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Introduction

Economic models in cooperative game theory reflect the potential of groups or
‘coalitions’ to acquire bundles of goods, utility-payments, or simply political
power. Such models usually assume that a group/coalition signs a contract,
the realisation of which requires the involved individuals (players) to cooperate
with full commitment in order to reach the desired objectives by a joint, possibly

coordinated action.

There are some approaches which assume tacitly that players are able to divide or
split their activities. For example, the concept of a balanced system of coalitions
(which plays an important role for the proof of the existence of core-elements)
allows for an interpretation that players can partition the intensity of their coop-
eration to different coalitions of the system. This is a quite realistic assumption
since, in general, contracts are not explicitly formed for the cooperation in only
one group. The simultaneous cooperation of an individual within several groups

with different goals (possibly contradicting each other) seems to be the norm.

More general, there is a whole set of game theoretic approaches which are inter-
ested in coalitions with percentage varying activity. However, this term has to
be specified first. Since a coalition is in general represented as a subset of a ’set

of players’, we have to turn our attention to 'fuzzy sets’.

When considering a ’crisp’ set there are exactly two possibilities: an object is
either a member of this set or it is not. However, for many questions this sharp
concept represents a restriction which is too strong. There are problems in which
the objects under consideration may not only have one or zero as their degree of

membership but may adopt principally every degree between this two extremes.



Examples are the ’set of all natural numbers that a particular person considers to
be much greater than 1’ or the ’set of humans that a particular person considers
to be large’ (for these and other examples see Zimmermann [32]). In the first
case, there are a lot of numbers for which one cannot definitely say whether they
are an element of the described set or not. Of course, 30 is greater than 1 from
the mathematical point of view. However, the term 'much greater’ is not sharply
defined. Now, it is possible to assign a value of 0,8 to the number 30 to express
that 30 belongs with a high degree to this class. For the treatment of questions
dealing with such ’diffuse’ classes, Zadeh [31] establishes the concept of a fuzzy
set: For a given space of points/objects, a fuzzy set is a mapping on this space
to the unit interval, i.e. a function which assigns to each point in this space a
real number between zero and one. The value of this mapping at a certain point

is interpreted as the degree of membership of this 'player’.

Butnariu and Klement [6] consider cooperative games with fuzzy coalitions. Their
understanding of fuzzy coalitions is in line with Zadeh’s concept of fuzzy sets,
i.e. in a fuzzy coalition the players have a certain degree of membership which
lies between zero and one. As Butnariu and Klement restrict themselves to
cooperative games with transferable utility, the fuzzy coalitional function is a
mapping from the set of (feasible) fuzzy coalitions to the real numbers. Hence,
they define a fuzzy game to be a tripel consisting of a set of players, a fuzzy
coalitional function, and a set of feasible fuzzy coalitions. A possible application
for such a game can be seen in the field of cost sharing. Butnariu and Klement
discuss in [6, Section 28] the problem of getting a fair rate for services in bulk.
Here, they mainly think about the determination of the fixing of prices for utilities
like energy or water. A similar topic is treated in the paper of Billera et al.
[5], where the authors deal with the problem of finding telephone billing rates.
Another example for fuzzy games is provided by Dhingra and Rao [9]. They
consider a multiple optimisation problem with a certain degree of indefiniteness
which leads them to consider a cooperative game with fuzzy coalitions and non-

transferable utility.

The definition and motivation of fuzzy games is the main topic of Chapter 1.

Especially, our aim is to answer the question “How can a crisp game with trans-
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ferable utility be extended to a game with fuzzy coalitions”? In principal, there
are infinitely many possibilities. However, we restrict ourselves to the extension
which is given by the Choquet integral [7]. This extension is a very intuitive
one what can be seen especially for the important unanimous games, where the

Choquet extension is nothing else but the infimum function.

As for crisp games, one tries to establish solution concepts for games with fuzzy
coalitions like the core or the Shapley value. The main problem turns out to be
the fact that, even in the case of finitely many players, there is a continuum of
fuzzy coalitions. As shown in [29], the core of a Choquet game coincides with the
underlying crisp game. For a certain class of ’general fuzzy games’, there exists
a nice formula to calculate the Shapley value (cf. [6, Theorem 18.4]). However,
if we consider a problem with at least three players, the extension given by the
Choquet integral is not an element of this class. Mertens [16], [17] and Weif} [29]

consider some possibilities to repair this gap.

In Chapter 2, we make an attempt to establish the Shapley value even for count-
ably many players. A reason for dealing with this large number of actors is given
by Rosenmiiller [24, page 469]: “The set of players is assumed to be the set of
natural numbers. This should not necessarily be interpreted as a belief that a
countable set of players reflects a real life situation. Rather we think that the
behaviour of solution concepts can be studied when there is an ocean of small
players and a few influential or important players have dominant influence but
nevertheless do not rule the game on their own. Thus, it is predominantly a sta-
tistically motivated consideration which leads to modeling games on a countable

player set.”

First of all, one should mention that it is not possible to obtain a value in the
classical sense for all games. One very important counter-example is the unan-
imous game, where symmetry and additivity are mutually exclusive. However,
for the countable case there are several frameworks to determine a Shapley value
for some classes of crisp games ([26], [1], [20]). We will show how far these ap-
proaches can be extended to the fuzzy case. Furthermore, we will investigate
whether the smoothing procedure of Weifl [29] can be applied. It will turn out

that, for games belonging to the closure of the linear hull of the games with fi-



nite carrier, this framework provides the same value as the 'fuzzified’ approach of
Artstein [1]. Finally, we show how a quasi-value for a class of Choquet games can
be constructed which contains all infimum functions, i.e. all Choquet integrals
of the unanimous games. This is done by a limiting argument with respect to

weak convergence similar to that used by Rosenmiiller in [22].

In our last chapter, we leave the special class of games with TU character and
consider games with non-transferable utility (NTU games). We answer the ques-
tion of how NTU games with fuzziness can be understood and be defined. Again,
our special interest will be in the Choquet extension of such games. As there
is no canonical way to do this, our aim is to preserve as many properties of the
original Choquet integral as possible. We will see that comonotonic additivity
together with continuity cannot be satisfied by all games. Hence, we will out-
line a possibility for a comonotonic additive as well as for a continuous Choquet
extension. At the end, our focus is on the core and we show that, under the
assumption of monotonicity, the core of a crisp NTU game coincides with both

that of the comonotonic additive and that of the continuous Choquet extension.



Chapter 1

Fuzzy Games

This thesis is mainly concerned with fuzzy games and solution concepts on such
games. In the first section of this chapter, we provide a definition and motivation
for games with fuzzy coalitions. In particular, we will discuss their meaning and
possible fields of application. Afterwards, we show how some concepts known
from crisp games like monotonicity and convexity can be imbedded in a fuzzy

context.

Obviously, the restriction of a fuzzy game to the crisp coalitions is a crisp game.
For the converse direction there are a lot of possibilities to extend a crisp game
to a game with fuzziness. In Section 3, we present the Choquet integral, which
constitutes an extension, which gives a nice result for the unanimity games, and

which satisfies a lot of desirable properties.

The final section of this chapter is devoted to the value for fuzzy games. A short

overview of the different approaches concerning the value is given.

1.1 Definition and Motivation

Zadeh was the first who used in [31] the expression “fuzzy set”. In the case of a

crisp set, there are two possibilities: Either an element is a member of this set or
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it is not. In other words, we have two possible degrees of membership. In contrast
to this, a fuzzy set is a class with a continuum of grades. This extended concept
of a set provides a natural way of dealing with problems in which the source of

imprecision is the absence of sharply defined criteria of class membership.

Let € be a set of points. Then a fuzzy set A in €2 is characterized by its mem-
bership function f4 : @ — [0,1]. The value of f4(w) at w € Q represents
the degree of membership of w in A. To get an impression of a fuzzy set,
Zadeh [31] gives the following example: Let Q be the real line R and let A
be a fuzzy set of numbers which are much greater than 1. Then a (quite sub-
jective) characterization of A is given by fa where some representative values
are f4(1) = 0; fa(5) = 0,01; f4(10) = 0,2; f4(100) = 0,95; f4(500) = 1. Other
examples of fuzzy sets include terms like “tall men” or “beautiful women” (cf.

Zimmermann [32]).

Most models in cooperative game theory assume that a coalition of players signs
a contract the realization of which requires the participants to cooperate with full
commitment. However, there are approaches which are interested in coalitions
with varying degree of activity. Hence, we have to deal with the question of how

a game with fuzziness can be defined.

In the context of cooperative game theory, a fuzzy coalition is, from the mathe-
matical point of view, nothing else but a fuzzy set, i.e. it is a coalition to which
the players can belong with different degrees of membership. Again, the charac-
teristic function of a fuzzy coalition is a mapping defined on the set of players
Q2 to the unit interval [0,1]. The relationship between a fuzzy coalition and its
membership function is the same as the relationship between a crisp coalition
and its corresponding indicator function. For § C (), the indicator function
lg: Q — {0, 1} is defined by

_ 1, ifie S
1s(i) = o
0, ifi¢s.

In the following, we will not distinguish between a fuzzy coalition and its char-

acteristic function, and will represent both by a small latin letter. Whenever we
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consider a crisp coalition, we will use a capital letter to underline the fact that

we do not have any fuzziness at that moment.

Let us now define a fuzzy game as the major tool of the following chapters. A
(crisp) cooperative game with transferable utility is a tripel (2,P,v) (cf. [23,
Chapter 3, Definition 1.1]) where 2 is the (not necessarily finite) set of players,
P is the set of feasible coalitions (in the case of finitely many players we generally

take the power set), and v : P — R, v(0)) = 0, is the coalitional function.

As we will see later on (cf. Example 1.2 and Example 1.3), there are games where
the use of crisp coalitions seems to be insufficient. Hence, we will deal with fuzzy

coalitions and start with the definition of a fuzzy game:

Definition 1.1 A cooperative fuzzy game with transferable utility is a
tripel (Q, P,vT), where

e () denotes the set of players,

o P C [0,1]? is the set of feasible fuzzy coalitions (in the following we will
often use P = [0,1]%),

o vF : P o R, vI'(0) =0, is a fuzzy coalitional function.

Fuzzy coalitions have been used in game theory yet. For example, Mertens has
used fuzzy coalitions in [16] and [17] as technical tools to extend the Shapley value
on pNA (a space that we will define later on) to larger spaces of games. Aubin
stated in [2]: “In many instances, the core remains too large. Since we would
like to have solution concepts yielding a set of solutions as small as possible, the
question arises as to whether it is possible to shrink the core again by enlarging
the set of coalitions. This is done by embedding the set of coalitions into the set
of fuzzy coalitions.” Both authors use fuzzy coalitions only for technical reasons.
The following examples show that one can think of cases where fuzzy coalitions
are interesting for themselves, i.e. they deal with real world problems which

contain fuzziness.
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Example 1.2 LP-games with fuzziness

A class of games where one can introduce fuzziness in a quite natural way are
the LP-games (cf. Rosenmiiller [24, p. 362]). In this type of games the set

of players Q = {1,...,n}, a vector ¢ € R™, n vectors b/ € ]Rl_F and a positive

+
[ x m matrix A = (a;x),x are given. We have j = 1,..., m production processes
and k£ = 1,...,[ factors (resources). The decision to produce quantity zj of

commodity k in process k requires the use of a;; units of factor j per unit of £.

Each player i € Q has got an initial endowment b° of resources. The function
b: P(Q2) — R’ is now given via b(S) =Y, ¢ 0". Then, (Q, P(Q2),v) with

v(S) = max{cz|z € R}, Az < b(S5)}
defines the L.P.-game.

Now one can think of the case where the players do not want to give all of their
endowments to the production process. Hence, we can interpret a fuzzy coalition
f in such a way that if player j is a member of f she is willing to give the rate f(j)
of her resources to the processes. Therefore, Z?Zl fl )b,’c is the amount of factor
k available to f, and this term presents the limit of resource k for the production

processes. The corresponding fuzzy game is now defined by (£2,[0,1]%, v¥) with

o (f) = max{cx‘x e R, Az < zn:f(j)bj}.

Jj=1

Example 1.3 Multiple Objective Design Optimization

Here, we want to give another possible use of fuzzy games. First of all, we will
define multiple objective design optimization (MODO). Hwang and Masud have
stated in [13]: “Decision making is the process of selecting a possible course
of action from all the available alternatives. In almost all such problems the
multiplicity of criteria for judging the alternatives is pervasive. That is, for many
such problems, the decision maker wants to attain more than one objective or
goal in selecting the course of action while satisfying the constraints dictated

by environment, processes, and resources.” Mathematically, a multiobjective
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problem is based on n decision variables z € R*, k objectives, y; : R* — R, j =
1,...,k, and m constraints, z; : R* — R, ¢ = 1,...,m. The problem can now

be written as

max { (yl(x), Yo(x), .. ., yk(l"))

2(z) §0,2’:1,...,m}. (1.1)

In order to use (1.1), we have to know the goals and constraints in a very precise
way. However, these are often imprecise in nature, i.e. we have to deal with
vagueness. Here, we can use fuzzy set theories to alleviate such modelling diffi-
culties (cf. Dhingra and Rao [9] for further thoughts). A fuzzy goal as a fuzzy

constraint is nothing else but a function f : R* — [0, 1].

As an example for fuzziness in MODO one can think of the following (cf. Zimmer-
mann [32, Example 12.5]): “A board of directors is trying to find the “optimal”
dividend to be paid to the shareholders. For financial reasons it ought to be at-
tractive and for reasons of wage negotiations it should be modest.” Here we have

a fuzzy objective “attractive dividend” and a fuzzy constraint “modest dividend”.

Dhingra and Rao [9] assert that the following system is the correct way to involve
fuzziness in (1.1): We have again k crisp objectives y; and m crisp constraints
zi- Moreover, there are fuzzy goals f; : R® — [0,1],¢ = 1...,l, and o fuzzy
constraints g; : R* — [0,1]. “To capture the essence of the bargaining model
by permitting a tradeoff between conflicting fuzzy goals”, Dhingra and Rao use
tiob; = [1.21[0, 1J¥" x R* — R given by

1
1

,uobj(fla ) = [Z fz(ﬂﬁ)]

as aggregation operator of the fuzzy objectives. The operator i, : H?Zl[O, 1R x

R" — R for the fuzzy constraints is defined as

/»Lcon(gla ---3 Y0, $) = ,min g]('x)
7j=1,...,0

Now the problem is given by

max 3 (y1(2), y2(2), - - -, yk(x), ! (z) /\ 1/ (2)
{( @) \w(w)

%(2) <0, 0= 1,...,m}. (1.2)
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We have a problem similar to (1.1). However, in this case we want to satisfy the
fuzzy goals/constraints as good as possible. To come to a solution we will use

some concepts known from cooperative game theory. We define
U= {(yi(), ..., y(2), V)| 21(2) <0, =1,...,m, A < min{p/ (z), p?(z)}}.

If there exists, for each 7 = 1,...,k, a point r; € R s.t. r; denotes the worst
value of objective function y; that the decision maker is willing to accept, we can
bring the problem to a NTU context. As far as r := (rq,...,7,0) is an element
of U, we can define U as the set of feasible payoffs and r as the threat point.
Now we are able to look for Pareto optimal solutions for (1.2). Dhingra and Rao
[9] suggest the Nash solution [18]. For further thoughts about fuzzy NTU games,
see Chapter 3.

One can think of further examples: In a market game (see [23, Chapter 5, Def-
inition 1.1 and Definition 3.1]), each player has got an initial allocation of com-
modities. The initial endowment of a crisp coalition S is reallocated in such a
way that the sum over the utilities of the players in this coalition S is maximized.
If the players are allowed to give fractions of their initial endowments to different

coalitions, we have to deal with fuzziness again.

Another possible application of fuzzy games lies in the field of rate problems for
services in bulk. Butnariu and Klement consider in [6, Section 28] the problem
of getting fair rates for some utilities like electricity or water. In order to obtain
a solution, they construct a fuzzy game and calculate the corresponding Shapley

value.

1.2 Extension of some Crisp Concepts

We have to think about the question of how we can bring some well known
concepts for crisp games to the fuzzy context. In the following, we consider oper-
ations on fuzzy coalitions. These operations are defined pointwise. For example,

Q— f, f €10,1]%, denotes nothing else but the fuzzy coalition where each player
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i has 1 — f(4) as her degree of membership. The next definition is due to Zadeh
[31].

Definition 1.4 Let € be a set of players and let f and g be fuzzy coalitions of
Q.

o We say that the fuzzy coalition f is contained in g if f(i) < g(i) is valid

for every player i € §2. Hence, for this case we use the notation f < g.

e The complement f€ of a fuzzy coalition f is defined by f¢€ =Q — f.

There are different possibilities to define the intersection of fuzzy coalitions (cf.
Butnariu and Klement [6, Section 1] or Zimmermann [32, pp.31 and 32]) all of
which coincide with the notion of intersection in the case of crisp coalitions. We

mainly deal with two alternatives:

The possibility Butnariu and Klement prefer is given by means of the formula

fNex g=max(D, f +g—Q). (1.3)

Here, the degree of membership of each player in the intersection of f and g
is given as the sum of her two single values minus one — a very surprising
interpretation of an intersection. As we require f(i) + ¢g(i) = (f Upk 9)(i) +
(f Nk g)(3), we get

fUpk g = min(, f + g)

as union. This means that, according to Butnariu and Klement, the degree
of membership is additive in a certain way. Though one can find some nice
mathematical applications, in the context of fuzzy coalitions additivity does not
seem to be the intuitive correct representation of the union. As an example
consider the following case: Player i has the degrees of membership f(i) = 0,5
and g(i) = 0,6. Hence, her degree in the intersected coalition is (f Npxk g)(i) =
0,1, which is hard to justify. Another point is that a fuzzy coalition f which is
contained in another coalition g should satisfy f Ngx g = f, but this equality is

not valid any longer. On the other hand, we have fNpx f¢ = 0 and fUpx f¢ = Q.
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Another definition of an intersection is given by Zadeh [31]. He uses the minimum

to represent the intersection, i.e.

fNg=fAg(=min(f, g)). (1.4)

The corresponding union is nothing else but the maximum. This equation is
much easier to explain as the one of Butnariu and Klement. A player who is a
member of f and g takes in the intersection the minimum of the degrees that
she has assigned to the two coalitions. For f < g, we obviously get fNg = f.
Zadeh [31] has shown that the minimum of two fuzzy coalitions f and g is the
largest fuzzy coalition which is contained in both f and g. Furthermore, Yager
[30] states that the minimum is the only intersection operator that satisfies the

following conditions:
1. Commutativity: fNg=gN f

2. Associativity: [fNg]Nh = fN[gNh]

3. Two valued equivalence to ordinary logic: QN Q = Q. QNP =0NQ =
0,0Nnd=10

4. Monotonicity: fi > fo and g1 > ¢ implies f1 N g1 > fo N go
5. Continuity: x, — z implies (f N g)(z,) — (f Ng)(z)
6. Idempotency: fNf=7f
Obviously, idempotency is not satisfied by the intersection concept of Butnariu

and Klement. For the reasons given above, we will take the minimum as inter-

section, i.e.

Definition 1.5 Let Q be a set of players and f,g € [0,1]®. The intersection
of f and g is defined by f N g := min(f,g).

As in some later definitions the set of players may be an arbitrary set, we should

discuss briefly our understanding of a set of feasible fuzzy coalitions. At least
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we require such a set to be a fuzzy tribe in the sense of Butnariu and Klement
[6, Definition 2.5], i.e. a subset of [0,1]? containing () and being closed under
countable BK-intersection (f; € P = (\gx fi € P) and under complement. One
should remark that a fuzzy tribe is closed under countable intersection (f; € P =
N\ fi € P)[6, Proposition 2.7(ii)]. For a finite or countable set of players, we are
using P = [0, 1]

Now we will define some expressions for fuzzy coalitional functions all of which

can be found in the book of Butnariu and Klement [6].

Definition 1.6 1. As in the case of crisp games a fuzzy coalition function

v is said to be monotone, if for f,g € P with f > g the inequality

vE(f) > v (g) is valid.

2. A fuzzy coalitional function v¥ on P is said to be of bounded variation,
if vF' can be written as the difference of two monotone fuzzy coalitional

functions, ie.
F F F

vo=u —w, uF,wF monotone.
The family of fuzzy functions with bounded variation is denoted FBV.
3. The vartation norm is defined on FBV by
|07 = inf{u" () + w” ()| u", w" monotone, v = u" —w"}.  (1.5)

The following theorem provides another possibility to state the variation norm:

Theorem 1.7 [6, Lemma 15.5] v € FBV, if and only if

k
sup {Z W' (f) =0 (fe)l|[fi€Pri=1,..kfo< <. < fk} (1.6)
i=1
is finite. For v € FBV the expression (1.6) equals |[v”]|.

Definition 1.8 A fuzzy coalitional function v¥

fis foy ... € P with >, fi < always

v” (Z fi) =Y ")

1€EN 1€EN

1s called fuzzy measure, if for

18 true.
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As defined on page 12, the intersection of two fuzzy coalitions is given by the min-
imum. However, in the definition of a fuzzy measure we are using the intersection
in the sense of Butnariu and Klement [6]. To be more precise, ) .. fi < € is
tantamount to (g fi = max(0, ",y fi — Q) = 0. Hence, v” is a fuzzy measure

if for f1, fa, ... € P with Ngx fi = 0 always vF (Upr fi) = Y- v (fi) is true. One
should remark that in particular (g fi = 0 implies f; Npx fr = 0 for all j # k.

We will use (finitely additive) fuzzy measures mainly in the context of a solution
concept, and there additivity (as given by the intersection concept of Butnariu
and Klement) is meaningful. For fuzzy coalitions f, ¢ with f 4+ g < ) we require
a solution concept ¥ to satisfy ¥ (vF)(f) + ¥ (vF)(g) = T(vF)(f + g). Of course,

one can define a weak fuzzy measure by

‘€N i€N
for f; A fo =0, j # k, i.e. for fuzzy coalitions with pairwise disjoint carriers.
Obviously such a collection (f;) satisfies .. fi < €, i.e. each fuzzy measure is
a weak fuzzy measure. As we want to use the concept of additivity for as many
fuzzy coalitions as possible, we prefer the concept of a fuzzy measure to a weak

fuzzy measure not only for solution concepts but also for fuzzy games.

A fuzzy set function v is called homogeneous if for each f € P and for each
A €[0,1] s.t. Af € P we have that

v (Af) = X (f).

For reasons of simplicity, we assume that we always have a set of feasible fuzzy

coalitions which contains with a fuzzy coalition f always Af for all A € [0, 1].

Proposition 1.9 In the case of countably many players a weak fuzzy measure m

with bounded variation is a fuzzy measure if and only if m is homogeneous.

Proof Let a fuzzy coalition f be given. In the case of finitely many players,
Q= {1,...,n}, f can be extended to [0, 1]N by simply setting f(j) = 0 for j > n.
Now f(j)j, 7 € N, can be interpreted as that fuzzy-coalition where player j has
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the degree of membership f(j) and all other players in N\ {j} do not participate
at all. Hence, f can be written as f =3, f(j)J.

Let m be a homogeneous weak fuzzy measure and ), fi < N. Then

m(Zfi) = m ZZL-(M)

€N iEN jeN

= m (D> ) filj ]>

JEN €N

= m|\/ D AU J)

JEN zeN

- (T s0v)

jEN 1eN

= > > fl)mG)

jEN ieN

- m (\/ fi(j)j)

ieN jeN

= Zm(fi)

1€EN

Note that the bounded variation of m was necessary to use the double series

theorem of Cauchy.

Now, let m be a (signed) fuzzy measure. Then m can be written as m = m*t—m~
where m™ and m™ are non-negative fuzzy measures i.e. we have a Jordan de-
composition (cf. [6, Theorem 10.2]). Lemma 2.1.3 in [29] states that each finitely
additive non-negative fuzzy set function is homogeneous. This is especially true

for m™ and m . Thus, m itself has this property. q.e.d.

An example of a weak fuzzy measure that is no fuzzy measure is given by m(f) =

(f(1))%
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1.3 The Choquet Extension

If one restricts a fuzzy set function to P(£2), one obviously obtains a crisp coali-
tional function. Vice versa, it is a very interesting question how to extend a
given coalition function to [0,1]?. This may be of some interest if one has a
crisp problem (game) and is of the opinion that some “fuzzy decision” should
be allowed for a better representation of the reality. For this extension, there
are various possibilities. An example for the case of finitely many players is the
rather popular multilinear extension of Owen [19], that is, for Q = {1,...,n},
given by

vO(f) = Xserw) {H o 1Ia- f(i))} v(S). (1.8)

i€S i¢S

However, in the following we will concentrate on the extension which is based on

the Choquet integral [7].

Definition 1.10 The Chogquet extension v of a monotone outcome function

v 1s gien by

= o FG) > 1) dt. 1.9)

For finitely many players, i.e. Q = {1,2,...,n}, one can find a permutation 7
of the set of players such that f(7 (1)) > f(7%(2)) > ... > f(7 *(n)). The

Choquet integral can be written as
vO(f) = Z fFO)(Sre) — v(Sre-1)l (1.10)
i=1

where ST := {j|n(j) < i} fori e {1,...,n} and ST := 0.

The general definition of the Choquet extension only allows for monotone v, since
the term v({j| f(j) > t}) has to be Lebesgue-integrable as a function in ¢. In
the finite case we do not have such problems, and therefore we will drop this

requirement here.

Why are we interested in Choquet games? An answer to this question can be

found when considering the unanimous game e’’, which is defined by
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1, ifTCS
)= 0 NI
0, otherwise.

Unanimous games are quite important as in the case of finitely many players they
build a basis for V := {v|v : P(2) = R, v(0) = 0}. The Choquet integral w.r.t.
el provides

(€M) (f) = inf f(j) (1.11)

JET

for all f € [0, 1]

This seems to be the intuitively correct extension. In the extension of the unan-
imous game e’ only that player in 7" with the lowest degree of membership fixes
the outcome — just as in the crisp game. All players in 7" have to agree, and
the maximal degree where an agreement should be possible is inf;cp f(j). For
a better understanding, one can think of the following story: A decision maker
asks for every level in the unit interval whether the players in 7" do agree or not.
He starts at 0 and increases continuously the level until the first player disagrees.

Obviously, this procedure yields the predicted outcome.

Another possibility to explain formula (1.11) is given by the “intensity of partic-
ipation”. If f(i) = %, then player i € T works with 50 per cent of his potential

in the fuzzy coalition f. Hence, the over-all intensity of activity in f is given by

min;er f (7).

One should remark that the extension of Owen given by formula (1.8) provides

for an unanimous game

(N =110,
i€T
a result that is much harder to justify than the one given by the Choquet integral.

