
Universität Bielefeld

Diplomarbeit:

TAOs - Tangible Active Objects
for Table-top Interaction

Bielefeld, June 2, 2009

Eckard Riedenklau

Supervisors:

Dipl.-Mus. Tobias Großhauser (Ambient Intelligence Group)
Dr. Thomas Hermann (Ambient Intelligence Group)

Prof. Dr. Helge Ritter (Neuroinformatics Group)

.

Diplomarbeit:

TAOs - Tangible Active Objects

for Table-top Interaction

Eckard Riedenklau

June 2, 2009

Personal Computers have arrived in almost every part of our live to do work faster
and better. They are used for writing texts, creating music or drawings, or simply
organizing and guiding everyday tasks. Nearly all these tasks are done with com-
puters which are operated using screen, keyboard and mouse even if their use may
be sometimes cumbersome or even unsuitable for some tasks. Human Computer
Interaction (HCI) aims to analyze the way people use computers and suggest
new methods for interaction. One area of this research field is called ’Tangible
Interaction’. Tangible Interaction tries to use everyday objects as tangible repre-
sentations for digital data. It is hoped that by pulling the data into the tangible
real world (in contrast to the virtual world) they can be made more vivid and
graspable and thereby better understandable. These real-world representations
are called Tangible User Interface Objects (TUIOs) and the systems they are used
in Tangible User Interfaces (TUIs).
The main goal of this work is to create active objects as a new kind of TUIO.
These active objects extend the concept of TUIOs by the possibility to be not only
manipulated by the user but also by the computer. Many different ways of ma-
nipulation are possible, e.g. adding LEDs or liquid crystal displays, sound output
or tactile and haptic feedback with vibration, etc. One of the most challenging
manipulation possibilities is computer controlled planar movement for instance on
a desk surface, which will be developed in this work. The developed objects are
constructed as modular as possible to be open for future extensions and modifi-
cations. A software structure for the coordination of the objects is implemented.
Furthermore some applications shown to give examples for the potential of this
novel technique.

Contents

Abstract i

Contents iii

1 Introduction 1
1.1 Goals . 2
1.2 Structure . 2

2 State of the Art 5
2.1 Summary . 10

3 Background 11
3.1 Tangible User Interfaces . 11
3.2 Tangible User Interface Objects (TUIOs) 13

3.2.1 Taxonomy and Classification used in this work 13
3.3 Components and Tools used for Hardware Design 15

3.3.1 TUImod . 16
3.3.2 SolidEdge and Eagle . 16
3.3.3 Arduino pro mini . 17
3.3.4 XBee . 17

3.4 Used Software Frameworks and Libraries 18
3.4.1 Image Component Library and Projects 18
3.4.2 The Qt Framework . 19
3.4.3 LibSerial . 20
3.4.4 Extended Communication Framework and XML Template

I/O . 20
3.4.5 The Cluster Library . 21

3.5 Path Planning Algorithms . 21
3.5.1 Roadmap Approaches . 22
3.5.2 Graph-based Path Planning Algorithms 23
3.5.3 Continuous Approaches 26
3.5.4 Summary . 28

3.6 Robotic Mobile Platform Designs 28

4 Hardware Design 31
4.1 Wireless Serial Transmitter . 32

iii

iv CONTENTS

4.1.1 IR Transmitter board . 32
4.1.2 XBee Transmitter Board 33

4.2 Prototype . 35
4.2.1 Used Parts . 36
4.2.2 Schematics and Board Design 37
4.2.3 Fiducial Marker . 39

4.3 Series Production . 42
4.4 Arduino Firmware . 45

4.4.1 SerialControl Protocol . 46
4.4.2 SerialControl2 Protocol 47

5 Software Implementation 49
5.1 Base Classes and their derivatives 50

5.1.1 AOScene . 50
5.1.2 AObjectItem . 52
5.1.3 AMCallAdapter . 52
5.1.4 AOSerialProtocol . 53

5.2 Software Modules . 54
5.2.1 Vision Module: Marker2XCF 54
5.2.2 XCF to Serial Module: XCF2Serial 55
5.2.3 Arduino Monitoring and Administration: RemoteArduino . 56
5.2.4 When no real Objects are available: ObjectSimulator . . . 56
5.2.5 Demonstrating Object Navigation: SimpleNavigator 57
5.2.6 Graph-based Path Planning Control Module: GraphPlanner 58
5.2.7 Potential Field-based Path Planning Control Module: Po-

tentialPlanner . 58

6 Applications 61
6.1 Saving and Restoring TAO Locations for existing TUIs 61

6.1.1 Interaction Design . 62
6.1.2 Implementation . 62
6.1.3 Discussion . 63

6.2 Dataset Visualization: DataProcessor 63
6.2.1 Interaction Design . 64
6.2.2 Implementation . 64
6.2.3 Interaction Example . 65
6.2.4 Discussion . 66

7 Evaluation and Observations 69
7.1 Performance Specifications . 69

7.1.1 Implementation . 69
7.1.2 Results . 70

7.2 Suggestions for the Evaluation of Interaction 72

v

8 Conclusion 73
8.1 Discussion . 73
8.2 Outlook . 74

Enclosed CD 75
Installation Remarks . 76
Setting up the System . 78
API Documentation . 79

List of Figures 81

List of Abbreviations 83

Bibliography 87

Acknowledgments 92

Declaration 94

1

1 Introduction

Before computers became pervaded in nearly every part of our live, people were
used to do their daily work manually. Whatever task needs to be done, humans
are very dexterous in creating, changing and exploring things by hand. Interest-
ingly, the term ’graspable’ carries the meaning of understandable. Computers are
designed to process data, and since data are represented in the memory of the
machine they become virtual and lose any physical graspability. Because virtual
data are all abstract, researchers in the field HCI started to give virtual data
physical representatives, that can be used as a handle for these data. ’Tangible
Interaction’ is the branch in HCI research concerned with these types of phys-
ical interfaces, and it is a steadily growing research focus. There are different
approaches to make abstract virtual data graspable. Table-top TUIs are one of
these approaches. Researchers use handy physical objects on table-top surfaces
as representatives for digital data. These objects are tracked by a computer and
the position and orientation becomes available to manipulate and interact with
data. A quite prominent example is the reacTable [JKGB05]. It’s data model
generates sound and the tangible objects represent different sound generating and
processing items (e.g. oscillators, filters, etc.). The spatial relations between
the objects parameterize the configuration of the data model, which results in
changing sound output. The researchers of the Tangible Media Group of the MIT
introduced the actuated workbench [PMAI02], which is capable of actively moving
the physical objects remotely. A special surface containing computer-controllable
electro-magnetic coils makes this capability possible. Ferro magnetic objects can
be moved on this surface as tangible representatives of virtual data. The capabil-
ity of moving TUIOs around remotely allows novel interaction possibilities. It is
possible to obtain relations between objects. This means that when one object is
moved by the user, other objects can be moved by the computer simultaneously.
It is also possible to represent dynamic scenarios.
In other environments, such as for instance on multi-touch desks or for tangible
interfaces on a regular computer desk, it remains a problem that the state of
tangible objects can not be restored on initiative of the computer. The lack of
the possibility to save and restore an interaction state is a problem for many TUIs.
This problem can be solved by introducing actively moving automotive TUIOs to
already existing systems.
In this work, such Tangible Active Objects (TAOs) are developed, built and tested.
They are designed for operation on a glass table, to be tracked from beneath by a

2 CHAPTER 1. INTRODUCTION

video camera and controlled by RF-signals. TAOs enable new tangible interfaces,
mixed-initiative interaction between the human and the computer. They even
enable the computer to manipulate passive objects on the surface in tabletop user
interfaces. This work implements TAO prototypes in a modular fashion so that a
maximal freedom remains for future extensions of the platform.

1.1 Goals

The main goal of this work is to design and build Tangible Active Objects (TAOs),
that can be remotely controlled to give feedback to the user. They are cubical-
shaped with an edge length of 5 cm. Three to five prototypes are build during this
work. Later even more TAOs are considered to populate the Tangible Desk (tDesk)
(formerly known as the Gesture Desk (gDesk) [HHR04]), which glass surface
measures 70 x 70 cm. The costs for a TAO sould not exceed e 100 to allow the
assembling of a small swarm of TAOs. To allow the objects to move freely on the
desk, a small wireless mobile robotic platform gets integrated into the TAOs. The
batteries should allow at least half an hour of operation. The microcontrollers of
these TAOs need to be programmed to give meaningful response to commands
transmitted to them and the TAOs have to be controlled remotely by connected
computer-programs, which need to be developed. Therefore the subordinate goals
of the thesis are to implement the following modules to operate TAOs; namely:

Vision Module The vision module tracks the positions of the TAOs on the glass
surface of the tDesk. To start working on further software modules without
having a complete hardware prototype, there is an additional simulation
environment that generates the same output as the vision module and reacts
on messages, the path planning module creates.

Path-Planning Module This module plans the paths of the TAOs, so that they
reach their target positions and orientations without colliding with each
other.

Serial Relay Another module relays the commands wirelessly to the TAOs.

Application Modules Applications need to be developed to demonstrate the
practical use of the system. One application allows existing TUIs to save
and restore configurations of TUIOs. Another application visualizes datasets
by representing cluster centers with TAOs.

1.2 Structure

The thesis gives full account on the design, construction and implementation of
the hard- and software and is structured as follows:

1.2. STRUCTURE 3

Chapter 2 gives a brief overview of the state of the art of TUIs with self-moving
objects or systems with active feedback. The described systems have similar
goals but implement the solutions in a different way. In addition this chapter
presents systems that are technically interesting for the implementation of
this work.

Chapter 3 introduces the concepts behind TUIs and TUIOs (sections 3.1 and
3.2). Section 3.3 presents the hardware components used in this work and
section 3.4 describes the used software libraries and frameworks. Finally
this chapter gives a short survey of path-planning algorithms and robotic
mobile platform designs.

Chapter 4 describes the different hardware designs, that arose throughout the
implementation. This includes a description of the assembling of a first
prototype as well as a small range of TAOs. A closer look is taken at
potential problems and sources of error.

Chapter 5 discusses the implementation of the software modules and explains
their role in the system.

Chapter 6 presents the final applications for this system. Two applications are
described that utilize the system for data exploration and extend existing
TUIs.

