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Abstract

In medical image processing a wide amount of different tasks is currently un-
der consideration. The principle in most of the developed technical solutions
is the numerical representation of an image. The numerical description of the
image by so called feature vectors then allows to analyse or classify the im-
ages or to process them in any different way. The important challenge here is
to find numerical features, which are particularly appropriate to represent the
image and its clinical characteristics. In this work a methodology is presented
allowing to develop and analyse those features in order to obtain a numerical
representation especially well adapted to the clinical context. The features are
obtained from a Discrete Wavelet Transform and analysed and optimized by
methods of dimension reduction. The methodology is demonstrated on two
highly different types of datasets acquired for the purpose of tumour diagnos-
tics. For both databases numerical features are defined suitable to represent
the particular dataset in various applications.

Les problémes liés au traitement d’images médicales sont au centre de la re-
cherche actuelle. Dans de nombreuses applications on s’intéresse à la représen-
tation numérique de l’image. Cette description numérique est effectuée à l’aide
de vecteurs caractéristiques. En conséquence la chose la plus importante est
de trouver une description numérique effective, qui assure une représentation
bien adaptée aux caractéristiques médicales de chaque image. Dans cette thèse
de doctorat on présent une méthode pour développer et analyser des descrip-
tions numériques d’images, qui sont particulièrement adaptées au contexte
clinique. Ces descriptions numériques sont obtenues par une transformée en
ondelette discrète et elles sont étudiées et optimisées par des formules de ré-
duction dimensionnelle. La méthode est appliquée à deux types d’images très
différentes, utilisées pour le diagnostic des tumeurs. Dans les deux cas des
description numériques sont définies, qui sont bien appropriées à la représen-
tation de l’image en fonction des différentes applications médicales.
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Die medizinische Bildanalyse beinhaltet eine Vielzahl unterschiedlicher Frage-
stellungen und Anforderungen. Grundprinzip für viele Anwendungen ist es
hier, den Bilddatensatz numerisch zu repräsentieren. Diese numerische Beschrei-
bung in Form sogenannter Merkmalsvektoren kann dann dazu genutz werden,
Bilddatensätze zu analysieren, zu klassifizieren oder anderweitig zu verar-
beiten. Die Herausforderung ist es demnach, geeignete numerische Merkmale
zu finden, die das zu analysierede Bild und seine medizinischen Charakteris-
tiken optimal repräsentieren. In dieser Arbeit wird eine Methodik vorgestellt,
die es erlaubt, solche spezifischen Merkmale zu entwickeln, zu analysieren und
an den jeweiligen medizinischen Kontext anzupassen. Die Merkmale werden
mittels einer Diskreten Wavelet-Transformation erzeugt und mittels Metho-
den der Dimensions-Reduktion analysiert und optimiert. Die Methodik wird
an zwei sehr unterschiedlichen Bildatensätzen aus der klinischen Tumordiag-
nostik demonstriert. Für beide Datensätze werden numerische Merkmale ent-
wickelt, die dazu geeignet sind, den Datensatz im Rahmen unterschiedlicher
Anwendungen zu repräsentieren.
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1. Introduction

In the current clinical practice a multitude of imaging techniques are applied
for a wide spectrum of diagnostic tasks. These techniques are e.g. magnetic
resonance imaging, computer tomography, X-Ray imaging, ultrasound, positron
emission tomography or the acquisition of photomicrographs of microscopy
images.

The amount of acquired images therefore increases significantly. Further-
more, increasing resolution or simultaneous monitoring of time and space-
dependent characteristics leads to a growing complexity of the considered data-
sets. In this way the diagnostic process in clinical practice becomes more and
more difficult and especially time-consuming for the medical expert, since the
expert has to take into account a huge amount of image information. At this
point it becomes obvious that the development of methods to assist the medi-
cal expert in the diagnostic process is highly desirable. In fact, nowadays the
amount of such tools currently developed in medical image analysis is very
high. These tools are supposed to perform tasks such as segmentation of im-
age structures, denoising, compression and enhancement of particular charac-
teristics, registration of different images, classification of image characteristics
into healthy and pathological or retrieval of particular images from medical
databases for diagnostic support. As wide as the spectrum of required tasks is
the range of image domains and diagnostic processes.

In the last years many different approaches have been pursued in order to
provide diagnostic aid for the medical expert. In a review of medical image
analysis Duncan and Ayache describe these approaches and note future chal-
lenges and perspectives in this field of research [1]. One major challenge is
that the tasks of medical image analysis are usually taken in isolation, rather than
considered together, although they might be closely related [1]. For instance, the
image characteristics utilised to classify images or image regions into different
categories (e.g. healthy and pathological) can also be utilised for purposes of
image retrieval. Denoising, compression and enhancement are closely related
since both tasks require the image information to be categorised into a signifi-
cant and a non-significant part. Regarding segmentation various techniques
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1. Introduction

exist. However, they can be interpreted as a classification of image information
into two categories, either within or outside of the image part considered. In
general, it can be expected that the solution of one particular image processing
task might bear potential regarding further applications. It is therefore highly
desirable to develop methodologies for a general analysis of images that natu-
rally provides solutions for a broad spectrum of tasks. However, as pointed out
by Duncan and Ayache, this is still an open question in medical image analysis.

The basic idea in such general approaches is to represent the image con-
tent by numerical features, i.e. numerical vectors that encode the clinically
important image characteristics. These numerical features, which can repre-
sent either total images or only particular parts of a large dataset, can then be
compared or clustered in order to obtain classification results, retrieval results,
segmentation of structures and so on.

At this point it is extremely important to adapt these features very carefully
to the underlying medical context. Duncan and Ayache note as a future key
challenge that the work in general must be developed and clearly motivated from the
underlying biological problems that are being addressed [1]. The better the numer-
ical features are specialised to the particular diagnostic process, the easier the
particular task of medical image analysis can be fulfilled. Here, the major re-
quirement is to define a numerical representation of the image encoding the
biologically and clinically significant image characteristics appropriately.

In this thesis a study project is described to analyse images regarding the
clinical context. Numerical features are defined and evaluated in order to find
a discriminative set of numerical features for a specific purpose.

For a high generalisability of this framework it must be able to handle special
issues arising in the daily clinical practice. Due to the increasing size and com-
plexity of datasets in medical imaging, the framework has to be able to provide
concepts for the handling of a huge amount of image information. Further-
more, regarding the varying appearance of medical images, the method has to
be able to describe both global and local characteristics. Global image charac-
teristics such as texture are important in the diagnosis of entire images or large
regions, e.g. microscopy images in neuropathology. In contrast to this, other
applications require the detection or classification of a very small and localised
part of the image, e.g. benign or malignant tumours.

Yet another extremely important aspect is the need for appropriate visualisa-
tion interfaces for the exploration of the designed features. Especially regard-
ing the fact that the design of those features should include the knowledge of
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both image processing and medical experts an intuitive visualisation is abso-
lutely essential as an appropriate communication environment. This addition-
ally provides the potential of a detailed evaluation of single features concern-
ing the clinical semantics. Finally, it is desirable to devise solutions in medical
image processing that are applicable in clinical practice. For instance solutions
requiring time-consuming or even human-based pre-processing steps such as
a detailed manual segmentation of lesions are not suited for the daily work of
a clinician.

The framework described in the following provides solutions regarding the
noted issues. Its potential is demonstrated on two databases. Both databases
require solutions for very different applications and diagnostic processes.

For the definition of features principles of Wavelet Analysis are applied.
Wavelet Analysis is a young mathematical theory, developed mainly in the
1980s. It has many applications in mathematics, theoretical physics and sig-
nal or image processing. Wavelet theory has influenced an extremely wide
range of scientific disciplines and was developed by experts from quite differ-
ent fields of research. Jean Morlet, a geophysicist, included basic principles
of wavelet theory into the analysis of geophysical experiments. He started a
cooperation with Alex Grossman, a theoretical physicist from Marseille, to for-
mulate the mathematical background of his work. Ingrid Daubechies, a belgian
physicist and mathematician, was responsible for the formulation of orthogo-
nal wavelet bases with compact support. Yves Meyer and Stéphane Mallat,
both french mathematicians, developed the so called Multiresolution Analysis
in wavelet theory.

Nowadays, wavelet theory is extremely important for signal and image pro-
cessing, but also for areas of research like quantum mechanics and hydrody-
namics. As Ingrid Daubechies noted:

Wavelets are a fairly simple mathematical tool, with a great variety of applications.

Especially the principle of multiresolution analysis, i.e. the potential to de-
compose signals into the information at different levels of details, has become
enormously interesting in various applications. Yves Meyer used the following
metaphor to explain principle and meaning of multiresolution analysis:

Maps contain different information at different scales. For example, it is impossible
to plan a trip to visit the Roman churches at Charente and Poitou using the map of
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France found on a globe of the earth.

Multiresolution analysis is a very general principle, applicable in a wide
range of scientific problems in physics and computer science. Hence, the en-
tire wavelet theory is a framework generated and applied in an interdisci-
plinary environment with significant contributions from mathematics, physics
and computer science.

In image processing techniques of wavelet theory are utilised in an enor-
mously large field of applications. Wavelet Analysis allows to decompose sig-
nals and images into scale-dependent and localised image information. First,
in this way images can be studied at different levels of detail. This allows to
identify relevant scales in the image and thus the extraction of the relevant
image information. Second, due to the localisation properties of the Wavelet
Transform, both features describing localised image information as well as
global features such as texture can be defined.

It is thus a very powerful and general framework for image processing tasks
of various applications.

When representing images or image characteristics utilising a wavelet trans-
form it is quite common not to use the raw wavelet coefficients but to compute
particular numerical features from the coefficients to reduce the amount of data
to be processed. These features are often based on heuristic considerations but
are however still rather abstract.

Here, the question arises how to evaluate the potential of these features with
respect to the diagnostic process. This can for instance be done by interpreting
the numerical features in the image domain. In fact, we consider a detailed
understanding of features in medical image analysis as essential, since this en-
ables a definition of numerical features encoding especially the clinically rele-
vant image characteristics.

However, it is not easy to interpret features which are based on a wavelet
transform and hence of a quite abstract nature. This phenomenon of missing
interpretability is also termed the semantic gap. Thus, this project study concen-
trates on the exploration of the wavelet-based feature spaces. To link numerical
and clinical characteristics appropriate visualisation methods are necessary. In
this work methods from the field of dimension reduction, especially Self Or-
ganizing Maps, are used to accomplish this task. The Self Organizing Map is
an unsupervised machine learning algorithm. It allows to project the feature
space on a two-dimensional grid providing an interface for visual inspection.
This visualisation enables to evaluate and optimise the features according to
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the desired purpose.
The exploration of the feature space allows a step-wise optimisation and se-

lection of the features resulting in newly defined feature vectors adapted to the
specific purpose. The focus of this thesis lies especially on the interpretation
and thus detailed analysis of the image domain and therefore a definition of
features very close to clinical semantics.

Our methodology is applied on two databases acquired for quite different
diagnostic tasks.

The first database contains microscopy images of benign brain tumours, so
called meningioma WHO Grade I. These are two-dimensional RGB images of
tumour tissue. Four different types of meningiomas are classified by a human
expert due to varying texture appearance of the microscopy images taken.

The texture-related image characteristics can be divided into two types, char-
acteristics distinguishing the four classes (interclass differences) and thus clin-
ically relevant and characteristics introducing differences within a particular
class (innerclass differences). The latter ones are usually ignored in the diag-
nostic process by the human expert but can still be very noticeable.

The analysis of this database starts with the definition of wavelet-based tex-
ture features derived from heuristic considerations. These features are then
analysed within our framework. The main focus of this analysis is the interpre-
tation of the single features regarding the clinical semantics. The exploration
procedure especially aims at a detailed understanding of the feature space and
thus provides a link of single numerical features to histological characteristics
in the image. Particularly important is to distinguish between numerical fea-
tures encoding clinically relevant image differences and the clinically irrelevant
ones.

The second database contains three-dimensional time series of magnetic reso-
nance images of the female breast. These images or volumes have been ac-
quired for the diagnostics of breast cancer, the most common cancer of women
in the western countries. In our case a contrast agent is applied to detect le-
sions, a method termed as dynamic contrast enhanced magnetic resonance
imaging (DCE-MRI). The principle of DCE-MRI is the monitoring of breast tis-
sue after the injection of the contrast agent. The tissue of breast tumours differs
from healthy tissue regarding the vascularity and permeability. Thus monitor-
ing of contrast agent uptake in the breast tissue provides valuable information
for the detection and classification of lesions. Both the dynamical properties
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of tumour tissue - e.g. speed of enhancement - and the tumour morphology -
e.g. the margin of the tumour - are important for the diagnosis.

One main property of this type of diagnostics is that not only tumour tissue
provides the ability of contrast agent uptake. Further types of tissue or body
regions such as veins or the chest (including the heart) also show a significant
uptake. Again the question arises how to distinguish between the clinically
important features - enhancement in the tumour - and other types of enhance-
ment - for instance enhancement in the heart.

The datasets are grey value images, which are both time and space-dependent,
hence large and complex. One major requirement is here to handle the huge
amount of image information and to find features representing localised and
time-dependent image information.

A further step is the search for new features to encode morphological cri-
teria. As described above the tumour morphology is supposed to be a very
important aspect in tumour diagnostics. However, the challenge is to find a
numerical representation of the tumour properties that can be utilised in ap-
plications such as classification, retrieval or visualisation purposes. Here it is
desirable to be able to describe both margin and texture of the tumour as a
time-dependent variable.

The two types of databases and the related diagnostic processes are very
different. However, it will be shown that our framework is suitable for the
analysis of both.

Outline of the thesis This thesis is organised as follows. In chapter 2 current
challenges in medical image processing are described.

In chapter 3 the datasets analysed are described. It is presented, how the
images are acquired and how the medical expert diagnoses the images based
on specific characteristics of the tissue examined.

The methods applied for the derivation and exploration of features are ex-
plained in chapter 4. The multiscale features are computed based on the results
of a Discrete Wavelet Transform, a method for the scale-wise decomposition of
signals and images. The computed features are then explored using methods
from the field of dimension reduction such as the Principal Component Analy-
sis and Self Organizing Maps.

In chapter 5 the analysis of pathology images is described. Based on the Dis-
crete Wavelet Transform texture features are derived describing typical image
characteristics at different levels of detail. The exploration procedure applied
allows a selection of a subset of features, especially appropriate to characterise
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tissue details chosen to be particularly important in the clinical diagnostic pro-
cess.

Chapter 6 describes the application of our framework to the analysis of MR
volume time series. The exploration of multiscale features can be utilised to
derive features characterising dynamical and morphological patterns typical
for tumour tissue. The benefits of these features are a robust segmentation
procedure and a robust numerical description of the time-dependent tumour
morphology.

The results presented in this work are finally summarised in chapter 7. In
this chapter the benefits and limitations regarding the databases and diagnostic
tasks processed in this work are described. Furthermore the potential of our
framework concerning further diagnostic tasks is discussed.
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2. Current Challenges in Medical
Image Processing

2.1. Increasing Size and Complexity of Datasets

As described in the introduction the increasing amount of data is currently one
of the most important challenges in medical image processing. An increas-
ing number of images and the related patient information is stored in clinical
practice and then used not only for the specific diagnosis, but also in the de-
velopment of clinical databases and tools for diagnostic support. The datasets
stored and analysed can be very large and high-dimensional depending on
the application [2]. This may be due to different imaging modalities, which
are combined for one clinical task. In other applications the datasets are both
space- and time-dependent and therefore difficult to evaluate and analyse [2].
Thus, the determination of specific numerical features appropriate for the rep-
resentation of the complex image domain becomes more and more difficult. In
contrast to the handling of general image databases, the applications related
to medical images are usually quite specialised and the features have to be
adapted to clinical semantics. The development of a general framework for
feature generation and evaluation is therefore highly desirable.

2.2. Curse of Dimensionality

In diagnostic applications the image content is characterised by numerical im-
age features. These numerical features are vectors utilised e.g. for the training
of classificators or performing retrieval tasks. It might be expected that the
performance of a system for classification or retrieval increases with the num-
ber of computed features, i.e. with the length of the feature vectors. But in
fact it is desirable to keep the feature vector as short as possible. This reduces
computational costs and avoids the effects of a phenomenon termed as curse of
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dimensionality. As described in [3] this term is related to the effect that in high-
dimensional feature spaces it becomes more and more difficult to compare two
feature vectors reliably.

2.3. Semantic Gap

In applications of image analysis the image content is characterised by numeri-
cal features. While more simple and direct features such as colour histograms
are easy to interpret in the image domain, features based on transforms such
as Fourier or Wavelet Transform are much more difficult to understand. This
phenomenon is termed the semantic gap and is defined according to [4] in the
following way: The semantic gap is the lack of coincidence between the information
that one can extract from the visual data and the interpretation that the same data
have for a user in a given situation. The width of the semantic gap strongly de-
pends on the domain described. In a narrow image domain providing limited
and predictable variability in all relevant aspects of its appearance the gap between
features and semantic interpretation is usually smaller [4]. However, the problem
is still unsolved in medical image analysis. One possible solution is the an-
notation of images by an expert. Since the labelling of images is cumbersome
and expensive [4] several approaches exist focusing on an automatic solution of
this problem. In [5] it is noted that most of the approaches for deriving se-
mantic features come down to attaching textual labels to the images. In [6]
images are annotated using medical key words in order to improve retrieval
performance. In [7] semantic metadata is extracted from visual descriptors by
classifying images into semantic categories and organising a database based
on certain concepts.

2.4. Applicability in Clinical Practice

Current applications of diagnostic tools in clinical practice often suffer from
a high necessary amount of human interaction that is often undesirable. For
instance, in some works tumours are characterised according to their shape.
The features for shape characterisation usually require an exact determination
of the tumour boundary, which is in most cases hand-drawn [8, 9]. However,
this is not only a very time-consuming task, it additionally introduces a cer-
tain variability into the entire diagnostic process. Thus it is desirable to obtain
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methods not relying on such a huge amount of human-based pre-processing.

2.5. Wavelet Analysis in Medical Image Processing

Wavelet Analysis has often been used in medical image processing. Some re-
views describing current applications are [10, 11]. Wavelet Analysis is a very
powerful tool and thus applicable for many different purposes. The most fre-
quent application is the compression of images, see e.g. [12]. Also quite com-
mon are approaches for denoising images [13]. Both compression and denois-
ing are also very common in the processing of other image domains. Closely
related to the field of denoising is the enhancement of image structures consid-
ered to be of clinical importance [10].

Some wavelet research is very close to the imaging process such as wavelet-
encoded magnetic resonance imaging [14] or the wavelet-based image recon-
struction from tomography data [15].

Of special interest in this work is the field of feature extraction. The term
feature extraction is quite general and can include various applications. In [16]
features are extracted from digital mammograms to detect and enhance mi-
crocalcifications. There, the algorithm starts with compression and denoising.
Other works focus on the computation of features, i.e. numerical representa-
tion of images for the purpose of classification or image retrieval [17].

Overall these different applications are somehow related. This corresponds
to the observation of Duncan and Ayache [1] that has already been noted in the
introduction (1).

Since wavelet analysis is a very general framework, it can help to integrate
the different fields in image analysis. It is therefore expected that the defini-
tion of wavelet-based image features to represent particular significant image
characteristics is suitable for various purposes relevant for the specific image
domain.
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3. Materials

In this chapter the medical databases analysed in this work are presented. Two
types of medical images have been investigated, both acquired for the diagno-
sis of tumours. The first database contains microscopy images of meningiomas
Grade I, a benign brain tumour. The second database provides magnetic reso-
nance images acquired for the detection of breast cancer. To facilitate the un-
derstanding of the medical background a short overview of tumours including
development, diagnostics and treatment is provided in the beginning of this
chapter. Then the two databases and their diagnostic characteristics are de-
scribed in detail.

3.1. Medical Background: Tumours

3.1.1. Tumours and Tumour Development

Tumour Classification The medical term tumour denotes a distinct mass in a
tissue or organ, formed by abnormal or disorganised growth. This abnormal
growth is referred to as neoplasia, therefore a tumour might also be termed a
neoplasm [18, chapter 7.2]. Several types of tumours can be distinguished. Ma-
lignant tumours, also known as “cancer”, show an increased growth potential.
They can become invasive i.e. can penetrate and destroy the surrounding tis-
sue. In this state the tumour can create metastases. The tumour tissue strongly
differs from the normal tissue regarding histological characteristics. After pa-
tient’s treatment, a relapse is possible. Benign tumours usually show a moderate
growth. They do not penetrate the surrounding tissue which means, that they
do not metastasise. The histological characteristics of benign tumour tissue are
quite similar to those of the normal tissue. The occurrence of relapses is rare.
However, some benign tumours can change and become malignant [18, chap-
ter 7.2]. Semimalignant tumours invade the neighbouring tissue but metastasise
only rarely [18, chapter 7.2].
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Tumour Development Tumour growth is caused by genetical mutations in the
cell, leading to uncontrolled and possibly rapid proliferation. These geneti-
cal mutations include e.g. the deactivation or activation of specific genes for
growth control. Especially the risk factors of developing cancer are intensely
investigated. Some genetical mutations can be passed from one generation to
another, leading to a higher risk for developing some specific type of cancer.
Besides an inherited predeposition there are several more factors considered
to influence the risk of developing cancer, e.g. tobacco, diet and physical ex-
amination. Environmental impacts such as radioactive radiation, ultraviolet
radiation, viruses or some toxic substances are also known to increase the risk
of cancer [18, chapter 7.2].

3.1.2. Diagnostic Methods

Depending on type and localisation of the tumour, several diagnostic methods
are common to make a clear diagnosis. The most important ones are described
as follows.

Palpation An experienced physician can detect lesions or tumours by palpa-
tion [19]. The palpation of the breast is e.g. part of each preventive medical
checkup regarding breast cancer.

Blood Tests Some types of cancer can be diagnosed by a blood test due to an
abnormal concentration of some specific proteins or other substances, so called
tumour markers. One example is the so called PSA (prostate specific antigen).
An increased concentration of PSA is often associated with prostate cancer [20].

Histological Methods Abnormal cells can be diagnosed by histological meth-
ods. To this end, a removal of cells is necessary. This can be done by a smear or
several biopsy techniques. During fine needle aspiration biopsy a piece of tis-
sue is obtained using a thin, hollow needle. Core (needle) biopsy includes the
removal of multiple pieces of tissue. In case of contradictory results a surgical
biopsy may be necessary including the removal of a tissue sample (incisional
biopsy) or of the complete suspicious area (excisional biopsy) [19]. Further-
more excised tissue can regularly be examined during or after surgery. The
tissue is prepared, stained and examined by microscopy. The preparation pro-
cedure for the diagnosis of meningiomas is detailed in section 3.2.

14



3.1. Medical Background: Tumours

Imaging Techniques Most existing medical imaging techniques are applied
for the detection of tumours. The most common ones in tumour diagnostics
are described in this paragraph. For further imaging techniques not described
here, please refer to [21].

Medical Sonography is an imaging technique based on ultrasound, i.e. sound
with a frequency above the bandwidth of human hearing. Frequencies ap-
propriate for medical diagnosis range from 0.8 to 15 MHz. Strong pulses of
sound are transmitted into the tissue to be examined. At the interface of dif-
ferent tissues the sound waves are partially reflected. A detector receives the
echoes and creates a real time image depending on intensity and transit time
of the echoes. Especially muscles and soft tissue can be imaged very efficiently.
Medical sonography e.g. is used during breast examination allowing to detect
and to distinguish different types of masses [22].

In X-Ray Radiology the attenuation of X-Rays, i.e. photons with a frequency
of 1016 − 1020 Hz [23] is monitored. The energy spectrum for medical appli-
cations is usually 17-150 keV [24] corresponding to a frequency range of ap-
proximately 4 · 1018 − 4 · 1019 Hz. Attenuation in tissue can be due to several
physical processes including scattering and photoelectric absorption. The at-
tenuation differs strongly regarding different types of tissue e.g. bones and soft
tissue [24].

Standard X-Ray radiology is a very common method in breast examinations
(X-Ray Mammography). However, the resulting image is a two-dimensional
projection of the attenuation in a tissue volume. To preserve the depth infor-
mation, X-Ray Computed Tomography (CT) has been developed. The principle
of CT is to image slices of the part of the body examined. Two-dimensional
X-Ray images are taken around an axis of rotation. From these images the
three-dimensional image information is reconstructed. In the fourth genera-
tion of CT scanners, the detectors are arranged in a stationary ring, while the
source rotates during image acquisition [25].

Another imaging technique to obtain three-dimensional images of the hu-
man body is Magnetic Resonance Imaging (MRI). The principle of MRI is to moni-
tor the behaviour of protons - nuclei of the hydrogen contained in water. In this
way images of the soft tissue can be obtained. Due to a strong magnetic field,
the spins of the nuclei are aligned parallel or antiparallel to the field direc-
tion. At room temperature and equilibrium the protons are more often aligned
parallel. With an electromagnetic pulse transitions between the two states are
caused. After the disturbance of the equilibrium, relaxation processes can be
measured by signals from induction currents. The tissue dependence of these
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relaxation processes allows to reconstruct images that provide tissue depen-
dent contrast [26]. MRI is further detailed in section 3.3.

3.1.3. Treatment

The choice of treatment strongly depends on the type and localisation of the tu-
mour and the patient’s general condition. Benign tumours may not require any
treatment, due to their low growth potential and their non-invasive behaviour.
However, they have to be removed by surgery, if they start to compress ad-
jacent structures or possibly can become malignant. Most of the malignant
tumours have to be treated. A removal of the tumour by surgery may prevent
the creation of metastases [27]. Furthermore it allows to determine the extent
of the disease. In radiation therapy the patient is locally treated with ionising
radiation to kill cancer cells and decrease the size of tumours [28]. It may be
applied as primary therapy or combined with surgery or medical treatment.
A medical treatment of cancer can include a wide range of substances. The
treatment with cytostatic drugs, substances inhibiting cell growth, is usually
termed chemotherapy [29]. Some types of cancer can be inhibited by influencing
the hormone balance. This endocrine therapy is e.g. appropriate for some types
of prostate and breast cancer [30]. Specific types of cancer are treated by im-
munotherapy, i.e. a stimulation of the immune system [31] or administration of
specialised antibodies to destroy cancer cells [32]. In some cases bone marrow
transplantation is chosen as treatment [33, 34].
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3.2. Database I: Microscopy Images of Meningiomas

3.2.1. Tumours of the Central Nervous System

Regarding brain tumours the common histological classification of tumours is
not appropriate. Brain tumours in general rarely metastasise, even if they are
highly malignant. Furthermore even benign tumours can be highly dangerous
to the patient, if the tumour is located in a sensitive area inside the brain and
its growth causes compression of adjacent structures [18, chapter 19.1]. Due to
these aspects, brain tumours are classified into four grades, strongly varying
regarding the patient’s prognosis (Table 3.1).

WHO Grade Characteristics
Grade I slowly growing, benign,

good patients prognosis
Grade II increased growth potential,

may become malignant, relapse possible
Grade III fast growing, features of malignancy,

unfavourable clinical outcome
Grade IV very fast growing and highly malignant,

highly unfavourable prognosis

Table 3.1.: The WHO classification of brain tumours.

In [35] brain tumours are further classified according to the tissue of origin:

• Tumours of neuroepithelial tissue, i.e epithelial, excitable cells

• Tumours of peripheral nerves. These tumours arise from nerves of
the peripheral nervous system, but may effect the central nervous system

• Tumours of the meninges, i.e. the coverings of the brain

• Lymphoma and haemopoietic neoplasms, i.e. malignant tumours
of the lymph tissue or cells pertaining blood formation

• Germ cell tumours. These tumours are morphological homologues
of neoplasms arising in testicles and ovaries

• Tumours of the sellar region, i.e. near to and including the hypophysis

• Metastatic tumours
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Figure 3.1.: Location and anatomy of the meninges. Left: The meninges encloses
the brain and the spinal cord and is attached to the skull. Right: The meninges is
composed of three different membranes.

3.2.2. Meningiomas

Meningiomas are mostly slowly growing, benign brain tumours of the menin-
ges [36], which is the covering of the brain. The meninges encloses the brain
and the spinal cord (Figure 3.1). The meninges is composed of three different
connective tissue membranes. The innermost is the pia mater following the sur-
face of the brain and spinal cord closely. The second membrane, the arachnoid
does not follow the surface of the brain. Between pia mater and arachnoid
there is the so called subarachnoid space filled with cerebrospinal fluid. Thin
threads of connective tissue span the subarachnoid space connecting the pia
mater and the arachnoid. The outermost, thick and dense membrane is the
dura mater. It covers the inside of the skull and contains larger blood vessels.
The very narrow space between dura mater and the arachnoid is the subdural
space. The dura serves to restrict the movements of the brain in the skull [37].

Meningiomas are attached to the dura mater and composed of arachnoidal
cells. Approximately 85 % of meningiomas are of WHO grade I [18, chap-
ter 19.1]. However, they may have to be treated by surgery, due to compres-
sion of adjacent structures inside the brain. Besides the WHO grade I menin-
giomas also Grade II and III meningiomas may occur with a correspondingly
less favourable clinical outcome [36]. A histological examination of resected
tissue allows a detailed classification into a large number of distinguishable
subtypes (Table 3.2) [36]. The by far most common subtypes of meningiomas
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meningioma WHO grade
meningotheliomatous meningiomas Grade I
fibroblastic meningiomas Grade I
transitional meningiomas Grade I
psammomatous meningiomas Grade I
angiomatous meningiomas Grade I
microcystic meningiomas Grade I
secretory meningiomas Grade I
lymphoplasmacyte-rich meningiomas Grade I
metaplastic meningiomas Grade I
chordoid meningiomas Grade II
clear cell meningiomas Grade II
atypical meningiomas Grade II
rhaboid meningiomas Grade III
papillary meningiomas Grade III
anaplastic meningiomas Grade III

Table 3.2.: Histological classification of meningiomas.

are the meningotheliomatous, the fibroblastic, the transitional and the psam-
momatous subtype [18, chapter 19.1].