Another nice property of the Choquet extension is homogeneity (cf. [8, Proposi-
tion 5.1]), i.e. v“(Af) = A (f) for all A € [0, 1]. If all players play with half the

intensity used before, the outcome is precisely half as high as before.

Another aspect that stresses the importance of the Choquet integral in game

theory is given by Strassen in [27]. He was the first who has given an extension
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of the Shapley value to a continuum of players. This extension was done by a

continuity argument with the help of the Choquet integral.

On pages 13 and 14 we discussed weak versus strong additivity and decided to
use the strong variant. Since the Choquet extension is homogeneous, Proposition
1.9 states that there is no difference between the two kinds of additivity for the

Choquet integral provided there are at most countably many players.

1.4 The Value for Fuzzy Games

Butnariu and Klement give in [6, Chapter 18] a formula for a fuzzy value by
carrying the approach of Aumann and Shapley [3] to pFNA, which is a certain
class of fuzzy games and will be defined soon. First of all we repeat this formula.
Thereafter we discuss possibilities of extending the value to larger sets as pFNA

which can be found in literature.

Again, let Q denote the (arbitrary) set of players, and let P be the set of feasible

fuzzy coalitions.

Definition 1.11 1. A fuzzy measure m s called non-atomaze, if for each
f € P with m(f) # 0 there ewists a fuzzy coalition g € P, g < f, s.t.

m(g) ¢ {0, m(f)}-

2. The family of all finite, non-atomic fuzzy measures on P is denoted as
FNA. pFNA is the closed linear hull of {m*|m € FNA* k € N}, where
FNAT™ denotes the space of monotone functions on FNA.

3. Let FBVA denote the set of fuzzy coalitional functions with bounded vari-
ation, which are finitely additive. Here, a mapping p : P — R is
called finitely additive if for any fi,fo € P with fi + fo <
p(fi + f2) = p(f1) + p(f2) is valid.

Q always

Let 7 : Q —  be a one-to-one mapping. We call 7 a permutation of (Q,7P) if

7 f and 71 f are contained in P whenever f € P. Here, 7 f is the fuzzy coalition
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defined by (7f)(i) = f(7'(i)). A permutation 7 can easily be interpreted as an
operator on FBV by the formula

" (f) =v"(r ).

A linear subspace () of FBV is called symmetric, if 7Q) C @ is valid for all
permutations 7 of (Q2,P). It is easily seen that, for example, pFNA is a symmetric
subspace of FBV .

An operator ¢ : () — FBYV is called positive, if it preserves monotonicity, i. e.

if pv™ is monotone whenever v* is monotone.

Now, we are well prepared to give the definition of a Shapley value on fuzzy
games [6, Definition 18.2]:

Definition 1.12 Let Q@ be a symmetric subspace of FBV. An (Aumann-
Shapley-) value on @ is a positive linear operator ¢ : @@ — FBVA which

satisfies

o Symmetry: If m is a permutation of €2, then
p(mo") = m(pv").

o Efficiency: For all v € Q

This definition states some properties the value should have which are quite
similar to those of the axiomatization of the Shapley value for crisp games (cf.
Rosenmiiller [23, Chapter 3, Definition 7.6] or Theorem A.5 in the appendix).
The problem is that we do not have a formula for the fuzzy value yet. The

following theorem [6, Theorem 18.3] provides the so called diagonal formula:

Theorem 1.13 There exists a value on pFNA which is norm continuous s.t.

for each vector m of non-atomic fuzzy measures, m = (my,...,my),n € N, and
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for each continuously differentiable function p : R(m) — R with p(0) = 0 the

following formula holds:

o(pom)(f) = / Doty (£ - (Q)) d, (1.12)

where R(m) = {m(f)| f € [0,1]%} is the range of m and pm(s) denotes the

derivative of p in the direction m(f).

The formula (1.12) is called diagonal formula and the operator ¢ is said to be
the diagonal value. One should remark that under the assumptioms of the last
theorem R(m) is compact and convex, and that v := p o m is really an element
of pFNA (cf. Butnariu and Klement [6, Theorem 14.2 respectively Proposition
17.4]).

Owen shows in [19] that his extension of a game can be written in such a way
that formula (1.12) can be applied. Now, we will present some possibilities to
determine a value for the Choquet-games for finite Q , Q = {1,...,n}, P = [0, 1]
For these games the problem occurs that it is not possible to decompose them as
required in Theorem 1.13. Of course, one can define a non-atomic fuzzy vector
measure m by m;(f) = f(i) for all f € [0,1]® and a function p® : R(m) — R
with p¢(0) = 0 by

p“(q) = Zqi [v(S7i)) — v(SFw-1)] » (1.13)
i=1
where we have assumed g-11) > ... > ¢z-1(n). As one can immediately see,

pY is not differentiable except for an additive v. As an example for the non-

differentiability one can consider the unanimous game e’ where peCT is given by
peCT (¢) = minjer g;. This deficiency of the Choquet integral is repaired in the next
two subsections. The further subsections deal with two other ways to obtain a

value for the minimum function.

Butnariu and Klement show in [6, Chapter V] some possibilities to extend the
diagonal value beyond pFNA. However, they show that the largest space to which
they can extend the value does not contain the glove game (i.e. the Choquet
extension of a unanimity game) if one has more than two players [6, Example
25.5].
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1.4.1 The Smoothing Procedure

Let us consider the game ({1,...,n},[0,1]{="} 4€). As stated above, p¢ as
given by formula (1.13) is not differentiable at the diagonal except for an additive
v. The main idea of the smoothing procedure (see Section 3.3 in [29]) is now to
“smooth” the sharp bend (i. e. the non-differentiability) of the Choquet extension

and to obtain a value by a limit argument.

To be more precise, one is looking for a sequence (p) of continuously differentiable
functions p* : [0,1]® — R with p*(0) = 0 such that p‘ converges uniformly to
pY. With these p’ one gets a sequence of fuzzy coalitional functions v* := p’ o m,
and these functions satisfy all assumptions of Theorem 1.12. Therefore, we have
a sequence of diagonal formulas:

()= 10 [ GEe)ar (1.14)

Here, e = (1,...,1) € R" denotes the unit vector. Because of the convergence
of p’ to p© we are interested in the limiting behaviour of this expression, i.e. we

hope to obtain a value for v¢ by

lim v’ (f),

1—00
which has to be independent of the chosen sequence (p°). This value could then

be interpreted as the diagonal value pgpv®.

One should remark that this procedure weakens one part of Theorem 1.12, namely
that one, saying, that the value is continuous w.r.t. the variation norm. It is a
direct consequence of formula (1.6) that convergence w.r.t. the variation norm
implies uniform convergence. Thus, we use a form of convergence which is not
stronger as the one we used before. Moreover, uniform convergence is strictly
weaker as convergence w.r.t. the variation norm. One immediately proves that
p*:[0,1] — R, i € N, defined by

_’_2Qa QE[O,%]

. —3+2(a-3), g €]5:7]
(g =1 . .

(D" + (D200 - ), g €]5H1]
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S

W=

Figure 1.1: The graph of p® and p°

converges uniformly to the null function. The graphs of p? and p°® can be seen in

Figure 1.1.

On the other hand we have

%
'l ="

Jj=1

irJ iJ—1 ‘ 1

2y — =Y 2-=2
j=1

for all i € N, i.e. there is no convergence of (p) to the null function w.r.t. the

variation norm || e ||.

Using Choquet games, we have to be content with uniform convergence, as for
()¢ with |T| > 2 the convergence of p’ to p© w.r.t. || e || would imply (e”)¢ €
pFNA. This is a consequence of Proposition 17.1 in [6] which states that pFNA
is a closed subspace of FBV. However, Butnariu and Klement have shown in [6,

p. 160], that the glove game is not an element of pFNA.

There are several examples showing that the requirement of a sequence of continu-
ously differentiable functions p* which converges uniformly to p© without making

further assumptions is not sufficient to gain a (unique) value with lim;_, ., @v'.

We will consider again the Choquet extension of an unanimous game (e”)¢ with
IT| > 2. Let a sequence (p°) be given as required s. t. lim;_,, @v* exists. Now we

define another sequence (p:) by the following settings: Let m be a permutation
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of Qs.t. w(j) € T for all j € T. For a given g € [0, 1]" we define ¢™ € [0, 1]" by
G =a € (1.15)

and, furthermore,
Py (a) = p'(d")- (1.16)

Obviously, pi converges uniformly to p© since
pe(a) = p(9)] = P"(d") — ()| = IP'(¢") — " (¢7)]

is valid. It is also not difficult to verify continuous differentiability, since the

following is true: . )
op', . Op}
o VT 0T r—1()

Consequently, all in all we have

(g")

lim vy (f) = lim @v'(f7),
1— 00 1— 00

where v¢ :=pl om and f™(:) := f(7n~'(3)), i.e. the limit of pv* exists here, too.

)% is unique, lim;_, o @v'(f)

has to equal lim;_,, vl (f) for all fuzzy coalitions, i.e., in particular,

Under the assumption that the diagonal value for (e

1 i 1 9, 1 ;
op' op’ op'
lim / P (te)dt = lim / Pr (te)dt = lim / P (te)dt. (1.17)
1— 00 0 81,'] 71— 00 0 8,’1,'] 1— 00 0 81,'7.((])

This implies that all players in T will receive the same amount. In [29] the
sequence (pl;) is required to be symmetric, i.e. plz(q) = p’r(¢") has to be true

for all ¢ € [0,1]" and all permutations 7 of Q with 7(7) = T.

A very reasonable additional assumption on the smoothness sequence is that of
preserving of carriers, i.e. p‘(¢ + \e;) = p*(q) shall be valid for [ ¢ T, for all
q € [0,1]*, and all A € R. Concerning this, we have to say that p‘ has to respect

null players in the limit because of the uniform convergence:

P(q) - pc(qIT)‘ + ‘pC(Q|T) — pi(q|T)‘
p'(q) —PC(Q)‘ + ‘pc(qlT) —pi(qlT)‘

— 0.

P(@) = p(an)| <
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Therefore, we assume respecting null players, and this implies g—gj(q) = 0, and
hence Ny
. p'
1 te)dt =0 1.18
tim [ G0 (1.18)

for [ ¢ T. All in all, one wants to achieve a Shapley value, i.e. especially
efficiency:

n 1 ;

a 7

lim p

1—00 ] 0 8:5']-

(te)dt = (e1)°(Q) = 1. (1.19)

Together with (1.17) and (1.18) this means nothing else but

L opt 1
li tedt = — for 7 €T
im | o, )t =y forj € T,
and this leaves
R
psp(e")C(f) = 7] pNLE) (1.20)
7j=1

as the only reasonable value for (e7)¢. Requiring linearity for this new value, one

has found a value for all games, namely
pspv(f) =Y F(7)®;(v), (1.21)
j=1

where @ is the Shapley value for crisp games. Hence, the fuzzy value is nothing
else but an evaluation of the well known Shapley value with the help of the degrees

of membership of the respective players.

As was shown, a nice value can be achieved using some rather weak and reasonable
assumptions. However, it remains to show that a suitable sequence (p') exists.
The proof of the existence is quite long. It can be found in [29] in detail and shall

be omitted here.

1.4.2 Averaging over Small Perturbations

Mertens extends in [16] and [17] the diagonal formula (1.12) (which is defined on
pFNA) to a much wider class of games. In the following, 2 again denotes the
set of players, and C is a o—field of subsets of the set {2. The main idea of the
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approach in [17] is “taking the derivative not on the diagonal, but at some small
perturbation of it - say #{) + €g instead of ) - and by averaging the result for
some probability distribution over perturbations”. Mertens considers in detail a
certain closed subspace Q of FBV (which shall not be decribed here in detail)
with pFNA C Q and an invariant cylinder measure P on B(f,C), where B(£2,C)
denotes the space of bounded measurable functions on (€2,C). (If we take the
space B (Q,C) = {f| f € B(Q,C),0 < f < 1} of “ideal sets”, we again have
the concept of fuzzy coalitions.) As stated in [17, Theorem 2|, the two sided
derivative Dg( f) of a given v € Q at g in the direction of f exists for every f, for

P— almost every g:

D'E(f) — ]ima(g'i_Tf)_bv(g_Tf).

T—0 2T
Furthermore, the mapping ¢, : @ — FBVA defined by

@) (f) = / Di(f) dP(g) (1.22)

is a value which is independent of the particular invariant P chosen. Let A\ be

the Lebesgue measure. Then formula 1.22 can be rewritten in the form

pul®)(1) =ty [ HEETZHEZT gy,

T7—0

It is shown in [17] that the n-handed glove game v, V(f) = mingi—1...n} i(f)
where p1, ..., i, are non-atomic fuzzy measures, is an element of Q . Let us now
consider the special case 7 = ()¢ for a finite set T' of players. Then we obtain
for a fixed fuzzy coalition f and for each g € [0, 1] s.t. there exists a j € T with
g(7) < g(k) for all k € T\ j:

min;er [g(7) + 7f(2)] — minger [g(3) — 71 (7)]

Di(f) = lim -
= f(5)-
Since we get
1
P(g| There exists a j € T s.t. g(j) < g(k)Vk e T\ j) = m

for all invariant P, formula (1.22) provides the value

g L .
Car (D) = 777 2 1 0):

€T
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Hence, in the case of a finite set of players, we get exactly the same result as
with the smoothing procedure though the two approaches are different in many

aspects.

One should remark that it is not possible to use Mertens’ framework for (e)°

for a countable 7.

An example where formula (1.22) can be used for fuzzy games with countably
many players is given by weighted majority games [17, Remark 2] (for the defini-
tion of these games, of pivoting, and of the measure P, the reader is referred to

Section 2.2). For these games, Mertens’ formula provides

Ca(v)(f) =Y _ f(i)P(i pivots).

1€EN
1.4.3 The Axiomatic Approach

Tauman deals with glove games in [25]. He defines @™, n € N, to be the linear

space generated by all games of the form

v =min(py,..., )

where (p1, ..., pin) is a vector of n measures defined on a measurable space (Z,C)
with the property that each y; is a non-atomic probability measure and if 7 # j
then p; and p; are mutually singular, i. e., for each pair (¢, j), ¢ # j, there exists
a set Bj; € Cs.t. pi(By) = 0 = p;(BS). Tauman states in [25, Theorem 1]
that there is one and only one value ¢ on Q", i.e. an operator that satisfies the

properties of Definition 1.12. This ¢ satisfies

p(min(p, ..., pn)) = —————.

1.4.4 A Further Axiomatization

The three approaches described previously are all based on the definition of Au-

mann and Shapley [3]. The framework in this subsection differs from everything
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we have presented so far inasmuch here the value has to satisfy different prop-
erties. We mention the paper of Tsurumi, Tanino, and Inuiguchi [28] only for
reasons of completeness and will use later on Definition 1.12 whenever thinking

of a fuzzy value.

Let Q ={1,...,n},n € N, and a fuzzy game (£,[0, 1], v%) be given. Tsurumi,
Tanino, and Inuiguchi [28] call a fuzzy coalition g a fuzzy carrier in f € [0, 1]®
for vf if it satisfies ¢ < f and

vF(gAR) =vF(h) forall h < f.
The set of all fuzzy carriers in f for v¥ is denoted by FC(f,v").

Let f,g € [0,1]® with ¢ < f and a pair (¢,5) with 4,5 € Q,4 # j be given. The
fuzzy coalition gifj < f is defined by

g@) A f(G) k=i
g (k) = 9(G) A f@) k=
g(k) otherwise.

For any f € [0,1]%, the fuzzy coalition h;[f] is given by

1) k=i
f@) ifk=j
f(k) otherwise.

hij [ f1(k) =

Now we are well prepared to state the properties which have to be satisfied by a

fuzzy value in the eyes of Tsurumi, Tanino, and Inuiguchi.

Definition 1.14 /28, Definition 10]
Let F(Q) be a set of fuzzy games, v*' € F(Q), and f € [0,1]%. A function
0
0: F(@) - &)1

is said to be a Shapley value on F(Q) if it satisfies the following four azioms:

L Yoo @i0")(f) = o7 (f) and @i(o")(f) = 0 if f(i) = 0.
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2. For g € FC(f,vF), we have ;(vF)(f) = ©;(vF)(g) for all i € Q.

3. Iffi’;- € FC(f,v") and v (g9) = v (hij[g]) for any g < fij;, then o;(v)(f) =
@i (0T)(f)-

4. Let vI' vl € F(Q) be given s.t. vI' + vk € F(Q). Then ¢;(vf +vf) =
0i (V) + s (vE) for any i € Q.

One should remark that while ¢ is additive, ¢(v") does not have this property,

i.e. for f,g € [0,1]%, f+g < Q, the equation p(vI)(f) +o(v!)(9) = () (f+9)
does not hold in general.

The following theorem provides a value for all Choquet games with finitely many

players.

Theorem 1.15 [28, Theorem 7]

Let the set V be defined as V := {v|v : P(Q) = R,v(l) = 0} and let the function

vV — (Rﬁ)g(g) be given by

iw)(s) = 3 V=0 o iica

s!
TCS
W. 1l o.g. we may consider a fuzzy coalition f with f(1) > ... > f(n). Then the
function ¢ : V¢ — (Rﬁ)[o’ 1" defined by
0i(v)(f) =D i) (S)f (i) — f(i +1)]

1€Q

is a Shapley value on V.

The foregoing theorem provides exactly one value. However, it is not clear

whether there are other functions satisfying the four axioms of Definition 1.14.

Example 1.16 The unanimous game

Let us consider the case Q = {1,2,3},v = e{®3%} and f € [0,1]? with f(1) =
%, f(2) = i, f3) = %. Then, the value of Tsurumi, Tanino, and Inuiguchi given

by Theorem 1.15 provides

1
©i(eNC(f) = 2 for all 4 € Q.



Chapter 2

A Fuzzy Value for Countably
Many Players

In the following, we will have a look at games with {2 = N, i.e. we consider the
set of players to be countable. A reason for doing this is that in the countable
case we have some large players set against a bulk of very small players which
are more and more unimportant but can never be fully neglected. Thus, the
countable model reflects some typical situations with large and small players (cf.
Rosenmiiller [24, Chapter 7]).

In this chapter, we will discuss in how far it is possible to get a fuzzy value
for Choquet games in this case. First of all, one has to mention that it is not
possible to receive a value for all Choquet extensions with bounded variation. To
demonstrate this statement, one can consider the important example (eM)“. Tt
is easy to prove that there is no c—additive value for this game since for any
permutation m we have m(eM)¢ = (eN)°. However, there is no o—additive fuzzy

measure m satisfying both m(N) =1 and 7m = m for all =.

Unfortunately, it is not even possible to find a finitely additive value. As men-
tioned above, (eM)? is invariant under all automorphisms of N and thus for the

sets
S = {1,4,7,10,...}

29
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S, = {2,5,8,11,...}
Sy = {3,6,9,12,..}

o((eM)(S1) = p((eY)9)(S2) = ((eM))(S3) has to be valid. Since it is easy to
find a permutation m which maps S; in Sy + S3, we have that ¢((eM))(S;) =
o((eM)(Sy + S3) = 2p((eN)C)(S1). This last equation implies ¢((eM)¢)(S;) = 0
for all 4, i.e ¢((eY)°)(N) = 23:1 o((eM)©)(S;) = 0. However, this contradicts
efficiency. Hence, we have to restrict ourselves to certain classes of games when

looking for a value.

This is done in the first three sections in which we extend some crisp approaches
(Artstein [1], Shapley [26], Pallaschke and Rosenmiiller [20]) to the fuzzy case.

We show how we can get most of their results with only some slight changes.

In Section 2.4, we try to apply the smoothing procedure to the countable case.
We show that a value for all games in the closure of the linear hull of all games
with finite carrier does exist. However, as the smoothing procedure is based
strongly on efficiency and invariance under permutations, it is not even possible

to get something like a quasi-value for (e")°.

In the last section of this chapter, we examine an approach of Rosenmiiller [22]
who constructs a quasi-value for a continuum of players. One can use the main
part of this framework for the countable case to get a result for a class of games
which contains the unanimous games. Restricting ourselves to N as the player
set, we can avoid some measurability problems which occurred in Rosenmiiller’s

framework. Without these problems we can get some quite reasonable results.

2.1 The Value on spanCj

In this section, we consider Choquet games on countably many players and allow
all coalitions to be feasible, i. e. we consider the coalitional functions to be defined
on (N, P(N)). We define Cy as the set of Choquet functions with a finite carrier,
i.e. for each v” € Cj there exists a coalition K € P(N) with |K| < oo s.t.
“

v°|x = v¥. Considering such a finite coalition to be the set of players, Mertens
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[17] and Wei8 [29] have shown how a fuzzy value could look like. Now, the
assumption of the null player property implies a canonical way to obtain a fuzzy

value on Cj.

As the diagonal value of Butnariu and Klement [6, Theorem 18.4] is norm-
continuous, and as we hope that our value preserves as many properties as possi-
ble, one can think of extending the value found in [29] to the set spanCy, where
spanCy denotes the closure of the linear hull of C;. The examination of this
space is exactly our task in this chapter, and we will show that it is possible to
establish a value on this space. To do this, we will use the approach of Artstein
[1], who made similar thoughts for games with crisp coalitions. In this section,
we will mainly follow Rosenmiiller [24, Chapter 7.5], who gives a quite detailed

description of Artstein’s ideas.

Let BV denote the set of crisp coalitional functions with bounded variation. As
can be easily verified, each element of BV has got a Choquet extension. The set
CBYV (C FBV) may consist of all Choquet extensions of the crisp games with
bounded variation. Since we will deal with closed subspaces of CBV, it is an
interesting and important question whether CBV is complete w.r.t. the variation
norm. Proposition 2.2 will give an answer to this topological problem. In the
proof of this proposition, we will need a specific decomposition of the elements
of FBV, which will be described in the following lemma (cf. [6, Corollary 15.8]):

Lemma 2.1 If v¥ has bounded variation, then there exist monotone fuzzy coali-
tional functions vt¥ and v=F (the upper and lower variation of v ) which

satisfy

v =yt —y7F (2.1)

and
[o7 || = o (N) + v~ F(N) (2.2)

The previously mentioned fuzzy coalitional functions are defined by

U+F(f) = Sup{z fz _U le ‘fOSkaSf} (23)
o) = () =0 (). (2.4)
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The variation norm for crisp games is defined analogously to the one for fuzzy
games. Since in the following it will be clear whether we want to calculate a crisp

or a fuzzy variation norm, we will not distinguish between the two norms.
Proposition 2.2 CBV is a Banach space with the total variation as its norm.

Proof || e || is obviously a norm. Butnariu and Klement show in [6, Proposition
15.9] that (FBYV, || e||) is a Banach space. Hence every Cauchy sequence (v<),en
in CBV(C FBYV) converges to an element v € FBV. It remains to show that

this limit v*" is also an element of CBV.

For this reason, we define a coalitional function v on P(N) as the restriction of

v to the crisp coalitions, i.e. v is defined on P(N) by
v(9) := vF(S)

for all S € P(N). As v has bounded variation, v has this property, too. We
denote by v® the Choquet extension of this v. To complete our proof, it is
sufficient to show that v¢ = v¥". To show this, we define the sequence (v,) on
P(N) by

v (S) 1= vl (9).

Because of the convergence of (v$), to vI” w.r.t. the variation norm, we obviously
have ||v, — v]| = 0 (n = o00). As v¢ € CBV, every v, can be represented as the

difference of two monotone setfunctions defined on P(N). In particular, we can

choose the upper and lower variation of v,, v, = v, — v, .

Claim: lim, v, (S) = v7(S) is valid for all S C N, and, therefore, also
limy, 00 v;, (S) = v~ (5).

In order to verify this, one should observe that the following is true for alln € N

vi(S) = sup {Z [0n(S;) — vn(Si1)]T ‘so CS8 C...CS8C S}

=1

< sup {Z [(0n — 0)(S:) — (vn — 0)(Se_1)]* ‘50 CS$C...CSC s}
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+sup {Z[U(Sz) —v(Si—1)] TS €81 C...C S C S}
= (0 —0)H(S) + v (S), (2.5)
and analogously
v (8) < (v —va)"(S) + v (5). (2.6)

Formula (2.2) states that
lvn = vll = (v = )" (N) + (vn — v)"(N).

Since ||v, — v|]| — 0, we have that (v, —v)*(N) = 0 (n — o0), and, because of
the monotonicity of the upper variation, also (v, — v)*™(S) — 0 is valid for all
S € P(N). Together with (2.5), we have that

lim v,7(S) < v™(S)

n—o0

follows for all S € P(N). Using (2.6), one gets in an analogous way

lim v, (S) > v*(9).

n—0o0

This completely proves the Claim.
Now, a sequence (v;);en is defined on P(N) by

v = gfvj — 51123 v; .
One can easily verify the following properties:

1. v; : P(N) = R for all j € N: lim;_,q v = vT and lim; ,,,v; = v~ are

again setfunctions. Hence, both infys; v;"(S) < oo and sup;,;v; (S) < oo
is valid for all S € P(N) and every j € N.

2. v; € BV for all j € N: If we take the infimum or the supremum over
monotone functions, we get a monotone function. (S C T = v;(S) <

v (T) for all ¢ = inf;>; v (S) < inf;s; v (T) for all 5)

1

3. v; <wj for all j € N as inf;>; v < v;-L and sup;>; v; > v
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4. v; < V4 since infis; v <infisj 0 and also sup;s; v > sup;sjyq v; -

5. lim;_,o ¥;(S) = v(S) for all S € P(N):

For every S C N and every ¢ > 0 there exists an m € N s.t. [v}(S) —
v*(9)| < e for all n > 7m. Hence, |inf;>, v (S) — v (S)| < ¢ is valid for all
n > 7, and, consequently, lim;_,« inf;>; v} (S) = v*(S). The same can be
shown for v~ (S). All in all, we have that

lim 9;(S) = lim [inf v} (S) — supv; (5]

1—>00 1—00 j>1 §>i

= vH(S) —v (S) =v(9).

Because of property 5., we have, in particular, that lim; .. v;(f > t) = v(f > t)
is valid for all f € [0,1]", and, because of 4., (v,(f > t)), is monotone increasing
in n. Therefore, applying the monotone convergence theorem given by Denneberg
[8, Proposition 5.2(iv)], we have that

1

lim o7 (f) = lim [ o(f > t)dt

1—00 1—00 0

1
- / lim 3(f > #)dt
0

_ /lv(f>t)dt
= ().

Proposition 5.2(iii) in [8] states that v < u implies v“ < u“. Because of property

3., we have that 9° < v’ and, consequently,

¢ = ]im’ﬁfg limviC:vF.
1—00 1—00

By defining ¥,, := sup,~, v7 —inf;~, v, , one can show that v“ = lim;_, ., 7¢ > v¥.
y n jzn 7 Jzn Yy i—o00 Uj

As the final result one obtains v® = v*, and this had to be shown. q.e.d.
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Later on, we will need another possibility of representing spanCy. Let Aj’_ be the

set, of o—additive, non-negative functions on N, and the space AC be given by

AC := span ({p om ‘ m € A%,p:[0,m(N)] = R, p absolutely continuous}) )
Lemma 2.3 AC® = spanCy.

