where C' > 0 does not depend on r, s, h and T.

The construction of a solution of (4.51) for s € Q together with a resolvent estimate will
proceed along the same lines as Lemma 1.22.

Lemma 4.12 Under the same assumptions as in the previous lemma, there exist C,e > 0
and hg, T > 0 such that for each h < hg, £n+ > T the following holds. For each for s € Q)
and g € Sy the resolvent equation (4.51) possesses a unique solution (v, u) € Sy, xR which
satisfies the following uniform estimate in s

[llg,0 + 11l < Cliglls, o€ {00, Lon}- (4.54)

Proof: We transform equation (4.51) to first order using z = (u,v), v = d_u. With the
same abbreviations as in Chapter 3 we obtain the equivalent equation

Az, p) = (r,n,w) (4.55)
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with w,, = dyv, and

i L(s)(z, 1) 0
Az, p) = | P-un. + Q-wn_ + Prun, +Qiwny |, 1y = (hg > .
* 7 n
hZZ:n, ¢gun

Here L(s) is given by

(L(S)(zvﬂ))n = Np2py1 — Kn(s)zn — W

N (0 ) w0 (e ) ()

and EF is defined in (3.5). Notice the similarity to the operator L(¢, s), which has been
defined in (3.84).

where

As in the previous chapters we show invertibility for a perturbation of A which is given by

(Nzns1 — Kn(8)zn — Wapt)nes
ANz = (P Q-)zn_ + ({D—i- Q+)2ny

. I hI . 0
Kn = <h(sI —Cp) A- th> W= (m;)

and N, B,,C, are defined in (2.68).
Using (2.61) we obtain for h < hg, £hny > T the estimates

where

1K (s) = Kn(s) + Ny — N|| < ch(h? +e7T)
as well as

W — Winl| = hl|0oiin — || < c(h? +e7°T).
Together with A

||Nn - NH <ch
this leads to
I(A = Ad) (2, )l < (R T)(12]ly 0 + |11])

where limp,_0 700 p(h,T) = 0. (see the proof of Theorem 2.21).

In the same way as in Chapter 3, we use the fact that the spectral condition (SC) implies
that L(s) has exponential dichotomies on R* for all s with Re s > —3. Thus, for these s
the operator

L(s)z = (zn+1 — N7 K (8)2n)nez

possesses an exponential dichotomy on Z* with data (K*, axh, P¥) by Lemma 2.3. More-
over, the Hypothesis 2.11 follows from condition (2.60) for Py, Q4+ and (1.27) implies Hy-
pothesis 2.12. The definition of 14 together with Lemma 2.8 implies that Hypothesis 2.13
is satisfied as well. Application of Lemma 2.14 implies the existence of solutions of

Ai(za ,LL) = (Tv 777(0)
which can be estimated by (2.38) from which we obtain (4.54). O
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Remark 4.13 Note that from (4.34) we obtain

IABull, < [I(A"M, + dM)ul, < thIUHQ, o€ {00, Lo}

which leads for the spectrum of A% to the bound |o(A%)| < C1h~2 for some C; > 0. Thus,

using the estimates (4.52),(4.53) and (4.54) we obtain, similar to Lemma 1.21, resolvent
estimates for A% in a sector and in an annular region (cf. Figure 4.1).

Corollary 4.14 There ezist o > 0, ¢ € (3,7),C1 > 0 such that s € p(A") if s € Say
or |s| > C1h=2. Furthermore, for any Co > C there exist K > 0 such that, defining the
annulus_AghCO ={seC: |s|e [%, h2] } the following estimates hold for o € {oo, Lo}
for s € 544U A}é’h(/‘o :

[o]ls <

17l 17l (4.56)

K
vl o € ———
Lo Vs +«af

<>_|+|

4.2.2 Estimates of the solution operator

From (4.56) an estimate of Sp(t) which is uniform in h and T follows. Under the same
assumptions on A as in Lemma 1.21 we obtain:

Lemma 4.15 Let A satisfy the same assumptions as in Lemma 1.21 and assume that for
1) Hypothesis 2.18 holds.

Then there exist hg,T > 0 such that for o € {oo0,Lop} all h < hg and £nih > T the
solution operator Sp(t) can be estimated by

G —« Q —« 1
1Sp@)rll, < Ke=*[Irll,,  1Sp®)r],, < Ke t%HTHo- (4.57)

The proof is similar to the proof of Lemma 1.24. Note, that in this case it is suffient to

estimate the integral

1 _
5 FeSt(sI—A}}g) Lds

along a closed curve, which encloses the spectrum of A}}D.

We take a path I' around the eigenvalues of AI]D and can assume Re s < 0 Vs € T' (see
Figure 4.1).

We introduce the following notation for a function g : I' — R, where I' = {v(§) : £ € [0,]}

is a closed curve l
¢ szl = [ gty (@)l de.
r 0

We denote the resolvent by G(s) = (sI — A%L)~1 and obtain for r € S with (4.56) for
o € {00, Ly} for t > 0 the following:

10007l = | 51 0G00I as

1
= ’ —f eS'G(s)r ds
o 2m Jr_, o

1 1
=||— j{ e(sfa)tG(s —a)rds|| < —eo‘tyg 5| G (s — a)r]|,|ds|
2mt Jp o
1 - e
< e (3 = ] x| < ke =lel, § lan

< Ce_“tHTIIO-
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h
Q4 Q’Clb

Vo

Figure 4.1: Path of integration

Here we have used the fact that we can move the curve I" to the left up toI' —«a for a < 3
small enough without changing the integral. Along the rays this is the standard estimate
for sectorial operators (see [36],[23]). Along the arc v(£) = Re®, ¢ € [3 + 6,38 — 6] we
obtain

0 i ; 59 1 s
Rl || G(Re)r |, dg < IITHO/ Retftes®) < d¢ < —||r
45 R 2

2

3w _
/2
5+0

In a similar way we obtain

lo-

. o 1
[Sp@) 7l o < Ce t%HTHo'

Using this representation, the solution of the original inhomogenous equation can be ob-
tained, as the following Lemma shows.

Lemma 4.16 Let r € C([0,7),Ss) and assume that Hypothesis 2.12 holds.

If the pair (v, u) € C(RT,8) is a solution of (4.30) on the interval (0,7) with consistent
initial values (v°, u¥) € S then u = v is a solution on (0,7) of (4.46). Furthermore,
(v, ) is given on [0,7) by

v(t) = Myu(t) + Ror(t), p(t) = Myu(t) + Rur(t). (4.58)
Remark 4.17 Setting y = (vec(vn_,...,Vn,, Un 41,Vn_~1), ), M = ny —n_+ 1 and
r = vec(g) we can write (4.30),(4.19)—(4.21) in matrix notation as
By = Ay + (g) e RMM+3)+1 (4.59)
i (A @ 5 (Ium O m(MA43)+1,m(M+3)+1
A‘(th o)’ B‘( 0 0>6R

The definition of A, B, ®, ¥ will be given in section 5.1. This system can be dealt with
using standard DAE methods [21],[56]. We can define the solution operator of the linear
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homogenous equation Z’S’y’ — A via the generalized resolvent of the matrix pencil A—sB
by (see [56])

1 . .
F(t) = 5— FeSt(A —sB)7! ds.

Note that the equation
(A — sB)y = (6) , yeC (”+—n—+4)m+17 re C(n+—n_+2)m

is equivalent to the resolvent equation (3.1), (3.2). Then transforming (4.59) into Kro-
necker canonical form, [21], [22], [56] one can obtain a solution of the inhomogenous
equation via a generalized “variation of constants” formula.

We did not pursue this ansatz, since it requires more knowledge on the Jordan structure
of the matrix pencil A — sB. Instead we have eliminated the boundary conditions and
the phase condition directly similar to Section 1.3.1. In our case this is feasible, since the
algebraic conditions are linear and do not depend on time.

4.2.3 The nonlinear system

In order to reduce the semilinear DAE (4.18)—(4.21) to an ODE we need a nonlinear version
of Lemma 4.9 which guarantees the solvability of the equations (4.19), (4.24), (4.25) which
define the transformation S5 3> u — (v, ) € S®. This corresponds to the first part of
the proof of Lemma 1.27.