Chapter 7 describes the evaluation of the system regarding to accuracy and ve-
locity of the TAOs.

Chapter 8 summarizes the complete work and highlights the main insights gained
during the development.

5

2 State of the Art

This chapter reviews the current state of the art of TUIs with self-moving objects
or systems with active feedback. A selection of systems which use active objects
that are output enabled are presented. Some of these systems are, for instance,
equipped with a display or with speakers. Most of these systems address tangible
interaction, some do not. Finally, a short paragraph summarizes the state of the
art and the implementations for TAOs.

Planar Manipulator Display (PMD)

The authors of the PMD [RZSP04] (depicted in Fig. 2.1(a)) aim to use physical
objects for HCI. They criticize standard computer interfaces and want to improve
them by taking advantage of the human spatial awareness. The described objects
in this work are remote controlled (via Infrared Data Association (IRDA)) small
sized robots with a differential drive. They are used to carry models of furniture
to simulate different configurations of furnishing inside a room.

The actuated workbench

The system introduced in the paper [PMAI02] utilizes active objects on table-top
surfaces. It uses magnetic forces to move the objects on the surface (see Fig.
2.1(b)). This technique depends on a specially constructed surface, which allows
non-vision tracking and magnetic movement of the objects in a smooth and quick
manner. Only with this special surface the system works correctly.
The second paper [PI07] directs the reader’s focus to physical constraints that
can be applied to the system of moving objects by putting rubber belts or distance
rings around them. This easily allows to obtain distances or relations between the
objects. Because of the physicality of these constraints, they do not have to be
modeled explicitly in software.

Augmented Coliseum

Figure 2.1(c) shows the Augmented Coliseum [KSN+06]. In contrast to the TAO
system, Augmented Coliseum uses an active vision system for robot localization,
which means that the used projection cannot disturb the recognition of passive

6 CHAPTER 2. STATE OF THE ART

(a) PMD (graphic reproduced from [RZSP04]
by courtesy the author)

(b) The actuated workbench (graphic repro-
duced from [PMAI02] by courtesy the author)

(c) Augmented Coliseum (graphic repro-
duced from [KSN+06])

(d) Prototype of Siftables (graphic repro-
duced from [MKM07] by courtesy the author)

Figure 2.1: Illustration of photos of systems that are the state of the art in active tangible
objects and similar systems

7

markers. This system uses small sized robots on a projection surface to repre-
sent virtual objects in augmented reality scenarios through graspable real-world
equivalents. Additionally the robots are wired, which facilitates control and power
supply of the robots, which make the communication very robust, but restricts
the freedom of movement. The developers intended to use the system as an
augmented reality gaming environment.

Siftables

The Siftables system [MKM07] is a so-called Sensor Network User Interface
(SNUI). The Siftables aim to create a novel TUI with active feedback (see Fig.
2.1(d)). The Siftables are equipped with a display, motion sensors (accelerome-
ters) and wireless communication. They are used to give a real-world representa-
tion to digital data or digitized information. Furthermore the authors introduce
gestural language primitives that can be used for interacting with Siftables.
In contrast to the TAOs, Siftabels are not modular and reconfigurable and they
offer feedback exclusively via visual displays.

Curlybot

Curlybot [FSMI00] is an educational toy (see Fig. 2.2(a)), developed by re-
searchers of the MIT Media Laboratory. The user can teach the robot trajectories
by moving it around. The robot can replay this movement continuously. By at-
taching a pen to the robot, children can generate and explore complex graphical
figures the robot draws by repeating simple trajectories again and again.

Block Jam

Figure 2.2(b) depicts Block Jam [NDNG03], a system consisting of blocks that
represent different sound loops. By combining them to patterns, complex sound
structures can be created. The blocks have a LED-Matrix display which allows
them to give visual feedback and they can be called active. Additionally they are
depressible (clickable) for input. Blocks can represent sound or functionality. By
clicking a block, it is possible to choose its sound or functionality. They can be
used for play-back routing and reflecting (like a wave that propagates through the
pattern) and for control, similar to a play button.

Tangible Programming Bricks

Tangible Programming Bricks [McN00] provide tangible building blocks (see Fig.
2.2(c)) as a simple programming environment. The purpose is to program elec-
tronic everyday objects such as kitchen appliances or toy cars. The aim of this

8 CHAPTER 2. STATE OF THE ART

(a) Curlybot (graphic reproduced from
[FSMI00] by courtesy the author)

(b) Block Jam (graphic reproduced from
[NDNG03] by courtesy the author)

(c) Tangible Programming Bricks (graphic
reproduced from [McN00] by courtesy the au-
thor)

(d) AudioCubes (graphic reproduced from
[SV08] by courtesy the author)

(e) ActiveCube (graphic reproduced from
[KIMK00] by courtesy the author)

(f) Swarmrobot ”Jasmine” (graphic repro-
duced from [swa08])

Figure 2.2: Illustration of photos of systems that are the state of the art in active tangible
objects and similar systems

9

approach is to make the interaction more user-friendly by using TUIOs, which
adapt to the user’s needs even more than Graphical User Interfaces (GUIs).
The objects consist of LEGO [leg08] bricks and contain a microcontroller and LEDs
to provide simple visual output. They are specialized on different programming
structures (program flow control, input or output, etc.). The Tangible Program-
ming Bricks can be parameterized and extended by plugging in small smart cards
that provide additional communication, sensing and motor control abilities.

AudioCubes

AudioCubes [SV08] provide a TUI for musicians to manipulate sound. The cubes
can be configured to represent different sound production functionalities such
as those of a microphone, a granular re-synthesizer, filters or sound output de-
vices. The objects indicate the functionality they represent by their color (see Fig.
2.2(d)).

ActiveCube

With ActiveCubes [KIMK00] the user can construct 3D structures in virtual
computer-generated environments by using physical objects (cubes). The system
can detect the spatial configuration of the combined objects that are equipped
with input channels such as gyros, ultrasonic sensors, luminous or temperature
sensors. For future research, the cubes can possibly be equipped with output
channels (e.g. displays or actuators to show simulated results). Possible appli-
cations of the system an be found in educational and/or entertainment scenarios
such as games and toys that help to learn and improve skills in assembling (see
Fig. 2.2(e)). Also artistic purposes are considered.

Small, Micro and Pico sized Robots and Swarms

There are plenty of small sized robotic projects. Swarmrobot [swa08] is an open-
source micro-robotic project that claims to form the largest artificial swarm in
the world (unfortunately without any further information). Figure 2.2(f) depicts
a single robot unit, called ’Jasmine’. The Swarmrobot project aims to create
swarm dynamics by combining a set of robots to create larger objects with new
and emergent properties. There are other projects that focus on small sized
robots, such as the One Inch Robot [Roy08] or Pico [pic08]. All these robots
are not designed for the use as TUIOs, but they provide a great basis for TAO
development. Problems that arise when active tangible objects are built have
probably already been solved in this field. Thus experiences and research results
from the related field (implementation of the mechanics and electronics) can be
very valuable for the design of TAOs.

10 CHAPTER 2. STATE OF THE ART

2.1 Summary

From the many approaches and applications in the field of active TUIOs only
a selection of the most relevant systems was presented. PMD and Augmented
Coliseum are approaches that represent changing virtual entities by using small
moving robots. But neither of them mentions tangible interaction as an applica-
tion field. The Actuated Workbench and the Siftabels enhance TUIOs with active
feedback. A combination of these two approaches would result in objects similar
to the TAOs that are developed in this work. In the presented systems Block
Jam, Tangible Programming Bricks and Active Cubes are proposed as tangible
programming environments. Block Jam has quite versatile in- and output chan-
nels (press-button, display and sound) compared to the Tangible Programming
Bricks system, where only a few small LEDs and the corresponding program code
are available. In their paper the authors of Active Cubes propose future extensions
that utilize active feedback channels such as displays or actuators. Block Jam,
Tangible Programming Bricks and Active Cubes follow a constructive approach,
which is interesting for the field of tangible interaction. Audio Cube in contrast
follows a relational approach. They offer visual feedback using color LEDs to rep-
resent the state of each cube. Finally small sizes robots such as the Swarmrobot
Jasmine are technically interesting for this work. They are not intended to be
used as a human-computer interface.

11

3 Background

This chapter explains the theoretical background of TUIs and TUIOs. Furthermore
it presents the used components, tools and libraries that were used to create the
proposed hard- and software.

3.1 Tangible User Interfaces

This section is based on the paper ’Tangible User Interfaces - Classification’
[Loc06] which summarizes different classification approaches for TUIs. There
are approacces by Ullmer and Ishii [UI00] which were extended by Hoven and
Eggen [vdHE04].
Classical GUI systems can be characterized by the Model-View-Controller (MVC)
design pattern [Joh87]. Transferred to TUIs, this model can be adapted to the
Model-Control-Representation (physical and digital) (MCRpd) model. Figure 3.1
contrasts these two models.

Figure 3.1: Model-View-Controller vs. Model-Control-Representation (physical / digital)
(graphic reproduced from [Loc06])

While the control and the view ’live’ both in the physical and the digital domain
and input and output devices are separated in the MVC model, the corresponding
parts, control and representation, are pulled into the physical domain as far as
possible in the MCRpd model. The representation part (the former view) plays
a special role, because there are two representations, one is physical and one is
digital but both have effect in the physical domain, which is the reason why the
digital representation is placed in the physical domain. The fact that only the

12 CHAPTER 3. BACKGROUND

model remains completely digital and control and representation are completely
physical is the main characterization for TUIs.
With this argumentation it is clear, that multi-touch systems are no TUIs because
they lack the physical representation (there is only a digital one).
The MCRpd model brings up further TUI characterizations from the relations
between the different parts of the model:

Physical Representation − Model: The coupling between the model and the
physical representation is crucial asking the question: How do the TUIOs
represent the digital data? Is it augmented digitally e.g. by projection?

Physical Representation − Control: This relation copes with control and the
relation to the physical representation. Is the representation controlled by
the user or by the system? What is the setting for the interaction?

Physical − Digital Representation: The relation between the physical and the
digital representation focuses on whether there is a digital representation
and how it augments the physical representation.

State: The last characteristic is not directly obvious from the model. It encom-
passes the embodiment of the digital state of the system by the physical
state of the representation.