Proof We define V; as the space of crisp setfunctions with finite carrier.
Rosenmiiller shows in [24, Theorem 7.4.13| that AC = spanV} is valid. Since
it is obvious that V;C equals Cy, it remains to show that (spanVy)® = spanV,C.
This, however, follows easily from the linearity of the Choquet integral (cf. Den-
neberg [8, Proposition 5.2(i) und (ii)]):

= spcmVOC <= for € > 0 there exist ¢, € R and U,? € VOC,

k={1,....K},K €N, s.t.

— vY € (spanlp)C.

For every Choquet function v on [0, 1]V, we define a sequence v : [0, 1]N — R
(n € N) by
o) = v,
where f € [0,1]V is defined by
i) = { £G), i <n,
f(n), if 7 > n.

0n)C which denotes the restriction of v™C to

Later on, we will often use v
[0, 1]{1,...,71}, i.e.

PMC (1) = o™ (fF N {1,...,n}),
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f™ € [0,1]{t=7} . Since the linear combination of Choquet functions with finite

carrier is nothing else but a Choquet function with a finite carrier, we know that

for every v € spanCj there exists a sequence (vS) converging to v° w.r.t. || e]||

s.t. every v¢ has got a finite carrier. The next proposition shows that (v,

does this job.

Proposition 2.4 For every v© € spanCy, we have that v™W¢ —, o v¢ w. r. t.

the variation norm.

To prove this statement, we have to make some further thoughts first (among
other things, we will define another sequence of Choquet functions and state two

lemmas).
Definition 2.5 1. CM is the set of monotone Choquet functions, i.e. for
v € CM and f > g, f,g € [0,1]N, we have that v°(f) > v%(g).

2. v¢ € CM is said to be upper o— continuous, if for all f, f, € [0, 1]N such
that f, T f(n — 0o) we have that v°(f,) T v°(f)(n — 00).

3. v¢ € CBV is said to be convez, if
V() +09(g) <vO(fVg) +0C(fAg)
is valid for all f,g € [0,1]N.
As far as upper o—continuity and convexity are considered, there is a strong

relationship between a Choquet function and its underlying crisp set function

concerning, as the following lemma states:

Lemma 2.6 1. v is upper o—continuous <= v° is upper o—continuous.

2. v is convexr <= v is convex.

Proof “«<=" is obvious for both cases since it is sufficient to restrict v“ to P(N).
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1. “=" f, 1 f implies v(f, > t) 1 v(f > t), and hence it is possible to apply

the monotone convergence theorem to get
oC(f) = /v(fn > 1)t — /v(f > t)dt = v ().

2. “=" It is easy to verify that the equalities {(fAg) >t} = {(f > t)N(g >
t)} and {(fVg) >t} ={(f >t)U(g>1t)} are valid. Therefore, it follows
that

(fAg) +vO(fVe) = /v((ng) > t)dt + /v((fVQ) > t)dt
= /[U((f > )N (g >1)+o((f>1)U(g>1))dt
> /[v(f > 1) +v(g > t)]dt = v(f) + v°(g).

q.e.d.

Remark 2.7 If v € CBV is convex and non-negative (v° € C’BV_I_C), then v¢

1S monotone.

Proof Let S and T be crisp coalitions (S,7 C N) and S C T.. We have v%(S) +
vO(T\ S) < v9(0) + v¥(T), and hence v®(S) < v°(T) because of the non-
negativity. But this inequality states nothing else than v(S) < v(T), i.e. the
underlying v is monotone. Since the Choquet extension preserves monotonicity

[8, Proposition 5.1(iv)], we have proven the remark. q.e.d.

We do not know whether the statement of remark 2.7 holds true for every fuzzy
coalitional function. In the case of crisp coalitions one can use the well known
fact that convexity implies superadditivity and deduce monotonicity from this

fact. Superadditivity for fuzzy coalitions is defined as

oI (f v g) > 0" (f) + 0" (g)
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for f Ag = 0. Again, convexity is a special case of superadditivity. However, now
it is not possible to conclude monotonicity. If one defines superadditivity in the
way Butnariu and Klement [6] do, i.e. v*'(f +g) > v"'(f) +v"(g) for f+g9 < Q,
one would get monotonicity. The problem is that this kind of superadditivity is
not implied by our form of convexity. To show this, one can look at a convex and

non-negative v with v(Q) > 0 and define a fuzzy coalitional function v¥ by
VP (f) = u(Ty) where Ty = {wlf(w) > 5}, f € [0,1]"
v¥ is convex as
() +v5(9) = v(Ty) +v(Ty) S v(TrNTy) +0(TrUTy) = v*(f A g)+v"(f V g)

is valid. However, v¥ is not superadditive in the sense of Butnariu and Klement.

To see this, consider for example f = g = %Q In this case we have that

vE(f) +v"(9) = v(Q) + v(Q) > v(Q) = v"(f + g).

After these general thoughts concerning fuzzy coalitional functions we continue
with some considerations of convergence. For this reason, we define Ci’c to
be the space of all v“ € CBV which are convex, non-negative, and upper

o—continuous.

Lemma 2.8 [2{, Theorem 7.4.9] Let v¢ € C7° be given. Then, v"C := Y1,

satisfies v — v (w.r.t. || e]|).

Proof Let f,g € [0,1]N and f < g. fl{1,..n} is defined by

, f@@), ifi<n
f|{1,...,n} (Z) -
0, else.
We have
() +v°(9l,m) < (flamy) 890 V f)

VAN

v (fl1,my) +0%(9).
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Thus, v — v™ is monotone, and hence
09 — 0" = Y (N) —0v"’(N) = o(N) —v({1,...,n}) = 0 (n — o0).

q.e.d.

Lemma 2.9 [2/, Theorem 7.4.12] v € Ci’c satisfies v™C —, o vC (w.r. L.

e l)-

Proof First of all, we show the monotonicity of v(™¢ — v"C. To do this, we
take f,g € [0,1]N s.t. f < g. Because of convexity and monotonicity of v®, the

following is valid:

v (fl,my) +0° (g|{1,...,n} + Z g(n)z)

i=n+1

> UC(9|{1,...,n}) +v° <f|{1,...,n} + Z g(n)z)

i=n+1

> Uc(g|{1,...,n}) + ,U(n)C (f|{1,,n} + Z f(n)7’> .

1=n+1

One obtains nothing else but
v (g) =" (g) = ™M (f) —v"(f),
and this had to be shown. Therefore,

[b " = WO v (N
= v(N)—v({1,...,n}) = 0(n — o0).

All in all, together with Lemma 2.8, we have that

[ =€ < 0™ = "] + 0" = v = 0 (n — o0).
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Lemma 2.8 and 2.9 are also valid for general convex, non-negative and upper
o-continuous fuzzy coalitional functions v, provided that v preserves mono-
tonicity. After all these preparing thoughts, we are finally able to present the

still outstanding proof:

Proof (of Proposition 2.4) By Lemma 2.3 we know that spanCy = AC is true.
Consider v¢ € AC® and ¢ > 0. There can be found a v¢ = (p o m)¢, where p

c

and m are as in the definition of AC s.t. ||[v¢ —¥°|| < . Because of Lemma

7.4.7 in [24], there exists a ¢ = (pom)® for v with piecewise linear p s.t.
|[v¢ — v€|| < e. This p is a linear combination of some p§ : [0, m(N)] — R where
pg(z) = B(x — o) (cf. Rosenmiiller [24, Lemma 7.4.11]). One can easily check
that (p§ om)“ is an element of Ci’c, and hence the same statement is valid for
v°. For this reason, one gets ||[v¢ — 7™¢|| < e for n large enough (Lemma 2.9).

To sum up, we have until now that

[0 =T <l =2 + 77 = 5 + ([0 = 5| < 3e.
Since ||v¢ —wC|| < € naturally implies [|v™¢ —w(™C|| < ¢, all in all, the following
inequality is valid for sufficiently large n:

[0 =o€ < o = T + 7 — T 4[5 - o) < 5.

q.e.d.

The next statements are concerned with the value and its properties.

Definition 2.10 We define the operator o™ : CBV — FBVA for every n € N
by

™ (W) (f) = Pap (™) (f1-m), f € 0,11, (2.7)
where @'ty = 7, is the fuzzy value on {1,...,n} given by the smoothing procedure,
and fi-nt e [0, 1]1n} is defined by fi-"(5) = f(j) for j < n.

Proposition 2.11 The set B® := {v® € CBV| For each i € N and each f €
[0, 1]N the expression lim,,_, ©™ (vC)(f(i)i) exists} is a closed linear subspace of
CBV.
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This theorem can be proven in a similar way as Theorem 7.5.4 in [24].

Lemma 2.12 For v® € B? and f € [0,1]Y, we define

p(v°)(f(5)i) = lim o™ (°)(f(0)q). (2.8)

n—oo
With this definition, the inequality
D L@ (F@)i)] < [0 (2.9)
1EN

18 valid.

Proof v“ € B? implies that v“ can be written as the difference of two monotone

Choquet functions, and that lim,_,e @™ (v) exists where (pin) (v) := ™ (v°)(5).

7

D lei)] < ol < [1°) (2.10)

Sh

is true, where the first inequality has been shown by Artstein [1, Proposition
5.2]. The second inequality is obviously true: With the definition of the variation

norm, we have that

l
1ol = sup {Z WU = i)l | fo S < fi S N}

k=1

and

||v]| = sup {Z |v(Sk) — U(Sk,l)\‘ Sy C...CS5 C N} :

k=1
The feasible set in the second equation is contained in the feasible set of the first

“supremum”, i.e. |[v°]| > ||v||. Together with formula (1.21), one obtains

™) (F@)i)] = f(0)]e )] < [0 ()],
and, therefore,
(W) (F(0)i)] < i(v)]

in the limit. Thus,

PLCRITIODIESPTAC)

1€N 1€N
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is naturally given, and, together with (2.10), the statement of the lemma follows.

q.e.d.

Because of inequality (2.9), the following definition is possible

Definition 2.13 ¢ : B> — FBVA is given by
(W) (f) = Zw(vc)(f(i)i)a (2.11)

where p(v°)(f(i)i) is given by formula (2.8).
We have that

L. O (£(3)i) = limy o0 ™ (0O) (f(0)) = lim, e F(@)e{" (v) = F(5)i(v),
where again formula (1.21) has been used.

2. p(v°) is o—additive:
Consider a sequence (fj)jen € [0,1]N with Zj’;l fi < N Then f :=
> fi €10, 1]V is a fuzzy coalition, and one obtains

o0

D)) = DD )£

Jj=1 j=1 i=1

= D> > fildeilv)

=1 i=1

= > fil)eiw)

i=1 j=1

= Zf(im-(v)
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Here, we have used the double series theorem of Cauchy: Since

YD @)l < Y leiw)] < ol < oo,

i€N jeN ieN

the order of the two summation signs of the term on the left side can be

switched.

Proposition 2.14 ||o(v9))|| < ||v°| is valid, i.e. ¢ : B® — A% is a norm-

continuous, linear operator.

Proof

@Ol = sup Zleﬁ(vc)(fk)—w(vc)(fk1)\‘fo§---§fz§N}

£
I
—

> ) (fi — fk_l)l\ fo<. .. <fi < N}

=~
I
—

= sup i ‘ Z(p(yc)(gk(i)z)‘ ‘ Z:gk < N}

A
¢)]
5
N
g
s
5
S
g
B
A
2

€N k=1 k=1
= > lei(w)| = lle@)]l
1EN
< ol < [J0°)1-
Here, we have again used inequality (2.10). q.e.d.

The proof shows in addition, that ||¢(v%)|| equals ||¢(v)|| . To be precise, only
lo(@9)|| < [l¢(v)]| has been proven. However, “>" is obviously true.
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Corollary 2.15 B? := {v° € B3| p(v°)(N) = v(N)} is a closed, linear subspace
of CBV.

Proof Linearity is obvious. To prove that B? is closed, we have to show that
for each v¢ € B? and each sequence (v{); of Choquet functions in B? with

ve — v9(k — 00) we always have that v° € B?. Because of
lvg — vl = (v = v9)(N)],
one gets
ve (N) = v(N) (k — o).
lo(©)]| < ||v°|| implies @(vS)(N) — p(v®)(N), and, thus, one obtains

p(v9)(N) = lim ¢(v)(N) = lim v/(N) = v“(N) = v(N).

k—o00 k—o0

The proof of the next corollary is just as easy and shall therefore be omitted

Corollary 2.16 Let us define
B! := {v% € B?| mv° € B% o(mv°) = 1p(v°) (7 € )},

where T1 denotes the set of permutations on N. Then, B' is a closed, linear

subspace of CBV and is invariant under permutations.

Theorem 2.17 The operator ¢ defined on the space spanCy is a norm-

continuous value that preserves carriers.

Proof First of all we will prove that spanCj is invariant under permutations:

Consider a v¢ € spanCy and v € Cp s.t. v¥ — v° w.r.t. || ||. One gets

U = lvk = =0

vl — v
[
vl — ¢ wort. || e

=
c
= 7mv~ € spanCy.



2.1. THE VALUE ON spanC 45

Now we will show that ¢ has the desired properties: Cy = V,C C B* can be easily
seen. Since B! is a closed subset of CBV, one obtains AC® = spanC, C B! C

B? C B3. Thus, ¢ is invariant under permutations and Pareto-efficient on AC°.

Additivity and the preservation of carriers can be shown immediately, where the
latter is valid as every null player of v¢ is a null player of v™¢ for every n.

Norm-continuity has already been shown in Theorem 2.14. q.e.d.

We have proven that ¢ defined by
)= lim " (") (£()i) (2.12)

is a very intuitive operator on spanCy. The aim of this section is to obtain a
value with the help of a continuity argument. In other words, we hope to get a

value @ g,¢ by the formula

are(v9)(f) = lim W W)(f) = lim " (") (f(i)i).

n—oe
1EN

In the following theorem, we will show that the ordering of the limit and the
summation can be exchanged, i.e. that ¢ given by formula (2.12) is nothing else

but our desired value.

Theorem 2.18 The operator ¢ (see Definition 2.13) satisfies

ov? := lim "M, (2.13)

n—oo

Proof Let v“ be monotone for the beginning, and let n € N be given. Defining

¢"(v"™) = 0 for j > n, the formula

vO(N) = v™WON) =" ™({1,...,n})

j=1 j=1

is valid for every n € N. Hence, for fixed f € [0,1]Y, the sequence (a, ;)
(5= FU)et(v 0(n))),, is bounded by 0 and v®(N), i.e. the sequence has got a
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convergent subsequence (an, f)g. Since an, f+a,, o = v’ ({1,...,n}) is true,

also (an, o) is convergent. For every K € N, the inequality

> F() lim (%)) = lim Zf v°(e))

k—00 k—00

< lim Z F ()™ (v (2.14)

is obviously true. We know by inequality (2.9) that } 7%, lim, o f ()¢ (v°™)
exits, and, by observing (2.14), that Y22 lim, e f(5)¢} (v 0m)) < limg_ye0 Gny f-

Let us assume now that ¢(v%)(f) < limg_,e ap, ;. However, this immediately

leads to a contradiction since

vO(N) = SD(UC)(N) = (W) (f) + (v C)(fc)
< klggto 0(n) )+ ]LrgtoC (nk))

_ : n 0
—gﬁww”
J:

= lim "™)C({1,... m})

k—00

= v9(N).

Knowing that limy a,, ; = ¢(v9)(f), it is easy to show that (a, ) itself is a
convergent sequence. Assuming the contrary is tantamount to the existence of
another accumulation point by of (as ), by # ©(v°)(f). However, this would
result in the existence of a subsequence (am, f) with lim; a,,, ; = by > @(v°)(f),

and this can be disproven as easy as before. All in all, we have shown that

Z%f W—%Zf 6",

and, thus, the statement of the theorem.

At the beginning of the proof we restricted our considerations to monotone Cho-
quet functions. However, this is no real restriction as every v¢ € spanC, can be

written as the difference of two monotone Choquet functions. Hence, linearity of
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the value shows the theorem even for the general case. q.e.d.

Because of the last theorem, we call the operator ¢ 4,; the value on spanCjy. As
¥ art 18 norm-continuous, we know that our value is independent of the sequence

used to approximate v € spanCy (we have taken U(”)C).

It should be mentioned that ¢4,+ has norm 1, i.e.

c
lpar]| := sup W 1

v EspanCy

lloart]| < 1 is shown by Theorem 2.14. Equality follows for each monotone

v® € Cy. This is another property which ¢ 4,; preserves from the diagonal value.

Lemma 2.19 Let ¥ be a value on a symmetric subspace Q of FBV . Then | V|| <

1. In particular, ¥ is norm-continuous.

Proof Consider a v¥ € FBV and the corresponding upper and lower variation

vF* and v¥~. One obtains

@I = [[wE™ =" )| = [T - T
< T+ T = 0" (N) + 0" (N)
= [l"l.
q.e.d
If Q contains at least one monotone v’ we have that | ¥(v")| = v*(N). Hence,
in this case ||¥|| =1 is valid.

The operator @4,; is quite nice since it satisfies a lot of reasonable properties.
The question is whether or not there can be found a similar value on spanCy.

The answer is no:
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Theorem 2.20 There is one and only one value on spanCy that preserves car-

riers (and this value is our Y apt).

Proof The statement that ¢4, satisfies all required properties is proven in
Lemma 2.17.

Therefore, only uniqueness remains to be shown. In the case of ordinary games
with finite carrier the Shapley value is defined uniquely by additivity, efficiency,
symmetry, and the null player property (see for example Rosenmiiller [23, Chapter

3, Theorem 7.7]). We have to show a similar result for fuzzy games.

Let U : ACY — FBVA be a function that satisfies the desired properties. First,
we consider ¥ (v®) for v¢ € Cp. For T' € P(N) with |T'| < oo, one obtains

L. ¥((eM))(N) = (e")“(N) = 1 (efficiency)
2. U((e)O)(f(i)i) = 0 for i ¢ T (null player property)

3. U((eM)) (i) = U((eT)9) () for 4,5 € T (symmetry).

These properties imply that U((e?)¢)(i) = ﬁ is valid for every ¢ € T. In
particular, ¥((e”)¢) is non-negative. Hence, we can apply Lemma 2.1.3 in [29]
which states that a finitely additive, non-negative fuzzy function is homogeneous.
All in all, we obtain that

()N = ) Slr) +2(e"))(flre)
S {(CHRIFOD)

€T

= an((e))(f)

is valid (here we have used additivity and homogeneity). In a similar way it can
be shown that U(A(eT)) = @as(A(eT)C) for every A € N. Thus, for a Choquet
game (N, [0, 1N, v%) with C(v°) = Q, |Q] < oo, the following is true:
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TOO) = U(gers(0)(€)0) = Ssena(as)(€))
= ZSGQ(Q)QDAM(@S(U)(@S)C)

= PArt (UC) :

Hence, the value on Cj is unique. Lemma 2.19 states that a value is norm-

continuous. Therefore, ¢ 4,; is the unique value on spanCj. q.e.d.

An analysis of the proof of the uniqueness of the value on spanC| yields that we
have not used positivity directly. We used norm-continuity which is implied by

the other properties of a value (cf. Lemma 2.19).

Requiring norm-continuity instead of positivity would lead to the same result
as the one given by Theorem 2.20. Since we obtain a unique value that is non-
negative for monotone v°, positivity is implied by the other properties. Hence, we
can say that an operator is a value on spanC) if it satisfies additivity, efficiency,
symmetry, norm-continuity, and if it preserves carriers. These are exactly the
properties Rosenmiiller uses in [24, Chapter 7, Definition 5.1] for the definition

of a value in the case of countably many players.

In the next two sections, we will consider two further possibilities to extend the
diagonal value to a larger class of games. The two processes can be extended
much easier to the Choquet games than the last one since we have to use only

the linearity of the Choquet integral.

2.2 The Fuzzy Value for Weighted Majority

Games

First, let us consider the finite case, i.e. a tupel (2,[0,1]% v%) with Q =

{1,2,...,n}. Under consideration of the diagonal formula (1.21), one obtains
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psp(WO)(f) = D f(i)®;(v)

= Y0 S (STe) — v(STe )

where the summation is carried out over all permutations 7 on {2, and ® is the

“crisp” value. A special case is the fuzzy coalition f(i)i:
-\ - . 1 ™ ™
osp(v9)(f(i)i) = f(Z)m Z[U(Sw(i)) —v(Sx@)-1)]-

One defines the space Il := {x| 7 : Q — Q permutation} and the probability

distribution p on P(II) by means of the formula p(r) = ;. The random variable
vC
gr@ 201 = R

given by

e

9@ (™) = f(D)[v(Sqe) — v(Sra-1)]
has
Epgh) = esp(v°)(f(0)i)

as its expectation w.r.t. p.

Shapley considers in [26] the case of countably many players and shows a way to
obtain a value in a similar way as described above. For this reason, he defines
a measure P on (3,Y), where ¥ := {o| o is an ordering of N} and X is an
“appropriate” o—algebra. An ordering o of N is a binary relation N x N that is
reflexive, transitive, complete, and anti-symmetric. For the explicit definition of
the measure P and its properties, we refer to Rosenmiiller [24, Chapter 7, Section
1].

Before we are able to present the value which is constructed by means of the
probability measure P, we need some more definitions. A‘1’+ is the set of all non-
negative, c—additive functions on (N, P(N)) with normalization to total mass 1.
A coalitional function v constitutes a weighted majority game (N, P(N),v),
if thereisan m € A" anda 0 < B < 1s.t. v = 1ig,;) ©m. In this section, we

will restrict ourselves to such wv.
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Definition 2.21 Let m € AJ",8 € (0,1). Then i € N pivots 0 € ¥ w.r. t.
(m, B), if

m({Jjlj <o i}) <B <m({jli 2o 1}),
where the set {j|j <, i} contains those j which satisfy (j,1) € o, and {j|j <, 1}
consists of those j with (j,i) € o, j # 1.

Now, we are ready to define the value on N for the Choquet extension of the
weighted majority games. In the following, ®"" (v) denotes the Shapley value of
v as it is defined in [24, Definition 7.2.4].

Definition 2.22 Let m € A" and 8 € (0,1), s.t. the crisp coalitional function
v can be written as v = 1jg1jom. Then, the Shapley value of vC is the o—additive,

non-negative fuzzy-function "M (v°), which is given by means of the formula

SO0 = / FOI(S™) ~ o(S" ~ )]dP(o)
= P({oli pivo w.r.t. (m,B)})
- f(i)q%WM(v),
PMEONS) = T OO,

1eN

where S := {j € N|j =<, i}.

This is a very simple extension of Shapley’ s approach. We just have to use the

homogeneity of the integral.

As in this chapter only weighted majority games will be considered, one could
ask how the Choquet extension of such a game looks like. For an answer, take

any f € [0,1]N and define the ordering o as follows:
<o, g if { f@)>fGor
f@) = f() and i <.

Verbally, those players who have a high degree of membership in the fuzzy coali-

tion f are placed “to the front” w.r.t. the ordering oy ; if two players have the
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same value in f, they are placed according to the lexicographic ordering. We have
that P({of|3is.t. i piv of w.r.t. (m,[)}) = 1 [24, Theorem 7.2.10]. Hence,
there exists P— almost sure an i* s.t. m(S°%) > B > m(S°#* — i*). For this

reason,

u(f >t) = { Lt §7 C{f > 1}

0, otherwise

is true for ¢ € [0,1]. However, S/ C {f > t} is tantamount to f(i*) > ¢ (this

follows immediately from the construction of o). Thus, one obtains

W) = [ ol > = £0)

To conclude, we show that ® is indeed a value:

Theorem 2.23 Let (N,v) be a weighted majority game. Then, we have that
= "M (1) for all m € 11

Proof

1. The equations C(p"M(v%)) = C(®"M(v)) and C(v¥) = C(v) are easily
verified, and C(®"M (v)) C C(v) follows from Theorem 7.2.5 in [24].

e"M(mO)(f) = Zf (1)@]"™ (7v) Zf )N (v

= Y f(r(k)O™M(v) = "M (0O) (7 )
= 7" w)(f)

Here, we use that m7®"M (v) = ®"WM (7y)) [24, Chapter 7, Theorem 2.6]



2.3. THE SYMMETRIC GROUP OF N 33

3. "M (N) = 3o pen "M (V) (k) = pen M (v) = "M (0)(N) = 1,
where the last equality follows from the Theorem of Berbee [24, Theorem
7.2.10).

2.3 A Value Using the Structure of the Sym-

metric Group of N

Here, we demonstrate an approach to obtain a value that is similar in at least

some aspects to the one presented in the last section. Again, we consider

Epg;‘]'g) = SDSP(UC)(f(i)i)

for a set of finitely many players, where p and g?(c;.) are defined as in the previous
section. In the countable case, a c—additive value is constructed with the help of
a measure y. However, different from the last section, this measure p is defined on
the set II of permutations of N. As can be shown very easily, II is a proper subset
of 3. Using the measure P of Shapley and Shapiro, we even have P(IT) = 0. For
the exact definition of u, the reader is referred to Pallaschke and Rosenmiiller
[20].

Definition 2.24 1. Fori € N, one defines
RO (f(i)) = /f(i)[v(SZIi)—v( (i) -1l dp(T)

- / [w(ST)) — (ST )]dpa(n)
= f( (I)PR ))

where ®R(v) is the value given by Pallaschke and Rosenmiiller in [20].
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2. 1If, for each f € [0,1]N, (©PR(v%)(f(i)i)); is an absolutely convergent se-

quence, the Shapley value is defined by means of the formula

P (f) = D@ ) (F()i).
ieN
Though we call p”(v%) a value, we have to be aware of the fact that not neces-
sarily all properties of Definition 1.1 are satisfied. In particular, efficiency cannot

be guaranteed for all games. The following equivalence relations are valid:

®PE(v) exists <= (®F(v)); is an absolutely convergent series
< (™) (f(4)i)); is an absolutely convergent series for all
f € [0,1]% (since |07 (v)| > |f(i)@;" (v)]) (2.15)

) exists.

— o™
Proposition 3.5 in [20] states that ®% is linear on BV and satisfies |2 (v)|| <
llv]| (]| ® || is here again the variation norm). As CBV is the largest space on
which we have defined the Choquet integral, it follows under the consideration
of (2.15), that p!?(v°) exists for all v°.

Let II,, be the set of permutations of {1,...,n} and II* := (J _II,. For the

Shapley value as it is constructed in this section, the following holds:

neN

Theorem 2.25 1. For allv® € CBV, the value o"%(v°) exists.
2. For each 7 € I1*, we have that mpfE(v°) = PR(mv°).