Lemma 4.18 Assume the same as in Theorem 4.6. Then there exist ho, T > 0 such that
for all h < hg,£hny > T the following statements hold for o = oo and for o = Lo}, if
additionally e=°T > cv/h.

For each u € S there exists a unique extension Sy, x R > (v,pu) = (Ty(u), Tu(u)) such
that 7o = u, T,(0) = 0,T,(0) = 0 and (4.19), (4.24), (4.25) hold.

Moreover, for the map ¢ : ST° — ST° defined by
P(u) = ATy (u) = Myw) + $(Ty(w) = Myu) + G(Ty (), Tu(u)), (4.60)

where My, M,, are the linear operators defined in Lemma (4.9), the following holds:

() = @(V)lls < Crllu =l 4, (4.61)

and for each o > 0 there exists p > 0 such that

le(wlly < allully o, as flull, o < p. (4.62)

Proof: Let w € Sy be given and set v = (vy__1,Up_,...,Up, .,V +1). It remains to
compute the external points v,__1,v,,+1 and p from the equations (4.19), (4.24), (4.25)
which read

0= Pivvn, + Q]_V(SOUn, + P_{_an+ + Qféovn+
0=PP(N"vn_ + ¢n_pp+ @n_(v, 1)) + PL (M 0n, + Gny i+ @n (v, 1)) (4.63)
0= (b, A"+ dp+ ¢(v, 1)),
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Define the map y : Sy x R?*™ — S (u,w) — v, w = (w_,wy) by
Up =Upy, N=N_,...,N4, Up__1=—2hw_+up_11, Vn,41=2hwy +up, 1.
Then dpv,, = w+ and we obtain
Ix(u,w) = x(u, 2)ll, , < ehVhllw—2]]. (4.64)
The relation (4.42) leads to
Ix(u,w) = x(u, 2l < eVhfw = 2], (4.65)
and also to
Ix(w, w)llzg < ellullzn + Rllwl)),  [Ix(u, w)ly o < c(llullsg + llwl)- (4.66)

In the same way as in the proof of Lemma 4.9 we obtain with (4.36) the following system
which is equivalent to (4.63).

M (7“:) = R+ g(u, w, 1), (4.67)

where M, R" are given by (4.37) and (cf. R" in (4.37))

0
g(u,w, p) = —% h(PP&n (x(u,w), ) + PPn, (x(u, w), 1))
(¥, (x(u, w), 1)y,

For h < hg £hn4 > T the matrix M is nonsingular and we can define G : S; x R?™ xR —
R?™ x R by
G(u,w, i) = M™HR“u + g(u,w, 1)),

the fixed point of which is a solution of (4.67). To apply the parametrized contraction
mapping theorem A.2 we have to verify (A.1),(A.2). From (4.23),(4.66) we obtain

16(x (1, 0),0)[, < Kplx(u,0)[l1, < cpllully, (4.68)

which implies
VR[[@(x(1,0),0)]| o < [6(x(1,0),0)l, , < epllully (4.69)

as well as with Cauchy-Schwarz, Hypothesis 2.18 and (4.66)

(&, @(x(1,0),0)),] < ellx(u, 0|, < epllully ,- (4.70)
Using (4.22) we obtain with (4.65) and (4.66)
1o0c(u, w), ) = S(x(w, 2), Mz, < CLlIx(u, w) = x(u, 2) |32 (4.71)

+ max({x(u, w)llyg , (s, 2) [l )| = Al)
< c(Vhllw — 2| + (lullyg +hmax(flwll, [2]))] = Al).

Equation (4.71) leads for HuHH}L < pto

1o 0x(u w), 1) = G(x(u, 2), ., < (VA4 p+h8)(|lw — 2] + [ = AJ)
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as well as for HUHH}z < \/E||u||100 < Vhp to

leOx(u, w), 1) = 2(x(u, 2), M, < (VR + p+0)([w — 2| + |1 = Al

Thus (4.68), (4.69), (4.70) imply for H“HH}I <p

lg(u, 0,0 < Alln_ (x(u,0), 0) + ll@n (x(u,0), 0)| +[(h, G(x(u, 0),0)),,])

4.72
< cpllullg 472
as well as for [lul[, ,, <p
l9(u, 0,0)|| < epllully - (4.73)
Similarly, with (4.71) we find
lg(u, w, 1) = g(u, 2, || < e(hll@0c(u, w), 1) = S(x(u, 2), Ml
= p(x(u,2), A))yl) (4.74)

+ (4, @ (x(u, w), p)
< el O, w), ) = S(x(w, 2), M, -
It remains to estimate ||[R%u||: As in Chapter 1, the summation by parts formula (A.10)
(¥, Ad_b4u)y, 41,1 = —(619, Abyu), ot U AGyu)n_ — 1/;7{+71A(5+U)n+—1
leads for J = [n_ +1,n4 — 1] with
(), M), = (), AS_61u), + (i), Boou), + (4, Cu),

to
(@5 M) | < eflull; o (4.75)

Using Hypothesis 2.18 for £hny > T we find
= 1 1
(), M), | < ellfullygy + P Ze |01 ull,, ) < e(L+h72e™T)|ully

This implies with the definition of R* in (4.37) and (4.75)

IR ull < e(lfully oo + [y, Au), |) <
as well as
1 ~ 1
IRl < e(h=be o 1ull, , + Vhllull,, + 1), Au) ) < o1+ h=3e=T)ully
For [[ull; ., < p we obtain with (4.73)
1G(,0,0)]| < e(llully o + l9(u, 0,0)]]) < e(1 + p)lully o < cop
and similarly, if h2e=9T < ¢y for H“HH}L < p with (4.72)
1G(w,0,0)[| < c(llully +1lg(u, 0,0)[]) < (14 p)|lullyy < cop

For (w, 1), (2, \) € Bs(0) C R™*! equation (4.74) leads for [ull} oo < por H’U/”H}l < pto

|G, w, 1) = Glu, 2 W] < ex(Vi 4 p+ h8) (11— A + Jw = 2]).
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Choosing h,d < 1 so small that VA + (ﬁ + h)o < —1 and p < min(1, %0) we can apply
Theorem A.2 with ¢ = 1. This yields a unique solution (w, i) € Bs(0) of (4.67). Equation
(A.4) implies with the continuity of G

1T (w1) = Ty (u2) |, + |Tp(wr) = Tp(uz)| < ellur — uafly (4.76)
which implies with 7,(0) = 0,7),(0) = 0
1T (u)lo + [T (u)| < cllully - (4.77)

It remains to prove the Lipschitz estimates for ¢. Using the definition of T, (-), T, () and
M,, M, and subtracting (4.31), (4.32) from (4.24), (4.25) we obtain that v® = T, (u)—M,u,
p? =T, (u) — M,u solves mv™ = 0 and

0=RNv"
0= RP (A" + o + (T, (u), Tu(w)),
0= (0, A" + o + G(Tu(w), Tu(w)))y-
Application of estimate (4.34) in Lemma 4.9 to (v®, u?) leads to
1T (u) = Myully o + [Tp(u) = Myu| < e[ (T (u), Tu(u)ll,, o € {00, Lan}
Thus we have for ¢ defined in (4.60) by (4.77) and (4.23)
&)l < ATy (u) = Mow)ll, + 16(Tp(w) = Myw)ll, + [|9(To(w), Tu(w)l,
< el (T (), Tu(u)ll, < Kp([ITo(w)llo + |Tu(w)])

which leads to
[P(W)l o < cpllully pos

as well as for h_%e*aT < o to
le(w)llz,, < cpllulizg-
In the same way we obtain for ui,us € S§* that VA = Ty(uy) — Myuy — (Ty(u2) — Myus),
p? =T, (w1) — Myuy — (T, (u2) — Myuz) solves mv™ = 0 and
0= RMNvA
0= RP(A"2 + o + @(Ty(wr), T (ur)) — G(To(uz), Ty (uz))),
0= (4, A" + G + @(Ty (ur), Tp(ur) — ATy (uz), Ty(uz)))y,.
Again, application of estimate (4.34) in Lemma 4.9 to (v2, u®) implies for o € {00, Lo}
1To(u1) = Myuy — (T (u2) — Mvu2)”2,<> + [T (ur) = Myuy — (T (ug) — Myus)|
< el p(To(ur), Ty(ur)) — G(To(uz), Tp(uz))ll,-

