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Chapter 1

Introduction

Spintronics, the combination of electronics and the use of the electron’s spin, has

gained much interest over the last 20 years. The starting point for this interesting

field of research and application was the discovery of the Giant MagnetoResis-

tive Effect (GMR) by Peter Grünberg [1] and Albert Fert [2] in 1988. After fifty

years of pure electronics, which uses the electron’s charge only, they were the first

to make use of the electron’s spin as well. The discovery of the GMR-effect also

fueled the research on another closely related topic: the so-called Tunneling Mag-

netoResistive Effect (TMR). This MR-Effect had been already discovered almost

15 years previously by Jullière but due to insufficient fabrication techniques it was

difficult to prepare high-quality samples. Therefore TMR was almost forgotten

until the end of the 1980s.

The first TMR-stacks contained amorphous Al2O3-barriers. In 2001 it was

predicted that junctions containing single-crystalline MgO (100) tunneling bar-

riers and suitable electrodes would result in very high TMR rations because of

coherent tunneling [3]. Therefore from then on research was focused on under-

standing and optimizing MgO-barriers.

It turned out that, apart from Fe and Co, CoFeB was a well-suited electrode-

material [4]. In contrast to the first two CoFeB can easily be integrated into

standard spin-valve structures, which are known from GMR processes. This is

one of the reasons why CoFeB is favourable for industrial processes.

In this thesis a layer stack consisting of sputtered CoFeB electrodes, one of

them being exchange-coupled with IrMn, and an ion beam deposited MgO barrier

is presented. This system was studied by many research groups and is now trans-

ferred to an industrial environment. In contrast to most publications, the MgO

1



2 CHAPTER 1. INTRODUCTION

barrier is being prepared by ion beam deposition, a novel preparation method

for TMR stacks. This technique is well suited for both, metallic and insulating

materials, and allows large parameter variations to optimize film growth.

A second possibility to maximize the TMR effect is the use of optimized

electrodes, e.g. half-metallic ferromagnets like certain Heusler alloys. At the

fermi-energy these materials are fully spin-polarized, this results in a theoretically

infinite TMR effect. Examples for Heusler alloys are Co2Cr0.6Fe0.4Al or Co2MnSi,

the latter one was used in the experiments presented in this thesis.

Conventionally Heusler-materials are sputter-deposited or deposited via MBE.

Here however, the Co2MnSi films were prepared by ion beam deposition, the same

method that was used for the MgO barrier formation. This was the first time ever

that a Heusler alloy was deposited by ion beam; the results are very promising

and prove that this technique is capable of producing high quality films.

The work presented in this thesis is a purely industrial work, i.e. all experi-

ments were performed directly on production tools at Sensitec GmbH in Mainz

[5]. The goal was to develop a TMR process that is suitable for mass production.

In contrast to university research the focus was shifted to reproducibility and

wafer uniformity instead of creating single perfect samples.

This work consists of two main subjects: Firstly, the development of a pro-

duction process for an MgO tunneling barrier and secondly the fabrication of

Heusler thin films as potential electrodes by ion beam deposition. Therefore the

thesis is structured in the following way: Following a short motivation the basics

of the theoretical background are presented, where the concept of tunneling mag-

netoresistance and the fundamental properties of Heusler alloys in general are

explained. The experimental part starts with a description of the experimental

procedure in general in chapter 4, the fabrication and optimization of the MgO

tunneling barrier is presented in chapter 5. In contrast to university research

process stability and reproducibility are of fundamental interest in an industrial

environment. Therefore the stability of the MgO process was carefully monitored,

the surprising results are presented in chapter 6. Finally chapter 7 is dedicated to

the fabrication and characterization of Co2MnSi thin films and their implemen-

tation into TMR stacks. At the end of this thesis the work is summarized and

an outlook, especially concerning the continuation of work on TMR at Sensitec,

is given.



Chapter 2

Motivation

Sensitec GmbH is a medium sized company producing magnetoresistive sensors

and magnetic micro systems [5]. The main production site in Mainz was in-

tegrated into Sensitec in 2004; previously this facility had been part of IBM’s

read head production line. Today Sensitec mainly produces sensors based on

the AMR-effect, a smaller part of the sensor portfolio are the GMR-multilayer

sensors. TMR is a logical continuation and is meant to complete the product

portfolio in the near future.

In figure 2.1 the historical development of the application of the XMR-effects

in HDD-heads is shown.

Sensitec does not produce HDD heads any more, however, its development

is quite the same: AMR and GMR are currently used in various MR sensors;

a TMR-sensor based on an alumina barrier has been developed in a separate

research project in which the product development phase is about to start [7].

The development of a novel TMR sensor based on a crystalline MgO barrier

is the goal of this thesis, which is incorporated into an industrial research project

funded by Rhineland-Palatinate [8]. The main focus lies on finding a production

process for an MgO barrier that is suitable for mass production, i.e. the process

must form a uniform film over a whole wafer, be reliable and reproducible. Addi-

tionally the resistance-area-product has to be in an appropriate range for sensor

applications, which is in the order of kΩµm2. Another requirement is that the

processes known from the GMR spin valve production should be used in the pro-

duction of future TMR sensors as well. This concerns e.g. the materials used in

the TMR stack and the deposition processes. In order to justify the development

of a new product it must have at least one big advantage over existing ones. In

3



4 CHAPTER 2. MOTIVATION

Figure 2.1: History and envisaged future of the technical usage of XMR-effects

(figure taken from [6]).

the case of TMR sensors these advantages are the greater MR ratio of potentially

several hundred percent at room temperature, hopefully along with an increased

sensitivity, and the small dimensions of TMR junctions due to the CPP geometry.

In this thesis the first point was targeted: The work presented here focusses

on the development of a TMR stack that contains an MgO barrier and/or a

half-metallic electrode (Heusler electrode). Both are aimed at increasing the MR

ratio. The second point, achieving smaller dimensions, is incorporated into a

BMBF follow-up project called MultiMag [9].



Chapter 3

Theory

In this chapter the TMR-effect will be discussed from a theoretical point of view.

There are different models to describe TMR, starting from the rather simple

model developed by Jullière up to first principles calculations.

It turns out that materials with high spin polarization are preferable electrode

materials, which renewed the interest in ferromagnetic half-metals, like Heusler-

alloys. The interesting characteristics of this class of materials will be discussed

as well.

3.1 Tunneling Magnetoresistance

In general the magnetoresistive (MR) effect describes the change of the electrical

resistance of a material or system of materials by changing an external magnetic

field. TMR, short for Tunneling Magnetoresistance, occurs in layer stacks of

two ferromagnetic thin films that are separated by an insulating film, the so-

called ”tunneling barrier”. This effect was first described by Jullière in 1975 [10],

who discovered a conductance change in Fe-Ge-Co junctions depending on the

relative magnetic orientation of the ferromagnetic films. Jullière also introduced

a simple model to explain the TMR-effect with the following two assumptions:

At low voltages tunneling is assumed to be spin-conserving and conductance

is proportional to the density of states (DOS) of the ferromagnetic electrodes

alone. This leads to the simple Jullière formula for the TMR, which is defined

as the resistance change normalized by the resistance for parallel magnetization

alignment:

5



6 CHAPTER 3. THEORY

TMR =
∆R

R
=
RAP −RP

RP

=
2P1P2

1− P1P2

(3.1)

Here RAP and RP are the junction’s resistance in antiparallel and parallel

magnetization alignment, P1 and P2 are the electrodes’ spinpolarizations.

Jullière’s formula does not take into account the electronic density of states

of the ferromagnetic electrodes. However, discrepancies between his theory and

experiments suggested that the tunneling probability, which is different for differ-

ent electronic states, has to be considered as well. This is integrated in Stearns’

model which connects the tunneling probability to the electron’s effective mass.

The effective mass in turn depends on the electronic band: Nearly free electrons,

like the s-electrons, have a lower effective mass than the localized d-electrons

and therefore have a longer decay length. As a result only the dispersive s-like

bands contribute considerably to the tunneling current, whereas the d-bands can

be neglected. For these nearly free electron bands the DOS at the Fermi level

is proportional to their Fermi wave vector; combining this with the assumption,

that the conductance depends on the ferromagnets alone (see above) yields to the

following equation for the ferromagnet’s spin polarization PFM :

PFM =
k↑ − k↓

k↑ + k↓
(3.2)

Here k↑ and k↓ are the Fermi wave vectors for majority and minority spins

respectively. Using this formula Stearns found e.g. 43 % spin polarization for Ni,

which is in good agreement with experiments [11].

The first exact model for the description of TMR was advanced by Slon-

czewski [12, 13]. Here the identical ferromagnets’ band structure was modeled by

parabolic bands, shifted to one another to simulate exchange splitting, the barrier

potential was considered to be a rectangular potential of height U . After hav-

ing solved the Schrödinger equation the conductance dependence on the relative

magnetization orientation of the ferromagnetic electrodes was determined. The

conductance depends linearly on the cosine of the angle between the electrodes’

magnetization:

G(θ) = G0(1 + P 2 cos θ) (3.3)

Here P denotes the tunneling electrons’ effective spin polarization, which is

given by the following expression:
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P =
k↑ − k↓

k↑ + k↓
· κ

2 − k↑k↓

κ2 + k↑k↓
(3.4)

In this equation the decay constant κ is given by κ =
√

2m
~2 (U − EF ), where

m is the electron’s mass and ~ the reduced Planck constant. As a result the spin

polarization of a tunneling current is not an intrinsic property of the electrode,

but depends on the barrier height U as well. In the limit of a high barrier

the second factor in equation 3.4 tends to unity and the old expression for the

spinpolarization is regained.

3.2 Half-metallic Ferromagnets - Heusler Alloys

In applications, like magnetic sensors, AMR as well as GMR have been success-

fully used; the resistance changes there are in the order of 3 % for AMR and 20 %

for GMR. TMR has the potential to reach MR ratios that are at least one order

of magnitude higher: Following Jullière’s equation 3.1 one can clearly see that

the TMR increases with increasing electrode spin polarization. Heusler alloys are

one particular class of materials that are predicted to be half-metallic, meaning

they show ferromagnetic behaviour for one spin direction and semiconducting or

insulating behaviour for the other spin direction. This means that Heusler alloys

can show 100 % spin polarization at the Fermi level, compared to a maximum of

50 % for conventional ferromagnets like Ni, Fe, Co and their alloys [14]. Among

the multitude of Heusler alloys the Co-based alloys are of special interest as many

of them exhibit a high Curie temperature, which allows room temperature appli-

cations [15]. In this work Co2MnSi was used, therefore this alloy will be discussed

as an example.

3.2.1 Crystallographic Structure of Heusler Alloys

In 1903 Friedrich Heusler discovered a new class of intermetallic compounds with

the astonishing property of being ferromagnetic even if all elements of the com-

pound were non-magnetic [16]. The alloy he examined was Cu2MnAl; the whole

group of alloys like this one was later named after him. In general full-Heusler

alloys are intermetallic compounds of the general formula X2YZ, where X is a

transition metal, Y a transition metal or a rare earth metal and Z is either a

nonmagnetic metal or a non-metal. They crystallize in the L21-structure, which
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Figure 3.1: Crystal structure of Co2MnSi. The blue spheres represent Co-atoms,

the green ones Mn and the red ones Si.

means they form cubic lattices (space group Fm3m) that can be regarded as

four interpenetrating fcc-lattices. Half-Heusler alloys (XYZ), which form a C1b

structure, can be constructed from full-Heusler alloys by replacing one of the X-

positions by a vacancy. A schematic representation of Co2MnSi, as an example

for a full-Heusler crystal, is shown in figure 3.1.

This picture shows a perfect crystal, however disorder can occur in the Heusler

alloys reducing the L21 order to B2 (Y-Z interchange) or even A2 (complete dis-

order). The latter leads to a reduced spin polarization, which in turn reduces the

TMR effect in magnetic tunneling junctions. B2 ordering, which in the case of

Co2MnSi means an interchange between Mn and Si, does not lead to a loss of

the half-metallic properties of CMS, because Si is a relatively light atom. The

main effect that destroys the half metallicity is the changing Coulomb interac-

tion; therefore the effect is the higher, the heavier the element. The influence of

disorder has been examined theoretically by Galanakis et al. [17]. Improving the

crystalline growth of Heusler thin films to achieve at least B2 ordering is therefore

crucial for applications.

Nakatani et al. have shown that the annealing temperature has a great influ-

ence on the degree of ordering in Co2MnSi thin films [18]. They prepared MTJs

with CMS bottom and top electrode and an MgO barrier, where the bottom CMS

layer was always annealed in situ at 600°C and the top part either at 400°C or

550°C. Annealing at 400°C led to B2 ordering, whereas 550°C resulted in L21-
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ordered films. The TMR ratio increased from 80 % at room temperature for the

400°C annealed sample to 180 % at room temperature for the 550°C annealed

sample [19]. Further increasing the second annealing temperature to 600°C did

not improve the TMR ratio any more [20]. A detailed investigation of the degree

of ordering upon annealing was also presented by Gaier et al. [21]. They pre-

pared Co2MnSi films on MgO substrates with Cr seed layer and annealed them

at temperatures ranging from 350°C to 500°C. They found an increase of the L21

ordered portion from 60 % after a 350°C annealing up to 90 % ordering after a

500°C annealing.

In order to determine the degree of ordering, the crystalline orientation and

the lattice constant, Heusler bulk samples and thin films are often analyzed using

X-ray diffraction [22]. The existing reflexes can be grouped in the following way:

In an fcc crystal, like in a Heusler alloy, only those reflexes, where the Miller

indices are either all even or all odd, exist. Taking this into account there are

three groups of reflections:

1. h, k, l are all odd (e.g. (111))

2. (h+ k + l)/2 = 2n+ 1 (e.g. (200))

3. (h+ k + l)/2 = 2n (e.g. (220))

The third group is the group of principal reflections that are always present;

the other two contain superlattice reflections, that reflect the crystalline ordering.

Only in the L21 ordered state the (111) reflex is present; in the B2 ordered state

the (200) reflex can be found1. For that reason the X-ray analysis in this work

was focused on these two reflections (see chapter 7.1).

3.2.2 Half-Metallicity of Heusler Alloys

The first researchers to identify some of the Heusler alloys as half-metallic ma-

terials were de Groot et al. in 1983 [23]. They performed band-structure calcu-

lations on some Mn-based Heusler alloys like NiMnSb and discovered what they

called ”unusual electronic properties”: The majority spin electrons were metallic,

whereas the minority ones were semiconducting. This so called ”half-metallic”

behaviour requires non-zero density of states for one spin direction (majority)

and a band gap for the other direction (minority). It turned out later that the

1A list of the peak positions of the X-ray reflections can be found in in Appendix D.
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Figure 3.2: Schematic illustration of the Co-Co-Mn hybridization which leads to

the gap in the minority band of Co2MnSi. The abbreviations d1, d2, d3 stand for

dxy, dyx, dzx; d4 and d5 for dr2 and dx2−y2 respectively (picture taken from [24]).

hybridization of the d bands of the transition metals in a Heusler compound is

crucial for the formation of the band gap. In a compound which contains different

materials the exchange splitting between spin up and spin down will be different

for the different atoms. After the hybridization the resulting band structure will

therefore be different for spin up and spin down, which leads to the observed

gap in only one spin direction. In the case of Co2MnSi the gap is a result of

the Co-Mn hybridization (d states) which leads to eight filled and seven empty

minority bands; the Fermi level is situated in between the five Co bands [24].

This is illustrated in figure 3.2.

Band structure calculations have been performed by many groups for a variety

of half- and full-Heusler alloys, using different computational models. Examples

for Co2MnSi can be found in references [25–28]. These calculations lead to the

spin-resolved density of states (DOS) which is depicted in figure 3.3.

In contrast to theoretical predictions of half-metallicity 100% spin polarization

has not been observed in experiments yet. There are several reasons for that which

have been examined theoretically: The half-metallic character of Heusler alloys

can be reduced or even destroyed when disorder occurs in the films. Picozzi et al.

have calculated that atomic swaps in CMS as well as Mn antisite defects preserve

half-metallcity. Co antisite defects however destroy the gap in the minority band,

which results in considerable reduction of the spin polarization [29].
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Figure 3.3: Spin-resolved DOS for Co2MnSi revealing a gap for the spin-down

states (picture adapted from [27]).

It has also been shown by various groups that surfaces and interfaces dif-

fer greatly from bulk properties for many half-metallic materials. Surface states

can turn into interface states that destroy the half-metallic character of the film

[30–32]. Hashemifar et al. calculated the surface band structure of Co2MnSi

(100) surfaces with different terminations; according to their analyses the pure

Mn-termination should preserve the half-metallic character of the surface [33].

Sakuma et al. examined the half-metallicity of Co2MnSi at the surface and in-

terfaces of thin films [34]. By first principles calculations they found out that in

the surface density of states of Co the half-metallic character is lost. In a bilayer

system with MgO, like in an MTJ, the Co’s exchange constant and magnetic

moment are reduced; this is considered to be the reason for the rapid decrease

of TMR with increasing temperature. In general all half-metallic systems suffer

from magnon and phonon excitations at finite temperatures that lead to a reduc-

tion of the spin polarization at application-relevant temperatures [35]. Itoh et

al. have calculated that spin fluctuations at finite temperatures add to the drop

of spin polarization and magnetoresistance ratio of half-metallic junctions with

increasing temperatures [36].