3. Let v® be monotone, which implies, in particular, that v is monotone. Then,
PR (f(3)i) > 0, and >,y @™ (vY) (f(1)i) < vO(N) is valid for alli € N
and each f € [0,1]N.

The proofs of these statements can be found in [20] (Proposition 3.5, Lemma 3.2,
and Lemma 3.4, respectively).

The following two theorems compare the value defined in this chapter with that

defined by Artstein and that by Shapley and Shapiro, respectively.
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Theorem 2.26 [20, Theorem 3.6] o™ equals Artstein’s value @ o,y on ACC.

Theorem 2.27 [20, Theorem 4.5] ™% coincides with Shapley’s and Shapiro’s

M

value "M on the set of weighted majority games.

2.4 The Smoothing Procedure for Countably
Many Players

At the beginning of this section, we will check how the diagonal formula (1.12)
looks like for countably many players. Of course, even in this case, every
fuzzy coalitional function v¥ can be decomposed into v¥ = p! o m, where
m = (my,ma,...), each m; is a fuzzy measure on [0,1]N with m;(f) = f(j),
and p : R(m) — R with p(0) = 0 (cf. Section 1.2). We aim at giving an answer
to the question whether or not there exists a diagonal value for those v with

continuously differentiable p”.

As a second step, we want to examine the case of Choquet extensions. Here,
pY is usually not differentiable. However, we would like to ask whether it is
possible to get a sequence (p$), which converges uniformly to p¢ and where each
p¢ is continuously differentiable. Does there exist a limit for ¢(pS o m), is it

independent of the selected sequence, and does the limit provide a value for v¢?

First, we we should mention some rules of calculus in RY. Some well known
results from the “finite” analysis remain valid in the countable case. However,
other results for functions on R* to R™ , n,m € N, may not remain valid in the

countable case.

In the following, “continuous differentiability of the function p¥ : RN — R” is used

. . . F . . .
to express that each partial derivative ‘?)1’7 exits and is continuous; furthermore,
J

we assume absolute differentiability, i.e. for each ¢ € N there shall be a linear

operator A : RY — R s.t.

p"(a+&) =p"(a) + AE + ¥(§) (2.16)



56 CHAPTER 2. A FUZZY VALUE FOR COUNTABLY MANY PLAYERS

is valid in a neighbourhood of ¢, where % is a function defined on a neighbourhood

of 0 with
lim (E) = 0.

650 [|€]lsup
Here, || ® ||sup denotes the supremum norm on RY. In the finite case, it is a well

known fact that continuity of all partial derivatives implies absolute differentiabil-
ity. However, it is not known whether this statement remains valid for functions
on RYN. Therefore, we explicitly assume the existence of a linear operator A as

above.

Besides the fact that there may occur some problems when considering functions
on RY, one can show that most of the theorems known for finite analysis remain
valid for the countable case. Recapitulating the proofs of the respective theorems
known from “finite analysis”, one can see, for example, that the operator A
in formula (2.16) is nothing else but the N-vector which consists of the partial
derivatives of p™ evaluated at g. Furthermore, the chain rule remains valid, and
the theorem which states that the directional derivative of a function equals the

product of the direction and the vector of gradients holds true as well.

In the following theorem, we will show how we can extend the diagonal value
from finitely many to countably many players. The proof uses various spaces for
different sets of players. To make clear which set of players is actually considered,
the respective space is followed by a subset of N. For example, FNAT({1,...,n})

denotes the space of all non-negative, finite, non-atomic measures on [0, 1]{1+n}.

Theorem 2.28 Consider a vF € Ci’c and assume that this can be written as
vE = pPom, where m = (my,my,...) is the vector of countably many fuzzy
measures m;j, j € N, given by m;(f) = f(j), and p¥ : R(m) — R is continuously
differentiable with p¥(0) = 0. Then, the following holds: v® € pFNA(N), and,
under the assumption of the null player property, the diagonal value can be written

as

5 1 apE
(N = [ 3107 el (2.17)
(R O

Proof First of all, we will prove that v¥ is an element of pFNA(N). The assump-

tions of the theorem allow the use of Lemma 2.9 which states that v(™WE — ¢E
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0(n)E

w.r.t. the variation norm. The corresponding set functions v can be decom-

0WE = p(m)E
in [6, Proposition 17.4] that such functions are an element of pFNA({1,...,n}).
Thus, for each & > 0 there always exists a J € N s.t. |[v°™F — Z;Zl cﬁfj | <eis
true for some ¢; € R, k; € N, and 7; € FNAT({1,...,n}), i =1,...,J. We de-
fine r; : [0,1]N = R by 7;(f*) =7;(f), where f™ € [0, 1]" is given by f*(5) = f(j)
for j < mn and f(j) =0 for j > n. One can see immediately that r; € FNAT(N)
and |[v(™F — ijl cjrfj | <&, i.e. the v™F are elements of the space pFNA(N).

posed into v om", m" = (my,...,m,). Butnariu and Klement show

Since this latter space is closed (see [6, Theorem 17.1]), we are done.

Because of the null player property, pv™?(f) = v™¥( fli,..,ny) is valid for all
f €[0,1]N. Hence, we have that

1
pu™WE(f) = oo E(flnt) = /0 2 f0) =g (aeltmt,

where f{l-n} € [0, 1]V} is given by f{=m}(5) = f(5) and el'"} = (1,...,n)
denotes the unit vector in R”. Since the diagonal formula is norm-continuous, it

remains to show that

N o . " O
f; oG o=l |3 50 T eta

j=1 =1
is true. We now calculate the partial derivatives of p®™¥%:
0(n)E " e

opon (1) — o5; (te()a,E if j<n

O, S, e (te), ifj=n.

The first equality is obviously true, the second follows from

8p0(n)E (te{lv--’”}) o pO(n)E(te{l,...,n} + 56{1,---,71}) _ pO(n)E(te{l,...,n})
Oz, -0 3
Pt X Ee) —pP(te)
£—0 '3
= i @(t )
s 0z

The last equation uses the fact that even in the countable case the directional

derivative is nothing else but the product of the vector of gradients and the given
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direction. Now, ov(™¥ can be written as

S ™E(f) = /0 Z 1) 2 (k)i + / fn (te)dt

Because of monotonicity of v we get

op"” _ 6p
/Zf o e)dt| = ax]( e)dt
ji= n+1
E
< / Zai(te)dt. (2.18)
0 j=n+1 i

We know that the sequence v := v”| ) is another possibility to approximate
E when using the variation norm (cf. Lemma 2.8). For these functions, the

partial derivatives are given by

OpnE (te) = %(te), if j <n
Ox; 0, if j > n.

Thus, we have that

o E(N) = / ZZZ] (te)dt = v"E(N) — vE(N).

Because of the efficiency of ov™?¥ we finally obtain

1 ©° o E
vP(N) + v™E(N) = pu™E(N) = v"F(N) + / 3 2 (te)dt,
0 .- &L‘]
j=n+1
i.e.
op¥
/ Z ap (te)dt — 0.
0 j=n+1 Ly
Because of inequality (2.18), this concludes the proof. q.e.d.

As an example for a Choquet extension that satisfies all assumptions of Theorem

2.28, we consider a o—additive v:
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Proposition 2.29 Ifv € BV is o—additive, then v¢ is c—additive, too.

Proof Because of our assumption, v is, in particular, additive. Following Den-
neberg [8, Corollary 6.5], the same is true for the Choquet extension. Further-
more, one can easily show that, because of the o —additivity of v and the definition
of the upper and lower variation (v™ and v™, respectively), v* und v~ are also
o—additive. One gets, for example, v*(S5) =3, o(v(5)) "

As o—additivity always implies upper o—continuity, we obtain with the help
of the monotone convergence theorem, that both »*¢ and v~¢ are upper
o—continuous (cf. Lemma 2.6). Because of the equality v = vt¢ — v=¢, the
Choquet extension of v is upper o —continuous. And now we know from measure
theory that this fact together with the additivity implies the statement of the

proposition. q.e.d.

As one checks immediately, the Choquet extension of a o —additive v is a function
which is feasible for formula (2.17). We have that
op©

p(@) =D gu(j), ie a0, @ =20,

jJEN
and, thus,
ev?(f) =D FG)()
jEN

as result for the diagonal value.

Now, we want to examine general fuzzy functions v¥ € FBV which are not
necessarily an element of Ci’c, and which can be written as v¥ = p¥ o m, where
m and p¥ are defined as in Theorem 2.28. It is not obvious whether such fuzzy
functions are in general elements of the space pF/NA. The proof of Aumann
and Shapley [3, Proposition 7.1] for such functions in the finite case seems to be
based strongly on the finiteness assumption. Nevertheless, we will examine the

diagonal formula for this case. For this reason, we define PM to be the space
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which contains all these fuzzy functions v¥ = p¥ om with bounded variation, i. e.

PM = {UE‘ v [0, 1N = R0 (0) = 0, [|[v”]] < o0, v = p¥ om,
£ :10,1]" — R continuously differentiable, m a vector of

countably many fuzzy measures m; with m;(f) = f(j).}

The operator ¢, ¢ : PM — FBVA, is given by means of the formula

oo om) () = [ 350 ey (2.19)

Jj=1

This expression satisfies all properties of a value:

e ¢ is obviously positive and linear.

e For each permutation 7 of N, we have that

E

ooF ominn) = [ Zf N axj L te)ds

Pr(p” om))(f) = / ey

To see the second equation, define a mapping p” by pZ(q) := p®(¢" ') with

qf = qz—1. For this function, one sees immediately that @F om)(f) =
(p om)(r f) and that
op¥ op?
9. D=7
Zj L (5)

(q").
For fixed k € N and j := 7 !(k), the equation

op?
O (5)

op”

f(3) (te) = f(r'(k ))axk (te) (2.20)

is valid. Next, we consider the mapping p” : [0, 1]Y — R given by p(0) =0
and
g = |2
Oz, 0z
Since, in particular, we have that f(j ) (te) > f(j)%(te) is valid for

every j € N and each f € [0,1]N, we have a majorant for the series

(q)‘ for all g € [0, 1], for each j € N.
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Z;il f(w_l(j))%(te). Hence, a permutation of the terms of the series
does not change the value. Having in mind formula (2.20), we have estab-
lished the claim.

e To prove efficiency, define a function g : [0,1] — R by g¢(¢) = p®(te). Now,

we have that

vP(N) = p”(e) — p”(0) = g(1) — g(0)

Because of our latter thoughts, the operator ¢ defined as in (2.19) is called the

diagonal value on PM.

Now, we want to come back to the Choquet extension, which, in general, is not
differentiable at the diagonal. However, if there exists a sequence (v<), vS =
pC om, converging uniformly to v s.t. each p¢ is continuously differentiable, we
can use the smoothing procedure as in the finite case. If lim,_,, ¢(p$ o m) exists
and is independent of the sequence (v$), then we call this limit the value of v©
and denote it with @gp(v®). We will show later on that it is not possible to find

such a sequence for all v € CBV. However, on spanC), our idea works:

Proposition 2.30 Each v° € spanCy can be written as v¢ = p© om with m =
(m1,ma,...), m;(f) = f(j), and p© : [0,1]N = R, p©(0) = 0. Furthermore, there
ezists a sequence (pS) with the following properties:

1. (pS) converges uniformly to p©.

2. Each pl is continuously differentiable.

8. lim, o ©(p$ o m) exists and provides a value that preserves carriers.

For each sequence (pS) satisfying these three properties, lim p(pS o m) equals

Artstein’s value, i. e. we have that psp = Q Art.
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Proof It is quite easy to show that each v¢ € spanCy can be decomposed as

c

required. The sequence (v(™?),, defined as in Lemma 2.8 converges to v w.r.t.

the variation norm. As each p(™¢ has a finite carrier, we can construct, with

the help of the (finite) smoothing procedure, sequences (p,(c")c) k S.t. each pén)c is

continuously differentiable and the sequence (p,(cn)c) converges uniformly to p™¢

(for fixed n). The value of v(™¢ provides for player j, 1 < j < n,

(n)C
<PSP(U(H)C)(J) = klg{.lo o 01, (te) dt
= P&" ™).
Obviously, there exists a diagonal sequence (pg;)c)n which converges uniformly
to p© s.t.
' PSZ)C (te) dt — " 0(n)C\/( 1
| % e (0" O) ()| <

is valid for all n and all j < n. Hence, we have that

‘@Art(vc) (f) - SDSP(UC)(f)|

Jim (Zf [wsp ) () - /0 angé(tE)dtD‘

YC 1ap§€n)c

< 1 0(n — *__(te)dt

< nggozf 6) = | “pe—tte
1 1

< nznsozf s

< Jim s

= 0.

Theorem 2.20 implies that the smoothing procedure is independent from the

actual sequence chosen. q.e.d.

For finitely many players, the unanimous games are the most important ones since
they build a basis for all coalitional functions. Now, we would like to examine

whether the smoothing procedure can provide a result for the game (eM)°. We
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know that there exists no real value for this game since optimality and symmetry
are mutually exclusive. Nevertheless, we will try to find something like a quasi-
value for (eM)?, i.e. we will have to drop at least one of the usual properties of

a value.

We would like to analyse which consequences a sequence (p<), entails that con-
verges uniformly to pgN where each pl is continuously differentiable. Assum-
ing that we have already found such a sequence, we can define another one by
pS (q) = pS(¢™), where 7 is a permutation of N and ¢" € [0,1]" is given by
4] = qa(j)- As one can easily verify, also (pg -)n converges uniformly to pS\I.
We would like to obtain a value by a limiting procedure and this value shall be

independent of the sequence, i.e. we have that

esp((eM)O)(f) = lim [ D f(j)

= osp((M))(f).

This means that independence of the sequence implies symmetry of the value.

Furthermore,

par((@)O)N) = lim p(oC)(N)
= lim v9(N)

n
n—oo

= v“(N)

is true. However, as we have shown before, this is a contradiction. Thus, the
smoothing procedure does not work for (eN)¢. Tt is not even possible to get a

quasi value in the sense that we drop the requirement of efficiency or symmetry.
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2.5 A Value for the Unanimous Game

In this section, we will give a quasi value for a class of Choquet games V C CBV
which contains all unanimous games. Our quasi value does not satisfy the axioms
of definition 1.12 since it is not symmetric. However, we receive a quite reasonable

result for (eM)C.

In the first part, we will follow the framework presented by Rosenmiiller [22]
which leads us to a fuzzy value for continuously many players. However, this
quasi value for (eM)© allocates, for example, a positive weight to fuzzy coalitions

with finite carrier. This can be avoided when considering the countable case.

2.5.1 A Value for a Continuum of Players

Let us consider one possible representation of the Shapley value ® for crisp coali-

tions in the case of finitely many players N = {1,...,n} given by
o)=Y es(o)’, (2.21)
SeP(N)
where cg(v) is defined as
es(v) = 32 (~1) S Tly(1) (222)
TCS
and g° : P(N) — R is the uniform distribution on S, i.e.

s TNS|
g°(T) = .
(T) 5

As the Choquet integral is linear (cf. Denneberg [8, Proposition 5.2, (i) and (ii)]),

we have for each v € BV that
v = Z cs(v)(e%)C.
SeP(N)
Since we require the value of a fuzzy game also to be linear, the corresponding

formula to (2.21) for the Choquet extension is

(%) = Z cs(v)g®, (2.23)

SeP(N)
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where for each S € P(N) the function g° : [0,1]Y — R is the fuzzy value of

(e%), i.e.

Rosenmiiller extends in [22] formula (2.21) for some games to the player set

1 = [0, 1]. To be more precise, he looks at weak convergence:

Definition 2.31 Let Q = [0, 1] be the set of players and B be the oc— field of Borel
sets in ). Furthermore, a coalitional function v : B — R shall be given. We say

that a sequence (v") converges weakly to v if

/fdv"—>/fdv

15 valid for all elements f of the cone of non-negative continuous functions on €.

Let for the rest of this subsection the set of players and the set of feasible coalitions

be given as in the previous definition.

Proposition 2.32 For each v € BV there ezists a sequence (v*) € BV s.t. each

v™ has a finite carrier and v™ — v weakly.

Proof Most parts of this proof can be found in the proof of [22, Theorem 3.1]
which states that for each monotone v that is both continuous from above and
continuous from below such an appropriate sequence (v") exists. However, it can

be shown that the statement is valid even for our more general case.

For now, let us consider a monotone v. Furthermore, let a dense increasing
sequence of partitions (S7), (j < n) of the set of players be given, i.e. Q =
St +...4+SP. Let, for every n € N, a point w} € SP* be given (i =1,...,n), and
define v" : B — R, by

v"(F)=wv Z R (2.24)

i|wleF
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Then, v™ has ({w?,...,wl}) as its carrier. We will show next that (v™) converges

weakly to v.

Let an ¢ > 0 and a non-negative continuous function f be given. As f is uniformly

continuous on [0, 1], there exists an 7 € N s.t.
€
fw) = Fm)l < §
is true for all n > 7, and for all w,n € S?',7 < n. We have that

) = v 3 s

il fwp)>t

>, S

i| f>t—e on SP

< o({f >t—e€})

IA
<

and

V>t = v >, s

i| f>t+e on SP
> v({f>t+e})
for each ¢t € [0,1] and all n > N.

Let || f||sup denote the sup norm of f. Then the following is true:

‘/fdv—/fdv”

1 f|lsup
< / w({f > 1) — o ({f > 1)) dt

IN

17 llsup
/0 v({f>t—¢c})—v({f>t+e})dt

||f‘|sup*5 Hf||sup+5
/ o({f > t}) dt — / o({f > 1)) dt

€

/ Co({f > 1) de

IN

< 2ev(Q).

Now, we consider the general case, i.e. we consider a v € BV. Since a v with

bounded variation can be written as the difference of two monotone coalitional
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functions v and w, we have that

/fdv = /fdu—/fdw

= lim /fdu”— lim [ fdw"

n—0o0 n—0o0
= lim [ fd(u"—w"),
n—oo
i.e. (u™— w™), converges weakly to v. q.e.d.

Remark 2.33 If (v") converges to v w.r.t. the variation norm, then v™ — v

weakly.

Proof The proof can be found indirectly in the proof of Proposition 2.2. There

we have shown that

lim v”(f>t)dt:/v(f>t)dt

n—oo

is valid for all fuzzy coalitions f if (v") converges to v w.r.t. || e|. It is an
easy task to generalize this statement to the space of all non-negative continuous

functions. q.e.d.

To proceed with the extension of the Shapley value, we define
Q:={K|K CQ, Kcompact}.

Consider now an arbitrary metric d on {2.

Lemma 2.34 For A, Ay € Q, we define

d(Al,AQ) = inf{s > 0| A1 C BE(AQ) and A2 C BE(AI)}a

where B,(A) = {z € Q| inf{d(x,a); a € A} < e}. d is a metric on Q (called the
Hausdorff metric), and we have that

d(A, B) = max{sup infd(a,b), sup infd(a,b)}.

a€A beB beB a€cA
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It is a well known fact that Q together with the Hausdorff metric is a compact

metrizable space. Let B denote the Borelian o— algebra on Q. Then, for a v with

finite carrier {wi,...,w,}, a discrete signed measure p = p, is given on (£, B)
by
Y e (CDESSy(S), if K C{wy, ...y w,}
u(K) = { 2K | (2.25)
0, otherwise.

1 as defined above has mass only on those points of £ which are subsets of the

carrier of v.

In the following proposition, we will show how we can obtain a unique measure
1, for each v € BV. The proof requires a lemma which was first proven by
Strassen [27, Lemma 4.1]. Here C(£2) and C(2) denote the cone of non-negative
continuous functions on  and €, respectively . For each f € C(f), we define
Af € C(8) by .

/\f(g):migf(s), S € B.

sES

Lemma 2.35 The linear hull of NC () is dense in C(Q).

For an arbitrary v € BV, consider a sequence (v") with finite carrier and v" —
v weakly. Then, we obtain a sequence (u,n) of discrete signed measures (cf.

formula(2.25)) which admits a Hahn decomposition fi,n = ijn — fiyn-

Proposition 2.36 If u/.(Q) is bounded, then (u™) = (i) has a unique weak

accumulation point (.

If this u, exists, it replaces the c,(v) in formula (2.23) and is exactly the S-
measure of Rosenmiiller [22, Definition 3.3]. Rosenmiiller does not prove the

existence part of the latter Proposition.

Proof First of all, we will prove the existence of p: Let (T, )m,1 < i < m, be
a dense increasing partition of Q. For an arbitrarily chosen continuous f on Q
and for each & > 0, there exists an M = M(e, f) € Ns.t. [f(@) — f(7)] < &
for all w,7 € TZM ,1<i< M. As p"(Q) is bounded, there exists a subsequence
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(u™);, and a measure p on (Q, B) s.t. ,u”k(TZM) — /J,(T,?/[) is true for each
1 <4 < M. In particular, we have that |u™ (TZM)_M(TZM” < ggforalll <i< M
and k sufficiently large. W.l.0.g., we assume that (u") itself satisfies the latter
inequality. We have that

{F>t) < | Y T

i|f>t—e on T?/I

< u Z TV +e

i|f>t—c on T;"

< p{f>t—e})+e

Similarly, it can be shown that

pr(f>t) > p(f >t+e)—¢

All in all, the following is true:

‘/?dm—/?du\ < /Olu(7>t—€)+6—(u(7>t+€)—€)dt

< 2ep(f2) + 2e.

To prove the uniqueness part, we will follow the steps in Rosenmiiller [22, pp.
97 and 98]. Let (w?,...,w") be the carrier of v™. For each compact E C ,
an induction argument over [(E) := #(E N (w?,...,w")) shows that u™(T|T C
E) =v"(E) is true. Hence, we have that

/fdv" = /Olv"({f>t})dt
[ ()
= /deu"-

Let (u™) again be a subsequence with p™ — p weakly for k& — oo, where y is a

signed measure on (§2, B). Then

/fdvzkli_{go/fdv"k :JL‘&/KN“M =/deu- (2.26)
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It is a well known fact that, given two measures on a metric space (S,S), S the
Borel-g-algebra of S, whenever the integrals w.r.t. the measures coincide for all
continuous bounded functions on S, then also the two measures coincide. Know-
ing this statement and having in mind Lemma 2.35, formula (2.26) determines p

uniquely. q.e.d.

The next step is now the construction of a space of games for which the measure

1 exists.

Definition 2.37 A fuzzy coalitional function v is totally monotone if it is

non-negative and , for every n > 2 and f1,..., f, € [0,1],
A(Va)z > comr(ps).
i=1 I10#1C{1,...,n} i€l

One should remark that v is totally monotone if and only if v is totally monotone.
This can be shown as easy as the analoguous statement for convexity (cf. Lemma
2.6).

Theorem 2.38 Consider a v € BV that can be written as the difference of two
totally monotone functions u and w, i.e. v =u —w. Then, our method provides

G Measure Uy -

Proof Let us define v" and w", n € N, as the v" in the proof of Proposition
2.32, i.e. let us consider some points w;’ € S?* for a dense increasing sequence of

partitions (S7)n,j < n, of Q. Then u" (and correspondingly w") is given by

u"(F) =u Z Si

i|wleF

Obviously, each u™ and each w" is totally monotone. We know that the sequences

(u™), and (w™), are converging weakly to u and w, respectively, and, hence, one
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obtains weak convergence of (v"), to v for v™ := u™ — w". Furthermore, we have
that for each £ C {w],...,w)l}

0 < u"(FE)- Z (_1)\I\+1un (ﬂTz)

I|0AIC{1L,...;m} i€l
= ST
TCE
where E := {ey,...,e,} and T; := E'\ {¢;}. Following the same lines, one can

show non-negativity of p,». The corresponding measures p,» can now be written

as
pon (B) = Y (=11~ Th™(T)
TCE
= > (D)FET(T) - w(T)]
TCE
= (E) = pn (E)
for E C {w},...,wl'}, i.e. we get with the measures p,» and p,» a Hahn de-

composition of . Since it is easy to verify that p,»(€2) = u™(2) is true for all
n € N, we have that
pn () = u(Q).

In particular, we know that s, (Q) is bounded. Now we can again show that

(tyn ), has a weak accumulation point p, and that p, is the unique signed measure

[ Nsdu= [ s

for all continuous f on ). q.e.d.

satisfying

The question remains how to obtain a generalization of the uniform measure g°
for the extended value. For this reason, we define the space F to be the set of
all continuous functions f : [0,1] — [0,1]. F is a fuzzy tribe (cf. [6, Definition

2.5]). Furthermore, we will use a quasi-kernel P on F x Q with the properties
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1. P(f,-) is measurable for every f,
2. P(-,5) is a (finitely additive) measure on F,

3. P(Q,S) =1 for every S € B.

The notation quasi-kernel is used to stress that we do not insist on o-additivity.
In our definition of the kernel we follow Rosenmiiller’s definition in the case of

crisp coalitions [22, page 99]:

1. If \(S) > O:
1

P9 = AS) J5

T
S

2. If S is finite, S = {wy, ..., w, }:

3. For all remaining S:

P(f,S) = f(k), k= m}}n.

Measurability can be proven as in [22, Theorem 3.4]. For the first two cases,
the kernel P seems to be the correct generalization of the uniform distribution.
The case of a compact and infinite set S with Lebesgue measure 0 looks a little
bit strange (all is given to the first player in the natural ordering). Rosenmiiller
states in [22]: “... it might be preferable to take an additive measure that is
diffuse in the sense that it assigns 0 to all finite coalitions in S. It is not clear
if such a measure can be found without violating the measurability conditions of
the kernel P.”

Definition 2.39 [22, Definition 3.4] Let v° € CBV, and assume that p = p,
exists. Then, pros : F — R given by

oros(-) = / P (@) pu(dw)

is called the value of v°.
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One can ask why we restrict the value to continuous fuzzy coalitions. From the
mathematical point of view, there is no problem in defining the quasi-kernel P
on all measurable functions f : [0,1] — [0,1]. However, for an arbitrary v it is
not possible to obtain a sequence (v™) with finite carrier and lim,, . (v")°(f) —
v (f) for all measurable f. This can be shown, for example, by considering the

unanimous game (e?)C.

2.5.2 A Value for (eV)¢

Now, we would like to consider again the case of countably many players. In
the following, we will define a class of games V C CBV s.t. for all v€ € V the
corresponding measure y, exists and for each v € V asequence (v™) with finite
carrier can be found s.t. v"C(f) — vO(f) is true for all f € [0,1]N. For these
N

games we would like to establish a kernel on [0, 1] X D as a generalization of the

uniform measure. Here, D denotes the space of non-empty subsets of N.