Furthermore Ullmer and Ishii [UI00] propose the following categories to classify
TUIs:

Spatial: In the spatial category TUIs are gathered that take advantage of position
and orientation of TUIOs.

Constructive: The constructive category contains TUIs where TUIOs get coupled
mechanically together.

Relational: The relational approach establishes relations between TUIOs to put
the represented data into a context (e.g. AmbiD [BHR06] and reacTable
[JKGB05]).

Associative: This category includes TUIs, that simply associate data to TUIOs
but without relations between them.

The above categories are not mutually exclusive. In addition, their borders are
not strict, which means that systems may be classified into two or more of these
groups. Depending on the purpose of creation of categories other criteria may be
found and established.

3.2. Tangible User Interface Objects (TUIOs) 13

3.2 Tangible User Interface Objects (TUIOs)

TUIs can use of one or more TUIOs, but nevertheless speaking about TUIs requires
to define and establish characteristics for TUIOs, the most important part of a
TUI from the users perspective.
The paper [FIB95] talks about Graspable User Interfaces which means the same as
TUI, because the expression TUI was not established back in 1995. It introduces
the concept of Bricks which is similar to the concept of TUIOs. This paper
introduces a so-called design space to classify TUIOs. Table 3.1 gives an overview
over this design space.

3.2.1 Taxonomy and Classification used in this work

TUIOs are physical objects which can be generally characterized by the following
physical characteristics:

Shape: Physical objects can be round, rectangular, triangular, etc.

Size: Depending of the purpose of the TUI, the objects may be small or big.
For example Globe4D [CvDHM06], manipulated with both hands, is with
30 cm diameter a relatively big TUIO whereas the TUIOs used in AudioDB
[BEHR08] are relatively small with about 3 cm diameter. A few of them
can be manipulated with a single hand.

Color and Texture: Physical objects can have different colors or textures. This
also includes haptic textures such as ’smooth’, ’rough’ or ’bumpy’.

Degrees of Freedom: Rigid physical objects have 6 degrees of freedoms (DOFs).
Depending on the system all or only a few of these are used for interaction.
In addition to these ’outer’ DOFs physical objects may have ’inner’ DOFs,
such as being bendable or squeezable, etc.

Beside these general characteristics of physical objects, there are additional TUIO
specific properties:

Tracking: There are many ways of tracking the objects’ position in the interaction
area. For instance it is possible to track objects equipped with special
markers visually. Another way would be tracking with electromagnetic fields.

Active vs. Passive: TUIOs can have manifold input and output modalities. If
there are no active output modalities, that address the senses of the user,
the objects are called passive otherwise they are called active.

Movement / Movability: Movement is a special case of output modality.

Constraints (virtual vs. physical): Desired constraints can be physical, but also
virtual, if the used TUIOs are able to move themselves. Then it is possible
to sustain certain positions or orientations. [PI07]

14 CHAPTER 3. BACKGROUND

TUIO’s internal ability
Inert (dump, only
external shape)

Can exhibit sim-
ple expressions
and has some
internal logic
(sensors, motors,
indicator lights)

Smart (micropro-
cessor, sensors,
programmable)

Input / Output

Input-Properties sensed
Position, Orientation, Au-
dio, Temperature, Tac-
tile/Pressure, Light, Visual

Output-Properties dis-
played Position, Orienta-
tion, Audio, Tactile, Light,
Visual

Spacially aware
Unaware, works
in isolation

Mutual aware
(aware of each
other)

Aware of sur-
roundings (sens-
ing of environ-
ment plus other
TUIOs)

Communication
(inter-TUIO and to
host)

Wireless (Infra-
Red (IR), Blue-
tooth, etc.)

Tethered (cable) Grid board

Interaction time span
Quick gestures,
fraction of sec-
onds

Intermediate
cache

Long term
(days, months,
years between
interactions;
archives)

TUIOs in use at same
time

1 2 - 5 5- 10 10 - 50 50 - 100
even
more

Function assignment

Permanent
(each TUIO is
assigned to one
function)

Programmable
(functional roles
can be reas-
signed)

Transient (rapid
assignment; time
multiplexed or
space multi-
plexed)

Interaction represen-
tations

All
physical
artefacts

Mix, but
physical
domi-
nates

Balanced mix
(Equal. Com-
plementary or
Combinatoric
rep.)

Mix, but
virtual
domi-
nates

All vir-
tual ar-
tifacts

Physical and Virtual
layers

Direct (layers superim-
posed)

Indirect (layers separated)

Bond between Physi-
cal and Virtual layers

Tightly coupled (objects
tracked continuously in
real-time)

Lousely coupled (objects
tracked and sensed in
batch mode)

Operating granularity
Desktop (frac-
tion inch accu-
racy)

Room (inch ac-
curacy)

Building (room
accuracy)

Operating surface
type

Static (printed material,
graphics, text does not
change)

Dynamic (computer dis-
play)

Operating surface tex-
ture

Discrete (plug-in posi-
tions on grid)

Continuous and smooth

Table 3.1: Design space of TUIOs. [FIB95]

3.3. COMPONENTS AND TOOLS USED FOR HARDWARE DESIGN 15

Container Object vs. Fixed Functionality: Some systems allow to assign dif-
ferent functionalities or data to the used TUIOs. The objects that act as
containers and can be filled or emptied and reassigned with meaning by the
user. [UIG98], [DHKR08].

Meaning and Functionality: [Dou04] points out that the user should be able to
determine the meaning of the functionality of TUIOs. This means that the
system should be designed as open as possible, to make the functionalities
flexible to use. Perhaps the user might want to use this functionality in
a way, the designer has not thought about. This should not be forbidden
explicitly by the system design.

Iconic vs. Symbolic: ’The difference between iconic and symbolic signs is the
fact that iconic signs share some representational properties with the ob-
jects they refer to. This is not the case for symbolic signs.’ [Loc06] For
instance the physical objects used in Urp [UI99], building models to repre-
sent buildings for city planning, are iconic where as AudioPad [PRI02] uses
objects with a rather symbolic character, by only augmenting them through
projection they become more iconic.

Reference Frame: The reference frame defines the physical interaction space.
[Loc06] In the AcouMotion/Blindminton [HHR06] this is the whole room,
many other systems such as the reacTable [JKGB05] use a table-top sur-
face. Tangible artifacts such as audio shaker [HJBdC06] do not have an
articulated or bordered reference frame.

Generic vs. Personal: The TUIOs can have different characteristics for the user.
They can be general objects or personal with a special meaning for the user.
[vdHE04], [Loc06].

Coupling: The coupling of objects describes the way of how the user utilizes the
TUIOs [Dou04].

Single Object vs. Multi-Object System: Some tasks require only one object
to be coped with, while others may require more. In [FIB95] the authors
propose gestures for single or multi-object tasks.

The presented taxonomy allows to classify many systems. Some systems may not
be easy to describe by these terms or require additional features to be described.
So this list is not exhaustive.

3.3 Components and Tools used for Hardware Design

This section briefly introduces the used tools and hardware components that were
used to build the hardware of the TAO system.

16 CHAPTER 3. BACKGROUND

3.3.1 TUImod

TUImod [BKHR08] are modular building-blocks that can be combined in vari-
ous ways to create TUIOs. The elements of TUImod were created by using a
rapid-prototyping technique. Figure 3.2 shows an exploded assembly drawing.

Figure 3.2: TUImod (graphic reproduced from [BKHR08] by courtesy the author)

TUImod provides three different layers of elements, User Interface (UI), Physical
Functionality (PF) and Computer Interface (CI). The UI elements are attractive
to the users perception. They differ in color, shape and haptics. The second
layer is characterized by the PF. It offers magnetic attraction or repulsion, clip-in
functionality or saw-tooth details fitting into each other. The last layer is the CI.
It contains markers such as the fiducial markers [BKJ05].
The housings of the TAOs were based on the drawings of TUImod. This makes
it possible to use the passive TUImod elements in combination with TAOs.

3.3.2 SolidEdge and Eagle

SolidEdge [sol08] and Eagle [eag08] are both Computer Aided Design (CAD)
programs. SolidEdge allows digital product development. 3D models can be
easily created and produced with a 3D rapid-prototyping printer. The housings of
the objects based on the TUImod models were created using this CAD system.
Eagle is a specialized CAD program for designing and layouting of Printed Circuit
Boards (PCBs). It assists the user in designing schematics and generating PCB
layouts from these schematics. To route the wires between the parts, a powerful
auto-router is included.

3.3. COMPONENTS AND TOOLS USED FOR HARDWARE DESIGN 17

3.3.3 Arduino pro mini

The Arduino pro mini [ard08] is an open source rapid-prototyping board (see
Fig. 3.3) with an ATmega168 microcontroller. It provides 14 digital input/output
ports (of which 6 can be used as Pulse-Width Modulation (PWM)1 outputs) and
6 analog inputs. The development environment contains the easy to use Arduino
Programming Language, a variant of C with additional features, such as program
flow control and convenience functions. These features are also known from
Processing [pro08], a Java based rapid-prototyping language for quick and easy
design of programs with graphic output. Additionally some very useful libraries
are included which make this platform very versatile. The Arduino platform is
heavily used in physical computing development [Igo07], because it allows to
build prototypes in a short time. Compared to other microcontroller development
systems, the Arduino system has a quite low learning curve.

Figure 3.3: Arduino pro mini (graphic reproduced from [ard08])

3.3.4 XBee

It was very difficult to chose the right components for wireless communication
between the PC and the TAOs microcontrollers. After experimenting with in-
frared communication (see Section 4.1.1), XBee modules [xbe08] became the
components of choice.
Basically there are two versions of XBee modules (both in different flavors, e.g.
with chip antennas or wire antennas or different ranges and pro versions). Both
series implement the 802.15.4 stack, which is the basis for Zigbee [zig08]. XBee
Series 1 only implements the basic functionalities and series 2.5 improves these by
adding a full-featured mesh networking algorithm which also requires a different
chipset to run. Table 3.2 sums up the differences between both versions.

1Pulse-Width Modulation (PWM) describes the modulation of the duty cycle of a power
source, to control the amount of power sent to a load. The low-pass filtered and thereby
integrated signal results in a higher amount of power at a higher modulation frequency and in a
lower amount of power at a lower modulation frequency.