3.2.3. Acquisition of Microscopy Images

Histological Tissue Preparation

The diagnostic tumour samples analysed were derived from neurosurgical re-
sections at the Bethel Department of Neurosurgery, Bielefeld, Germany for
therapeutic purpose and have been prepared postoperatively. The preparation
is shown in Figure 3.2 and includes four steps.

Fixation Fixation means an interruption of all biological processes in the cell
to prevent decay. The most common fixation technique uses formalin, an aque-
ous solution of Formaldehyde (HCHO). The formalin stabilises the tissue by
interlacing processes [38].

Embedding To obtain a sample providing homogeneous conditions during
sectioning, the sample is embedded into an appropriate substance, in most
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Figure 3.2.: The procedure of histological tissue preparation.

cases paraffin. The embedding process requires a prior dehydration of the tis-
sue [38].

Sectioning After fixation and embedding sections of approximately four µm
thickness are taken out using a microtome. The sections are then placed on
glass slides for further processing.

Staining In histology several different staining techniques exist [38]. The
most common standard staining method is the so called H&E staining. The
used pigments are haemalaun or hematoxylin and eosin. The positively charged
pigment haemalaun attaches at the negatively charged phosphate group of the
nucleic acid in the cell nuclei, resulting in a blue colouration of the nuclei [39].
In contrast to this, the eosin colours cytoplasm and collagen in red or pink [38].

Image Acquisition

For the database analysed archive cases from 2004 and 2005 were selected to
represent typical features of the four most common meningioma subtypes.
Slides were analyzed on a Zeiss Axioskop 2 plus microscope with a Zeiss Achro-
plan 40x/0,65 lens. After manually focusing and automated background cor-
rection, 1300x1030 pixels, 24 bit, true color RGB pictures were taken at stan-
dardised 3200 K light temperature in TIF format using Zeiss AxioVision 3.1
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software and a Zeiss AxioCam HRc digital color camera (Carl Zeiss AG, Ober-
kochen, Germany). Five cases were selected for each diagnostic group and
four different photomicrographs were taken of each case, resulting in a set of
80 pictures (Table 3.3).

Subtype No. of No. of. images total No. of
patients per patient pictures

meningotheliomatous 5 4 20
fibroblastic 5 4 20
psammomatous 5 4 20
transitional 5 4 20

Table 3.3.: Database of microscopy images of meningiomas.

3.2.4. Database Characteristics

Our database contains microscopic images of the most frequent subtypes, i.e. the
meningotheliomatous, fibroblastic, transitional and psammomatous meningiomas.
Histological features can be described to distinguish the four subtypes (in-
terclass differences). However, in each class innerclass differences can be ob-
served.

Interclass Differences

The four subtypes are characterised by distinct features allowing a trained in-
vestigator to make an unequivocal diagnosis in most cases. Table 3.4 gives an
overview of these features [36, 40].

Meningotheliomatous meningiomas provide a quite isotropic structure. The
cells, which form a syncytium, provide round, blue stained cell nuclei on a
background of red to pink cytoplasm. An example image is presented in Figure
3.3.

The fibroblastic subtype provides a quite anisotropic structure. The cells and
cell nuclei are spindle-shaped and a fascicular structure is visible, containing
fibres of collagen (Figure 3.4).

The most important histological features of the psammomatous subtype are
the so called psammoma bodies, calcifications embedded in the tissue. The
psammoma bodies are often surrounded by white artefacts (Figure 3.5). These
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cell nuclei cytoplasm

Figure 3.3.: Example image of the meningotheliomatous subtype.

Subtype Characteristics
Meningotheliomatous Lobulated, cells forming a syncytium
Fibroblastic Spindle-shaped cells,

matrix abundant in collagen
Transitional Whorls, few psammoma bodies,

features of fibroblastic
Psammomatous Transitional appearance,

abundant psammoma bodies

Table 3.4.: An overview of the histological features of the four tumour classes.

artefacts are cracks in the tissue occurring during sectioning due to the hard
calcifications.

The transitional subtype is named according to the intermediate features
provided. Transitional meningiomas may contain a few psammoma bodies
(not in the database at hand) or features of fibroblastic, i.e. spindle-shaped cells
and bunches of collagen. Furthermore whorls are typical for this subtype. Fig-
ure 3.6 shows the features by an example image.
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cell nuclei

cytoplasm fibres of collagen

cracks in tissue

Figure 3.4.: Example image of the fibroblastic subtype.

cracks in the tissue

psammoma bodies

Figure 3.5.: Example image of the psammomatous subtype.
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whorls

fibres of collagen

Figure 3.6.: Example image of the transitional subtype.

Innerclass Differences

An important aspect producing innerclass differences is the colouration of the
images. The staining process is influenced by variations in the preparation pro-
cedure of the microscopic images regarding the duration and the temperature.
Furthermore, the thickness of the sections may slightly vary. Besides technical
aspects the colouration can vary due to physiological variation from patient to
patient. Especially the colouration of the cytoplasm shows clear differences be-
tween different patients even for meningiomas of the same subtype. In Figure
3.7 two example images of the meningotheliomatous subtype are shown. The
cytoplasm in the image at the right-hand side has a much more intense stain-
ing than the cytoplasm of the left image. Besides a variation in the colouration
there are more innerclass variation. In the following these variations are de-
scribed with respect to one particular meningioma subtype. However, they
may also somewhat occur in other subtypes.

Meningotheliomatous Meningioma The most important innerclass variation
for the meningotheliomatous subtype beside the tissue colouration is the den-
sity of cell nuclei. In Figure 3.8 two example images are presented. The image
at the left hand clearly features a higher density of cell nuclei compared to the
image at the right hand side.
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Figure 3.7.: Two images of the meningotheliomatous subtype showing strong differ-
ences in colouration.

Fibroblastic Meningioma Fibroblastic tissue can show very strong innerclass
differences due to the fascicular structure. This fascicular architecture forwards
the rupture of the tissue during preparation. Hence, an increased amount of
image inhomogeneities created by cracks in the tissue can occur. In Figure
3.9 two images of different patients belonging to the fibroblastic subtype are
presented. The image at the right hand side depicts an increased amount of
inhomogeneities due to tissue cracking compared to the image on the left.

Psammomatous Meningioma Where the psammomatous subtype is concerned,
the ratio of psammoma bodies and syncytium may differ strongly. Figure 3.10
shows two images with clearly varying amount of calcifications embedded into
the syncytium. The higher the amount of psammoma bodies the higher most
often the amount of very large cracks in the tissue.

Transitional Meningioma As a subtype providing intermediate features the
transitional subtype can show several types of innerclass differences. Here,
the amount of collagen can vary strongly as shown in Figure 3.11. Besides the
amount of collagen also that of whorls, as well as the staining, the density of
cell nuclei or the number of cracks can differ strongly from patient to patient.
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Figure 3.8.: Two images of the meningotheliomatous subtype showing strong differ-
ences regarding the density of cell nuclei.

Figure 3.9.: Two images of the fibroblastic subtype with strongly varying amount of
tissue cracking.
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Figure 3.10.: Two images of the psammomatous subtype with strongly different
amount of psammoma bodies.

Figure 3.11.: Two images of the transitional subtype providing a significantly varying
amount of collagen.
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Figure 3.12.: Anatomy of the female breast.

3.3. Database II: MR Images of Breast Lesions

3.3.1. Anatomy of the Female Breast

The female breast is composed of approximately 80% connective tissue and
20% glandular tissue [19]. Figure 3.12 illustrates the anatomy of the female
breast by showing a cross-section. The breast is located over the pectoralis
muscles and covered by skin. The connective tissue includes fat tissue and
Cooper’s ligaments, which maintain the structural integrity. A number of 15-
20 glandular nodes or lobes is arranged in a radial fashion. Each single lobe is
composed of 20-40 lobules, each one containing 10-100 alveoli or acinii, the se-
cretory element of the breast. The secretion or milk is transported by the ducts
to the nipple. Each lobe has one collecting duct converging into a lactiferous
sinus directly connected to the nipple. The nipple is surrounded by the areolar
and contains sweat glands and nerve endings [19].

3.3.2. Lesions of the Breast

In [41] breast tumours are histologically divided into eight major categories
depending on their origin (Table 3.5). Each of the categories can be subdi-
vided into further subcategories. However, in clinical practice some lesions
commonly occur, which do not belong to any of these categories, e.g. inflam-
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Epithelial Tumours Tumours arising from the epithelium,
i.e. the covering of organs or bodies

Myoepithelial Tumours Tumours of myoepithelial cells, i.e. special type
of epithelial cells with contractile qualities

Mesenchymal Tumours Tumours of the mesenchyma,
a special type of connective tissue

Fibroepithelial Tumours Tumours with components of epithelial
and connective tissue

Tumours of the nipple Tumours restricted to the nipple and areola
Malignant lymphoma a malignant tumour of lymph tissue
Metastatic Tumours metastasis from other malignant tumours
Tumours of the male breast very rare

Table 3.5.: WHO categories of breast tumours.

mations and solitary cysts. Other tumours of the breast mentioned in [41] occur
only very rarely.

In the following the most frequently diagnosed breast lesions will be de-
scribed. For a more detailed description the reader is referred to [41].

Benign Lesions

A very common lesion regarding the female breast is a cyst. Cysts are benign,
fluid-filled lesions, which occur quite frequently and are harmless in nature.
The most important method for the diagnosis of cysts is ultrasound [19].

Most of the women examined in clinical practice are considered to have fi-
brocystic changes, also termed fibrocystic disease or fibrocystic conditions [19]. This
includes a broad spectrum of patterns, e.g. formation of cysts, formation of ex-
cess fibrous connective tissue (fibrosis) and increase of the number of epithelial
cells (epithelial hyperplasia).

Further benign diseases of the breast are the periductal mastitis and the duct
ectasia. Mastitis is an infection of the breast, which may lead to a blocked duct.
It often appears during time of breast-feeding. Periductal mastitis is an infection
of the ducts around the nipple. A duct ectasia is a dilation of a duct behind the
nipple. If the dilation is filled with fluid, the duct can be blocked. Inflamma-
tions are also possible [19]. Sclerosing lymphocytic lobulitis, also termed diabetic
mastopathy and lymphocytic mastitis are benign, inflammatory breast diseases
often associated with diabetes [42, 43].
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There are several benign lesions categorised as epithelial tumours or prolif-
erations. The papilloma is a benign tumour of the major duct, which in rare
cases can show malignant degeneration [41]. The adenosis is a benign, epi-
thelial proliferative process affecting mainly the lobular components of the
breast parenchyma [41]. In case of a accompanying fibrosis it is called a scle-
rosing adenosis. The complex sclerosing lesion or radial scar are complex epithe-
lial lesions incorporating several benign changes including adenosis. These le-
sions differing in size are characterised by architectural distortions of the breast
parenchyma [41].

The most common benign breast tumour is the fibroadenoma, which belongs
to the benign fibroepithelial tumours. Fibroadenomas can vary strongly ac-
cording to their histological appearance. Most of them can be correctly diag-
nosed using fine needle aspiration biopsy. The occurrence is most frequent in
women under the age of 30 [41].

Malignant Lesions

Breast cancer is the most common cancer in women [41]. However, the risk
of developing breast cancer varies strongly depending on the area of living.
The areas of high risk are North America, Europe and Australia, where 6%
of women develop breast cancer before age 75. In general, the risk increases
rapidly with age [41]. In young women most tumours are benign ones, whereas
cancer is the most frequent tumour in woman at age 60 or above. Nearly all
malignant lesions occurring in the breast are carcinomas, i.e. epithelial tu-
mours. For information regarding other rarely occurring types of malignant
tumours in the breast the reader may refer to [41].

Non-invasive Carcinomas

Non-invasive carcinomas do not invade the basal membrane. There is a risk
that they become invasive, but they do not need to. The non-invasive carci-
nomas include the lobular carcinoma in situ (LCIS) and the ductal carcinoma in
situ (DCIS), depending on their origin. If the DCIS grows into the duct with
a papillary configuration it is termed a papillary carcinoma, which very rarely
becomes invasive. DCIS are usually classified depending on their histological
characteristics. The most frequent histological patterns are comedo, cribriform,
solid, papillary and micropapillary [41].
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Invasive Carcinomas

If a lobular carcinoma extends beyond the boundary of the lobule of origin, it
is called an invasive lobular carcinoma. A DCIS becoming invasive is termed a
invasive or infiltrating ductal carcinoma. Most of these carcinomas do not pro-
vide a clearly recognisable histological structure and are therefore classified as
NOS (not other specified). The infiltrating ductal carcinoma NOS accounts for
nearly 80 % of breast cancers [44]. Besides these there exist some much rarer
ductal carcinomas. One of these is the tubular carcinoma, which is very well
differentiated and provides a particularly favourable prognosis. The medullary
carcinoma is well circumscribed and contains cells arranged in sheets. It has a
better prognosis than the invasive ductal carcinoma NOS [41]. The mucinous
carcinoma is very rare. It is formed by cells producing mucus. The so called
Paget’s Disease of the nipple is a carcinoma located at the nipple and areola which
may show eczematous appearance [45]. Other very rarely occurring carcino-
mas are described in [41]. In some cases invasive carcinomas are classified as
combinations of the ones previously described [44].

Carcinomas are classified into three categories (Grade I - III) according their
biological aggressiveness. Grade I includes the non-metastasising carcinomas,
Grade II the uncommonly metastasising carcinomas and Grade III all other
types [46].

3.3.3. Diagnostic Methods for the Detection of Breast Cancer

Due to the fact that breast cancer is one of the most frequent types of cancer in
western countries [47] a yearly medical prevent checkup is quite common. The
usual methods during checkup are palpation by the medical expert, medical
sonography and X-Ray mammography. In cases of doubt also a biopsy may
be used. A regular screening of woman older than 40 years using X-Ray mam-
mography is usually recommended [48, chapter 1]. The strengths of X-Ray
mammography are the high sensitivity in fatty areas and the demonstration
of microcalcifications, often a sign of malignancy [48, chapter 1]. However,
the benefit of this imaging technique for younger woman is limited, since the
younger breast is more radiographically dense and the interpretation of mam-
mograms therefore more difficult [19]. Sonography is very useful for distin-
guishing solid masses from cysts or imaging masses in dense breast tissue.
However, some malignant lesions are not visible sonographically [48, chap-
ter 1]. Most of the masses detected by palpation provide a diameter of more
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than 1 cm, i.e. small masses tend to be missed. Fine needle aspiration and core
biopsy have gained increasing importance as they provide high specificity val-
ues. The accuracy depends on technical and biological factors, e.g. small tu-
mours are more likely to be missed [48, chapter 1].

Considering the described strengths and limitations of the standard diag-
nostic methods, in a certain percentage of cases a clear diagnosis remains dif-
ficult. In some of these cases the method of choice for an accurate diagnostic
result is dynamic contrast enhanced magnetic resonance imaging (DCE-MRI),
i.e MRI involving the administration of a contrast agent [48, chapter 1]. The
administration of a paramagnetic contrast agent can provide additional use-
ful information on the vascularity and permeability of the tissue examined.
DCE-MRI is especially interesting in the following cases [48, chapter 1]. Severe
scars after surgery can mimic or obscure malignancy in conventional imaging,
demanding additional information. Silicone implants tend to mammograph-
ically obscure the surrounding tissue. MRI is useful to evaluate the implant
integrity and to detect or exclude the existence of malignant lesions next to the
implant. The additional information of MR images is mostly desirable in case
of dense breast tissue, especially regarding patients with a high risk of develop-
ing breast cancer and for the preoperative diagnosis of multifocality (existence
of two or more lesions). Furthermore DCE-MRI can be applied in cases with
contradictory results from other diagnostic methods [48, chapter 1]. The prin-
ciples of MR imaging of the female breast are detailed in the next subsections.

3.3.4. Principle of MR Imaging

Magnetic resonance, also termed Nuclear Magnetic Resonance (NMR) as a
medical imaging technique is still in an early stage [26]. It can provide three-
dimensional images of the patient’s anatomy. The contrast of tissues varies
depending on the particular settings of the imaging process.

Physical Basics

The Nuclear Spin In MR imaging the principle of nuclear magnetic resonance
is used to create images of living tissue. Each nucleus is associated with a
spin providing a spin angular momentum I and a magnetic moment µ. In an
external magnetic field B the magnetic quantum number can take values in the
range −I,−(I − 1)...(I − 1), I. Due to the fact that living tissue is examined,
the observed nucleus is usually the nucleus of the hydrogen atom contained in
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water. Therefore the following explanations will be discussed with focus on the
proton spin, though some MR techniques exist aiming at different nuclei [26].
For the following description the magnetic field is set parallel to the z-axes
of the coordinate system regarded, i.e. B0 = (0, 0, B0). The proton has a spin
angular momentum of 1

2 , thus the magnetic spin quantum number can take
the values ±1

2 , i.e the spin is aligned parallel or antiparallel to the external
magnetic field. As a consequence the energy of the two states is given by

E = µB (3.1)

= ±1
2

γh̄B0 (3.2)

with the gyromagnetic ratio of the proton γ and h̄ ≈ 1.0546 · 10−34 m2kg
s .

Due to the large number of protons examined, statistical descriptions have
to be taken into account [26]. The two possible states are occupied depending
on the temperature. According to the Boltzmann distribution the difference
regarding the population of the two states is described by

n(+1
2)

n(−1
2)

= e
∆E
kT (3.3)

with the Boltzmann constant k ≈ 1.38 · 10−23 m2kgK
s2 , the temperature T and the

energy difference between the two states

∆E = γh̄B0. (3.4)

The state providing a lower energy, associated with an alignment parallel
to the external field, is usually preferred, leading to a net-magnetisation of the
probe. The behaviour of this net-magnetisation M can be sufficiently described
classically due to the large number of nuclei. Therefore the classical descrip-
tion will be further detailed. For the quantum-mechanical description of the
process the reader may refer to appendix A.

The Magnetisation A constant external magnetic field B0 exerts a couple on
the magnetisation according to

dM
dt

= γM× B0. (3.5)
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This equation describes a precession of the magnetisation vector with angular
velocity

ω0 = −γB0. (3.6)

Equation 3.5 is called Larmor Equation and ω0 the Larmor Frequency [26].
The principle of MR imaging is to change the magnetisation by applying an

additional external magnetic field. This field is oriented in the xy-plane, pro-
vides the flux density B1 and rotates at the Larmor frequency. For an efficient
description of this process, we consider a reference frame rotating in the xy-
plane with angular velocity ω. In this reference frame the magnetisation is
described by

dM
dt

= γM× (B0 +
ω

γ
+ B1). (3.7)

If B0 is chosen such that B0 = −ω
γ equation 3.7 becomes

dM
dt

= γM× B1 (3.8)

meaning that the magnetisation vector M rotates about the direction of B1 [26].
If the pulse is applied for a specific time t the magnetisation vector is tilted
about

α = γB1t. (3.9)

By controlling the time t it is possible to rotate the magnetisation vector through
particular angles, e.g. 90◦ or 180◦ [26].

Relaxation Processes After tilting the magnetisation vector out of its origi-
nal position, the magnetisation relaxes back into its initial position. In most
cases this can be described by the Bloch equations [26]

dMz

dt
= − (Mz − M0)

T1
(3.10)

dMx

dt
= γMyB− Mx

T2
(3.11)

dMy

dt
= −γMxB−

My

T2
(3.12)

with the longitudinal relaxation time T1, the transverse relaxation time T2 and
the fully relaxed magnetisation M0. B represents the total magnetic field expe-
rienced by the spins. Detailed properties of this field in case of image acquisi-
tion are explained in the next paragraph.
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Figure 3.13.: Recovery of the longitudinal magnetisation after tilting the magnetisa-
tion vector about 90◦.

Quantum-mechanically the relaxation is a process of stimulated emission,
caused by different physical effects contributing to the relaxation of the mag-
netisation [26]. The emitted signal can be measured using a receiver coil and is
called free induction decay - FID [49].

The first-order ordinary differential equation 3.10 can easily be solved result-
ing in a solution for the longitudinal magnetisation Mz.

Mz = M0(1− e
−t
T1 ) (3.13)

This equation describes the recovery of the longitudinal magnetisation (so called
T1-recovery) and is schematically shown in Figure 3.13 for a tilting angle of 90◦.
The solution for the transverse components of the magnetisation with the ini-
tial magnetisation M = (−M0, 0) is given by

Mx = (−M0 cos ωt)e
−t
T2 (3.14)

My = (M0 sin ωt)e
−t
T2 (3.15)

with ω = γB [50, chapter 4].
A combination of the x- and y-components yields a generalised transverse

magnetisation traditionally represented by a complex number Mc
xy according

to [50, chapter 4]

Mc
xy = Mx + iMy (3.16)

= Mxy0 e
−t
T2 e−iωt (3.17)
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with Mxy0 = −M0. The change of the transverse magnetisation in the xy-plane
over time is shown at the top of Figure 3.14. The vector of the transverse mag-
netisation describes a spiralling path in the complex plane. The absolute value
of Mc

xy - further denoted as Mxy - decays with time constant T2 and is presented
at the bottom of Figure 3.14.

Only the rotation of the transverse magnetisation produces a measurable sig-
nal, which is the basis for tissue characterisation. T1 is termed the longitudinal
relaxation time since it describes the relaxation of Mz. It is sometimes also
termed spin-lattice relaxation time since the process of emission is here caused
by interaction with the lattice, in living tissue this refers to the water. T2 de-
scribes the relaxation of the magnetisation in the xy-plane. In tissue T2 is usu-
ally considerably shorter than T1. T2 is also termed spin-spin-relaxation time
since it results from a loss of phase coherence in the xy-plane due to spin-spin-
interaction. In practice the decay of the transverse magnetisation is even faster
than the processes described by T2. Besides spin-spin relaxation also inhomo-
geneities in the magnetic field lead to a dephasing of spins and thus to a decay
of Mxy. The latter one is described by a characteristic time T′2 [50, chapter 3].
The total decay of the transverse magnetisation is then described by the time
constant T∗2 , with

1
T∗2

=
1
T2

+
1
T′2

. (3.18)

Image Acquisition

The signal acquired in MR imaging is produced by the change of the time-
dependent transversal magnetisation. This change of magnetisation results
in a change of magnetic flux dΦ/dt, which induces a signal in the receiver
coil [50, chapter 3]. The specific properties of Mxy as noted in equation 3.17
yield Mxy ∼ dMxy/dt. The signal S(t) is proportional to dMxy/dt and thus
proportional to Mxy.

It is not possible to measure the magnetisation at each voxel, instead the
acquired signal covers the magnetisation of a large region. Mathematically the
total signal equation is therefore given by a spatial integral [50, chapter 4] over
Mxy

S(t) ∼
∫

x

∫
y

∫
z

Mxy(x, y, z, t) dx dy dz. (3.19)

The spatial localisation during image acquisition is achieved by applying mag-
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Figure 3.14.: Top: Change of the transverse magnetisation in the complex plane over
time. Bottom: The absolute value of Mc

xy decays with time constant T2.
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netic field gradients, i.e. the magnetic field can in general be written as

B(t) = B0 + Gx(t)x + Gy(t)y + Gz(t)z. (3.20)

With a magnetic field, which is not constant in space and time, equation (eq.
3.17) for the transverse magnetisation changes slightly. The frequency ω = γB
now becomes a function of x, y, z and t [50, chapter 4].

Mxy(x, y, z, t) = Mxy0(x, y, z) e
−t
T2 e−iγB0t e−iγ

∫ t
0 (Gx(t)x+Gy(t)y+Gz(t)z) (3.21)

2D-Imaging In 2D-MR Imaging the object is imaged slice-wise. The selec-
tion of a slice of the z-axes can be achieved by first applying a gradient in
z-direction. The Larmor frequency is then a function of z. The spins of a single
slice can be excited by applying a pulse providing a restricted bandwidth [50,
chapter 4].

By integrating over the z-axes in equation 3.19 the magnetisation becomes a
function of x and y given by

S(t) ∼
∫

x

∫
y

Mxy0(x, y) e
−t
T2 e−iγB0t e−iγ

∫ t
0 (Gx(t)x+Gy(t)y) dx dy (3.22)

or

S(kx(t), ky(t)) ∼
∫

x

∫
y

Mxy0(x, y) e
−t
T2 e−iγB0t e−i2πkx(t)x e−i2πky(t)y dx dy

(3.23)
with

ki(t) =
γ

2π

∫ t

0
Gi(τ) dτ i = x, y. (3.24)

The equation 3.23 reveals that the measured signal S(t) is the 2D Fourier Trans-
form of the transverse magnetisation. Corresponding to the image space given
by the x- and y-axis the space of the measured signal is termed the k-space. The
k-vector is determined by the gradients applied in x- and y-direction. First of
all for image acquisition the gradient in z-direction is applied to select a slice
combined with an RF pulse that excites the spins in that slice. Then a gradi-
ent in y-direction is applied followed by a gradient in x-direction. The first
one changes the phase of the spins depending on their position at the y-axes.
The second one is applied during signal acquisition and directly influences the
frequency in the reading-out process. The two processes described are termed
phase encoding and frequency encoding. By varying the gradients Gx and Gy the
signal depending on different k-values can be measured, i.e. S(kx, ky) is ac-
quired. The signal is given in Fourier space or k-space. An inverse 2D Fourier
Transform then produces the two-dimensional image of Mxy0 [50, chapter 4].
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3D-Imaging In 3D MR Imaging the electromagnetic pulse does not excite a
single slice but the entire probe, i.e. it is non-selective. The spatial encoding is
achieved by applying three spatial gradients. Here, both x- and y-direction are
phase-encoded while frequency-encoding is applied in z-direction [49]. The
acquired signal now depends on kx, ky and kz according to

S(t) ∼ S(kx(t), ky(t), kz(t)) (3.25)

∼
∫

x

∫
y

∫
z

Mxy0(x, y, z)e
−t
T2 e−iγB0te−i2πkx(t)xe−i2πky(t)ye−i2πkz(t)z dx dy dz (3.26)

and has to be Fourier-transformed in three dimensions to obtain the 3D MR
image [50, chapter 4].

Pulse Sequences and Contrast Mechanisms

Principle to Achieve Static Contrasts In 2D-imaging the image is acquired
slicewise. However, the entire slice cannot be imaged with one single excitation
pulse. During one excitation only one line of the 2D k-space is acquired. Thus,
several repeated excitation pulses are necessary to fill the k-space, i.e. to image
the whole slice.

By repeating the excitation pulse in different ways several types of contrast
mechanisms can be achieved. A sequence of excitation pulses is termed pulse
sequence. Various pulse sequences can be applied to assess particular tissue
properties such as T1, T2, T∗2 or the proton density.

To explain the principles of contrast mechanisms let us consider a very sim-
ple sequence consisting of repeated 90◦-pulses. More sophisticated sequences
are described in the next paragraph. Two basic factors describing the simple
sequence are the time interval between successive excitation pulses TR and the
time interval between excitation and data acquisition TE. Let TR be chosen in
a way that the transverse magnetisation is fully recovered before the next exci-
tation pulse is applied. After the time interval TE the transverse magnetisation
is then given by

Mxy = Mxy0 e
−TE

T2 . (3.27)

Since the recovery of the longitudinal magnetisation is considerably longer, the
value Mxy0 depends on the T1-recovery of the prior pulse. Thus equation 3.27
becomes

Mxy = M0 (1− e
−TR

T1 ) e
−TE

T2 (3.28)
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or including also the field inhomogeneities

Mxy = M0 (1− e
−TR

T1 ) e
−TE
T∗2 . (3.29)

In MR imaging the contrast CAB between two different types of tissue A and
B is important and can be described by the difference in magnetisation [50,
chapter 5]

CAB = M0A (1− e
−TR
T1A ) e

−TE
T∗2A − M0B (1− e

−TR
T1B ) e

−TE
T∗2B . (3.30)

By controlling the parameters TR and TE it is possible to vary the influence of
T1 or T∗2 onto CAB. Choosing a very short or very long TR leads to compara-

ble factors e
−TR
T1A and e

−TR
T1B and thus a minimised T1-contrast. Accordingly, the

T∗2 -contrast is minimised using very short or very long values for TE. The ac-
quired images showing a specific type of contrast are termed T1-weighted or
T∗2 -weighted. If both T1- and T∗2 -contrast are minimised, the obtained contrast is
based on the sheer number of protons contained in the tissue examined. This
form of contrast is termed proton density. In practice it is usually obtained with
extremely short TE-intervals and very long TR-intervals [50, chapter 5].

Pulse Sequences As described above several variations in the imaging pa-
rameters can be utilised to maximize T1-, T2- or T∗2 -contrast. In the following
some particular pulse sequences are described, which differ slightly from the
simple sequence already presented.

A special sequence to increase the T1-contrast is the so called inversion recov-
ery sequence. It is characterised by a 180◦ pulse and a followed 90◦ pulse. The
180◦ pulse flips the magnetisation vector into the negative z-direction, hence
the transverse magnetisation is zero and no signal can be measured. After a
specific time TI , the remaining longitudinal component of the magnetisation is
flipped into the xy-plane due to the 90◦-pulse, generating a measurable signal.
This doubles the dynamic range of the signal [50, chapter 5].

Another sequence - the so called spin echo sequence - is very common in MR
imaging. If applying this sequence, a 90◦ pulse is applied rotating the mag-
netisation into the xy-plane. Now the signal decreases mainly due to the field
inhomogeneities, i.e. the spins dephase with the time constant T∗2 . After a time
TE
2 a 180◦ pulse is applied, rotating the magnetisation vector along the x-axes.

Due to this pulse the spins rephase after the time TE
2 . Therefore an additional
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signal, a spin echo, can be observed after the time TE, the echo time. Due to
the rephasing effect, the amplitude of the echo is characterised by the time-
constant T2 and not by T∗2 . In fact, a spin echo sequence is the only method
to assess T2, i.e. the raw spin-spin-interaction effect without any field inhomo-
geneities. To maximize the T2-contrast one has to choose a long value for TR
and an intermediate value for TE. If the repitition time TR is chosen as interme-
diate and the echo time TE as short, the T1-contrast is maximized [50, chapter
5].