Of course, there is no problem in restricting the player set [0,1] to countably
many agents. For example, one can take the intersection between the rational
numbers and the unit interval, i.e. Q' :=[0,1] N Q, as the player set. Then, we
can follow the same calculations as in the continuous case: Let F be the space
of all continuous functions f : ' — [0, 1] and let ) be the space of all compact
subsets of 2'. As we do not have any coalitions with Lebesgue-measure greater

than zero, the quasi-kernel Pon F x (Qis given by

\é_lzies f(z)a |S| < 0

_ (2.27)
f(s) |S| = 00, s = ming .

ﬂﬁ$={

However, we would like to allow all coalitions to be feasible. This is not the case
for Q. For example, ' itself is not an element of Q) since the closure of € is
nothing else but the unit interval. Another argument against [0,1] N Q as the
player set is given by the fact that all participants of the game seem to have the
same importance. However, in the case of countably many players we would like
to reflect the situation of some big players and many small players. In this sense,
the natural numbers are a much more intuitive space. Another reason is that we

would like to obtain a more reasonable kernel as the one given by formula (2.27).
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Therefore, we would like to consider the set of games defined on (N, P(N)). How-
ever, for some mathematical reasons, we cannot match the framework that we
have used in the continuous case one to one to the case of countably many players.
First of all, we have to deal with the problem that, in the proof of Proposition
2.32, we explicitly need the compactness of the player set €2. This property is
obviously not shared by N. However, the following lemma presents a possibility
to obtain a converging sequence even for N as the set of players. By V™ [V |we

denote the games in BV which are upper o-continuous [lower o-continuous].

Lemma 2.40 For each v € linhull{V> UV}, there erists a sequence (v"°),

s.t. v"C = 0% pointwise and each v™¢ has {1,....n} as its carrier.
) 3

Proof For v € V', we define v"C by v"°(f) := v°(f") where

s @), fj<n
O o
1, if 7 > n.
Obviously, f™ N\, f is true. Now, one can show as in Lemma 2.6(1) that v™¢ — v©

pointwise.

For v € V7, one constructs a sequence (v"“), by v"“(f) := v’(f|@,.n}). As
an immediate consequence of the continuity from below, we have that v"(f) —
vC(f) for all f.

For an arbitrary v € linhull{V>UV/"}, v = 321 A\w; with T € N, ); € R and
v; € YUY/, we can use the argumentation as above for each single v; and

finally obtain a sequence for v* as required. q.e.d.

Moreover, we have to use some compactness arguments to show uniqueness of p.

Thus, we use the following detour:

For each v on (N, P(N)), aw on (N, P(N)) is given by 7(S) := v(S\{c0}), S C N,
where N := NU {co}. Obviously, the extra player co is a null player for (v, N).

We now define D as the set of non-empty coalitions in N, and, correspondingly,
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D as the set of non-empty subsets of N. For ¥, one can show again, as in the

case of continuously many players, that there exists a unique signed measure p
n (D, P(D)):

First of all, a metric d on N is given by

eyl §fz yeN

zy
1 ifz <y=o0

d(z,y) = i e o (2.28)
y Y B
0 ifr=y=0

One can easily verify that d as defined above satisfies the three properties of a
metric. Especially, this metric satisfies d(z,y) < 1 and limy_,. d(z,y) = L for
x < 0o. Furthermore, one can immediately see that for each given n € N and

every m #n
1

d(n,m)>d(n,n+1) = P

is valid. To get an impression of the corresponding Hausdorff metric d (cf. Lemma,

2.34), the next remark might be quite helpful:

Remark 2.41 Let S,T € D and n € N be given.

1. Ifd(S,T) < then S|q,..ny = Tlq1,...ny s valid.

n+1) ’

2. If S|,y = Tli1,my and Slinyr,y # 0 <= Tlinar,.} # 0, then d(S,T) <

1

n:

Proof

1. The assumption S| .3 # Tlf,..»} implies that there exists an a €
{1,...,n} s.t. a € SUT and ¢ ¢ SNT. One can easily check that
the distance between S and 7" has to be at least
d(s,T) >

m, i.e. we have that

n(n+1) +1)
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2. If both S and 7" contain no element larger than n, we have that d(S,T) = 0.

Consider now the second case, i.e. assume that there exists an s := min{j €
S, j > n} and an analogously defined t. We can assume w. L. o. g. that s < t.
With these definitions we have that, for s € S,

=0 ifs<3s
infd(s,t) { <d5,) <} if5<s<t
gd(s,f)g%gi if s > 1.

In the same way, one can show that infscsd(s,t) < % for each t € T. All
in all, we have proven that d(S,T) < % q-e.d.

As is easy to verify, D together with d is a compact metrizable space. Hence, one
can show, as in Subsection 2.5.1, the existence and uniqueness of uz as a weak
accumulation point of pz», where " and pz» are defined according to formula
(2.24) and (2.25), respectively.

To obtain a measure j, on (D, P(D)), a correspondence p : D = D is defined by

p(S) == {5, 5 + {oo}},

i.e. each non-empty coalition S in D is assigned to the set S itself and the set

containing all players of S and {oc}. The measure pu, is defined by

) w((S)), if0#SCD,
)= { 0, if § = 0.

One easily checks that p, satisfies o —additivity, and that

po(D) = p5(D) = v(N) = v(N).
One should remark that, if v has K,, := {wq,...,w,} as its carrier, the same
is valid for 7. We know that g has only mass on those points of D which
are subsets of K. Since we also have that p,(S) = e (p(S)) = pen(S) and

n

o"(S) = v™(S) for S C K, our u,» is exactly the measure given by formula
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(2.25). p, defined in this way is unique as pz is. Hence, we declare y, to be the

extension of ¢, (v).
Let the space YC V be given by the equation

VYV := {v€V|v=u—w, where u and w are totally monotone

and u, w € linhull{V> U V"}}.

One should remark that VC is a symmetric subspace of CBV, i.e. for each
v¢ € V¢ and every permutation 7 of N, we have that 7v® € V°. The following

corollary is a direct consequence of Theorem 2.38 and Lemma 2.40.

Corollary 2.42 For each v € V there exists a measure Wy and a sequence (vy,)s,
s.t. vO(f) = vO(f) for all f € [0,1]N, where each v, has {1,...,n} as its carrier.

For the definition of the value, we need a (quasi-) kernel on [0, 1] x D. As stated
before, the kernel given by Rosenmiiller [22] has some disadvantages which we
would like to avoid in the countable case. We will make some proposals for a more
intuitive kernel later on. For the moment, the minimal properties of a kernel P
(besides the three properties given on page 71) shall be
Pm$ﬂ§¥m> (229)
i€

for every fuzzy coalition f and each finite S C N, and
P(S,S) =1 (2.30)

for all S C N. We have to insist on property (2.29) as our value shall be the usual
Shapley value for finite coalitions S. Condition (2.30) is necessary to express that
P(e, S) should be something like the uniform distribution on S.

Definition 2.43 Let v € V and the corresponding p, be given. Consider P to
be any kernel on [0,1]N x D that satisfies the properties (2.29) and (2.30). Then,
0ros [0, 1N = R given by

%J¢=/Pummm> (2.31)

1s called the value on VC with respect to P.
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Example 2.44 The value for the unanimous game

Since each unanimous game eX, K C N, is continuous from below and totally
monotone, these games are some quite important elements of V. Rosenmiiller
shows in [22, Theorem 3.5] that, for each X, the corresponding measure p.x is

nothing else but the dirac measure on K. Thus, the value takes the form
Phnle)° = [ Plo,0) dtox() = Plo, ).

This implies that the value of ()¢ is nothing else but an evaluation of the given
fuzzy coalition on K with the kernel P. For a finite K, this formula coincides

with our result obtained by the smoothing procedure.

We know that the value given by Definition 2.43 is not a value in a sharp sense
since, as we have shown before, there cannot exist a measure m on (N, P(N))
that satisfies both m(N) = 1 and is invariant under permutations (a value for e¥
had to satisfy these two properties). In the following, we would like to analyse

which properties are still valid:

Proposition 2.45 Let P be a kernel on [0,1]N x D that satisfies the properties
(2.29) and (2.30). Then, the value ¢k, is a linear and efficient operator. If v is

totally monotone, ok, ,(v) is non-negative.

Proof Linearity follows directly from the fact that

MHav+pw — Clly + Bﬂw

for all a, B € R,v,w € V. Efficiency can also be shown straightforward:
P09 = [ POL@) ity = [ iy = (D) = o).

If v € V is totally monotone, then, obviously, x, is non-negative. Thus, the same

is true for o} (v°). g-e.d.
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In particular, our procedure leads to a value for all (¢X)¢, K € P(N):

Phos(€")(9) = P(o, K).

The result that the value of an unanimous game is a kernel is very reasonable.
However, the question remains how this kernel should look like for infinite coali-
tions K. One possibility is given by formula (2.27), but, as mentioned before,
this P has some great disadvantages. Hence, we would like to think about a new

and more intuitive kernel.

The kernel shall present something like a uniform distribution. One possibility

to approximate this distribution is given by
1
JEN
where K = {kq,ko,...}. The smaller a player is in the natural ordering, the
more he gets (a similar result can be received with every absolutely convergent

sequence with total mass 1). However, the distribution would be more intuitive

if it assigns 0 to all fuzzy coalitions with finite carrier.

One possibility to solve this problem shall be presented now. First of all, we look
at the case of crisp coalitions. After this, we try to extend our results to fuzzy
games. Let a K C N with infinitely many players be given. A filter Fx C P(K)

is given by
e Ac Fx, ACBC K = Be€ Fg
e ABeFx=—=ANBe Fk
o )¢ Fk.
A maximal filter is called ultrafilter, and each filter is contained in an ultrafilter.

This is a well known application of Zorn’ s lemma. If U is an ultrafilter on P(K)
and A € P(K) then either A or A® is a member of U

We define Fx := {A|A C K is cofinite}, where a coalition A C K is called
cofinite if A° N K is finite. Obviously, ]?K is a filter. Let ZjK be a corresponding
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ultrafilter. Then, we obtain a finitely additive measure Py on (N, P(N)) by

1, if ANK € Uy,

0, otherwise.

PK(A) = {

In the crisp case, the measure defined in this way can be seen as our new kernel
P(,K),ie. P(-,K) = Pk(-). Here, we have found a finitely additive measure
that assigns 0 to all finite coalitions in K. As we know that the Choquet extension
of an additive set function is itself additive, we can use, for example, the Choquet
integral w.r.t. the so defined kernel P(-, K) for our fuzzy value. Obviously,
PC(K,K) = 1 is valid. Since each additive fuzzy measure is homogeneous (cf.
[29, Lemma 2.1.3]), we know that P°(A\K, K) = ) is true for every A € [0,1].
Furthermore, we have that P (f) = fol Pr({j| f(j) > t})dt and

1, if {jl f(j) > t} € Uk
0, otherwise.

Px({il f(G) > t}) = {

Obviously, there exists exactly one t* = t*(f,Ux) s.t. {j| f(j) > t} € Ux for all
t < t* and {j| f(j) >t} ¢ Ux for all t > t*. Hence, we have that PE(f) = t*.

Another possibility to get something like a uniform distribution is given in the
following. There we think of a filter for fuzzy coalitions on N and define the

corresponding measure as in the crisp case.

Weak Fuzzy Filter

As already mentioned, we define the intersection of two fuzzy coalitions as the
minimum. Since we would like to assign only the values zero and one to all fuzzy
coalitions, it is not possible to use a strong additive measure here, i.e. a measure
P which satisfies P(f + g) = P(f) + P(g) for f + g < N. We have the problem
that, as shown in [29, Lemma 2.1.3], such measures are always homogeneous,

i.e. P(AN) = AP(N) = \. Hence, we can only take the weak form of additivity:
m(fV g) =m(f)+m(g) for fAg=0.

Lemma 2.46 The definition of weak additivity is equivalent to

m(f Vv g)+m(f Ag)=m(f)+m(g) for all f,g € [0,1]N. (2.32)
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Proof Considering fuzzy coalitions f and g with pairwise disjoint carrier, one

can immediately see that equation (2.32) implies weak additivity.

Let us assume now weak additivity. For two fuzzy coalitions f and g, one can
define T := {i| f(i) > g(i)}. By this setting, the union of f and g can be written

as
fVg= flr+glre = flr V g|7c.

As f|r and g|pc have an empty intersection, we obtain the equality

m(fVg) =m(flrV glre) = m(f|r) +m(glre).

For the same reasons

m(f A g) =m(flre + glr) = m(flre V glr) = m(flre) +m(glr)

is true. Summarizing, we have that

m(f Vv g) +m(f A g) =m(f|r) +m(glre) +m(flre) +m(glr),

and this is equation (2.32). q.e.d.

We now try to bring the definition of a filter into the context of fuzzy coalitions:

Definition 2.47 For K C N, |K| = oo, a (weak) fuzzy filter Fx C [0,1]¥ is
given by

o feFk, [Sg< K= g€ Fk

o f,g€Fx = fANg€ Fk

.®¢-7:K

Again, one can show with the help of Zorn’ s lemma that every fuzzy filter F is

contained in a fuzzy ultrafilter, which denotes a maximal fuzzy filter:
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Let X denote the collection of all fuzzy filters containing F. For all F,, F3in X,
we say that F, < Fp if F, C Fsz. < is a partial order on X. Let {F,|a € A},
A CR, be a chain in X. Then (J,.4 Fo € X and |J .4 Fao is an upper bound of

the chain {F,| a € A}. Consequently, there exists a maximal element ¢/ in X.

Our next steps aim at looking for a weak fuzzy filter on P(N). For an arbitrary
infinite K, one can make similar thoughts. To be more precise, we now try to
find a partition of [0,1]" s.t. the first part of [0, 1] contains the “large” fuzzy
coalitions and each member of this part gets the measure one. All other fuzzy
coalitions get zero. To do this, we take a look at

~ 1

F = {f € [0, I]N‘ f@@) < 5 for at most finitely many z} :
Let i be a maximal filter containing F. The cofinite crisp coalitions are contained
in F , and, hence, especially in . Since the finite crisp coalitions have an empty
intersection with their complements, and since these complements are cofinite,

no finite crisp coalition is an element of u.
Lemma 2.48 f¢5{\<:>5|g€?:l\s.t. fAg=0.

Proof If there exists a g € Us.t. f A g =10, then, obviously, f is not an element
of U , since otherwise the property () ¢ U would be violated.

To prove the other direction, we assume that for a given f ¢ U there is no g e u
s.t. f and g have an empty intersection. Consider the set H consisting of all
fuzzy coalitions h for which there exists some g € Us.t. h> (fANg). Hisa
weak fuzzy filter. Moreover, H contains both i and f. Hence, one knows that

fe i is valid because of the maximality of I4. This is a contradiction. q.e.d.

Lemma 2.49 f¢U = fCecll

Proof Assume for the contrary that f€ ¢ Z:i, i.e. that there exists a g € Us.t.
f¢ A g=0. Since f is not a member of Z:[\, there exists a h € i with h A f=0.
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Summarizing, we have that
g(i) > 0= f¢(i) =0 = f(i) = 1 = h(i) = 0.

In the same way it can be shown A(i) > 0 = ¢(i) = 0. Therefore, we have that
h A g =0, and this provides the contradiction. q.e.d.

The equivalence f ¢ U = f€e i is well known for crisp coalitions, but is not
valid in the case of fuzzy coalitions. For example, AN is an element of U for every
A € (0,1) as the intersection of such a fuzzy coalition with any () # f € [0, 1]N is
non-empty. The complement of AN, (AN)¢ = (1 — AN, is obviously in U , too.

We will repair this “gap” in the next section.

Nevertheless, we can define a finitely weak additive P, (e,N) on [0,1]N by
Pu(f,N) =1 for f € U and P,(f,N) =0 for f ¢ U. To get a measure Py(e, K)
for infinite K, one has to restrict the fuzzy coalition f to K and follow the steps
of the construction of Py (e, N).

Strong Fuzzy Filter

As already mentioned, it is not possible to get a strong additive measure by the
approach demonstrated above. But as we will show next, it is possible to find a

weak additive measure m that satisfies
m(f) +m(f°) =m(N) =1 (2.33)

for all f € [0,1]N. One can think about requiring the implication f € F =
f¢ ¢ F as a fourth property of a fuzzy filter. However, the problem is that we
have IN = (IN)9, i.e. there exists a fuzzy coalition that coincides with its own

complement.

Now, we want to present an approach in which a weak fuzzy measure assigns

values 0, %, and 1 and satisfies equation (2.33). The first thing to do is to find

an “equivalence class” © C [0, 1]N for ;N s.t. both © and ©¢(=[0,1]" \ ©) are
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closed under taking intersections and complements. To build such an equivalence

class, we define
Definition 2.50 A fuzzy quasi filter G € [0, 1] is given by

o feEG+= fCeg
e fgeG=— fAgeEG

e 0¢gG

Remark 2.51 1. As easy as for a fuzzy filter one can show that each fuzzy

quasi filter is contained in a mazximal fuzzy quasi filter.
2. f,g€eG= fVgegsince fVg=(f°ANg°)".
3. No crisp coalition T can be an element of a fuzzy quasi filter as TATC = (.

4. One can see quite easily that %N 1 an element of each maximal fuzzy quasi

filter.

Obviously G = {3N} is a fuzzy quasi filter. Let © be a maximal fuzzy quasi
filter for G. Ome can verify that © is closed under taking complements and
intersections. Now, we want to prove the same statement for ©¢ = [0,1]Y \ ©.

To do this, we have to make some thoughts about the appearance of ©¢.

Lemma 2.52 g € OF iff there exists either hy € © with hyV g =0 or hy € ©
with ha A g = N.

Proof If there exists a h € © with h A g = ) or h V g = N, then, obviously, ¢

cannot be an element of O.

To show the other direction, we first consider a g € ©“ \ P(N), i.e. a g which
is no crisp coalition. Furthermore, we assume for the contrary that there is no
he€®st hAg=0orhVg=N Then © :={0,9,6° gA g gVg° gV
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©,9°VO,(gAg°)VO,(gVg°)VO,gn0,g° N0, (gAg°) NB,(gV g°) A O}
is a fuzzy quasi filter that contains © and g, i.e. we have that g € © because of

the maximality of ©, and this is a contradiction.

We had to exclude the crisp coalitions since T'A T = ). Now, we want to close

this gap: To do this, we first prove the following remark.

Claim 1: If, for a given g € [0,1]N, there exists an h € © s.t. hAg =T
[V g =T], T € P(N), then there exists also an h € © [he®)st. hAg=10

[hVg=N].
To be precise, this A is given by h := h A h®:

0, ifsi€ T (since h°(i) = 0)
(R A RO (i) = 0, ifie T and h(i) =0
(R ARC)(E), ifi€ TC and h(i) # 0.

For i € T and h(i) # 0, g(4) always has to be zero, since otherwise the intersec-
tion of h and g cannot be T. Therefore, g A (h A h®) = ().

Of course, there is no problem in showing the analogue statement for gV h =T,
i.e. in showing the existence of a h € © with hV g = N. This completes the
proof of Claim 1.

Let a crisp coalition 7" be given. Since 7' A 2T is nothing else but the empty

set, at most one of these fuzzy coalitions can be contained in ©.

Claim 2: Either 1T or 3T is an element of ©. Suppose, for the contrary, that
there exist hy, hy € O s.t. 3T Ahy =0 = £T° Ahy (For a crisp set S, the equation
%S V h = N implies h = N i.e. especially h ¢ O). Observing this fact, we have
that hi(i) = 0 for i € T and hy(i) = 0 for i € TC, i.e. hy A hy = (). However, this
contradicts the fact that both h; and hs are elements of ©.

Now, we are able to prove that, for each crisp coalition 7', there exists an h € ©
st. hRAT =Qor hVT =N If 3T € © we know that (37)° € © and
TV (3T)° = N. For 1T € © we have that T A $T¢ = 0.

It remains to show that, for a given g € ©F, there is no pair hi,hy € O s.t.
gAhy =0 and gV hy = N. However, this cannot be valid since h; A A would be
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equal to the empty set. q.e.d.

Lemma 2.53 O is a closed subset of [0,1]N w.r.t. taking intersections and

complements.

Proof Of course, O is closed w.r.t. taking complements since © is a fuzzy

quasi filter.

To show closure w.r. t. intersection, we consider f, g € ©F. Suppose that fAg €
©, i.e. that there is no h € © s.t. hA(f Ag) = 0. Because of the trivial
inequalities hA f > hA(f ANg) < hAg, there exist hy, hy € ©s.t. fVh; = Nand

gV hy = N referring to Lemma 2.52. Because of these equations, we have that
(hiVh)V(fAg) =(fVhVhy)A(gVhVhy)=NAN=N

This is a contradiction, and, hence, our lemma is proven. q.e.d.

To define a measure, we first have to look at what happens if we take the inter-

section or union of an element of ©® with one of ©F.

Lemma 2.54 Let f € © and g € OF be given. Then the following is valid:

C

f/\e@<=>fve@
g@C g@

Proof Since g is an element of ©F, there exists either an h; € © with gAhy = 0
or an hy € © with gVhy = N (cf. Lemma 2.52). Let us consider the case gAh = ()
for h € ©. Of course, (f Ag) Ah=10is true, i.e. (fAg) €O As(fVyg) >f
is valid, the assumption (f V g) Ah=0forahe® implies especially f A h= 0,

i.e. f € ©F. This is a contradiction.

Thus, it remains to prove that there exists no h € © with (fVvg Vv h =N to
show (f V g) € ©. However, Lemma 2.52 states that both g V (f V 7L) = N and
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g A h = () is not possible. (Here we have used closure of © w.r.t. intersection

and complement.) Therefore f V g is an element of ©.

Correspondingly, one can show that for any A € © such that g vV h = N we have
that (f Vg) € ©° and (f A g) € O. q.e.d.

Definition 2.55 A strong fuzzy filter F C O€ is given by

o fEF, f<ge® = gcF
o fge F= fANgeF
o )¢ F

e For each f € OF, the following is true: f € F < f¢ ¢ F.

Now, we define the subset U of ©¢ by
U:={fcO°TheOst fVh=N}

U is a strong ultra filter on OF, i.e. it satisfies the following properties:

e feEU f<ge®=gecl
(fvh=Nforahe ® = gVh=N)
e fgcU—=— fAgelU
(fVhi =NgVhy=N, hj,hy € ©® = (fAg)V (h1V hy) =N)
e ¢U (WVh=N=h=N¢0)

o feU= fC¢U

(N=fVh=(f AR he®= (f°AhY = 0 = There does not
exist an h € © s.t. fCVh=N)
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e U{ is maximal, i.e. for each f € O, either f or f¢ is an element of I

(féU= fAh=0Dforahe® = VA’ =N= f¢cl)

Now, we are well prepared to analyse the different possibilities for the intersection
and the union of fuzzy coalitions again:

e f,geEO(EU, €O \U)= fAg,fVgeB(eU, € O°\U)

e fecO,gceU=— fANgeO, fVgel

e f€O,ge®O°\ U= fAgeO\U,fVgeO

e feEU geO\ U= fAgeO®O°\U,fVgelU

Now, the measure P,(e, ') can be defined on [0, 1] as follows:

1, iffeld
Ps(f,N)=4 1, iffe® (2.34)
0, if fel0, 1N\ (Oul).

To obtain a kernel on [0, 1]Y x D, we define P(f, K), K C N, in a similar way (cf.

the construction of P,).

2.5.3 Comparison with a Model of Gilboa and Schmeidler

It is an open question whether or not the class of coalitional functions v for which
a corresponding measure i, exists is a Banach space. If we allow for some changes
in our model, an answer can be found in the framework of Gilboa and Schmeidler
[11]. They consider all games v € V on an arbitrary player space (2, X)), where ¥
is an algebra of coalitions of Q. X' is defined by X' := X \ {#}. For each T' € 3,
the set T C ¥ is given by

T:={Se¥|SCT}

and
0:={T|T e %'} C P().
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They use ¥ and ¥ to denote the algebra and o—algebra generated by ©, respec-
tively.

Theorem 2.56 [11, Theorem A] For every v € V there exists a unique signed
finitely additive measure n, on (X', V) s.t.

v = /zf el dn,(T). (2.35)

In case that X is finite, the composition norm is defined as
[Vllcomp := D ler(v)],
Tex

where the reader is referred to formula (A.1) for a definition of ¢r(v). For the

general case, one defines

10|l comyp := sup {||U|EO||COW, ¥ is a finite subalgebra of E} .

There are two interesting subspaces of V:

Vo= {ue v‘ elleomp < 00 }
Vo= {UEVb

Ny 18 a o—additive signed measure} .

Theorem 2.57 [11, Theorem B] V® and V° are Banach spaces w. 7. 1. || ® || comp-

Furthermore,
V.= {v € V|v=u—w,u,w are totally monotone}.
Theorem 2.58 [11, Theorem D] If Q) is countable, the mapping v — 1, is a
bijection from
{v € V|v is totally monotone and continuous from above}

to

{n|n is a measure on V}.



90 CHAPTER 2. A FUZZY VALUE FOR COUNTABLY MANY PLAYERS

Theorem 2.59 [11, Theorem E] Let v € V’ and a bounded measurable function
f:Q — R be given. Then,

[ sao= | [inf s dn(o).

By defining 2 = N and ¥ = P(N), one can get some nice results. In this case,
3 is nothing else but D, i.e. the space of all non-empty subsets of N. Now, we
restrict u (i. e. the measure defined on page 76) to (X', ¥). First of all, one should
remark that each game with finite composition norm is of bounded variation, i. e.
VP C BV (cf. [11, page 205]). Let V¥ denote the set of coalitional functions v for
which p, exists. We will show next that YV C V* and that p, coincides with n,
on V7. Therefore we have found a Banach space w.r.t. the composition norm in

which p, exists for all games.

Theorem 2.60 For each v € V7, there exists a |, and this measure coincides

with 1.

Proof Let a v™ with a finite carrier 7" be given. As we have that

= 3 S (S) = / ¢ dpn (8),

SCT™

we know that n,» = p,» since Theorem 2.56 states that n,» is uniquely defined
by the equation above. In the same way, one can show that nz» = pz», where v
is defined on (N, P(N)) by 7(S) = v(S \ {oo}) (cf. page 74). Proposition 2.32
provides that, for each v € V7, there exists a sequence (v"),, converging weakly
to v, where each ¥™ has a finite carrier. Hence, we have that, for each continuous
f:N—=R,

[ Nt = [ N = [ a7 = [ 7an= [ g

Now, we can again use Lemma 2.35 to see that (ug») converges weakly to 7.
Since we have shown the uniqueness of the weak accumulation point p of ()

before, we have that uz = 1.
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For a fixed S C N, we obtain

[\ din = ulT1T €S\ o))
— (1T C SU{oo})
— [ (s Ufechdus
— 55U {o0}) = (S \ {oc})
=[5\ {ooh .

Hence, we have shown that
[ s\ tochdu, = [ T(S)dn,
D D
is true. This fact implies the following for each S C N:

/D '(S\ {oo}) dn, = v(S\ {oo}) =(S)

HI

S) dp

I
@\@\@\ =
“’ﬂ|

e’ (S\ {o0}) dpo.