18 CHAPTER 3. BACKGROUND

Series 1 Series 2.5

Chipset Freescale Ember

Firmware 802.15.4 ZigBee

Network Topologies
Point-to-point,

meshpeer-to-peer,
point-to-multipoint (star)

Indoor Range 30 m (90 m pro-version) 40 m

Outdoor Range 90 m (1.6 km pro-version) 120 m

Table 3.2: Comparison between XBee Series 1 and Series 2.5 [xbe08]

During experiments with both series it turned out that the mesh capabilities of
series 2.5 slow down the communication. Sometimes a latency of about 10 seconds
occurred, which makes this version insufficient for the operation of TAOs.

Figure 3.4: XBee network architectures
(graphic reproduced from [xbe08])

As table 3.2 shows, series 1 only allows
point-to-point, peer-to-peer and point-to-
multipoint network architectures. Series
2.5 allows a wide range communication
where participants of the network act as
relays to transmit over longer distances.
So series 2.5 is great for wireless sensor
networks where the nodes transmit data
only every few minutes and real-time capabilities are not important. In contrast,
series 1 is much faster but limited due to the range of the network, which is not
important in this work. Because of the better real-time capabilities, finally XBee
pro Series 1 has been chosen for this work.

3.4 Used Software Frameworks and Libraries

This section describes briefly the frameworks and libraries used in this work.

3.4.1 Image Component Library and Projects

The Image Component Library (ICL) [icl08] is an image processing library which
is mainly based on the Intel Performance Primitives (IPP) [ipp08] library. The ICL
adds some more libraries to be more versatile and provides the software designer
with a very convenient API with easy access to image manipulation functionalities,
GUI creation using Qt (see Section 3.4.2) and camera integration. So it is quite
easy to rapidly design computer vision programs with this library. Additionally the
ICL project ICLFiducialFinder wraps the Fiducial tracking library [rea08]. This is
widely used in TUIs so it suggests itself to be used for the visual tracking of the
TAOs.

3.4. USED SOFTWARE FRAMEWORKS AND LIBRARIES 19

3.4.2 The Qt Framework

Qt2 is a very versatile C++ programming framework. It is intended to be used for
the creation of GUI applications but beside the core (QtCore) and GUI compo-
nents (QtGui modules and the QtOpenGL module) it offers way more capabilities
encapsulated in other modules. The most important modules are

QtNetwork This module contains classes for a wide range of common net-
work communication. Starting with classes for handling low-level socket
connections (Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP)), there are classes for File Transfer Protocol (FTP) and
Hypertext Transfer Protocol (HTTP) transfers (including Secure Sockets
Layer (SSL) support and cookies) which enable the programmer to easily
implement servers and clients using these protocols.

QtSql The QtSql module offers easy access to databases that use Structured
Query Language (SQL) as a query method. The open source version of
Qt contains plug-ins/drivers for the following database access standards:
MySql, Oracle Call Interface (OCI), Open Database Connectivity (ODBC),
PostgreSQL, Sybase Adaptive Server, IBM DB2, SQLite and Borland Inter-
base.

QtScript QtScript offers an ECMAScript implementation [ecm08], the standard
for JavaScript. Using this module enables the programmer to offer scripting
possibilities for the user of the program. Small scripts easily extend programs
without the need to recompile it.

QtXml and QtSvg The QtXml module offers support for the Simple API for
XML (SAX) and the Document Object Model (DOM). Both methods
allow the parsing and processing of Extensible Markup Language (XML)
documents. As Scalable Vector Graphics (SVG) is and XML-based graphics
format, the QtSvg module bases upon the QtSql module and offers the
processing of SVG.

QtWebKit The QtWebKit module provides an interface for the very versatile
browser engine WebKit [web08], used in Apple’s browser Safari [kde08],
Konqueror [kon08], the browser of the K Desktop Environment (KDE)
project and many more. Using this powerful browser engine in Qt programs
allows to easily create rich applications bridging between desktop and web
content.

2Qt is available under two different licensing models. There is a commercial version and
an open source version which is released under the GNU Lesser General Public License (LGPL)
/ GNU General Public License (GPL). Because the latter is used in this work, all descriptions
relate to the open source version.

20 CHAPTER 3. BACKGROUND

Phonon Qt encapsulates the Phonon framework, introduced by the KDE project
[kde08]. It allows to include multimedia content, such as sound files and
videos into Qt programs.

All these major features make the Qt framework a quite powerful toolkit for
software creation, which make it the first choice for this work.

3.4.3 LibSerial

The communication between the microcontroller network and the controlling PC
is done via a serial connection. Although on Unix systems serial ports are files that
can be easily handled using pipes, handling the serial port is quite inelegant and
confusing in C++. That is the reason why LibSerial [lib08] is introduced here.
This library encapsulates the access to the serial port into convenient classes that
allow simplified access to the serial port. Only few lines of code are needed to
open the serial port with the right parameters and to send and receive messages.

3.4.4 Extended Communication Framework and XML Template
I/O

The Extended Communication Framework (XCF) [xcf08] is an Internet Communi-
cation Engine (ICE) based communication framework that uses XML documents
for encapsulating and describing all kinds of data. ICE is a slim implementation of
the Common Object Request Broker Architecture (CORBA) base concepts aim-
ing at easy usability. In XCF XML documents are used as a very flexible data
structure. It implements a wide variety of communication paradigms:

• Client / server Remote Method Invocation (RMI) (many-to-one)

– synchronous: client waits for reply of the server

– asynchronous: client does not wait for a reply; server contacts the
client when the result of the call is available

• Publisher-Subscriber paradigm (one-to-many)

• Naming service (dispatcher); cares for network transparency

• content-driven event-notification

– white-board (ActiveMemory) that can be read and written by all par-
ticipating processes

– processes register on content using XPath

– published content is automatically send to processes that subscribed
on that content semantically

• XML Template I/O (XMLTIO)

3.5. PATH PLANNING ALGORITHMS 21

Because SAX and DOM parsing of XML documents is relatively complex in terms
of convenience, XMLTIO is crucial for software designers that use XCF in C++
programs. It encapsulates the XML parser Xerces-C++ [xer08] to allow easy and
direct access to all elements of a XML document using XPath. Additionally it
provides direct conversion of element data into native primitive data types.

3.4.5 The Cluster Library

The Cluster library as a part of the Cluster project [clu08] was originally devel-
oped as a computational environment for analyzing data from Deoxyribonucleic
Acid (DNA) microarray experiments. Since it implements standard clustering algo-
rithms such as K-Means and the EM-Algorithm or Self-organizing Maps (SOMs)
and distance metrics, it can be used for all kinds of data. Along with Cluster
there comes a C library that holds all these algorithms. It is utilized in this work
to process datasets in the DataProcessor application (see Chapter 6).
In the DataProcessor the K-Means algorithms gets applied:

Result: partitioning of the given data into k clusters
Initialize

• Cluster number k

• Initialize cluster centroids randomly.
foreach data point do

Assign data point to the most next cluster (center).
Calculate new cluster centers depending on the assigned data points.

end

Algorithm 1: K-Means Algorithm

3.5 Path Planning Algorithms

In contrast to animals or human beings, navigating mobile robots through an
environment equipped with obstacles is quite difficult. It gets even more difficult,
if the obstacles move, too. Continuously the robot has to sense it’s environment
and plan the next step based on the sensed data. Thereby an as accurate as
possible model of the environment needs to be estimated and updated every
planning step in real-time. The problem gets much more complex if the robot
has the ability to move in all six DOFs, which is the case with robot arms. This
increases the computation cost immensely.
Since the movement of the TAOs is only planar this short survey of path planning
algorithms only focuses on two-dimensional approaches. The free configuration
space is called Cfree. This space is allowed to be navigated. On the contrary the
configuration space that is occupied by obstacles is called Cforbidden. It must be

22 CHAPTER 3. BACKGROUND

avoided by the path planning algorithm to avoid collisions with obstacles. The
junction of both spaces C represents a complete model of the environment.
There are different methods of determining these spaces. On the one hand there
are discrete approaches, that try to sample the environment to get an approxi-
mately accurate model of Cfree and Cforbidden. From this discrete grid of sampled
points, graphs can be generated to navigate the robot through it’s environment.
On the other hand there are continuous approaches. One is the potential field
method, that is used in this work. It does not sample the Cfree directly, but the
borders of Cforbidden need to be known. Based on this borders and the desired
targets the potential field approach finds the shortest way to the goal. One dis-
advantage is the fact that without further effort this approach can get stuck in
local minima, but in the scenario of this work this case is improbable.

3.5.1 Roadmap Approaches

There are different types of roadmaps, that serve the problem of path planning.
[Lat93] introduces four of them, but the number of ways of finding valid roadmaps
is only limited by the creativity of the developer. Roadmaps can be regular grids
that lie in the free configuration space Cfree or non regular graphs.

(a) Exact Cell Decomposition (b) Visibility Graph

(c) Voronoi Diagram

Figure 3.5: Different roadmap generation approaches. (graphic reproduced from [Lat93])

3.5. PATH PLANNING ALGORITHMS 23

Cell Decomposition The Cell Decomposition methods generate non-overlapping
patches, that cover Cfree almost completely (see Fig. 3.5(a)). These
patches can be used to create a roadmap. The decomposition can be
exact or approximately. Approximately means that the patches are sim-
pler, which reduces the computation cost. For instance creating trapezoidal
patches along a curved obstacle needs quite a lot points to represent the
curved shape. Approximating this curve by a rectangular shape is much
more efficient, but less accurate. Both methods only work properly in two
dimensions. In higher dimensions they only serve as a prove of concept
while both get too complex to be calculated in real-time. After decom-
posing the Cfree a graph can be created by connecting the centers of all
adjacent patches with a line. This network of lines and nodes can be used
to plan trajectories.

Visibility Graphs Visibility graphs (see Fig. 3.5(b)) can be created by connecting
corners of all obstacles, visible from the current position and the target
position. Additionally these corners are interconnected, but these lines may
not cross Cforbidden. Again this method generates a roadmap that is suitable
for path planning.

Voronoi Diagrams Voronoi Diagrams (see Fig. 3.5(c)) are created by draw-
ing equidistant lines between the obstacles. This method is also called
Delaughney-Tessellation.

Regular Grids Simple grids can be used to tessellate the free configuration space.
Nodes that lie in the forbidden configuration space Cforbidden need to be
removed from the grid. Such grids are valid roadmaps, too.