Thus we obtain with (4.76) and (4.22)

16(ur) = G(uz)lls < A (T, (ur) — ) = Myu2))|,
1 A(Tu(ur) = Myur = (T (uz) = Myus))|,
+Hs0(Tv(U1) () = o(To (u2), Tu(uz))l,

< el|p(Ty(ur), Tp(ur)) — P(To(uz), Tyu(u2))ll,
< cflug — U2||1,<>'

M Ul — ( U(UQ
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As in the linear case we use transformations T, 7T}, to reduce the semilinear DAE (4.18)—
(4.21) to an ODE in S5* as follows. Let (v(t), 4(t)) a solution of (4.18)—(4.21) for consistent
initial values (v°, u%) € 8 on (0,7). Then differentiating (4.20), (4.21) w.r.t. time we
obtain by (4.18) that (v(t), u(t)) solves (4.24), (4.25),i.e. (v(t),u(t)) € S« for t € (0, 7).
For u = mv we can insert v = T, (u), p = T, (u) into (4.18) to obtain

U =70 = A+ dp+ v, p)
= AT, (u) + 9T, (w) + @(To(u), Tyu(u))
= ("M, + oMy )u + A (T, (w) — Myw) + (T, (uw) — Myu) + $(To(w), Tu(u))
= Abu + 3(u).

Conversely, if u solves the reduced ODE
o = Abu+ @(u), u(0) =u’ € S$5N B;y°(0) (4.78)

then Lemma 4.18 implies that v(t) = T,(u(t)), u(t) = Tu(u(t)) is a solution of (4.18)—
(4.21) in By°(0) C 8% for some p > 0 in the sense of in the sense of (4.1). The above
arguments lead to the following lemma:

Lemma 4.19 Assume the same as in Theorem 4.6. Then there exist hg,T > 0 such that
for h < hg, Xn+sh > T we have the following equivalence.

For each p > 0 there exists 6 > 0 such that, if u € C([0,7),55° N B;’Q(O)) is a solution

n (0,7) of (4.78) with u(0) = u’, then (v(t), u(t)) = (Tu(u(t)), Tu(u(t))) € C([0,1),5)
is a solution of (4.18)~(4.21) on (0,7) with v(0) = T,(u"), u(0) = T, (u®) and |lv(t)],, +
u(B)] < p.

Conversely, there exists p > 0 such that if (v(t),u(t)) € C([0,t),5%) is a solution of
(4.18)~(4.21) on (0,7) with v(0) = v°, u(0) = u® with [[v(t)||, , + lu(t)| < p, then u = v
is a solution of (4.78) with [lu(?)|, , < p-

4.2.4 The semilinear reduced system
Local existence and uniqueness

In this section we prove the solvability of the integral equation together with some esti-
mates. Note that the existence of a solution of (4.78) follows from standard ODE theory.

Lemma 4.20 Assume the same as in Lemma 4.19. There exists hg, T > 0 such that for
h < hg, £hny > T the following statements hold:

For each p > 0 there exist § > 0 such that for each u® € S with ||[u°(|, < & there exists
7(h,J) > 0 such that a unique solution of (4.78) on (0,7(h,J)) such that [[u(t)]l;, < p
fort € [0,7(h, J)).
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Proof: For each fixed h,J = [n_,n] we use the fact that all norms are equivalent, i.e.
we have

Ci(h, Null < lJull, < Ca(h, J)|u]-
Moreover, by Lemma 4.18 there exists p > 0 such that for |lul[, , < p the map ¢ is
Lipschitz. Thus we can apply the standard Picard-Lindel6f theorem in R+~ "-F1 to
obtain the existence of a solution of (4.78) for [0,7(h,.J)). We can further achieve that
|ul| < Ca(h,J) pin 7(h,J) such that ||jul|, < p for all t € [0,7(h,J)). O

Stability for the reduced system

The stability of 0 as a solution of the reduced system is the usual Lyapunov type estimate.
We repeat it here, since we are interested not only in the stability of the solution of a
single DAE but we aim at a uniform stability estimate for a whole family of solutions of
DAEs corresponding to discretizations with different stepsizes and intervals. Therefore we
have to mimic the method of the continuous case as far as possible.

Lemma 4.21 Let ¢ : ST¥(R™) — ST(R™) be given which satisfies (4.61),(4.62) in
B;’O(O) and assume that (4.57) holds for the solution operator of the linear system.

Then there exist p,hg,T > 0 such that for any h < hg, tnith > T and any consistent
initial condition u® € S with ”UOH1,<> < p the following holds: There exists a unique
solution u of (4.78) which can be estimated by

Ju(t)]l;, < Ce™, Vt>0. (4.79)

where v,C > 0 are independent of h, J.

Proof: We choose v € (0,«) and o > 0 so small that

00 ef(afu)s
o Vs
and ¢ > 0 so small (using (4.62)) that

3
K ds < —
o 574

1)l < allully, for |ull,, <.

Then for each h,J we find by Lemma 4.20 some p > 0 such that for u° € ST with
HUOH1,<> < p asolution u of (4.78) exists on (0, 7(h, J)) with |lu(?)[|, , < d for t € [0, 7(h, J).
This solution is given by the “variation of constants” formula

u(t) = Sp(t)u’ + /0 Sp(t—s) @(u(s)) ds

and the estimates (4.57) lead for C' > 1 to

t

lu()llo < 1Pl + /0 1Sp(t — $)@(u(s)]  ds
1

Vi—s

* 1
+ Ca/ —e *ds ||ull{
0 Vs Lo

t
< Ce i)+ C [ e I p(u(s)), ds
0

<
<

o
1
3
=a.
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Since the ODE (4.78) is autonomous, this leads to 7(h, J) = oo using the usual arguments:
If (0,7:) is the maximal interval of existence of a solution u with [[u(t)|;, < d, then by
the above estimate we have [[u(t)[; , < 35 on (0,7). Thus we can solve (4.78) for each
h,J with initial condition at tg = 7. — 5, where 7 = 7(h, J) is given by Lemma 4.20. In
this way we continue the solution to 7 > 7,, which contradicts the maximality of 7. From
this the existence of u in (0,00) follows with [[u(t);, < d for all ¢ € [0,00) and small
enough h and large enough J.

It remains to prove the exponential estimate. Define

n(t) = sup {e”[lu(s)ll; o}
s€0,t]

then

t
1
u(t eVt < Ke=a)t|y,0 +Ka/
Ju(t) ] o6 < e A —

v u(s) |y ds

e e Ju(s)|, , ds

t
1
< K|l +KU/ SN
= ” Hl,o 0 \/m
1

< K[l o + 7n(t).

Taking the supremum on both sides gives n(t) < 4K”U0H1,<> < ¢ for t > 0 and we obtain
the estimate (4.79). O

4.2.5 Proof of the stability theorem

Now the proof of the stability Theorem 4.6 is effortless: For any (v, u0) € 8¢ 1 By°(0)
we have u’ = m¥ € §¢nN B;’O(O) and using Lemma 4.21 we obtain a solution u of (4.78)
on (0,00) which satisfies (4.79). By Lemma 4.19 we find that

vu(t) = To(u(t), u(t) = Tu(u(t))

solves (4.18)—(4.21) with v(0) = T, (u®) = v°, u(0) = T,,(u®) = u°. Moreover, the estimates
(4.77),(4.79) imply that (v, 1) can be estimated by (4.26).
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Chapter 5

Numerical results

In this chapter we test the approximation results of Chapter 2 and 3 on two different
examples of reaction-diffusion equations for which exact solutions are known. We compare
the order of approximation for different grid sizes h and interval sizes J with the expected
behavior from Theorems 2.21 and 3.15. The essential spectrum for the continuous and the
discrete operator on the whole line is compared to the eigenvalues of the discrete operator
with periodic boundary conditions.

First we describe the implementation of the solution of the DAE resulting from the freezing
ansatz which results in the boundary value problem (2.56)—(2.58) for the wave. Then the
solution procedure for the spectral problem (3.78)—(3.80) is described.