All in all, we have proven that 7, = p, (cf. Theorem 2.56). q.e.d.

With the help of this result, we get a nice value on V7 that is an extension
of the Shapley value for games with finitely many players. For each v € V7 N
linhull{V> U V/'}, there exists a sequence v™ s.t. each v™ has a finite carrier
and lim,, ., v"°(f) = v°(f) is valid for all fuzzy coalitions f. The corresponding
sequence (u") has a weak accumulation point g. This measure y is unique in a
twofold sense: it is the only weak accumulation point of (x"), and it is unique
in the sense of Theorem 2.56. However, restricting u to (D, ¥) has the big
disadvantage that we are not allowed to use all subcoalitions of N, i.e. that we

have to care for the measurability of our kernel P again when considering ¢7% ..
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One should remark that there are games s.t. the corresponding p is not
o—additive. There are also v € V s.t. no sequence (i), has a weak accu-
mulation point. Nevertheless, Theorem 2.56 provides a finitely additive 7, s.t.

one could think of building a value as in Definition 2.43.



Chapter 3

NTU Games with Fuzzy

Coalitions

Throughout the previous chapter, we have considered fuzzy games with transfer-
able utility (TU games). Since games with non-transferable utility (NTU) present
a much wider class of games as those with TU character, this chapter is devoted
to the question of how one can “fuzzify” NTU games. Mostly, we are interested
in obtaining a Choquet extension of an NTU game as this extension seems to be

a quite sensible one for the TU case.

We try to preserve as many properties of the Choquet integral as possible. How-
ever, there exist NTU games s.t. the corresponding Choquet extension cannot
satisfy all properties of the Choquet integral. For example, comonotone additivity

and continuity are mutually exclusive for some games in the NTU case.

In Section 2, we will give an intuitive formula for a Choquet game (N, V%),
where the correspondence V¢ is not continuous. For this reason, we will present
in Section 3 a possibility to define an extension (N, Vc) that satisfies even this
property. Finally, we will discuss the core, one of the most important solution

concepts.

93
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3.1 Fuzzy NTU Games: Definition and Motiva-

tion

In this chapter, we would like to examine a game in which no possibility of utility
transfer exists, i.e. the case of something like a fuzzy NTU game. Dhingra and
Rao give in [9] an example which can be seen as an NTU game with a fuzzy
part (cf. Examples 1.3 and 3.4). There, we have k crisp players and one fuzzy
player. However, in this chapter we would like to consider the more general class

of games where everyone can make fuzzy decisions.

First of all, we will give the definition of a (crisp) NTU game (see for example
Rosenmiiller [23, Chapter 4, Section 1]). After this, we will make some thoughts

about how we can extend this concept to fuzzy coalitions.

Let n € N be given, and let S be a subset of {1,...,n}. Define R as the subspace
of R* spanned by the unit vectors (e’);cs. For z € R, let x5 € R% be the vector

defined by
13 €5
=0 !
0, i€S°.
A set A C R" is called comprehensive, if for all z € A and y € R" the
inequality y < z implies y € A. A C R% is called S—comprehensive, if for all
r € AyeRe yS <z¥implies y € A.

Definition 3.1 /28, Chapter 4, Definition 1.3 An n-person cooperative
game without sidepayments (NTU) is a pair (N, V), where N := {1,...,n}
is the set of players, and V : P(N) — P(R") is a function that associates with
every S C N a non-empty set V(S) C R such that

1. V(S) is S-comprehensive,

2. V(S) is closed, and

3. for every z° € R%, the set V(S) N (25 + RE, ) is bounded.
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This definition implies, in particular, that V() = 0 (here, 0 is the n-dimensional
null-vector). The following remark explains how a TU game can be imbedded
into the NTU-context:

Remark 3.2 Let a TU game (N, v) be given, i.e. v: P(N) — R, v(0) = 0.
Then, (N, V,) given by

Vo(S) == {ac € R¢

in <wv(S )}
i€S

is an NTU game. The latter formula can be found for example in [23, Chapter
4, Example 2.17].

Mare§ deals in [15] with NTU games and fuzziness. He suggests the following:
A fuzzy NTU game is a pair (N, V), where V : P(N) — [0,1]¥" is a function
mapping the set of crisp coalitions into the class of fuzzy subsets of R". Here,
we have vagueness in the outcome of each coalition, i.e. each crisp coalition is
assigned a fuzzy set on R™. As in the crisp case, V is considered to have several
properties which we do not mention here in detail. However, we would like to
give a short introduction to this kind of a fuzzy game: The function V is built in
such a way that for every () # S € P(N) some payoffs can be taken for granted
(3r € R* s.t. V(S)(z) = 1), and some others (more profitable for players) are
only possible with various degrees of possibility. Lexicographically larger points
are less probable, i.e. z° < y¥ implies V(S)(z) > V(S)(y), for all S € P(N).
Furthermore, there always exists a y € R* with V(S)(y) = 0.

This approach does not fit to Butnariu’s and Klement’s definition of a TU game.
There, the set function is a mapping on the fuzzy coalitions to the real numbers,
i.e. we have different degrees of membership in a coalition and exact outcomes
for each fuzzy coalition. Hence, a corresponding fuzzy NTU game should be of
the form (N, V) where V¥ is a mapping on the fuzzy coalitions of N to the
power set of RV. In the following definition, we convert an NTU game to the
fuzzy context in a quite intuitive way. Later on, we will show that there are

other (in some sense more reasonable) possibilities for the definition of a fuzzy
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NTU game. Remember that for a given f € [0,1]" the carrier C(f) is the crisp
subset of N that consists exactly of those members which have a positive degree
of membership in f,i.e. C(f) :={i € N| f(i) > 0}.

Definition 3.3 An n-person cooperative fuzzy game without sidepay-
ments (NTU) is a pair (N, VE) where N := {1,...,n} is again the set of
players and VF : [0,1]Y — P(R") is a function that associates with every fuzzy

coalition in N a subset of R*. VI satisfies the following properties:

1. VE(f) SR p-
2. For f # 0, the set VI (f) is non-empty and closed.
3. VE(f) is C(f)-comprehensive.

4. For every z¢Y) ¢ RE(y), the set VE(F) N (W) + RE(py1) s bounded.

Let us go back to Example 1.3, where Dhingra and Rao [9] describe a multiple
objective optimization problem with fuzziness. We would like to have a look at
how it is possible to write down this problem in such a way that it fits to our

definition of a fuzzy NTU game.
Example 3.4 Multiple Objective Design Optimization 11

In this example, we have k + 1 players. The first £ players correspond to an
objective function and can, for this reason, only make crisp decisions. The last
player corresponds to the combined fuzzy objectives and fuzzy constraints. She
can have any degree of membership in a fuzzy coalition between zero and one.
This means that only a certain subclass of [0,1]Y | N = {1,...,k + 1}, provides
the feasible set of fuzzy coalitions in this example. Obviously, the subclass de-
scribed above is a fuzzy tribe ([6, Definition 2.5]). Let us assume that U given
as in Example 1.3 is bounded from above. Then, (N, U ) provides a fuzzy NTU
game, where U : {0,1}* x [0,1] — P(R¥*1) is given by

U(h) = CCH{(yl(:c),...,yk(:c),)\)|zz~(:v)SO,z’:l,...,m,

0 < A < min{u/ (z), u¢(x), h(k + 1)}} n R’éﬁ).
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Here, CCH A denotes the convex comprehensive hull of the set A.

Now, we are interested in the question how a fuzzy TU game (N, v) can be

embedded into an NTU game. This can be done by defining

Vi) = Qo eRep| Do m<o™() g (3.1)
i€C(f)

This is a similar procedure to the one used for crisp games, and one can show
quite easily that we obtain a fuzzy NTU game. All players in the carrier of f
can share the total gain v¥ (f) equally, i.e. the respective degrees of membership

determine the overall outcome but not the share of the single players.

Formula (3.1) is one possibility of embedding a fuzzy TU game into the NTU
context. However, it is not the only one. One could take care a little bit more

for the various fractions of the players. This can be done by defining

Vi) = e Rep| 3 m < 7t () (32)
i€C(f)

for f(1) > f(i), ¢ > 2. As in the previous version, each player in the carrier

of f takes part in the allocation of the total gain. However, the players are

evaluated by their degree of membership. If, for example, f(2) is much smaller

than f(1), player 2 is in a weaker position than player 1. Figure 3.1 demonstrates

the appearance of this approach for n = 2 and f(1) = 2f(2).

An interesting question is whether 171]1; or ‘7;}; preserve continuity. For this rea-
son, we define continuity for correspondences (cf. Hildenbrand and Kirman [12,
Mathematical Appendix III]):

Let a set-valued function v : § = T,5 C R™,T C R" be given. Then, 7 is called
upper hemi-continuous (u. h. c.) at the point 5 € S if

st o5 tteqysh)tt =1 = Teqy).

The correspondence v is lower hemi-continuous (L. h. c.) at the point 5 € S if

s =51teqy(E) = There exists a sequence (t); in T

s.t. ' € y(s') and t' — 7,
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Figure 3.1: Vi (f) for f(1) = 2f(2)

If v is both u.h.c. and 1. h.c., it is called continuous.

It is easy to see that neither ‘Z)FF nor ‘7;1}; can be u.h.c.. There are no problems
for sequences (f,) with C(f,) C C(f). However, if C(f) # N, one can consider
(fn) with C(f,) = N and f, — f w.r.t. the maximum norm. As C(f) has no
more than C(f,) — 1 players, and since we made the requirements that V¥ (f) is
C(f)-comprehensive and that V¥ (f) C R p): we “lose” (n — C(f)) dimensions.
This means nothing else but that \//\'f; and 17;1; cannot be continuous for fuzzy

coalitions with non-full carrier.

To repair this gap, one has to modify the definition of a fuzzy NTU game a little
bit. Up to now, V¥ had to be a subset of R& (- For the following approach, we
will allow negative numbers for players not being in C(f). If a fuzzy coalition
comes to a cooperation, and if a player has a degree of membership of 0, the best
result he can obtain is 0, but he is free to throw away as much as he wants to. To
be precise we replace the first requirement of Definition 3.3, i.e. V¥ (f) C Re sy
with the requirement V7 (f) C R, ;) + R oo ={z € R*|z; <0 fori ¢ C(f)}.

Moreover, V¥ (f) is assumed to be comprehensive for every f € [0, 1]V .

The following lemma is concerned about building a pr for two players that
preserves continuity. For further thoughts concerning continuity, the reader is

referred to Section 3.
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Figure 3.2: The set pr(f) for f(1) =3, f(2) =

Lemma 3.5 Let n =2 and vF be continuous w. r. t. the mazimum norm. Then,

pr as defined in the follows is also continuous:

{z e R?|z; + ﬁxg,i < ﬁvF(f) if C(f) ={1,2} and

VFF(f): and z; + (3 — i)zs—; < vF(f)} f(@i) > f(3—1)
’ {r e R xR, |z <vF(f)} if C(f) = {i}
R? iff=0

In Figure 3.2, one can see how V,UFF(f) looks like for f(1) = 1, f(2) = 1 and
oF(f) =1.

Proof (of the lemma)

First of all, we have to verify that pr is well defined. However, as one can easily
see the inequalities for f(1) > f(2) coincide with those for f(2) > f(1) in the
special case where f(1) = f(2) > 0.

For a sequence (f;); of fuzzy coalitions converging to f w.r.t. the maximum
norm, the case C(f) C C(f;) is the only interesting one, since f(i) > 0 implies
f1(1) > 0 for [ sufficiently large.

Now, we are well prepared to show continuity. At the beginning we want to show
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lower hemi-continuity, i.e.

fi—= f,x € pr(f) — (') s.t. 2t € pr(fl),xl — T

e C(f) ={1,2}
We can assume w.l.o.g. fi;(1) > fi(2). Then, we define 2! := x; for all
I. Since we require z' to be an element of VvFF( f1), we have the following
inequality: 7} < min(fl(Q)[ﬁvF(fl) —x1], ﬁ[v(ﬁ) —1]). One can easily

see that, for each | € N, there exists a sequence (g;); with & > 0 for all

[ and lim;g; = 0 s.t. a:lz '= xo — g; satisfies this inequality. Hence, there

exists a sequence as required.

e C(f) ={1}
If C(f;) = {1}, the proof is trivial.
Consider now the case C(f;) = {1,2}. We have f;(1) > f;(2) — 0. For a
sequence (gx)x, € > 0 for all k, limy, g, = 0, there exists, since v* is contin-
uous, a sequence (Ix)k, I = l(ex) € Nyl < lpy1, s.t. |05 (f1,) — 0" (f)] < e-
Now, we build a sequence (z'¥);,z%* € pr(flk). For z¥ := z; — &, we
have to ensure that 2 < min(f;, (2)[%1}F(flk) — 11 + &), %[’UF(flk) —
x1 +€x))- Since z € pr(f) is true, we know that v (f;,) — 21 + & is non-
negative. Hence, we can set z4 := min(flk(Q)[fl#(l)vF(flk) — 1 + ), 0).

k

This sequence (z'*), satisfies the required properties.

. C(f)=0
The case C(f;) # {1,2} is trivial. If f; has a full carrier, one can use a

similar proof as before.

It remains to show upper hemi-continuity, i. e.

fi— f,zt e pr(fl),xl —xr=2x€ VfF(f).

e C(f)={1,2}
We may assume that f(1) > f(2) and fi(1) > f;(2) for all . Because of
the convergence of (z') to x there exists for each € > 0 a L € N s.t. both



3.2. THE CHOQUET EXTENSION 101

|ﬁvF(fl)_L oF ()], [F (1) = oF (F)], o = 24, | fi(2)zh, — f(2)zs], and

|ﬁxé f(2 F&2| are smaller than & for all | > L. With these 1nequaht1es in
mind one sees immediately z; + f@) o < ﬁ F(f)+3e and z1 + f(2)z2
v (f) + 3e.

o C(f) ={1}

For C(f;) = {1}, the statement is obvious. Therefore, we concentrate on
the case C(f;) = {1,2}, i.e. on fi(1) > fi(2 ) — 0. Let us assume that

xy > 0. Then, 7, > 0 for [ large enough, and x2 — o0o. However, this
contradicts z{ + (2) 7% < 7 (1 v (fy).
It remains to show that 2} < mm( vE(f) — xz, F(f) — fi(2)xh)

implies z; < v (f). Since the second term in the 1nequahty converges to

v (f), we are done.

° C(f)=10
Again, C(f;) = {1,2} is the only interesting case. Let f;(1) be at least as
great as f;(2). Then z}, < f’ 2) oI (f))— fi(2)2} 1mp11es xo < 0, since ;lg g <1
and v (f;) = 0« f1(2). Together with zi + f1(2)z} < v¥(f;), we have that

z1 < 0. This completes the proof. q.e.d.

3.2 The Choquet Extension

Now, we would like to examine the same question as in the case of TU games:
How can one extend a given crisp NTU game to the “world of fuzziness” in a
canonical way. To give an answer, we will concentrate again on the Choquet
extension because of several nice properties (see Chapter 1 and Appendix B).
First of all, we will give an explicit definition. As we would like to consider only
NTU games with finitely many players, we recall the summation formula of the

Choquet integral for the TU case, which is given by

n

vO(f) =Y u(SIIf @) = fi+ 1)),

i=1
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where f(1) > ... > f(n), f(n+1) =0, and S; := {1,...,i}. To give a similar
formula for NTU games, we have to make the following settings: For a set A C R"

and a € R, the new set A is defined as
aA:={z eR"|da € As.t. z =aa}.

For A, B € R", we denote by A 4+ B the direct sum of these sets, i.e. A+ B is
nothing else but the set of vectors which can be written as the sum of a vector

from A and a vector from B:
A+B:={re€R'|dac A be Bs.t. z =a+ b}.
Now, we make a first attempt to explain the Choquet extension (N, V) of a given

NTU game (N, V). This is done for a fuzzy coalition f with f(1) > ... > f(n)

by means of the formula

Ve =3 VS = £+ 1)) (3:3)

We call a NTU game (N, V) monotone if V(S) C V(T) is valid for all S C T
In particular, we have that 0 € V(.S) for all coalitions S. (N, V) is called convex-
valued if V() is convex for every S € P(N).

Theorem 3.6 Let a convez-valued, monotone NTU game (N, V') be given. Then,
the corresponding Choquet extension (N, V©) satisfies the following properties for
each f € 0,1V :
C n
1. VE(f) C Re(py
2. VO(f) is non-empty,
3. VO(f) is C(f)—comprehensive,

4. VO(f)n (=D + R’C‘(f)+) 15 bounded for every r € R".

Proof
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o VE(f) CRp
Let the carrier of f be given by C(f) = {1,...,m}, m < n (we assume
again that f is lexicographically ordered). Then, we have that VC(f) =
S V(S)If(E) — fe+1)]. As V(S;) C RE, is valid for every i, we are

done.

e VY(f) is non-empty:

For f = (), there is nothing to prove since V() = 0. For f # (), there exists
at least one i € {1,...,n} s.t. f(i) > f(i + 1) when setting f(n+ 1) = 0.
Hence, we have that () # V (S;)[f(¢)— f(i+1)], and, as a direct consequence,

Ve(r) #0.

e VC(f) is C(f)-comprehensive:

Let a y € VE(f) be given, and let C(f) = {1,...,m}. This means that y
can be written as y = Y7 | 2 IfG) — fG+ 1)] with 27 € V(S;). Consider
now an r € R* s.t. 2¢¢) < y¢) and deﬁne Zn =™ m(y — W),
Then, 2°U) can be written as z¢U) = 377 YAFG) — FG A+ D))+ f(m)Em
Since z™ < 2™ is valid, we have that z™ € V(S,,). Thus, the claim is

proven.

o VO(f)n (z°D) + R+ ) is bounded for every z € R™:

If 26U ¢ VE(f), we have that VE(f) N (26 + Rf(s)1) = 0 because of

C(f)—comprehensiveness.

Let us now consider the case z€) € VE(f). We have that A\V(S) C V/(S)
for every A € [0, 1], since V(S) is a convex set containing zero. Hence, it
is sufficient to show the following: [V/(S) + V(T)] N (T + R%. ) is bounded
for S C T, and z* € V(S) + V(T). There exist s € V(S),t € V(T) s.t
x = s+ t. Because of monotonicity, we have that V(S) C V(T), and,
together with convexity, we have that sz = 75+ 3¢t € V(T). Next, we

define
{_ 1 -
maXx ti — =X
ieT 2

This ¢ is finite since V(T')N[(327)+R}., ] is bounded. With this definition in
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V(1,2) V(1) Ve(r)

N ;

Figure 3.3: Example for a Choquet NTU Game

mind, we have that, for each pair (5, 1), 5 € V(S),t € V(T) with (5+1t) > z,
~ 1

~ 1. 1~ 1
16+ = llup = 255+ 57— 5llup < 28

This completes the proof. q.e.d.

Example 3.7

For reasons of simplicity, we consider the two player case. Let a fuzzy coalition

f be given by f(1) = 1,f(2) = 3 and V(1,2) = {z € Rz + szo < 2},
V(1) = {x € R?|z; < 1}. Then, one can easily calculate the Choquet extension

to be VO(f) = {z € R%|z, + 525 < 1,5} (see Figure 3.3).

Theorem 3.6 states that the Choquet extension given by formula (3.3) satisfies
all properties of a fuzzy NTU game except for closure. Later on, we will give

conditions for (N, V') that guarantee this property.

In Theorem 3.6, we require the mapping V' to be monotone and convex-valued.
The following example demonstrates that these properties are necessary to show
boundedness of VC(f) N (z¢) + R%(s)1)- This means that the Choquet exten-

sion in the NTU case is not as general as in the TU case. There, we need the
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monotonicity of the underlying setfunction v to obtain an integrable function. In

particular, for finitely many players no restrictions on v are required.
Example 3.8

1. If we drop monotonicity, the following can happen: Consider the case n = 3
and the game (N, V) with V/(1,2) := {z € R}, ,; [4z1+22 < 0}, V(1,2,3) =
{z € R 5|21+ 472 < 0,23 < 0} We have that AV(1,2) = V(1,2)
and \V(1,2,3) = V(1,2,3) for A > 0. Hence, we know that for f(1) =
f(2) = 1,f(3) = 3, the Choquet extension can be written as VE(f) =
V(1,2)+V(1,2,3). For each m € N, the vector (—m,4m,0) is an element
of V(1,2), and (4m,—m,0) € V(1,2,3) is also valid. Hence, we have that
(3m,3m,0) € [V(1,2)+V(1,2,3)]. Obviously, VC(f) N (0 + R%(f)1) is not
bounded.

2. If we drop the convexity assumption, we can, for three players, define V (1, 2)
and V/(1,2,3) by V(1,2) = {z € R}, 5, [4z1 + 72 < 0 or 21 + 475 < 0, },
V(1,2,3):={z € R?1,2’3}| 4x1 4+ 29 < 0 or 21 + 49 < 0,23 < 0}. Now, one

can draw the same conclusions as before.

As we want to get a fuzzy NTU game with the help of the Choquet formula,
we still have to find conditions under which V¢(f) is closed for all f € [0, 1]".
For A € (0,1], one can easily see that AV (S) is closed, since z € 9(AV (S)) iff
Tz € OV (S). However, the sum of V(S) and V(T), as the sum of two closed
sets, does not need to be closed itself. To show this, we can consider a slight
modification of an example for three players given by Kern [14, Beispiel 4.16]. A
monotone, convex-valued NTU game (N, V) is defined by

1

SV(1,2) = {ac ERY,

21 < =129 < /(@) = 1} +(1,0,0),

1
§V(1,2,3) :{$€R3|£E1+CU2 S 1,CC3 S 0}

and V(S) = R}_ for the remaining S € P(N). For f € [0,1]" given by f(1) =
f(2) =1, f(3) = %, we have that

VO (f) = %V(1,2) + %V(1,2,3).
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Let us now consider V¢ N RY; o1~ Since the third coordinate of each element of
this set is zero, we will concentrate in the following on proj{l,g}(VC), projiigy
R — R2, projg g (21,22, 3) = (21,22). Kern states in [14, Korollar 4.4] that
the sum of two points of two sets A and B, which have no parallel supporting
hyperplanes, is always an interior point of A + B. An immediate consequence is
that projgi0;(VE(f)) is an open set, since there exist no parallel hyperplanes of
support for projgi 213V (1,2) and projp 235V (1,2,3) at all. One can show that

VE(f)={z e Rz + 29 < 2,23 <0}

Hence, VC(f) is not closed in general. However, Kern gives in [14, Satz 4.11]
conditions under which this is the case. To be precise, he does not consider the
Choquet extension but the one of Owen. Furthermore, he deals only with fuzzy
coalitions which have full carrier. Since we would like to show the closure of
VE(f) for all f € [0,1]", we have to make some slight changes. However, the
calculations in his proof can be used without bigger modifications in our case.

Thus, we will not prove the next theorem.

For each z € R, we denote by CHg(z°) the S—comprehensive hull of z°, i.e.
CHs(z%) := {y°|y € R*,y° < z°}. A quasi TU game (N, V) is an NTU game
for which there exists an « € R%, and a $° € R for every S s.t. V(S) can be
written as V(S) = {z € R%| a2 < 55}

Theorem 3.9 [1/, Satz 4.11] VC(f) is a closed set for all f € [0,1]" if one of

the following conditions is satisfied:

1. For each S C N,S # N, there exists an z° € R s.t. V(S) can be written
as V(S) = CHs(z%).

2. (N, V) is a quasi TU game.

In the two player case, we have no problems with the closure of V(f) since
V({i}) = CHyy(z') for i € {1,2}, i.e. we can use the first part of the last
theorem. Another possibility to ensure the closure of V¢ is given by the following

theorem, which represents an extension of the first condition of the last theorem.
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For the following proof, we will use a statement from convex analysis. Let A
be a non-empty convex set in R* and 0 # y € R*. Then, A recedes in the
direction of y if and only if z + Ay € A for every A > 0 and each x € A. The
set, of all vectors y € R" satisfying this condition, including y = 0, will be called
the recession cone of A and will be denoted by 0t A. Directions in which A
recedes will also be referred to as directions of recession of A. Finally, the
set (—0TA) N 0" A is called the lineality space of A. These definitions can be
found, for example, in the book of Rockafellar [21].

Corollary 3.10 /21, Corollary 9.1.1] Let Ay, ..., A be non-empty, closed, con-
vex sets in R™ satisfying the following condition: if zq,...,z, are vectors such
that z; € 0N A; for each i € {1,...,n} and z1 + ... + 2z, = 0, then actually z;
belongs to the lineality space of A; fori=1,...,m. Then, A1+...+ A, is closed.

Theorem 3.11 Let (N, V) be a monotone and convez-valued NTU game. For
S € P(N),S # N, V(S) may have the form V(S) = CHsKs for a compact set
Kgs CR%. Then, VE(f) is closed for every f € [0,1]".

Proof One can easily check that, for A € (0,1) and a compact set Br C R}
(T C N), the equality CHyr(ABr) = ACHr Br is valid. Furthermore, if By C R%.

is a convex and compact set, the set ABz, A € (0,1), is compact and convex, too.

Let a fuzzy coalition f be given. For f = (), there is nothing to prove. For
f # 0, we can assume w.l.o.g. f(1) > ...> f(n) > f(n+1) := 0. We define
L(f) =L :={iy,...,u} C {1,...,n}, i1 < ... < i, as the set of players that
satisfy

fGg) > flx+1),ke{1,...,1} and
fG) e{flx) ke {1,...,1}} for every j € {1,...,n}.
Hence, L(f) is the set of all players which have a strictly higher degree of mem-

bership in f as the next player in the lexicographic order. If n ¢ L, VY(f) can

be written as

VE(f) =) CHs, [f(ix) = f(ix + 1)] Ks,, .
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If y is a direction of recession of CHg, [f(ix) — f(ix+1)] Ks, , then y < 0 is
true. If 2',..., 2" are vectors s.t. 2% € 0*CHs, [f(ix) — f(ix + 1)] Ks, and
2!+ ...+ 2" =0, each 2z* has to equal zero, i.e. each z* belongs to the lineality
space of CHg, [f(ix) — f(ix +1)] K, . Thus, by Corollary 3.10, VE(f) is closed.

If 4 = n, we take any z' € 07 [f(i;)V(NV)]. If there exists a j € N with 2} > 0,
there has to be a k € N with zi < 0 because of boundedness of V(N) N R%.
Hence, if we consider z* € 0*CHs, [f(ix) — f(ir +1)] Ks, , k € {1,...,1 -1},
with 2! + ...+ 2! = 0, we have that 2¥ = 0 for all 1 < k <[ as in the first case.
Now, Corollary 3.10 provides again the stated result. q.e.d.