3.5.2 Graph-based Path Planning Algorithms

Roadmaps are graphs. There are algorithms, that find the shortest connection
between two nodes in a graph. Dijkstra and A* (both described by [Lat93])
are two of them, while Dynamic Wave Expansion Neural Network (DWENN)
represents a combined approach using a regular grid.

Dijkstra The Dijkstra algorithms tries to find the shortest path through a given
graph. The graph is weighted e.g. with an estimated distance. Like the
pseudo code in Algorithm 2 describes, all nodes in the graph have the
property ’distance’ and ’parent’. All nodes but the initial node get the
distance ∞, the initial point has the distance 0. For all unvisited adjacent
nodes the one with the minimal distance is selected and saved as visited.
For that new node the sum of distances (and arc weights) occurred on that
path so far are saved in that node. The node with the shortest distance gets
a pointer to it’s parent node and so on. When arrived at the goal node,
the pointers to the parent nodes represent the shortest trajectory through
Cfree. An optimal path has then been found.

24 CHAPTER 3. BACKGROUND

Data:

• Nodes V

• Arcs E ⊆ V × V
• Weights W : E → R∗

Result: Optimal path through the graph
Initialize

• ∀v ∈ V g(v) =∞;

• g(vstart) = 0;

• Q = {vstart};
while Q 6=6 0 or v 6= goal do

Choose v ∈ Q with minimal distance g(v):
v = arg minv∈Q g(v);

Remove v from Q : Q′ = Q\{v};
foreach neighbors u of v do

if g(v) + w(v, u) < g(u) then
g(u)← g(v) + w(v, u);
bp(u)← v (backpointer);
Insert u or update g(u) in Q and resort;

end

end

end

Algorithm 2: Dijkstra Algorithm

A* The A* algorithm searches the shortest path same as Dijkstra does. Using
a heuristic, A* performs a deep search in contrast to Dijkstra, which does
a broad search. To accelerate the search towards the goal, the heuristic
additionally estimates the distance to the goal. Thereby A* finds the short-
est path in optimal time. The pseudo code in Algorithm 3 describes the
difference to Dijkstra.

DWENN DWENN [LSR03] does path planning on a regular grid, which is a
special type of graph. Every node is interpreted as a neuron:

ai(t+ 1) =
∑
j

wij(t) · aj(t) + θi︸︷︷︸
(=2)

(3.1)

ai(t) is the neuron’s activity, while wij represents the connection strength
between neuron j → i. The idea of DWENN is to propagate a wave from
targets a∗ to the current position in Cfree. Targets have the lowest activity
(1). The gradient towards the lowest activity draws the path to the target.

3.5. PATH PLANNING ALGORITHMS 25

Data:

• Nodes V

• Arcs E ⊆ V × V
• Weights W : E → R∗

Result: Optimal path through the graph
Initialize

• ∀v ∈ V g(v) =∞;

• estimate h(v);

• g(vstart) = 0;

• Q = {vstart};
while Q 6=6 0 or v 6= goal do

Choose v ∈ Q with minimal distance g(v):
v = arg minv∈Q g(v) + h(v);
/* now like Dijkstra */

Remove v from Q : Q′ = Q\{v};
foreach neighbors u of v do

if g(v) + w(v, u) < g(u) then
g(u)← g(v) + w(v, u);
bp(u)← v (backpointer);
Insert u or update g(u) in Q and resort;

end

end

end

Algorithm 3: A* Algorithm

DWENN uses the following update rules.

Target
ai(t+ 1) = 1 (3.2)

Target-Neighbor

ai(t+ 1) =

{
2 Target has move since last step
ai(t) + 1 Target has not moved

(3.3)

All other nodes If ai(t− 1) 6= 0 ∧ ai(t) = 0⇒ ai(t+ 1) = 0
→ if node got deactivated, it stays deactivated another time step.
Else

ai(t+ 1) =
∑

j∈Ni
wij(t) · (aj(t) + 2)

=

{
ak(t) + 2, if k first best neighbor
0, no good neighbor

(3.4)

26 CHAPTER 3. BACKGROUND

Maximal one weight wij(t) is set to 1. This weight describes the
gradient in the grid (=̂ backpointer).

Weights
wij(t) = δjk (3.5)

where k is the first ”best” neighbor of node i.

3.5.3 Continuous Approaches

As already mentioned, there are other approaches besides the graph-based path-
planning algorithms.

Potential Field Methods

In [Lat93] a complete potential field approach is described. Originally in [Kha86] it
has been proposed for online navigation where the robot does not have a complete
global model of the environment. Instead the robot is interpreted as a particle
in the influence of different force fields. The goal attracts the robots while the
(sensed) obstacles generate a force field, that repulses the robot. If the robot does
not get stuck in a local minimum of the potential field, this approach leads it to
it’s goal. [Lat93] proposes the following definitions for the different potentials and
their derived forces, which give the direction of the trajectory.
The attractive potential is defined as a conic well, centered at the goal position.

Eatt(~x) = ξ‖~x− ~xt‖ (3.6)

Here ξ is a positive scaling factor. As the repulsive potential the following defi-
nition is proposed. For better readability Cforbidden is now denoted as Cb in the
following equations.

Erep(~x) =

1
2η
(

1
‖~x− ~Cb‖

− 1
ρ0

)2
if ‖~x− ~Cb‖ ≤ ρ0

0 if ‖~x− ~Cb‖ > ρ0

(3.7)

The combination of both potentials result in the final potential field.

E = Eatt + Erep (3.8)

To get an appropriate direction, the potential field needs to be derived. The
derived scalar potential at a certain position in the field results in a vector pointing
towards the direction that is a linear combination of all forces at that point. So
the robot at that position is pulled in the direction of this vector.

∇ ~Eatt(~x) = −ξ
(

(~x− ~xt) ·
1

(~x · ~xt)

)
(3.9)

According to the attractive forces, the repulsive forces are defined by deriving the
repulsive potential.

3.5. PATH PLANNING ALGORITHMS 27

Figure 3.6: ’This shows an attractive potential field (Figure b), a repulsive potential
field (Figure c) and the sum of the two (Figure d) in a two-dimensional configuration
space containing two C-obstacles (Figure a). Figure e displays both several equipotential
contours of the total potential and a path generated by following the negated gradient
of this function. Figure f shows a matrix of the negated gradient vector orientations over
free space.’ (graphic reproduced from [Lat93])

∇ ~Erep(~x) =

η
(

1
‖~x− ~Cb‖

− 1
ρ0

)
· 1
‖~x− ~Cb‖2

· (~x− ~Cb) if ‖~x− ~Cb‖ ≤ ρ0

0 if ‖~x− ~Cb‖ > ρ0

(3.10)

Alternative A different way (not proposed by [Lat93]) of calculating appropriate
potential fields is the use of harmonic potentials, which is used in this work. Here
the attractive potential is defined as following.

Eatt(~xj) = λ‖~xj − ~xt‖2 (3.11)

28 CHAPTER 3. BACKGROUND

The repulsive forces are defined using a Gaussian, centered at the obstacles’ po-
sitions:

Erep(~xj) = µ
∑
i 6=j

exp
(
− 1

2σ2
(~xi − ~xj)2

)
(3.12)

The resulting forces of the combination of both potential fields are easily computed
by computing the gradient:

∆~xj = ∇E(~xj)

= 2λ(~xj − ~xt)− µ
∑
i 6=j

(~xj − ~xi)
σ2

exp
(
− 1

2σ2
(~xi − ~xj)2

)
(3.13)

E*

While DWENN produces rectangular wavefronts, E* [Phi04] is more inspired by
real waves, which are circular, so are the wavefronts generated by E*. This
results in very smooth trajectories. Additionally the library implementing the E*
algorithm, provides a very versatile framework for creating path planning pieces
of software including motor driving classes, obstacle detection using laser scanner
data and so on. It is very promising but a bit too much for the needs of this work
at this stage.

3.5.4 Summary

In the scenario proposed in this work the potential field approach is exactly what
is required. Configurations containing local minimums are relatively rare, but can
become probable with an increasing number of TAOs. It also inherently assures
a minimal spacing between the moving robots. Roadmaps need to be validated.
Even if the found roads are valid, the ways may be quite near to the forbidden
configuration space. There is the danger that the robot gets too near to obstacles
and collides with them. Such awkward roadmaps are quite common, as first
experiments with approximate cell decomposition showed (see Section 5.2.6 for
details). So the potential field approach using harmonic potentials is the method
of choice for this work.

3.6 Robotic Mobile Platform Designs

For locomotion of Wheeled Mobile Robots (WMRs) in planar terrain, there are
mainly four different types of mobile platforms that vary in mechanical design.

Differential Drive The differential drive mainly consists of two opposing driving
wheels (and one or two free wheels, so called Castor wheels). With only
these two wheels it is possible, to move the robot forward and backward

3.6. ROBOTIC MOBILE PLATFORM DESIGNS 29

(both wheels drive in the same direction) or rotate in place (wheels drive in
opposing directions). It is even possible to drive curves, but it is impossible
to rotate during linear translation.

Tricycle Drive The tricycle drive uses three wheels, two rear wheels and one
front wheel. The front wheel is used for steering and driving. The control
patterns are more difficult than those of the differential drive. It is not
possible to rotate in place, due to the non-holonomic constraints of the
wheels. A couple of maneuvers (and space) are necessary to rotate the
robot.

Synchro Drive A synchro drive allows each wheel to be steered and driven. The
wheels need to be aligned into the same direction and powered with the
same speed (synchronously). This fact gives the drive it’s name. It allows
the robot to rotate in place and drive curves, but the alignment of the
wheels consumes time. Rotation during driving is impossible.

Holonomic or Omni Drive The omni drive is the most versatile drive. It uses
wheels with inner DOFs (so-called Swedish Wheels). Those three wheels
are arranged in a triangle around the robot. Simply driving two of the three
wheels makes the robot move forward or backward perpendicularly on the
not driving wheel. It also allows to rotate in place and to rotate while
driving. The only disadvantage is that relatively much energy is lost at the
wheels and the wheels are mechanically quite complex, which makes the
holonimic drive hard to be implemented in the size of a TAO.