Then we deal with the Nagumo equation which is a scalar example. The quintic Ginzburg-
Landau equation is a 2D example which has besides the translational symmetry an addi-
tional rotational symmetry.

5.1 Implementation

For a given interval J = [z_,z] and number of grid points M + 1 we discretize the
PDAE (4.1) using finite differences for the spatial derivatives. We use the notation z; =
x_ +hj, u; = u(z;) € R™, j =0,...,M, and sort differential and algebraic variables in
y = (vec(ug), ..., vec(upr)) and z = (vec(upri1), vec(u_1), ) where p € RP, y € Rm(M+1)
and y € R?™*P (compare section 1.4.2). Here we use the vec notation for v € S;(R™) :
vec(u) = ((wo)1,- -+ (W0)my - -+ (Upr)1,- -+ (Wpr)m). Then we obtain a DAE of the form

y = f(y,z) € R

5.1
0=g(y,z) € R¥™P 51

where

£(02) = (AG16-0); + Flug, (o) +ch (5100)

B [ P-ug + Q_(dou)o + Prun + Q+(5OU M =7\
9y, %) = k (Zj]‘/i[) hSi(@)] (uj — ;) )

k:]-v'"vp



118 Chapter 5. Numerical results

and S(u) = (S1(u), ..., Sp(u)), Sk(u) € R™M+L =1 ... p. Since

1 /Q, —Q_ 0
0 0y _ — + 2m+p,2m+p
=) 2h/< 0 0 o) €R

cis singular, this is a DAE of differentiation index 2 (see [22]) and we have to choose initial
values (y°, 2°) which solve the consistency conditions
0=9(y,2)
0= Dg(y,2)f(y,2).

In order to illustrate the stability of the solution as has been proven in Chapter 4 we show
the time evolution of the wave and the parameter u starting from some initial condition.

(5.2)

The resulting stationary solution (u, ) can then be used as an initial value for the New-
ton’s method for solving the boundary value problem (2.56)—(2.58). It’s solution is then
compared to the exact solution for different grid sizes h and intervals J.

We solve (5.1) using a Matlab implementation of the Radau ITA method of order 5 [16] of
Hairer / Wanner [22] and compare the results with a § method with fixed time steps.
For the following detailed description of the implementation we differentiate not between
differential and algebraic variables but between the wave v and the parameter u and denote
the differential resp. the algebraic part of the right hand side of (5.1) by faig and faig
respectively. For v = (y, z) € R™M+3)4? we have to solve the DAE

Bv' = F(v) € RMM+3)+P  4,(0) = " (5.3)

where B = (Im(](\)/lﬂ) 8) and

A848-u); + flug, (o)) + (S0, Sewhe)je G =1, M

~ (far(u,p)\
ro = (M) =

The Jacobian at v is given by

P_ug+ Q_(dou)g + P'+uM + Q4+ (bou)rr — v |
(3o nSk(@)F (s — )

k=1,....p

DF(v) = (D fais (u, 1) Dy fais (u, 1)\

\ Dufaig(u) o )
i 74 X1 ¢1
Xo Yo 2 ;
- (5.4)
Xy Yy Zu dm
R T RTINS 0N
with
Xj:%A—%Bj, Yj:—%A—FCj, Zj:%Aﬁ—%Bj,
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where Bj, C; are given as in (2.79) by

p p
Bj = Daf(uj,00u;) + > mkSE Cj = Dif(uj,00u) + > pSp,
k=1 k=1

@bl:(Sl(u)Z,, p( )7,), qbl:(Sl(u)Z,,Sp(u)Z) ERm’p, ’izl,...,M.

The consistency condition (5.2) for the initial values v = (u°, %) yields a system of the

form o
G(°) = ( falg(u ) > —0.
W)=\ Dufug) fae (. )
This underdetermined system is solved by using a Gauss-Newton method starting from
suitable initial conditions. A better procedure, which allows to prescribe the initial values
at the inner points ¢ = 1,..., M, has been introduced in Chapter 4. Assume that n and

the matrices Py, @+ are blocked into a Neumann and a Dirichlet part as in (3.10). For
any given (uo, ..., ups) which satisfies the essential conditions (4.10),(4.4)

77D=PDu0+PDUM,
O—ZhSk uj — 1), k=1,....p

the remaining values (vec(u—_1), vec(upr41), pi1, - - -, tbp) can be computed from (4.9), (4.11),(4.12),
here given by

= PNug + QN dgug + P_{_VUM + Qf%uM,

p
0= PP(A646 uo + f(uo, douo) + > txSk()o)
=1

p
+ PP (A8 6 ups + f(unr, Souns) + > iSk(u)ar)
k=1

0= ZhSk T(A8 8- uj + f(uy, douy) +Z“k5k i), k=1,....p
k=1
However, we did not implement this procedure for determining consistent initial values.

The linear system (3.78)—(3.80) for the computation of discrete eigenvalues of the operator
A defined in (1.5), which has been discussed in section 3.1.3 reads for p = 1

(A—sBu=0 (5.5)
(U,u) = w
where
Y1 Zl Xl
Xo Yo Zy
A= ufdlf'f(a /1) — .

PLEQ . —%Qr Py Qi Q-
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with
1 1
Ru=P_u; + Q_%(w —up) + Pyupy + Q—O—%(UM—H —up—1).

Here (@, 1) denotes the numerical solution of (5.3). The equation (5.5) is the approxi-
mation of the spectral problem for the operator A which determines the stability of the
traveling wave and (5.6) is an appropriate normalizing condition which is needed to regu-
larize the eigenvalue problem.

Note that the boundary conditions and therewith the matrices Py, @+ need not be the
same as in equation (5.4) which defines approximation of the traveling wave. As has been
discussed in Section 3.2 already, the choice of boundary conditions has a great influence
on the eigenvalues. For the numerical tests we solve (5.5),(5.6) with Newton’s method,
starting from the exact eigenfunctions and eigenvalues which are known in the test cases.
Clearly, this is not an option when no initial values are known. In that case, one has to
use a general eigenvalue solver.

A natural generalization of (5.5) to more general symmetries, i.e. the case described in
Section 1.4.2 where p = dim N (D, fais (@, 1)) > 1 is given by

AV —BVD =0 (5.7)
V(V-V)=0 (5.8)
where V = [v!,... vP] € R™M+3).p and D € RPP. Here we compute a p-dimensional

invariant subspace which belongs to the p eigenvalues near zero. In this case in each
Newton step one has to solve linear equations of the form

AVs — B(VAs + VD) = AV — BVD

VIV =vT (v -V)
for (Vs,As) € Rm(M+3)+pp 5 RPP. This is accomplished by using a Bartels-Stewart al-
gorithm which is described in [27], [5]. The error in the invariant subspace is measured
via the angle between the two subspaces V' and V. The cosines cos(61), .., cos(6,) of the

principal angles 0 < 6; < ... <6, < % are given by the singular values of VTV, provided
the two matrices are orthogonal. Then we define

dist(V, V) = sin(6,) = /1 — o2 (5.9)

where oy is the minimal singular value of VIV (see [20], [27]).

For the computation of the whole spectrum we solve the generalized eigenvalue problem
(5.7) for V,A € R™M+3)+pm(M+3)+p ith the standard Matlab eigenvalue solver which
is an implementation of the QZ algorithm. Here the additional condition (5.8) needed in
the application of Newton’s method is not necessary.

To examine the influence of the bordering of A" which has been introduced in Chapter 4
in order to remove the eigenvalue near zero from the spectrum, we consider the following
bordered generalized eigenvalue problem

(A=sBw =0, veR™MM+3)+p (5.10)

"’_ .A (p ~_ Im(M+1) O
A_<\I/T 0>’ B‘( 0 0

where
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and U, ® € R™M+3)2 are defined as in Section 4.2 by

v (VeC(S[l)(ﬂ))T vec(Sg(ﬂ))T>7 o (VeC(S(l)(ﬂ))T vec(Sg(ﬂ))T).