In addition to that interface oxidation has to be avoided as it results in a

significant reduction of the TMR ratio as well: The conductance in the state of

parallel magnetization is decreased while at the same time the conductance of

the anti-parallel state is increased. These results were calculated by Miura et

al., who also pointed out that the likeliness of oxidation depends on the Co2MnSi

termination. The MnSi-termination is more likely to oxidize compared to the Co-



12 CHAPTER 3. THEORY

Figure 3.4: Total spin moment as a function of the number of valence electrons

for a number of known full Heusler alloys. The dashed line represents the Slater-

Pauling rule Mt = Zt − 24; alloys that do not follow this rule are marked with

open circles (picture taken from [27]).

termination, so an exact control of the interface termination would be desirable

[37]. In practice however, this control is difficult to achieve.

3.2.3 Slater-Pauling Behaviour of Heusler Alloys

As shown by a number of groups many full-Heusler alloys, as well as so-called half-

Heusler alloys, follow the Slater-Pauling rule [38, 39] which relates the magnetic

moment to the number of valence electrons [27, 40, 41]. In the case of half-

Heusler alloys this relation is given by Mt = Zt−18, for the full-Heusler alloys by

Mt = Zt − 24. The total spin moment is abbreviated by Mt, the total number of

valence electrons per unit cell by Zt in these equations. Figure 3.4 shows the total

spin moment as a function of the corresponding number of valence electrons for a

large number of full Heusler alloys that have been studied so far. The dashed line

represents the Slater-Pauling rule. This rule follows simply because Zt = N↑+N↓,

where N↑ (N↓) is the number of spin-up (spin-down) bands and Mt = N↑ − N↓.

Combining these two and taking into account that 12 minority bands are fully

occupied results in the Slater-Pauling rule.

In the case of Co2MnSi eight of the twelve occupied spin down states are

a result of the Co-Co and subsequent Co-Mn hybridization; the remaining four
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Figure 3.5: Transfer curves at room temperature and 4.2 K for an MTJ with

Co2MnSi electrodes and an MgO barrier (picture taken from [19]).

states are contributed by Si. As Co2MnSi has 29 valence electrons in total (Co:

9, Mn: 7, Si: 4), the resulting magnetic moment is 5 µB/unit cell.

3.2.4 Magnetic Tunneling Junctions with Heusler Elec-

trodes

Many groups worldwide have successfully incorporated Heusler alloy thin films

into MTJs with either Alumina or MgO tunneling barriers. Considering Co2MnSi

remarkable results were achieved by Sakuraba et al. in 2006 with top-pinned

Alumina-MTJs stacks: TMR ratios of 570 % were reported at low temperatures of

2K with a system of Cr-Co2MnSi-Al2O3-Co2MnSi-IrMn-Ta on an MgO substrate

[42]. However the pronounced temperature dependence of the TMR ratio led to

a modest TMR of only 67 % at room temperature, which is comparable to the

results of a stack of CMS-Al2O3-CoFe presented by the same group [43]. In 2009

Ishikawa et al. presented considerably higher TMR ratios of 705 % at 4.2 K and

still 179 % at room temperature achieved with a system containing two Co2MnSi

electrodes and an MgO barrier [19]; their result is shown in figure 3.5.

Here again the top-pinned stack was deposited on a single-crystalline MgO

substrate. In both cases the Heusler bottom and top electrodes were annealed
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in-situ directly after their deposition, before the IrMn antiferromagnetic film had

been deposited. This procedure reduces the risk of interdiffusion, especially of

Mn into the electrode and barrier.

In all results published so far the experimentally determined spin polariza-

tions lag behind the theoretical predictions of 100 % spin polarization. In 2005

Schmalhorst et al. achieved a spin polarization of 65.5 % at 20K, determined

by measuring the TMR ratio of Co2MnSi-AlOx-Co70Fe30 junctions and apply-

ing Jullière’s formula 3.1 [44]. The above mentioned junctions by Sakuraba et al.

yielded a spin polarization of 89 % for the bottom CMS electrode at 2K; using this

value the top CMS electrode’s spin polarization was calculated to be 83 % at the

same temperature [42]. Given the theoretical considerations concerning surfaces

and interfaces mentioned above these reduced values confirm these calculations.

3.3 TMR with MgO Barriers

Apart from using a highly spin-polarized electrode material, a second possibility

to improve the TMR effect is to use an optimized system of ferromagnet(100)-

barrier(100)-ferromagnet(100). It has been theoretically predicted by Butler et

al. in 2001 that an MTJ consisting of Fe(100)-MgO(100)-Fe(100) should yield a

very high TMR in the order of several hundred percent at room temperature due

to coherent tunneling [3].

The concept of coherent tunneling can be explained qualitatively as follows

(an exact calculation can be found in [45]): Due to a relatively small lattice

mismatch between Fe(100) and MgO(100) of only 3% an epitaxial system of

Fe(100)-MgO(100)-Fe(100) can be grown. In such an epitaxial system the tun-

neling probability is highest for the k‖ = 0 direction, which is the [100] direction

in this case. In the MgO(100) band gap there are three different kinds of evanes-

cent states with different symmetries: ∆1, ∆5 and ∆2′ (see figure 3.6). As the

symmetries of the wave functions should be conserved, ∆1 Bloch states from the

Fe electrode couple with ∆1 evanescent states in the MgO only; the same is true

for the other symmetries. It has been shown by first principle calculations that

the ∆1 evanescent states have the longest decay lengths and are therefore domi-

nating the tunneling process [3]. This is shown in figure 3.7. As the ∆1 band in

Fe (as well as in e.g. Co) is fully spin polarized at the Fermi energy, a very large

TMR is expected.

The first experiments on epitaxial Fe(100)-MgO(100)-Fe(100) systems by



3.3. TMR WITH MGO BARRIERS 15

Figure 3.6: Atomic orbitals grouped according to their symmetry, i.e. number

of nodes in the plane of the interface. The ∆1 states are the most important

ones concerning tunneling in Fe(100)-MgO(100)-Fe(100) MTJs (figure taken from

[46]).

Figure 3.7: Density of states of majority spin states for k‖ = 0 for Fe(001)-

MgO(001)-Fe(001). The ∆1 state has the slowest decay and will therefore domi-

nate the tunneling process (figure taken from [3]).
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Keavney et al. in 1997 had not been successful; they measured only ohmic

current-voltage characteristics due to pinholes in the MgO barrier [47]. In 2004

Parkin et al. found a TMR ratio as high as 220 % at room temperature using

CoFe(100) electrodes and an MgO(100) barrier [48], at the same time Ando et al.

fabricated Fe-MgO-Fe MTJs that reached a maximum TMR of 180 % at room

temperature [49]. The problem with these epitaxial (100) systems for applica-

tions however is, that they cannot be integrated into standard spinvalve systems

easily. The typical layer stack consisting of seed layer / synthetic ferrimagnet

(SyF) usually forms an fcc (111) structure, which is not compatible to the (100)

structure formed by the electrode and barrier. However, these SyF structures are

known to be advantageous for applications because they are magnetically robust

and have a negligibly small stray field acting on the top free layer [6]. Therefore

they should be part of a TMR sensor stack as well; developing an alternative

SyF-system in (100) orientation would be too large an alteration and would also

require a long time of research. As a result, a different approach to make use of

the favourable coherent tunneling in ferromagnet-bcc(100)- barrier(100) junctions

had to be found.

3.4 The System CoFeB-MgO-CoFeB

To overcome the problems of matching the (100) textured electrodes to an (111)

textured SyF structure, Djayaprawira et al. introduced amorphous CoFeB elec-

trodes in combination with a crystalline MgO(100) barrier [4]. They used a

standard spin-valve structure on a Si substrate and sputter deposited a CoFeB-

MgO-CoFeB trilayer. The resulting TMR was surprisingly high, 230 % at room

temperature, although the electrodes’ structure remained essentially amorphous,

even after annealing. The MgO barrier however, showed a (100) fiber structure

even though it was grown on an amorphous layer.

In the following years a number of groups worldwide continued to work on

CoFeB systems. The TMR ratios that were achieved were continuously increas-

ing, in 2008 Ikeda et al. published a maximum TMR of 604 % at room tem-

perature after a 525°C annealing [50]. In contrast to Djayaprawira et al. they

used a pseudo-spin-valve structure, which did not contain any antiferromagnetic

material. Therefore those systems are of pure academic interest but cannot be

employed in a real device.

As mentioned above the main advantage of amorphous CoFeB over crystalline
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Co or Fe electrodes is the possibility to integrate them into standard spin-valve

systems. These stacks usually contain a bottom pinned electrode where IrMn or

PtMn are used for exchange biasing the system. Both, IrMn and PtMn, grow in

(111) direction and are therefore not compatible with Co(100) or Fe(100) [51].

Because CoFeB in the composition of Co40Fe40B20 is amorphous after deposi-

tion and only crystallizes upon annealing, this ferromagnet can be grown on

any underlying film and is therefore perfectly suited. Different compositions, like

Co80Fe10B10 however are not completely amorphous after the deposition; therefore

their structure depends greatly on sputtering parameters and seed layer material

which makes them difficult to handle [52]. Another advantage of CoFeB is that

MgO crystallizes well on CoFeB and some publications suggest that MgO acts

as a template for the crystallization of both, top and bottom CoFeB due to very

good lattice matching between MgO(100) and CoFeB(100) [6].

Tsunekawa et al. found out that the cap layer on top of the CoFeB electrode

has a strong influence on the resulting TMR effect as well [6, 53]. Standard cap

materials like Ru or Ta lead to high TMR effects whereas materials like NiFe,

which are typically used in GMR spinvalve systems, result in a comparatively low

TMR. The reason for this is the different crystallization upon annealing: NiFe

starts crystallizing at lower temperatures than MgO, therefore NiFe will be the

template for CoFeB. As NiFe crystallizes in an fcc(111) structure, CoFeB will also

form an fcc (111) structure, which significantly reduces the TMR because coherent

tunneling of ∆1 electrons is impossible. Similar results were found by Park et al.

when they analyzed the influence of top and bottom adjacent materials: For e.g.

NiFe they found the ”wrong” (110) orientation of CoFeB, whereas MgO and CoFe

made CoFeB crystallize in (100) orientation [54]. Ibusuki et al. favoure Ti over Ta

or Ru as capping material, as they found even higher TMR for Ti-capped MTJs

[55]. They suggest that Ti absorbs B from the CoFeB electrode, which enables

crystallization and thus high TMR even after moderate annealing. However, Ti

was not available at Sensitec; for that reason, unless stated otherwise, Ru was

chosen as cap material for all TMR stacks presented in this thesis.

Several publications suggest that the CoFeB crystallization does not only

depend on the neighbouring material but also on its thickness: Kim et al. found

out that CoFeB crystallizes at lower temperatures if the adjacent MgO layer is

thicker [56]. They compared CoFeB thin films on 3nm and 10nm of MgO and

observed complete crystallization in the second case after 320°C annealing while

the first sample was only partly crystallized. This result and several experiments
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by other groups indicate that B segregates from the electrode to neighbouring

layers. For example, You et al. verified by TEM analyses that B segregates from

the interface [57] and Bae et al. performed XPS analyses of CoFeB-MgO-CoFeB

junctions and found B-oxide at the electrode-barrier interface [58].



Chapter 4

Sample Preparation

All samples described in this thesis were fabricated using a Veeco PVD cluster

tool. The annealing can only be done ex situ in three different ovens. The samples

are structured using standard processes like UV projection lithography, Ar ion

etching and sputter deposition of Al2O3 insulation and Au contacts.

All machines in the Sensitec production line are suited for handling 5-inch

wafers. Therefore 5 inch Si substrates covered with an oxide layer were used for

sputtering whenever samples needed to be structured.

In this chapter the production steps for the preparation of magnetic tunnel-

ing junctions will be described briefly; a generic process flow can be found in

Appendix B.

4.1 The Sputtering Tool

The Veeco sputtering tool (called ”PVD 2”) consists of three sputtering chambers:

a six-target dc magnetron chamber (”PM 4”), a six-target Ion Beam Deposition

chamber (”IBD”) and a single-target dc magnetron chamber (”PM 5”) which is

mainly used for reactive processes. A typical target configuration for the three

chambers is listed in table 4.1. The three chambers are connected by a transport

module with a robot handler that automatically transfers the wafers from one

chamber to the next or to one of the two load locks. The whole system is software

controlled.

In order to guarantee good film quality, i.e. homogenous film thickness over a

five inch surface, the targets are considerably larger than the wafers. The targets

in PM 4 and PM 5 are 300 mm in diameter, the targets in the ion beam chamber

19
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chamber Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6

IBD Cr NiFe NiFeCr Co90Fe10 MgO CMS

PM 4 Ta Co90Fe10 Co40Fe40B20 Ru CFAS IrMn

CCFA Cu NiFe PtMn

PM 5 Al

Mg

Table 4.1: Typical target configuration for PVD 2. The upper line displays the

usual configuration, the second line lists alternatives. The targets cannot be

interchanged between the chambers due to geometry factors. The abbreviations

for the Heusler alloys stand for: CMS = Co2MnSi; CCFA = Co2Cr0.6Fe0.4Al;

CFAS = Co2Fe0.5Al0.5Si

are 200 mm in diameter. During the sputtering process the wafers rotate to

optimize film homogeneity. Additionally the shutter always moves into the same

direction during opening and closing in order to prevent one side of the wafer to

be sputtered slightly longer. As this machine was designed for the deposition of

high performance GMR multilayers and spin valves the deliberate deposition of

uneven films, like wedges, is impossible. To test different thicknesses of e.g. a

tunneling barrier, new samples had to be deposited each time.

The deposition rates are determined by a simple contact profilometer mea-

surement; the uniformity of metallic layers over a five inch wafer is monitored

with the help of resistance measurements. On a regular basis deposition rates

were verified with X-ray reflectometry.

4.2 TMR Layer Stack

A complete TMR stack consists of at least three films: the bottom electrode, the

tunneling barrier and the top electrode. Seed and cap layers as well as an anti-

ferromagnetic layer (IrMn or PtMn) to magnetically ”pin” one of the electrodes

are also needed. Although PtMn has a greater high-temperature stability IrMn

was chosen as antiferromagnet because of its significantly lower hysteresis [59].

The ferromagnetic electrodes are mostly deposited by dc magnetron sputtering

in PM4. However, some of the electrode materials and some seed layer materials

are deposited using ion beam deposition.
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In a TMR stack with conventional electrodes all metallic layers are deposited

by dc magnetron sputtering in PM4; only the tunneling barrier is deposited in

a different chamber. In case of an alumina barrier PM5 is used, in case of MgO

the barrier is deposited in the IBD chamber (see section below 4.3). TMR stacks

containing Co2MnSi Heusler electrodes on the other hand were mostly prepared

in the Ion Beam Chamber; only the cap and optional pinning layer were deposited

in the PM4.

4.3 MgO Barrier Deposition

Different sputtering techniques were used for the preparation of the MgO tun-

neling barrier: pulsed dc sputtering and ion beam deposition, both assisted and

not assisted. In the following chapter the different preparation methods will be

discussed in detail.

4.3.1 Pulsed dc Sputtering

When starting with the development of an MgO process similar conditions as for

the preparation of Al2O3 layers were used: A metallic Mg target was installed

and the sputtering was done reactively in an argon-oxygen atmosphere. For this

process the single-target reactive chamber was used.

However, only moderate TMR results (approx. 15 %) were achieved with this

process after more than a year of optimization work. For that reason this process

was discarded. A possible explanation for the low TMR values is that instead

of being crystalline and (100) oriented as required for coherent tunneling, the

barrier remained essentially amorphous. This has been reported by groups that

have experimented with reactive sputtering from metallic targets before [60]. For

future experiments, especially with delicate electrode materials, the Mg target

might be of use in an Mg-MgO double-barrier-process.

4.3.2 Ion Beam Deposition

Ion Beam Deposition (IBD) of MgO for the use as tunneling barrier is unusual,

but not completely new. Cardoso et al. published first results on IBD TMR

stacks with an MgO barrier in 2008 [61], shortly after the work in Mainz had

begun.
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In dc sputtering processes a voltage between the target and the substrate is

applied, an inert gas (typically Ar) is let into the chamber and forms a plasma

in the electromagnetic field. The Ar ions are then accelerated onto the target

where they can eject atoms from the surface. These atoms are in turn deposited

onto the substrate. This method however does only work for metallic targets,

sputtering from oxidic targets would result in charging.

In an IBD system on the other hand the ions are generated in a separate gun,

not directly at the target. A system of grids accelerates the ions onto the target

and the sputtering process starts. Because no voltage is applied directly at the

target, this method is also suitable for sputtering insulating materials like, in this

case, MgO. Another advantage of the ion beam process is that one can operate

at a lower pressure than in standard sputtering processes, which reduces the risk

of contamination.