Yet another sequence based on echos is the gradient echo sequence. Based on
this pulse sequence, T∗2 -weighted images are acquired if TR is long and TE pro-
vides an intermediate value. It is not possible to measure T∗2 with a refocusing
spin-echo sequence since then all effects due to field inhomogeneities would be
removed and only T2 could be measured. Thus, the gradient field applied for
spatial localisation is utilised to produce an echo: As a side-effect the gradient
applied along the z-axes introduces an additional dephasing effect. Therefore
the gradient in z-direction is switched at the beginning of the phase-encoding
period. Due to the switched gradient the previously introduced dephasing
processes are inverted and a gradient echo occurs. Also T1-weighted images
can be acquired by choosing an intermediate value for TR and a short value for
TE [50, chapter 5].

The dominating time in the sequences above is the repitition time TR, which
is usually of the order of magnitude of T1 or longer. Due to this fact, the ac-
quisition times of the images can be undesirably long. Therefore fast imaging
techniques have been developed. One of these is called Fast Low Angle Shot
(FLASH), since the magnetisation vector is tilted about an angle θ ≤ 90◦. Due
to the low angle, the relaxation processes are much shorter. In FLASH image
acquisition a gradient echo is used to produce a measurable signal. The mea-
surable signal is in this case both T1 and T∗2 -dependent. A variation of the
repetition time TR, echo time TE and the flip angle θ influences the contrast of
the images. The image can provide T1-weighted or T∗2 -weighted contrast or
show the proton density [49].

Figure 3.15 shows example images of tissue imaged with varying contrast
mechanisms. At the top T1- and T2-weighted images of the brain are presented.
At the bottom a T1-weighted image and a proton-density image of the female
breast are shown.
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T −weighted MR image1 T −weighted MR image
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proton density

MR image
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T −weighted1

MR image
of the breast

Figure 3.15.: Top: T1 and T2-weighted MR images of the brain. Courtesy of
the Whole brain atlas by Keith A. Johnson, M.D. and J. Alex Becker, Ph.D. [51].
Bottom: T1-weighted and proton-density MR image of the female breast. Acquired
in the UK Breast screening study [52].
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3.3.5. DCE-MRI for the Detection of Breast Lesions

The static contrast mechanisms described above are useful to reveal character-
istic properties of the female breast. T2-weighted images e.g. show the con-
tent of fibrous tissue, cells and water, while fat tissue is clearly visible at T1-
weighted images. Especially acquisition of the same lesion with different pulse
sequences can be quite useful for lesion detection [48, chapter 1]. However, for
tumour detection further tissue properties are important such as the vascu-
larity and the permeability. To assess these characteristics the injection of a
contrast agent is required. The contrast agent Gd-DTPA1 is a paramagnetic
substance strongly influencing the measured relaxation times. Tissue show-
ing an uptake of the contrast agent therefore provides a significantly increased
signal intensity. The monitoring of a contrast agent injected prior to image ac-
quisition is called Dynamic Contrast Enhanced Magnetic Resonance Imaging
(DCE-MRI). After injection of Gd-DTPA T1-weighted images are acquired. Ac-
cording to [48, chapter 2] 3D-FLASH imaging is the most appropriate imaging
method for DCE-MRI, since Gd-DTPA provides very high signal intensities in
images acquired using a FLASH sequence. The short imaging time is a further
advantage since it decreases the amount of the patient’s movement during im-
age acquisition. The major advantages of 3D imaging are the simultaneous ac-
quisition of the information of all voxels and the higher Signal-to-Noise-Ratio.

In T1-weighted images fat and glandular tissue can be clearly distinguished.
Figure 3.16 shows as an example a single slice of a three-dimensional, T1-
weighted image of the female breast, acquired using a FLASH-sequence. A
slice of the 3D pre-contrast image (prior to Gd-DTPA administration) and the
same slice of the 3D first post-contrast image (after Gd-DTPA administration)
are shown. As marked in the image, fat tissue provides a very high signal in-
tensity in contrast to glandular tissue. The signal intensity of tumour tissue in
the pre-contrast image is quite similar to the signal intensity of glandular tis-
sue. However, after injection of the contrast agent the tumour is characterised
by a very high signal intensity due to its high vascularity. The tumour tissue
has absorbed the contrast agent and is now clearly visible. In DCE-MRI time
series of MR images are acquired. This allows a monitoring of the contrast
agent uptake characteristics of tissue over time, thereby providing additional
information.

1Gadolinium (III) diethyltriaminepentaacetic acid
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Image

Image

Glandular Tissue Tumour Fat Tissue

Pre−contrast

Post−contrast

Figure 3.16.: T1-weighted MR images of the female breast. Top: MR image prior to
contrast agent injection. The signal intensity of tumour and glandular tissue is quite
similar. Bottom: Same image after injection of the contrast agent. The tumour shows a
strong uptake of Gd-DTPA and is now clearly visible.
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time timetime
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Figure 3.17.: Typical patterns of contrast enhancement. The time-dependent signal
intensity (SI) of different types of tissue is shown.

Diagnostic Properties

Both the dynamics and the morphology of the enhanced tissue are considered
to provide information on the malignancy of the tumour tissue.

Enhancement Dynamics According to [52] benign tumours usually show a
delayed uptake, while malignant tumours are characterised by a fast and high
uptake and a washout of the contrast agent afterwards due to their higher vas-
cularity. In Figure 3.17 the typical patterns of contrast enhancement are pre-
sented. Signal curves with a fast uptake but without washout are classified as
suspicious [52].

According to [48, chapter 3] some more detailed enhancement characteris-
tics of different lesions can be described. Cysts usually do not enhance at all.
Fibrosis cannot be seen on DCE-MR images, since this process does not lead to
an increase in enhancement. Proliferative dysplasias such as adenosis result in
significant but mostly low and delayed enhancement patterns. Inflammatory
diseases of the breast can provide a contrast agent uptake usually also with a
dynamically delayed characteristic. The enhancement patterns of papillomas
can vary. Non-sclerosed papillomas show a variable amount of enhancement,
whereas sclerosed papillomas do not enhance [48, chapter 3]. The enhance-
ment patterns of fibroadenomas vary strongly depending on their histological
appearance. Fibrous Fibroadenomas containing high amounts of fibrous tissue
show only little enhancement. Fibroadenomas with a high amount of glandu-
lar tissue enhance significantly. Especially the so called myoxid fibroadenomas
enhance very strongly and can therefore be hardly distinguishable from car-
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cinomas. Invasive carcinomas are normally characterised by strong and fast
enhancement, often followed by a washout. However, the enhancement char-
acteristics can vary slightly depending on the histological appearance. Most
of in situ carcinomas enhance, but in approximately 50 % of the cases the en-
hancement does not show the typical signs of malignancy [48, chapter 3].

Enhancement Morphology In [52] several examples of typical enhancement
patterns are presented and described. The classification of the morphology
of lesions includes two aspects, the classification of the edge and contour of
a lesion and the classification of the pattern of contrast enhancement. The
contour of a lesion can be described as well defined, which is usually a sign
of benign lesions, poorly defined, which characterises suspicious lesions, and
spiculated or focal branching. The latter one is most often a sign of malig-
nancy. The pattern of the contrast enhancement is characterised as centrifugal,
homogeneous, heterogeneous, ring-like or not present [52]. These terms de-
scribe, which parts of the lesion enhance and how the dynamical enhancement
characteristics spatially differ. Benign lesions are usually associated with no
or minimal enhancement, centrifugal or homogeneous enhancement. Hetero-
geneous enhancement is classified as suspicious and ring-like enhancement as
malignant [52].

3.3.6. Database Characteristics

Imaging Details The database analysed contains images acquired within the
UK breast screening study. Women with an increased genetic risk of devel-
oping breast cancer have been screened regularly using DCE-MRI and X-Ray
mammography [52]. The database analysed contains T1-weighted MR images
acquired using a 3D FLASH sequence with a flip angle of 35◦, repetition time
TR = 10 − 14 ms and echo time TE = 4.2 − 5 ms on 1.5-Tesla systems and
TE = 7 ms on 1-Tesla systems. Usually two images are acquired before in-
jection of the contrast agent and four or five images afterwards. Thus a time
series of MR images is available for monitoring the contrast agent uptake. The
acquisition time for each single MR image is approximately 90 s and the spatial
resolution is 1.33 mm in both coordinates of the frontal plane and 2.5 mm in the
direction orthogonal to the frontal plane as visualised in Figure 3.18 [52].
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60−64 voxels / 2.5 mm per voxel

256 voxels / 1.33 mm per voxel

128 voxels / 1.33 mm per voxel

Figure 3.18.: Spatial resolution of the 3D DCE-MR image volumes analysed.

Expert Labels For each lesion analysed an expert label is available, i.e. a
medical expert has marked the voxels in the image belonging to the respective
lesion. This label is stored as a binary image, i.e. all voxels with the value set
to 1 mark the tumour region, all voxels with the value set to 0 the non-tumour
region. The labels were generated by Dr. Premina Kessar1.

Included Lesions Table 3.6 presents an overview of the database analysed
and the lesions included. In some cases several lesions have been diagnosed
using different diagnostic methods including some types of lesions, which are
not visible on MR images. However, usually only a selected number of these le-
sions is marked by an expert label and therefore relevant in the further analysis.
The lesions considered are noted in Table 3.6. Red colour indicates malignant
and green colour benign lesions.

1Now at: Bromley Hospitals NHS Trust, UK
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Collec- Patient No. of Diagnosis
tion volumes

pre post
C1 1 2 5 invasive ductal/NST/lobular carcinoma,

Grade 2, vascular invasion
2 2 5 Sclerosing lymphocytic lobulitis
3 2 5 invasive tubular carcinoma, Grade 1
4 2 5 invasive ductal carcinoma - NST, Grade 2

two lesions
5 2 5 Fibroadenoma, Fibrocystic change
6 2 5 Fibroadenoma
7 2 5 invasive ductal carcinoma - NST, Grade 3
8 2 5 invasive carcinoma, type not assessable,

Grade 3
C2 9 2 5 benign - no additional information

10 2 4 invasive lobular carcinoma, Grade 2
11 2 4 invasive ductal carcinoma - NST, Grade 2

two lesions
12 2 4 Multiple papilloma

Fibroadenoma
13 2 4 invasive ductal carcinoma - NST, Grade 3

two lesions
vascular invasion

14 2 4 benign - no additional information
two lesions

15 2 4 invasive ductal carcinoma, Grade 3 - NST
vascular invasion

16 2 4 invasive ductal carcinoma, Grade 3 - NST
malignant - no additional information
three lesions

17 2 4 invasive ductal carcinoma - NST, Grade 2
malignant - no additional information
two lesions

18 2 4 benign lesion - no additional information

Table 3.6.: Content of collections 1 and 2.
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L’imagination d’un mathématicien qui crée n’est pas différente de celle
d’un poète qui invente.

The imagination of a creative mathematician does not differ from the one
of a creative poet.

JEAN-BAPTIST LE ROND D’ALEMBERT

In this chapter the methods utilised in this work are described. As mentioned
in the introduction, these are the Discrete Wavelet Transform (DWT) - provid-
ing scale-dependent and localised image analysis - as well as methods of di-
mension reduction. In this way wavelet-based feature spaces can be analysed
and new features derived. In the following, the principles of wavelet analy-
sis are presented. Afterwards the methods of dimension reduction utilised for
feature space exploration are described.

4.1. Wavelet Analysis

Wavelet Analysis is a powerful mathematical framework applied in the analy-
sis of signals and images [53]. The most important aspect of Wavelet Analysis is
that it provides simultaneous time- and frequency analysis. In this section the
basic principles of wavelet analysis will be described including its advantages
over the more classical Fourier Analysis. For a more detailed description es-
pecially with respect to further methods of time-frequency analysis the reader
may refer to [53, chapter 4].

4.1.1. From Fourier to Wavelet Analysis

An essential part in signal processing is to extract information from the sig-
nal by analysing its frequency contents. The mathematical method to perform
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this task is the Fourier Analysis. However, the Fourier Analysis extracts only
global frequency information and one is often interested in the analysis of lo-
calised phenomena, i.e. the frequency characteristics of a signal within a spe-
cific interval of time. For this purpose the Windowed Fourier Transform has been
developed, providing Fourier Analysis applied piecewise to the signal, i.e. to
intervals. Although the Windowed Fourier Transform allows a time-frequency
analysis it still has some disadvantages. The most important aspect here is,
that the size of the window, i.e. the part of the signal the Fourier Transform
is applied to, has to be chosen a priori and may not be suited for the specific
purpose. Wavelet Analysis is a method which overcomes this disadvantage by
adapting the length of the analysed signal to the frequency content.

In this section, the principles of time-frequency analysis and its development
will be detailed starting from the Fourier Transform. From there, the Windowed
Fourier Transform will be described and finally the basics of Wavelet Analysis are
presented.

Fourier Analysis

As mentioned above Fourier Analysis provides the analysis of signals regard-
ing the frequency content. Two types of analysis methods exist, the expansion
into a Fourier Series, which is appropriate for periodic functions and the Fourier
Transform applied to non-periodic functions.

Fourier Series A Fourier Series is the expansion of a periodic function into a
trigonometric polynomial, i.e. a polynomial of cosine and sine functions [54,
chapter 2]. For the mathematical description of periodic functions the follow-
ing definitions are utilised

L1
2π(R) =

{
f : R → C : f 2π−periodic,

∫ π

−π
| f (t)|dt < ∞

}
, (4.1)

L2
2π(R) =

{
f : R → C : f 2π−periodic,

∫ π

−π
| f (t)|2dt < ∞

}
. (4.2)

It can be shown [54, chapter 3] that the trigonometric system
{

1√
2π

eikt
}∞

k=−∞
defines an orthonormal basis in L2

2π(R), which is a Hilbert space with the scalar
product

〈 f , g〉 =
∫ π

−π
f (t)g(t) dt (4.3)
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for f , g ∈ L2
2π(R) and the norm

|| f || =
√∫ π

−π
| f (t)|2 dt. (4.4)

Please note, that the interval for integration can be replaced by an arbitrary
interval of length 2π, due to the periodicity of the function f and g.

Using the relation eix = cos x + i sin x the Fourier Series of a function f can
be written as a series of complex exponential functions [54, chapter 2]. If f (t) ∈
L1

2π(R) the Fourier Series of f (t) is defined as

f FS(t) =
+∞

∑
k=−∞

ckeikt (4.5)

with the Fourier coefficients

ck =
1

2π

∫ 2π

0
f (t)e−ikt dt. (4.6)

The Fourier coefficients c±k can be interpreted as the contribution of the fre-
quency |k| to f FS.

The answer to the question, whether the partial sum f FS
n = ∑+n

k=−n ckeikt of
the Fourier Series converges to f for n → ∞ is not obvious. However, the
convergence can be proven under certain conditions. For a detailed discussion
on the convergence of f FS

n to f the reader may refer to [54, chapter 2]. Here
we restrict our considerations to the case f ∈ L2

2π(R). Due to the property of

the set
{

1√
2π

eikt
}∞

k=−∞
to constitute an orthonormal bases in L2

2π(R) it can be

shown that f FS
n converges to f in norm, which is defined by

f FS
n −→

in norm
f ⇔

∫ π

−π
| f FS

n (t)− f (t)|2dt →
n→∞

0. (4.7)

The Fourier Series f FS(t) is the expansion of f in L2
2π(R) and the Fourier coef-

ficients are unique [54, chapter 2].

Fourier Transform Let us now consider non-periodic functions f : R → C

and define L1(R) and L2(R) as

L1(R) =
{

f : R → C :
∫ ∞

−∞
| f (t)|dt < ∞

}
. (4.8)

L2(R) =
{

f : R → C :
∫ ∞

−∞
| f (t)|2dt < ∞

}
. (4.9)
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The Fourier Transform measures the content of frequencies in a signal or func-
tion f ∈ L1(R) by [54, chapter 7]

f̃ (ω) =
∫ +∞

−∞
f (t)e−iωtdt. (4.10)

If f̃ ∈ L1(R) as well the Inverse Fourier Transform is given by

f (t) =
1

2π

∫ +∞

−∞
f̃ (ω)eiωtdω. (4.11)

and holds for almost every t ∈ R in the sense of the Lebesgue measure [54,
chapter 7]. As described in [54, chapter 7] the Fourier Transform originally
defined on L1(R) can be extended to the Hilbert space L2(R) if interpreted by
a limiting process.

Heisenberg Uncertainty

In the analysis of a signal there is always a trade-off between the resolution in
time and frequency. To be more explicit, let us define for a function f ∈ L2(R)
the temporal variance σt and the frequency variance σω by

σ2
t =

1
‖ f ‖2

∫ ∞

−∞
(t− u)2| f (t)|2dt (4.12)

σ2
ω =

1
2π‖ f ‖2

∫ ∞

−∞
(ω − ξ)2| f̂ (ω)|2dω (4.13)

with the average values u and ξ given by [53, chapter 2]

u =
1

‖ f ‖2

∫ ∞

−∞
t| f (t)|2dt (4.14)

ξ =
1

2π‖ f ‖2

∫ ∞

−∞
ω| f̂ (ω)|2dω. (4.15)

The temporal and frequency variances measure the energy concentration around
the average values, where the energy of a function is given by the L2-norm.
The Heisenberg Uncertainty Principle describes the fact that the energy of a func-
tion f cannot be arbitrarily well localised in both time and frequency domain.
According to this principle the temporal and frequency variances satisfy [53,
chapter 2]

σ2
t σ2

ω ≥ 1
4

(4.16)
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where the equality is given only if the function f is a modulated Gaussian,
i.e. f = a exp [iξt− b(t− u)2] [53, chapter 2]. Thus a smaller temporal variance
is always associated with a higher frequency variance and vice versa.

Windowed Fourier Transform

The Fourier Analysis described above only measures the global frequency spec-
trum of functions and signals and thus does not provide any information re-
garding the time axis. For a simultaneous analysis of time and frequency con-
tent of a signal, some modifications are required. One possible solution is the
Windowed Fourier Transform [53, chapter 4], i.e. a Fourier Transform applied
only with respect to finite intervals on the time axis. For f ∈ L2(R)

WF[ f (u, ξ)] = 〈 f , gu,ξ〉 =
∫ ∞

−∞
f (t)g(t− u)e−iξtdt (4.17)

Here, g(t) is a real and symmetric window function. It is normalised such that
‖g‖ = 1. The transform given in equation 4.17 is also termed Short Time Fourier
Transform [53, chapter 4]. With the Fourier Transform of ĝu,ξ(ω)

ĝu,ξ(ω) = ĝ(ω − ξ)e−iu(ω−ξ) (4.18)

the temporal variance σt and frequency variance σω of the function gu,ξ are
given by

σ2
t =

∫ ∞

−∞
(t− u)2|gu,ξ(t)|2dt =

∫ ∞

−∞
t2|g(t)|2dt (4.19)

σ2
ω =

1
2π

∫ ∞

−∞
(ω − ξ)2|ĝu,ξ(ω)|2dω =

1
2π

∫ ∞

−∞
ω2|ĝ(ω)|2dω (4.20)

These two values are measures for the resolution of the Windowed Fourier
Transform in time and frequency. Both are independent of the average values u
and ξ respectively meaning that the resolution of the Windowed Fourier Trans-
form is constant across time and frequency [53, chapter 4]. The resolution de-
pends on the choice of the window function and is best if gu,ξ is a Gaussian [53,
chapter 4]. In this case it is called a Gabor-Transform. The resolution of a Win-
dowed Fourier Transform can be visualised by plotting boxes with length σt
and σω - so called Heisenberg Boxes - in the time-frequency plane (Figure 4.1).
By scaling the window function in time such that σt increases by a factor s the
frequency variance decreases by a factor 1

s due to equation (4.16). In this way a

53



4. Methods
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Figure 4.1.: Heisenberg Boxes of the functions ĝu,ξ(ω) and ĝν,γ(ω). The average val-
ues in time and frequency differ, but the length of the boxes in time and frequency is
the same.

trade-off between time and frequency localisation can be achieved [53, chapter
4]. However, as can be seen in Figure 4.1 the size and shape of the Heisenberg
Boxes and thus the resolution is constant in the time-frequency-plane. This is
an important limitation of the Windowed Fourier Transform. For the analysis
of signals comprising structures of different size it is desirable to perform a
transform that adapts to structures with different types of support.

Wavelet Transform

The limitations of the Windowed Fourier Transform can be overcome if the
function gu,ξ is replaced by ψa,b(t) which is defined by

ψa,b : R → C ψa,b(t) =
1√
|a|

ψ(
t− b

a
) (4.21)

with the scaling parameter a and the shifting parameter b [53, chapter 4]. Jean
Morlet introduced this type of analysis and termed the function “ondelette” or
in english “wavelet”. Here the function ψ(t) is the so-called mother wavelet and
the ψa,b(t) are shifted and dilated versions of the mother wavelet (Figure 4.2).
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Figure 4.2.: The shifting and dilation of a wavelet. Note, that the wavelet function
shown here is just an example. The general construction of such functions is explained
in one of the following paragraphs.

Thus the most important difference of a wavelet in comparison to the function
gu,ξ in the Windowed Fourier Transform is the localisation across the time-
frequency plane. It can be shown [53, chapter 4] that the time- and frequency
variation of a wavelet ψa,b depends on the scaling parameter a in the following
way.

σ2
t (ψa,b) = a2σ2

t (4.22)

σ2
ω(ψa,b) =

1
a2 σ2

ω (4.23)

with σt =
∫ ∞
−∞ t2|ψ(t)|2dt and σω =

∫ ∞
−∞ ω2| ˆψ(ω)|2dω. Thus the area of a

Heisenberg Box is constant across the time frequency plane but the shape of the
Heisenberg Box varies. This means that the resolution in time and frequency
is not constant but depends on the parameter a (Figure 4.3). In this way the
scaling parameter a controls the resolution of the signal structures analysed.
The parameter η in Figure 4.3 is the average value of the Fourier transformed
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mother wavelet ψ̂(ω)

η =
1

2π

∫ ∞

0
ω|ψ̂(ω)|2dω. (4.24)

As can be seen in Figure 4.3 higher frequencies are associated to Heisenberg
Boxes which are smaller in the time domain and thus provide a higher resolu-
tion in time. This adaption of high frequencies to a small scale time resolution
and low frequencies to large scale time resolution constitutes the adaptivity we
have missed regarding the Windowed Fourier Transform.

σω σω

σω

σω

ψ
a2b2

ψ
a 1b1

t0

ω

η_
a1

η_
a

2

(a,b) = aσt σt (a,b) = _1
a

1

a1 σt

a1 a2>

2

Heisenberg Box of

a
2 t
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_1
a

σ

_1
a

b2 b1

Figure 4.3.: Heisenberg Boxes of the wavelets ψa1,b1 and ψa2,b2 . The length of the boxes
in time and frequency varies while the area of the boxes is constant.

4.1.2. Continuous and Discrete Wavelet Transform

A function f (t) has to fulfil certain conditions to serve as a wavelet. These
conditions depend on the type of the Wavelet Transform. For the Continu-
ous Wavelet Transform this is the so called admissibility condition. For the Dis-
crete Wavelet Transform further properties are required. The Discrete Wavelet
Transform is usually discussed using the formalism of frames.
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The Continuous Wavelet Transform The admissibility condition [55, chapter 2]
for a wavelet ψ(t) ∈ L2(R) is given by

Cψ =
∫ ∞

−∞

|ψ̂(ω)|2
ω

dω < ∞. (4.25)

From equation (4.25) one can easily derive the condition
∫

ψ(t)dt = 0 [55, chap-
ter 2], which means that wavelets have a zero average, i.e. wavelets are oscillat-
ing functions. For a wavelet ψ(t) ∈ L2(R) holding the admissibility condition
the Continuous Wavelet Transform is defined by [55, chapter 2]

W[ f (a, b)] =
∫ ∞

−∞
f (t)

1√
a

ψ∗(
t− b

a
)dt. (4.26)

The Continuous Wavelet Transform W[ f (a, b)] of a signal f describes how far
the details of the scale a contribute to the signal around the time point b. The
exact properties strongly depend on the chosen mother wavelet.

In [53, chapter 4] reconstruction of the signal f (t) in case of a real wavelet
ψ ∈ L2(R) holding the slightly modified admissibility condition

Cψ =
∫ ∞

0

|ψ̂(ω)|2
ω

dω < ∞ (4.27)

is defined by

f (t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
W[ f (a, b)]ψa,b

da db
a2 . (4.28)

Discrete Wavelet Transform The Continuous Wavelet Transform provides a
highly redundant description of a signal or function f (t). This can intuitively
be seen by the following observation. If scaling parameter a and shifting pa-
rameter b are continuous variables, independent of each other, the correspond-
ing Heisenberg boxes strongly overlap in the time-frequency-plane. To reduce
the redundancy, we discretise the parameters a and b. This results in a set of
function ψaj,k,bj,k

, which under certain conditions is sufficient to reconstruct the
signal f in a stable manner. The transform based on this set of functions is
termed Discrete Wavelet Transform.

To describe the requirements on the set of wavelet functions we will refer
to the formalism of frames. According to [53, chapter 5] a frame is a family of
vectors {ϕn}n∈Γ that characterises a signal f by its inner products {〈 f , ϕn〉}n∈Γ.
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Here, Γ is a infinite or finite set of indices. Given a Hilbert space H and a
sequence {ϕn}n∈Γ in H, the sequence {ϕn}n∈Γ is a frame of H if there exist two
constants A > 0 and B > 0 such that for any f ∈ H

A‖ f ‖2 ≤ ∑
n∈Γ

|〈 f , ϕn〉|2 ≤ B‖ f ‖2. (4.29)

In the case that A = B the frame is said to be tight [53, chapter 5]. The linear
operator U from H to l2(Γ) = {x : ||x||2 = ∑n∈Γ |xn|2 < ∞} given by

(U f )n = 〈 f , ϕn〉 (4.30)

is called frame operator. The dual frame ϕ̃n defined by

ϕ̃n = (U∗U)−1ϕn (4.31)

with the adjoint operator U∗ satisfies

∀ f ∈ H,
1
B
‖ f ‖2 ≤ ∑

n∈Γ
|〈 f , ϕ̃n〉|2 ≤

1
A
‖ f ‖2, (4.32)

and
f = Ũ−1U f = ∑

n∈Γ
〈 f , ϕn〉ϕ̃n = ∑

n∈Γ
〈 f , ϕ̃n〉ϕn (4.33)

with Ũ−1 = (U∗U)−1U∗. The proof is given in [53, chapter 5]. If a frame
{ϕn}n∈Γ is linearly independent (i.e. a Riesz basis), the dual frame {ϕ̃n}n∈Γ is
also linearly independent and called the dual Riesz basis [53, chapter 5]. Dual
Riesz bases are so called biorthogonal families of vectors, which means that
〈ϕp, ϕ̃n〉 = δp,n. Orthonormal bases are also special frames, i.e. they are tight
frames with normalised {ϕn}n∈Γ and A = B = 1.

Using the definitions above, we can describe the requirements for the Dis-
crete Wavelet Transform. A discretisation of the parameters a and b leads to a
set of wavelet function ψj,k = ψaj,bj,k

, j, k ∈ Z obtained from the ψa,b by

aj = σj bj,k = kσjτ (4.34)

ψj,k =
1

σj/2 ψ

(
t− kσjτ

σj

)
(4.35)

with the constants σ > 1 and τ > 0. The inner products of ψj,k with the signal
or function f (t)

〈 f , ψj,k〉 = W f (kσjτ, σj) (4.36)
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4.1. Wavelet Analysis

sample the Continuous Wavelet Transform at time intervals σ−jτ. If the ψj,k
constitute a frame, then the inner products are sufficient to reconstruct the sig-
nal f (t) in a complete and stable manner, i.e. the inner products are sufficient
to characterise f (t). In this case f (t) is given by

f = ∑
j,k
〈 f , ψj,k〉ψ̃j,k. (4.37)

The necessary and sufficient conditions on ψ, σ and τ to obtain ψj,k consti-
tuting a frame are given in [53, chapter 5], [55, chapter 3].

A very common choice for the scaling parameter σ also used in the following
paragraphs is σ = 2, the so called dyadic case.

It is not only possible to construct general wavelet frames but also to con-
struct biorthogonal and orthonormal wavelet bases. The framework for this
construction is the multiresolution analysis described in the next section.

4.1.3. Multiresolution Analysis

As described in the previous paragraph, it is possible to construct wavelets ψ

such that the dilated and translated family of functions{
ψj,k(t) =

1√
2j

ψ

(
t− 2jk

2j

)}
(j,k)∈Z2

(4.38)

is an orthonormal basis of L2(R) [53, chapter 7]. In that case any function
f (t) ∈ L2(R) is given by

f (t) =
+∞

∑
j=−∞

+∞

∑
k=−∞

〈 f , ψj,k〉ψj,k (4.39)

with the wavelet coefficients dj,k = 〈 f , ψj,k〉. Scaling or dilation is indicated by
j while k is the translation index. In this section, it is described how these
orthonormal bases are constructed. For this purpose the principle of multireso-
lution approximation or multiresolution analysis is essential. According to [53,
chapter 7] a sequence of closed subspaces {Vj}j∈Z of L2(R) is a multiresolution
approximation if the following statements are satisfied:

∀(j, k) ∈ Z2, f (t) ∈ Vj ⇔ f (t− 2jk) ∈ Vj, (4.40)
∀j ∈ Z, Vj+1 ⊂ Vj, (4.41)
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∀j ∈ Z, f (t) ∈ Vj ⇔ f (
t
2
) ∈ Vj+1, (4.42)

lim
j→+∞

Vj =
+∞⋂

j=−∞

Vj = {0}, (4.43)

lim
j→−∞

Vj = Closure

 +∞⋃
j=−∞

Vj

 = L2(R). (4.44)

There exists such θ that {θ(t− n)}n∈Z is a Riesz basis of V0. (4.45)

Equation (4.40) describes the invariance of Vj by translations proportional to
2j. Due to equation (4.41) an approximation at a specific level of resolution
contains the necessary information to describe the function at a coarser level
of resolution. According to equation (4.42) the dilation of a function f (t) by a
factor of 2 defines an approximation at a coarser resolution. With increasing
scale j more and more details are lost, this results in equation (4.43). Equa-
tion (4.44) implies that with increasing resolution, i.e. decreasing scale j, the
approximation converges to the original signal. The approximation of a signal
f (t) corresponding to a resolution of scale j is the orthogonal projection of f (t)
onto the subspace Vj.