The number of infinite eigenvalues of (5.5),(5.10) can be computed as follows. The mul-
tiplicity of s = oo corresponds to the multiplicity of A = 0 of the problem

A —-Bp=0, veCmMr,

Since the span of the generalized eigenvectors corresponding to A = 0 is given by N (5’),
which has dimension 2m + p, a principal vector w is defined by Bw = Av where

v € N(B) = span{eM+D+1om(M+3)+p}  With the notation v = vec(vy, . . ., Unr41, V1, 1), Un €

R™ € RP and w = vec(wp, . .., wpr41, W—1,A),w, € R™ X\ € RP we obtain that w is de-
fined by wo = X17)_1 + ((I))\)(), Wpr = ZMUM+1 + ((I))\)M, w; = (‘I)/\)Z', 1= 1, ‘e ,M —1if
v satisfies

0= PNy + QYoo + PN uar + QY dovar, (5.11)

0 = PPvy + PPuy (5.12)
M

0=> hSe(@)]v;, k=1,...p. (5.13)
j=0

The equations (5.12),(5.13) are satisfied automatically and (5.11) reduces to r conditions
0=—-Qv_1+QYvars1. (5.14)

There exist no further principal generalized eigenvectors, since Rw = 0 and (5.14) imply
v = 0. Thus the number of infinite eigenvalues is given by 2m+p+(2m+p—r) = dm+2p—r.

m=1 m=2
b.c. r ‘ p=0 ‘ p=1|r ‘ p=0 ‘ p=2
Dirichlet 0 4 6 0 8 12
periodic 1 3 5) 2 6 10
Neumann || 2 2 4 4 4 8

Table 5.1: Number of co-eigenvalues

5.2 The Nagumo equation

The first example is the well known scalar Nagumo equation [25]
up = Uz +u(l —u)(u—2A), wu(z,t)eR, xR, t>0, (5.15)
where X € (0, 3).

This equation is often used for testing algorithms since a traveling wave solution u(x,t) =
u(x — fit) connecting the stationary points u— = 0, uy = 1 of this equation is explicitly
known

—x

a(:c):(1+eﬁ>_1, ii=—vV2 (3 - (5.16)

DNO|—=
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besides other explicit solutions, such as pulses, sources and sinks [8], [1], which we do not
deal with here.

For the following computations we choose A = 0.25 which leads to i =~ —0.3536. The
exact profile on the interval [—40, 40] is displayed in Figure 5.1.

1+

0.9F

0.8

0.7r

0.61

0.5F

. . . . . . .
-40 -30 -20 -10 0 10 20 30 40

Figure 5.1: Nagumo, traveling front

The time dependent system

The time evolution of the frozen wave u starting from a randomly perturbed step-like
initial profile, is shown in Figure 5.2 and compared to the corresponding traveling wave.
In Figure 5.3 the development of the parameter u is displayed. We use the Radau ITA
method for the solution of the DAE which arises from a discretization with A~ = 0.1 on an
interval J = [—40,40] with Neumann boundary conditions. We employ the fixed phase
condition (2.59) and use exact solution @ given in (5.16) for the reference function .

(a) traveling (b) frozen

Figure 5.2: Nagumo wave, evolution of wu(t)

After a transient phase, the frozen wave is stabilized and the parameter u converges to
the exact velocity fi. In contrast, the traveling wave shown in 5.2(a) travels to the left and
leaves the computational domain at ¢ ~ 50.
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L L L L
30 35 40 45

Figure 5.3: Frozen wave, evolution of the parameter p(t)

In Figure 5.4 we show the time evolution of the difference |u(t) — i and [lu(t) — |
to the exact solution (u, 1) defined in (5.16) of the boundary value problem (1.13). One
clearly observes exponential convergence in time until the error reaches machine precision
at t ~ 80. The exponential rate of convergence in this region is about a ~ —0.29. This
behavior matches the prediction from the stability result 4.6, and rate of convergence is in
good agreement with the spectral information, since in this case max(Re (o(L) \ {0})) =~
0.283 (cf. Figure 5.8).

Note that, although it is not covered by the theory in this thesis, we get similar results
using the orthogonality phase condition 0 = Wg¢n. Since here the resulting DAE is of
index 1 only, we were able to perform the computations not only with the Radau and the
f-method, but as well with the standard Matlab DAE solvers for index 1 DAEs odelbs
and ode23t [55],[54]. As expected, the results in this cases are similar to the ones reported
above.

Figure 5.4: Nagumo, time evolution of |u(t) — i| and [Ju(t) —a,[|

Approximation of the traveling wave

Figures 5.5 and 5.6 show the approximation error of the traveling wave for periodic
and Neumann boundary conditions. The grid size h has been varied exponentially in
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(b) llall (©) llallyz

Figure 5.5: Approximation error, Dirichlet b.c.

[1074,107!] and the size of the symmetric interval linearly in [20,80]. We observe, that
the convergence of the wave form @ to the exact solution « is linear in 7" and quadratic in
h. This is in good agreement with the prediction of the approximation Theorem 2.21. The
exponential factor in 7' is about a ~ 0.35, i.e. || — |, < K(h? +e™T), o € {0, H2}.
The parameter p converges twice as fast in h to the exact velocity [i; here we observe
I — ji| < K(h*+ e °T), where a ~ 0.5. This is a superconvergence phenomenon, which
has been studied in [48]. For very small grid sizes h < 10735, the ||a — ﬂHH% increases
slightly. This is due to the fact, that the equations which have to be solved in the Newton
Iteration become very ill conditioned. In later examples, this effect will become even more
prominent.

Comparison of 5.5 and 5.6 shows, that the behavior is similar for Neumann and Dirichlet
conditions. For small interval sizes, Neumann conditions perform worse than Dirichlet
conditions. It is well known [3],[48], that the order of convergence can be improved using
projection boundary conditions, but these have not been considered in this thesis.
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Figure 5.6: Approximation error, Neumann b.c.

Approximation of the eigenvalue (

For the Nagumo equation the eigenvalue 0 which corresponds to the translational eigen-
mode @' (which is always present, since the equation (1.1) is equivariant w.r.t. translations)
is simple. Thus the approximation Theorem 3.15 can be applied directly.

In order to document the dependence of convergence on the grid size h and the inter-
val length T, we perform similar computations as above for the boundary value problem
(3.78),(3.79),(3.80) near the eigenvalue o = 0. We use the numerical solution (u, ft) from
above as linearization point and the exact eigenfunction @’ restricted to the grid as ref-

erence function . As initial values we chose (v%, ) = (ETJ,O). As before, we vary h in

[107%,107!] and T in [10, 80] and use homogenous Dirichlet boundary conditions.

The error in v which is displayed in Figure 5.7 decreases linearly in T" and quadratically
in h. However, the error in the eigenvalue oy, is constant for decreasing h in Figure 5.7(a).
The bad conditioning of the matrices for small h and large T is clearly visible. But since
the error in v is always larger, the overall behavior is still in accordance with the statement
of theorem 3.15.
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Figure 5.7: Eigenvalue near 0, approximation error, Dirichlet b.c.

The essential spectrum

In Figure 5.8 all eigenvalues of the generalized eigenvalue problem (5.5) with periodic
boundary conditions are displayed with black crosses. The solid parabolas are the curves
s+ defined in (3.90) in Example 3.23. As has been discussed already there, the essential
spectrum of A lies in the part of the left half plane which is bounded by s_. Most
eigenvalues lie on an ellipsis, which encloses the essential spectrum of the discrete operator
A" on the whole lattice Z defined by

(A"u), = (640_w)n 4+ A(Oow)n + f'(n)un, n € Z.

This has been discussed in Example 3.23. The zoom into the region near 0 in Figure
5.8(b) shows a simple eigenvalue near zero, which is separated by a gap from the rest
of the spectrum. This gap is bounded by the parabola s_. Using Dirichlet boundary
conditions, one obtains the approximation of the absolute spectrum, which is given (cf.
Example 3.23) by 0,55 = (—00, —0.28] This is shown in Figure 5.9(a). The zoom in Figure
5.9(b) displays the eigenvalues of the of the bordered generalized eigenvalue problem (5.10)
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(a) overview (b) zoom in

Figure 5.8: Nagumo, spectra

as well. Here the bordering is given by ¥ = vec(6o@)” and ® = vec(dp@t)”. The spectrum
is the same, exept for the zero eigenvalue which is removed from the spectrum as expected.
The same is true for periodic boundary conditions. Note that the number of co-eigenvalues
depends on the choice of boundary conditions, we obtain the predicted quantity 4m+2p—r

(see Table 5.1).
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Figure 5.9: Nagumo, spectra
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5.3 The quintic complex Ginzburg Landau equation

The second example is the cubic quintic Ginzburg Landau equation [58], [62], [14]
Ut = gy +ou+g(u), g(u) = BlulPu+vyu|'u, wu(z,t)€C,6 €R, a,B,7v€C. (5.17)

This equation is an amplitude equation which describes the slow modulation in space and
time of the envelope of the finite wavelength pattern for traveling wave systems just above
the onset of a finite-wavelength instability. It shows a variety of coherent structures, like
stable pulse solutions, fronts, sources, sinks, etc. Moreover, the equation has regimes
where the behavior is intrinsically chaotic.