The base pressure of the IBD chamber used here is 2·10−8 torr, typical de-

position pressures are in the order of 10−4 torr. The chamber is equipped with

two ion guns: the deposition gun, which is directed at the target and the etch

gun, which is aimed directly at the wafer surface. The orientations of the guns

within the chamber can be altered within the range of a few degrees. Both guns

are equipped with two gas inlets that can be switched independently. The de-

position gun typically uses xenon, however argon is also available. The etch gun

is connected to Ar and Ar/O2 (20 % O2). In addition to that a background gas

inlet was added in the course of this project in order to increase the variety of

parameters for MgO optimization. Currently the etch gun’s Ar/O2 mixture is

attached to the background gas inlet.

The distance between target and wafer is fixed to about 25 cm; this distance

cannot be changed. In order to improve wafer uniformity the targets are consider-

ably larger than the wafers, their diameter is 200 mm. The targets are situated in

a cylinder which is rotated until the required target faces the chamber. There are

two shutters, one for the target and a second one for the substrate. This allows

e.g. pre-sputtering for target conditioning without coating the wafer. During

the deposition process the wafer rotates, the rotation speed can be defined in

the process recipe. As the sputtering tool is a production tool the whole setup

is optimized for wafer uniformity. It is impossible to deliberately deposit an in-

homogeneous film, like e.g. a wedged barrier. As a result variations of barrier

thicknesses have to be deposited on single wafers each, which means that a large

number of wafers has to be processes for thickness optimizations.
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4.4 Annealing the Samples

Unfortunately there is no possibility to deposit at elevated temperatures or anneal

samples in situ in the PVD, therefore all samples have to be annealed ex situ after

the complete stack has been deposited. This is especially disadvantageous for

TMR stacks with Heusler alloys, as the Heusler thin films require relatively high

annealing temperatures of 350°C or even higher (see chapter 3.2.4). At Sensitec

there are three different ovens suitable for annealing TMR samples: A so-called

High Field Reset Oven (HFRO) by Despatch and two smaller ones by Blue M

Electric and YES. The HFRO can generate magnetic fields up to 1.3 T, but its

temperature is limited to 265 ℃. This oven works under nitrogen atmosphere, the

wafers are placed on special holders where the position of the wafer notch (i.e.

the orientation of the wafer within the magnetic field) is fixed. Up to fifteen 5

inch wafers can be annealed simultaneously. In the Blue M oven samples can be

annealed up to 500 ℃. However, this oven does not have a magnet, so it cannot

be used for defining exchange coupling. In the past it had been equipped with a

permanent magnet but this magnet was removed in the course of this work for

production reasons. The Blue M oven works in an N2 atmosphere as well, the

pressure during the process is always kept slightly above atmosphere in order to

prevent air from entering the chamber.

The third oven, a YES oven, is similar to the Blue M oven, the samples are

annealed in an moderate positive nitrogen working pressure, no magnetic field

can be applied. The maximum working temperature is lower than in the Blue M

oven, however this oven was used temporarily because the Blue M oven had an

oxygen leakage.

TMR samples were typically annealed twice: firstly in the HFRO to define

pinning and secondly in the Blue M or YES oven to fully crystallize the barrier.

Single films for X-Ray analyses were only annealed once, either in the Blue M or

the YES oven.

4.5 Structuring the Samples

All Sensitec machinery is designed for handling circular 5 inch wafers. For that

reason these wafers were always used whenever samples needed to be structured

in Mainz. All together three mask layers are necessary to define the bottom

electrode, the junction itself and the top electrode which is contacted later. A
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Figure 4.1: TMR chip with an edge length of 10mm. The horizontal line is the

bottom electrode which is contacted at the left and right. The vertical lines are

the contacts of the upper electrode (see Appendix A for the mask drawing).

picture of the final chip is shown in figure 4.1. Each chip consists of eight junctions

that are arranged in two identical rows with four circular junctions each. Their

diameters ascend from 16 µm to 50 µm. The chip design is kept as simple as

possible, the chips’ only usage is to be able to measure the TMR ratio. The

chip’s edge length is 10 mm which allows easy handling after dicing. The contact

pads are large enough to ensure easy manual probing if needed.

After sputtering and a first annealing step the bottom electrode is defined

lithographically. Therefore the wafers are spin coated with positive photosensitive

resist (AZr ECI 3012) of 1 µm thickness [63]. After a softbake step they are

exposed with UV light (365 nm) by a Canon FPA-3000MR i-line wafer stepper.

After developing the resist in metal ion free developer (AZr 300 MIF)1 only the

bottom electrode and the base for the later top contacts are left. Afterwards

the structure is ion milled in a Veeco Ion Milling tool at an angle of -10° with

respect to the normal. In order to improve wafer homogeneity the wafer rotates

continuously with 10 rpm. As the ion milling process uses highly energetic ions

(300 V, 500 mA) the resist is hardened and irremovable by chemical means alone.

Therefore the resist is exposed to an oxygen plasma first and then removed with

warm N-Methylpyrollidone (NMP).

To structure the actual MTJs the wafers were spin-coated with a double-layer

resist in order to define a so-called ”undercut”. This is necessary if lift-off pro-

cesses are used and describes a ”T”-like resist structure in which the bottom resist

is washed out. After sputtering a narrow slit is left between the metal and the

resist allowing the remover to affect the resist. The bottom resist, LOR 1A by

MicroChem Corp., is a non-photosensitive resist based on PMGI (polydimethyl-

1AZr 300 MIF is an aqueous solution of 2.38% tetramethyl-ammonium-hydroxide (TMAH)
without any surfactants [64].
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glutarimide) [65], as a top resist AZr ECI 3012 is used. After the softbake of both

resists the wafers are exposed with the Canon stepper and developed with AZr

300 MIF. The resulting MTJs are circular pillars with different diameters ranging

from 16 to 50 µm. The following ion milling process is designed to stop shortly

below the tunneling barrier. This process is critical and is therefore monitored

carefully. For the monitoring half-stacks were sputtered on glass coupons, etched

and the transmission of light was then measured with the help of a densitometer.

After the ion milling process the resist is not removed, but used as a mask

during the sputtering of the passivation layer (gap refill). 60 nm of Aluminum

oxide are used to isolate the top electrode from the bottom one. The resist is

stripped afterwards with warm NMP in a spray stripper tool.

The last photolithography layer is needed to structure the leads and contact

pads. Again a double-layer resist (LOR 5A + AZr ECI 3012) is applied, soft-

baked and the wafers are exposed and developed. 40 nm of Ta as adhesion

promoter and 200 nm of Gold are sputtered to ensure a good electrical conduction

and contact for testing the samples. After removing the resist with NMP the

wafers are ready for testing.

The structuring process is visualized schematically in figure 4.2.

4.6 Quadrants-Wafer

As mentioned above all Sensitec machinery is only capable of handling 5 inch

wafers. However, for research projects like this one normally only a few samples

are needed. Sputtering and structuring a whole wafer is therefore a waste of

time and substrates. So a method to use the wafer surface more effectively was

developed: A 4 inch wafer with one quarter being sawn out was used as a cover

during the deposition of the TMR layer stack. After the first sputter run the

cover was removed, rotated by 90 degrees and another TMR stack was sputtered

on the same wafer. With this technique four different stacks could be deposited

on only one wafer. The advantage of this was that a larger variety of stacks could

be tested within a lot of nine wafers or the other way round a smaller amount of

wafers was needed which means lower cost and faster processing. The effectively

used area of the wafer was reduced from 5 inch to 4 inch in diameter, but there

were still enough samples in one quadrant.

It is striking to note that placing a wafer on top of a TMR layer does not

destroy the stack. In various tests not more short-circuited elements were found
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Figure 4.2: Schematic structuring sequence (not to scale). The blue-red-blue

trilayer symbolizes the MTJ with the tunneling barrier drawn in red.

on a quadrants wafer in comparison to a ”normal” full-film wafer.

4.7 TMR Tester

A fully automatic TMR tester for five inch wafers was developed at Sensitec

during the time of this thesis. The tester is based on an Electroglass prober that

was upgraded with a permanent magnet which can be moved along a vertical

axis. The maximum magnetic field is about 1700 Oe, the minimum field with the

magnet moved to the uppermost position of the axis is 6.8 Oe. This constraint

implies that un-pinned MTJs are difficult to test because there is no data point

at zero field.

A probecard contacts all top electrode pads along one row of junctions and

the bottom electrode. This configuration allows testing four junctions almost

simultaneously. Measurements with constant current as well as constant voltage
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are possible. The standard procedure at Sensitec is testing with constant current;

this procedure was adopted for the TMR measurements, too. Normally the wafers

were tested using a constant current of 10 µA. The TMR tester allows testing at

room temperature only. Therefore all TMR results presented in this thesis are

always room temperature results.



28 CHAPTER 4. SAMPLE PREPARATION



Chapter 5

MgO Barrier Optimization

The tunneling barrier is the heart of a TMR stack, therefore optimizing this layer

is crucial for the performance of a TMR device. In this chapter the optimization

of the ion beam deposited MgO barrier will be described comprehensively.

5.1 Seed-Layer Optimization

Before the optimization of the ion beam process itself an ideal seed layer had to

be found. Seed layers influence the growth of the electrode materials, which in

turn influences their texture and roughness [66]. Only materials that were present

in the sputtering system were considered as possible seed layers: Ta, Ru, NiFeCr,

NiFe, MgO. To compare the results, identical stacks containing Co40Fe40B20 4nm

- MgO 2nm - Co40Fe40B20 3nm were deposited on 5 inch Si wafers with variable

seed layers and then annealed twice 1. The first annealing was done at 300°C in

a low magnetic field of 2000 Oe 2, the second annealing was done at 265°C in a

higher field of 5000 Oe. The wafers were measured using the TMR tester setup

in Mainz.

Figure 5.1 and figure 5.2 show the averaged measured TMR and RA values

for the different seed layers that were tested. In the first graph data for the

MgO standard process is shown, the second graph contains data for the IBAD

barrier process. Both results show clearly that the combination of Ta-Ru-Ta

is favourable, an additional MgO seed underneath is counterproductive. Magic

1Whenever CoFeB was used it had the composition Co40Fe40B20; the exact composition will
therefore be omitted in the remaining thesis.

2The first annealing was done in the Blue M oven, which still contained a permanent magnet
at this tine.

29
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Seed (NiFeCr / NiFe bilayer), with or without MgO underneath, does not seem

to work in TMR junctions.
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Figure 5.1: TMR and resistance-area-product for CoFeB-MgO-CoFeB stacks with

different seed layers, where the MgO barrier has been deposited using the standard

ion beam deposition process (the numbers represent the thickness in nm). All

values are average values of several junctions.

In the IBAD-graph also MgO/Ta looks promising; the average TMR was

46 %. However, in contrast to Ta/Ru/Ta the number of working junctions, i.e.

junctions that were not short-circuited, was clearly reduced. Therefore Ta/Ru/Ta

was chosen as the optimum seed layer, all further junction optimization work was

done with this buffer layer. The big difference between 10 and 20 nm Ru, which

is clearly visible in the second graph, never occurred again in later experiments.

For that reason only 10 nm of Ru were sputtered.
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Figure 5.2: TMR and resistance-area-product for CoFeB-MgO-CoFeB stacks with

different seed layers, where the MgO barrier has been deposited by IBAD (the

numbers represent the thickness in nm). All values are average values of several

junctions.

5.2 Ion Beam Standard Process

The term ”standard process” refers to the process conditions used for the depo-

sition of metallic layers such as NiFe or CoFe. In that case only the deposition

gun is used, the etch gun remains in idle mode (”off”).

However, in order to be able to ablate material from the oxidic MgO target

the etch gun has to be switched on to ”source” mode. The reason why it is im-

possible to deposit MgO without the etch gun is that as soon as the target shutter

is opened the oxidic target gets charged, which makes a sputtering process im-

possible. Apparently the neutralizer filament alone does not produce a sufficient

amount of electrons to compensate for the cations being ablated from the target,

so the etch gun needs to act as an additional neutralizer. In order to start the

etch gun a gas flow is needed; an Ar-flow of 6 sccm was chosen arbitrarily.
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All other beam parameters were kept to the parameters used for metallic

deposition because these parameters have proven to give the most stable beam

condition. The beam voltage was set to 750 V, the beam current to 70 mA; xenon

was used as sputtering gas with a gas flow of 2.5 sccm. During deposition the

wafer rotates with a constant speed of 5 rpm. This set of parameters results in

a deposition rate of 0.2 Å/s. This ”MgO standard process” is very stable; long

deposition times up to 30 minutes were tested repeatedly without a change in the

beam parameters.

The first wafers that were deposited were meant to find the ideal process time,

i.e. MgO thickness. This variation was done only for wafers with magic seed, the

MgO thickness was varied from 1.6 nm to 2.2 nm. The samples were annealed

twice, first at 300°C followed by an annealing at 265°C and a higher magnetic

field.
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Figure 5.3: TMR and resistance-area-product for CoFeB-MgO-CoFeB stacks with

different MgO thicknesses. The barrier was deposited using the standard process.

All values are average values of several junctions.
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As shown in figure 5.3 both, TMR and RA, increase with increasing barrier

thickness. The maximum value in this matrix here is a TMR of almost 13 % at

a resistance-area-product of approximately 500 kΩ(µm)2.

5.3 Ion Beam Assisted Process (IBAD)

Shortly after the work on the MgO barrier process by ion beam deposition had

begun, we became aware of the publication by Cardoso et al. [61]. The group

from Lisbon produced MgO tunnel barriers by IBD as well; in contrast to our

work they made use of their second gun which was directed at the substrate in

a shallow angle. They claimed that using an ”etch gun” during the deposition

process is advantageous for the barrier growth, which they confirmed by X-ray

diffraction. TMR results were improved, too: 110 % were achieved with an etch

gun, only 30% without it 3.

As mentioned above, in our case the etch gun was operated in ”source” mode

only until then. Because of the positive results by Cardoso et al. an assisted

process was tested in our tool, too. In our case the etch gun points directly at the

wafer, thereby covering an off-centered spot of approximately 25 % of the wafer’s

surface. By rotating the wafer homogenous coverage is guaranteed. The standard

parameters for etching are 500 V and 60 mA. However, with a deposition rate

of only 0.2 Å/s this would result in no deposition at all as the etch rate of 0.8

Å/s is four times higher than that. Therefore the etch beam power was reduced

to a stable minimum. Experiments showed that the beam voltage could not be

reduced below 300 V and the beam current had its lower limit at 30 mA. Reducing

it further results in unstable plasma ignition, reducing the cathode minimum to

circumvent this limitation results in instable beam parameters because the beam

current can no longer be kept stable during the process. However the gas flow in

the deposition gun had to be increased by a factor of four to guarantee a stable

plasma; the lower gas flow of 2.5 sccm had repeatedly resulted in charging again.

The resulting gun parameters are listed in table 5.1.

The first results were very promising: For an identical stack with the same

resistance a TMR of about 20 % was achieved without an etch beam; with etch

3An IBAD process for MgO had been reported in 1997 already by Wang etal. [62]. In their
case MgO films down to 10nm were deposited by e-beam evaporation onto amorphous Si3N4

substrates for the use as structural templates for other materials. An additional assist gun that
was directed onto the substrates was used to improve film growth.
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Deposition Gun Etch Gun

Status Beam Beam

Beam Voltage 750 V 300 V

Beam Current 70 mA 30 mA

Gas Xe Ar

Gas-Flow 10 sccm 12.5 sccm

Neutralizer 3.0 3.0

Table 5.1: Gun parameters for the MgO Ion Beam Assisted Deposition process

(IBAD process).

gun more than 70 % TMR were reached in the first try (see figure 5.4). The

stack consisted of the following layers: Si-substrate // Al2O3 400 / Ta 5 / Ru

20 / Ta 5 / IrMn 15 / CoFe 3 / Ru 0.8 / CoFeB 4 / MgO 2.0/ CoFeB 3 /

Ru 3 / Ta 5 (all thicknesses in nm). This wafer was a quadrant wafer; only

two of the quadrants are regarded here (the other contained an Mg underlayer

in the barrier and are therefore not comparable to the others). The wafer was

annealed at 265°C in a magnetic field of 5 kOe only. The average TMR of about

70 % was the highest TMR value achieved until then. Figure 5.5 shows the TMR

distribution over the quadrants wafer containing both, standard and IBAD stacks.

The first quadrant (upper left) shows the results for the standard stack with 2.0

nm MgO barrier deposited with the standard process, the second quadrant the

same stack with the sole exception that the IBAD process was used for the barrier

deposition. Quadrants three and four are stacks with Mg / MgO double barriers

that can be disregarded for the moment. One can see that the TMR values are

quite homogenously distributed, the first quadrant shows between 19 % and 21 %

TMR, the second considerably higher values between 70 % and 77 % TMR.

As a consequence work on the so-called ”standard process” was not continued

because it turned out that the ”ion-beam-assisted process (IBAD)” produced by

far better results.