By orthogonalising the Riesz basis θ of equation (4.45) it is possible to ob-
tain orthonormal bases of the subspaces Vj further denoted with {φj,k}k∈Z [53,
chapter 7]. To assure that the set of functions {φj,k}k∈Z is an orthonormal basis
of Vj for all j ∈ Z the Fourier Transform of φ has to hold the condition

φ̂(ω) =
θ̂(ω)

(∑+∞
k=−∞ |θ̂(ω + 2kπ)|2) 1

2
. (4.46)

The function φ is called the “scaling function” of the multiresolution analysis.
Since the Vj are closed subspaces of L2(R), they are Hilbert spaces. Therefore
we can define the orthogonal complement of a subspace Vj in Vj−1 according
to

Vj−1 = Vj ⊕Wj (4.47)

with
Wj⊥Wj′ if j 6= j′ (4.48)

and
L2(R) =

⊕
j∈Z

Wj. (4.49)
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4.1. Wavelet Analysis

Let PVj denote the operator of the orthogonal projection of the function f (t)
onto the subspace Vj. Then equation 4.47 is equivalent to

PVj−1 f = PVj f + PWj f . (4.50)

According to [55, chapter 5] it can be shown that if a scaling function φ and a
multiresolution approximation according to equations 4.40-4.44 exist, then an
orthonormal wavelet basis {ψj,k}(j,k)∈Z2 of L2(R) exists, such that

PVj−1 f = PVj f +
+∞

∑
k=−∞

〈 f , ψj,k〉ψj,k. (4.51)

In the following we will construct the wavelet basis {ψj,k}(j,k)∈Z2 using the scal-
ing function φ. Due to the multiresolution properties described {φ(t− k)}k∈Z

is a orthonormal basis of V0. Therefore the scaling function 1√
2
φ( t

2) ∈ V1 ⊂ V0

can be decomposed as

1√
2

φ

(
t
2

)
=

+∞

∑
k=−∞

hkφ(t− k) (4.52)

or

φ(t) =
√

2
+∞

∑
k=−∞

hkφ(2t− k) (4.53)

with

hk =
〈

1√
2

φ(
t
2
), φ(t− k)

〉
(4.54)

+∞

∑
k=−∞

hkhk+2n = δ0,n (4.55)

The hk can be interpreted as a discrete filter and are therefore termed filter coef-
ficients. The corresponding wavelets constituting a basis of L2(R) can be con-
structed as [55, chapter 5]

ψ(t) =
√

2
+∞

∑
k=−∞

gkφ(2t− k) (4.56)

with
gk = (−1)kh1−k. (4.57)
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4.1.4. The Fast Wavelet Transform

The principles of Multiresolution Analysis lead to an efficient algorithm for the
computation of wavelet coefficients, the so called Fast Wavelet Transform. Given
the orthonormal bases {φj,k}k∈Z of Vj and {ψj,k}k∈Z of Wj. The projections in
these spaces are

aj,k = 〈 f , φj,k〉 and dj,k = 〈 f , ψj,k〉. (4.58)

The dj,k are the wavelet coefficients as defined above. The aj,k are the projec-
tions of the signal onto the shifted and dilated versions of the scaling func-
tion and therefore often termed as “scaling function coefficients”. According
to [53, chapter 7] these coefficients can be computed successively with a cas-
cade of discrete convolutions and subsamplings according to the decomposi-
tion scheme

aj+1,p =
+∞

∑
k=−∞

hk−2paj,k (4.59)

dj+1,p =
+∞

∑
k=−∞

gk−2paj,k. (4.60)

The reconstruction is computed as follows.

aj,p =
+∞

∑
k=−∞

hp−2kaj+1,k +
+∞

∑
k=−∞

gp−2kdj+1,k (4.61)

This algorithm of equations (4.59) and (4.60) is called “Mallat-Algorithm” or
“pyramid algorithm” [53, chapter 7]. The wavelet coefficients are often indi-
cated as “details” since they encode the scale-dependent details of the signal.
In contrast to this, the scaling function coefficients are usually denoted as “ap-
proximation” or “approximation coefficients” since they represent a coarser
version of the original signal. (This of course explains the variable names, aj,k
for approximation and dj,k for details.) In Figure 4.4 the principle of the algo-
rithm is demonstrated. Please note the subsampling or downsampling by 2 of
the coefficients as indicated in Figure 4.4 using up- or down-pointing arrows.
Applying this decomposition iteratively leads to the scale-wise computation of
all wavelet coefficients, the Fast Wavelet Transform. The scale-wise reconstruc-
tion of the original signal is the Fast Inverse Wavelet Transform [53, chapter 7].
Both transforms are shown in Figure 4.5. The Wavelet Transform described is
a non-redundant transform, i.e. a signal providing n samples is transformed
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Figure 4.4.: The Mallat-Algorithm as described in equations 4.59 and 4.60.
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Figure 4.5.: The Fast Wavelet Transform and the Fast Inverse Wavelet Transform. The
arrows indicate the decomposition or reconstruction step.
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d1

2d

d3a3

a1

a 0
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Figure 4.6.: During a Fast Wavelet Transform the number of coefficients is halved at
each level of the transform.

into n coefficients. Due to the subsampling by 2 already indicated in Figure 4.4
the number of coefficients decreases with a factor 2 at each scale. This fact is
shown in Figure 4.6, where the coefficients at each scale are indicated by bars.
The length of the bars show the number of coefficients at the different scales.

Practical Considerations One particular aspect has to be mentioned to clari-
fy the relation between the FWT (Figure 4.6) producing wavelet coefficients
of a finite number of scales and the multiresolution approximation (equations
4.40-4.44) defined for an infinite number of scales j. The multiresolution ap-
proximation has been discussed with respect to continuous functions defined
on L2. On the other hand, real-world signals provide a limited resolution and
a limited length, i.e. they are composed of a finite number of samples. Conse-
quently, the number of scales considered in the analysis of such a signal is also
finite. The finest scale, relevant for the signal characteristics, is determined by
the resolution of the signal. The coarsest relevant scale is determined by its
length.

A simple and usual way to start a FWT in practice is the following. The sam-
ples of the signal are considered as the scaling function coefficients aj of the
finest relevant scale (aside from a normalisation) [53, chapter 7]. These coeffi-
cients are then decomposed into the wavelet and scaling function coefficients
of the next coarser scale. By iterating this decomposition scheme all required
wavelet coefficients can be computed.

Furthermore, as demonstrated above, the filter coefficients hk and gk are suf-
ficient to compute all desired wavelet coefficients. The functions φ and ψ are
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4.1. Wavelet Analysis

not required in the pyramid algorithm - a very important aspect for the appli-
cability of this decomposition scheme.

4.1.5. Wavelet Transform in Higher Dimensions

There are several methods for defining wavelet functions in higher dimen-
sions. In case of so called separable wavelets, the wavelet functions in higher
dimensions are products of the one-dimensional wavelet or scaling functions.
We can distinguish two types of those separable wavelet bases. In the fol-
lowing the principles are explained in two dimensions and then extended to
higher dimensions. One possibility of basis construction is to start with a one-
dimensional wavelet basis {ψj,k}(j,k)∈Z2 of L2(R) and define the two-dimen-
sional wavelet basis of L2(R2) according to{

ψj1,k1(x1)ψj2,k2(x2)
}

(j1,j2,k1,k2)∈Z4 . (4.62)

This is termed the standard construction scheme in [56, chapter 3] and leads to
a standard decomposition of the two-dimensional signal. One major disadvan-
tage is, that due two different scale indices j1 and j2, the detail information of
different scales is mixed in the transform. This effect is often undesirable [53,
chapter 7]. Therefore, in this work a different type of basis construction in
higher dimensions is applied.

It is possible to define a (separable) multiresolution approximation in L2(R2).
Let {Vj}j∈Z be a multiresolution of L2(R) with the scaling function φ such that
{φj,m}m∈Z is an orthonormal basis of Vj. A separable multiresolution of L2(R2)
is then given by {Vj

2}j∈Z with

V2
j = Vj ⊗Vj. (4.63)

In that case the two-dimensional scaling function is given by

φ2(x) = φ(x1)φ(x2) (4.64)

and the orthonormal basis of V2
j by [53, chapter 7]{

φ2
j,k(x) = φj,k1(x1)φj,k2(x2) =

1
2j φ

(
x1 − 2jk1

2j

)
φ

(
x2 − 2jk2

2j

)}
. (4.65)

Let ψ be the wavelet corresponding to the scaling function φ and W2
j the or-

thogonal complement of V2
j in V2

j−1

V2
j−1 = V2

j ⊕W2
j . (4.66)
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The two-dimensional wavelet functions are defined as

ψ1(x) = φ(x1)ψ(x2) ψ2(x) = ψ(x1)φ(x2) ψ3(x) = ψ(x1)ψ(x2) (4.67)

with

ψn
j,k1,k2

(x) =
1
2j ψn

(
x1 − 2jk1

2j ,
x2 − 2jk2

2j

)
. (4.68)

In [53, chapter 7] it is shown that the set

{ψ1
j,k1,k2

, ψ2
j,k1,k2

, ψ3
j,k1,k2

}(k1,k2)∈Z2 (4.69)

for fixed j is an orthonormal basis of W2
j and the set

{ψ1
j,k1,k2

, ψ2
j,k1,k2

, ψ3
j,k1,k2

}(j,k1,k2)∈Z3 (4.70)

is an orthonormal basis of L2
j . In [56, chapter 3] this is called the non-standard

construction of a basis.
The corresponding computation of the two-dimensional wavelet and scaling

function coefficients is shown in Figure 4.7. Figure 4.8 demonstrates the Fast
Wavelet Transform in two dimensions. The three different types of wavelet
coefficients encode details of the image in vertical, horizontal and diagonal
direction respectively.

This principle can easily be extended on higher dimensions (n > 2). We
consider a separable multiresolution of L2(Rn) given by subspaces

Vn
j = Vj ⊗Vj ⊗ ...⊗Vj︸ ︷︷ ︸

n times

. (4.71)

The n-dimensional scaling function is then defined by

φn(x) = φ(x1)φ(x2)...φ(xn). (4.72)

Corresponding to equation (4.67) the n-dimensional wavelets are given by prod-
uct functions composed from the one-dimensional wavelet and scaling func-
tions.

It is also possible to construct non-separable wavelet bases, but these bases
are not very common in image processing [53, chapter 7].
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Figure 4.7.: The pyramid algorithm in two dimensions.
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Figure 4.8.: The two-dimensional Fast Wavelet Transform. The image pixels are de-
composed into the scale-dependent details (wavelet coefficients) in horizontal, vertical
and diagonal direction.

4.1.6. Wavelet Bases

As mentioned above, multiresolution analysis allows to construct orthonor-
mal wavelet bases. In the following a short overview is given regarding the
construction and the properties of some important orthonormal wavelet bases.
Then the generalisation of the multiresolution framework for biorthogonal Riesz
bases is discussed.

Orthogonal Bases

To construct an orthonormal wavelet basis we first have to find a scaling func-
tion defining a multiresolution analysis. The Fourier Transform of equation
(4.52) leads to [53, chapter 7]

φ̂(2ω) =
1√
2

m0(ω)φ̂(ω) (4.73)

with

m0(ω) =
+∞

∑
k=−∞

hke−ikω. (4.74)

By iteration follows

φ̂(ω) =
∞

∏
j=1

1√
2

m0

(ω

2j

)
. (4.75)

The definition of m0 is important in defining the necessary and sufficient con-
ditions for a scaling function φ. Mallat and Meyer have proven the following
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theorem [53, chapter 7]. Let m0 be a 2π-periodic function and continuously
differentiable in a neighbourhood of ω = 0. If m0 satisfies

∀ω ∈ R, |m0(ω)|2 + |m0(ω + π)|2 = 2 (4.76)
m0(0) =

√
2 (4.77)

infω∈[−π
2 , π

2 ]|m0(ω)| > 0 (4.78)

then

φ̂(ω) =
∞

∏
j=1

1√
2

m0

(ω

2j

)
(4.79)

is the Fourier Transform of a scaling function φ ∈ L2(R). Conversely, if φ ∈
L2(R) is an integrable scaling function, then m0 satisfies equations 4.76 and
4.77. This theorem allows to proof whether a function φ is appropriate for
a multiresolution analysis and thus for the construction of a wavelet. It can
e.g. be shown that the function

φHaar =
{

1 if 0 < t < 1
0 otherwise

(4.80)

is the scaling function of a multiresolution analysis. Equation (4.54) gives the
filter coefficients hk as

hk =

{
1√
2

if k = 0 or k = 1
0 otherwise,

(4.81)

which results in
m0(ω) =

1√
2
(1 + e−iω) (4.82)

that satisfies 4.76 and 4.77. The corresponding wavelet ψHaar is defined by
equations 4.56 and 4.57.

ψHaar(t) =
√

2
1√
2
(φ(2t)− φ(2t− 1)) (4.83)

=


−1 if 0 ≤ t < 1

2
1 if 1

2 ≤ t < 1
0 otherwise

(4.84)

The function φHaar was introduced by Haar in 1910 (long before the develop-
ment of wavelet theory), who realized that the dilations and translations of this
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Figure 4.9.: The Haar Wavelet (right) and the corresponding scaling function (left).

function constitute an orthonormal basis in L2(R) [55, chapter 1]. It is there-
fore called the Haar-Wavelet. The Haar-Wavelet and the Haar-Scaling-Function
are shown in Figure 4.9. Further examples for the construction of wavelets
from a given scaling function are the Shannon-Wavelet and the Battle-Lemarié-
Wavelet. In case of the Shannon-Wavelet, the scaling function is defined by its
Fourier Transform, which is given as a piece-wise constant function [53, chap-
ter 7]. The Battle-Lemarié-Wavelets are obtained by orthogonalising spline
functions [55, chapter 5]. These wavelets have in common, that the number
of filter coefficients necessary for the multiresolution analysis is infinite in con-
trast to the case of the Haar-Wavelet. However, for practical applications one
is interested in wavelets obtained using a finite number of filter coefficients.
Daubechies has shown how to construct orthonormal wavelet bases with com-
pact support and a finite number of filter coefficients. For this purpose she
started with the function m0 and assumed m0 to be a trigonometric polyno-
mial, i.e. constructed with a finite number of filter coefficients hk.

m0 =
N−1

∑
k=0

hke−ikω (4.85)

Furthermore, she constructed wavelet bases with different numbers of vanish-
ing moments. A wavelet ψ is said to have p vanishing moments if∫ ∞

−∞
tkψ(t) dt = 0 for 0 < k < p. (4.86)

In [53, chapter 7] it is shown, that the number of vanishing moments is corre-
lated with the value of m0(ω = π). To be precise, ψ has p vanishing moments,
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Figure 4.10.: The Daubechies wavelet providing two vanishing moments and a filter
length of 4 (right) and the corresponding scaling function (left).

if m0(ω) and the first p − 1 derivatives of m0 are zero at ω = π. Therefore to
construct a wavelet with compact support, a finite number of filter coefficients
and a specific number of vanishing moments, we make the ansatz

m0(ω) =
√

2
(

1 + eiω

2

)p

R(e−iω) (4.87)

with R(e−iω) a trigonometric polynomial. The factor
(

1+eiω

2

)p
ensures that m0

and the first p− 1 derivatives are zero at ω = π. The challenge at this point is
to construct R(e−iω) with a minimum degree m in such a way, that m0 satisfies
the condition

|m0(ω)|2 + |m0(ω + π)|2 = 2. (4.88)

Consequently, the number of non-zero filter coefficients is N = m + p + 1 [53,
chapter 7]. Daubechies proved that the minimum degree m is p− 1 and hence
the number of non-zero filter-coefficients is 2p. She further constructed a series
of wavelet families by specifying the R(e−iω) [55, chapter 6]. The Daubechies-
Wavelets have a support of minimum size for any given number p of vanishing
moments. In Figure 4.10 the scaling function and wavelets of the most com-
mon Daubechies-Wavelet (providing two vanishing moments) are shown. The
wavelet will further be denoted as Daubechies(2)-Wavelet. Please note, that
m0 =

√
2
(

1+eiω

2

)
leads to the construction of the Haar-Wavelet. Therefore the

Haar-Wavelet drops out as a special case of a general construction of wavelets
with compact support.
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Biorthogonal Bases

It is not possible to construct compactly supported orthogonal wavelet bases,
which are symmetric or antisymmetric, besides the Haar-Wavelet [55, chap-
ter 8]. However, smooth symmetric wavelets are especially desirable in im-
age coding since symmetric artefacts are less prominent for the visual sys-
tem [55, chapter 8]. The construction of symmetric or antisymmetric wavelets
with compact support is possible, if the orthogonality conditions are slightly
relaxed [55, chapter 8] leading to so called biorthogonal bases. Biorthogonal
wavelet bases can be symmetric or antisymmetric. In case of a biorthogo-
nal wavelet transform the wavelets utilised for decomposition and reconstruc-
tion are not identical. We will further denote this pair of wavelets with ψ̃ for
the decomposition wavelet and ψ for the reconstruction wavelet. The corre-
sponding scaling functions are indicated by φ̃ and φ. The sets {ψ̃j,k}(j,k)∈Z2

and {ψj,k}(j,k)∈Z2 are then biorthogonal Riesz bases of L2(R). Biorthogonal
wavelet bases are also related to multiresolution approximations. Compared
to the descriptions presented above some modifications occur. Here two mul-
tiresolution approximations are given. The sets {φ̃j,k}k∈Z and {φk}(j,k)∈Z are
Riesz bases of the spaces Ṽj and Vj respectively. {Ṽj}j∈Z and {Vj}j∈Z are
multiresolution approximation of L2(R). The sets of wavelets {ψ̃j,k}k∈Z and
{ψj,k}k∈Z are Riesz bases of the detail spaces W̃j and Wj such that [53, chapter
7]

Ṽj ⊕ W̃j = Ṽj−1 and Vj ⊕Wj = Vj−1 (4.89)

The biorthogonality conditions are

〈ψj,k, ψ̃j,k〉 = δj,k and 〈φj,k, φ̃j,k〉 = δj,k. (4.90)

Two different types of filter coefficients are then related to the two types of
multiresolution approximations.

φ(t) =
√

2
∞

∑
k=−∞

hkφ(2t− k), φ̃(t) =
√

2
∞

∑
k=−∞

h̃kφ(2t− k) (4.91)

ψ(t) =
√

2
∞

∑
k=−∞

gkφ(2t− k), ψ̃(t) =
√

2
∞

∑
k=−∞

g̃kφ(2t− k) (4.92)

In the Fourier domain equation (4.91) becomes

φ̂(2ω) =
1√
2

m0(ω)φ̂(ω), ˆ̃φ(2ω) =
1√
2

m̃0(ω) ˆ̃φ(ω) (4.93)
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where m0 and m̃0 have to satisfy

m∗
0(ω)m̃0(ω) + m∗

0(ω + π)m̃0(ω + π) = 2. (4.94)

Cohen, Feauveau and Daubechies have constructed a series of compactly sup-
ported, biorthogonal wavelets. Let us consider two wavelets ψ and ψ̃ with p
and p̃ vanishing moments respectively. In [53, chapter 7] it is described how to
construct these wavelets by starting with

m0(ω) =
√

2e
−iεω

2

(
cos

ω

2

)p
L(cos ω) (4.95)

m̃0(ω) =
√

2e
−iεω

2

(
cos

ω

2

) p̃
L̃(cos ω) (4.96)

with ε = 1 for p and p̃ even and ε = 0 for p and p̃ odd. Both p and p̃ can be
shown to have the same parity. L and L̃ have to satisfy

L(cos ω)L̃(cos ω) = P
(

sin2 ω

2

)
(4.97)

with special requirements for the polynomial P(sin2(ω/2)). The wavelets con-
structed by Cohen, Daubechies and Feauveau are sometimes called CDF-Wave-
lets. The different pairs of mother wavelets can be distinguished by the number
of vanishing moments and the length of the filter. The simplest CDF-Wavelet-
pair providing one vanishing moment for each of the two wavelets is again the
Haar-Wavelet. In Figures 4.11 and 4.12 two pairs of CDF-Wavelets and the cor-
responding scaling functions are shown. In Figure 4.11 the CDF-Wavelet with
two vanishing moments for decomposition and reconstruction is presented.
This filter resulting from this pair of wavelets has been known in image pro-
cessing before and is sometimes termed 5-tap/3-tap-Filter in literature [57] ac-
cording to the filter length of decomposition and reconstruction wavelet. The
pair of biorthogonal wavelets shown in Figure 4.12 provides four vanishing
moments in decomposition and reconstruction respectively. However, to avoid
confusion with another pair of spline wavelets also providing four vanishing
moments, the pair of wavelets in Figure 4.12 should also be termed using its
filter length of 9 and 7 respectively. Thus, we will further use the terminology
CDF5/3(2, 2) for the wavelets shown in Figure 4.11 and CDF9/7(4, 4) for the
pair shown in Figure 4.12. The CDF9/7(4, 4) has a special property. As can be
seen in Figure 4.12 the wavelets for decomposition and reconstruction are very
similar. This can be interpreted in such a way, that the two wavelets are nearly
orthogonal, resulting in a good numerical stability [53, chapter 7]. Both pairs
of biorthogonal wavelets described are used in the JPEG-2000 Algorithm for
image compression [57].
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Figure 4.11.: The wavelets and scaling functions of the biorthogonal CDF5/3(2, 2)-
wavelet-pair.
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Figure 4.12.: The wavelets and scaling functions of the biorthogonal CDF9/7(4, 4)-
wavelet-pair.
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4.1.7. Software for Wavelet Applications

In the research presented here an Open Source Software Library (blitzwave) was
utilised to perform the Discrete Wavelet Transform. The Library is written in
the C++ computer language and provides an n-dimensional Discrete Wavelet
Transform. It uses a special mathematical scheme to compute the coefficients
of the Fast Wavelet Transform. This scheme is called Lifting and was devel-
oped by Wim Sweldens [58, 59]. The principle is also shortly introduced in [53,
chapter 7] and can be described as a modification of the filterbank algorithm.
The basic idea is that any biorthogonal filter can be synthesised by applying a
specific modification - the Lifting - to a particular type of filters - so called Lazy
Filters [53, chapter 7]. The usual filterbank algorithm is here replaced by two
different steps. The first step is the so called Lazy Transform, i.e. the applica-
tion of Lazy Filters. This is just a separation of odd and even samples. After
the Lazy Transform the Lifting is applied that creates the desired coefficients
starting from the results of the Lazy Transform. The principle is shown in Fig-
ure 4.13. One of the main advantages of the Lifting Scheme is a reduction of
the number of necessary operations by a factor of 2 [53, chapter 7]. The Soft-
ware Library utilised was developed by Oliver Schulz (Max-Planck Institute
Dortmund) and is available at [60].
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Figure 4.13.: Principle of the Lifting Scheme. The usual step of computing the wavelet
coefficients is replaced by a Lazy Transform and a successive Lifting composed of the
two convolutions denoted by L1 and L2.
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4.2. Methods of Dimension Reduction

4.2.1. Principal Component Analysis

The Principal Component Analysis (PCA), also termed Karhunen-Loève trans-
form, is a method suitable for dimension reduction [61, chapter 8]. The PCA
is a linear transformation from a d-dimensional space to an M-dimensional
space, with M < d. Suppose, that the input vectors xn ∈ Rd can be written
using an orthonormal bases ei as

x =
d

∑
i=1

ziei. (4.98)

Then the coefficients zi can be expressed as

zi = eT
i x. (4.99)

An approximated vector x̃ is defined by

x̃ =
M

∑
i=1

ziei +
d

∑
i=M+1

biei. (4.100)

Here the bi are chosen as constant. Thus, x̃ is a vector with M degrees of free-
dom, i.e reduced dimensionality. The error of the approximation of x by x̃ can
be written as

x− x̃ =
d

∑
i=M+1

(zi − bi). (4.101)

Considering the whole dataset xn ∈ Rd the constant must be chosen in a way
to optimise the approximation in RM. To define the best approximation the
sum of the squares of the error has to be minimised.

EM =
1
2

N

∑
n=1

‖xn − x̃n‖2 =
1
2

N

∑
n=1

d

∑
i=M+1

(zn
i − bi)2 (4.102)

The minimisation of EM with respect to bi yields

bi =
1
N

N

∑
n=1

zn
i = eT

i x̄ (4.103)
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with the mean vector x̄. Thus the sum-of-squares error can be rewritten as

EM =
1
2

d

∑
i=M+1

eT
i (∑

n
(xn − x̄)(xn − x̄)T)︸ ︷︷ ︸

covariance matrix Σ

ei. (4.104)

It can be shown that EM is minimal if the basis vectors satisfy [61, chapter 8]

Σei = λiei (4.105)

with the covariance matrix Σ. This means that the basis vectors have to be
eigenvectors of the covariance matrix. If the eigenvalues λi are determined the
sum-of-squares error is given by

EM =
1
2

d

∑
i=M+1

λi. (4.106)

Therefore the minimum error is obtained, if the smallest eigenvalues and cor-
responding eigenvectors are discarded [61, chapter 8]. The eigenvalue λi is
proportional to the variance of the term zi − bi:

1
N ∑

n
(zi − bi)(zj − bj) =

1
N ∑

n
eT

i (xn − x̄)(xn − x̄)Tej (4.107)

=
1
N

eT
i Σ ej (4.108)

=
1
N

eT
i λjej (4.109)

=
1
N

λjδij (4.110)

Please note, that sometimes in literature the covariance matrix is defined in-
cluding the term 1

N . According to the equations above, the eigenvector related
to the largest eigenvalue corresponds to the direction of largest variance within
the original dataset. In Figure 4.14 the principle is demonstrated in 2D. In prac-
tice, one usually starts with computing the mean x̄ and subtracting it from all
datapoints. In Figure 4.14 e1 is the eigenvector to the largest eigenvalue. If
the dataset - shown in this Figure by dots - was represented in a reduced one-
dimensional space, the best approximation would be given through the space
spanned by e1.
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Figure 4.14.: Principal Component Analysis of a dataset denoted by dots. The vector
x̄ is the mean, the vectors e1 and e2 are the eigenvectors of the covariance matrix.

4.2.2. Self Organizing Map

The Self Organizing Map (SOM) is a clustering approach from the field of arti-
ficial neural networks [62, chapter 3]. The training procedure is an example for
unsupervised machine learning and defines a mapping from the input space
Rn onto a lower dimensional array of nodes. The SOM is designed to preserve
the topology of the input space and thus provides a method of dimension re-
duction. A reference vector {ui} is associated to every node i in the array. The
total set of reference vectors {uj}j∈N is trained according to a given dataset of
N feature vectors {xn}n∈N,1<n<N. For each feature vector xn the best-matching
node, the so-called winner node c, can be determined by

c = argminj{‖xn − uj‖}. (4.111)

Let t be the discrete time coordinate denoting the training step. Within each
training step the reference vectors of the SOM are updated according to the
feature vector xn chosen as the training sample. Let uc be the reference vector
related to winner node c at the specific training step. The training procedure of
the SOM is characterised by the fact, that uc and the reference vectors uj, whose
nodes are topographically close in the SOM grid, are updated depending on
the distance of x

uj(t + 1) = uj(t) + hcj(t)[x(t)− uj(t)]. (4.112)

Equation (4.112) indicates, that the reference vector is adapted to the training
sample controlled by the function hcj. This function is the so-called neighbour-
hood function and is time dependent. To ensure the convergence of the training
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Figure 4.15.: Principle of Self Organizing Maps. The data set is represented by the
white points x1. The reference vectors uj are shown in grey and are connected with
one node rj in the SOM grid. Courtesy of Dr. Claudio Varini.

procedure it is necessary that hcj decreases with time, i.e hcj → 0 if t → ∞.
Furthermore, hcj decreases with increasing distance ‖rj − rc‖. Here rj and rc
are the (lower-dimensional) vectors of the nodes i and c in the SOM grid. In
the literature several choices of hcj(t) are discussed. A very common choice is
to model the neighbourhood function using a Gaussian kernel

hcj(t) = α(t) exp

(
−
‖rc − rj‖2

2σ2(t)

)
. (4.113)

The function α(t) is called learning rate factor and σ(t) defines the width of the
kernel. Both functions are monotonically decreasing to ensure a convergence
of the training procedure [62, chapter 3].

Dimension of SOM Array The SOM array usually is low-dimensional, e.g. one-
or two-dimensional. The appropriate choice depends on the application at
hand and the characteristics of the provided feature space. The projection onto
a two-dimensional grid is quite common and very suitable to support a visual
inspection of the feature space.
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Learning Rate Factor and Kernel Width As described in [62, chapter 3] the
decision in favour of either linear, exponential or other behaviour of α(t) and
σ(t) is not very crucial. The learning rate α(t) should be chosen close to unity
at the beginning [62, chapter 3]. In this work only a linear decreasing α(t) is
applied. In contrast to the choice of α(t) the values of the kernel width σ(t) are
important and strongly influence the resulting SOM grid. As described in [62,
chapter 3] the initial value must not be too small to assure a global ordering
of the grid. The kernel width σ(t) controls the neighbourhood involved in the
current training step and thus the topology preservation of the SOM grid. By
varying σ(t) a controlled trade-off between the topology preservation and the
local fitting of the input space can be achieved.

Number of Training Steps The number of training steps has to be large enough,
to ensure a good statistical accuracy of the training result. In case of a low num-
ber of available training samples one has to use these reiteratively for training.
A rule of thumb is to choose the number of training steps larger than 500 times
the number of nodes in the grid [62, chapter 3].

Initialisation of the Reference Vectors The reference vectors can be initialised
using different methods. Quite common is an initialisation using randomly
chosen vectors of the feature space [62, chapter 3]. It is also possible to compute
a PCA on the feature space and initialise the l-dimensional SOM array along
the directions of the eigenvectors corresponding to the l largest eigenvalues.