Rosenmiiller calls in [23][p. 436] an NTU game (N,V) compactly generated
if, for each S € P(N), there exists a compact set Kg C Rg s.t. V(S) = CHgK.
Since we have made no restrictions to V(N) in the last theorem, the compactly
generated, monotone, and convex-valued NTU games are a strict subset of the

class of games described above.

The Theorems 3.6, 3.9, and 3.11 provide conditions under which the Choquet

extension of a crisp NTU game is a fuzzy NTU game. In particular,
Ve (f) =Y Va(S)lf (i) = fi+1)] (3.4)
i=1

satisfies all conditions as far as v is monotone, where V, is given by V,(S) = {z €
RE| > es % < v(S)}. The question that now arises is: “Does V. coincide with

any proposed Vfg of Section 17”7 The answer is given by the following proposition:

Proposition 3.12 Let (N, P(N), v) be a monotone TU game. Then, V. given
by formula (8.4) coincides with \//\;}g (see formula (3.1)). Hence, we have that, for
a fuzzy coalition f with f(1) > ... > f(n),

Vie(f) = 2 Ve(Salf@) = f+1)]

i€C(f)
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Proof First of all, we will show that each y € R" which can be written as
y =1 2[f(i) — f(z+1)] with des x; < v(S;), 7" € RS (i.e. zt € V,(S;))
satisfies y € R and > jec(n Yi S C(f)- The first statement is obviously true,

the second can be proven as follows.

Z yi = Z Z i f (i) — fi+1)]

JjEC(f i=1 jeC(f
n

D (SHIfF(E) = fi+1)]

i=1

)

IN

Now, let a y € Rt ;) with djecn¥i < vY(f) be given. The question arises
whether there exist some vectors z* € Rg, with >°. o 2% < v(S;) s.t. y can be
written as y = > 2'[f(¢) — f(i+1)]. Let the carrier of f be C(f) = {1,...,m}.
For f # 0, we can assume w.lo.g. f(1) > ... > f(m). If this is not the case we
can build a nonempty subset T := {ty,...,tt} of {1,...,m} with t; < ... <t
s.t. f(t;) > f(t; +1) and f(5) € {f(#;)J € {1,...,k}} for each j € {1,...,m},
f(n+1) := 0. Now we can make all following calculations with 7" instead of C(f).
Obviously, 327, v(Si)[f (i) — (i +1)] = 25, v(Sy)[f (1) — f(tj11)] s valid.

Now, we construct vectors z* € RS, 1 <1 < m, by the following procedure: For

1 > 1, we define

i Yi 7= (S, — Yi and 2 = 0. i A
SETO- a0t TS g s ey s =0 b

z! is defined by

1 yl—Zz 2331[f() f(i+1)]
' [f(1) = f(2)] ’

:C]l = 0forall j > 2.

With these definitions, we have that Y- *[f(i) — f(i +1)] = y. For i > 2, the
equality Z z% = v(S;) holds by definition. Moreover, we have that

o =X allf6) — fli+ )]
1 /) - 1)
y = X7, 0(SI() = £+ D]+ X
JOEE)
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We call a NTU game (N, V) flat, if V can be written as V(S) = >,.4 V ({i}) for
every S C N. Two fuzzy coalitions f and g are called comonotonic, if they have
the same ordering, i.e. if there is no pair (¢,7) with f(7) > f(j) and g(i) < g(j).

Next, we will check some properties of the Choquet extension

Theorem 3.13 Let (N, V) and (N, W) be monotone, convez-valued NTU games
s.t. VO(f) and WE(f) are closed sets for all f € [0,1]N. Then, the corresponding

Choquet extensions satisfy the following properties:
1. V€(S) =V(S) for all S € P(N).
2. VCW (i.e. V(S) CW(S) for all S € P(N)) = V¢ C WC.
8. VENf) = AVE(f) for all X €]0,1].
4. VO(f +9) =VO(f) + V() for f,g comonotonic.
5. If V is flat, then VE(f) = Y1, fF)V({i}).
6. VE(f) is convex for all f € [0,1]N, i.e. (N, V) is convez-valued.

7. V€ is monotone, i.e. VC(f) CVC(g) for f <g.

Proof 1. to 4. are obviously true.
Let V be flat and f a fuzzy coalition with f(1) > ... > f(n):

VO = D VIS)IfG) — fi+1)]

1EN

= SN VNG — £+ 1)

i=1 j=1

= 2 fOV{ED).
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Also the convexity of V¢(f) can be shown without any problems. One can easily
see that, for a convex set A € R" and a constant A € R, , the set AA is convex,

too. Furthermore, the sum of two convex sets is a convex set.

It remains to prove monotonicity. We consider, for this reason, f < g with
f(1)>...> f(n) and g(r (1)) > ... > g(m (n)), 7 a permutation of N. We
define now a set J :={j1,...,j,} SN,7 <n,, j1 < ... <Jpr, 7(j1) < ... <7(j),

recursively by the following procedure: We set j; := 1. Let us assume that we
have checked whether the players {1,...,1 —1},2 <1 <n —1, belong to J. We
consider now the lexicographic maximal element of J in {1,...,] — 1} which is

denoted with jj for some 1 < k <[ —1. If w(l) > 7(jx) is true, we add player !
to the set J and define jiy; := . On the other hand, if 7(l) < 7(j) is valid, !

does not join J.

One can easily see that 7(j,) = n is true. Assume, for the contrary, that 7(j,) <
n. Then, one possibility is given by | := 7~ !(n) < j,. However, this implies
I € J and j, ¢ J since m(I) > 7(j,). The other possible case is given by I :=
7~4(n) > j,. Obviously [ is an element of .J. However, this means that j, is not
lexicographic maximal in J. Since both cases lead to a contradiction, we have

shown the claim.

We now define Iy := w(jx),k = 1,...,7. We have, by definition, I; < ... < [,
and 1 = 7 1(l;) < ... <7 Y(l,). Setting 771(l,;1) :== n + 1, one can show that
S; € Sf is valid for 7~ (Ix) <4 < m " (lp41). This is done by induction:

First of all, we consider the case k = 1, i.e. we have to show that 7(i) <[, = 7(1)
for 1 <1 < 77 Y(ly). For 4 = 1, this inequality is trivial, and for 1 < i < j, the
claim follows by the definition of the set J.

Let us assume that everything is shown for k¥ < 7 !(I,,), m € {1,...,r}. For
7 (Im) <1 < 7 Y (lyny1), the statement S; C S is tantamount to (k) < 7(jim)

for all k£ < i. However, this follows immediately from the definition of J.

Having this in mind, we obtain

Ve = oVISIIFG) - fi+1)]
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T W_l(li+1)—1

=D D VG -G+

i=1 j=n—1(1;)
C D VISHU W) = f () (3.5)

where f(n + 1) := 0. Next, we will show that

ZV(SZZ)[f(W_l(lz’)) — f(n7 (li+1))] C ZV(SZ)[Q(W_I(%)) —g(m™ (1))

=1 =1 (36)
Because of g > f, we have that V(ST)f(7~'(I,)) € V(S[)g(7~"(l,)). Now, we
assume that

> VSO (1)) = £ (lig))]

i=m+1
C Y VISPIg(r (1) — g (L))
i=m+1
is valid for some m < r. To show the same relation for the sum starting at m,
we define ay := f(m '(lk)) — f(m (lk1)) and by := g(7 *(lk)) — g(7 (lks1)),
ke{m,...,r}. If ay, < by, is valid, we are done. Otherwise one can ask whether
Qa1 + Ay — by < by is true. If the answer is positive, we have proven the

claim, since
V(S ) (@m = bm) + V(SI, )amr S V(SL, )bma

If necessary, we can continue this procedure and have to prove in the last step
the inequality 37_ a; — S1_' b; < b,. However, this inequality definitely holds
since 370, a; = f(m () < g(mH(Im)) = 321, bi-

Since V' is monotone, we have that

lk+1—1

V(S]lg(r™ (1)) —9(n )] € Y VSDIg(a ™ (6) —g(n ™ (i+1))] (3.7)

i=ly
for each k € {1,...,r}. Setting [, .y =n+1,77'(n+1) :=n+1and g(n+1) =0,

the Choquet extension at g can be written as

Velg) = ZV(S?)[Q(W‘I(Z')) —g(rH(i+1))]



3.3. A CONTINUOUS VERSION OF A CHOQUET GAME 113

= VS @) — ol G+ D)

r le1—1

+3° 3 vSHIg(rT @) — gl (i + 1))

1=l

The three formulas (3.5), (3.6), and (3.7) imply now that VC(f) C V(). q.e.d.

In the TU case, the proof of monotonicity is much easier since we can use the
integral representation. However, in the NTU case we only have the summation
formula. Within the proof, we had to pay particular attention to the fact that a
multiplication of a set V(S) with a negative constant is prohibited since AV (S) N
(2% + R, ) is not bounded for A < 0. For this reason, we cannot use the same
proofs as Denneberg [8] for a lot of interesting statements. For example, it is
questionable whether or not convexity of V, i.e. V(S)+V(T) C V(SUT) +
V(SNT) for S,T € P(N), implies superadditivity of V, i.e. VE(f)+V(g) C
VE(f+g) for f+g < N. The proof for this statement in the TU case [8, Corollary

6.4] does definitely not work in our framework.

A property we lose for sure is continuity. Even if we define V' (.S) to be a subset of
RS + R%c _, we can easily show that, in general, V¢ is not continuous. However,
one should remark that if we restrict ourselves to the class of compactly generated

games, this approach of redefining V (S) implies continuity.

3.3 A Continuous Version of a Choquet Game

In this subsection, we will show how we can obtain a continuous version of a
Choquet NTU-game by only some small changes in the original extension. Most
properties of the Choquet extension can be preserved, but we have to accept the
loss of comonotonic additivity. For the construction of a continuous Choquet

game, we will make some thoughts similar to those in Lemma 3.5.

First of all, we have to solve the problem that there is a “dimension gap” when
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considering a series (fi)r of fuzzy coalitions converging to a f € [0,1]¥ with
C(f) & C(fx)- Unfortunately, the carrier of a fuzzy coalition f as the set of
players ¢ with f(i) > 0 itself is a crisp coalition. Independent of how small f(7)
is, as long as f(i) is greater than 0, ¢ is a member of C(f), and hence R is
contained in VC(f). However, if f(i) equals 0, no vector of R* with a non-zero
entry in the ith coordinate is feasible for f. One could think that the small step
in the degree of membership from a small € to 0 should not have such strong
effects for VE(f).

To demonstrate the problem, consider, for example, the NTU game ({1,2},V)
with V({i}) = {z|z; < 1},i € {1,2}, and V({1,2}) = {z| 21 + zo < 1}. For the
sequence (f;); of fuzzy coalitions given by fi(1) =1, f(2) = 7, we have that

VO = (- V()4 V(L2)
= {z]z; <1- %;332 <0} +{z|z1 + 22 < %}
= V(1,2)

for every [ € N. The degree of membership of the second player is decreasing to
zero. However, this has no effect on the possible outcomes at all. In particular,

player two can reach a positive outcome all the time.

To avoid this problem, we use the following approach: A player i with f(i) =0
will be considered as an active player in f who has no influence in this fuzzy
coalition. He is free to throw away as much money as he likes to. However, the
best result he can reach is 0. There is no possibility for him to get a positive
outcome. In other words, we assume that we have the free disposal property even

for players with a degree of membership of zero.

Since, with this change in the model, VF(S) # V(S), one could argue that we
do not have a real extension. However, as we explained before, the concept of
the carrier is not as sensitive in the case of a fuzzy game as it is in the case of a
crisp game. Furthermore, the change is not as dramatic as it may seem on the
first view. The players can throw away as much as they want to, but why should
they behave in such a way? We just have built a mathematical framework for
the players which are not in S, and we still have VF(S )NRE = V(S). Last but
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not least, note that all solution concepts which satisfy individual rationality do

not care for our new possibilities of outcome.

Definition 3.14 A fuzzy NTU game without a dimension gap is a pair
(N, VF), where N := {1,...,n} is the set of players and v [0,1]¥ — P(R")

1S a correspondence satisfying the following properties:

1. VF(f) is a closed and comprehensive set for all f € [0,1]V .
2. The origin is an element of VF(f) for all fuzzy coalitions f.

3. For each x € R", the set VF(f) N (xz +R}) is bounded.

—F

4V (f) SREpy + Reyppe

With this definition, we have that, for each f € [0,1]¥, R* C V' (f), and
2 eV (f)= 2 <0forallie N, i¢C(f)

Let (N,V) be a crisp NTU game. A first attempt to obtain a continuous cor-
respondence for the Choquet extension could be based on the idea of adding
to each V(S) in formula (3.3) the negative orthant, i.e. to define V(S) by
V(S) :=V(S)+R* and

n

V() =Y [f(0) = FGE+ DIV(S)
i=1
for f(1) > ... > f(n). However, this approach does not provide a continuous
correspondence: This becomes clear by recalling the example at the beginning of
this subsection, where the sequence (f;); was given by fi(1) = 1 and f(2) = 1.
Obviously, (f;) is converging to f, f(1) = 1, f(2) = 0. However, we have that
VO(f) =V(1,2) = {z| 21 + 2y <1} for all { and VO(f) = {z|z, < 1,25 < 0}.

To obtain a positive result, we will slightly modify the V'(S) in formula (3.3). We
will define for each fuzzy coalition f and each crisp coalition S a set V;(S) which
relates V' (S) to minjes f(j). Then, we substitute the V(S;) by these V;(S;) to

get a Choquet formula for a continuous extension.
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Definition 3.15 Let (N, V) be a monotone and conver-valued crisp NTU game,
and let f € [0,1]N be a fuzzy coalition with f(1) > ... > f(n). Then, a contin-
uous version of the Choquet extension is (NN, VC),VC : 0,1]Y — P(R™),

given by the formula

Z[f f(i +1)]clCCH (U ) +R", (3.8)

where S; :={1,...,i}, f(n+1):=0, and V; : P(N) — P(R") is defined by

Vi(S) = U{(xl,...,[rlxégnf(l)]xj,...,xn) (3.9)

jes

2 € V(S).bpin f (D > max o ) + RO
{y‘ dz € V(S) with [I}él;lf(l)]ﬂ?] >xy foraj €S, forallkeS\j

s.t.y; < [Ilrélsn f(D)]z; and yp, = xp, for all m # j}.

Here clCCH A denotes the closure of the convex, comprehensive hull of the set A.

In formula (3.8) we have added R™. This is to avoid problems when dealing
with the empty coalition. We have defined V;(S;) in such a way that V;(S;) =
V(S;)+R for f(i) =1 and V;(S;) C V(S;)+ R for all f, for all . We will show
later on that for a sequence (f;) with f;(i) — 0 we have that V},(S;) — R": The
smaller the minimal degree of membership of the players of S in f, the smaller
V;(S). This becomes quite obvious for V;(1,2) and a small f(2) (see Example
3.16).

One should remark that
Uwis) = U v
j=1 TCS;
is valid for every i € N. The direction “C” is obvious. The other inclusion

follows from the fact that V;(T) is a subset of V;(S;) for T C S; and j € T since
f(j) = minjeg, f(I). Hence, together with the equation

Uvo = U w@

TCS; j=1j€TCs;
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ACCH(V;(1) UV (1,2), (1) =1, /(2)
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=
clCCH (V,(1) U Vy(1,2)), 9(1)
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Figure 3.4: Representation of the change of clCCH (V,(1) U V4(1,2)) for V(1) =
{z|z, <1}, V(1,2) = {z| 21 + 22 < 1}, and a decreasing degree of membership

of the second player

we obtain the stated result. This result implies that formula (3.8) is well defined,

i.e. that there are no problems with fuzzy coalitions f that satisfy f(7) = f(i+1)
for i € {1,...,n — 1}. Moreover, we would like to stress that, for a set A C R,

there is no difference between the compr

comprehensive hull of this set. The simple

ehensive convex hull and the convex

proof is omitted here.

Example 3.16 Consider the NTU game ({1,2},V) with V(i) = {z|z; < 1},i €

{1,2},V(1,2) = {z|x1 + 2o < 1}. For
fl(2) = %;

we have that

Vfl(]‘7 2)
Vi (1) V(1) +R,
and, finally,
—C 1 1
V= (fi) (1- j)sz(l) +t7

a sequence (f); with f;(1) = 1 and

{z]lxy + 20 < 1,27 > 2o} U{z| 21 + 12y < 1,29 > 21},

clCCH (sz(l) U Vfl(l’ 2))

clCCH (V;,(1) UV}, (1,2)).

Vc(fl) can be computed to be the comprehensive hull of ({z|z; + lxs < 1,29 >
0} U{z|lz; + 22 < 1,29 < 0}).
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Figure 3.5: Representation of Vc(f) for V(i) = {z|z; <0},i € {1,2},V(1,2) =
{z|z1 < 2,25 <1} and f(1) = f(2) = 1

In figure 3.4, the representation of vV is outlined for f(1) =1,f(2) = 5 and
g(1) = 1,9(2) = ;. In this figure, the effect of a decrease in the degree of

membership of player 2 becomes particularly clear.

One should remark that U§':1 V;(S;) is not a convex set by itself: In the last

example, the point @ = (3, §) is an element of the convex hull of [V;(1) UV(1,2)]

for f(1) =1, f(2) = 5. As one can easily check, @ is not an element of [V}(1) U
Vi(1,2)].

We have to require closure of CCH Uj‘:1 V;(S;), since, otherwise, there may be
open sets: (2,—2) € 0CCH V(1) UV;(1,2)] but (2,—-2) ¢ CCH[V;(1) UV,(1,2)].

Furthermore, one can show that U;’:l V;(S;) is generally not comprehensive:

Example 3.17 For ({1,2},V), f(1) = f(2) = 1, V(i) = {«]z; < 0},i € {1,2),
and V(1,2) = {z| 1 < 2,29 < 1}, we have that

1
V(1) UV;(L,2) = {3:‘ 5202 xl} U{z|1> 21 > 2},

and this set is definitively not comprehensive (figure 8.5)
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Theorem 3.18 Let a monotone and convez-valued NTU game (N, V) and a f €
[0,1]Y be given. Then, Ve defined as in formula (3.8) satisfies the following four

properties:
1. Vc(f) is comprehensive,
2.0V,

3. Vc(f) N (z+R7Y) is bounded for every z € R,

4. x € Vc(f) and i ¢ C(f) implies z; < 0.
Proof

1. Comprehensiveness of Vc( f) is shown by Kern [14]. He states in Lemma
4.8 that, for two comprehensive sets A, B C R" and a constant o € Ry, the

sets €A and A + B are comprehensive.
=C /o : : —C
2. 0 € V7 (f) is obviously true since R* C V" (f).

3. Boundedness can also be shown without any problems: One can easily
verify that V;(S;) C V(S;) for all j <. Since V(S;) is closed, convex, and
comprehensive, we have that chCH(U;:1 Vi(S;)) € V(S;), and, hence,
Vc(f) NR: CVY(f)NR?:. Since VO(f) is bounded, we are done.

4.V () =V (f)lrn,,, + Repye_ can be seen immediately. g.e.d.

Theorem 3.18 states that (IV, Vc) satisfies all properties of a fuzzy NTU game
without dimension gap except for closure. As in the non-continuous version, we

have the following result:

Theorem 3.19 Let (N,V') be a monotone and convex-valued NTU game. Vc(f)
is a closed set for all f € [0,1]N if one of the following conditions is satisfied:
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1. For each S C N,S # N, there erists a compact set Kg CR% s.t. V(S) can
be written as V(S) = CHg(Kg).

2. (N, V) is a quasi TU game.
Proof

1. In the proof of boundedness of VN (x +R?}), z € R, we have shown that
ch’C’H(U;.:1 Vi(S;)) € V(S;) is valid for every 4 € N. This implies that
every direction of recession of cICCH (UJ;_, V(S;)) is a direction of recession
of V(S;). In the proof of Theorem 3.11 we have checked that we can use
Corollary 3.10 to show closure of V. As the sets chC’H(U;:1 Vi(S))),1 €
{1,...,n}, are non-empty, closed, and convex, we can use this corollary
again. Since (]*(chCH(U;:1 Vi(S;))) C 0TV (S;) is valid, we are done.

2. Again, we will use Corollary 3.10 to show closure of V¢. Then, the same

thoughts as in the first part of this theorem imply the closure of Ve,

One can easily check that 07V(S) = 07 (uV (S)) for p > 0. If we assume
that we have an f € [0,1]Y¥ with f(1) > ... > f(n) > 0 (what we may
do w.l.o.g.), we have to show that for 2* € 0TV(S;),i = 1,...,n, the
equality z' 4+ ...+ 2" = 0 implies 2* € 0TV(S;) N0T(=V(S;)). Let a € R},
and f° € Ry;,S € P(N), be the constants determing V. If one has a
yS € R with a%y® = 8% and a 25 € R% with (y¥ + 2%) € V(S), one gets
a®(y® +2%) = B% +a2% < B%,i.e. a¥2° < 0. If a®2% < 0 is true, 27 is
obviously an element of 0V (59), and for z° € 07V (S) we always have that
a’z% < 0. Therefore, all in all, 0tV (S) = {z° € R%| a2 < 0} is valid.
The lineality space of V(S) is nothing else but {z°| a®z® = 0}. Hence, it
remains to prove that a%z' = a’Vz* = 0 for all .. However, this can be seen

without any problems by recursion:

0 > ad"@'+...+2" ) =d"(-2")>0=d"2"=0

0 > a"E'+...+2Z ) =d" (=) >0=ad 2 =0
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Here, we have used the fact that (2! + ...+ 2/71) is an element of 0TV ()
and (—27) € 0Y(=V(N)),j € {2,...,n}.

In the following, we are going to deal with the question of what further properties
—C
V" has:

Lemma 3.20 Let (N, V) and (N, W) be monotone, convez-valued NTU games
s.t. VO(f) and WE(f) are closed sets for all f € [0,1]N. Then, the corresponding

continuous versions of the Choquet extensions satisfy the following properties:

1. VE(S) N RE = V(S) for all S € P(N)

2VCW =V cW’
3. VC()\f) - )\Vc(f) for every X € [0,1]
4. VE(f) is conves for all f € [0,1)N

c .
5. V7 18 monotone

Proof

VES)NRY = dCCH
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2. VCW =V, CW;forall f €[0,1]Y . Hence we immediately obtain the

stated result.

Considering formula (3.9), one can immediately see that Vi(S) C V(S)
for all A € [0,1], all f € [0,1]" and every S € P(N). Thus, the following

1s true:

VOO = Z/\[f f(i+1)]clCCH (UVV )

C /\Z[f z+1)]chCH(UVf )
= )\Vc(f).

Since AA is a convex set whenever A itself is convex, we can use Theorem
3.1 of Rockafellar [21], which states that for two convex sets in R" the sum

is also convex.

Let f < g, f,g € [0,1]Y be given. We define a crisp monotone NTU
game (N, X) by X(S) := clCCH(UpcgVy(T)) NRE for all S € P(N).
Since V§(T) C V,(T) is obviously true for every T' € P(N), we have that
clOCH (Urcs Vi(T)) C clOCH (Upcs Ve(T)). Therefore, we can draw the

following conclusions:

VO = Z[f f(i+1)]clCCH (va >+R’i

j=1

N

Z[f fi+1)]X(S,) + R
XC(f) +R"

X%g)+R"

V()

N

Here, we have used the monotonicity of X¢ (cf. Theorem 3.13).
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The preceding lemma shows that several properties of the Choquet extension are
shared by our continuous version. However, there are properties of V¢ that are
not satisfied by Ve

Remark 3.21 The continuous version of the Choquet extension given by formula

(8.8) neither preserves flatness nor is it comonotonic additive.

Proof Let us consider the case n = 2, f(1) = f(2) = 3, and a flat game (N, V)
with V(1) = {z|z;y < 2} and V(2) = {z]|ze < 1}. We have that Vc(f) =
{z|z1 < 4,25 < 3}, and, on the other hand, f(1)V(1) + f(2)V(2) = {z|z; <
1,29 < %}

Let f € [0,1]¥ and (N,V) be given as before. Defining g := f, one has two
comonotonic fuzzy coalitions. However, we see that (2,1) ¢ Vc( f)+ Vc(g) but
(2,1) e V(1,2) = Vc(f +9). q.e.d.

One might think that comonotonic additivity is a quite important property of the
Choquet extension which should be preserved in the continuous version. However,
one can show quite easily that there exist NTU games (N,V) s.t. no fuzzy
extension (N, VF) can be both continuous and comonotonic additive. To prove
this statement, we consider the NTU game (N, V) with N = {1,2} and V' (1,2) =
{z| 21429 <0}, V(i) = {z|z; <0},i = 1,2, and assume that V" is comonotonic
additive. For each [ € N, we have that

viny = v (U;—DN) +v" GN)

= .= (%N)
F

As V' is an extension of V, we have that V(N) = V (N). Furthermore,
V(N) = ;V(N) is true for every | € N. Hence, we have that (1,—1) € VF(N) =
TVF(N) = VF(;N). As 1N converges to the empty set for | — co, continuity

would imply (1,—1) € VF (@) = R? | and this is obviously not correct.
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Now, we will quote a technical statement of Rockafellar [21][Theorem 8.3.], which

we will use several times in the proof of the following theorem.

Lemma 3.22 Let A be a non-empty, closed, convex set, and let 0 #y € R*. If
there exists an T € A s.t. the half-line {T + A\y| X > 0} is contained in A, then

the same statement is true for every x € A, i.e. one hasy € 0T A.

Another statement which we need for the next proof is the well known “Separating

Hyperplane Theorem”:

Lemma 3.23 Let A, B C R" be non-empty, closed, conver sets with AN B = (.
Then, there exist 0 #x € R* and § € R s.t.

(a,z) < B for all a € A and (b,x) > B for all b € B.

Let us consider the situation for a convex-valued NTU game (N, V) where we
have a set V(NN) which satisfies non-emptiness, convexity, and closure. We claim
that there exists a pair (z, 3) with z; > 0 for all j and 8 > 0s.t. (a,z) < § for all
a € V(N). The non-negativity of z is a direct consequence of comprehensiveness:

If 7, < 0 was true foran k € {1,...,n}, one could consider the sequence (a');, a' =
!
zy

contradicts boundedness.

ek € V(N) and would receive (x,a!) = | — oo for | — oco. However, this

To complete the proof of the claim, we will consider [V (N) + ] instead of V(N).
Because of boundedness, there exists, for each j € {1,...,n}, a point ¥ =
v;€l,7; € Ry, with & ¢ [V(N) + e]. Now, the separating hyperplane theorem
provides for [V(N) + €] and each ¥ the existence of a vector 27 € R" and a
constant 7 € R s.t. {(a,27) < B9 for all a € [V(N) + ¢] and (27, d) > 7. Since
27 > 0 and 27 # 0 has to be true, we know that, for each j € N, there is at
least one k € N with 7 > 0. As €* is an element of [V/(N) + €], we know that
Bi >zl > 0 is valid. Moreover, we have that (b/,27) = 7]-33; > 39 > 0, and this
implies x; > 0. All in all, we have that

n

1~ 1 . .
- J == J < J for all V(N
<n;x,a> nZ(m,a)_m]axﬁ or all @ € V(N),

Jj=1
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i.e. by defining z := 5 ", 27 and § := max; 7 we have shown the claim.