In figure 5.6 typical transfer curves are shown for the MgO standard process

and the assisted process. For each process one chip with four junctions of different

diameter is depicted. One can see, that the difference in TMR arises from a

different resistance in the anti-parallel state only.
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Figure 5.4: TMR and RA for CoFeB-MgO-CoFeB stacks with 2.0 nm MgO bar-

rier. ”Std” refers to the MgO standard deposition process with the etch gun in

”source” mode; ”IBAD” refers to the process with an additional etch beam. All

data points are average values of about 10 to 15 junctions; damaged junctions

were disregarded.

5.4 Low Rate Process

A different approach than using the etch gun to improve the MgO barrier process

was to reduce the beam power of the deposition beam in the ”standard process”.

By reducing the beam current to 40 mA (instead of 70 mA in the standard

process) the deposition rate was halved. All other deposition parameters, like

beam voltage and gas flow, were kept unchanged.

With these parameters TMR ratios of about 20 % after a 265°C annealing

were achieved; after a second annealing step at higher temperatures the values

increased to about 57 %. The resistance-area product was in the order of 700

kΩ/µm2. These results were not competitive compared to the IBAD process.

Therefore this path was not continued.
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Figure 5.5: TMR distribution for CoFeB-MgO-CoFeB stacks with 2.0 nm MgO

barrier. The first quadrant (upper left) shows the standard process, the second

(upper right) the IBAD process. All data points are average values of 4 junctions

per chip; damaged junctions were disregarded.

5.5 Deposition with additional Oxygen

After a few months of experimenting the measured resistance of the junctions de-

creased steadily. The most likely explanation for that was that magnesium and

oxygen were ablated from the target at different rates so that after a while the

target had a larger proportion of Mg than it used to at the beginning. To com-

pensate for the oxygen loss reactive sputtering was tested. For all development

work the TMR layer sequence was kept unchanged to avoid additional variations

that could distort the results. The ”standard stack” that was used from then on

was built up as follows:

Si-substrate // Al2O3 400 / Ta 5 / Ru 10 / Ta 5 / IrMn 15 / CoFe 3 / Ru

0.8 / CoFeB 4 / MgO / CoFeB 3 / Ru 5 (all thicknesses in nm).

The wafers were annealed only once at 265°C in a magnetic field of 5 kOe for
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Figure 5.6: TMR transfer curves for CoFeB-MgO-CoFeB stacks with 2.0 nm MgO

barrier. The wafer was annealed at 265°C only. For this plot four junctions of

the same chip on the same wafer were chosen for each process.

only 10 minutes to induce exchange coupling.

5.5.1 Additional Ar/O2 via Etch Gun

The only way to add oxygen during during the deposition process was adding

it via one of the etch gun’s gas inlets. The gas mixture chosen was an Ar/O2

mixture with 80 % Ar and 20 % O2, the gas flow was set to 1.0 sccm. The

aim was to find a sputtering process that produces working TMR barriers with

approximately the same resistance as before.

The first wafer was sputtered using the old MgO standard process, i.e. not the

IBAD process. This was mainly a safety precaution because etching with oxygen

had never been tested before in this machine. Apart from that, the idea of the

additional oxygen was to provide oxygen in the chamber, not bombarding the

wafer with highly energetic oxygen ions. The deposition rates for the standard and
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MgO w/o O2 [s] MgO with O2 [s] TMR [%] RA[MΩ(µm)2]

0 180 14.55 14.55

40 140 22.71 1.28

0 200 6.42 20.50

50 150 20.46 5.56

Table 5.2: TMR and RA for single and double barriers with the same total

sputtering time. In all cases an Ar/O2 flow of 1.0 sccm was used.

later also the IBAD process with additional oxygen were checked; the deposition

rate remained unchanged in relation to the non-reactive process.

Adding oxygen during the whole MgO deposition process resulted in a tremen-

dous increase in resistance: The resistance-area product reached 10 to 20 MΩ(µm)2,

TMR remained low (5 to 27 %). As a result ”double barrier” processes were tested

and the deposition method was switched to IBAD. Double barrier in this case

means depositing a thin MgO layer without additional oxygen and adding a sec-

ond MgO layer that has been sputtered reactively. The first thin MgO layer was

meant to protect the bottom electrode from oxidizing, which is the case if oxygen

is flooding the chamber right from the start.

To find the right combination of sputtering without and with oxygen a number

of variations with the same total MgO thickness were built; examples are given

in table 5.2.

As expected the resulting resistance was lower for the double barrier than for

a stack of the same thickness that was completely sputtered reactively. In addi-

tion to a protection of the bottom electrode the double barrier process enables

the engineer to tune the junction’s resistance according to the needs of a spe-

cific application by adjusting the ratio of sputtering without and with additional

oxygen.

5.5.2 Ar/O2 as Background Gas

Using one of the etch gun’s gas inlets to add oxygen worked fine, however, this

configuration has its limitations. For example it was difficult to find a cathode

minimum which guaranteed reliable plasma ignition and stable operating param-

eters for both, deposition with and without additional oxygen, especially for the

IBAD process. Therefore it was decided to modify the chamber hardware and
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construct another gas inlet that directly leads into the chamber. It was assumed

that simply letting gas into the chamber would have less impact on the perfor-

mance of the ion guns resulting in a more stable process. The background gas

was connected to the same gas mixture that had been used before, Ar/O2 with

20 % oxygen. The background gas flow can be controlled by the software like all

other gases, it had been part of the general software configuration even though

it had not been part of the actual hardware configuration of PVD 2.

The experiments with oxygen via the etch gun inlet had all been done with

a gas flow of 1.0 sccm Ar/O2. With a standard deposition time of 200 s the

RA-product reached values of more than 20 MΩ(µm)2, which was too high for

practical use. It was assumed, that the ”softer” process of background gas flood-

ing would be less effective, particularly because of the chamber architecture: The

gas inlet and the wafer are localized at opposite positions in the chamber, the

cryopump is situated right in the middle between them. As a result most of the

background gas will be pumped away before it reaches the wafer (or the target).

Monitoring of sputtering rates was done for only one process (not assisted),

there was no difference between sputtering with and without additional Ar/O2.

To check the influence of the background gas a matrix with oxygen flows between

0 and 5 sccm was deposited. The MgO deposition time was kept constant at

200s, the stack remained unchanged and all wafers were annealed at 265°C in a

magnetic field of 5 kOe.

It turned out that 1.0 sccm of additional Ar/O2 had a tremendous influence

on TMR and especially RA; 2.0 sccm was already too much. Therefore a second

matrix was deposited with smaller amounts of Ar/O2, reaching from 0.25 sccm

to 1.5 sccm. The results of these two matrices are summarized in table 5.3 and

visualized in figure 5.7.

A minimum gas flow of 0.25 sccm was tested, but this amount was too small

for the valves to regulate: There was no oxygen in the chamber in that run

(verified by RGA). The highest TMR values of approximately 45 % were reached

with an oxygen flow of 0.5 and 0.75 sccm; the resistance-area-product jumped

from 0.8 to 3.4 MΩ(µm)2 in these two samples. These results show again how

sensitive the MgO barrier reacts to oxygen. Controlling the gas flow exactly is

crucial for generating a precise resistance. The chamber conditioning could also

influence the barrier’s resistance: If a lot of oxygen-processes have taken place in

the chamber before, the chamber walls as well as the target might have a higher

oxygen content then before, which in turn could modify the barrier’s resistance.
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Wafer
Ar/O2-flow TMR RA

Comment
[sccm] [%] [MΩ(µm)2]

701942 1.0 25.28 19.91 TMR inhomogeneous

701962 2.0 0.03 71.65 almost no TMR measureable

701963 3.0 0 70.05 no TMR

701964 4.0 0 74.59 no TMR

701965 5.0 0 78.59 no TMR

701966 0.0 32.17 0.22

313004 0.0 33.87 0.27

313005 (0.25) 40.55 0.44 no oxygen in chamber

313006 0.5 45.74 0.80

313007 0.75 46.09 3.38

313008 1.0 24.64 22.33

313009 1.5 0.64 78.76

313011 0 36.37 0.20

Table 5.3: TMR and RA values depending on Ar/O2 background gas flow. All

results are average values for a whole wafer; the wafers with more than 2.0 sccm

were measured only on a sample basis.

To protect the bottom electrode from oxidizing ”double barrier” processes

were checked as well, similar to the experiments that had been done before with

the oxygen from the etch gun. The results were qualitatively the same as be-

fore, which had been summarized in table 5.2, but for the IBAD process with

background gas TMR ratios as high as 50 % could be achieved.

In summary one can say that reactive sputtering was tested successfully and

allows easy adjustment of the junction’s resistance. The use of a newly created

background gas inlet stabilized the guns’ performance in the IBAD process and

made double barriers consisting of a non-reactively deposited MgO bottom and

a reactively sputtered top part possible.
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Figure 5.7: TMR and RA for CoFeB-MgO-CoFeB stacks with different Argon-

Oxygen flows during barrier deposition. The encircled data marks the optimum

gas flow; for more than 1.5 sccm no TMR was measurable. All values are average

values of several junctions.

5.6 TMR as a Function of the Annealing Tem-

perature

The standard TMR process contained only a moderate annealing at 265°C in a

magnetic field of 5kOe for only 10 minutes. This process step fulfilled a double

function: On the one hand the MgO barrier was crystallized to improve TMR

and on the other hand the exchange bias was induced in the bottom synthetic

antiferrimagnetic structure. Depending on the layer stack this typically yielded

in TMR values between 30% and 75%. For barrier optimization due to sputter

process changes and for comparison between processes this modest annealing

was fully sufficient. However, higher TMR values will very likely be needed for

applications. It is well known that higher annealing temperatures lead to a higher
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crystallinity of the barrier as well as the electrode material. Especially the CoFeB

layers are known to crystallize only at elevated temperatures [57, 67]. Therefore

annealing experiments were performed with a number of different stacks.

Firstly, fullfilm wafers were processed following the standard process flow con-

taining the 265°C annealing step. After the structuring process the wafers were

tested and diced into quadrants afterwards. These quadrants were then annealed

separately at higher temperatures in the Blue M oven and tested again. The

second annealing was always 20 min long (hold time at high temperature), the

temperatures chosen were 300°C, 350°C, 450°C and 500°C. By this procedure all

TMR junctions were only annealed twice: Firstly at 265°C and secondly at one

higher temperature. Annealing one and the same sample again and again at ever

increasing temperatures was not done.

As can be seen in figure 5.8 the measured TMR values increase strongly with

increasing annealing temperature, reaching a maximum value of approximately

140 % after a 500°C annealing. Surprisingly there is no turning point in this

graph after which the TMR drops again. It was expected that diffusion processes,

especially Mn diffusion from the IrMn antiferromagnetic layer [68] or B diffusion

from the electrode into the barrier [69], would lead to intermixing of layers which

in turn would reduce the TMR . However, this was not observed for the tested

temperatures. Annealing at even higher temperatures was not possible as the

Blue M oven’s maximum operating temperatures is 500°C only.

Despite the high TMR values after e.g. 500°C annealing this step was not used

for standard wafers afterwards. The reason is that although TMR was increasing,

the magnetic stability of the stack was greatly reduced, even after 350°C annealing

only. An example of typical transfer curves after different annealing temperatures

is shown in figure 5.9. The stable antiparallel plateau, which reaches from zero to

approximately -600 Oe after 265°C annealing, is slowly being tilted. After 450°C
there is no stable antiparallel state anymore. Additionally the hysteresis increased

with increasing annealing temperature. This lack of magnetic stability may be

caused by Mn diffusion into the CoFe layer which forms the lower part of the

synthetic antiferrimagnet. However, for applications magnetic stability is crucial.

Therefore further optimization is necessary to make the junctions either more

robust at elevated temperatures or alternatively to achieve better crystallinity

after annealing at moderate temperatures already. The crystallization process

seems to depend on the thickness of the CoFeB electrode and the barrier according

to Lee et al. [70]. Optimizing this ratio could help the crystallization to start at
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Figure 5.8: Average TMR values for CoFeB-MgO-CoFeB stacks after annealing at

different temperatures. The TMR increases steadily with increasing temperature

without reaching a turning point. All data points are average values of about 80

junctions; junctions that were short-circuited were excluded. All measurements

were done at room temperature.

lower temperatures.

This topic however was not further evaluated in this thesis; it will be part of

a follow-up project at Sensitec, where the optimization of magnetic properties to

meet application needs is a major focus [9].
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Figure 5.9: TMR measurement for a CoFeB-MgO-CoFeB stack after annealing at

different temperatures. The TMR increases steadily with increasing temperature;

however the exchange bias drops dramatically. Please note that the data shown

was measured at different junctions of the same wafer.



Chapter 6

MgO Process Stability

The ultimate goal of the Sensitec TMR project, into which this thesis is incor-

porated, is to be able to produce TMR stacks of constantly high quality in a

production environment. This requirement differs from the purely scientific goal

of producing one or only a few highly optimized samples. In addition to high

quality a high yield and reproducibility are needed. This requires a very stable

process; the difficulties one encounters with this requirement will be discussed in

this chapter.

6.1 Homogeneity over one Wafer

In university research substrates are normally not bigger than 10mm2 or 2 inch

in diameter. For a volume production significantly larger substrates are used; in

the case of Sensitec they have a diameter of five inch (125 mm). Typically a chip

yield, i.e. the share of good chips per wafer, of 90 % or even more is needed in

order to be profitable. At this experimental stage of TMR development a high

yield is not crucial, however getting a first impression of the uniformity on a wafer

is helpful to evaluate the deposition and structuring process.

Therefore whole wafers were sputtered and structured at the beginning of

this project. Typically only very few junctions, less than 5 %, are short-circuited.

Histograms of TMR and RA distributions for a standard stack wafer reveal a

relatively narrow distribution of the TMR values (see figure 6.1). Only three

junctions with a TMR of less than 15 % stick out. These MTJs are the only

ones with an RA of less than 0.1 MΩ(µm)2; this can be seen in figure 6.2. The

distribution of the chip-average values of TMR and RA on the wafer is shown in

45
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Figure 6.1: Measured TMR for a standard stack wafer, annealed at 265°C. All

junctions were measured and included in the graph.

Figure 6.2: Measured resistance area product for a standard stack wafer, annealed

at 265°C. All junctions were measured and included in the graph.
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Figure 6.3: TMR distribution for a standard stack wafer annealed at 265°C. TMR

is averaged over all working junctions for each chip.

figures 6.3 and 6.4 respectively.

As expected for an ion beam process the distribution is mainly radial. Espe-

cially the resistance shows a strong radial dependence with an outward increasing

resistance.

Here average values per chips are plotted; the junctions that are short-circuited

are disregarded. Only one row of junctions (four junctions) is measured per chip

to save time. The two rows which contain identical junctions are only a few hun-

dred microns apart and will therefore give very similar results. This was proven

once for a standard stack wafer containing CoFeB electrodes and a 2nm MgO

barrier, see figure 6.5; after that only one row per chip was tested.

Because of the good homogeneity of the TMR stacks so-called ”quadrant

wafers” were often sputtered (see chapter 4.6), as it could be expected that each

quadrant would give the same results.
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Figure 6.4: Resistance area product in MΩµm2 for a standard stack wafer an-

nealed at 265°C. The values are averaged over all working MTJs per chip.

6.2 Reproducibility of TMR Standard Stacks

Normally a monitoring of sputtering rates and electric or magnetic properties of

the metallic films is performed on a regular basis. This procedure however is in-

sufficient for MgO; the only significant parameter that can be used to monitor the

MgO process is the measurement of TMR. In order to test the MgO process sta-

bility so-called TMR standard stacks were sputtered whenever any TMR wafers

were produced. These wafers were always annealed, structured and measured in

the same way.

The standard stack is built up as follows: Si // 400nm Al2O3 / Ta 5nm /

Ru 10nm / Ta 5nm / IrMn 15nm / CoFe 3nm / Ru 0.8nm / CoFeB 4nm /

MgO IBAD 200s / CoFeB 3nm / Ru 5nm. The barrier process that is used is

the simplest ion beam assisted process without oxygen; the sputtering time of

200s is meant to result in a 2nm thick MgO barrier. The resulting TMR and

resistance-area product values are plotted in figure 6.6. As one can clearly see
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Figure 6.5: Difference in TMR between left and right column of junctions of

the same chip. The wafer contained CoFeB electrodes and a 2nm MgO barrier;

annealing was done at 265°C. The absolute TMR ratios ranged from 10 % at the

edge up to 55 % at the center. For most junctions the difference between left and

right column is less than 0.5 %.

the wafers do not always give the same results, although they were produced in

the same way. The two data points that are marked with a red ellipse are most

striking. The TMR ratio is considerably lower than for all other wafers and the

resistance is greatly increased at the same time. A close look at the sputtering

sequences reveals the main difference between the marked wafers and the others:

Co2MnSi had been sputtered directly before these TMR standard stack wafers.