Quality Measures of the Training Result As described above, two aspects
have to be monitored during training. First, it is important for a clustering
result, that the input space is approximated in an optimal manner. To measure
this, the average quantisation error AQE can be determined by

AQE =
1
N

N

∑
n=1

‖xn − uc(n)‖ (4.114)

with uc(n) as the winner node related to the feature vector xn. Here, N is the
total number of feature vectors in the dataset. This factor has been computed
after training by mapping all input vectors onto the resulting SOM grid [62,
chapter 3]. Secondly, the preservation of the feature space topology has to be
assured. For this purpose, one can determine the best-match node c1 and the
second best-match node c2. If both nodes are neighbours in the SOM grid,
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the topology is preserved [62, chapter 3]. To define a numerical measure for
topology preservation, one can compute the value TP by

TP =
1
N

N

∑
k=1

p(xk) with (4.115)

p(xk) =


1 if 1. and 2. nearest reference vectors

are not adjacent
0 otherwise

(4.116)

After a successful training procedure the reference vectors depict the data dis-
tribution in the dataset, preserving the underlying topology. Thus the distance
of two nodes in the SOM directly depends on the distance of the correspond-
ing reference vectors. Due to the topology preservation the SOM is a powerful
tool for the exploration of feature spaces. By varying the training parameters
a trade-off between topology preservation and local feature vector approxima-
tion can be obtained. A detailed discussion of SOMs for clustering and visual-
isation purposes can be found in [63].

Comparison to other Methods of Clustering and Dimension Reduction Se-
veral other methods of clustering exist, usually providing better results regard-
ing the quantisation error. In [63] various works are mentioned comparing the
performance of k-Means clustering and SOMs. The clustering ability of Self Or-
ganizing Maps is reported as either equal or worse compared to k-Means clus-
tering. However, the main benefit of SOMs is, that due to topology preserva-
tion a reduction from high-dimensional feature spaces to a significantly lower
dimensional SOM array is possible, thus allowing a visual inspection of the
data space. Regarding the field of dimension reduction the SOM has to be
compared with the PCA. As mentioned above, PCA is a linear method and
therefore fails in determining non-linear intrinsic dimensions in the data space
in contrast to the SOM.

It has been shown that there is a drawback in the potential of a SOM re-
garding visualisation and dimension reduction due to the discretised output
space [63]. However, the discretised output leads to possible visualisation
methods allowing to explore the feature space in much more detail. The ref-
erence vectors of the SOM array can be visualised quite easily. This makes a
linking of the single feature vector components to areas in the reduced space
possible. The reduced spaces resulting from other methods of nonlinear di-
mensionality reduction, such as Sammon mapping [62, chapter 3] or locally
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linear embedding (LLE) [64], are not similarly accessible and interpretable. The
fact that the SOM algorithm allows an efficient exploration of the underlying
feature space is the most important motivation for its application in this work.

4.2.3. Software

The software routines utilised for dimension reduction, especially providing
the algorithms of the Principal Component Analysis and the Self Organizing
Map were implemented in the working group Applied Neuroinformatics at the
University of Bielefeld. The main authors are Axel Saalbach and Thorsten
Twellmann.
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5. Multiscale Analysis of
Microscopy Images

5.1. Introduction

Several types of diagnostic systems working on medical images are currently
under development. Examples are classification systems and content-based
image retrieval systems. For classification purposes usually methods from the
field of machine learning are utilised to train a system with given datasets.
The system can then make a diagnosis for an unknown dataset. A content-
based image retrieval system usually works according to the principle query by
example (QBE). The medical expert provides an unknown dataset or image to
the system and the system returns those cases from its database which are most
similar to the provided dataset. The medical expert can now diagnose the new
dataset according to the information presented by the system.

In all these cases the image content is characterised by numerical image fea-
tures, i.e. numerical vectors supposed to encode the diagnostically relevant
characteristics. It is challenging to decide which features are the most appro-
priate ones for the specific purpose considered.

In this work a dataset of pathology images is explored in order to find and
interpret features of clinical relevance. The computed image features are based
on the Discrete Wavelet Transform. To link local, morphological image charac-
teristics to the space spanned by the wavelet-based features a Self Organizing
Map (SOM) is employed. As a method of unsupervised learning the SOM is a
powerful tool providing both the ability of clustering and data visualisation.

SOMs have been considered to serve as interactive visualisation tools e.g. for
database visualisation and browsing [65], content-based image retrieval [66]
or building of a texture dictionary [67]. One application of SOMs on histo-
logical datasets is the investigation of human defined image characteristics as
described in [68]. In that work the features used for clustering are based on
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human definition and rating, i.e. the occurrence of a specific histological char-
acteristic (e.g. collagen fibres) has been graded on a scale of four by a human
observer.

In the project presented here, the ability of SOMs to serve as an interface
for the analysis of numerical features is demonstrated. The method is applied
to an example database of microscopy images of benign brain tumours. The
database contains histopathological images of four subtypes of meningiomas.
The subtypes are classified by a medical expert into four meningioma classes
depending on texture characteristics at different scales. The SOM-based vi-
sualisation of the feature space then allows to establish a correlation between
single numerical features and histologically relevant image structures. Prelim-
inary experiments have already been described in [69], which suffered from
a lack of interpretability. Utilising a new colour transform it is shown, how
this approach can be used to bridge the semantic gap between numerical fea-
tures and histopathological terms and thus transfer clinical terms in the feature
space.

The analysis of pathology images has been done e.g. in [70, 17, 71, 72]. How-
ever, these works do not focus on the analysis of image and feature spaces.
They mostly address the architecture of the underlying system. In [70] a CBIR
system for pathology images is described. This work mainly focuses on the
development of efficient retrieval mechanisms. The features used in this work
are not given in detail but only roughly described as “wavelet-based”. The
whole procedure requires a segmentation of image objects. In [72] a deci-
sion support system is described working on microscopy images. Here also
an image segmentation is performed, the results are utilised as textural fea-
tures. Again, the features utilised are presented not very detailed. The main
goal is there to compare the classification performance of different features and
classification algorithms. In [71] a complete retrieval system is described. The
work mainly focuses on the implementation of a semantic reasoning system
integrating potentially conflicting classifications based on low-level features.
The visual features are shortly described as “histogram-based” and “Gabor-
transform-based”. A detailed analysis and interpretation of these low-level
features is not presented. The work of Zheng et al. presents the prototype of
a CBIR system for pathology images. The features utilised are described as
based on colour histograms, texture representations, Fourier and wavelet coef-
ficients [17]. More detailed information is not provided, especially an analysis
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of the mapping between single features and clinical semantics is not included.

5.2. Image Domain

The research described in this chapter is accomplished based on the database
of microscopy images from neuropathology described in chapter 3, section
3.2. As already mentioned above, the database contains histopathological im-
ages of the four most common types of meningiomas (WHO Grade I). These
four classes are meningotheliomatous, fibroblastic, psammomatous and tran-
sitional meningiomas. Five cases were selected for each diagnostic group and
four different photomicrographs were taken of each case, resulting in a set of
80 pictures. These pictures provide a size of 1030× 1300 pixel. Further analy-
sis was done for subimages of 256× 256 pixel, therefore each original picture
was truncated to 1024× 1024 pixels and then subdivided in a 4× 4 subset of
256× 256 pixel pictures. This resulted in a database of 1280 subimages for fur-
ther analysis. In Figure 5.1 example images and subimages are shown. The
colour code included in this Figure is also used in the visualisation of the re-
sults obtained by the analysis. Meningotheliomatous tissue is indicated by a
red frame, fibroblastic tissue by a green frame, psammomatous tissue is indi-
cated by blue colour and the transitional class is marked with a black frame.
As described in chapter 3, section 3.2 significant interclass differences exist as
well as significant innerclass differences. This corresponds to an observation
made in [72]. There, a different class of brain tumours was in the focus of re-
search. In the following analysis, computed texture features will be linked to
these different types of image differences, either significant or non-significant
for tumour class characterisation.

5.3. Pre-Processing of Colour Channels

In many applications RGB (Red, Green, Blue) images are transformed into a
colour space more suitable for human perception, i.e. the HSV (Hue, Satura-
tion, Value) colour space [72] or the L*u*v colour space [73]. Since pathology
images are limited regarding their colours the RGB values are transformed in
order to enhance special image structures. In the following, two transformed
images are computed from the RGB values (R(x,y), G(x,y), B(x,y)). First, an
intensity value h1(x, y) is computed by averaging the three colour channels for
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a)

c)

b)

d)

Figure 5.1.: Example subimages for the different subtypes of meningiomas: a) -
meningotheliomatous, b) - fibroblastic, c) - psammomatous, d) - transitional.
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each pixel and location (x, y) by

h1(x, y) =
1
3
∗ (R(x, y) + G(x, y) + B(x, y)). (5.1)

The images computed according to equation 5.1 will further on be denoted as
intensity images. Second, a transform in colour space is designed to extract the
cell nuclei from the image, since they appear to exhibit significant characteris-
tics for the distinction of the tumour classes. However, the image colour of a
single stained tumour section inevitably depends to some extent on the condi-
tions during the preparation. To reduce dependence on these colour changes,
we apply a mean shift to all images and colour channels. The average colour,
in the following indexed by av, is supposed to be very close to the colour of
those structures represented by the largest areas in the image, in this case the
cytoplasm or the psammoma bodies.

Rshift(x, y) = R(x, y)− Rav (5.2)
Gshift(x, y) = G(x, y)−Gav (5.3)
Bshift(x, y) = B(x, y)− Bav (5.4)

The preparation procedure described above using the routine H&E stain leads
to a blue colouration of the cell nuclei in contrast to the surrounding cytoplasm
usually showing a pink colour. Please note that this holds for the dataset ana-
lysed here, since it contains only WHO grade I meningiomas. Some other types
of meningioma, e.g. the clear cell meningioma (WHO Grade II), result in a
colouring different from the one described.

After applying the mean shift to the colour channels, those image struc-
tures, which are “bluer” than the surrounding tissue, are characterised by
Bshift(x, y) > Rshift(x, y). By computing

h2(x, y) = (maxRBshift(x, y)− Rshift(x, y)) ∗ S (5.5)
with maxRBshift(x, y) = max{Rshift(x, y), Bshift(x, y)} (5.6)

all image structures with Bshift(x, y) < Rshift(x, y) are set to zero. The remaining
structures, which are supposed to be mainly cell nuclei, are retained. The factor
S is the saturation as defined in the HSV colour space [74]

S =
maxRGB(x, y)−minRGB(x, y)

maxRGB(x, y)
(5.7)

with maxRGB(x, y) = max{R(x, y), G(x, y), B(x, y)}. (5.8)
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Figure 5.2.: Example subimages for the transform in colour space. Each of the subim-
ages shown above is displayed as intensity image h1 and with enhanced cell nuclei h2:
a) - meningotheliomatous, b) - fibroblastic, c) - psammomatous, d) - transitional.

This factor suppresses artefacts occurring from the white areas in the images.
Especially in psammomatous meningiomas the white areas are due to artificial
cracks resulting from the tissue preparation procedure and do not represent
relevant staining properties of the tumours. The resulting images of the trans-
form h2 will be denoted as cell nuclei images in the further description. Figure
5.2 shows examples of the transform.

5.4. Texture Features

5.4.1. Texture Features for Image Analysis

Texture is probably the most important descriptor for tissue characterisation
in medical textbooks. Several different texture features have been evaluated
in literature, including e.g. co-occurrence matrices, line-angle-ratio statistics
[75, 76], Gabor filters [76] or wavelet-based features [77]. A good overview of
texture features can be found in [78], a comparative study is given in [79]. In
this thesis the texture characterisation is not based on a segmentation result as
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e.g. in [73] but performed on total subimages.

5.4.2. Texture Features Based on DWT

By examination of Figure 5.1 and section 3.2 it becomes clear that two main
properties of the different tissues are extremely important for the tumour di-
agnosis considered. First, the images of tumour tissue strongly differ regard-
ing the scale of the image structures. Especially psammomatous tissue shows
very large scale structures, the so called psammoma bodies. These are reddish,
large, round areas of calcification. Secondly, the directionality of the most im-
portant image structures shows important differences. Fibroblastic tissue pro-
vides parallel aligned fibres and elongated cell nuclei. Thus, there is a preferred
orientation in the microscopy images of fibroblastic tissue. Consequently a
type of feature is required, that encodes scale-dependent and orientation de-
pendent image information. As described in chapter 4 the two-dimensional
Discrete Wavelet Transform provides this type of information encoding. The
coefficients obtained by applying the DWT are identified by a translation in-
dex, a scaling index and an orientation index. We use the pair of symmetric,
biorthogonal wavelets, developed by Cohen, Daubechies and Feauveau, which
is termed CDF5/3(2, 2) in chapter 4, section 4.1.

At this point the question arises, how to construct features appropriate for
characterising the images from the wavelet coefficients. The raw wavelet co-
efficients are numerous and translation variant. It is therefore not suitable to
construct feature vectors by directly using all wavelet coefficients as feature
vector components. Instead, one has to process the large number of wavelet
coefficients to obtain a limited number of meaningful features.

As described in [80] and [81] the l1 or l2-norm of the wavelet coefficients cor-
responding to one scale and orientation can be used as powerful texture fea-
tures. In [79] several texture features including wavelet-based ones are com-
pared with respect to the classification performance of different textures. In
that work no type of feature sticks out as a clear winner. Among the wavelet-
based features wavelet packet features are considered to perform better but
with the price of a significantly increased size of the feature vector. Further-
more, it was shown, that the inclusion of further subbands does not necessarily
improve the classification error. Thus it seems to be of high interest to develop
a methodology for a detailed exploration of the influence of single features on
the discrimination of different textures. In this way it is possible to develop
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powerful features with a low computational complexity as demanded in [79].
In the analysis of histopathological images wavelets have been used, e.g. in

[77] for the identification of specific cell nuclei. In [17] the content of histopatho-
logical images is characterised by numerical features including wavelet-based
features. In this work the l1-norm, i.e. the mean absolute coefficient (MAC) of
each scale and orientation has been computed according to

l1(dj,o) = ∑
kx,ky

|dj,o(kx, ky)|. (5.9)

From these MACs two types of features vectors are constructed to encode scale
dependence and orientation dependence of the image structures.

First, a mean absolute coefficient for each scale j is computed according to

f1(j) = ∑
o

MAC(o, j), j = 1..8, o = o1, o2, o3. (5.10)

Here j is again the scale index, while index o indicates the orientation in the
image. The indices o1 and o2 indicate coefficients in vertical or horizontal di-
rection, while o3 indicates the diagonal details.

Second, we use a feature set f2 describing whether the image structures are
anisotropic, i.e. have a preferred orientation. The derivation of this feature is
explained using simple phantoms. In Figure 5.3 at left hand three phantom
images are shown. Each image contains a structure, i.e. a line, orientated in
vertical, horizontal or diagonal direction. At right hand the result of a two-
level Discrete Wavelet Transform using the CDF5/3(2, 2)-wavelet is presented.
As can be seen, horizontal or vertical structures mainly lead to wavelet coef-
ficients in only one of the three decomposition subimages. In contrast to this,
a DWT of diagonal structures results in coefficients located in all three subim-
ages, i.e. horizontal, vertical and diagonal details.

To obtain one single feature describing structures mainly orientated in a par-
ticular direction we use the following measure f2.

f2(j) = |MAC(o1, j)−MAC(o2, j)|+ c MAC(o3, j), j = 1..8 (5.11)

In case of image structures mainly orientated in horizontal or vertical direc-
tion, either the MAC for o1 or o2 should be significantly increased, while the
other one is correspondingly decreased. Therefore |MAC(o1, j)− MAC(o2, j)|
reaches a high value. For image structures orientated in a diagonal direc-
tion the first part of equation 5.11 vanishes, but, at the same time, the second
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DWT

DWT

DWT

Figure 5.3.: DWT results of three phantoms depicting either vertical, horizontal or
diagonal structures.
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part increases. The normalisation factor c assures that the added MACs have
equalised variances such that the influences of both parts of the sum are com-
parable. We have described this approach already in [69]. In contrast to [69]
each component of the second feature set is not normalised to the correspond-
ing component of the first set. Furthermore, the work in [69] was based on the
RGB colour channels.

The suitability of these features for characterising the four types of tissue has
additionally been proven in [82]. In this work the features f1 and f2 have been
computed for the six finest scales and the RGB colour channels of each subim-
age. The high-dimensional feature space is projected onto two dimensions us-
ing Locally Linear Embedding (LLE). The projection result shows four groups
of feature vectors. While the psammomatous group is clearly separated from
the other clusters, the clusters of the remaining three classes partially overlap.
However, the result is close to the visual tissue appearance.

We point out, that a similar approach to characterise images by scale- and
orientation-related texture measures using wavelets has already been used for
the characterisation of corrosion images [83]. However, there the computed
features used differ from the ones we computed in this work. Especially the
computation of orientation encoding features strongly varies from our approach.

5.5. SOM-Based Exploration of the Feature Space

5.5.1. Visualisation Techniques for SOM Results

The SOM provides various possibilities for the visualisation of the achieved re-
sults. The SOM is both a method of clustering and dimension reduction. Each
node in the SOM grid is associated with a reference vector, which is a prototype
for a cluster of feature vectors. Due to this properties, it is possible to visualise
the spatial distribution of reference vectors and corresponding clusters in the
SOM grid.

Visualisation of Reference Vectors After a successful training procedure ref-
erence vectors representing the whole data space of feature vectors are ob-
tained. The SOM grid and the reference vectors can be displayed in two ways
amongst others. First, each reference vector can be visualised by a bar plot
displayed at the location of the associated node in the SOM grid (Figure 5.4,
Top). Second, the components of the reference vectors can be visualised sepa-
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rately. At the bottom of Figure 5.4 this method is shown. For each component
of the reference vector one plot is constructed, a so called Component Plane
Map. Each of these maps shows the distribution of one component of the ref-
erence vectors over the SOM grid. Black colour represents low values of the
component, white correspondingly represents high values.

Visualisation of Clusters As mentioned above a Self Organizing Map is a
method for clustering. Each node in the SOM is related to a cluster of feature
vectors. By computing the nearest reference vector for each feature vector the
cluster structure of the SOM grid is revealed. To present this structure one can
simply count the feature vectors mapped to each reference vector. By visualis-
ing the number of those feature vectors at the associated node in the SOM grid
the cluster structure becomes accessible (Figure 5.5).

Visualisation of the Image Domain In this work, the feature vectors encode
entire images. This allows a further visualisation technique, the visualisation
of the image domain. For each cluster of the training result one feature vector
is determined. To be explicit, the feature vector with the smallest distance to
the associated reference vector is chosen. The subimage associated with this
feature vector is now displayed at the particular node. In this way, the distri-
bution of image characteristics over the SOM grid can be shown (Figure 5.6).

The SOM is applied to visualise and explore a database content based on spe-
cific image features. Since the images have a size of 256× 256 pixels, features
of eight scales can be computed. The features of the coarsest two scales are
neglected, since the associated coefficients encode details corresponding to the
entire image or a quarter of the image, which does not seem to be reasonable.
Considering the two sets of features ( f1, f2), the two colour channels (h1, h2)
described above and the six scales considered a total number of 24 possible
features has to be taken into account.

5.5.2. Training Procedure

As described in section 4.2.2 several input parameters have to be set prior to
the training procedure. The learning rate α is a monotonically decreasing func-
tion, in our case α decreases linearly from 0.9 to 0.01. The size of the SOM grid
predetermines the number of clusters. However, since the main point of this
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Figure 5.4.: Visualisation of reference vectors. Top: Direct visualisation utilising bar
plots. Bottom: Visualisation of components utilising Component Plane Maps.
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Figure 5.5.: Visualisation of cluster structure. At each node the feature vectors
mapped to this node are visualised by a point of the respective colour.
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Figure 5.6.: Visualisation of the image domain. Each node in the SOM grid is repre-
sented by one subimage associated to one of the feature vectors mapped to the particu-
lar node.
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Figure 5.7.: TP and AQE values for varying parameters σinitial and σf inal .

work is the dimension reduction and visualisation of the database content and
not the determination of a specific cluster structure, the size of the SOM grid is
not regarded as a crucial point in our application. To ensure a sufficient gen-
eralisation of the results the number of nodes should not be chosen to high. In
the following 8× 8 SOM grids are used for visualisation purposes. The num-
ber of training steps is set to 80, 000. The training procedure has been carried
out two times, using the first set of features f1 (12 feature vector components)
and the second set of features f2 (12 feature vector components) respectively.

As described in chapter 4, section 4.2.2 the parameter σ strongly influences
the properties of the resulting SOM grid and cluster structure, such as the
topology preservation (TP) and the averaged quantisation error (AQE). The
parameter is decreased during the training procedure linearly, i.e. an initial
value σintial and a final value σf inal have to be chosen. To determine the op-
timal values the training is accomplished with varying values for σ and the
results TP and AQE are compared. In Figure 5.7 the results for the two feature
sets are presented. The Figure reveals that the final parameter σf inal plays an
important role during the training procedure. On the other hand the initial
value σinitial hardly influences the results for equal values of σf inal. In our case
the topology preservation is very close to zero in all cases and thus extremely
satisfying. However, the averaged quantisation error significantly increases
with σf inal. According to these results the values σinitial = NN

2 and σf inal = NN
10

are chosen for the further procedure with NN = 8.
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Feature set f
2Feature set f 1

Figure 5.8.: Clustering result of both feature sets. Each feature vector is symbolised
by a dot and displayed at the node of the nearest reference vector.

5.5.3. Exploration Procedure

The training results are shown in the Figures 5.8, 5.9 and 5.10 In Figure 5.8 the
clustering result of both feature sets is presented according to the visualisation
procedure displayed in Figure 5.5. Each subimage is symbolised by a point of
the colour related to the class of tissue as shown in Figure 5.1. In the Figures
5.9 and 5.10 two further types of visualisation are shown. At the top the SOM
grid is visualised in the image domain according to the method presented in
Figure 5.6. In this image each node is marked with one of the subimages of
the respective cluster. In this way, the distribution of histological features can
be explored. At the bottom of the Figures the Component Plane Maps are
shown derived as explained in Figure 5.4. Each little square is a visualisation of
the SOM grid representing one component of the reference vectors. Since the
reference vectors have twelve components in both cases, twelve Component
Plane Maps are shown, one map for each component of the reference vector.

Feature Set f1 Starting with the analysis of Figures 5.8 and 5.9, we can derive
the following conclusions from the images. The clustering result visualised
at the top shows that this set of features is appropriate to discriminate psam-
momatous (blue) and transitional (black) images. However, the meningothe-
liomatous (red) and the fibroblastic (green) classes are still strongly mixed.

By exploring the Component Plane Maps at the bottom of Figure 5.9 the cor-
relation of this clustering result to particular components of the feature vector
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- i.e. particular features - is revealed. Comparison to the visualisation of the
image domain then allows a clinical interpretation of the single features.

The feature vector components 1 − 6 are the scale features of the intensity
image h1. In the Component Plane Maps these components vary strongly from
the top to the bottom of the SOM grid. In detail, these features increase from
bottom to top. However, since there is no clear separation between meningothe-
liomatous and fibroblastic feature vectors in this vertical direction, this does
not seem to be relevant to distinguish these two classes. The sixth compo-
nent additionally introduces an innerclass separation in the psammomatous
group of tissue (from top right to bottom right). By exploring the correspond-
ing subimages it becomes clear, that from top to bottom the amount of tissue
inhomogeneities increases. Regarding the psammomatous group located on
the right hand side, the subimages at the bottom show large cracks in the tis-
sue in contrast to the images located at the top. Thus, the sixth feature is linked
to these large cracks. The finer scale features (scales 1-5) are quite redundant
and can be linked to smaller tissue inhomogeneities in the extracellular matrix.
By exploring the visualisation of the image domain, it becomes clear that the
amount of these fine scale tissue inhomogeneities increases from top to bottom.

The fine scale components of colour channel h2 (components 7-12) are es-
pecially low in those images providing a large amount of psammoma bodies.
This must be due to the fact that channel h2 mainly describes cell nuclei. The
psammoma bodies do not contain any cell nuclei and therefore provide very
low values in these features. The fibroblastic tissue in the lower left part of
the SOM grid usually provides considerably high values in these components.
This can be explained by the property of the wavelet-based features to mainly
encode the contour of cell nuclei contained in the images. The amount of cell
nuclei contours on the one hand increases with the amount of cell nuclei. On
the other hand it can be expected, that elliptic cell nuclei as contained in fibro-
blastic tissue feature a longer contour than the round cell nuclei in other types
of tissue and thus provide higher values regarding these features.

Feature Set f2 As described above this set of features is constructed to de-
scribe preferred orientations in the image. As expected the separation of the
fibroblastic and the meningotheliomatous class - as visualised at the top of the
Figure - is significantly increased compared to feature set f1. However, the
Component Plane Maps reveal that the components 6 and 12 - associated with
very coarse scale details - do not show a distribution corresponding to some
histological interpretation. Furthermore, as expected all features usually take
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Figure 5.9.: Visualisation of the SOM training result based on feature set f1. Top: The
Visualisation of the image domain. Bottom: The Component Plane Maps.
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high values in case of fibroblastic subimages since this image class possesses
the strongest fascicular tissue architecture, i.e. orientated structures. The com-
ponents 1-5 (corresponding to the intensity image) show their maximum at
the top right of the SOM grid and decrease from top right to bottom right.
The components 7-11 also have a maximum value at the right top of the grid
but decrease much faster from top to bottom. By exploring the corresponding
subimages, it becomes obvious that the components 7-11 (cell nuclei images)
only show high values in case of elongated cell nuclei, whereas the components
1-5 (intensity images) result in high values in case of any orientated structure,
either cell nuclei or characteristics of the extracellular matrix. Overall the com-
ponents show a strong redundancy.

From the interpretation of both feature sets clear links between numerical
feature vector components and their histological interpretation in the image
domain can be derived (Table 5.1).
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feature Component Feature histological
set interpretation
f1 1-5 intensity image amount of tissue inhomogeneities,

scale 1-5 e.g. small cracks, especially low
in psammoma bodies

6 intensity image very large cracks in the tissue,
scale 6 especially high for cracked

psammoma bodies
7-12 cell nuclei image amount of cell nuclei (contours),

scale 1-6 especially low in
psammoma bodies

f2 1-5 intensity image parallel arranged fibres
scale 1-5 and thin parallel aligned cracks,

especially high in some
fibroblastic images

6 intensity image unclear
scale 6

7-11 cell nuclei image elongated cell nuclei,
scale 1-5 especially high in

fibroblastic images
12 cell nuclei image unclear

scale 6

Table 5.1.: Histological interpretation of feature vector components.
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Figure 5.10.: Visualisation of the SOM training result based on feature set f2. Top: The
Visualisation of the image domain. Bottom: The Component Plane Maps.
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5.6. Applications of Results

5.6.1. Feature Selection

In the foregoing section the histological characterisation of the specific feature
vector components has been detailed. In this section it is described how this
can be used in the process of feature selection. The selection of only a subset
of features is usually desirable to increase system performance and to avoid
the difficulties of large feature vectors, the so called curse of dimensionality. The
most common method of feature selection is to evaluate the performance of a
specific system, e.g. a classification or image retrieval system, based on all pos-
sible subsets of features or feature vector components. However, the results
of such an approach are system dependent and may vary due to the selected
method for classification or retrieval [3]. Furthermore, it is a black-box sce-
nario, i.e. it does not provide an interpretation of the features in the image
domain. While simple features such as colour histograms are easy to interpret
in the image domain, features based on transforms such as the wavelet-based
ones utilised here are much more difficult to understand. This is usually a cru-
cial point of criticism from the physicians, who are interested in features or
feature sets that can be interpreted to some degree at a clinical level of under-
standing. The analysis method just described allows a direct interpretation of
even abstract features. In this way, features can be selected in correspondence
to their clinical semantics.

Since the amount of cracks in the tissue varies strongly in psammomatous
tissue it is not considered to be of diagnostic relevance. Therefore the com-
ponent 6 of feature set f1 will be negelcted. The components 1− 5 of feature
set f1 vary strongly within the meningotheliomatous and the fibroblastic class.
Consequently, these components are also classified as encoding innerclass dif-
ferences and thus negelcted.

The visualisation further reveals some redundancy in the components 7− 12
of this feature set. These components show a very similar distribution. Some of
them can therefore also be neglected. Eventually only the components 9− 10
of feature set f1 are chosen for tissue characterisation. These components corre-
spond to the scales 3 and 4 of the cell nuclei image h2. All others are neglected
due to redundancy or due to a lack of clinical relevance.

Regarding feature set f2 first the components 6 and 12 are discarded due to a
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missing interpretability. The remaining components then provide a useful clin-
ical interpretation (Table 5.1) but show a strong redundancy. Therefore some of
them are also neglected. Only the components 3, 4 and 9.10 are retained. These
components correspond to the scales three and four of both colour channels h1
and h2.

set of features h1 h2
f1 scale 3 & 4
f2 scale 3 & 4 scale 3 & 4

Table 5.2.: Selected features for tissue characterisation.

In this way a subset of six features is selected from a total set of 24 features.
The six selected features are presented in table 5.2.

The SOM training based on the selected features is now repeated. The re-
sult is shown in Figure 5.11. Obviously, although only six features have been
selected from a group of 24 features, these six features are clearly sufficient
for a good separation of the four classes of tissue. Due to a feature selection
based on histological interpretation, the components of the reference vectors
can clearly be linked to particular image structures at a clinical level of under-
standing. This is shown in Figure 5.12. This Figure shows the reference vectors
associated to each node as a bar plot. Due to the visualisation in the image
domain in Figure 5.11, we are able to link the characteristics of the reference
vectors to the clinically relevant image structures, which is shown in the table
in Figure 5.12. For instance, low values of all components of the feature vector
are characteristic for psammoma bodies while high values in all components
of the feature vector are typical for fibroblastic tissue, representing orientated
image structures and a significant amount of cell nuclei.

To prove that the subset of features selected above is even more appropriate
for class separation than the combination of all possible features, a measure
rating the class separation in the feature space is computed. First, the centre
of each class c in the feature space x̄c and the average distance of each class
centre from the centres of the remaining three classes dist(c) is determined.
Second, the innerclass variance of each class σ2

c is determined. Please note that
all values are normalised to the length of the feature vectors. This normalisa-
tion assures, that the results of feature vectors with different dimensions are
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Figure 5.11.: Result of the SOM training based on the selected features. Top: Cluster-
ing result. Bottom: Visualisation of the image domain.
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comparable. A good separation of one class from the others is achieved, if the
distance of the class centre to the other class centres is high and the innerclass
variance is small. As a measure of the separation therefore the ratio rc = dist(c)

σc
is computed. The higher this ratio the better the class separation. In Table 5.3
the ratios rc of the four classes based on different subsets of features are shown.
Obviously, the selected subset of six features leads to the best values for rc.