Ackerman Drive The Ackerman Drive is well known from conventional cars. It
utilizes four wheels from which the two front wheels are used for steering
and driving. Like the tricycle drive the Ackerman drive needs relatively
complex maneuvers and space. It is not possible to rotate in place. But it
is very practical for driving curves.

The best design would be the holonomic drive. It is able to use all available DOFs
at the same time. But it is quite expensive and complex to develop such a drive
in this small size. For these reasons the cheapest and easiest drive, the differential
drive is chosen as the mechanical base design in this work.

31

4 Hardware Design

This chapter decribes the development of the TAO hardware in detail. In the first
stage, the wireless serial transmitter is presented, followed by the manufacturing
of a first TAO prototype (see Fig. 4.1). After proving the prototype to work
properly, a small range of ’series’ TAO models are created. The chapter ends with
the description of two serial protocols, implemented in the Arduinos’ firmware.

XBee Carrier
Board

Battery

Connectors

Arduino Carrier
Board

Driving Module

(a) Exploded Assembly Drawing without upper
housing

(b) Drawing of a com-
pleted TAO

Figure 4.1: Assembly Drafts of a TAO

The housing of the prototype has been created using SolidEdge [sol08] and the
TUImod [BKHR08] as framework for TUIO building blocks. It was then manufac-
tured using a 3D rapid-prototyping printer. The object’s electronics will be build
using the Arduino mini microcontroller board [ard08] and Eagle [eag08]. This
provides a very flexible programmable an reconfigurable platform for all forms of
active objects.

32 CHAPTER 4. HARDWARE DESIGN

4.1 Wireless Serial Transmitter

The first attempt to transmit wirelessly commands used pulsed infrared light be-
cause of the cheapness of the used components. Unfortunately it turned out that
sometimes the serial connection was faulty due to the absence of debugging pos-
sibilities we regarded it as insufficient for this project. Nevertheless it is described
here for completeness.

4.1.1 IR Transmitter board

The transmitter board relays the serial commands to the active objects via in-
frared. In [Igo07] different ways of wireless communication are introduced. In-
frared communication seemed to be the cheapest and easiest way to make the
TAOs wireless. So far only a unidirectional connection is needed. In future devel-
opments bi-directional communication can be desirable, for instance to allow the
implementation of input channels in the TAOs.

Used Parts

1. Universal Serial Bus (USB) Universal Asynchronous Receiver Transmitter
(UART) Adapter
The FT232R is a popular USB to serial Transistor Transistor Logic (TTL)
converter Integrated Circuits (ICs) (UART). Sparkfun Electronics [spa08]
offers breakout boards for convenience usage. These boards allow to easily
access microcontoller ICs over USB connections.

2. TX-IRHS IC
The website of Reynolds Electronics [tx-08], manufacturers of the TX-IRHS
says:

’The TX-IRHS is an 8-pin PIC microcontroller custom pro-
grammed as a High-Speed infrared carrier modulator/transmitter
IC. The TX-IRHS is designed for use in High-Speed [up to 19200
baud] infrared serial data links, and remote control applications.’

3. 20 MHz ceramic resonator
The TX-IRHS needs a clock generator. It needs a 20 MHz ceramic res-
onator, also offered by Reynolds Electronics.

4. IR diodes
To emit the modulated signal over infrared, IR diodes are used (TSHF5410
by Vishay Semiconductors).

5. 220Ω Resistor
The IR diodes need a series resistor. A simple 220Ω resistor is used here.

4.1. WIRELESS SERIAL TRANSMITTER 33

Figure 4.2: Scheme of the IR-Board

Assembly Description

The transceiver circuit, build up on a breadboard, uses the TxD (Transmitted
Data) signal and the common ground pin of the FTDI USB interface. This serial
TTL signal gets modulated with a carrier frequency of 455 kHz by a TX-IRHS
(IC 1), a custom programmed Programmable Integrated Circuit (Microcontroller)
(PIC). This modulated signal can be send using IR emitting diodes and received
and demodulated by the TSOP7000, build into a prototype TAO.
The TAO then receives the serial data stream as if it would be wired directly to
the computer (without back-channel). Every object has its unique ID and every
command transmitted starts with the ID of the desired object. So every object
can be controlled individually.

4.1.2 XBee Transmitter Board

Because the IR connection was not stable, experiments with XBee modules were
made. It turned out, that XBee modules create a quite robust connection, provide
a back channel for feedback and build a one-to-many wireless network. This is
an almost optimal connection, that suits the needs of this work. The schematic
is quite easy (see Fig. 4.3(a)). Only power and data pins are connected and
the modules are configured with the following profile, generated by the X-CTU
software for XBee configuration:

1 XBP24 15 4 1084 . mxi
2 FE
3 0

4 241
5 1084
6 0

34 CHAPTER 4. HARDWARE DESIGN

(a) Schematic

(b) Prototype (c) Handmade board with manufactured
XBee Carrier Board

Figure 4.3: XBee Transmitter

7 [A]CH=C
8 [A] ID=3332
9 [A]DH=0
10 [A] DL=0
11 [A]MY=0
12 [A]RN=0
13 [A]MM=0
14 [A] CE=0
15 [A] SC=1FFE
16 [A] SD=4
17 [A] A1=0
18 [A] A2=0
19 [A] PL=4
20 [A] CA=2C
21 [A]SM=0

22 [A] ST=1388
23 [A] SP=0
24 [A]DP=3E8
25 [A]BD=3
26 [A]RO=3
27 [A] D7=1
28 [A] D6=0
29 [A] D5=1
30 [A] P0=1
31 [A] AP=0
32 [A] PR=FF
33 [A] RP=28
34 [A]CT=64
35 [A]GT=3E8
36 [A] CC=2B

4.2. PROTOTYPE 35

This allows peer-to-peer communication between all XBee modules, that joined
the network. When two or more modules transmit at the same time, only the
data of one of the modules is received. This fact makes the evaluation of multiple
participant modules tricky or even impossible. Because the applications developed
in this work do not need a back-channel, this problem is ignored. It can be coped
with an advanced protocol that assures that only one module transmits at the
same time.
In the prototyping phase, the XBee module was connected using a breadboard.
This was quite tricky, because the XBee modules are manufactured in 2 mm hole
spacing. The breadboard is designed to carry parts in 2.54 mm hole spacing.
Figure 4.3(b) shows how the XBee was mounted. 4.3(c) depicts the transmitter
using an adapter board for the manufactured XBee carrier boards. The following
section lists the used parts for the XBee transmitter using the manufactured XBee
carrier board.

Used Parts for the Series Transmitter

1. USB UART Adapter
FT232R ICs are popular USB to serial TTL converter ICs (UARTs). Spark-
fun Electronics [spa08] offers breakout boards for convenience usage. These
boards allow to easily access microcontoller ICs over USB connections.

2. XBee module
For wireless communication XBee pro Series 1 modules are used, as de-
scribed in 3.3.4.

3. XBee Carrier PCB
As described in Section 4.2.2

4. Prototyping PCB
The 40 x 40 mm prototyping board carries all connectors to act as an adapter
between the XBee carrier board and the FTDI adapter.

5. angled six-pin male Connector
An angled six-pin connector is used to connect the transmitter board to the
FTDI adapter.

6. three 10-pin female Connectors
The three 10-pin female connectors are used to mount the XBee carrier
board on the prototyping PCB.

4.2 Prototype

After determining the parts needed to build the first prototype, the design of the
housing was the first step. Using TUImod (see section 3.3.1), a well defined frame

36 CHAPTER 4. HARDWARE DESIGN

was set. So the housing has a base area of 50 x 50 mm. To make the housing
as stable as possible, because it will be manually used as everyday objects, the
side thickness was set to 5 mm. So all electronics were chosen to fit on PCBs
of 40 x 40 mm size. The prototype PCBs (see section 4.2.2) were soldered using
drilled prototyping boards silver wire and isolated wire and stacked in a sandwich
architecture, to stay inside the border of 40 x 40 mm. When the PCB were
finished, the housing height could be determined. They are designed as two halves
(top and bottom), that clip together when pressed into each other. The module
boards fit into these halves and only expose their connection pins, that still fit
together, which results in a modular layer structure, which is highly reconfigurable.
This structure is comparable to the shield concept, known from the more common,
bigger sized Arduino boards, such as the Diecimila or Duemilanove.

4.2.1 Used Parts

For the prototype the following parts and components were used, which are de-
picted in Figure 4.4(a) and Figure 4.4(b):

1. Housings and Wheels
Housings, based on the TUImod framework (see section 3.3.1), and wheels
were designed using SoligEdge (see section 3.3.2). The parts were created
using a rapid prototyping 3D printing system. For better debugging, only
the housing of the motor layer was used.

2. Arduino pro mini
As introduced in section 3.3.3, this microcontroller platform is used as the
’brain’ of the active objects.

3. Motors
The motors are 6 mm inline gear motors by Precision Microdrives [pre08].
They are distributed by ROBOTmaker [rob08].

4. Batteries: Fullriver 130
Distributed by WES-Technik [wes08], the batteries are Fullriver 130 mAh
lithium polymer accumulators.

5. H-bridge L293D
As H-bridge, a L293D IC, distributed by Reichelt Elektronik [rei08], is used.

6. Inverter: 74AC04
The 74AC04 IC is distributed by [rei08]. It is used for inversion of the
direction pins, which allows to save two digital output ports of the Arduino.

7. XBee pro Series 1
A Xbee module as introduced in section 3.3.4 is used for wireless commu-
nication.

4.2. PROTOTYPE 37

8. Connectors
A set of different connectors (male and female) are used to create the
sandwich architecture of the PCBs. Like the L293D and the 74AC04, they
are distributed by [rei08].

9. Drilled Prototyping Board
The drilled prototyping boards are also distributed by [rei08] and by [far08].

10. Rubber Belts
For driving the wheels, two 15 mm x 1 mm, shore 70 rubber belts1, dis-
tributed by [rob08] were used.

(a) Printed housing parts and wheels (b) Used electronic parts. Arduino mini pro,
Batteries, XBee module, L293D, 74AC04,
drilled prototyping board, motors, rubber
belts and connectors

Figure 4.4: Parts, used for the prototype

4.2.2 Schematics and Board Design

The sandwich architecture uses a vertical bus with 30 pins. These pins are sub-
parted into three 10-pin buses, that lie on three of the four sides of the PCBs (see
Fig. 4.5). This arrangement avoids connecting modules in wrong ways. EXT L
is the bus on the left side, EXT R resides on the right side and EXT B is found
at the bottom side. EXT B has still unused pins (pins 1 to 8), which are reserved
for future extensions.