The influence of previously sputtered samples is also apparent in the sample that

is marked with a green ellipse. This wafer is a quadrant wafer with identical

quadrants, but different processes, i.e. dummy wafers, in between the TMR

quadrants. The left data point represents the average TMR and RA value for the

whole wafer, the right point represents data from the same wafer, but with the



50 CHAPTER 6. MGO PROCESS STABILITY

Figure 6.6: TMR and resistance-area-product for CoFeB-MgO-CoFeB stacks with

200s MgO IBAD. All values are average values for whole wafers with approxi-

mately 100 chips.

second quadrant being disregarded: Before the sputtering of the second quadrant

a Co2MnSi dummy wafer had been deposited, leading to an increase in resistance

and a drop of TMR. If all marked data points are ignored, average TMR ranges

from approximately 35 % to 55 %, the resistance area product varies between 200

kΩ(µm)2 and 1 MΩ(µm)2. These results show a that the TMR process as a whole

is a stable process, considering that no measures have been taken to regulate the

MgO process and structuring can have an influence on the TMR results as well.

The discovery of the dramatic influence of the ”sputtering history” of the

IBD chamber on the result of the actual wafer shows how sensitive and fragile

the barrier deposition process is. In a standard stack the MgO barrier is the only

layer that is deposited in the IBD chamber, seed and electrodes are all deposited

in PM 4. In this case it is possible to define a chamber conditioning process

that always has to be run before the deposition of TMR wafers (e.g. a well-
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defined number of dummy wafers which are being sputtered with MgO). In the

case of TMR wafers with a Co2MnSi Heusler electrode the problem is harder to

circumvent. The whole stack, seed, bottom electrode, barrier and top electrode,

are deposited in the ion beam chamber. This means that the MgO process will

always take place immediately after the deposition of a rather thick CMS layer.

Chamber conditioning with the help of dummy wafers is obviously impossible, so

a chamber conditioning has to be integrated into the MgO process itself. Ideas

to stabilize the MgO process will be discussed in the following subchapter.

6.3 MgO Process Stability after Co2MnSi De-

position

In order to investigate the process stability CoFeB standard stack wafers were

sputtered and analyzed. Right before each wafer a dummy wafer with a thick

CMS layer was deposited in the IBD chamber to simulate the deposition of a

bottom electrode and to ”poison” the chamber. The MgO barrier itself was

sputtered with a slightly modified recipe each time. The goal was to find an

adjusted barrier deposition process that yielded the same TMR and RA values

for a standard stack independent of the previous processes in the IBD chamber.

To verify the negative influence of Co2MnSi sputtering on TMR and RA and

to check whether other metals in the IBD lead to the same results, dummy wafers

with Cr, CoFe and CMS of different thicknesses were sputtered right before an

MgO barrier. The results are plotted in figure 6.7.

According to this analysis CoFe deposition does not have any influence on the

MgO barrier process; Cr deposition leads to an increase of RA, independent of

the thickness that is deposited. For Co2MnSi however the influence is dramatic:

After the deposition of 50nm CMS TMR drops to just above 20 %, the resistance

area product jumps to more than 20 MΩ(µm)2 for a nominal MgO thickness

of 2.0 nm. Therefore dummy wafers with 50nm CMS, which corresponds to a

deposition time of about 600s, were sputtered right before the TMR test wafers.

As the mechanism behind this effect remained completely unclear, a number

of different approaches to reverse the negative effect of CMS deposition were

considered and subsequently evaluated experimentally:

1. Changing the MgO deposition time.
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Figure 6.7: TMR and resistance-area-product for CoFeB-MgO-CoFeB stacks with

200s MgO IBAD. Dummy wafers with different metallic layers had been deposited

before.

2. Cleaning the etch gun from possible metallic contamination that was taken

up during the CMS process.

3. Implementing a longer target preclean before the MgO deposition.

4. Oxidizing the chamber walls.

The first point is maybe the most obvious: If the resistance is too high, the

barrier might be too thick, so the deposition rate might be increased with respect

to the normal rate. So reducing the sputtering time until the old resistance value

is reached again could be a simple work around. The second idea of cleaning

the etch gun is based on a similar assumption: If the etch gun, which is directed

onto the substrate, is covered with metal, the etch rate might drop which in turn

leads to a higher net deposition rate. This could explain a higher resistance. The

third point is based on the assumption that during the deposition of Co2MnSi,

which is situated right next to the MgO target, either the MgO target or the

chamber or both are covered with a metallic film. If the target is contaminated
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the barrier will contain alien atoms that will surely influence its performance.

If the chamber is contaminated or ”too metallic” the fragile electric potentials

might change which in turn could influence the process parameters. Oxidizing

the chamber walls (point 4) leads into the same direction.

6.3.1 Adjusting the MgO Deposition Time

In order to find out whether the MgO deposition rate is being changed by the

previous metal deposition two quadrants wafers with different MgO deposition

times were deposited. The first wafer was deposited with CoFe dummy wafers in

between the quadrants, the second with Co2MnSi dummy wafers. The deposition

time was reduced from the standard value of 200s down to 140s, which would

correspond to a drastic change of 30 % in deposition rate. The resulting TMR

and RA values are summarized in figure 6.8.

Figure 6.8: TMR and resistance-area-product for CoFeB-MgO-CoFeB stacks with

different sputtering times for the MgO barrier. Stacks with and without prior

CMS deposition were sputtered and compared.

One can see that the resistance value for the standard process of 200s, which

is approximately 500 kΩ(µm)2, is reached at a deposition time of only 170s.
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This looks like reduction of the deposition rate by 15 %, whose origin remains

completely unclear. However, the TMR value is almost halved as compared to

the 200s wafer. Therefore work on finding the reason for this apparent change of

the deposition rate, or finding a process that reverses this effect, had to continue.

The change of deposition rate, or the change of the MgO barrier thickness

to be precise, was also verified by X-Ray Reflectometry measurements. Stacks

with identical thicknesses were deposited: The first one had CoFeB electrodes,

the second one Co2MnSi electrodes. The barrier deposition process was the same

in both cases. The XRR data and corresponding fit can be seen in figure 6.9.

If the layers had identical thicknesses, the plots would be almost congruent with

each other. This is obviously not the case; the exact fit results are summarized

in table 6.1.
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Figure 6.9: XRR Data and corresponding fit for a CoFeB-MgO-CoFeB stack

(black/blue) and for a stack with identical nominal layer thicknesses containing

CMS-MgO-CMS (red/pink).

From this data the same barrier process applied after a Co2MnSi deposition

process yields in an MgO barrier that is 4 Å thicker than in the case of CoFeB.
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Layer
nominal

Mat. 1
real Roughn.

Mat. 2
real Roughn.

thckn. [Å] thckn. [Å] [Å] thckn. [Å] [Å]

Sub inf Si inf. 3.17 Si inf. 4.00

1 100 CoFeB 95.33 2.73 CMS 85.24 1.00

2 18 MgO 23.13 2.54 MgO 27.56 2.60

3 100 CoFeB 94.18 4.29 CMS 85.62 4.68

4 50 Ru 39.02 4.58 Ru 47.88 3.97

5 0 CHx 10.49 5.77 CHx 9.46 2.84

Table 6.1: Fit of XRR data for a CoFeB-MgO-CoFeB stack on Si/SiOx as well as

the stack Co2MnSi-MgO-Co2MnSi. For the Si/SiOx substrate only the roughness

was included into the fitting parameters. The goodness of the fits was 0.033 and

0.03 respectively.

This result supports the theory that the chamber is negatively preconditioned

by the deposition of the Co2MnSi; the reason why and how to circumvent this

problem remains unclear at this point.

6.3.2 Etch Gun Cleaning

The idea behind the etch gun cleaning process was to remove metallic residue at

the etch gun by igniting the etch gun alone at the beginning of the MgO process.

This step takes place with all shutters closed, thereby avoiding redeposition onto

the wafer surface. Afterwards the standard recipe was used to deposit the MgO

barrier.

As shown in figure 6.10 no improvement was found for the etch clean process.

A contamination of the etch gun during the CMS deposition process can therefore

be excluded.

6.3.3 Target Preclean Variation

Normally a sputtering recipe contains four steps: A pre-start, where the gas is

set, the target is chosen etc., a start-step, where the guns are ignited, a target

preclean of about 30 s and the actual deposition step. For the deposition of MgO

the target preclean had already been increased to 90 s in order to further stabilize

both, the deposition and especially the etch gun. An additional stabilization was

achieved by igniting the guns independently, the preclean was performed twice
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Figure 6.10: TMR and resistance-area-product for CoFeB-MgO-CoFeB stacks

with 200s MgO IBAD. Before the barrier deposition an etch gun cleaning step of

90s or 300s was performed for two of the four quadrants.

from then on. If the assumption of a target and/or chamber contamination was

correct, even a preclean of 180 s would then not have been sufficient.

In an experiment matrix the preclean was varied between 30 s per step up

to 135 s per step. As can be seen in figure 6.11 a prolonged target preclean has

a positive effect: The longer the preclean time, the higher the measured TMR

and the lower the measured resistance area product. However, even after a target

preclean of 120 s, when about the same TMR is reached, the resistance is still

considerably higher than the resistance without Heusler sputtering before. Even

after six minutes of target preclean the resistance area product is still five times

as high as the resistance of the reference wafer from the same sputtering run.

This result leads to the conclusion that the MgO target is not being contami-

nated during the Co2MnSi process but the chamber is negatively preconditioned.

Although the target preclean is mainly meant to remove contamination from the

target, the sputtered materials covers the chamber walls and the stage shutter

afterwards. However, this oxide layer seems to be insufficient to reverse the ad-
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Figure 6.11: TMR and resistance-area-product for CoFeB-MgO-CoFeB stacks

with 200s MgO IBAD. The target preclean before the MgO deposition was varied

as shown in the table. The result of a standard wafer of the same run without a

CMS dummy before has been added as a reference.

verse effect of CMS sputtering. Therefore a deliberate oxidation of the chamber

interior was tested.

6.3.4 Oxidation of the Sputtering Chamber Walls

An oxidation of the sputtering chamber always bears the risk of oxidizing the

wafer as well. In the case of CMS it was shown by first-principles calculations

that the oxidation of both electrodes significantly reduces the conductance espe-

cially in the parallel configuration, which then in turn reduces the TMR ratio

[37]. For that reason the oxidation of the wafer surface has to be avoided. To

realize an oxidation of the sputtering chamber without the risk of oxidizing the

half-sputtered wafer a three-step barrier deposition was performed. Firstly a thin

layer of MgO was deposited to protect the bottom electrode against oxidation.

Secondly the target shutter as well as the stage shutter were closed and a small

amount of argon/oxygen was let into the chamber for a well defined time. After-
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wards the tunneling barrier deposition was finished. In this experiment the total

deposition time was fixed to 180s. Different parameters can be varied to optimize

the oxidation process: The deposition time ratio before and after the chamber

oxidation and the oxidation process itself (duration and gas flow).

In the first experiment the ratio between the first and the second MgO depo-

sition step was kept constant, but the Ar/O2 gas flow and the flooding time were

varied. A gas flow of either 0.5 sccm or 1.0 sccm was chosen, which corresponds to

the gas flows used when depositing MgO in an Ar/O2 atmosphere. The selected

times were 30s, 60s and 120s. The resulting TMR and RA values are plotted in

figure 6.12. The lighter graphs belong to samples where no Co2MnSi has been

sputtered before, the darker ones to a samples where dummy-wafers with 50 nm

of Co2MnSi have been sputtered directly before the barrier deposition.

Figure 6.12: TMR and resistance-area-product for CoFeB-MgO-CoFeB stacks

with 40s + 140s MgO IBAD. In between the two MgO steps the chamber was

flooded with Ar/O2 of a set flow for a well-defined time.

The graph does not show a clear connection between the chamber flooding

parameters and the wafer results; TMR and RA seem to be independent from gas

flow and time. Surprisingly one can see that although there is still a difference
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Figure 6.13: TMR and RA for different deposition time ratios; here the second

deposition time was chosen as scale. The total deposition time was fixed to 180s,

the oxygen flooding to 1.0 sccm for 60s.

between samples with and without CMS-dummies before, the difference is smaller

than in previous experiments. Especially the resistance-area product is only about

twice as high for the samples with CMS than for the samples without it1. In

general this process of oxygen flooding seems to work fine, at least with the

standard stack the normal results could be reproduced.

A last experiment was done to find out the optimum ratio between the first

MgO deposition before the oxygen flooding and the second deposition afterwards.

The total deposition time was 180s again, a medium oxidation with 1.0 sccm

Ar/O2 for 60s was chosen. The resulting TMR ratios and resistance-area products

are plotted in figure 6.13.

Again there is no clear trend of dependence on the second deposition time:

Within the limits of process fluctuations TMR as well as the resistance area

product are independent of the deposition time ratio.

1A reference sample ”after CMS-dummy” with 180s of MgO was sputtered with the next
matrix; it resulted in an average TMR of 37.41 % and a resistance-area-product of 1.11 MΩµm2.
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These results on barrier process stability suggest that the sputtering chamber

needs to be oxidized before the MgO barrier is being deposited. Because of that a

three step barrier process was chosen for future experiments with MTJs containing

Co2MnSi electrodes: At first a thin MgO layer was deposited without additional

oxygen, secondly the chamber was oxidized for 120s with 0.5 sccm Ar/O2 and

finally the second part of the MgO barrier was deposited non-reactively. A se-

quence like this had proven to produce constant TMR and RA values for MTJs

with CoFeB electrodes independent of the ”sputtering history” of the chamber.



Chapter 7

Co2MnSi Thin Films

In the following chapter the work on Co2MnSi Heusler thin films will be pre-

sented. Co2MnSi has been successfully integrated into MTJs with both, Al2O3

and MgO barriers by various research groups worldwide [42, 71–73]. Apart from

that Co2MnSi has a very high Curie temperature of 985 K, which is important

for room temperature applications [22, 74]. Therefore this special Heusler alloy

was chosen in order to test the industrial usage of Heusler electrodes.

There are different possibilities to deposit alloys with a special stoichiom-

etry, like co-sputtering from different pure targets or sputtering from a stoi-

chiometric target. Due to the sputtering system that was used ablating from

a single target was the only option. Because of the experience in the ”Thin

films and physics of nanostructures” group at the University of Bielefeld an off-

stoichiometric Co2MnSi target with 43.6 % Co, 28.0 % Mn and 28.4 % Si was

used1. The composition of the target was verified by EDX analysis (see Appendix

C); however the composition of the films deposited could not be checked because

the software is not designed for the analysis of thin films. It was further decided

to place the target in the IBD chamber for various reasons:

1. The IBD chamber has the best vacuum in the whole system, which guar-

antees uncontaminated films.

2. The MgO target is located in the same chamber, as well as a CoFe target,

which can be used as a counter-electrode. This target configuration provides

the possibility to deposit the whole MTJ stack in one chamber without

having to transfer the wafer.

1An almost identical composition was used by Oogane et al. for the preparation of MTJs
with CMS electrode and alumina barrier [75]

61
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3. To my knowledge, IBD deposition of Heusler alloys has never been tested

before. However, especially the IBAD process, which is used for the MgO

deposition, could be advantageous for the crystalline growth of Heusler thin

films. The additional energy that is brought into the film could help atom

rearrangement and is expected to have a similar effect as deposition at

elevated substrate temperatures.

At first, various thin film systems were sputtered on small glass or oxide-

covered Si substrates to find an ideal seed layer. The samples were analyzed by

X-Ray diffraction and room temperature VSM measurements. Afterwards the

optimized Co2MnSi films were integrated into magnetic tunneling junctions with

an MgO barrier.

7.1 X-Ray Diffraction Analysis

All samples were analyzed using a PANalytical X’Pert MRD diffractometer with

a PW3373/00 Cu LFF DK292712 X-Ray tube; the wavelength of the Cu Kα radi-

ation is 1.54056 Å. The diffractometer is equipped with a four-circle goniometer,

that allows in-plane scans as well. The set-up of the scans and data collection

were done with the commercial software X’Pert Data Collector.

The optimum crystalline orientation for Heusler thin films is (100) orientation

[25]; however, depending on the substrate and / or seed layer different orientations

are possible. For a quick overview concerning orientation and ordering (220) and

(200) reflexes were looked at first. If a sample was promising, the (111) reflex

indicating perfect L21 ordering was analyzed. In a cubic crystal the angle between

the different diffraction planes (h1k1l1) and (h2k2l2) is given by [76]:

cosψ =
h1h2 + k1k2 + l1l2√

(h2
1 + k2

1 + l21)(h
2
2 + k2

2 + l22)
(7.1)

In table 7.1 the angles between the first diffraction planes are listed.

7.1.1 Seed Layer Optimization

At first simple stacks of the type Seed/Co2MnSi/Ta were deposited on glass sub-

strates. The seed layer material as well as the CMS film thickness were varied.