Features rc of tumour classes
meningo- fibro- psammo- transi-
theliomatous blastic matous tional

set f1 1.295 1.334 1.923 1.601
set f2 1.403 1.466 2.101 1.487
all features 1.369 1.386 1.968 1.518
selected features 1.735 1.741 2.992 1.954

Table 5.3.: Separation of tumour classes.
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and areas of collagen

3+4 Amount of anisotropic tissue inhomogeneities
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in fibroblastic tissue

5+6 Anisotropic shaped cell nuclei
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Figure 5.12.: Top: A histological feature map derived from the visualisation proce-
dure. The map allows to clearly link numerical features to histological semantics (bot-
tom).
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Figure 5.13.: Distribution of the eigenvalues corresponding to the different feature
spaces. Left: Eigenvalues derived from all 24 features, Right: Eigenvalues derived
from selected features.

Comparison to PCA

Additionally the different feature sets are compared by computing the results
of a PCA. The PCA is computed for a feature set containing all possible fea-
tures and for the selected subset. In Figure 5.13 the resulting eigenvalues are
shown. It is clearly visible, that in the case where all 24 features are considered
(left) only a few eigenvalues provide a significant value. This hints at the re-
dundancy already observed in the result of the SOM training. In Figure 5.14
the projections of all feature vectors onto the eigenvectors corresponding to
the largest two eigenvalues are shown. By comparing these two feature sets
several properties of the different feature spaces become obvious. The group
of psammomatous feature vectors is much more dense in the case of the se-
lected features (right). As mentioned above, some features introducing strong
innerclass differences into the psammomatous group have been discarded. As
a result the cluster of psammomatous feature vectors is much more compact in
the PCA projection. A second important observation is the following. In the
left-hand part of Figure 5.14 the fibroblastic (green) feature vectors build two
clusters, at the top and at the bottom of the meningotheliomatous cluster (red).
After discarding several features encoding innerclass variations of the fibro-
blastic group, this separation of the fibroblastic feature vectors in two clusters
is not observable anymore (right-hand side of Figure 5.14.
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Figure 5.14.: Projections of the feature vectors onto the two eigenvectors v1, v2 related
to the largest eigenvalues. Top: All 24 features, Bottom: Selected features.

5.6.2. Interface for CBIR Systems

In content-based image retrieval systems several types of query formulations
are possible. The most common one is the query by example, i.e. the user pro-
vides an example image to the system. However, in some cases a starting image
may not be available, this is called page zero problem [5]. One possible solution is
to annotate text to the images and perform the first retrieval step based on this
text. However, for this purpose all images in the database have to be annotated
somehow, a very time-consuming task if done manually. Several approaches
exist to annotate the images automatically, e.g. confer [6]. However, textual
labels are not necessarily explicit and unambiguous. The approach described
above already provides an user interface suitable for various query tasks. By
providing the SOM grid visualised by example images and a histological map
the user can define a query for a specific type of image just by selecting a spe-
cific example image in the SOM grid. If the user wants to perform a textual
query he can select a region in the histological feature map (Figure 5.15) to
define his interests. The link between a SOM region and its clinical context
provides a flexible type for query support. This is a technical suggestion at
this point and not already an implemented interface. However, it shows how
the visualisation described above naturally contributes to various challenges
in the design of systems for diagnostic support.
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Figure 5.15.: Overview of a database by subimages (top) and by a histological map
(bottom).
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5.7. Choice of the Mother Wavelet

To compare the results - computed with different mother wavelets - it is not
useful to rely on a SOM training, since during the training procedure random-
ness is introduced. Therefore in case of varying results it would not be de-
terminable whether the changes are introduced by the change of the mother
wavelet or by the randomness of the training procedure. Thus the results
of a PCA are calculated and compared. Here all 24 features are involved in
the computation of the eigenvalues and eigenvectors of the covariance ma-
trix. In Figure 5.16 the projections of all feature vectors onto the two most
important eigenvectors v1, v2 are shown. These projections are derived from
features computed with four different mother wavelets, the Haar-Wavelet, the
Daubechies(2)-Wavelet, the CDF9/7(4, 4)-wavelet and the CDF5/3(2, 2), which
has been used in the work described above.

As can be seen, the four mother wavelets provide very similar results regard-
ing the PCA projection. Thus the choice of the mother wavelet does not seem
to be very crucial in this particular application.

5.8. Discussion and Conclusion

In this chapter it was demonstrated how a detailed analysis of low-level texture
features can be achieved. The wavelet-based features are proven to provide a
powerful method for tissue discrimination in microscopy images of menin-
giomas. The detailed exploration of the feature space allows to interpret the
low-level visual features at a clinical level of understanding. In this way fea-
tures can be linked to innerclass or interclass differences.

Due to this interpretation it is possible to select a histologically meaningful
subset of features, optimised for the particular set of images and its clinical
context. However, a complete separation of interclass and innerclass differ-
ences cannot be achieved. This is also a general semantic problem, because
some particular features are important to distinguish between two types of
classes but likewise vary within a different class. One of such image character-
istics is the number of cell nuclei, which is relevant to discriminate the homo-
geneous psammoma bodies from the other classes but also vary e.g. within the
meningotheliomatous class.
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Figure 5.16.: The projections of the features vectors onto the two most important
eigenvectors v1, v2 computed with four different mother wavelets.
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Images

6.1. Introduction

As described in chapter 3.3 Dynamic Contrast Enhanced Magnetic Resonance
Imaging (DCE-MRI) is a powerful imaging technique applied in breast can-
cer diagnosis. The uptake behaviour of a paramagnetic contrast medium (Gd-
DTPA) in tissue is monitored over time, since enhancement of tissue can pro-
vide valuable information about the existence and the characteristics of le-
sions [48]. Tumour tissue often shows a significantly different vascularity and
permeability compared to normal tissue. This might yield a characteristic up-
take of the contrast agent. In section 3.3.5 it is described that both - the dynam-
ics and the morphology of lesion enhancement - are important characteristics
for the diagnosis of breast lesions.

In recent years several works have analysed the discriminative power of par-
ticular radiological criteria. In [84] the importance of kinetic criteria is proven
for the discrimination of lesions into benign and malignant. Presence of a
washout of the contrast agent is shown to be typical for malignant lesions. In
[85] different kinetic and morphologic radiological criteria are compared. The
most suitable criteria are proven to be the time-to-peak enhancement and the
descriptor of margins. According to this work malignant lesions usually pro-
vide a short time-to-peak and an irregular margin in contrast to benign lesions.
There, the dynamical features are averaged values derived from a human de-
fined region of interest. The margin of the lesions was rated on a scale from
1 to 5 by the human observer with 1 indicating a smooth margin and 5 indi-
cating a spiculated margin. In [86] also dynamical and morphological features
were evaluated. Morphological criteria included those like mass margin and
the internal lesion enhancement. There, also inter- and intraobserver variability
were tested, i.e. the degree of disagreement among a group of raters of with
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respect to repeated rating of the same expert. While particular features such as
presence of washout provide a very low variability, the rating of other features
was shown to be quite varying. In [87] the interobserver variability of carci-
nomas was evaluated with respect to the terminology of the Breast Imaging
Reporting and Data System (BI-Rads). The authors reported moderate inter-
observer agreement regarding morphological criteria and also only moderate
intraobserver agreement of some particular descriptors. Another work pre-
senting moderate interobserver agreement on radiological terminology is [88].
In that work especially the terminology for those lesion descriptors expected to
be very characteristic has been reported as only moderate. An additional work
analysing the usefulness of morphological criteria is [89]. Also in this work
a relatively high interobserver variability has been reported. Two very recent
works on radiological features are [90, 91]. In [90] some lesion parameters are
decided to be very characteristic in the classification of breast tumours. Espe-
cially an irregular or spiculated lesion margin and the presence of washout are
reported to be specific for malignancy. In [91] dynamical features were rated
qualitatively according to their shape and quantitatively by computed meta
features. Morphological criteria were rated on a scale of four from present to
absent. Very predictive criteria were the signal intensity and again the mass
margin.

At this point it becomes obvious that methods for a derivation of objective
features for lesion description are extrememly desirable. Currently several ap-
proaches to develop systems for diagnostic support are known. Computerised
diagnostic systems provide information to assist the medical expert in its daily
work. Especially with respect to DCE-MRI - an imaging technique resulting
in large and multivariate datasets - these systems might decrease the observer
variability just described. Different approaches are known in this area includ-
ing systems for lesion segmentation, classification or visualisation. These ap-
proaches for automatic analysis techniques are described in the following.

Automatic Analysis of Enhancement Dynamics

As described in section 3.3.5 the signal intensity monitored over time provides
information about presence and the malignancy of the lesion imaged. Regard-
ing automatic analysis methods of enhancement kinetics those focusing on the
detection or segmentation of lesions [92, 93, 94, 95] can be distinguished from
those working on lesion classification [96, 97]. The work of Nattkemper et al.
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[98] describes a general analysis of voxel enhancement curves. Besides this,
several approaches focus on the pharmacokinetic modelling and thus visuali-
sation of contrast agent uptake curves such as [99, 100, 101].

Most of the works mentioned above make use of neural networks or machine
learning methods for the particular application. In [93, 94, 96, 97] supervised
machine learning methods are applied while [92, 98, 95] are based on unsuper-
vised learning algorithms.

In [97] kinetic meta features are derived from a human defined region of
interest. In contrast to this, the other works are voxel-based, i.e. the signal
intensity of each voxel is analysed separately with respect to its development
over time [92, 93, 96, 94, 95, 98].

Automatic Analysis of Lesion Morphology

Due to the injected contrast agent breast tumours enhance revealing a spe-
cific morphology. As reported above, it has been shown that besides dynam-
ical enhancement characteristics also morphological criteria are useful to dis-
tinguish benign tumours from malignant ones. To increase the comparabil-
ity of morphological criteria an automatic classification of tumour morphol-
ogy is important. Therefore several works focused on an automatic diagnoses
of lesions based on tumour boundaries and tumour texture regarding differ-
ent imaging domains either X-Ray imaging [8] or DCE-MRI [102, 103]. Shape
based descriptors in tumour diagnostics usually rely on the determination of
an exact tumour boundary. This may be hand-drawn [8, 9] or the result of
pre-processing steps such as automated segmentation results [102, 103]. The
exact boundary is then used to compute further parameters such as geometric
descriptors [103, 104], Fourier-based descriptors [104], moment-based descrip-
tors [104] or wavelet-based descriptors [8]. Besides margin descriptors also
textural descriptors have been analysed. In [105] a hand-drawn region of in-
terest was analysed utilising several texture descriptors based on co-occurrence
matrices.

Simultaneous Analysis of Dynamics and Morphology

Approaches for the simultaneous analysis of lesion dynamics and morphology
are rare. The usual way is here, to use human-defined meta features for en-
hancement kinetics and morphology and combine these in a following analy-
sis or classification step. In [106] these meta features are used to train a neural
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network in order to classify lesions into benign or malignant. A comparable
approach has been made in [107] in order to evaluate the human-defined fea-
tures with respect to their classification performance. In [108] several morpho-
logical and dynamical features of the lesions are computed and analysed after
determining an exact lesion boundary by a human observer.

Focus of this Work

The various examples of different applications prove that kinetic and morpho-
logic criteria are extremely important in the diagnostic process and that it is
possible to implement systems providing an automatic analysis. However,
some particular challenges are not addressed in the works mentioned above.
For instance, some of the methods require a significant amount of human inter-
action such as the determination of a tumour boundary. Others only take into
account a particular part of the DCE MR images and are not suited to process
entire datasets. In the following, two types of analysis will be described. First,
an analysis of enhancement dynamics is presented, resulting in the definition
of features encoding typical enhancement patterns of tumour tissue. Second,
features encoding lesion morphology are derived. The benefits of both types
of features are shown by the development of solutions for particular tasks in
image processing based on the derived features.

6.2. Analysis of Dynamic Characteristics

6.2.1. Motivation

In this work the focus lies on a general analysis of the DCE-MRI datasets, be-
cause a derivation of features specific for different types of tissue may naturally
lead to several applications such as visualisation or segmentation of images. At
this point an additional challenge arises. The MR images analysed are in the
majority of cases very large, e.g. the database utilised in the research described
here provides a time series of MR images, with single images containing ap-
proximately two million voxels. The lesion analysed usually constitutes about
1 % of the entire image. Therefore a large amount of data has to be processed
in order to find a very small amount of diagnostically relevant information.

Additionally, the features have to provide solutions for a specific problem
typical for exactly these kind of datasets. All analysis methods suffer from a
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huge amount of additional contrast agent uptake, which is not related to sus-
picious tissue. Depending on the patient’s anatomy, the region of the body im-
aged usually includes also a significant part of the patient’s chest. The contrast
agent injected intravenously thus produces a significant uptake in the region of
the heart (Figure 6.1). This enhancement is not significant for the diagnosis but
can be confused with contrast agent uptake in tumour tissue. An example for
these similarities can be found in [99]. That work concentrates on the visuali-
sation of tumour enhancement properties. There, several results are presented
showing breast tissue enhancement by a colour code. The region of the chest
containing the heart features the same colour code as the tissue of strongly en-
hancing breast lesions. Thus, the features derived in this thesis have to be able
to distinguish contrast agent uptake in the tumour tissue from contrast agent
uptake in other parts of the body such as the chest.

The segmentation approaches mentioned above usually only take into ac-
count the specific region of interest, either derived by a human observer or
some pre-processing steps. However, they do not address the question how
to segment or classify the lesion in presence of a large amount of interfering
information such as the region of the chest. This region is usually not included
in the analysis. In [93] the breast parenchyma is separated from the region of
the chest - including the heart - by several pre-processing step including a me-
dian filter, thresholding and a closing operator. In [95] a region of interest has
been selected manually by a human observer. In many other publication this
particular aspect remains unmentioned.

In this work, the differences between diagnostically relevant enhancement
related to breast lesions and irrelevant enhancement in the region of the chest
are analysed in order to develop a method to process entire datasets. The aim
here is to distinguish both types of contrast agent uptake without prior knowl-
edge of lesion location, size or other types of information.

One important challenge in this analysis is the fact, that the data processed
significantly increases due to the inclusion of a large region of the chest. Es-
pecially the application of machine learning methods then suffers from a huge
amount of training data. Therefore a trade-off between the amount of image
information and detailedness of the approach is required. This trade-off can be
achieved by applying wavelet-based multiscale analysis, since this produces
localised image information at several levels of detailedness.
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Figure 6.1.: After injection of the contrast agent, the signal intensity inside the chest
increases due to contrast agent uptake in the heart.
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6.2.2. Wavelet Analysis in Breast Cancer Diagnostics

Wavelet Analysis has often been applied in medical image analysis, e.g. for
denoising, image enhancement or segmentation [10, 11]. Wavelet Analysis in
Breast Cancer diagnostics is already known. However, most of the approaches
are related to the analysis of X-Ray mammography, e.g. detection or classifica-
tion of microcalcifications or masses in static X-Ray images [109, 110]. In MR
mammography the use of wavelets is quite rare. One example is the use of
Gabor Wavelets for texture analysis [111]. However, there have been several
approaches regarding the analysis of neuroimaging results. In [112] two differ-
ent acquisition methods in functional MR Imaging of the brain are compared
in the wavelet domain. In [113] time-dependent MR images of the rat brain are
analysed and clustered, based on a wavelet transform. In contrast to my work
in [113] the wavelet transform has been applied to voxel time series and not to
the spatial image information. Further voxel-based approaches can be found
in [114, 115] focusing on wavelet-based statistical analysis or linear modelling
of functional MRI time series.

The specific requirement in the application of the DWT on entire DCE-MRI
datasets is to analyse the huge amount of wavelet coefficients. After decom-
position an appropriate exploration framework is necessary to identify rele-
vant wavelet coefficients and typical temporal patterns in the wavelet domain.
Here, a method from the field of unsupervised machine learning is selected,
the Self Organizing Map (SOM).

In this work a SOM is applied since it provides a favourable combination of
clustering and visualisation capabilities. It allows the identification of tumour
enhancement characteristics in the wavelet domain and the distinction from
non-significant enhancement in the image.

6.2.3. Datasets

The database analysed has already been described in section 3.3. The analysis
of collection I is presented in the following section. It contains eight datasets
including ten lesions marked by a medical expert. Table 6.1 shortly resumes the
content and histological diagnosis of collection I. For each volume an expert la-
bel marking the tumour is available. The first pre-contrast and all post-contrast
images are included in the analysis, each one containing 256× 128× 64 voxels
with a spatial resolution of 1.33 mm× 1.33 mm× 2.5 mm per voxel.
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patient diagnosis
1 multiple invasive carcinoma (ductal (NST) and lobular)
2 Sclerosing lymphocytic lobulitis
3 invasive tubular carcinoma
4 invasive carcinoma (ductal (NST))
5 Fibroadenoma, Fibrocystic changes
6 Fibroadenoma
7 invasive ductal carcinoma (ductal (NST))
8 invasive carcinoma (not assessable)

Table 6.1.: Diagnostic outcome of the patients included in the analysis.

6.2.4. Exploration of Datasets

Generation of Training Data In the following a Self Organizing Map will be
used for the visualisation and thus exploration of wavelet-based image fea-
tures. In this paragraph it is described how the training data is generated. To
control the amount of image information analysed the Discrete Wavelet Trans-
form is utilised. The image data is transformed spatially resulting in a huge
amount of wavelet coefficients.

Due to this transform from the image domain into the wavelet domain some
particular challenges arise in the generation of training data. Each dataset con-
tains a time series of MR images. This work sets focus on the discrimination
of two types of tissue enhancement, the enhancement in tumour tissue and the
enhancement inside the chest. Thus, two separated sets of training data have
to be generated from each single image, one for each type of enhancement.

To this end, wavelet coefficients have to be linked to specific regions inside
the image. In applications based on voxel-based time series this could be done
easily by utilising an expert label. Those voxels inside the labelled region be-
long to the training data, the voxel outside the region do not. However, after
the DWT the link between a single coefficient and the region of interest in the
image domain is more difficult to establish. A further question is how to value
each training sample regarding its importance of the image information. In
contrast to single voxels, which equally contribute to the image, the contri-
bution of wavelet coefficients to an image depends on their size. Here, it is
important to find a measure describing the contribution of each coeffcicient to
the change in signal intensity due to contrast agent uptake.

To locate the wavelet coefficients derived from a specific type of enhance-
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Pre−contrast Post−contrast

+ ROI

Dynamic image information

Static image information

Figure 6.2.: Principle of deriving the relevant wavelet and scaling function coeffi-
cients.

ment new datasets are generated. First, the expert label is used to create a box
- the region of interest (ROI) - around the tumour. Then a new time series of
MR images is generated by exchanging in each image the image information
outside the region of interest with the image information of the pre-contrast
image (Figure 6.2). In this way artificially optimised images are created, pro-
viding only enhancement inside the region of interest considered, e.g. the tu-
mour region or the region of the chest. A 3D Discrete Wavelet Transform is
now applied to each single image of the time series. The coefficients related
to the enhancement of the region of interest are now those providing the most
significant change over time. This is measured in the following way.

Since the focus is on image characteristics resulting from contrast agent up-
take, subtraction images are considered at this point. After subtracting the
pre-contrast signal intensity from the post-contrast signal intensity, mainly the
enhancing part of the breast tissue is visible and can produce significant coeffi-
cients. The DWT is a linear transform and can therefore be interchanged with
the subtraction. Thus the coefficients di of the subtraction image computed
from two images at t = t1 and t = t2 are equivalent to the subtraction of the
coefficients of the two images

di(t1 − t2) = di(t1)− di(t2). (6.1)

If the pre-contrast image is denoted by t = 1 and the five post-contrast images
by t = 2, ..., 6 the following measure Ei related to the coefficient di via

Ei =
6

∑
t=1

|di(t)− di(1)|2 (6.2)

describes the contribution of the coefficients with the index i to all five possi-
ble subtraction images and thus the enhancement at the five time points after
contrast agent injection. This measure will be utilised for the further analysis.
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scale No of coefficients
per subimage per scale

1 262,144 1,835,008
2 32,768 229,376
3 4,096 28,672
4 512 3,584
5 64 448
approximations 64

Table 6.2.: Number of coefficients at each scale and decomposition subimage after
applying a Discrete Wavelet Transform to an MR Image providing 256× 128× 64 =
2, 097, 152 voxels.

The DWT performed involves five decomposition steps, resulting in wavelet
coefficients of five different scales and the remaining approximation coeffi-
cients. In first heuristically derived results the CDF5/3(2, 2) biorthogonal wave-
let pair has been shown to be appropriate for this image domain [116]. There-
fore the first steps of this analysis will be derived using this wavelet pair. A
more detailed discussion of choosing an appropriate wavelet will be given be-
low.

Now, the coefficients related to both types of enhancement can be computed.
However, their number is still very high requiring a preselection before the
analysis of coefficients. The particular properties of the DWT allow such a
preselection depending on the scale and the size (or energy measure) of the
coefficients.

Each MR image provides approximately two million voxels leading to the
same number of wavelet coefficients after the DWT. In Table 6.2 the number
of coefficients at each scale and decomposition subimage is presented. The
number of coefficients at the finest scale (scale 1) is highest. The corresponding
details describe signal changes between adjacent voxels, i.e. at a scale of 1.3 mm
in x- or y-direction or 2.5 mm in z-direction. To reduce the amount of data ana-
lysed the coefficients of the first finest scale are neglected, since their number
is very large and they are considered to be strongly influenced by noise. In this
way the number of coefficients to be analysed is reduced by a factor of eight.

To perform an additional preselection based on the energy measure a his-
togram of this energy measure is computed. In Figure 6.3 this histogram com-
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Figure 6.3.: Histogram of the energy measure. The tumour enhancement of one ex-
ample dataset is shown.

scale No of feature vectors
chest tumour

2 ≈ 2 · 105 ≈ 104

3 ≈ 3 · 104 ≈ 3 · 103

4 ≈ 5 · 103 ≈ 103

5 ≈ 103 ≈ 5 · 102

scaling function ≈ 2 · 102 ≈ 50
coefficients

Table 6.3.: Number of feature vectors included in the procedure.

puted from the dataset shown in Figure 6.1 is presented. The histogram with
100 bins is calculated by including only the tumour enhancement. Since the
energy measures of different scales cannot be compared, all values are nor-
malised to the maximum energy of the particular decomposition subimage.
As can be seen, by neglecting all coefficients providing a value smaller than
1% of the maximum the number of coefficients can be reduced significantly.

The total number of feature vectors included in the training procedure is
presented in Table 6.3.
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Exploration The coefficients with the same indices at each of the six time
points are combined resulting in a six-dimensional vector, a time series of
wavelet coefficients. In a first attempt these time series are used as feature
vectors in the training procedure. The training procedure is then carried out
utilising the feature vectors of all scales and of both tumour and chest enhance-
ment. To eliminate dependencies on the absolute size of the coefficients, which
increases significantly with increasing scale, all feature vectors are normalised
with their absolute value. Thus the feature vectors are given by

xi = (di(1), ..., di(6))T · 1
norm1i

(6.3)

with

norm1i =

√√√√ 6

∑
t=1

d2
i (t). (6.4)

To explore the feature space a Self Organizing Map is trained and the results
are visualised. The wavelet and scaling function coefficients are analysed sep-
arately. As in chapter 5, several training paramters of the SOM have to be set
appropriately.

Also in this chapter the main purpose of the SOM training is a visualisation
of the feature space. Thus the number of nodes is considered not to be a crucial
parameter and is chosen as 10 × 10 to provide a suitable size for the Figure.
Both α and σ are chosen to be linearly decreasing parameters. The initial and
final values of the learning rate are set to αinitial = 0.9 and α f inal = 0.0001 to
provide a strong learning effect at the beginning and a convergence at the end
of the training procedure. The SOM grid is initialised by randomly chosen
feature vectors from the input space. The number of training steps is set to
Nsteps = 106.

As already discussed the choice of σ is a very crucial point and can strongly
influence the training results. The initial value σinitial is set to n = 10 to ensure
that the entire grid participates in the training at the beginning. As already
mentioned in chapter 5 the final value σf inal has to be chosen very carefully,
since it constitutes a trade-off between topology preservation and approxima-
tion of the input space. A training of 10× 10 SOM grids with varying values for
σf inal leads to training results showing clear differences regarding the value for
TP (Topology Preservation) and AQE (Averaged Quantisation Error). In Figure
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Figure 6.4.: The TP values after training a 10× 10 SOM with either wavelet coefficients
(left) or scaling function coefficients (right).

6.4 the results for both wavelet and scaling function coefficients are shown. The
training result obtained with σf inal ≈ 0 provides the best AQE. However, the
preservation of the feature space topology is very poor. Increasing σf inal im-
proves the topology preservation, but also slightly increases the AQE. For the
purpose of feature space visualisation the topology preservation is important.
Therefore a value of σf inal = 2 is chosen to explore the space of wavelet coef-
ficients and a value of σf inal = 1 is chosen with respect to the scaling function
coefficients.

The resulting SOM grids are visualised in Figures 6.5 and 6.6. In both figures
each SOM node is shown by a little box plot representing the reference or proto-
type vector of this node. This visualisation method has already been described
in chapter 5, section 5.5. Each feature vector now can be mapped to one of the
nodes in the SOM by computing the nearest prototype vector. In contrast to
the exploration procedure in chapter 5 the number of vectors mapped to each
node is not a significant measure, since the contribution of the corresponding
coefficients to the signal intensity differs. Thus the number of feature vectors is
replaced by the energy measure introduced above. In this way each time series
of coefficients di(t) is related to one feature vector xi and one energy value Ei.

Due to the generation of two separated training sets describing either con-
trast agent uptake in the tumour (denoted by (tu)) or in the chest (denoted by
(ch)) all feature vectors can be labelled accordingly. By calculating the sums
over all feature vectors mapped to one node uj the energy-measures of fea-
ture vectors per SOM node for tumour and chest (E(tu)(uj) and E(ch)(uj)) are
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Figure 6.5.: Result of SOM training computed from the wavelet coefficients. The colour
code indicates the energy measure at each node. Red symbolises tumour enhance-
ment, blue indicates enhancement inside the chest.

obtained separately:

E(tu)(uj) =
1

E(tu)
tot

∑
x(tu)

i →uj

E(tu)
i with E(tu)

tot = ∑
uj

∑
x(tu)

i →uj

E(tu)
i , (6.5)

and E(ch)(uj) accordingly with E(tu)
tot and E(ch)

tot employed as normalisation factors.
In this way each node is characterised by two energy measures describing the
significance of the corresponding reference vector for the signal enhancement
in tumour tissue or chest respectively. In Figures 6.5 and 6.6 tumour enhance-
ment is symbolised by red colour and enhancement in the chest by blue colour.

The exploration of these two Figures allows a deeper insight into the feature
space. By the observations made in this process the suitability of the utilised
features can be assessed. The first important observation is that the separa-
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Figure 6.6.: Result of SOM training computed from the scaling function coefficients.
The colour code indicates the energy measure at each node. Red symbolises tumour
enhancement, blue indicates enhancement inside the chest.
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tion of both types of contrast agent uptake is not satisfying. However, several
characteristics can be found that can be utilised to optimise the feature vectors.
Figure 6.5 reveals two types of feature vectors which are very similar except of
the sign. They are located at the top right and the bottom left of the SOM grid
respectively, Both types of reference vectors provide a mixed and quite similar
enhancement classification, i.e. the violet colour reveals that they encode both
types of tissue enhancement. Therefore one can draw the conclusion that the
sign of the coefficient time series does not matter. (This also directly results
from the mathematical properties of the DWT).

The second important observation is the following. The reference vectors
described above show a more or less steady increase or steady decrease. The
amount of increase or decrease can be quite equal, whereas the absolut values
of the components can differ strongly. Therefore the most important property
seems to be the difference between the coefficients from the pre-contrast image
(component 1) and those from the post-contrast images (component 2-6). This
observation also holds for the scaling function coefficients. This difference is
equivalent to the coefficients derived from the subtraction images, which are
usually inspected by radiologists in their daily clinical work.

Due to this observations a new type of feature vector is derived according to

xi = (xi(1), xi(2), ..., xi(5))T (6.6)

= (di(2)− di(1), ..., di(6)− di(1))T · sign
norm2i

(6.7)

with

norm2i =

√√√√ 5

∑
t=1

x2
i (t) sign = sgn(

5

∑
t=1

xi(t)). (6.8)

In a next step the SOM-based analysis of the feature space is repeated based
on these new feature vectors. Again, the optimal value for σf inal has to be de-
termined. As described above, an analysis of the TP and AQE values reveals
the optimal choice of σf inal. Due to the results shown in Figure 6.7 σf inal = 2
is chosen for the wavelet coefficient analysis and σf inal = 1 is chosen for the
scaling function coefficients.

The SOM grids derived utilising these parameters are shown in Figures 6.8
and 6.9. The separation of the two types of enhancement in these SOM Grids is
now significantly improved. Furthermore it is now possible to specify typical
patterns encoding the two different type of tissue enhancement.
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Figure 6.7.: The TP values after training a 10× 10 SOM with the new feature vector.
Left: Results of wavelet coefficients. Right: Results of scaling coefficients at right.
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Figure 6.8.: Result of SOM training based on the new feature vectors computed from
the wavelet coefficients. The colour code indicates the energy measure at each node. Red
symbolises tumour enhancement, blue indicates enhancement inside the chest.
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Figure 6.9.: Result of SOM training based on the new feature vectors computed from
the scaling function coefficients. The colour code indicates the energy measure at each
node. Red symbolises tumour enhancement, blue indicates enhancement inside the
chest.
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Tumour enhancement provides a very steadily monotonic increase of fea-
ture vector components whereas the dynamical behaviour of enhancement in
the chest is either quite irregular or shows a clear decrease at the final time
points.
From these results it is possible to derive simpler meta features allowing a more
detailed analysis of the several scales. Up to now, the coefficients and feature
vectors of all scales have been analysed together. By deriving two meta fea-
tures from the presented results it becomes much easier to analyse the obtained
characteristics at the different scales separately.