The equation is equivariant w.r.t. the group G = S' x R with action
a(y)u(z) = e u(z =) fory= (v, %) €G
and thus the functions @’ and iu are eigenfunctions of
Au = augy + 0u + fpug + ifyu + Dg(a)u

corresponding to zero. Thus here the condition of zero being a simple eigenvalue of A
is not satisfied and the approximation results Theorem 2.21 and Theorem 3.15 do not
apply directly. For numerical computations we write (5.17) in real variables. Introducing
the two parameters p; and p, the operators arising from the symmetries (translation and
rotation) are then given by

Siu = Rgu, Sou = ug,

where R, denotes the rotation defined in (1.61). For certain parameter values, this equa-
tion possesses stable rotating pulses (the so called Thual-Fauve pulse [58]) and unstable
pulses, as well as rotating and traveling fronts. All these solutions can be written (in
complex notation) in the form

u(a,t) = e (e — fnt),

where for the rotating pulses, we have fi; = 0. It depends on the choice of initial conditions
which type of solution is selected.

-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40
(a) stable pulse (b) unstable pulse

Figure 5.10: QCGL, stable and unstable pulse
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-40 -30 -20 -10 0 10 20 30 40

Figure 5.11: QCGL, front

For the parameter set a =1, 6 = —0.1, 8 =3+ 14, v = —2.75 + 4, which has been used
in [58], we found numerically a stable pulse with rotational velocity p, ~ —1.30 as well as
a rotating front. Here we used a grid size h = 0.1 and Dirichlet boundary conditions for
the pulse and Neumann boundary conditions for the front on the interval [—40, 40]. These
solutions are depicted on Figure 5.10(a) and 5.11.

Using Painlevé methods, some exact solutions have been constructed explicitly in [32].
With £ = x — fist the explicit expression for an unstable pulse reads

k sinh(p)
cosh (k&) + cosh(p)

u(, t) = uge (@08t (cosh (k) — cosh(p))mo\/ (5.18)

where ug, ag, 0o, p, ir, iz, k are parameters that can be computed explicitly from a,d, 3
and v using quite complicated formulae which are given in [32] and which we do not want
to restate here. For the used parameter set, we have j; = 0, g, ~ 0.0573 and all other
parameters are real. Starting a Newton iteration with this explicit solution we found an
unstable pulse with i, &~ 0.0573 for the discretized equation on J = [—40, 40] as well. This
solution is shown in Figure 5.10(b).

The time dependent system

The time evolution of the real part of the stable pulse is compared for the frozen and the
rotating system in Figure 5.12 on the interval J = [—40,40] with grid size h = 0.1. We
start with the exact unstable pulse solution given in (5.18) and use Neumann boundary
conditions. After a transient phase until ¢ ~ 15, the rotating pulse rotates with a fixed
rotational velocity fi,. In contrast, the frozen pulse is stabilized. As is shown in Figure
5.14(a) the parameter u, converges to a fixed velocity fi, whereas the translational speed
ut stays at zero.

The comparison of the rotating and traveling with the frozen front in Figure 5.13 shows a
similar situation. The frozen wave stabilizes quickly, whereas the non-frozen front contin-
ues to rotate and travels out of the computational domain at ¢ =~ 60.

The parameters p¢ and p, converge to the same translational speed and rotational velocity
that are observed in the non-frozen system. This is displayed in Figure 5.14(b).
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(b) frozen

(a) rotating

Figure 5.12: QCGL, rotating vs. frozen pulse
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Figure 5.13: QCGL, rotating vs. frozen front
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Figure 5.14: QCGL, time evolution of p,,
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Figure 5.15: QCGL, time evolution of |u(t) — fi| and |lu(t) — 4|

The rate of this convergence is discussed in Figure 5.15, where the time evolution of the
difference to the solution of the boundary value problem (2.56)—(2.58) is shown.

The error |u(t) — ii] in the parameters pg,p, is displayed as well as the error in the
waveform ||u(t) — @|| . As in the previous example, the exponential convergence in time
matches the prediction from the stability result Theorem 4.6. Here the convergence rate
of @ &~ 0.12 for the pulse and «a =~ 0.2 for the front is again in good agreement with the
spectral information (see Figure 5.18(a) and 5.20).

Approximation of the unstable pulse

As in the previous example we compare the approximation error of the solution of the
boundary value problem (2.56), (2.57),(2.58) with the estimates in Theorem 2.21. For
the unstable pulse the exact solution is explicitly given by (5.18). Figure 5.16 shows the
approximation error of the pulse for Dirichlet boundary conditions. The grid size h is
varied exponentially in [107%,107!] and the size of the symmetric interval .J linearly in
[20,80]. As shown in Figure 5.16 the parameters pug, j1, converge much faster than the
wave form @ to the exact values. The rate of convergence of u, to fi, is of order 4 in h and
the exponential rate in T is a = 0.5. In contrast, u; reaches quickly the range of machine
precision where rounding errors dominate and the bad conditioning of the equations in
the Newton iteration becomes prominent. The wave @ itself converges as predicted with
quadratic order in h and with o =~ 0.16 in 7. This can be observed in HHH}Q as well
as in ||-||o, (see Figures 5.16(c), 5.16(d)). In all cases the overall behavior matches the
predictions made in Theorem 2.21.
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Figure 5.16: QCGL, approximation error for the unstable pulse



5.3. The quintic complex Ginzburg Landau equation 133

Approximation of discrete eigenvalues

The corresponding linearization of the transformed equation at the exact solution 4 =
(0, w) here reads

Au = Augy + fiyuy + (01 + BMy + GMa + iy Rx )u

s
2
where

A= MRe (a)v B = MRe (ﬁ)v G= MRe (7) with MRe (Z) = (Re z —Im Z)

Imz Rez

and

Mo — 302+ w? 20w Mo — 50% + 602w? + wt 403w + vw?)
= T 4P+ owt) ot + 60%w? + swt

20w 02 + 3w?

Z([Ul,’UQL [_',iﬂ})

(e) £([v1, 2], [, ia])

Figure 5.17: QCGL, approximation error for the double zero eigenvalue
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In order to solve the eigenvalue problem (5.7),(5.8) we use a Newton method, starting
from V = [ﬁTJ,i?l‘ ;1. Alternatively we use the function eigs of the Matlab implementa-
tion of Arpack [31] compute the two eigenvalues of smallest magnitude of the generalized
eigenvalue problem (5.7) iteratively.

The errors in the subspaces as defined in (5.9) and the absolute values of the two eigenval-
ues near 0 are shown in Figure 5.17 for the unstable pulse. Here o; denotes the eigenvalue
which belongs to the approximation of the translational eigenfunction @’ and o, is the
eigenvalue which belongs to the approximation of the rotational eigenfunction i@. It can
be seen that the translations eigenvalue oy is in the range of machine precision, thus the
errors increase for decreasing h, since the condition of the eigenvalue problem gets worse.
The error in the rotational eigenvalue o, is nearly constant for different h, but decreases
for increasing T, as expected. For very small h and large T the increase in error due to
the conditioning becomes visible as well. The angle between the invariant subspace which
belongs to o; and o, and the span of restriction of the exact eigenfunctions ﬂiJ and 7w,
to the grid shows the expected behavior. It decreases quadratically in h and linearly in T’
with a rate of ca. —0.32 until the range of machine precision is reached.