Now, we proceed with the most important statement of this section, which guar-

- —C
antees continuity of V' :

Theorem 3.24 Let (N,V) be a monotone, conver-valued NTU game s.t. the
correspondence v [0,1]Y = R™ given by formula (3.8) maps all f € [0,1]¥

into closed sets Vc(f). Then, V° is continuous.

Proof Throughout the whole proof, we assume that the fuzzy coalitions f and f;,
I € N, under consideration are ordered lexicographically, i.e. f(1) > ... > f(n)
and fi(1) >...> fi(n) for alll € N.

First of all, we would like to show lower hemi-continuity of Vc, i.e. we would like
to prove that, for each given f € |0, l]N , each x € VC( f), and every sequence
(fi)i, f = f, there exists a sequence of points z! in R” s.t. z! € Vc(fl) for every

| where (z') converges to .

Let us define m; := [2i(i+1)] for ¢ € N, and recall the definition of V}(S;),j € N:
J

Vi(S;) = U {(xl, e O, ) 2 € V(S)), f()2 > max xk} + R".

e keS;\l
The point z € Vc(f) can be written as x = Y . [f(i) — f(i + 1)]y" with y* €
chC’H(U;:1 V#(S;)). Hence, for each i € N, there exist a vector §* > ¢’ s.t., for
every given ¢ > 0, there are \VF € R, 2k ¢ R*,1 < j <4,1 <k < j,s.t.

7 — i: EJ: \idk ik

j=1 k=1

<e¢g

sup
is true, where /% > 0, Z;Zl S N9 =1, and 29* € V;(S;). For f(j) > 0, the

2k can be written as

2 (G

for some r* € V(S;) with f(j)r?* > r7* for all | € S; \ k. We define for every
leN -

ik { FG) = LI, i A7) < 16)

=

0, else.
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Then,

2= (" =67 L) IR =67

defines an element of V},(S;) with 2% — 2% for | — co. For f(j) =0, we have

that 2% < 0, and we can define 2% := 2% Now,

i
g DDA — (7 — )| =y

is valid for I — oco. Since, obviously, y" € clOCH(Ui_,V,(S;)) is true, the
sequence z' =Y [fi(i) — fi(i + 1)]y" satisfies the requirements.

It remains to prove upper hemi-continuity, i.e. f; — f,z! € Vc( fi), 2t =z =
—C . . ,
xz €V (f). We will show this statement in three steps.

Step 1: V4(S) is u. h. c. for every S C N
There exists a subsequence of (f;); (which we will denote for reasons of simplicity
again with (f;);) s.t. the space of players N can be partitioned into three subsets
NZ'Z

e j € Ni: f(j) >0,

e j€ Ny f(j)=0,and fi(j) =0 foralll € N,

e j€N;: f(j)=0,and fi(j) >0 foralll € N.

Let us now consider a sequence (z'); with 2! € V}(S) and lim;z! = z. For

argminjesf(j) € N2, we are done, since Vj,(S) = V;(S) = R". For all other

cases, we may assume w.l.o.g. that each z! can be written as
o' = (Y, [min i)k - 9n) for some k € S,y' € V(S)

with [minjes f1(4)]yk > max,es\x Y-

For argmin;esf(j) € N1, we have that minjeg fi(j) > 0 for [ sufficiently large.

Therefore, because of closure of V(S), the proof is trivial.
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Let us consider the remaining case, argmin;csf(j) € N3. We have to show that
limy minjes f1(4)yl, = 2 < 0. We assume, for the contrary, that =y > 0. For

zp > > 0, there exists an L € Ns.t. ||z} — z|syp < € and

T < yk for all | > L.

minjcs fi(7)

Now, we define ' € R* by

Ti—€ fori € S\ k,
=1 __ Tp—€
min;es fi(4)

0 else.

for i = k,

As V(S) is comprehensive and 7' < y!, we have that 3* € V(S) for all [ > L.
However, lim; i, — oo contradicts boundedness. Thus, x; < 0 is valid and V,(S)

is upper hemi-continuous.

Step 2: clCCH (U;Zl V.(S,)) is u. h. c. for everyi € N

Let a sequence (y'); be given with y' € clOCH (U;:l Vfl(Sj)) and lim;y' = y.
Using the fact that the comprehensive hull of the closure of the set A equals
the closure of the comprehensive hull of A, one can see the following: For each
I € N, there exists a vector 7' > ' with 7' — ¥ s.t., for each € > 0, there are
MEER 2 e R, 1< j<i,1<k<j, with

i

7 — Z z]: Ak ikl

<e. (3.10)

sup

The M* are non-negative and satisfy Z;Zl S A = 1; provided that f;(5) > 0
(the case fi(j) = 0 is trivial), 27¥ is an element of V}(S;), and can be writ-
ten as 2% = (WM AP, Pk with R € V(S;) and fi(5)r]" >
maXm,es\k ri* As mentioned before, the separating hyperplane theorem guar-
antees the existence of a vector a € R}, and a constant § € R, s.t. each
xz € V(N) satisfies (a,z) < . Observing formula (3.10), we have that, for ¢
sufficiently small,

i J
<a,ZZ)\jklzjkl —gl> > —B. (3.11)

j=1 k=1
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Furthermore, there exists an m € {0,...,n} with f(m) =1 > f(m + 1), where
we define f(0) =1 and f(n+1) = 0. For m > i, u.h.c. can be seen without any

problems, since

Jj=1 j=1
Hence, let us consider the case m < i. For X'™ := 7™ S N and 2t =
> S 2% we have that Az € V/(S,,) since, obviously, z/* € V(S,,) is
true for all 7 < m, k < j.

Next, we will show that A\'™z!™ and M* 27k m < j <i,1 < k < j, are bounded.
If there exists an o € N s.t. A™2™ — oo, there exists a p € N,p # o, with

o
Amzlm — —oo since V(Sp) N (« 4+ R?Y) is bounded for every z € R*. This,
however, means that there is at least one pair (j*, k*), i > j* > m, j* > k* > 1
with M F2"F — oo (cf. formula (3.10)). In a similar way, one can show that
MK IR —oo for some i@ > j > m, j > k > 1 implies that)\ngm — oo for a
p € N,j>mandj >k > 1. Therefore, it is sufficient to prove that Az — oo
is not possible for any j,k,0 with 7 > 7 > m,j5 > k > 1, and 0 € N. Assuming
the contrary immediately leads to a pair (j*, £*), 7* > m, with )\j*k*lziik*l — 00
as 2.7 = fi(j*)ri Kt > piTF = 20°F With @ and S given by the separating
hyperplane theorem, we have that
<a’ )\j*k*lzj*k*l> _ <a’ )\j*k*lrj*k*l> _ (1 _ fl(j*))ak*)\j*k*lTi:k*l
S ,B _ (1 _ fl(j*))ak*)\j*k*lrizk*l'
There exists a constant M € N with —Mf < (a,7y), i.e.
_(M + ]‘)ﬁ < <a’7§l>

: k1, Gk Li(G)(M+5)8
for l sufﬁmently large. For M %'z, > -G " ave
(a, VKT < —(M + 4)B, which implies that (a,> " ; > p_; MW*2/M) <
—(M + 3). Now, this inequality, together with (3.11), implies that

~(M+3)8 > <a,jjijwzjkl>

j=1 k=1
> —B+{a,7)
> —(M +2)8,

we have that
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i.e., all in all, we have that 0 > (. This is a contradiction, and,thus, the sequence
(AI# 23R, is bounded.

This fact provides the existence of a convergent subseries (\*m zkm) s t. also
(Aktm) . converges. Furthermore, the subsequence (M*m), . can be built in such

a way that all (j, k) are an element of one of the following sets T;,i € {1, 2, 3}:

e (j,k) € Ty, if lim,, N¥tm > 0,
o (j,k) € Ty, if N¥m =0 for all m,

e (j,k) € T3, if lim,, A% = 0 and Mklm > 0 for all m.

For reasons of simplicity we again assume that the subsequences coincide with the
corresponding sequences. Let us denote the limit of (M* 7% (5, k) € Ty, with
z7%. We will show next that these z7% are directions of recession for V;(S;). Since
Vo(S;) is u.h.c., we have that z7¥ € V;(S;). Moreover, there exists a sequence

(5l)l with ¢, > 0,1lim; ¢, — 0, and

1
" —aie < M e Vi (S)

for all l € N. For a given p > 0, we have that ﬁ > u for sufficiently large [.
As 0 € [V},(S;) + €], and since the latter set is convex, we have that pz/* €
[V1,(S;) + eie]. Taking the limit of this expression, and observing upper hemi-

continuity of V4(S;), provides that z7* is a direction of recession.

For each (j,k) € Ty, we have that \* — M 20kt — 23k and for (j,k) € Tz we
have defined 2% := lim; A*!27%!. Let ¢ > 0 be given and p > 1 sufficiently large

such that pee > 37 1 M2k is true. Then, we have the trivial inequality

Z Nk Ik 4 Z 7k —ce = (1——) Z Nk Ik 4 (3.12)

(j,k)ETy (j,k)ETs k)eTy

Z NEZIE Ly Z 7k _ce

1
-\ Gmern (Gk)eTs
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Since the vectors z7%, (j, k) € T3, are directions of recession, one can see that
doonkdE L N e <p Y FreccH (U V,«(S}-)) .
(Jak)ETl (Jak)eTS (]7k)€T3 .721
Together with (3.12),
> MRE 4+ N FF e dCCH (U Vf(sj)>
(Jak)ETl (]ak)ET3 .721
is valid. All in all, we have that, for large I,

g— 3 Nk Y gk

(jak)ETl (j,k)ETg

sup
i J
< Pl + - Y e
j=1 k=1 sup
+ ii)\jklzjkl_ Z ik ik _ Z ik
j=1 k=1 (j.k)ETH (j,k) €T3

sup

< 3e,

i.e. y € clCCH (Ui-:l Vf(S]-)). Since y < ¥, this implies that y is also an element
of dCCH (Ui, V4(S))).

Step 3: VC isu.h.c.

Let 2! = S [fi(6) — £i(i + 1)]y* be given with yi* € clCCH (U§:1 Vf,(sj)) and
lim; 2! = z. Asin Step 2, where we have proven boundedness of (\M*'27%!), one can
show that, for each i € N, there exists a subsequence ([f;, (1) — fi,, (i + 1)]y"™ )
which converges. W.l.0.g., we may assume that this subsequence coincides with
the sequence. Let us define I := {i € N| f(i) = f(i+1)}, f(n+1) := 0. In Step 2,
we have shown that for (j, k) € Ty the sequence (\*27%!) converges to a direction
of recession for V;(S;). In a similar way, one can prove that for ¢ € I the limit
of [f1(4) — fi(i + 1)]y" =: " is a direction of recession for clCCH (U;Zl Vf(Sj)).
For i € N\ I, we define limy[f,(z) — f;(¢ + 1)]y" =: [f(2) — f(i + 1)]y"
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If f =0, we have that z = lim;2* = Y, 7". Since each ¥’ is an element of
clCCH (U;Zl Vf(Sj)> and V;(S;) = R, we have in this case that 7 < 0. Hence,

x cannot be positive, and we are done.

If f # 0, there exists 1 < m < n with f(m) > 0 and f(m + 1) = 0, where we
again define f(n + 1) = 0. Since, for £ > m, we always have that V;(S;) = R,
one can easily see that i € clOCH (Um (S)) for all i € I. Hence, we obtain
with ™ .= y™ + 3., i m)y € clOCH (UJ, V¢(S;)) the following:

x:lligloxl = hmZ[fl — fili +1)]y*
=S U0 G S+ YT

1€EN\(IUm) i€l

= Y ) -G+ D+ fm)T"
1€N\(IUm)

e V().

3.4 The Core

In this section, we will answer the questions “How should the core be defined
for a fuzzy NTU game?” and “How is the relationship between the core for
the Choquet extension and its underlying NTU game?”. The second problem is

solved by observing that both V¢ and vV are monotone.

The following definition is a one-to-one translation of the two definitions for crisp
games (cf. Rosenmiiller [23][Definition 4.7.1 and Definition 4.7.9]) in the language

of fuzzy games.

Definition 3.25 Let a fuzzy NTU game (N,VT) be given.
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1. The weak core of VI is given by

cvvH =v(N)n (] B (),

fefo,1y

where BY" is defined as

B (f) :={z e R Py e VI(f) s.t. yi > x; fori e C(f)},f €[0,1]" .

2. Using

TV (f) = {z e R* |y € VI(F)\ {zcn} s.t. yi > @i fori € C(f)},
f€0,1]N , we define the strong core of VF by

cSWvh=vnyn () 2V ().

Fep,y

The inclusion Core(N, V) C Core(N, V) is obvious for every extension V¥,
especially for the one of Choquet. However, for this case, we can even show

equality provided (NN, V) is monotone:

Theorem 3.26 Let (N, V) be a monotone NTU game. Then we have that
CV(VE) =CY(V) and C5(VC) = C5(V).

Proof Theorem 3.13 provides monotonicity of V¢. In particular, we know that
y € VE(f) implies y € VC(C(f)) = V(C(f)). Let us now consider an S € P(N),
a fuzzy coalition f with C(f) = S, and a vector z € R*. Monotonicity means
that, if there exists no y € V(S) s.t. y; > x; for all i € S, then there is no
y € VI(f) with y; > z; for i € C(f). Hence, C"(V°) = CW(V) is true. Since

the same argument can be used for the strong core, we are done. q.e.d.

One can see easily that z € C¥(VY) implies z > 0 (provided (N, V') is monotone).
Assuming the contrary easily implies a contradiction since 0 € V' ({i}) is valid for

every 1 € N.
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The weak and the strong core of a fuzzy NTU game without dimension gap can
be defined equivalently to the corresponding expressions in definition 3.25. The
only thing to do is to substitute V¥ with V" and to exchange the expression
C(f) with N. Because of the monotonicity of VC, one can use the same proof as

before to show that the crisp and the fuzzy cores are equal.

Other solution concepts for NTU games, like the Nash value or the Kalai-
Smorodinsky value, only consider V(N) and z = (zy,...,z,) with z; =
max{t|te’ € V({i})}, i.e. the maximal value each player can get when play-
ing alone. In other words, we only need N and the single coalitions, and do not
have to care about the other S € P(N). Hence, we can also use these solution

concepts, without any changes for the Choquet games.



Appendix A

Crisp Games: Definition,
Properties, and Solution

Concepts

The definitions, statements, and proofs of this chapter can be found in almost
all standard books about cooperative game theory. As an example, we refer to
Rosenmiiller [23, Chapters 3 and 4].

Let us assume that there is a group of individuals N which is not necessarily
finite. These players are participating in a situation calling for decisions. They
discuss formation of coalitions and eventually enter a contract. It may happen
that not every subset of IV is feasible in some sense, either by mathematical
reasons or by the structure of the game. Hence, we have to specify a class of
admissible coalitions 7 C P(N). For technical reasons, we require the following:
If S;,i € N, are elements of P, then (J, S; and (), S; are also elements of P, i.e.

P has to be closed under countable union and countable intersection.

134
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A.1 Games with Transferable Utility

If a feasible coalition S chooses to cooperate, it achieves a utility v(S) € R, i.e.

we need a mapping v : P — R that describes the incentives to cooperate.

Definition A.1 A cooperative game with transferable utility is a tripel
(N, P,v) with

e the set of players N,

e the set of feasible coalitions P (in the case of finitely many players, we

usually take the power set of N ), and

e the coalitional function v:P — R, v(f) =0.

For different reasons, one is interested in set functions v having certain properties.

The properties we are using in this dissertation will be stated next.

Definition A.2 Let (N,P,v) be a TU-game. The set function v is called

e additive if
v(S)+v(T)=v(SUT)

is valid for S,T € P with SNT = ().
e superadditive if
v(S)+v(T) <v(SUT)
is valid for S,T € P with SNT = {).
e convex if
v(S)+v(T) <v(SUT)+v(SNT)
1s true for all S, T € P.

e monotone if
v(S) <wv(T)

s valid for S, T € P with S CT.
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e continuous from below if, for every increasing sequence of coalitions
(Sn)n, Sn € P, the following is true:

v (U Sn> = lim v(S,).
n=1

e totally monotone if it is non-negative and, for every mn > 2 and

Sl;"',snepf

(L_Js)z T (e (msz).

{I|0£IC{1,..n}} i€l

A solution concept is a mapping from the space of set functions V := {v|v :
P — R,v(P) = 0} to the power set of RV, i.e. a solution concept is a proposal
to divide the money. We will now present two of the most popular concepts: the
core and the Shapley value. Let a game (N,P,v) be given with a finite set of
players, i.e. N = {1,...,n} for some n € N, and P = P(N). Furthermore, let
A denote the set of additive mappings on P.

The set
Cv) =4z € A|lz(S) > v(S) for all S € P,z(N) =v(N)}

is called the core of the game (N, P, v).
Theorem A.3 Ifv is convex, then C(v) # (.

The Shapley value is the mapping ® : V — A that is given by means of the

formula
1

®;(v) := ] (Z [v(Sxs) — v(Sie) — Z)]) ;

mell
where II is the set of permutations of N, i.e. one-to-one functions from N to

itself, and ST := {i| 7(7) < k}.

We define the uniform distribution on 7' € P by u” € R”,

1 op -
,uT _ m, if S T,
' 0, otherwise.
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The unanimity games e! are given by

1, fTCS
ET(S):{ y 1 = &y

0, otherwise.

It is a well known fact that these unanimity games form a basis of V. To be more

precise, we have that, for each v € V,

v=Y  cs(v)e’ with cs(v) = Y _(—1)¥ 1Fy(R). (A1)

SeP,S#0 RCS

Theorem A.4 The Shapley value can be written as

o(v) = Z cs(v)p®.

Sep

A third approach for the Shapley value is an axiomatic one. First of all we need
some preparatory remarks: A permutation 7 : N — N induces a mapping
m:V — V by (7v)(S) := v(r71(S)). Let vy be the restriction of v to T, i.e.
vr(S) =v(T'NS) for all S € P. Then, C(v) =(,,—, T is called the carrier of
v. A player 7 ¢ C(v) is called a null player.

Theorem A.5 The Shapley value ® is the only mapping ¢ : V — A that

satisfies the following four arioms:
1. Additivity: ¢(v) + ¢(w) = ¢(v +w) for all v,w €V,
2. Pareto efficiency: ¢(v)(N) = v(N),
3. Symmetry: ¢(mv) = wd(v),

4. Respecting of null players: C(¢p(v)) C C(v).

A.2 Games with Non-Transferable Utility

In this section, we are only interested in a finite set of players N = {1,...,n}.

Moreover, we declare all coalitions as feasible. As we will see, the games with
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non-transferable utility are much more general as the TU-games. In the NTU-
case, we have a mapping V' from the set of the feasible coalitions into the power
set of R™. This mapping V assigns a set V(.S) of utility vectors to each coalition

S, i.e. S can achieve every vector in V(S) by the coorperation of its members.

Let S be a subset of {1,...,n}. Define Rg as the subspace of R" spanned by the
vectors (e');cs where e’ denotes the ith unit vector. For z € R", let 5€ R be

the vector defined by
19 €S
5 { i, 1

0, i€sC.

A set A C R" is called comprehensive, if for all z € A,y € R*,y < z implies
y € A. A CR?E is called S—comprehensive, if for all z € A,y € R¢,ys < g
implies y € A.

Definition A.6 An n-person cooperative game without sidepayments
(NTU) is a pair (N,V), where N := {1,...,n} is the set of players and
V : P(N) — P(R") is a function that associates with every S C N a nonempty
set V(S) C RE such that

1. V(S) is S-comprehensive,
2. V(S) is closed, and
3. for every z° € R%, the set V(S) N (z° + R%, ) is bounded.
An implication of this definition is that V() = 0. Here, 0 denotes the n-

dimensional null-vector. The following remark explains how a TU-game can be
imbedded into the NTU-context:

Remark A.7 Let a TU-game (N, P(N),v) be given. Then, (N, V,) given by

in < U(S)}

1€S

Vo(S) := {x € R¢

1s an NTU-game.



A.2. GAMES WITH NON-TRANSFERABLE UTILITY 139

Now, we would like to state the definitions of some solution concepts for NTU-
games. Each V({i}) is a half-open interval, i.e. of the form V({i}) = (—o0, z,].
We denote by z € R® the vector z = (z,,...,z,). The space V may consist of all
the functions V' : P(N) — P(R"), where V(N) is convex and z € V(N). For
each V € V, the function ¢" : R* — R given by

ieN
has a unique maximizer v on U, := {z|z > z}NV (). v is called the Nash solu-

tion. For an axiomatization of this concept, the reader is referred to Rosenmiiller
[23, Chapter 4, Theorem 2.16].

At the end of this chapter, the definition of the weak and the strong core are
given: Let a NTU game (N, V) be given. Using

BY(S) :={z e R*|#y € V(S) s.t. y; > z; forall i € S} (S € P(N)),
we define the weak core of V by

c(V)y=v(N)n (] BY(S).
)

SeP(N

The strong core of V' is given by

cSWV)=v(Nyn (] ZV(9),
S€EP(N)

where ZV is defined as
7V(S) :=={z e R"|y € V(S),y > zs implies y = z5} (S € P(N)).

Obviously, C%(V) C CW (V) is true. There are games where the strong core is a

strict subset of the weak core.
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Properties of the Choquet
Integral

In this chapter, we will define the Choquet integral [7], and will state some of the
most important properties. For a more detailed discussion, the reader is referred

to Denneberg [8].

Let N be a set and B be a o—algebra on N. Let u: B — R, be a monotone

set function. The outer set function p* and the inner set function p, are
defined on P(N) by

iw(A) = inf{u(B)|AC BeBY,

pe(A) = sup{u(C)|C € B,C C A}.
It is a well known fact that u, and p* are the smallest and greatest extension of

i to the power set of N, respectively. A function f: N — [0, 1] is called upper
p-measurable if p,(f > t) = p*(f > t) is valid almost everywhere on [0, 1].

Definition B.1 Let a measurable space (N, B), a coalitional function v, and a
fuzzy coalition f be given. If f is upper v-measurable, the Choquet integral of

f with respect to v is defined as

/fdv ::/Olv(f>t)dt.
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The definition given by Denneberg [8] is much more general since he allows f to
be a function on N to R and v(N) = co. Since we use B = P(N) in most parts

of this work, we do not have to care for measurability.

If v is o-additive, the Choquet integral coincides with the usual definition of the

integral known from measure theory.

For a step function f = )""  a;14, with aq > ... > o, the Choquet integral of

f w.r.t. v can be written as

/fdv = > alo(S) - o(Si)

= Z(CMZ — ai+1)U(Si)a

i=1

where Si=A1U...UAZ~,2'=1,...,n,5’0:®,an+1:().

Definition B.2 Two fuzzy coalitions f, g are called comonotonic, if there is no
pair (i,7) € N s.t. f(i) < f(j) and g(i) > g(j).
Theorem B.3 [8, Proposition 5.1, Corollary 6.4, Corollary 6.5]

Let N be a set, v be a monotone set function on a o-algebra B on N, and let f, g

be upper v-measurable fuzzy coalitions.

~

. [1adv =v(A) for all A € B,

o

Jefdv=c[ fdv forc>0,

8. f<g implies [ fdv < [ gdv,

4. If f and g are comonotonic, then [(f+ g)dv= [ fdv+ [ gdv,
5. If v is additive, we have that [(f + g)dv= [ fdv+ [ gdv,

6. If v is conver, we have that [(f+g)dv> [ fdv+ [ gdv, i.e. the Choquet

integral s superadditive in this case.
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A function f : N — R is called upper B-measurable, if it is upper v-

measurable for any monotone set function v on B.

Theorem B.4 [8, Proposition 5.2/

Let v,w be monotone set functions on the measurable space (N,B), and f be a

upper B-measurable fuzzy-coalition. Then:

1. For ¢ > 0, the multiple cv of v is a monotone set function on B and

/fd(cv):c/fdv.

2. v+ w is a monotone set function on B, and

/fd(v+w)=/fdv+/fdw.

3. v < w implies

/fdvg/fdw.

4. If (v,) is a sequence of monotone set functions on B with v, < v,y and

lim,, o v, (A) = v(A) for all A € B, then

lim [ fdv, = /f dv.

n—00
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Index of Notations

CCHA

intA
0tA
clCCH A
o]l

unit vector

7th unit vector

subspace of R" spanned by (e');cs
projection of z € R* to R%

convex, comprehensive hull of the set A
S —comprehensive hull of z°

interior of A

recession cone of A

closure of the convex comprehensive hull of A
variation norm

outer set function of

inner set function of p

complement of the fuzzy coalition f
intersection in the sense of Butnariu and Klement

union in the sense of Butnariu and Klement

crisp TU game

power set of €2

space of all coalitional functions
indicator function of the coalition S
unanimous game w.r.t. T’

core of v

Shapley value of v
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C(v) carrier of v

ST set of players which are ordered by the permutation 7 in front of ¢

(Q,P,v")  fuzzy TU game

v9 Owen’s extension of v

v© Choquet’s extension of v

vtF upper variation of v

v lower variation of v

A space of all additive mappings

BV space of crisp coalitional functions with bounded variation
A7t space of non-negative, g-additive functions with total mass 1
Vo space of v € BV which are upper o-continuous

v/ space of v € BV which are lower o-continuous

FBV space of fuzzy functions with bounded variation

FNA family of all finite non-atomic fuzzy measures

FNAT space of all monotone functions in FNA

pFNA closed linear hull of {m*|m € FNA* k € N}

FBVA set, of finitely additive fuzzy functions with bounded variation
Co space of Choquet functions with finite carrier

spanCy closure of the linear hull of C

CBV space of the Choquet extensions of the functions in BV

CM space of monotone Choquet functions

C’BVf space of convex and non-negative Choquet functions in CBV
Ci’c space of upper o-continuous Choquet functions in C’BVE
Ysp fuzzy value given by the smoothing procedure

Dav fuzzy value given by averaging over small perturbations

P Art fuzzy value on spanCjy given by Artstein’s approach

VM fuzzy value for weighted majority (Shapley’s approach)

e fuzzy value given by the approach of Pallaschke and Rosenmdiller

L fuzzy value w.r.t. the kernel P
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crisp NTU game

Choquet NTU game

Choquet NTU game without dimension gap
weak core of V

strong core of V'
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