The first meta feature f1 describes the difference of xi(6) and xi(1). The sec-
ond meta feature f2 is supposed to describe the observation of irregular be-
haviour. In case of a continuous signal higher order derivations could be used
to describe strong changes of a function. In our case the following values are
computed to identify strong variations in time.

DQ1i(t) = xi(t + 1)− xi(t) (6.9)
DQ2i(t) = DQ1i(t + 1)− DQ1i(t)

= xi(t + 2)− 2xi(t + 1) + xi(t) (6.10)
DQ3i(t) = DQ2i(t + 1)− DQ2i(t)

= xi(t + 3)− 3xi(t + 2) + 3xi(t + 1)− xi(t) (6.11)

These values characterise the dynamical behaviour of di(t). For t = 1..5 two
values of DQ3i can be computed. The sum of their absolute values should
be high in case of the irregular enhancement observed above. Hence, the two
meta features are computed according to

f1i = (xi(5)− xi(1)) · sign
norm2i

(6.12)

f2i =
(|DQ3i(2)|+ |DQ3i(1)|)

norm2i
. (6.13)

In the next Figures these meta features are visualised by plotting f2 in de-
pendence on f1 for the entire dataset and for the different scales separately.
The derived plots show the meta feature of tumour enhancement in red and
yellow at right hand and those for enhancement in the chest in blue and green
at left hand respectively. Each circle represents one feature vector and the size
of the circle indicates the energy measure related to the feature vector. Here,
the relation between energy measure and size of the circle is logarithmic. To al-
low a discrimination of the different circles the border of each one is displayed
in a different colour.

133



6. Multiscale Analysis of DCE-MR Images

Feature 1

F
ea

tu
re

 2

F
ea

tu
re

 2

Feature 1

Figure 6.10.: Meta features of enhancement in the tumour (right) and enhancement in
the chest (left). Wavelet coefficients of all scales are included.

Figure 6.10 shows the feature vectors of all scales. It reveals the fact, that
the enhancement inside the chest results in all possible types of enhancement
whereas the dynamics of tumour tissue is much more specific. The majority
of feature vectors shows a regular dynamics and an increase from the first to
the last component. In Figure 6.11 the meta features of the scaling function
coefficients are presented. This plot is much sparser due to the low amount of
coefficients. However, the observations described above can be verified in this
plot nonetheless.

In Figures 6.12, 6.13, 6.14 and 6.15 the meta features are shown for each scale
separately. They all share the major feature that enhancement in the tumour
is much more specific and therefore restricted to a particular region in the 2D
plane. The most important difference of the scales is, that both features in av-
erage show a decrease over scales for both tumour enhancement and enhance-
ment inside the chest. However, there is always a clear difference observable
with respect to contrast agent uptake in the chest and in the tumour tissue.

6.2.5. Application of Results - Segmentation

General Approach

The exploration results described above can be utilised for the development
of a tumour segmentation method. The fundamental idea here is to classify
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Figure 6.11.: Meta features of enhancement in the tumour (right) and enhancement in
the chest (left). Only the scaling function coefficients are included.
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Figure 6.12.: Meta features of enhancement in the tumour (right) and enhancement in
the chest (left). Wavelet coefficients of the second scale are included.
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Figure 6.13.: Meta features of enhancement in the tumour (right) and enhancement in
the chest (left). Wavelet coefficients of the third scale are included.
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Figure 6.14.: Meta features of enhancement in the tumour (right) and enhancement in
the chest (left). Wavelet coefficients of the fourth scale are included.
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Figure 6.15.: Meta features of enhancement in the tumour (right) and enhancement in
the chest (left). Wavelet coefficients of the fifth scale are included.

wavelet coefficients into tumour related and non tumour related. Due to their
locality it is possible to perform a filtering in the wavelet domain. The coeffi-
cients are modified depending on their characterisation into relevant or irrele-
vant for tumour enhancement. From the modified wavelet coefficients images
are reconstructed. In clinical practice usually subtraction images are examined,
i.e. the subtraction of a pre-contrast image from a post-contrast image, chiefly
to suppress the signal of fat. To evaluate the filtering result, intensity based
segmentation is applied to the subtraction images. Since the aim here is to con-
serve all signal intensity in the tumour region and to delete all non-significant
signal intensity inside the chest, the filtered images are compared to the expert
labels. In this way the true and false positive as well as the true and false neg-
ative segmented voxels can be computed, depending on the chosen threshold.
This procedure is termed ROC Analysis and is described in more detail in the
next paragraph.

Receiver Operator Characteristic Analysis

Receiver Operator Characteristic (ROC) analysis is a useful technique to visu-
alise and measure the performance of classifiers. In our approach the perfor-
mance of the filtering procedure is measured by classifying the voxels of the
images into tumour and non tumour voxels. Since our filtering approach was
designed to delete the enhancement not related to tumour tissue, the intensity
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of voxels in the filtered subtraction images should indicate the type of tissue.
Therefore the voxels of the subtraction images are classified into tumour and
non-tumour voxels depending on their intensity which is equivalent to an in-
tensity based segmentation. All voxels above a specific threshold are classified
positively (i.e. as a tumour voxel) and all others negatively. By comparing the
segmentation result with the expert label - a binary mask marking the tumour
region - it is possible to calculate the correctly classified voxels (true negative
(tn) and true positive (tp)) and the incorrectly classified voxels, i.e. the false
negative ( f n) and false positive ( f p) voxels. The intensity threshold for classi-
fication into tumour and non-tumour voxels is varied in this process.

Two parameters can be defined from the computed rates, the sensitivity and
the specificity. The sensitivity is also termed tp rate and is defined as

sensitivity = tp rate =
tp

tp + f n
. (6.14)

The sensitivity measures the ratio of voxels classified correctly positive and all
positive voxels, i.e. in this case the sensitivity measures the amount of tumour
voxels, which are correctly classified as tumour voxels. The sensitivity is 1 if
all voxels of the tumour are classified positively.

The specificity is defined according to

specificity =
tn

f p + tn
(6.15)

and measures the fraction of correctly classified non-tumour voxels in all non-
tumour voxels. The specificity is high, if the amount of voxels falsely classified
as tumour-related is low compared to the correctly classified non-tumour vox-
els. If no voxel is falsely classified a tumour-related ( f p = 0), the specificity is
1.

There is always a trade-off between sensitivity and specificity, i.e. by increas-
ing the threshold for classification the amount of f p voxels decreases leading to
an increase in specificity. However, the amount of tp voxels usually decreases
in the same way, leading to a decrease of sensitivity. Therefore both values are
computed with a varying threshold and plotted in a so called Receiver Oper-
ator Characteristic (ROC) Graph. In this ROC graph the sensitivity is plotted
against 1− specificity [117]. The value the 1− specificity = f p/( f p + tn) is
termed f prate and measures the amount of voxels falsely classified as tumour-
related in all non-tumour voxels.
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Figure 6.16.: Left hand: A perfect ROC Curve. Right hand: The ROC Curve of the
first subtraction image of dataset 5.

An ideal ROC curve is shown in Figure 6.16 at right hand. There, the sen-
sitivity is always 1 independent of the specificity. An example ROC curve for
one of the subtraction images analysed is shown at left hand. To measure the
quality of an ROC Curve the area under the curve (AUC) is computed. The
AUC value is a number between 0 and 1, with 1 as the result for an ideal curve.
Since regions of high specificity are especially interesting, the AUC value for
specificity > 0.95 is computed separately. This value has been normalised to
the total area 0.05, therefore these AUC also take values between 1 and 0.

SOM-Based Segmentation

Principle The first step here is the training of a SOM grid and the character-
isation of the SOM nodes. As described above each of the reference vectors
related to the SOM nodes can be marked as a prototype for tumour enhance-
ment or for enhancement in the chest. This is done by computing the energy
measures according to equation (6.5). From the two energy measures E(tu) and
E(ch) related to each node uj a value ptu is computed according to

ptu(uj) =
E(tu)(uj)

E(tu)(uj) + E(ch)(uj)
(6.16)

describing the fraction of “tumour energy” related to each node. The measure
ptu takes values between 1 and 0, with 1 indicating the fact that only tumour
coefficients are mapped to this node.
The principle of the filtering procedure is to first compute all feature vectors of
the dataset to be filtered. In a second step each feature vector xi is mapped onto
the SOM Grid, i.e. the nearest reference vector is determined. The measure
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ptu of this specific node is then multiplied with the wavelet coefficients di(t)
related to the feature vector. In this way coefficients classified as non tumour
coefficients are decreased or deleted whereas coefficients mapped to tumour
nodes are retained.

The computations are conducted using the leave-one-out approach, i.e. the
image to be filtered is not included in the training procedure. Thus for each
image a new training result is obtained using the feature vectors computed
from the remaining images in the database.

Two modifications of this approach can be distinguished. First, the coeffi-
cients and feature vectors of all scales are trained together, utilising a 10× 10
SOM grid. Second, for each scale one SOM is trained, i.e. the coefficients and
feature vectors of the different scales are handled separately. In both cases
the scaling function coefficients are processed separately utilising a 5× 5 SOM
grid.

As in [118] the results of the ROC analysis before and after filtering are
compared in order to evaluate whether the filtering leads to a significantly in-
creased segmentation result.

Segmentation Results Figure 6.17 shows one example of a SOM grid. The
circles indicate the nodes in the SOM. The intensity of the circle’s colour is the
amount of wavelet-based energy related to this node. The colour code indi-
cates the type of signal enhancement. Blue colour depicts signal enhancement
inside the chest, red indicates enhancement due to contrast agent uptake in tu-
mour tissue. A separated region representing the uptake behaviour of tumour
tissue is clearly observable. The nodes of this region are the most important
ones for detecting tumour enhancement. The result of this filtering procedure
is additionally visualised using the subtraction image of patient 4 as an exam-
ple. The green colour presents the information of the pre-contrast image. The
red colour stands for the subtraction image of the first post-contrast and the
first pre-contrast image, i.e. the red colour shows enhancing tissue. Due to the
filtering (first method SOMcombined) the enhancement in the region of the chest
is nearly completely removed, whereas the image information of the tumour
tissue is preserved. Intensity-based segmentation applied to the filtered im-
ages hence produces considerably improved results. This is demonstrated by
ROC-analysis, the results are presented in Figure 6.18. The subtraction images
of the first pre-contrast and three post-contrast images are computed. Then
the AUC values for specificity > 0.95 (low amount of false positive segmented
voxels) are computed. The AUC values of the original subtraction image and
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the filtered subtraction images are shown. As one can observe, the AUC val-
ues of all datasets are significantly increased due to the filtering procedure.
The dataset of the fifth patient provides a result overall remarkably inferior to
the other cases examined, since this dataset includes a very weakly enhancing
benign lesion, hardly showing any uptake at all.

An example database is presented in Figure 6.19. Different slices of the eigth
dataset are shown either containing tumour enhancement of significant con-
trast agent uptake inside the chest. After the filtering procedure the enhance-
ment in the heart is nearly deleted. The tumour information however, is re-
tained. At the bottom of this Figure the corresponding ROC plots are pre-
sented. After the filtering, the ROC curve is quite near to an ideal ROC curve.

The approach presented has been published in [119]. There the size of the
SOM grid differed from the one described here. A 20× 20 SOM was utilised for
the filtering procedure. However, since the results of both approaches are quite
satisfying, the exact number of nodes does not seem to be a crucial parameter
in the procedure.
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Vector
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Computation
SOM Training

enhancement in
the chest

enhancement
in tumour tissue

Datasets

First Step: Training

Second Step: Filtering

Filtering

Figure 6.17.: Principle of the proposed approach. Top: SOM grid after training, the
circles indicate the nodes in the SOM, representing mainly enhancement in the chest
(blue) or in tumour tissue (red). Bottom: Filtering example. One slice of the dataset 4
is shown before and after filtering. The pre-contrast image is displayed in green, the
enhancing tissue in red. The irrelevant enhancement in the chest is nearly completely
deleted after filtering.
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Figure 6.18.: AUC values for specificity > 0.95 for all datasets before and after SOM-
filtering. Three different post-contrast images are examined. Green: AUC values for
the original subtraction images. Magenta: AUC values for the filtered images. All
scales have been filtered using one single SOM. Orange: AUC values for the filtered
images. For the filtering of each scale a SOM has been trained separately.
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Figure 6.19.: Example filtering results. Dataset eight - providing the highest improve-
ment of AUC values - is shown. Top: One slice mainly includes enhancement inside
the chest, the other slice contains the tumour. While the contrast agent uptake inside
the chest is nearly completely deleted, the tumour information is still preserved. Bot-
tom: The ROC-Curves related to both datasets.
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Segmentation Using Meta Features

Principle Now the meta features are used to perform a similar kind of fil-
tering procedure. To use a continuous two-dimensional plot (Feature 1 vs.
Feature 2) for characterising different types of coefficients, this 2D plane is
discretised resulting in a number of boxes in the 2D plane. Each box is now
filled with the coefficients located at the particular area of the 2D plane (Fig-
ure 6.20). As in the previous approach not the number of coefficients is deter-
mined but the total energy of coefficients in each box. After normalisation a
two-dimensional histogram for both types of enhancement is available. From
these two histograms multiplication factors for the filtering procedure can be
computed for each box. Let htu

k,l denote the height of the box with indices k
and l in the tumour histogram. With hch

k,l the equivalent box in the histogram
describing contrast agent uptake in the chest is denoted. The multiplication
coefficient ptu(k, l) for each box is derived by

ptu(k, l) =
htu

k,l

htu
k,l + hch

k,l
. (6.17)

It can be regarded as a kind of probability for each box describing a feature
combination typical for tumour enhancement.
During the filtering procedure each time series of wavelet coefficients di(t) is
analysed by computing the two meta features f1i and f2i, determining the in-
dices k and l in the discretised 2D plane and thus the value ptu(k, l). The coef-
ficients are then multiplied with ptu(k, l) in order to retain tumour coefficients
and to diminish the others. Again, the leave-one-out approach is utilised. The
filtering is performed one time combining the wavelet coefficients of all scales
in one histogram, the next time with separated histograms, one for each scale.

Segmentation Results The results of this segmentation procedure are shown
in Figure 6.21. As in the previous section the AUC value for specificity > 0.95
is presented. The AUC is increased in all cases due to the deletion of enhance-
ment inside the chest.

The advantage of this approach is the low number of parameters to be set
prior to the filtering. Only the number of bins for the two meta features has to
be chosen. By contrast, the SOM-based approach requires much more param-
eters to be set appropriately.

Furthermore the results of the histogram-based segmentation do not depend
on any random input. In contrast to this, the training results of the SOM and
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k

l

k
l

Figure 6.20.: Generation of histograms. The indices k and l describe the coordinates
of the boxes in the 2D plane.

thus the outcome of the segmentation may vary depending on the initialisation
of the SOM grid and the order of feature vectors during training, which are
both random processes.

Therefore, the histogram-based approach is considered to be more robust
whereas the segmentation results of the SOM-based approach are slightly su-
perior (e.g. dataset 3).
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Figure 6.21.: AUC values for specificity > 0.95 for all datasets before and after filtering
based on a meta feature histogram. Three different post-contrast images are examined.
Green: AUC values for the original subtraction images. Magenta: AUC values for the
filtered images. All scales have been filtered using one histogram. Orange: AUC
values for the filtered images. For the filtering of each scale a histogram has been
computed separately.
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6.2.6. Choice of the Mother Wavelet

The remaining question is, whether the wavelet utilised - the biorthogonal
CDF5/3(2, 2)-wavelet pair - is the most suitable one for this specific purpose.
To answer this question the filtering procedure based on the meta features is re-
peated utilising the Haar-Wavelet, the Daubechies(2)-Wavelet and the biorthog-
onal CDF9/7(4, 4) wavelet pair. The results are shown in Figure 6.22. The dif-
ferences between the AUC values derived with the four mother wavelets are
comparatively low. However, the CDF5/3(2, 2) wavelet pair provides overall
the best results.

6.2.7. Discussion and Conclusion

The exploration of wavelet-based feature vectors has revealed typical patterns
for contrast agent uptake inside the tumour. It has been shown that this tumour-
related type of enhancement offers very typical patterns in the wavelet domain
in contrast to the enhancement in the region of the chest. The results of the ex-
ploration procedure lead to the definition of dynamical meta features in the
wavelet domain for the detection of tumour enhancement.

In an application the discrimination potential of the derived features is proven.
Two algorithms are implemented for the segmentation of tumour tissue by fil-
tering in the wavelet domain. Both methods, one based on a trained SOM
grid, the other based on the defined meta features, are clearly able to extract
the relevant, i.e. tumour-related signal intensity from the image. In this way
the diagnostically irrelevant enhancement inside the chest is suppressed. The
tumour tissue is now detectable simply by its signal intensity. The filtering is
performed without any prior knowledge such as lesion size or location. It is
therefore considered to serve as a robust segmentation technique applicable in
clinical practice since it requires no human interaction during the segmentation
procedure.

Another possible application is the visualisation of the DCE-MR datasets by
colouring the image information, i.e. the coefficients mapped to separated re-
gions in the SOM, differently. It is also straightforward to use this method not
only for the detection but also for a classification of lesions. In this case, the
analysis would focus on the derivation of features able to distinguish benign
from malignant tumour tissue. Due to the limited size of the database analysed
this cannot be done at this point. However, it is a promising task for future re-
search.
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Figure 6.22.: AUC values for specificity > 0.95 after filtering with four different
wavelets.
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6.3. Analysis of Morphologic Characteristics

6.3.1. Motivation

As described above, morphological characteristics are essential in the diagnos-
tic process of breast cancer detection. However, as mentioned the agreement
of human experts in rating these features is only moderate and thus the defini-
tion of objective features highly desirable. Several approaches have been made
to define features describing tumour morphology. However, most of these de-
pend on an exact definition of tumour boundary. The voxels or pixels inside
the boundary can then be used to compute texture information, the contour
to compute shape descriptors. As mentioned in the introduction the tumour
boundary is in most of the cases hand-drawn by a human expert, a very time-
consuming task, which can introduce additional interobserver variability into
the classification process. In some cases the boundary is defined by several
pre-processing steps that strongly depend on further parameters such as seg-
mentation thresholds and thus may introduce errors in the following process.
In this work, I propose a method to obtain shape and texture descriptors, which
do not rely on the prior determination of an exact boundary. An approximated
region of interest with arbitrary shape is sufficient. The ROI can be derived by
a human observer or by a detection process as described in the foregoing sec-
tion. For this purpose the Discrete Wavelet Transform is applied using differ-
ent types of mother wavelets to measure shape and texture of the tumours. The
exploration of wavelet coefficients computed from different mother wavelets
allows to define new features describing simultaneously the shape and the tex-
ture of a tumour. The approach is motivated using two-dimensional phantoms
and then extended and specialised as an application on DCE-MR datasets.

6.3.2. Approaches for Shape and Texture Characterisation

Several descriptors for shape and texture characterisation exist. For an overview
of texture and shape descriptors the reader may refer to [78, 120]. The most
common ones are those used in the MPEG-7 standard [121].

In this standard three texture descriptors are defined, the homogeneous tex-
ture descriptor, the texture browsing descriptor and an edge histogram de-
scriptor. The first one is based on a Gabor transform encoding scale and ori-
entation dependent characteristics. The second one describes properties close
to visual perception such as regularity, coarseness and dominant directions.
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The last one provides a histogram of edges orientated in a specific manner.
Especially in the analysis of medical images some other features are utilised.
For instance in [105] texture features based on co-occurrence matrices are com-
puted.

The shape descriptors in the MPEG-7 standard are either based on a region
or a boundary. However, an exact determination of the particular object is
always required.

In medical image analysis several descriptors are used, as already mentioned
in the introduction. These ones as well require an exact boundary and can
be characterised as geometric descriptors [103, 104], Fourier-based descrip-
tors [104], moment-based descriptors [104] or wavelet-based descriptors [8].
These types of descriptors can be very detailed. However, in tumour diagnos-
tic the classes of different shapes are quite limited. Thus a simpler descrip-
tor should be appropriate for this purpose. Please note, that the focus is not
on a classification into benign or malignant tumours regarding tumour mor-
phology, since the size of the database is limited. This work addresses the
question, how to derive shape and texture descriptors for tumour represen-
tation, which do not rely on an exact determination of the boundaries of the
tumour. In the following at first the analysed image database is described.
Then the methodology is explained utilising phantom images. Although the
images considered are three-dimensional, the approach is initially explained
using two-dimensional phantoms for reasons of comprehensibility. From the
results of these studies morphology features for the 3D tumours can be derived
and analysed in detail by utilising Self Organizing Maps.

6.3.3. Datasets

In this section a larger database is analysed. Referring to chapter 3 the two col-
lections C1 and C2 are included. The total database analysed therefore overall
comprises 18 datasets with a total number of 27 labelled lesions, 10 benign and
17 malignant. The lesions analysed are shortly summarised in Table 6.4. As
described above the resolution of the images is given by 1.33 mm× 1.33 mm×
2.5 mm for all datasets. However, the number of volumes, i.e. time points
differs. The datasets 1 to 8 provide five post-contrast images, whereas the
datasets 9 to 18 only contain a time series with four post-contrast volumes. For
the analysis described in the following sections subtraction images are com-
puted. The resulting time series of MR images can be regarded as a collection
of voxel time series, with one time series associated to each voxel. By selecting
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patient diagnosis
1 multiple invasive carcinoma (ductal (NST) and lobular)
2 Sclerosing lymphocytic lobulitis
3 invasive tubular carcinoma
4 invasive carcinoma (ductal (NST)), two lesions
5 Fibroadenoma, Fibrocystic changes
6 Fibroadenoma
7 invasive ductal carcinoma (ductal (NST))
8 invasive carcinoma (not assessable)
9 benign - no additional information
10 invasive lobular carcinoma
11 invasive carcinoma (ductal NST), two lesions
12 Multiple papilloma, Fibroadenoma
13 invasive carcinoma (ductal NST), two lesions
14 benign - no additional information, two lesions
15 invasive carcinoma (ductal NST)
16 malignant - no additional information, three lesions
17 invasive carcinoma (ductal NST), two lesions
18 benign lesion - no additional information

Table 6.4.: Diagnostic outcome of the patients included in the analysis.
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the maximum value of each voxel time series one single image is contructed.
These maximum-value subtraction images are then utilised to compute the le-
sion descriptors.

6.3.4. Edge-Detection Using DWT

Edge-detection is a well-known problem in image-processing. Several Edge-
detectors are known, either based on computing the first order derivative (e.g. So-
bel, Canny, Roberts, Prewitt) or the second-order derivative (Marr-Hildreth).
Using DWT one can perform a multiscale edge detection on images. In [53]
it is described how to use the first and second derivatives of a gaussian func-
tion for edge-detection. In this work, the Haar-Wavelet Transform is used to
compute edges of different scales and orientations. The Haar-Wavelet is an or-
thonormal wavelet with a shortest possible filter length of two. It has already
been presented in chapter 4 and is again shown in Figure 6.23.

 0

 1

10
x

Haar-Wavelet

 0

 1

10
x

Haar-Scaling-Function

Figure 6.23.: The Haar-Wavelet and the corresponding scaling function.

Using the Haar-Wavelet the gradients of neighboured pixels - i.e. edges - at
different scales are obtained. In Figure 6.24 the Discrete Haar Wavelet Trans-
form of phantom images are shown.

In the following the diagonal details are neglected and only the vertical and
the horizontal edges are further processed. Summing over positive and nega-
tive coefficients separately leads to a characteristic edge profile. In the case of
vertical details (edges orientated in y-direction), all coefficients providing the
same y-value and sign are summed.

edgej+(x) = ∑
ky

d+
j,kx,ky

(vertical) (6.18)
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Haar−Wavelet
Transform

Transform
Haar−Wavelet

Figure 6.24.: Haar-Wavelet Transform of a circle-like and a spiculated phantom image.

edgej−(x) = ∑
ky

d−j,kx,ky
(vertical) (6.19)

edgej+(y) = ∑
kx

d+
j,kx,ky

(horizontal) (6.20)

edgej−(y) = ∑
kx

d−j,kx,ky
(horizontal) (6.21)

Here d+
j,kx,ky

denotes all positive coefficients and d−j,kx,ky
the negative coefficients.

Thus an edge-profile is derived in x- or y-direction clearly showing the ascend-
ing edges of the circle at left and the descending edges at right hand in case
of the circle-like phantom. The edge-profile of the spiculated phantom varies
strongly such that the ascending and descending edges are not spatially sepa-
rated in the same way (Figure 6.25.

From these phantom studies it seems to be straightforward to compute a
shape-descriptor describing round (symmetric and convex) and non-round (a-
symmetric and not convex) structures. A descriptor based on such an edge
profile may not be able to distinguish between certain figures like circles or
squares which are both symmetric and convex. But since the only symmetric
figure occurring in tumour morphology is circle-like or ball-like this is not a
problem for this specific purpose. Furthermore is is not necessary for a tumour
descriptor to provide very detailed shape information. Human-defined shape
or margin features in DCE-MRI are usually rated on a scale of four or five into
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Figure 6.25.: Edge-Profiles for a round and a spiculated phantom derived from the
Haar wavelet coefficients.
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terms such as round or spiculated [87, 91] and consequently are also not very
detailed.

One additional challenge arises at this point. In DCE-MR images the tu-
mour may provide a significant amount of texture also producing edges in the
Haar-Wavelet Transform. Thus one has to find a way to eliminate or at least
reduce the texture while preserving the shape of the structure to perform the
suggested analysis.

6.3.5. Texture-Filtering Using DWT

As stated above many texture features exist. However, for this specific pur-
pose most of these features are too complicated. In DCE-MR datasets it is de-
sirable to distinguish heterogeneous lesions from homogeneous lesions. The
only interesting question here is, whether the tumour does provide a signifi-
cant amount of texture or if it does not. Thus a much simpler approach can be
used. In the analysed images texture is a fine scale phenomenon compared to
shape. Therefore one possible approach would be to decompose the image into
fine scale details, describing the texture and the remaining coarse scale image
information, considered to describe the shape of the structure. However, the
Haar Wavelet is not suitable for such a purpose. High-pass filtering does not
preserve the shape information very well. Due to the non-continuous shape of
the Haar-Wavelet a fine scale filtering creates strong block-like artefacts in the
image. This is demonstrated in Figure 6.27. The Figure shows the spiculated
phantom image with an artificial texture, derived by filling the area of the tu-
mour phantom by randomly chosen grey values between 127 and 255. A DWT
followed by the deletion of the wavelet coefficients of the two finest scales and
image reconstruction leads to an image with a shape strongly distorted by arte-
facts. To preserve the shape while smoothing the texture a different wavelet
has to be used. On the one hand it seems to be useful to apply a wavelet with
more vanishing moments since such a wavelet is more appropriate to adapt to
smooth funtions or image details. On the other hand it is desirable to use a
symmetric wavelet because the encoding of the symmetry of a tumour is in the
focus of research.

In image processing symmetric wavelets are quite common, since they lead
in general to a decreased visible amount of artefacts. However, these symmet-
ric wavelets of compact support cannot be orthogonal but only biorthogonal
(chapter 4). In case of a biorthogonal DWT the transform and the inverse trans-
form are performed using different types of wavelets. Biorthogonal wavelets
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can be symmetric or antisymmetric. One of the biorthogonal wavelet pairs pri-
marily used is the CDF9/7(4, 4)-wavelet already mentioned in chapter 4. It is
used in the JPEG2000 algorithm for lossy compression [57] and is sometimes
called 9/7-Filter. The wavelets for decomposition (analysing wavelet) and re-
construction (synthesising wavelet) of this pair are again shown in Figure 6.26
together with their corresponding scaling functions. These wavelets have four
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Figure 6.26.: The biorthogonal wavelet and scaling function of the CDF9/7(4, 4)-
wavelet.

vanishing moments in contrast to the Haar-Wavelet providing only one. This
larger number of vanishing moments is an important requirement to recon-
struct smooth image structures. The filtering result of the spiculated phantom
image using the CDF9/7(4, 4)-wavelet is shown in Figure 6.27. A more com-
plicated way of separating edge from texture information is described in [122].
The approach described there is based on a detection of multiscale edges. How-
ever, the focus of the work done by Froment and Mallat was on compression.
For the derivation of tumour descriptors as presented in this work a simpler
texture filter is appropriate.
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with
Haar−Wavelet
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CDF  (4,4)

9/7

Figure 6.27.: Spiculated phantom image with texture before (left) and after (right)
low-pass filtering using Haar-Wavelet and CDF9/7(4, 4)-wavelet.

6.3.6. Shape and Texture Descriptor

In the previous paragraph it was shown how to separate shape and texture in
our images. The further analysed database contains three-dimensional images
of the tumour. However, the approaches described in two dimensions can be
easily extended to three dimensions. To derive the shape descriptor, at first the
described texture filtering is applied using the CDF9/7(4, 4)-wavelet.