All typical seed materials that were present in the sputtering tool were tested. In
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h1k1l1 h2k2l2 ψ [°] ψ [°]

100 110 45.0

100 111 54.74

110 111 35.26 90.0

Table 7.1: Angles between the first diffraction planes in a cubic lattice (for

ψ ≤ 90◦).

general Co2MnSi crystallizes in L21 ordering, in contrast to other Heusler materi-

als, especially the ones containing Al like Co2MnAl or CCFA, that are preferably

only B2-ordered [22, 77]. However, in order to achieve good crystallinity Heusler

films have to be sputtered onto heated substrates [78], or have to be annealed

after room temperature deposition [79]. As the PVD is not equipped with a heat-

able chuck, the samples were annealed ex situ at 300°C or 400°C and analyzed

by X-Ray diffraction afterwards 2.

The following systems were deposited and analyzed (see table 7.2):

Sample Seed 1 thckn. [nm] Seed 2 thckn. [nm]

A, B, C Cr 5

D, E, F NiFeCr x NiFe y

G, H, I MgO 10

J, K, L MgO 10 Cr 5

M, N, O Ta 5

P, Q, R Ru 5

Table 7.2: Seed layer matrix for Co2MnSi deposited on glass. The exact thick-

nesses of NiFeCr/NiFe are confidential.

For each seed layer samples with 10 nm, 20 nm and 50 nm Co2MnSi were

deposited. Because of the amorphous glass substrate a dominant amorphous

background was present in all samples. The signal to noise ratio is relatively low

which complicates the data interpretation. However, only a qualitative analysis

was needed in this case, for comparing the results for different seed layer the data

2The samples were also magnetically analyzed by room temperature VSM measurements,
see 7.3. However, the results were not as obvious as the X-Ray results.
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is significant enough. The (200) and (220) scans for various seed layers are shown

in figure 7.1 and figure 7.2 respectively.

Figure 7.1: X-Ray diffraction pattern for the Gonio-Scan around the (200) reflex,

ψ = 0°. Only for Cr and MgO/Cr seed a small peak is visible.

As expected from lattice constants the Cr seed layer is best suited for CMS.

Only in the case of Cr, MgO/Cr and NiFeCr/NiFe seed layers characteristic

reflexes were found. The samples annealed at 300 °C did not show any crystalline

ordering, therefore only the 400°C annealed samples were further investigated.

For all future experiments, unless stated otherwise, a 400°C annealing was used

to crystallize the CMS layer.

In this first matrix the sample with 5nm of Cr showed a weak (200) peak

under ψ = 0°; this indicates (100) orientation of the CMS film. Additionally, the

(200) peak is characteristic for B2-ordering of the Heusler films and vanishes if

the samples are completely disordered (A2). The existence of a small (200) reflex

therefore indicates at least partly B2 order of the CMS film. An even weaker

(200) reflex that was shifted by 0.8° to smaller angles was found for MgO/Cr seed.
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Figure 7.2: X-Ray diffraction pattern for the Gonio-Scan around the (220) reflex.

Lines correspond to a tilt angle of ψ = 0°, Lines + symbols to ψ = 45°.

The peak shift signifies stress within the Co2MnSi film. The fundamental reflex

(220) was found under both tilt angles ψ that were tested, 0° and 45°. Therefore

one can conclude that the CMS films are not perfectly (100) oriented but are

polycrystalline with (110) components as well. In the case of NiFeCr/NiFe-seed

the whole film was strongly (110) textured, the (220) reflex was found for ψ =

0° only. However, no (200) reflex was present, the Co2MnSi grows completely

disordered in the A2 state.

As mentioned above different thicknesses of Co2MnSi were tested in order to

find a minimum value for crystallization. As an example the results for Cr-seed

is presented in figure 7.3.

Here the (220) main reflex is visible only for the 20 nm and 50 nm CMS film;

the (200) B2-ordering reflex however does only just appear for the 50nm film.

10 nm CMS was not enough to crystallize the film at all. The best results were

obtained with the thickest 50 nm CMS film. Thicker layers were not tested for
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Figure 7.3: Gonio scans showing the (200) and (220) reflexes, for tilt angles ψ =

0° and ψ = 45° for various Co2MnSi thicknesses. All samples were deposited on

glass with Cr seed and annealed at 400°C.

practical reasons, as the deposition of e.g. 100 nm Co2MnSi would have taken 20

minutes already. All further experiments were performed with 50 nm of Co2MnSi

for that reason.

To verify the first results and to further optimize the seed layer a second

matrix with only Cr seed layer was sputtered. This time the Cr thickness was

varied (5, 10, 20 and 50 nm). In order to check the conditions in a future TMR

stack an MgO barrier as well as a CoFe top electrode were deposited on top of

the CMS layer in one set of samples. A different substrate was used this time,

namely Si with a 400 nm Al2O3 layer. There are two main reasons for this change

of substrate: Firstly, Si with a top oxide is a standard substrate used by Sensitec

for various sensor products and will most likely be used for the TMR wafers with

CMS electrodes as well. Secondly, the glass substrates produced a pronounced

amorphous background in the XRD scans which made analyses more difficult.
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Figure 7.4: X-ray diffraction pattern for Gonio-Scans with ψ = 0° for different

Cr seed layer thicknesses. The y-scale was chosen as logarithmic scale for clarifi-

cation.

Figure 7.4 shows the Gonio scans (θ − 2θ -scans) for ψ = 0° for full stacks

Cr x / CMS 50 nm / MgO 2 nm / CoFe 3 nm / Ru 5 nm. Apart from the Ru

cap layer all layers were deposited in the IBD chamber. As expected, the graph

shows the increasing intensity of the Cr(200) reflex with increasing Cr thickness.

Additionally the CMS(220) and CMS(200) reflexes are visible, their intensities

also slightly increase with increasing Cr thickness. With a 50 nm Cr seed layer

the Cr(200) reflex is already more intense than the CMS(220) reflex, which is the

one that is to be analyzed. As the intensity of the desired CMS(220) increases

only slightly with increasing Cr thickness, 20 nm of Cr seed seem to be ideal.

Unfortunately none of these samples showed a clear (100) orientation, as (200)

as well as (220) reflexes are found for the same ψ angle. The same result was

obtained for the samples with CoFe top electrode from PM4 and samples without

CoFe top layer; no decisive difference between these samples could be found (see

figure 7.5).
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Figure 7.5: X-ray diffraction pattern for Gonio-Scans with ψ = 0° for samples

with and without MgO-CoFe top layers. The Cr thickness was fixed to 20nm.

The y-scale was chosen as logarithmic scale for better visibility.

In general all diffraction patterns of this matrix showed less noise and clearer

characteristic reflexes. These facts were attributed to the different substrate

compared to the first samples. However, the unclear orientation of the CMS

films is a drawback. As the influence of the different substrate on the CMS film

orientation could not be excluded, different types of substrates were tested in

another experiment.

Only substrates that are suitable for future wafer production were considered,

namely Si / Al2O3 and Si / SiO2; glass substrates were used for comparison.

Because of the results of the Cr thickness matrix mentioned above the Cr thickness

was fixed to 20 nm. Although MgO and MgO / Cr had not been successful in

the first experiments, those two seed layers were retested. As the deposition of

the barrier and top electrode did not show a significant influence on the CMS

diffraction pattern, these layers were left out. Table 7.3 lists the samples that
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Sample Substrate Seed material thickness [nm]

TM2111a glass Cr 20

TM2111aa Si + Al2O3 Cr 20

TM2111as Si + SiO2 Cr 20

TM2111b glass MgO + Cr 10 + 20

TM2111ba Si + Al2O3 MgO + Cr 10 + 20

TM2111bs Si + SiO2 MgO + Cr 10 + 20

TM2111c glass MgO 10

TM2111ca Si + Al2O3 MgO 10

TM2111cs Si + SiO2 MgO 10

Table 7.3: Matrix to check the substrate influence on Co2MnSi growth.

were deposited to analyze the substrate influence.

Surprisingly this time the MgO / Cr buffer layer turned out to be far better

suited than Cr alone, independent of the substrate that was used. MgO seed

without additional Cr seed did not work; the CMS seemed to be more or less

amorphous, even after annealing. There was almost no difference between Al2O3

and SiO2 on Si; as expected the samples deposited on glass showed less intensive

reflexes and a dominant amorphous background. For practical reasons Si with

an alumina passivation was chosen for future wafer experiments, as this type of

substrate was best known from TMR stacks with conventional electrodes.

Figure 7.6 shows θ − 2θ-scans for ψ=0° and ψ=45° for the first two reflexes,

(200) and (220). Although the characteristic peaks are quite broad and the spec-

tra are a bit noisy, one can clearly see that the samples ”bX” are (100) oriented

and show B2 ordering. However, no (111) reflex was found under ψ=53.74° for

any sample, which indicates that none of the samples showed perfect L21 order-

ing. The results above were reproduced several times with samples from different

sputtering runs, on small substrates as well as on whole wafers.

The optimized layer stack that was found with these analyses was Si + oxide

substrate // MgO 10 nm / Cr 20 nm / Co2MnSi 50 nm / CoFe 3 nm / Ru 5 nm.

The X-ray diffraction pattern looked promising enough to test the system on a

whole wafer and perform TMR measurements. Unfortunately only a tiny effect

of 3% TMR could be measured, even with an optimized MgO barrier process.

Apparently the Heusler film was only polycrystalline and not ordered enough to
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Figure 7.6: θ-2θ scans for the first characteristic reflexes of Co2MnSi. The scans

were performed for different tilt angles ψ. The abbreviations stand for the differ-

ent substrates: ”A” = Si + AlOx, ”S” = Si + SiOx, ”G” = glass.

generate a high TMR.

7.1.2 Co2MnSi deposited by IBAD

Having found the optimum seed layer, MgO-Cr, and knowing of the positive

effect of the etch gun during the MgO growth, the IBAD process was tested for

the deposition of Co2MnSi as well. However, the etch parameters used during

the MgO IBAD deposition process were too high; the resulting etch rate was

higher than the CMS deposition rate. Increasing the deposition gun’s power

was impossible with the current hardware setup, therefore further reducing the

etch gun’s power remained the only option. By reducing the gas flow to 6 sccm

(instead of 20 sccm as in case of the MgO) it was possible to operate at 200 V

instead of 300 V. The beam current was kept constant at 30 mA. With these low

power settings a net deposition rate of 0.49 Å/s was achieved. This lead to an
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increased deposition time of 17 minutes for a standard 50 nm CMS film, instead

of 10 minutes without the assist gun. It turned out that the two guns were not

operating reliably over the whole period during the deposition; the beam power

was fluctuating. However, a set of samples on different substrates was deposited

on the optimized MgO-Cr seed layer and annealed at 400°C.

The samples were characterized with the help of XRD, the results for the

first characteristic reflexes were compared with those of the standard deposition

process. Figure 7.7 clearly shows that the IBAD process is not an option: Neither

the (200) B2-ordering reflex nor the (220) main reflex were found, suggesting an

amorphous film growth. Because the standard deposition process yielded better

results with a more stable process the experiments on the IBAD process were

abandoned completely hereafter.
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Figure 7.7: θ− 2θ scans for the first characteristic reflexes of Co2MnSi (the inset

shows the (200) reflex). The IBAD sample does neither show a (200) nor a (220)

reflex.
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7.1.3 Co2MnSi Thin Films on MgO Substrates

All TMR results published by groups worldwide are based on MTJ systems that

were deposited on MgO substrates, which is the ideal underground for growing

CMS thin films, presumably even without the need of a seed layer [73]. The

lattice parameters of MgO and Co2MnSi match well if CMS grows at an angle of

45° with respect to MgO (see figure 7.8).

Figure 7.8: Co2MnSi cube on MgO. CMS has a lattice constant of 5.654 Å, which

fits well to a 45° rotation with respect to MgO (picture taken from [77]).

The 45° rotation leads to an edge length of 5.955 Åfor the MgO crystal;

this results in a lattice mismatch of about 5% with respect to the CMS lattice

parameter of 5.654 Å.

In this work MgO substrates had not been considered at the beginning because

MgO is not available as five inch wafer and can therefore not be used for TMR

stacks that need to be structured. In addition to that, MgO wafers would be far

too expensive in a mass production, so using Si substrates for TMR sensors is

a must. In order to imitate an MgO substrate a thin film of 10 nm MgO was

sputtered onto an alumina covered Si substrate and annealed at 450°C. After

the annealing, which had to be done ex situ, the remaining Heusler stack was

sputtered and the sample was analyzed using X-Ray diffraction. This procedure

however, yielded the same result as an MgO seed that had not been annealed

before.

In order to prove that ion beam deposition of Co2MnSi works in principle and

results in well-ordered films, but does not work on Si substrates, the optimized

layer sequence with an MgO-Cr-seed layer and a Co2MnSi film of 50 nm was

sputtered on an MgO substrate. An MgO barrier, CoFe top electrode and Ru
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cap layer were sputtered as well in order to be able to measure TMR if the X-Ray

results were promising. The sample was annealed at 350°C for 30 minutes in an

N2 atmosphere using the YES oven.

Figure 7.9: θ− 2θ scans for the first characteristic reflexes of Co2MnSi. ψ and ϕ

have been optimized before. The L21 ordering reflex (111) can clearly be seen.

X-ray diffraction of this sample revealed a strong (100) out-of-plane texture

and was also in-plane-ordered. This sample on an MgO substrate was also the

first sample which was not only B2-, but L21 ordered, i.e. the (111) reflex was

found as well. Figure 7.9 shows the θ−2θ scans for the first characteristic reflexes

of Co2MnSi. The ψ as well as ϕ angles were optimized separately before. The

L21 ordering reflex (111) can also clearly be seen; however, the intensity is con-

siderably lower than the intensity of the (200) reflexes. In an ideal Co2MnSi films

these two reflexes would have approximately the same intensity, the reduction

here indicates that only a small fraction of the film is actually L21 ordered, the

rest shows B2 ordering. The sample was strongly in-plane ordered, which was

confirmed by a ϕ-scan around the (220) reflex of CMS (not shown). The reason
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for this is the single-crystalline substrate with only a small lattice mismatch to

the lattice constant of Cr and CMS.

Figure 7.10: θ − 2θ scans for the first characteristic reflexes of Co2MnSi on

MgO//MgO/Cr, as deposited. ψ and ϕ have been optimized before. All reflexes

are slightly shifted with respect to the theoretical peak positions.

The data shown here belongs to a sample (TM2117b) that was only annealed

shortly at a moderate temperature of 350°C. This lead to the question, if Co2MnSi

films on MgO single-crystalline substrates need to be annealed at all or whether

a good crystalline quality can also be achieved without annealing. In general low

annealing temperatures are favorable for TMR systems because the higher the

annealing temperature (and / or time) the higher the risk of diffusion. Especially

Mn, from the Heusler electrode or from an antiferromagnetic layer like IrMn, tends

to diffuse at high temperatures. A new set of samples was deposited onto MgO

single-crystalline substrates and first analyzed without any annealing. Three

different seed layers were tested: MgO 10 nm / Cr 20 nm, MgO 10 nm alone and

the third CMS film was sputtered without any seed. The stack without any seed

layer and the sample with only 10nm of MgO showed no crystalline order at all;
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no characteristic reflexes were found with X-ray diffraction. The third sample

with the presumably best seed layer, MgO plus chromium, already showed L21

ordering directly after the deposition. θ − 2θ scans for the first characteristic

reflexes are shown in figure 7.10.

This result is remarkable, as Heusler thin films are usually not well ordered

in an as-deposited state if they were deposited at ambient temperatures [80]. Es-

pecially the presence of the L21 ordering reflex (111) emphasizes the outstanding

quality of the CMS thin films on MgO substrates.

After a short annealing of 30 minutes at 350°C all three samples were char-

acterized again: The film which was deposited directly onto the MgO substrate

without any seed layer showed only a very weak (220) reflex, the other two sam-

ples were both highly ordered (see figures 7.11 and 7.12 for the (220) and (200)

reflexes respectively).

Figure 7.11: θ− 2θ scans for the (220) reflex of Co2MnSi on different seed layers

on an MgO substrate. All scans were performed under a tilt angle of 45°.

The sample 19b (with MgO/Cr seed) also showed strong in-plane ordering

again; this was verified with ϕ-scans around the CMS(220) reflexes before and
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Figure 7.12: θ− 2θ scans for the (200) reflex of Co2MnSi on different seed layers

on an MgO substrate. All scans were performed under a tilt angle of 0°. For the

sample without any seed the B2 ordering reflex is absent.

after annealing (see figure 7.13). The scans show narrow peaks at a distance of

90° which correspond to the cubic symmetry of Co2MnSi.

The intensity of all reflexes that were analyzed had increased; especially the

main reflex (220) and the (200) reflex had become more dominant. This shows

the expected increased ordering upon annealing. A comparison between the as

deposited and annealed x-ray patterns also shows a peak shift (see figure 7.14)

which corresponds to a change of the lattice constant.