Arduino Carrier Board On the Arduino carrier board (see Fig. 4.6) the Arduino
mini pro is soldered. It connects all pins of the Arduino to the bus system.
Pins D2 to D9, GND and RX on the left of the Arduino board are connected
to the left bus EXT L and pins D10 to D13, A0 to A3, VCC and TX are
connected to the right bus EXT R. To the bottom bus EXT B only A4 and

1shore is a durometer scale, describing the hardness of a certain material

38 CHAPTER 4. HARDWARE DESIGN

(a) Pin Assignment Schematic (b) Manufactured PCB for Com-
parison

Figure 4.5: Pin Assignment Overview. Pins 1 to 8 of the EXT B connector are reserved
for future extensions.

A5 are supposed to be connected, which was not done, because they are
so far not needed. The remaining pis of EXT B are so far unassigned and
reserved for future extensions. All connections to the buses are made using
silver wire. Male and female connectors are added to the prototype PCB
as Figure 4.6 shows. Finally a six-pin connector is soldered to the Arduino
mini pro to make it connectible to the USB UART board.

XBee Carrier Board Figure 4.7 shows the schematic and the prototyping PCB
carrying the XBee module. As already mentioned in section 4.1.2, the XBee
does not directly fit on prototyping PCBs because of its 2 mm pin spacing.
So the prototype board only provides sockets to mount the XBee module like
it is mounted on a breadboard. The status Light Emitting Diodes (LEDs)
mentioned in the schematic are ignored to keep the design simple.

Motor Driver Board The motor driver board, depicted in Figure 4.8, is crucial
for this work. It implements the movability capabilities and is responsible
for the fist active output modality. The motor driver consists of two ICs, A
L293D H-bridge and a 74AC04 inverter (for schematics see Fig. 4.9).

The H-bridge allows to control a motor by using three ports of a microcon-
troller. One (PWM) port is used for the velocity and the other two ports
are digital ports to determine the direction (one is set to high and the other
to low or vice versa). If both digital ports are set high, the H-bridge lets the
motor block so this can be used as a brake. To save one of the digital ports
an inverter IC such as the 74AC04 is used. By giving up the ability to use
the motor for breaking by connecting one port directly to the first direction
pin and connecting the second pin using an inverter such as the 74AC07,

4.2. PROTOTYPE 39

(a) Schematic

(b) Prototype (top) (c) Prototype (bottom)

Figure 4.6: Arduino Carrier Board

a second digital port can be saved. The direction can be determined using
only one port, by setting the digital port high or low. The motor driver
board uses pins D2 to D5 and GND and VCC. D2 is the direction port and
D3 determines the speed for the first motor, D4 and D5 do the same for
the second motor. Figure 4.10 depicts the ready build prototype.

4.2.3 Fiducial Marker

In the Ambient Intelligence Group [ami08] fiducial markers [BKJ05] are common
for visually tracking objects on table-top surfaces. Due to the complexity of
the popular ’amoeba’ set [BKJ05], a new much simpler set was created for the

40 CHAPTER 4. HARDWARE DESIGN

(a) Schematic

(b) Prototype (top) (c) Prototype (bottom)

Figure 4.7: XBee Carrier Board

TAOs, because the space underneath them is limited and thereby too small for
the markers of the amoeba set.
The fiducial tracking library is designed to recognize the graph-like structure of
black-/white-changes. Figure 4.11 explains the design. The graphs are so-called
left heavy depth sequences. After building up the structure (from root to leafs)
the sequence of hierarchical elements can be read starting from root to the first
left leaf to the next right leaf and so on. After the last leaf of the first node
reading continues with the next upper right node and its leafs. The sequence is
complete when the last (most right) leaf has been read.
As already said, the amoeba marker set is too complex to be printed and robustly
recognized under the TAOs. The space under the TAOs is limited and the black-
/white-changes of the amoeba markers would be in sub-pixel dimensions, which

4.2. PROTOTYPE 41

(a) Schematic

(b) Prototype (top) (c) Prototype (bottom)

Figure 4.8: Motor Module Board

makes them unable to be tracked. Therefore a new marker set was created in this
work. The first four markers of the new simpler marker set, called ’alien faces’,
are depicted in Figure 4.12(a).
The elliptic shape of the first version of the marker set was changed to a rect-
angular one (see Fig. 4.12(b)), because the markers are supposed to be included
into the housing. The new marker set makes better use of the space underneath
the TAOs, which improves the tracking stability, too.

42 CHAPTER 4. HARDWARE DESIGN

(a) Prototype (top) (b) Prototype (bottom)

Figure 4.9: Schematics of the driver ICs used in the motor driver board (courtesy
of SGS-Thomson Microelectronics).

Figure 4.10: Photo of the functional Prototype, without upper housing.

4.3 Series Production

This section describes the creation of a set of active objects. Some changes had
to be made to the prototype to enable a faster creation and more reliable results.
These changes are described here.

4.3. SERIES PRODUCTION 43

Figure 4.11: An amoeba fiducial marker and its left heavy depth sequence of black-/white-
changes. (graphic reproduced from [BKJ05]). The sub-sequence of the nodes are printed
right to each node. The unique structure of the ’amoeba’ and ’alien faces’ marker sets
allow to organize the tree structure in a sequence (beside the zero-depth node).

(a) First elliptic version (b) rectangular version

Figure 4.12: Alien faces fiducial markers for visual tracking of the active objects. The
number sequence below the markers are the left heavy depth sequences of their corre-
sponding tree graphs, see Fig. 4.12(a).

Figure 4.13: New version of the housing
parts

Because of the mistake of designing the
housings of the prototype mixing male
and female housing connections, the
housing connections between the pro-
totype’s modules of the TAOs and the
passive TUImod parts are partly incom-
patible. This required a redesign of all
housing parts. Figure 4.3 shows the new
housings.
While the female connectors round up
with the lower surface of the connection,
the male connectors of the connecting module need to stick out to make contact
with the lower module. These pins are not considered in the passive TUImod
parts. Other connection strategies need to be found for future redesign, like the
smartcard mechanism, which is also used in [McN00].

44 CHAPTER 4. HARDWARE DESIGN

(a) Routed Board Design of
the Arduino Carrier Board

(b) Manufactured Arduino
Carrier Board (top)

(c) Manufactured Arduino
Carrier Board (bottom)

(d) Routed Board Design of
the XBee Carrier Board

(e) Manufactured XBee Car-
rier Board (top)

(f) Manufactured XBee Car-
rier Board (bottom)

(g) Routed Board Design of
the Motor Driver Board

(h) Manufactured Motor
Driver Board (top)

(i) Manufactured Motor
Driver Board (bottom)

Figure 4.14: The manufactured PCBs

The most important change from a prototype to series production is to change the
production to manufactured PCBs. Figure 4.14 shows the results. The schematics
described in section 4.2.2 were routed using Eagle (see Section 3.3.2) and the
resulting PCB layouts were professionally manufactured by [hak08]. Figure 4.15
shows a ready build series model and Figure 4.16 depicts the complete tDesk
setup, including camera and lighting, with three TAOs on the table-top surface.

4.4. ARDUINO FIRMWARE 45

(a) Design Drawing (b) Assembled TAO

Figure 4.15: Finished TAO series Model without upper housing

Figure 4.16: The tDesk hardware setup.

4.4 Arduino Firmware

There are existing libraries that allow to remotely control an Arduino microcon-
troller over a serial connection. For instance there is the Firmata firmware [fir08]
and the Messenger library, formerly known as Simple Message System [mes08].
Both are versatile protocols but they consider the serial connection as a point-
to-point connection. So addressing multiple microcontrollers is not considered or
even implemented. Due to this fact a new simple protocol had to be developed.

46 CHAPTER 4. HARDWARE DESIGN

4.4.1 SerialControl Protocol

The SerialControl protocol has been implemented for the prototype. It describes
very simple human readable commands (ASCII2 coded strings) that are trans-
mitted to the Arduino over a serial connection. The commands wrap the I/O
commands of the Arduino language and extend the wrapped functions for con-
venience use. The syntax is quite simple: The first statement is the numeric ID.
It names the active object that should react on the command. For broadcast
purposes this can also be a single ’*’ as a wildcard. The ID is followed by the
command name, which is a unique string. Commands may have up to two argu-
ments. All parts, the ID, the command name and the arguments are separated
by spaces (ASCII code 32) and complete command strings are terminated by a
colon (ASCII code 59). Six commands have been implemented so far:

ID pinMode Pin Mode; The pinMode command makes it possible to change
the port property from OUTPUT to INPUT and vice versa. The first argu-
ment is the desired port and the second one is the desired mode (OUTPUT
or INPUT).
Response: ”{ID}: Set mode of pin {Pin} to {Mode}”

ID digitalWrite Pin Value; digitalWrite allows to change the state of an output
pin. The first argument is the pin number of the output port and the value
argument can be HIGH or LOW.
Response: ”{ID}: Set pin {Pin} to {Value}”

ID digitalRead Pin; The digitalRead command reads out the value of an input
pin. It receives only one argument, the input pin. The returning value can
be HIGH or LOW.
Response: ”{ID}: Pin {Pin} is {Value of the pin}”

ID analogWrite Pin Value; The analogWrite command writes analog (PWM)
values to an output pin. Like digitalWrite it gets two arguments, the output
pin and the new value.
Response: ”{ID}: Set pin {Pin} to {Value}”

ID analogRead Pin; analogRead reads the value of input pins. In contrast to
digitalRead these values are analog values. It receives only one argument,
the input pin and returns the value of the pin.
Response: ”{ID}: Pin {Pin} is {Value of the pin}”

ID all Mode; all is a convenience function. It allows to set all pins of the Arduino
to HIGH or LOW, so it gets only one argument, the new state of all pins.
Response: ”{ID}: All pins are {Mode}”

2American Standard Code for Information Interchange (ASCII)

4.4. ARDUINO FIRMWARE 47

Additionally special convenience commands for driving have been implemented to
reduce the communication overhead:

ID configureWheels; configureWheels is used to configure the first four pins
used by the motor driver board as output pins.
Response: ”{ID}: Wheel output configured”