Since the resolution of our phantoms is comparable to the resolution of the
MR images in the database, also the details of the finest two scales are consid-
ered for deletion. From the three-dimensional image an edge-profile for the
different axes is computed using the Haar-Wavelet Transform, before and after
texture filtering. In Figure 6.28 the edge profiles for the round phantom are
shown. Please note, that not the exact label for computing the profiles is used
but only a box-shaped region of interest (ROI) containing the tumour label.
The filtering process in general leads to decreased edges due to the smooth-
ing effect of the CDF9/7(4, 4)-wavelet. However, the filtered ideal phantom
(top) still provides the characteristic spatially separation of ascending and de-
scending edges, except very slight reconstruction artefacts. At the bottom the
results for a phantom providing significant texture is shown. Before filtering,
the edge-profile is strongly influenced by the texture and thus is quite differ-
ent from the profile of the ideal phantom. After filtering, the texture is nearly
deleted, leading to an edge-profile quite similar to the profile of the filtered
ideal phantom.
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Shape-Descriptor In the following the low-pass filtered images are used to
obtain a numerical shape descriptor. The most important observation here
is that round structures (in 2D) or ball-like structures (in 3D) provide a very
characteristic edge-profile. Edge-profiles of irregular shaped structures do not
match this characteristic pattern. It is therefore possible to define a descrip-
tor measuring the variation from circle- or ball-like shape. One challenge here
is, that the edge-profiles strongly differ in length since the tumours differ in
size. Furthermore a dependence on the location of the tumour within the ROI
should be avoided. Therefore the edge-profile cannot directly be used as shape
descriptor. Thus a two-dimensional descriptor is computed as follows. At first
the centre c of the edge-profile is determined. Since the descriptor should not
depend on the length of the chosen ROI, we compute the centre of mass of the
ascending and the descending edges respectively. The centre of the edge profile
c is chosen as the middle between these two values. For each edge-profile the
squared values of the ascending edges at left hand and the descending edges
at right hand are summed (descriptor1). The sum of the remaining edges is
termed descriptor2.

descriptor1 =
c

∑
x=0

edge2
j+(x) +

xmax

∑
x=c+1

edge2
j−(x) (6.22)

descriptor2 =
xmax

∑
x=c+1

edge2
j+(x) +

c

∑
x=0

edge2
j−(x) (6.23)

(6.24)

After a normalisation with the total sum descriptor1 + descriptor2 these values
can be compared for different shapes. In case of a circle or ball all ascend-
ing edges are at left hand and the descending edges at right hand. There-
fore descriptor1 provides the value 1 and descriptor2 the value 0. An irregu-
lar shaped structure providing not spatially separated edges provides values
differing from 1 and 0.

Texture-Descriptor The filtering procedure is applied to delete texture from
the image. The difference between the edge-profiles before and after filtering
should therefore be a measure for the amount of texture contained in the im-
age. Thus we simply sum the absolute values of all Haar coefficients before
and after filtering and compute the ration between both values. If the texture
filtering has no effect the ratio is equal to 1, in case of a strong filtering effect the
ratio is significantly decreased. Note here, that this value is also smaller than
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1 in case of an ideal, not textured structure due to a smoothing effect working
at the edges. However, in case of a strongly textured image, the distance be-
tween both profiles is significantly increased and thus the ratio is significantly
smaller than 1. In order to distinguish textures at different scales, this value
can be computed after deleting the first and second scale details, as described
above, or after deleting only the first scale details. Both texture measures are
included in the further analysis.

The features just described are derived from more or less heuristic consid-
erations. Thus, they have to be evaluated regarding their suitability for the
desired purpose. This evaluation is done in the following utilising Self Orga-
nizing Maps.
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Figure 6.28.: Edge profile of the round phantom without texture (top) and with texture
(bottom). In both cases the edge-profiles are shown before and after filtering

161



6. Multiscale Analysis of DCE-MR Images

6.3.7. Exploration of the Descriptors

To evaluate the proposed features the database is visualised based on them.
For this purpose a SOM is computed to establish a link between single lesions
and the features describing tumour morphology. A 10× 10 grid is trained, with
a learning rate α(t) varying between αinitial = 0.9 and α f inal = 0.01 and 5 · 105

training steps. The reference vectors are initialised by randomly chosen feature
vectors from the input space. The parameter σinitial is set to σinitial = 10. Again
an appropriate value for σf inal has to be determined. The results for TP and
AQE are computed for two values and compared:

σf inal TP AQE
1 0 0.037
3 0 0.114

As in the works before the AQE increases with increasing σf inal. However,
the TP value is 0 in both cases, thus the parameter leading to the lower AQE is
chosen.

The trained SOM grid resulting from these parameters is presented in Figure
6.29. The descriptor is computed for the finest three scales after deleting the
first scale details and the first and second details utilising the 9/7-Filter. At
the top of the figure the database is visualised based on the computed features.
Each tumour is represented by an image of the particular lesion. At the bottom
the Component Plane Maps of the reference vectors are presented. The round
tumours providing regular shape are located in the lower right part of the SOM
grid, whereas the irregular shaped tumours are located in the upper left part of
the grid. By comparing this to the Component Plane Maps, it becomes evident,
that the first scale descriptor after deleting the finest two scales corresponds
best to the visual appearance of the tumours. In contrast to this the third scale
shows characteristics which do not go with the visual tumour appearance. This
may be due to the fact, that our resolution is very limited and thus the third
scale edge-profile is not a reliable feature.

The texture descriptor is presented in Figure 6.30. Also here, the database is
visualised based on a SOM training with the described feature vectors. The TP
and AQE values for two different settings for σf inal are given below.

σf inal TP AQE
1 0 0.019
3 0 0.060
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Figure 6.29.: SOM trainig results for the shape descriptor computed for three scales.
Top: Visualisation of the image domain. Centre: The distribution of shape characteris-
tics at the SOM grid. Bottom: The Component Plane Maps.
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Figure 6.30.: SOM trainig results for the texture descriptor computed for three scales.
Top: Visualisation of the image domain. Centre: The distribution of texture character-
istics at the SOM grid. Bottom: The Component Plane Maps.
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As before, σf inal = 1 us chosen. All other parameters of the training proce-
dure are set as described in the previous paragraph.

The feature explored here is designed to measure the edge-profile before and
after texture filtering. A homogeneous tumour should provide a very high
value of the computed ratio (close to one) in contrast to strongly textured le-
sions. In Figure 6.30 it is visible that this expectation best holds for the descrip-
tor computed for the first scale. Here, the homogeneous lesions at the left top
of the SOM grid corresponds to high values of the related feature vector com-
ponents. The other two scales do not seem to provide a reliable measure.

In the following only the descriptors computed for the first (finest) scale are
utilised. The two-dimensional shape descriptor is computed after deleting the
details of the finest two scales. The two-dimensional texture descriptor con-
tains the ratios after deleting only the first scale and after deleting the finest
two scales. Pleas note that the scales correspond to a particular resolution of
the image. Since the length of voxels in z-direction is nearly two times the
length in x- or y-direction, the first scale wavelet transform is only applied in
the xy-plane. The two two-dimensional descriptors are utilised to train a one-
dimensional SOM respectively for visualisation purposes. The parameter set-
tings from above are utilised again for the 10× 1 SOM. The results are shown
in Figures 6.31 and 6.32.

To analyse whether the two features are independent of each other, a com-
bined feature vector is constructed. A PCA is computed from the feature vec-
tors of the entire database. The projections onto the two eigenvectors related to
the largest eigenvalues is shown in Figure 6.33. As above each tumour is rep-
resented by a single slice image, which is displayed at the location of the cor-
responding feature vector in the projection plane. It is clearly visible that the
features are suitable for distinguishing different morphological characteristics
of tumours. At the right hand, round tumours with a homogeneous structure
are located. From right to left the irregularity of tumour shape increases. The
second dimension additionally leads to a vertical separation due to different
texture properties. At the top left a group of tumours is located providing
strongly inhomogeneous texture. At the same horizontal position at the bot-
tom of the plane, the tumours provide a more homogeneous texture but a very
irregular shape. However, the two features are not independent of each other
in the analysed database. From right to left both irregularities in shape and
texture increase.
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Figure 6.31.: The selected components of the shape descriptor visualised with a one-
dimensional SOM grid.
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Figure 6.32.: The selected components of the texture descriptor visualised with a one-
dimensional SOM grid.
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Figure 6.33.: Top: Projection of the computed feature vectors onto the eigenvectors
related to the two largest eigenvalues. Each tumour is displayed at the location of the
corresponding feature vector. Bottom: Variation of shape and texture in the projection
plane.
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To visualise the two features independently of each other the one-dimensio-
nal SOMs computed above are utilised to construct a two-dimensional grid by
using the two SOM results for the x- and y-axis respectively. This visualisation
is shown in Figure 6.34.

Shape

T
ex

tu
re

Figure 6.34.: Based on the one-dimensional SOMs shown above, the tumours are
visualised in a two-dimensional plane.
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6.3.8. Applications of Results

Time-Dependent Visualisation of Tumour Morphology

With the features described above it is possible to visualise the tumour mor-
phology over time. As already mentioned the work up to now has been per-
formed with a maximum-intensity projection of the tumour images in time.
However, it is possible to compute the texture and shape descriptors for each
volume at the different time points separately. Thus the change in tumour mor-
phology over time can be visualised by utilising the visualisation described
above. In Figure 6.35 the morphology of three datasets is presented. The im-
ages related to the first and the last post-contrast subtraction image are shown.
The change of the location within the visualisation plane corresponds to a
change of tumour morphology over time.

Tumour Encoding for Image Retrieval

In [123] an approach for content-based image retrieval for DCE-MRI datasets
has been presented. There, the database entries were derived utilising a seg-
mentation procedure, i.e. a pyramid linking pre-processing. As a result each
tumour was represented by several segments. The averaged uptake curve of
each segment was chosen as database entry. The subsequent analysis showed,
that this type of tumour representation is insufficient for retrieval purposes. It
is desirable to obtain a tumour representation that incorporates both dynami-
cal and morphological characteristics. The approach described above encodes
the tumour shape and texture properties at different time points and therefore
is suitable for exactly the desired purpose. In contrast to human-defined meta
features interobserver variability can be avoided. Furthermore, since the ex-
act tumour boundary is not required, manual or semi-manual pre-processing
steps are not required. A coarse definition of the region of interest is sufficient,
which can be achieved by the algorithm in section 6.2. The number of tumours
analysed is still insufficient to prove the retrieval performance of such a CBIR
system, but this can be analysed in a future work.

6.3.9. Discussion and Conclusion

In this section the procedure of feature space exploration is utilised to derive
particular descriptors for tumour morphology. Based on a DWT with different
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types of wavelets a shape and a texture descriptor can be derived. The explo-
ration procedure reveals that only the finest scale details are suitable for this
particular purpose. The advantage of this type of feature set is, that it is bound-
ary free, i.e. an exact boundary of the tumour is not required. This increases
the applicability of the features in clinical practice, since no human interaction
is necessary to draw a contour. The derived features can be used for applica-
tions in the field of content-based image retrieval and for the visualisation of
time-dependent tumour morphology in clinical applications.
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Figure 6.35.: Examples for the visualisation of lesion morphology over time. The
image domain is visualised as in the previous paragraph, but for two different time
points. The first (cyan) and the last (magenta) subtraction image is shown respectively.
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7.1. Motivation of this Work

Nowadays the progress in medical research has become extremely fast. The
more the clinical background of particular diseases is understood the more
information is usually required in the diagnostic processes. One major part of
such processes is the acquisition of medical images. Thus the progress in medi-
cal imaging is significant and more and more images are acquired in clinical
practice. Besides the sheer number of images also the complexity of the dataset
increases. This is due to monitoring of clinical characteristics, which depend
on many variables, such as space and time.

The exploration of the huge amount of image information is extremely chal-
lenging for the clinical expert, generating the need for computer-based meth-
ods that assist the practitioner in his or her daily work. Strong progress has
been made in the last years, however the challenge remains to develop meth-
ods which are generalisable. In the past, most of computer-based tasks in medi-
cal image analysis, that are closely related, were taken in isolation [1]. Due
to the similarities of several tasks in medical imaging it is very appealing to
develop methodologies, which are suited for a general analysis of structural
features in medical images. Such methodologies would contribute directly to a
large amount of medical image processing tasks, such as segmentation, denois-
ing and classification. A very important aspect here is that such a method has
to be very generalisable, while it should also be able to produce very specific
real-world solutions in image processing.

Here, the particular approach is to represent the clinical content of images
by numerical features, i.e. vectors that have potential to describe pathological
characteristics. The particular challenge at this point is that these features can
be quite abstract and complicated. Especially those features based on trans-
forms such as the wavelet transform are difficult to interpret with respect to
clinical characteristics. This makes handling, selection and optimisation of
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these features very complicated. To overcome this lack of interpretability the
set of features representing one image or image region of interest (ROI) can be
regarded as a vector in a n-dimensional space. This interpretation enables the
application of modern algorithms for pattern recognition and data mining and
allows to answer the following questions:

Is it possible to develop a methodology that enables the user to analyse very
complicated and large sets of features with respect to their relevance for the
specific purpose?

How can the relation between numerical feature and clinically relevant im-
age characteristic be assessed in order to optimise the features for the specific
medical context?

Is it possible to generalise this methodology for a variety of applications on
very different datasets and contexts?

In this work the development of such a methodology was described and its
potential was demonstrated by developing particular image features utilisable
for very different applications in medical image analysis.

7.2. Summary and Results

To obtain a highly generalisable approach the framework has to be able to pro-
cess datasets, which are very different in size and complexity, clinical back-
ground or type of essential image characteristics. Current medical imaging
techniques offer a wide spectrum of diagnostic images that can for instance be
two- or three-dimensional. Some datasets also include time-dependent infor-
mation from monitoring physiological processes. The diagnostic purposes are
manifold and can require the analysis of global image information such as tex-
ture or the detection and analysis of very localised regions of interest inside the
image.

The Discrete Wavelet Transform is a mathematical framework for decompos-
ing signals or images into scale-dependent and localised information. Thus it
provides the possibility of encoding both global as well as local image charac-
teristics and the possibility of a multiscale approach in image analysis. Hence,
it is a powerful method well suited as a basis for feature derivation in various
applications.

The analysis of a complicated feature space and the analysis of features re-
garding the clinical context are enabled by utilising methods of dimension re-
duction. These methods, especially the Self Organizing Map, allow visualisa-
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tion, exploration and thus understanding of the very abstract, wavelet-based
features. Therefore, the information in the wavelet domain can be linked to
the information in the image domain. The results of this exploration then al-
low the optimisation and selection of features clearly linked to pathological
characteristics.

The effectiveness of this approach is demonstrated on two completely differ-
ent image databases related to completely different diagnostic processes.

The first database contains two-dimensional RGB microscopy images taken
for the diagnosis of meningiomas. The medical background of this database is
well defined and understood, thus the images are chosen as a gold standard
for the development of the desired methodology. Here, the four most common
types of meningiomas can be distinguished and are characterised by varying
texture appearance.

The images of the second database have been acquired for the purpose of
breast cancer diagnostics. The time-series of three dimensional MR images are
utilised to monitor the uptake of a contrast agent, since the uptake behaviour
of different types of tissue provides valuable diagnostic information. Here,
both the time-dependent characteristics as well as the morphology of lesions
are important criteria.

The Discrete Wavelet Transform is utilised to define numerical features de-
scribing particular global or local image characteristics. One particular chal-
lenge in the definition of these features is the large number of wavelet coef-
ficients that have to be analysed. Straight forward heuristic methods are ap-
plied to diminish the number of coefficients in a first step. These methods can
be quite general such as the pre-selection of coefficients or the computation of
global features of an entire image or subimage. In the case of pathology images
global features based on averages of coefficients are computed for subimages
to encode the scale and orientation dependent texture characteristics. For the
kinetic analysis of MR images coefficients are pre-selected regarding their scale
and a particular energy measure. In the development process of morphology
descriptors features describing a specific region of interest are defined.

In the next step the pre-defined feature vectors are processed in different
ways. Based on methods of dimension reduction the feature spaces are pro-
jected on a two-dimensional plane and thus can be visually explored. This
enables the optimisation of the feature vectors and the careful adaption to the
diagnostic criteria of the specific database. It is shown, that the results can be
applied for very different tasks in image processing.
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Regarding the microscopy images of meningiomas the four classes provide
clear differences with respect to texture characteristics. However, innerclass
differences are present as well and can be extremely significant. The method-
ology allows to explore the pre-defined features very carefully and to link the
numerical features to either interclass or innerclass differences. The interpre-
tation of the features bridges the semantic gap and allows the selection of a
subset of those features which are most important in the clinical diagnostic
process. Furthermore, the inherent visualisation principles directly provide an
interface for sophisticated CBIR systems.

In the case of DCE-MR image processing two types of analysis are performed.
Regarding the tumour kinetics the work focuses on the distinction of contrast
agent uptake in the tumour from the uptake inside other parts of the body,
especially the chest. To this end, the kinetic patterns in wavelet space are ex-
plored resulting in the generation of time-dependent features typical for the
enhancement of tumour tissue. These features are very well adapted to the
clinical purpose. The particular challenges here are the complexity and size of
the datasets processed. However, due to the multiscale approach a trade-off
between amount of image information analysed and level of detailedness can
be achieved.

The two-dimensional visualisation of the feature space allows not only the
definition and discrimination of different kinetic patterns of breast tissue but
also provides the possibility of a new way of interactive filtering in wavelet
space. The filtering results in a new kind of segmentation procedure. This
segmentation step is able to detect the lesions inside the breast without prior
knowledge regarding the tumour or any pre-processing steps. It is thus con-
sidered as very robust and also applicable in clinical practice.

Within the same framework, features for the characterisation of tumour mor-
phology are analysed and optimised. As a result, each tumour can be repre-
sented by a specialised feature vector describing both, shape and texture of the
lesion over time. This representation can be used for the visualisation of dy-
namical tumour morphology and the representation of tumours in CBIR sys-
tems. The descriptors encode the relevant diagnostic information, but however
are short and simple.

In summary, the major advantage of the approach presented is the suita-
bility of this analysis method for various tasks in medical image processing.
The framework was utilised for feature interpretation and visualisation, fea-
ture selection and feature optimisation with respect to tissue segmentation and
database representation. Thus it has been proven to be highly generalisable,
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merging several related aspects of image analysis. However, it allows to define
very specialised solutions strongly adapted to the underlying clinical context.

7.3. Benefits and Limitations

The usual approach to evaluate wavelet-based features is the computation of
some specific parameters for each image and the following classification based
on these parameters. Feature selection can then for instance be accomplished
by measurement of the classification results, based on all possible combina-
tions of features. However, this approach lacks a detailed understanding of
the single features and can be highly dependent on particular properties such
as size of the database, the applied classification method and so on.

By contrast, the approach described in this work aims at the visualisation
of the feature space and thus the evaluation by the human observer. It is thus
based on the idea that human expert knowledge can be included directly in the
process of feature derivation by the medical expert.

In this way the feature spaces can be explored interactively which allows to
establish a link between numerical features, the clinical semantics and the im-
pact of different features to the discrimination of pathological characteristics.

The particular gains regarding the different datasets are manifold. Where the
microscopy images are concerned, the analysis allows to select a subset of fea-
tures especially suited for the discrimination of the four types of tissue. Here,
the focus is on the selection of those features mainly encoding interclass differ-
ences. In the same way, the morphological descriptors for DCE-MR datasets
can be optimised by selecting those scales, which are most important to dis-
criminate specific tumour morphology.

The limitation of this approach is the missing guarantee that the numerical
features only encode one specific clinical characteristic in the image. Further-
more, while it is possible to exclude features which are completely unimpor-
tant for the characterisation of different features, it is not always possible to
exclude all features responsible for innerclass variances. This is for instance
the case in the feature selection applied to pathology images.

A further important avail of the approach is the applicability in clinical prac-
tice. Especially the analysis of large databases and large images such as DCE-
MR images suffers from applications which rely on human pre-processing steps.
These steps can be for instance the drawing of a tumour contour or the manual
determination of a region of interest in the image. Hand-labelling of all sin-
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gle images is not possible in case of large databases. In this work it is shown,
how the particular properties of wavelet analysis can be used to overcome this
challenge.

Utilising the principles of multiresolution analysis our approach has gene-
rated a robust segmentation procedure that automatically extracts the tumour,
i.e. the region of interest from the images. Due to this approach the processing
of a large number of datasets becomes possible. The labelling of tumour re-
gions by a human expert is a very time-consuming task and should be avoided
in real-world applications. The segmentation procedure presented in this work
is able to fulfil this task automatically and thus is also applicable in clinical
practice.

Furthermore, by utilising the localisation properties of the DWT, a contour
free morphological descriptor was defined. The main benefit of this descriptor
is also the applicability in clinical practice since a hand-drawn definition of the
boundary is not required to assess the morphological characteristics. A rough
region of interest is sufficient and can for instance be determined by the seg-
mentation procedure described before. Thus here as well the processing of a
large number of datasets is possible.

In future applications the approach presented is supposed to be applied
within further diagnostic tasks. That can e.g. be the analysis of microscopy im-
ages of neuropathological diseases, which are less well understood. Regarding
further applications in the diagnostics of neuropathological diseases, we con-
sider our framework to serve as an interface for discovering new image char-
acteristics suitable for diagnostic purposes. In other words, databases whose
image characteristics are not yet fully understood, can be analysed in order to
find numerical features related to an external categorisation. The interpretation
potential of our approach then allows to link these features to characteristics in
the image domain, i.e. characteristics of the tissue. Besides this, the methodolo-
gy is not restricted to medical image processing but can be applied in various
fields of image processing task.

Another interesting application in DCE-MR imaging is the analysis of the
images regarding the discrimination between benign and malignant tumours.
The features described above are suited to distinguish tumour enhancement
from the enhancement of other types of tissue and to encode morphological
patterns, which are supposed to be of diagnostic relevance. However, the
analysis whether these features are suitable for the classification of lesions into
benign and malignant could not be accomplished due to the limited size of our
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database. In future work these tasks can be performed on a larger database.
Here, both types of features - the kinetic as well as the morphological descrip-
tors - should be analysed. Yet another important task in future will be the
extension of the features onto MR images providing a higher resolution. Espe-
cially the morphological descriptors might be improved in this way.

179



7. Conclusion

180



Bibliography

[1] J. Duncan and N. Ayache. Medical image analysis: Progress over two
decades and the challenges ahead. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(1):85–108, 2000.

[2] S. Wong and J. K.S. Hoo. Medical imagery. In V. Castelli and L. Bergman
(editors), Image Databases - Search and Retrieval of Digital Imagery. John
Wiley and Sons, Inc, New York, 2002.

[3] A. Jain, R. Duin and J. Mao. Statistical pattern recognition: A review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37,
2000.

[4] A. Smeulders, M. Worring, S. Santini, A. Gupta and R. Jain. Content-
based image retrieval systems at the end of the early years. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(12):1349–1380, 2000.

[5] H. Müller, N. Michoux, D. Bandon and A. Geissbuhler. A review of
content-based image retrieval systems in medical applications - clinical
benefits and future directions. International Journal of Medical Informatics,
73:1–23, 2004.

[6] H. Müller, P. Ruch and A. Geissbuhler. Enriching content-based image
retrieval with automatically extracted mesh terms. In GMDS conference,
pp. 266–269. Innsbruck, Austria, 2004.

[7] J. Stauder, J. Sirot, H. L. Borgne, E. Cooke and N. E. O’Connor. Relat-
ing visual and semantic image descriptors. In Proceedings of the European
Workshop for the Integration of Knowledge, Semantics and Digital Media Tech-
nology (EWIMT). London, 2004.

[8] L. Bruce and R. Adhami. Classifying mammographics mass shapes using
the wavelet transform modulus-maxima method. IEEE Transactions on
Medical Imaging, 18(12):1170–1177, 1999.

181



Bibliography

[9] R. Rangayyan, N. Mudigonda and J. Desautels. Boundary modelling
and shape analysis methods for classification of mammographic masses.
Medical Engineering & Computing, 38(5):487–498, 2000.

[10] M. Unser and A. Aldroubi. A review of wavelets in biomedical applica-
tions. Proceedings of the IEEE, 84(4):626–638, 1996.

[11] A. Laine. Wavelets in temporal and spatial processing of biomedical im-
ages. Annual Review of Biomedical Engineering, 2:511–550, 2000.

[12] D. Schomer, A. Elekes, J. Hazle, J. Huffman, S. Thompson, C. Chui and
W. Murphy. Introduction to wavelet-based compression of medical im-
ages. RadioGraphics, 18:469–481, 1998.

[13] M. Hilton, T. Ogden, D. Hattery, G. Eden and B. Jawerth. Wavelet De-
noising of functional MRI Data, pp. 93–114. CRC Press, Boca Raton, FL,
1996.

[14] D. Healy and J. Weaver. Adapted Wavelet Techniques for Encoding Magnetic
Resonance Images, pp. 298–352. CRC Press, Boca Raton, FL, 1996.

[15] E. Kolaczyk. An Application of Wavelet Shrinkage to Tomography, pp. 77–92.
CRC Press, Boca Raton, FL, 1996.

[16] R. A. DeVore, B. Lucier and Z. Yang. Feature Extraction in Digital Mam-
mography, pp. 145–161. CRC Press, Boca Raton, FL, 1996.

[17] L. Zheng, A. Wetzel, J. Gilbertson and M.J.Becich. Design and analysis of
a content-based pathology image retrieval system. IEEE Transactions on
Infomation Technology in Biomedicine, 7(4):249–255, 2003.
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A. Appendix

A.1. Quantum-mechanical Description of MR

The principles of Magnetic Resonance are usually described in a classical con-
text, i.e. the behaviour of the magnetisation vector of the probe is analysed.
However, the process of nuclear spin resonance is a quantum-mechanical pro-
cess. In this section the quantum-mechanical principles will be detailed. Based
on these descriptions it will additionally become evident, why the classical de-
scription is valid.

A.1.1. The Nuclear Spin

The nuclei of atoms, are associated with a spin. The spin can be described by
the spin angular momentum I. The magnitude of the angular momentum is
given by

|I| = h̄
√

[I(I + 1)]. (A.1)

Here I is the spin quantum number and h̄ = h
2π with Planck’s constant h. The

eigenvalue to the Sz-Operator is given by h̄mz with the magnetic spin quantum
number mz which can take the values −I,−I + 1, ..., I − 1, I. The nucleus of the
hydrogen atom - the proton - provides a spin angular momentum of 1

2 and thus
the magnetic spin quantum number can take the values +1

2 and −1
2 , which are

also termed “spin up” and “spin down”.
In a magnetic field B(t) the Hamiltonian is given by

H(t) = −M · B(t) (A.2)
= −γS · B(t) (A.3)

with M the magnetic momentum of the spin. In case of a static field B = B0
pointing in z-direction the spin-related energy of a proton

E = 〈H〉 = −γB0h̄mz (A.4)
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can take the two values

E1 = −h̄
1
2

γB0 E2 = h̄
1
2

γB0. (A.5)

The state corresponding to the energy E1 is favoured due to its lower energy.
The population of the two states depending on the temperature can be de-
scribed by the Boltzmann distribution

n(+1
2)

n(−1
2)

= e
∆E
kT (A.6)

with the Boltzmann constant k ≈ 1.38 · 10−23 m2kgK
s2 , the temperature T and the

energy difference between the two states

∆E = γh̄B0. (A.7)

In case of an additional field B1 rotating with frequency ω in the xy-plane the
Hamiltonian B1 = B1(cos ωt, sin ωt, 0) is modified according to

H(t) = −γS · (B0 + B1) (A.8)
= −γ(SzB0 + SxB1 cos ωt + SyB1 sin ωt). (A.9)

The general solution of the Schrödinger-Equation is a superposition of spin-up
|+〉 and spin-down |−〉 with time-dependent coeffcicients a±(t)

|ψ(t)〉 = a+(t)|+〉+ a−(t)|−〉. (A.10)

In [124] it is shown, that using the transform

b+(t) = e
iωt
2 a+(t) b−(t) = e

−iωt
2 a−(t) (A.11)

the Schrödinger equation can be written using a time-independent Hamilto-
nian H̃

ih̄
d
dt
|ψ̃(t)〉 = H̃|ψ̃(t)〉 (A.12)

with

H̃ =
h̄
2

(
−∆ω ω1
ω1 ∆ω

)
. (A.13)

and
|ψ̃(t)〉 = b+(t)|+〉+ b−(t)|−〉. (A.14)
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Here it is ω1 = γB1, ω0 = γB0 and ∆ω = ω0 −ω1. The transform of a±(t) into
b±(t) is equivalent to the application of the rotation operator

R(t) = e
iωSzt

h̄ (A.15)

onto |ψ(t)〉 and can be interpreted as the transform into a rotating reference
frame.

A.1.2. Spin Excitation

In the classical description the rotating field B1 tilts the magnetisation vector
out of its intial position. In the quantum-mechanical description this corre-
sponds to a transition from the spin-up state to the spin-down state. Let us
assume that at t = 0 the system is described by |ψ(0)〉 = |+〉 and accordingly
|ψ̃(0)〉 = |+〉. The probability for a transition to the state |−〉 over time is
described by

P+−(t) = |〈−|ψ(t)〉| = |〈−|ψ̃(t)〉|. (A.16)

In [124] it is shown that the solution is given by

P+−(t) =
ω2

1
ω2

1 + (∆ω)2
sin2

(√
ω2

1 + (∆ω)2 t
2

)
. (A.17)

Far from resonance P+−(t) is small. However, if ω = ω0 , i.e. ∆ω = 0 the
probability of a transition flucuates between 0 and 1 as shown in Figure A.1.
For the special cases t = π

ω1
and t = 2π

ω1
the probabilities are 0.5 and 1 respec-

tively. This corresponds to the classical description of tilting the magnetisation
vector about angles θ = 90◦ and θ = 180◦. Statistically the distribution of states
is balanced in the first case resulting in a zero net-magnetisation and inverted
in the latter one.

A.1.3. The Magnetic Momentum

To establish a clear link between the classical and the quantum-mechanical de-
scription, we will compute the time evolution for the expectation value of the
magnetic momentum 〈M〉, which is given by

ih̄
d
dt
〈M〉(t) = 〈[M, H(t)]〉 (A.18)
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1

0

t

P (t)

2π/ω1

|+ |−

+ −

Probability for a transition

Figure A.1.: Probability for a transition from spin-up to spin-down state for the reso-
nance case ω = ω0.

with
H(t) = −M · B(t). (A.19)

In [124] it is demonstrated that the solution of equation A.18 is

d
dt
〈M(t)〉 = γ〈M〉 × B(t). (A.20)

Thus the expectation value of the magnetic momentum follows the same equa-
tion as the magnetisation vector in the classical description. In the case of a
large number N of spins the total momentum M of a probe is given by [124]

M =
N

∑
i=1
〈ψi(t)|M|ψi(t)〉 (A.21)

=
N

∑
i=1

Mi(t). (A.22)

Here the classical equation is valid for Mi(t) and accordingly it follows1

d
dt
M = γM× B(t) (A.23)

1The assumption is that the spins do not interact with each other.
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