The lattice constant is calculated with the help of Bragg’s law:

d =
nλ

2 sin θ
(7.2)

In this equation λ is the wavelength of the radiation used, d is the distance

between neighbouring planes in the crystal and θ is the half value of the peak

position. For a cubic crystal like Co2MnSi a = b = c;α = β = γ = 90◦ and
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Figure 7.13: In-plane scan (ϕ-scan) around the position of the CMS (220) reflex

for sample TM2119b on MgO, before and after annealing. The scan reveals a

strong in-plane ordering. The peak shift (before vs. after annealing) is due to the

manual positioning of the sample on the sample holder and is completely random.

therefore

1

d2
=
h2 + k2 + l2

a2
(7.3)

where h,k and l are the Miller indices and a the lattice parameter of the elemen-

tary cell. Combining these two equations results in the following relation between

the lattice constant, the Miller indices and the corresponding peak position:

a =
nλ

2 sin θ

√
h2 + k2 + l2 (7.4)

The calculated lattice constants are listed in table 7.4. The wavelength of the

Cu Kα radiation which was used in the experiments is 1.54056 Å.

This change towards theoretical values means that the film stress is being

reduced by annealing the Co2MnSi thin films. Longer annealing times might fur-
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Figure 7.14: θ − 2θ scans for the first characteristic reflexes of Co2MnSi on

MgO/Cr, as deposited and 350°C annealed sample. Especially (200) and (220)

reflexes are shifted more to the theoretical peak positions upon annealing.

hkl Annealing 2θ [°] lattice constant [Å]

111 as deposited 27.191 5.676

200 as deposited 30.735 5.813

220 as deposited 44.966 5.697

111 350°C 27.237 5.666

200 350°C 31.344 5.703

220 350°C 45.246 5.664

222 350°C 56.398 5.647

400 350°C 65.341 5.708

Table 7.4: Peak positions of the first characteristic reflexes and resulting lattice

constants. The peak positions were determined with the help of Philips X’Pert

Data Viewer. The theoretical lattice constant is 5.670 Å[72].
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ther reduce the stress in the films. Additionally the intensity of the characteristic

peaks increased significantly; this indicates the growth of the grains within in the

Co2MnSi film.

Rocking curves, i.e. ω-scans for a fixed 2θ-position, were also performed for

some of the reflexes and their position and width were compared before and after

annealing. As expected, the peaks became narrower upon annealing and were also

slightly shifted. A narrower rocking curve, i.e. a smaller FWHM value, indicates

a higher degree of ordering: the different planes that contribute to this reflex are

not tilted to one another in ω as much as before, resulting in a more intense peak

that is not as broadened as before. The rocking curves of the first characteristic

reflexes are shown in figure 7.15.
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Figure 7.15: ω scans around the position of the first characteristic reflexes before

and after annealing. The peaks are slightly shifted after annealing and become

narrower and more intense.

The graphs were fitted using Origin 8.1G ’s PseudoVoigt-Function; the result-

ing peak centers, widths and areas are summarized in table 7.5. One can see that

”w”, which denotes the peak width, has decreased for all reflexes; at the same
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Parameter
as deposited 350°C

value standard error value standard error

CMS (111)

xc [°] 13.42687 0.0094 14.18956 0.00813

A [°·cps] 214.09377 50.08878 262.71691 34.82321

w [°] 3.32408 0.19172 3.12338 0.09576

CMS (200)

xc [°] 15.12984 0.00387 15.31896 0.00124

A [°·cps] 5359.03243 214.44316 8479.75511 63.79366

w [°] 1.89406 0.01481 1.50055 0.00375

CMS (220)

xc [°] 22.93752 0.0007 22.66955 0.0004

A [°·cps] 78636.81097 240.99211 129199.8842 311.58981

w [°] 1.75094 0.00215 1.57593 0.00118

Table 7.5: Peak centers, widths and areas of the rocking curves of the first charac-

teristic reflexes of sample TM2119b on MgO. The data was analyzed with Origin.

time the peak area ”A” has increased. These two parameters combined stand for

a higher degree of crystallization.

7.1.4 Co2MnSi Thin Films in (110) Orientation

In general (100) orientation of the electrodes is favourable in combination with

an MgO(100) tunneling barrier. In the case of half metallic electrode materials

however, the MgO’s special ”filtering effect” is not needed to achieve extremely

high TMR values. Therefore also (110) orientated Heusler electrodes can be

incorporated into MTJs under the condition that the spin polarization in the

(110) is equally high than for the (100) direction. For example, Hattori et al.

prepared junctions with a CMS(110) bottom electrode and an alumina barrier

and were able to achieve 40 % TMR at room temperature; at lower temperatures

the TMR increased up to 120 % at 2K [81].

NiFeCr/NiFe (magic seed) is known for its ability to induce a (110) fibre

texture; this was also shown for the Heusler alloy Co2Cr0.6Fe0.4Al [82]. First

samples with CMS on glass also indicated (110) texture, however, crystalline
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quality was rather poor. The experiment was repeated on the standard wafer

substrate Si with 400 nm Al2O3, the sample was annealed at 350°C for 30 minutes.

In figure 7.16 the X-ray diffraction scans for the (220) and (200) reflexes are

shown. As expected the most intense peak (220) is found only for ψ = 0°, which

corresponds to a (110) orientation of the film. Under a tilt angle of 45° the B2

ordering reflex (200) is present. As the film is not in-plane ordered, which is

always the case for a sputtered film on an amorphous underground, the intensity

of the (200) reflex is reduced compared to the theoretical value: The intensity is

equally distributed among all ϕ angles. The L21 ordering reflex (111) was not

present, indicating a B2 ordered film.

Figure 7.16: θ − 2θ scans around the position of the Co2MnSi (220) reflex for a

sample on magic seed. The (220) reflex is found only for ψ = 0° which corresponds

to a (110) orientation of the film. The inset shows the (200) reflex.
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7.2 X-Ray Reflectometry

Apart from the crystalline quality of thin films their thickness and surface rough-

ness are of major interest. Therefore X-Ray Reflectometry (XRR) was used to

verify the film thickness perviously determined by profilometer measurements and

to quantify the mean film roughness of all layers in a simple Heusler stack.

In XRR monochromatic X-rays of wavelength λ at grazing incident angles

ω are reflected from the surface and the interfaces of a multilayer stack. The

reflected intensity is detected at the angle 2θ, where the incident angle

ω = 2θ/2 = θ (θ is the outgoing angle). Reflections from different interfaces lead

to interference fringes that can be used to calculate both, layer thicknesses and

roughness. In general one can say that the period of the fringes is related to the

layer thickness and the intensity loss at increasing angles theta corresponds to

the surface or interface roughness.

A simple full stack with the following layer sequence and nominal thicknesses

was used for the analysis: Si substrate // Al2O3 400nm // MgO 10nm - Cr 20nm -

Co2MnSi 50nm - MgO 2nm - CoFe 3nm - Ru 7nm. The sample had been annealed

at 350°C for 30 minutes in N2 atmosphere. At Sensitec a Bede D1 Diffractometer

with Cu Kα radiation (λ = 1.541 Å) is used for the measurements. Data analysis

is performed with the help of the commercial software Bede REFS. The reflection

data as well as the fit for the sample mentioned above is shown in figure 7.17; the

resulting thicknesses and roughnesses are summarized in table 7.6.

Material nom. Thickness [Å] real Thickness [Å] Roughness [Å]

MgO 100 97.51 4.95

Cr 200 203.31 1.01

Co2MnSi 500 417.54 6.27

MgO 18 29.63 4.06

CoFe 30 25.98 7.56

Ru 1 70 63.98 4.79

Ru 2 0 14.42 10.52

Table 7.6: Fit of XRR data for a Heusler full stack. The goodness of the fit was

0.081. The upper Ru layer has a reduced density, corresponding to a top oxide

layer.
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Figure 7.17: XRR data and fit for a simple Heusler stack ”seed - Co2MnSi - top”

deposited on Si//Al2O3.

One can see a rather large discrepancy between the nominal thicknesses and

the real or fitted values for the Heusler film and the MgO barrier. There are two

possible explanations for a thicker barrier than expected: Firstly the deposition

rate was wrongly calculated or has changed over time or, secondly, the electrodes

are oxidized at the interfaces with the MgO barrier. As a distinction between

MgO and a ”Heusler-oxide” is impossible to do with XRR, the actual cause

for the additional oxide remains unclear. An interface oxide could also explain

the high MTJ resistance, which was measured on all TMR wafers with CMS

electrodes, as well as the tiny TMR ratios (see section 7.4). At the same time the

interface and surface roughnesses are very good, the 42 nm Heusler thin film has

a roughness of only 6 Å. A smooth film surface is a requirement for high quality

TMR stacks, otherwise pinholes could occur which destroy the tunneling process.

With this reflectometry analysis it has been proven that the ion beam process is

capable of producing Heusler films of the required quality.
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7.3 Magnetic Characterization

Hysteresis measurements were performed for 50 nm Co2MnSi films deposited on

different seed layers (Cr; MgO-Cr; MgO) and different substrates (glass; Si +

Al2O3; Si + SiOx). A substrate influence on the magnetic properties was visible,

but as expected the general trend that could be seen by varying the seed was

the same for all substrate types (see figure 7.18). A relatively low coercivity of

15 Oe was measured for MgO-Cr seed layer, the Cr seed alone led to a doubling

to 31 Oe and the MgO seed layer resulted in a high coercivity of 105 Oe. These

values indicate an improved film quality, like higher degree of ordering or larger

grains in the polycrystalline film, of the CMS films deposited on MgO-Cr, which

confirms the XRD results [83].

Figure 7.18: Hysteresis loop for 50nm Co2MnSi deposited on different seed layers.

All films were deposited onto Si substrates with Al2O3 passivation.

To determine the magnetic moment of the CMS films room temperature VSM

measurements were performed with small coupons of 10 mm x 10 mm size and

glass coupons of 18 mm in diameter. For the calculation of the moment the

sample volume had to be known, i.e. the exact thickness of the film as well as the

sample area. The thicknesses had been evaluated by XRR measurements before

with different samples, the determination of the sample area is more difficult. The
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substrates had a well defined size, however, they had to be fixed with adhesive

tape or small screws to 5 inch wafers during sputtering. For that reason the

effective sample area varied slightly from sample to sample; an average value was

used for the calculation of the moment.

The calibration of the VSM had been done with a small Nickel standard which

was considerably smaller than the samples measured here. Therefore the absolute

value was 4 % too large in the case of the 10 mm x 10 mm samples and even

11 % in the case of the glass substrates for the VSM setup used [84]. This has

been corrected in the presented data already. Additionally a y-offset has been

corrected for all data shown, i.e. the graphs have been centered around the y-axis.

The measurements were done before and after annealing; different film thick-

nesses were also compared. It turned out that the magnetic moment per volume

increased with increasing film thickness; at the same time the coercive field de-

creased (see figure 7.19 for films on glass substrates). In perfect samples, the

Figure 7.19: Room temperature VSM measurements for samples with 10, 20 and

nm of Co2MnSi on MgO/Cr seed layer. All samples were deposited on circular

18 mm glass substrates and annealed at 400°C. The magnetic moment increases

with increasing film thickness; at the same time the hysteresis decreases.

moment, which is normalized to the sample volume, should be constant. An en-

hanced magnetic moment with increasing thickness suggests a higher degree of
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ordering in the films with increasing thickness. This result was expected as the

X-ray diffraction analysis had revealed the same thickness dependence (see figure

7.3). The decreased coercivity confirms the higher quality of the thicker films:

Crystalline imperfections in a sample make the return to the original, unmagne-

tized state more difficult, which in turn increases the coercivity.

Different seed layers were also compared; the highest magnetic moments were

achieved with MgO/Cr seed, which also yielded the best results in X-ray diffrac-

tion as far as crystalline ordering is concerned. Surprisingly, the samples with

magic seed also showed poor magnetic properties, but also the crystalline quality

of the first set of samples with magic seed was only weakly polycrystalline. How-

ever, a newer set of samples with Ru cap, which also showed a strong (110) fibre

texture in the XRD patterns, yielded far better magnetic ordering as well. The

data from both, the old and new sample with magic seed, is included in figure

7.20. Apart from the second sample with magic seed only Cr-seed and MgO-Cr

double seed layer showed a reasonable magnetic moment. The coercive field of

the Cr-sample is the highest of all samples that were analyzed.

The magnetically softest film, i.e. film with the lowest coercivity, was achieved

with a MgO/Cr seed layer. Here the coercive field was only about 20 Oe. Ru,

Ta and MgO seed are unsuitable according to the magnetic data; the magnetic

moment was about one order of magnitude lower than for Cr, MgO/Cr and magic

seed. Qualitatively this also confirms the X-ray diffraction results.

CMS films of different thicknesses deposited on MgO/Cr-seed, this time on

an MgO substrate, were also compared. The corresponding VSM measurements

are shown in figure 7.21.

The coercive field of the 10 nm thick sample is about twice as large as for

the 20 and 50 nm thick sample, which again suggests a lower quality of the 10

nm sample. In contrast to the samples deposited on glass substrate the magnetic

moment is only slightly reduced compared to the thicker films.

The magnetic moments for different annealing temperatures of samples with

identical stacks sputtered in the same run were also compared: After 300°C an-

nealing only for MgO/Cr seed lead to a clear hysteresis curve; all other samples

appeared to be almost unmagnetic. After 500°C annealing the moments decreased

again; the corresponding VSM graphs for MgO/Cr seed are shown in figure 7.22.3

3It should be noted however, that some of the 500°C-samples showed visible signs of corro-
sion, which may have destroyed the Heusler film despite the Ta cap. Unfortunately the high
temperature Blue M Oven had an oxygen leakage problem, so the 500°C tests could not be
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Figure 7.20: Room temperature VSM measurements for samples with 50 nm

Co2MnSi on different seed layers. All samples were deposited on circular 18 mm

glass substrates and annealed at 400°C; except for the last sample, ”magic-new”,

which was annealed at 350°C. Please note, that for better visibility the dashed

graphs were scaled by a factor of ten in the y-direction.

The best results were achieved after a 400°C annealing for 20 minutes in the

Blue M oven or with a 350°C annealing for 30 minutes in the YES oven.

In order to judge the film quality the most important figure of merit is the

magnetic moment per formula unit (F.U.), which has been used here as well. To

compare the VSM results the data has to be converted from emu/cm3 to µB/F.U.

via a conversion factor of 201.84 cm3/emu. This factor can be derived as follows:

m[emu]

Vsample[cm3]
=

m[emu]

Vsample[cm3]
· Vunitcell[cm

3]

µB[emu]
=

1

K
· m[emu]

Vsample[cm3]
(7.5)

where

K =
µB[emu]

Vunitcell[cm3]
=

µB[emu]

4 · VF.U.[cm3]
=

9.27410 · 10−21

4 · (5.68 · 10−8cm)3
= 201.84

emu

cm3
(7.6)

repeated.
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Figure 7.21: VSM measurements for different CMS thicknesses on MgO. 20 nm

and 50 nm show nearly an identical magnetic moment, 10 nm seems to be less

ordered.

The theoretical value for the magnetic moment is 5.0 µB/F.U.; however, this

theoretical value is normally achieved in bulk samples only, not in thin films [85].

This bulk value was also not reached with the samples prepared in this thesis;

the maximum value achieved was about 3.7 µB/F.U.. This deviation from the

theoretical bulk value can either be attributed to disorder in the films (mainly

B2 instead of perfect L21 ordering) and / or to an off-stoichiometry of Co2MnSi

[78].

7.4 Transport Measurements

Thin films of Co2MnSi had been characterized and optimized to result in the

best crystalline quality possible. However, on Si substrates good crystallinity

could only be achieved with NiFeCr/NiFe seed, resulting in a ”wrong” (110)

orientation of the Heusler film. Therefore the symmetry filtering effect of an

MgO barrier could not be used, as this requires the electrodes and the barrier to

be (100) oriented. (100) orientation could be achieved with MgO/Cr seed, but on

Si substrates the films remained polycrystalline. Nevertheless simple, unpinned
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Figure 7.22: VSM measurements for different annealing temperatures of

Co2MnSi. All stacks had the sequence glass // Cr 5nm - CMS 50nm - Ta 5nm

and were annealed for 20 minutes at different temperatures in the Blue M oven.

TMR stacks were deposited onto Si substrates with different seed layers, namely

NiFeCr/NiFe and MgO/Cr. The layer sequence was as follows: Si + 400 nm

Al2O3 // seed - Co2MnSi 50nm - MgO x nm - Co90Fe10 3 nm - Ru 7nm. Different

barrier thicknesses were tested, using the optimized recipe described in chapter

6.3.4. Quadrants wafers were deposited and annealed at 350°C for 30 min in a

nitrogen atmosphere without magnetic field. The wafers were then structured

using the normal process flow and tested at room temperature. Unfortunately

only very small MR ratios of a few percent could be measured. The current-

voltage dependence however revealed a clear non-linear tunneling characteristics.

It turned out that the resistance of the barrier was still about one or two orders

of magnitude too high, despite the previous optimizations of the MgO barrier

process. Reducing the deposition time drastically reduced the resistance, but

still the TMR ratios did not improve4.

4Tsunegi et al. observed a similar effect in CMS-MgO-CoFe stacks with a sputter-deposited
barrier [86]. The resistance was 1000 times higher in these stacks than in CoFeB-MgO-CoFeB
stacks with a barrier of the same thickness. This was attributed to electron scattering at the
electrode-barrier interface.
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Tests with CMS TMR stacks on MgO substrates were also performed in order

to test whether a better crystalline quality improved the achievable TMR ratio.