Note that the choice of boundary conditions decides about the multiplicity of zero. For
example, zero is a double eigenvalue for the pulse with periodic boundary conditions,
whereas it is a simple eigenvalue for the front, since iu is not periodic. For the continuous
operator the same is true: 7@ is not in Lo if u is a front.

The essential spectrum

The dispersion relation (1.6) is given by
det(—w*I +irfi] + fir Rz + 61 + BM;" + GMg" — sI) =0 (5.19)

where Mli, ]\423E are given by inserting the stationary points (vi,w4) in My, M.
Similarly, the essential spectrum of the operator on the whole line is determined by (see

Lemma 3.18) the solutions s € C of

) .
det(— (cos(x) = 1)1 + % sin(k)fiel + fir Rz + 81 + BM{ + GMj —sI) =0, x € R. (5.20)

Inserting the data fi; = 0, @+ = 0 of the (stable or unstable) pulse , we obtain M = 0
and (5.19) simplifies to

—K2+0—s — [y
det( . —/12—1—5—3)_0’ k€ R.

Thus the essential spectrum of the linearization of the operator A on the whole line at an
pulse, consists of the two half lines which are given by

s+(Kk) = —K24+ 0 £ ifiy
which is i + [—o0, d].
Similarly, the solution of (5.20) simplifies to

2 _
7z(cos(k) — 1) + 81 — sl —fiy _
det ( iy Z(cos(rk) = 1) + 61 — sI 0, keR
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which is solved by
2 L
»h (k) = ﬁ(cos(/{) —1)+dLip,.

This are line segments, given by =ifi, + [—}%, J].

In Figure 5.18 the solutions of the generalized eigenvalue problem (5.5) for the stable and
the unstable pulse are compared. The zoom near zero shows that for the stable pulse only
the (double) zero eigenvalue is present, whereas for the unstable pulse an eigenvalue with
real part > 0 exists as well. In order to approximate the essential spectrum, we have used
periodic boundary conditions (compare section 3.2), but the approximation of the lines
mentioned above is still rather coarse.

Note that one has to be careful interpreting the numerical for the whole spectrum. For
small grid sizes h and large T' the condition of the eigenvalues of (5.5) becomes quite bad.
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Figure 5.18: QCGL, spectra
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In Figure 5.19 we compare solutions o of the system (5.5) with the eigenvalues o} of the
bordered system (5.10). Here the bordering is given by ¥ = (6@ @), &= (dou ia).
It can be clearly seen, that the zero eigenvalue is removed from the spectrum oy of the bor-
dered operator and that this procedure works for the unstable situation as well (although
there one cannot make use of it).

The same is shown in Figure 5.20 for the stable front. Here it becomes visible that the
bordering does not only remove zero from the spectrum, but has an effect on the other
eigenvalues as well. Nevertheless no additional eigenvalues are created on the right of the
spectral gap at ca. —0.22, as expected by the resolvent estimates (3.4), (3.15),(3.16).

For the number of infinite eigenvalues of the generalized eigenvalue problem we obtain the
predicted quantity 4m + 2p — r (see Table 5.1).
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Appendix A

Auxiliary results

A.1 Functional analytic notions

First recall that s € C is in the resolvent set of the operator L : D(L) C X — X, if L —sI
has a bounded inverse on X and that the essential spectrum oeg(L) contains all s € C
that are neither in the resolvent set nor eigenvalues of finite multiplicity.

Definition A.1 Let X be a Banach space and L : X D D(L) — X a linear operator.
1. The operator Rs(A) = (sI — L)~! with domain D(Rs(A)) is called the resolvent of L
ms.
2. The resolvent set p(L) contains all A € C for which

e R\ exists
e Ry is bounded
e D(Rs(A)) = R(sI — L) is dense in X.
3. The complement of the resolvent set o(L) = C\p(L) is called spectral set. It can be
divided into two subsets o(L) = 0ess(L) U opi(L), where the point spectrum op (L)

contains all isolated eigenvalues of finite multiplicity and oess(L) = o (L) \ opt(L) is
called the essential spectrum.

A.2 Fixed point theorems

Parameter dependent contraction Lemma

Theorem A.2 Let X,Y be Banach spaces and F' : (X xY) D B,(0) x B5(0) = Y be a
continuous mapping, which satisfies the following estimates for g € [0,1):

|F(e.) — Fap)ll < gl — w2l Yo € By(0), yrp € Bs©)  (A)
|F(,0)]| <3(1—q) Va € By(0) (A2)
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Then for each x € B,(0) there exists a unique fixed point § = g(x) of F(x,-), i.e.
F(z,g(x)) = g(x) and the following estimate holds

1
g = well < 7= llvn = F(@,) = (w2 = Pl y))ll- Ve € Bo(0) 91,32 € Bs5(0). - (A.3)

Note that (A.3) implies the continuity of g in B,(0), since

1

lg(z1) — g(z2)|| < qug(m) — F(z1,9(z1)) — (9(22) — F(21, g(22)))|l

_ 1iq||p<x2,g<x2)> — F(x1,g(x2))]].

(A.4)

Nonlinear perturbation theorem

(see [61], HS 50 or [3], Lemma 3.1)
Theorem A.3 Let F:Y D B,(y) — Z be a C' mapping between two Banach spaces Y
and Z and let (DF(y))~! € L[Z,Y] exist. Assume the following estimates for k,o > 0

1
IDE(@)~ M z—y
I1E@)lz < (0= K)o (A.6)

Then F' has a unique zero yo in Bo(y) ={y: |ly — glly < o} and the following estimates
hold

|IDF(y) = DF(9)lly_z <k <o <

Yy € B,(y), (A.5)

o0 =7l < = IF @ (A7)

o =ty < s | F) = Pl ¥on.n € B,(0) (A8)

Discrete Sobolev embedding

We need a discrete version of the Sobolev embedding H!(R) C C(R) which has been proven
for intervals of length one in the appendix of [29]. Here we prove a modified version which
takes into account the variability of the interval length.

Lemma A.4 Let u € S;(C™), then for any C > 1 there exists T > 0 such that for any
h >0 and £hny > T the following discrete Sobolev inequality holds

lullye < Clullyg (A.9)
Proof: With the notation
S
2
(w,0), g =hY uffvn,  ull?, = (u,u),
n=r

we have the following version of the summation by parts formula

(u, 040), o = —(0—u,0), 1 g1 + uille —ully,. (A.10)
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Let

Joel) = min Junll, ) = mas ]l = el
and assume w.l.o.g. [ > k. With (A.10) we obtain

2 2
[l |™ = N ll™ = s 6w gy + (04w, w)p g

2 2
< 2lullg,, I8+ulg,, < lul2,, + 15ul2, -

Since

ny
1 1
2 Z 2 2
< h < —
lusll” < h(ny —n_+1) funll” < 2THUH£2J1

n=n—

we obtain for T > m

1
2 2 2 2 2 2 2
lulle = lluell” + [lugl® = flugll” < ﬁHU”gz,h +lullz,, +110+ullz, ,
1 2 20 112
<(1+ ﬁ)HUHH}l < C%lullzg -

A.3 Exponential dichotomies for ordinary differential equa-
tions

In this section we repeat some well known results about exponential dichotomies for or-
dinary differential equations which can be found in [42], [60], and some facts about the
operator L defined in (1.46).

Definition A.5 (Exponential dichotomy)
The linear differential operator

Lz=2—-M()z, z€JCR, M(-):J — R™™ (A.11)

with solution operator S(x,£) has an exponential dichotomy (ED) in the interval
J =zx_,x4], x4 € RU {doo} with data (K,a, ) if there exist a bound K > 0, a rate
a >0 and a function 7 : J 3 x — w(z), 7(x) a projector, such that the following holds

S(x, §)m(§) = m(x)S(x,§) (A.12)
and the Green’s function
Cua6) = {S(m,@w(s), T2 ¢
o =Sz, I —7(£)), = <¢,

satisfies an exponential estimate

|Ge(x,&)|| < Ke =€l 2 6 e . (A.13)
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If J = (—o0,0] then the kernel of the projector m(0) is given by

N(m(0)) ={z € R™: 2218 IIS(z,0)20]|| < oo}

and for J = [0, 00) the image of 7(0) is given by

R(m(0)) = {20 e R™: :SCL;[O) IS (z,0)20|| < oo},

(see [41], Section 2). If L has an exponential dichotomy on (—o0, 0] and [0, 00) with data
(K4, a4, m1), then the kernel of L is given by

N(L) = {S(-,0)z0 : 20 € N(m_(0)) N R(m4(0))}.