The samples were sputtered at Sensitec; structuring and testing were done in

Bielefeld using the standard equipment there. Unfortunately the barriers turned

out to be too thick in all samples, only small TMR ratios of about 3 % were

measured (see figure 7.23). The characteristic curve (IU) however clearly showed

a nonlinear behaviour; the Brinkman-fit of the derivative verified a thick barrier

of 2.4 nm (see 7.24)[87].
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Figure 7.23: TMR measurement for a sample with MgO // MgO 10 - Cr 20 -

MgO - CoFe 3 - Ru 7nm, annealed at 350°C for 30 min. The graph does not

show a clear plateau because none of the electrodes was pinned and in the square

junction form anisotropy cannot arise.

Because of reasons that are not completely understood at the moment it is

not possible to deposit Co2MnSi and MgO in the IBD chamber in the same pro-

cess sequence. Despite comprehensive optimization work (see chapter 6.3) rea-

sonably high TMR ratios could not be achieved with Co2MnSi electrodes and an
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Figure 7.24: Derivative and Brinkman fit of the IU curve for a sample with MgO

// MgO 10 - Cr 20 - MgO - CoFe 3 - Ru 7nm, annealed at 350°C for 30 min.

The sample has been structured in Bielefeld using the standard procedure for UV

lithography and Ar ion etching. The inset shows the original IU-curve.

IBD-deposited MgO barrier. A possible work-around could be separate the MgO-

deposition from the CMS-deposition. Work on an MgO barrier could continue in

a different chamber (e.g. the single-target chamber PM 5) or a Co2MnSi target

could to be installed in the DC magnetron chamber PM 4 instead. The second

option is very likely to work: First results achieved in the MultiMag project with

Co2FeAl0.5Si0.5 from the PM 4 and an MgO IBAD barrier are very promising [9].

Two of the reasons for the use of the IBD chamber for the Heusler deposition had

been the very good vacuum and the ability to deposit almost the complete stack

within the same chamber; both advantages would be lost in that case.

Another option to circumvent the problem of MgO deposition after CMS sput-

tering is to use an alumina barrier instead of an MgO barrier. Here again a

different chamber (PM 5) would be used, so a conditioning problem of the barrier-
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deposition-chamber can be excluded. In general MgO barriers are favourable and

the lattice mismatch between CMS and MgO is small, resulting in good crys-

tallinity of both layers. However, in case of a perfectly ordered Heusler electrode

with an optimum spin polarization the ”filtering effect” of an MgO barrier would

not be needed to enhance the MR ratio. High TMR ratios of 159 % at 2K and

70 % at room temperature have already been reported for MTJs with CMS bot-

tom electrode, alumina barrier and top-pinned CoFe electrodes [75]. For sensor

applications as targeted by Sensitec, these MR ratios would be sufficient. How-

ever, with the current tool configuration a stable plasma oxidation at low power

as required for the formation of an alumina barrier is not possible. Therefore to

test an MTJ with CMS electrode and alumina barrier the Heusler target would

have to be moved to another sputtering machine with a more stable match box

or the match box of PM 5 in PVD 2 would have to be modified.



Chapter 8

Summary and Outlook

In this work a TMR process based on an MgO tunnel barrier has been developed

in an industrial environment. All development work was performed directly on

industrial machinery suitable for mass production. TMR values around 70 % after

moderate annealing at 265°C were achieved with a system containing an MgO

barrier and conventional CoFeB electrodes. By annealing at higher temperatures

up to 500°C the TMR ratios could be increased to about 140%. The TMR wafer

distribution over a five inch wafer was reasonably good, however the resistance

distribution will have to be improved in the next step of a product development

phase.

Possible applications of TMR sensors are evaluated at the moment in the

BMBF project MultiMag which is a collaboration between Sensitec and the uni-

versities of Bielefeld, Mainz and Kaiserslautern [9]. Work in this project concen-

trates on TMR sensors for high temperature applications and an array sensor,

both making use of the ion beam MgO barrier process that was developed in this

thesis. For sensor applications a linear response to an external magnetic field

is required; the transfer curves presented in this thesis will therefore have to be

linearized. To meet this requirement a sensor architecture with two orthogonally

pinned electrodes has already been developed at Sensitec in the Camel project

[7, 88]. A combination of the high TMR ratios achieved in this thesis with the

idea of crossed anisotropies from the Camel project is very promising.

Because of the high sensitivity of TMR sensors, which was demonstrated in

this thesis, they are especially suited for the detection of small magnetic fields [89].

Therefore a system to detect small amounts of magnetically marked bio-molecules

is a likely application [90]. In the BMBF project MRBead an array sensor based

93
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on GMR was developed and a prototype successfully tested. Further improvement

could be achieved by exchanging the GMR for a TMR sensor [91, 92]; this might

be be part of the follow-up project ”MRBead plus”.

The work on Heusler electrodes, which was started with my diploma thesis

[82], was continued with this PhD thesis. In contrast to the diploma thesis where

Co2Cr0.6Fe0.4Al was examined, the promising alloy Co2MnSi was tested in this

PhD thesis. Research groups worldwide deposit Heusler films by dc magnetron

sputtering onto single crystalline MgO or sapphire substrates. Here, however, a

novel film deposition method for Heusler thin films was used: ion beam deposition.

It was demonstrated that this deposition process results in very high quality thin

films of variable orientation depending on the substrate and seed layer that is

being used. On MgO substrates with MgO/Cr seed (100) oriented, L21ordered

Co2MnSi films were achieved with room temperature deposition, even without

annealing. On the other hand, with NiFeCr/NiFe-seed Co2MnSi could be grown

in (110) orientation after a 350°C annealing. These samples were not in-plane

ordered because they were grown on an amorphous substrate (Si + Al2O3) and

only grew B2-ordered. All samples prepared at Sensitec were deposited at room

temperature and only annealed ex situ. Considering this limitation, especially

the results of the CMS films deposited on MgO substrates are remarkable: It is

very unusual to achieve well oriented, L21 ordered films with room temperature

deposition; normally high temperature deposition or post deposition annealing

are required. This proves the high quality of the films produced at Sensitec.

For applications the use of Si substrates instead of MgO is essential. With

the help of an MgO/Cr buffer layer (100) oriented, B2-ordered Co2MnSi films

could be prepared. However, for TMR stacks the film quality has to be further

improved. One option is the use of an Ag seed instead of MgO/Cr as proposed

by Yang et al. [93]. They were able to prepare in-plane ordered (100) oriented

CMS thin films on clean Si substrates with 60 nm Ag by sputter deposition at

room temperature and subsequent annealing.

Unfortunately it was impossible to combine the Heusler electrode with an

MgO tunneling barrier due to unforeseeable chamber conditioning problems. To

circumvent this problem different alternatives are possible. Firstly, a TMR stack

containing an CMS electrodes and an alumina barrier is thinkable; a cross-talking

between alumina and Heusler is excluded as they would be deposited in different

sputtering chambers. Another option would be to convert the single target cham-

ber PM 5 into an rf module for the deposition of the MgO barrier. Alternatively
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a new Co2MnSi target for dc magnetron sputtering could be installed in PM 4 to

separate CMS from barrier deposition: Results with Co2Fe0.5Al0.5Si from PM 4

and the IBAD MgO barrier achieved in the MultiMag project are very promising.
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Appendix A

Mask Drawing

During this PhD thesis the same mask that had been used during my diploma

thesis was used. This simple design is only suitable for testing TMR, it is not

a proper sensor design. The original design was done by Martin Jourdan from

the university of Mainz. During my diploma thesis I modified the design first in

AutoCAD and later transferred it to IC Graph by Mentor Graphics. There the

drawing was finished and the alignment marks and overlay boxes were added.

The reticle contains 16 fields that belong to four different mask layers. The

third layer however was abandoned because of a change in the process chain. Of

the various designs only one was used throughout this PhD thesis, as the focus was

on optimizing the layer stack not the chip layout. The testing and optimization

of different layouts is currently done in the follow-up project MultiMag [9].

The drawing shows four stacked layers of one final chip. On the top and

bottom eight rectangles can be seen (red); these are the contact pads, which are

large enough to be contacted manually if needed.

In the middle of the chip a large conductor path reaches from the left to the

right end of the chip (red). This is the bottom electrode, made of TMR sensor

material.

From the pads to the bottom electrode wedge-shaped conductors (yellow)

form the top electrode. Two conductors are connected to one junction, which is

the small green dot at the overlap between the bottom and top electrode.

There are two rows of four circular junctions each; their diameters are 50 µm,

30 µm, 20 µm and 16 µm from left to right. On the reticle different sizes of

circular (and square) junctions were added, reaching from 2 µm to 150 µm in

diameter / edge length.
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104 APPENDIX A. MASK DRAWING

Fenster Durchmesser 46 u    26 u    16 u   12 u.
MESA Durchmesser 50u 30u 20u 16u.Elektrode ohne Spaltung, f_r 8 MESAs

Figure A.1: ”Bajor” Chip Layout. All four mask layers are shown in a stacked

way here. One can see the pads and contact leads at the top and bottom, the

bottom electrode in the middle from left to right and the two rows of junctions

in the middle on the bottom electrode.



Appendix B

Generic Process Flow

Layer Task Tool Comment

Bottom Insulation Al2O3 deposition Corona 400 nm

TMR Stack Sensor Deposition PVD 2 TMR Stack

Annealing HFRO 265°C, 5 kOe, 10 min hold

Bottom Electrode Photo Apply FSI 4 AZr ECI 3012

Photo Expose Canon 2 1st

Photo Develop FSI 4 AZr 300 MIF

Photo Inspect Microscope

Ion Mill Sensor Veeco 5 Mill into Al2O3

Measure Overmill Nanometrics Al2O3 thckn.

Remove resist Matrix Asher O2-Plasma, 4 min

Strip Barrel Stripper NMP

Fence Remove Snow Cleaner CO2 cleaning

Inspect Microscope resist residues?

MTJ Photo Apply FSI 4 LOR 1A + AZr ECI 3012

Photo Expose MTJ Canon 2 TVPA, MTJ

Photo Develop FSI 4 AZr 300 MIF

Photo Inspect Microscope Undercut ok?

Ion Mill Sensor Veeco 5 stop after barrier

Measure Overmill Nanometrics Al2O3 thckn.

Gap Refill Gap2 Deposition Corona 60 nm Al2O3

Measure Gap Nanometrics Al2O3 thckn.

Gap Liftoff Equinox Liftoff with NMP
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106 APPENDIX B. GENERIC PROCESS FLOW

Layer Task Tool Comment

Fence Remove Snow Cleaner CO2 cleaning

Mesa Inspect Microscope resist residues?

Contact Pads Photo Apply FSI 4 LOR 5A + AZr ECI 3012

Photo Expose Canon 2 TVPA, Contacts

Photo Develop FSI 4 AZr MIF 300

Photo Inspect Microscope Undercut ok?

Ta/Au Depo Z660 40 nm Ta + 200 nm Au

Liftoff Equinox Liftoff with NMP

Fence Remove Snow Cleaner CO2 cleaning

Final Inspection Microscope Final Inspection

Test Test IU Final 02 Test IU, no field

Test TMR Final 02 Test TMR 5inch

Table B.1: Generic process flow for standard TMR struc-

tures.



Appendix C

EDX-Analysis of the Co2MnSi

Target

The Co2MnSi target had been ordered off-stoichiometric to compensate for differ-

ent sputtering yields of the components. A composition of 43.6 % Co, 28.0 % Mn

and 28.4 % Si was chosen and a reference sample was analyzed by EDX. As only

samples of limited height can be analyzed with the EDX at Sensitec the sample

was diced before, resulting in contamination. Therefore all elements except for

Co, Mn and Si were excluded from the report.
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108 APPENDIX C. EDX-ANALYSIS OF THE CO2MNSI TARGET
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Figure C.1: EDX analysis of the Co2MnSi target. All elements apart from Co, Mn

and Si were excluded from the results as they were due to the sample preparation

(dicing).



Appendix D

List of X-Ray Diffraction Peak

Positions

hkl 2θ [°] dhkl [Å] Irel [%]

111 27.269 3.268 4.74

200 31.589 2.830 5.05

220 45.279 2.001 100

311 53.664 1.707 1.91

222 56.257 1.634 1.22

400 65.965 1.415 14.8

331 72.772 1.299 0.61

420 74.982 1.266 1.34

422 83.630 1.155 28.92

511 90.010 1.089 0.31

333 90.010 1.089 0.10

440 100.685 1.006 10.21

Table D.1: X-Ray Diffraction peak positions for Co2MnSi for Cu Kα radiation.
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110 APPENDIX D. LIST OF X-RAY DIFFRACTION PEAK POSITIONS

hkl 2θ [°] dhkl [Å] Irel [%]

111 37.016 2.427 10.39

200 43.006 2.102 100

220 62.447 1.486 55.52

311 74.868 1.267 6.95

222 78.822 1.213 16.54

400 94.293 1.051 7.71

331 106.045 0.964 3.49

Table D.2: X-Ray Diffraction peak positions for MgO for Cu Kα radiation.

hkl 2θ [°] dhkl [Å] Irel [%]

110 30.931 2.889 100

200 44.309 2.043 17.22

211 55.014 1.668 33.70

220 64.459 1.444 9.78

310 73.205 1.292 12.79

222 81.562 1.179 3.08

321 89.741 1.092 14.59

400 97.914 1.021 1.57

411 106.254 0.963 5.85

330 106.254 0.963 2.93

Table D.3: X-Ray Diffraction peak positions for Cr for Cu Kα radiation.



111

hkl 2θ [°] dhkl [Å] Irel [%]

111 28.444 3.135 100

220 47.306 1.920 67.11

311 56.126 1.637 39.94

222 58.860 1.568 0

400 69.135 1.358 10.70

331 76.382 1.246 16.19

422 88.037 1.109 23.14

511 94.960 1.045 10.17

333 94.960 1.045 3.39

440 106.718 0.960 9.18

Table D.4: X-Ray Diffraction peak positions for Si for Cu Kα radiation.

hkl 2θ [°] dhkl [Å] Irel [%]

100 38.381 2.344 67.88

002 42.179 2.141 18.34

101 44.015 2.056 100

102 58.335 1.581 52.77

110 69.409 1.353 18.09

103 78.390 1.219 28.85

200 82.208 1.172 13.42

112 84.679 1.144 25.81

201 85.938 1.130 25.37

Table D.5: X-Ray Diffraction peak positions for Ru for Cu Kα radiation.



112 APPENDIX D. LIST OF X-RAY DIFFRACTION PEAK POSITIONS



Appendix E

Publications & Talks

E.1 Publications

J. Paul und Anna Gerken, Tunnelmagnetoresistive Materialien: Möglichkeiten

und Herausforderungen für Anwendungen in der Sensorik, Tagungsband des 9.

Symposiums ”Magnetoresistive Sensoren und Magnetische Systeme” in Wetzlar,

S. 11-17 (2007)

J. Paul, A. Gerken, Tunnelmagnetoresistive Materialien für Anwendungen in der

Sensorik, Proceedings of Mikrosystemtechnik Kongress 2007, 287 - 290 (2007)

A. Gerken and J. Paul, Use of the Tunnelmagnetoresistive Effect for Sensor Appli-

cations, Microsystems Technology in Germany 2008, trias Consult, 50 - 51, (2008)

A. Gerken, J. Paul, B. Negulescu, C. Duret, TMR-Schichtsysteme für Senso-

ranwendungen, Proceedings of Mikrosystemtechnik Kongress 2009, (2009)

B. Negulescu, D. Lancour, F. Montaigne, A. Gerken, J. Paul, V. Spetter, J. Marien,

C. Duret and M. Hehn, Wide range and tunable magnetic tunnel junction sensor

using two exchange pinned electrodes, Appl. Phys. Lett. 95, 112502 (2009)

J. Paul, A. Gerken, J. Marien, B. Negulescu, M. Hehn, C. Duret, Neue TMR-

Schichtsysteme für Sensoranwendungen, Tagungsband:Technologien und Werk-

stoffe der Mikrosystem- und Nanotechnik (GMM-FB 65), (2010)

113



114 APPENDIX E. PUBLICATIONS & TALKS
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netic tunnel barriers in a manufacturing line for sensor production, Biomagsens

workshop ”Magnetic tunnel junctions for highly sensitve sensors”, Les Vaulx de

Cernay, France, 21. - 23.10.2008

A. Gerken, J. Paul, TMR-Schichtsysteme für Sensoranwendungen, MikroSys-

temTechnik Kongress 2009, 12th - 14th October 2009, Berlin

J. Paul, A. Gerken, J. Marien, B. Negulescu, M. Hehn, C. Duret, Neue TMR-

Schichtsysteme für Sensoranwendungen, 2nd GMM Workshop Technologien &

Werkstoffe der Mikrosystem- und Nanotechnik, 10th - 11th May 2010, Darm-

stadt



Danksagung
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