Note that, if L has exponential dichotomies on R* with data (K4, ay,m4) then the adjoint
operator
L*: Ly —H2 22 + M7 ()2 (A.14)

also has exponential dichotomies on R* with projectors I — 7r£ and
N(L) = {S(z,0)20: 20 € R(rT)NN(77)}.
Thus for ¢ € N (L) we obtain the exponential estimate

lp(z)]| < Ke ¥, z € R. (A.15)

Note that, G being a Green’s function means that the solution of the linear inhomogeneous
equation
Lz=7r, zeJ (A.16)

is given by z(z) = [, G(z,&)r(§) dE.

Thus if the operator L has exponential dichotomies on R* with data (K4, a4, my), then
solutions of (A.16) on J = R* are given by

0
5 ()(x) = / G (2, ) (€) de

T 0
:/_ S(x, )P (6)r(¢) d£—/ S(x,§)(I = P~(£))7(£) d¢ (A

57 (7))(x) = h Hx, o)F
5 ()() /0 G (, €)7(E) de
- /0 S(a,€)PHE)(E) d — / S(a,€)(T — PHE)r(€) de.

Using the dichotomy estimates, these solutions can be estimated for 7 € L4 by (cf. Lemma
3.21 in [60])
15=(P)llz, + IF=@]O)] < ClIFll,- (A.18)

In order to infer the existence of exponential dichotomies on R* for the operator L de-
fined in (1.46) from the existence of exponential dichotomies for the constant coefficient
operators L* = lim, .o <L — M (), the following well known “Roughness Theorem” ([41],
[3]) is used. It describes the persistence of exponential dichotomies under perturbations
which decay for x — oo to zero.
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Lemma A.6 Assume that the operator Lz = z'— M (+)z possesses an exponential dichotomy on
J = [xg,00),x0 € R with data (K, a, ). Consider the perturbed operator

Lz=2 —(M()+ A()z

with A € C(J,R™™) and |A(z)|| — 0 asz — oo. Then L has an exponential dichotomy auf

[0, 00) with data (K,&,7), and

|7(x) = 7(x)]| = 0 as x— oc.

It has been shown in [3], Lemma 2.1, the existence of exponential dichotomies for L on
R* follows from the hyperbolicity of the matrices M* = lim, 1o M (z).

Corollary A.7 Assume that the matriz M € C(R,R™"™) has limits

My = lim M(x),

xr—+00

which are hyperbolic. Let X§ and XY be the stable and unstable invariant subspace of
M, respectively.

Then L has an exponential dichotomy on R~ = (—00,0] and RT = [0,00) with data
(Ky,ax,m4). The projectors m— and w4 satisfy

lim (I —7_(z)) = E", lim m(x) = E3,

T——00 T——+00
where B denotes the projector onto X" and E7 the projector onto X7 .

If the number of stable and unstable eigenvalues of ML is m, then we have

dimN(7_(0)) = dimR(E") = m, dimR(74(0)) = dimR(ES) = m.

Moreover, the operator L is a Fredholm operator of index k} — k; = k;, — k' where kF
resp. k;t denotes the number of unstable resp. stable eigenvalues of M.

Instead of a single matrix function M (-) we often consider families of matrix functions
M(-,s), in general the hyperbolicity of the matrices M*(s) = lim, .o M (x, s) is related
to the characteristic equations (1.6) as follows. A solution (Y,A) € R™P x RPP of the
quadratic eigenvalue problem

AYA%2 + BYA + (C —sI)Y =0, A, B,C e R™™,
is related via linearization to the eigenvalue problem
M(s)W — WA

for the matrix
0 1 2m,2m
e R*™ (A.19)

via
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Thus the spectral condition (SC) implies that the matrices M*(s) are hyperbolic for all s
with Re (s) > —f with m stable and m unstable eigenvalues (cf. Lemma 3.30 in [60]).

It has been shown in [3], [60] that this implies that the operators

L(s)z=2"— M(-,8)z, with (A.20)

0 I
M(x,s) = <A—1(SI — C(2)) A—lB(x)>

possesses exponential dichotomies on both half lines R* if Re (s) > —f3.

Note that A — sI and L(s) are strongly related. As has been proven in [50], the Jordan-
block structures of A — sI and L(s) are the same, as well as the Fredholm properties.

In the following we fix the notation for the corresponding invariant subspaces and its
projectors.

Definition A.8 We denote the (orthogonal) projector onto the stable subspace of M~ (s)
by E5(s), i.e. R(E(s)) = R(W2(s)), for

0= (yapaten) <F

where Y2(s), A (s) solve the quadratic eigenvalue problem
AYAN* + B.YA+ (C_ —sI)Y =0

and Re o(A% (s)) < 0.
Similarly, we denote the projector onto the unstable subspace of M™(s) by E%(s), i.e.

R(E (s)) = R(W"(s)). for )
wi N Y¥(s
Wils) = (Yr<$Ai<s>>

where Y*(s), A" (s) solve the quadratic eigenvalue problem
AYA?> + BLYA+ (Cy —sI)Y =0

and Re o (A (s)) > 0.

In case s = 0, we omit the s dependency, e.g. write just Y A° .
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Notation

D(P) domain of definition of the operator P.

N(P) nullspace or kernel of P.

R(P) image or range of P.

1P|l x_y norm of a bounded operator P: X — Y: ||P|| = zeng)P) { ”HIX&Y
240

o(L),o(L) spectrum and resolvent of an operator L

C(X,Y) bounded continuous operators from X to Y with sup norm.

CF(X,Y) k-times continuous differentiable operators from X to Y.

Let Ke {R,C}

CF(R,K") k-times continuous differentiable functions from R to K".

Cf (R, K™) functions, which possess continuous, bounded derivatives

@) = % f up to order k equipped with the norm

k k
1 oo = D IF P Noe =D sup[IfV ()]
j=0 =0 T€R
L,(R,K"™) Lebesgue integrable functions from R to K™, with norm

1fllg, = ( [l dx)”, | <p<oo

(u,v) Ly inner product, (u,v) = [ u(z)?v(z) dz
HF (R, K) Sobolev space of functions f € Lo(R,K™), which possess

Lo-integrable derivatives up to order k£ with norm

1
k 2 k
N 92 . 2
1l = [ 1915 | = / SO @) da
§=0 Ri—o

3

1
2

143
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o derivative of a function u(z)
Ug, Ut partial derivatives of a function u(z,t).
B (x) closed ball of radius p around z € X: B,(z) ={y € X : ||z —y|, < p}
J, Je, discrete intervals: J = [n_,ny|, Je = [n- — 1,n4 + 1],
Jry Ji Jy=[n_,ny+1], Jy=[n_ —1,n4]
G ko equidistant finite grid G 2, = {2n : n = zo +nh, n € J}.
Sy(K™) Banach space of sequences {zy, }nes, 2n € K™ with
2l = P 10l
01,0_,00 finite difference operators: 64 : S;. — Sy, 60— :S; — Sy, 6o : Sy —
Sy
(04u)n = %(un—&-l —Un), (0-u)n = %(un — Un-1),
(dou)n = %(un+1 — Up—1)
For 2 € Sy:
. 1ol oo = 2l + 164 211
Il 1llo0 = 121100 + 1546-21
H-HLM discrete Lo-norm for z € S;: HzHLM =00t h||zn\|2)%
g I ey, diserete Honorm |12l ¢, , = 12l = (121%, , + 18021, )2,
iz Iy, diserete H2-norm [zl , = lllys = (12120 + 10:5-2112, )}
(u,v), (u, U)T,s =2 el uplvn
(u,v), Ly p, inner product in Sy, J = [n_,ni]: (u,v), = (u,v)mm+
& functions which decay with its derivative, i.e. g € £,(J,R™) if
lg(z)®)|| < Ke=l &k =0,1 for some K > 0
vec(u) u € S;(R™) : vec(u) = (ul ... ,ua) e Rm(nt—n—+1)
0,0 Landau symbols
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