ID wheelSpeed Left Right; The wheelSpeed command sets values of the first
four output pins to values, determined by the two arguments, the speed of
the left and the right wheel as signed PWM values. This means that the
sign determines if the direction port is set HIGH or LOW and the PWM
port is set to the actual value.
Response: ”{ID} Set wheel speed to {Left}, {Right}”

4.4.2 SerialControl2 Protocol

The SerialControl protocol turned out to be inoperative when used together with
multiple XBee modules in peer-to-peer mode. All TAOs reacted on the response
of others by resetting. Therefore there is much potential for optimization and
simplification in terms of serial communication.
The command set has been reduced and the command syntax has been changed
substantially to ease the string parsing on the microcontoller. The semantic
remained untouched.
SerialControl2 uses a new command structure: IDCMARG1ARG2; The first two
characters are used as the ID, so 100 TAOs can be addressed. The next two
characters encode the command followed by four characters for each of the two
arguments plus the final colon. Thereby the command strings of SerialControl2
have a maximum length of 13 bytes. Because of the fixed length of the commands’
parts, no delimiters are needed and parsing the commands has become much
easier. The following list opposes the commands used in SerialConstrol and their
the corresponding command characters used in SerialControl2:

pm pinMode

dw digitalWrite

dr digitalRead

aw analogWrite

ar analogRead

al all

ws wheelSpeed

db debug

48 CHAPTER 4. HARDWARE DESIGN

Obviously the configureWheels command is gone. Furthermore a new command
debug is introduced to allow to turn on normally inactive debugging messages.
In summary, the SerialControl2 protocol reduces the communication overhead.
Because the command digitalRead and analogRead are not used in this work, the
are only reserved, but not implemented, yet.

49

5 Software Implementation

This chapter describes the development of the software modules to operate the
TAO. The software modules are organized as shown in Figure 5.1. The vision
module searches the camera image of a camera, placed underneath the glass
surface of the tDesk, and broadcasts the found marker positions to the XCF ar-
chitecture. Other modules such as path planning and application modules receive
these marker positions and navigate the TAOs to new positions by transmitting
commands to the transmitter module, which wirelessly transmits the commands
to the TAOs. The TAOs react on the commands remotely, which results in new
marker positions. A control loop is closed, as depicted in Figure 5.1.

Figure 5.1: Overview of the Software Architecture

50 CHAPTER 5. SOFTWARE IMPLEMENTATION

The software is considered to be implemented in modules using C++ program-
ming language and the XCF middleware framework [xcf08] for communication.
This makes the TAO system able to be integrated into larger environments like
the AmI-Lab [ami08]. The first module implemented is the vision module, that
tracks the objects’ markers and publishes the tracked positions using XCF. The
second module will be the serial relay module, that transmits command strings
received over XCF to the TAOs using the XBee Transmitter, introduced in section
4.1.2. Additionally a debugging and monitoring module is implemented to moni-
tor the communication between the TAOs for debugging purposes. A simulation
module is developed, too, because software creation and prototype development
needed to be done in parallel tasks to save time. This allows to work on the
software while waiting for delivery of needed parts. The simulation module simu-
lates TAOs by creating XCF output, such as generated by the vision module. It
also reacts on XCF input, that contains command strings and updates the virtual
TAOs. For a demonstration in the laboratory of the Ambient Intelligence Group
[ami08] a simple demonstration module was created that works together with
the hardware prototype to demonstrate simple navigation. Two path planning
algorithms were considered for implementation. During the implementation of a
cell decomposition approach, known disadvantages of this method could be con-
firmed in this setup (see Sections 3.5.1 and 5.2.6 for details). That was the reason
why the development of the graph-based planning module was canceled and the
efford was concentrated on the potential field approach. The Application Pro-
gramming Interface (API) structures and modules supporting the development of
applications makes the base system a handy development environment for future
developments.

5.1 Base Classes and their derivatives

This section describes the base classes, introduces in this work. It gives Unified
Modeling Language (UML) diagrams and explains the important attributes of the
base classes. The base classes’ names start with the letters ’AO’, which refers to
the working title of the TAOs, ’ActiveObjects’.

5.1.1 AOScene

Figure 5.2(a) shows the UML description for the AOScene class with it’s at-
tributes and properties. AOScene is the central widget in terms of Qt. All mod-
ules with a GUI visualizing active objects use an instance of this class or it’s
derivatives. This class itself is derived from QGraphicsScene, which provides
a versatile frame for graphical visualizations. As Figure 5.2(a) shows, AOScene
has the protected property m_objects, a container to hold representations of
tracked TAOs. This container is maintained by Qt slots. These are visible,
invisible, invisibleList and invisibleAll. The visible slot adds or up-
dates a representation and the slots starting with ’invisible’ remove objects lost by

5.1. BASE CLASSES AND THEIR DERIVATIVES 51

(a) AOScene (b) AObjectItem (c) AM-
CallAdapter

(d) AOSerialProtocol

Figure 5.2: UML definitions

the tracking system (see API documentation for details). Beside the information
about the tracked objects, the tracking module transmits information about the
camera image, because the positions of the objects are given in pixel coordinates.
To be notified about the camera image size, the setSize slot is used. There is
also the slot frameComplete that is called whenever the processing of a camera
image is completed. Additional there are slots for GUI connections. The reset

slot transmits ’wheelSpeed 0 0;’ commands to all TAOs. Thereby it acts like
a panic button. setSpeed and setAObjectSize can be connected to widgets
to set the desired speed of the active objects in PWM values or to set the size
(edge length) of the object’s visualization. setAObjectSize has a getter function
called getAObjectSize. There are also a few getter functions that return differ-
ent properties or can be used for convenience. The getSerial function returns
the SerialAdapter instance. getItem returns the instance of a AObjectItem

with a given ID and getOtherItems returns a list of all items except the given
ID. To get the coordinates of an AObjectItem instance, the convenience function
coordsForID can be used. The functions nextNeighborDist, nextNeighborID
and nextID are used for convenience to get the distance, position and ID of a TAO
next to the given position excluding the given ID. Finally the simpleNavigate

function implements a naive navigation of a given ID to the given position.
For specialization some derivations have been created. See the API documentation
on the enclosed CD for details. The derived classes are:

52 CHAPTER 5. SOFTWARE IMPLEMENTATION

• AOGraphScene is used in the GraphPlanner module. This scene is highly
specialized and depends on additional QGraphicsItem derivatives to allow
the computation of the cell decomposition in a graphical manner.

• AOPotentialScene is the scene implementation for the PotentialPlanner
module. It is specialized for the potential field navigation approach.

• AOSimpleScene is used in the SimpleNavigator demonstration module.

• AOSimScene is part of the ObjectSimulator module. It is able to generate
XCF output for vision simulation and adapts simulated objects according
to XCF serial commands. It also allows to manipulate the simulated active
obejcts with the mouse.

5.1.2 AObjectItem

Figure 5.2(b) shows the UML inheritance graph for the AObjectItem class. Be-
side AOScene, AObjetItem is the most important class, because it is used to
visualize the TAOs on the AOScene. Because AObjectItem is the representation
for tracked TAOs, it contains properties such as m_id, m_x, m_y and m_angle

and corresponding getters and the setValues setter. As being a derivative of
QGraphicsItem, this class implements the type, getBondingRect and paint

functions. paint is very important for classes derived from the QGraphicsItem

class. This method is responsible for the visualization of the items. Here a
QPainter instance is used, which implements a very versatile 2D drawing state
machine.
For further information have a look at the API documentation on the enclosed
CD. Derivatives:

• AOGraphItem is used in the GraphPlanner module. It adds several additional
QGraphicsItem derivatives to the scene to compute the cell decomposition
in a graphical manner.

• AOSimpleItem is used in the ObjectSimulator module. Here the
wheelEvent is used to enable rotation of simulated objects using the
mouse wheel.

5.1.3 AMCallAdapter

AMCallAdapter is not a specialized for the TAO system, but it is introduced to
ease the connecting to ActiveMemories (that is the reason, why it starts with
’AM’ and not ’AO’). It provides a base class to encapsulate the registration of a
virtual callback function for convenience use. This class is not productively usable.
It needs to be derived, to implement functionality in the callback function. In the
derivatives Qt slots can be emitted in the function when parsing the received
information. Derivatives:

5.1. BASE CLASSES AND THEIR DERIVATIVES 53

• AOMarkerListAdapter is implemented to react on XCF ’MarkerList’ con-
tent. It is enabled to emit visible, invisible, etc. signals that can be
connected to the slots of AOScene. Once these connections are established,
visualization of tracked objects is already working.

• AONavigateAdapter implements parsing of XCF ’Navigate’ messages. The
signals emitted fit to the navigateID slots of the AOPotentialScene.

• AONavigationStateAdapter reacts on XCF ’Navigation’ messages,
which represent states of running navigation tasks. So it emits
navigation(id, state) and navigation(state) signals. Here id

holds the ID of the navigating TAO and state describes the different
states (’reached’, ’complete’). The latter signal is used for the navigation
state of multiple TAOs. That is the reason for the missing ID argument.

• AOSerialAccessAdapter is a low-level implementation of an adapter, re-
acting on SerialAccess XCF messaged and is used by the XCF2Serial
module.

• SerialAdapter is a higher-level implementation (in contrast to
AOSerialAccessAdapter). It is equipped with Qt signals and slots
that allow easy gating to Qt GUI programs. Before the development of the
AOSerialProtocol class, this was the central class for transmitting serial
messages to the TAOs over the XCF architecture.

5.1.4 AOSerialProtocol

The upcoming of an improved serial protocol (see section 4.4) makes an
abstraction layer beneficial to easily change from one protocol to another.
AOSerialProtocol is an almost virtual class that to defines the frame for the
intersection of both implemented serial protocols. It defines function bodies that
wrap the commands introduced in the serial protocols. Additional Qt signals are
defined to encapsulate responses coming from the active objects. The two imple-
mentations AOSerialControl and AOSerialControl2 derive from this class to
specialize on the two protocols: Derivatives:

• AOSerialControl implements the first protocol of the first prototype. It
utilizes a SerialAdapter instance to communicate to the TAOs.

• AOSerialControl2 implements command handling for the second protocol
SerialControl2. It introduces constants containing offsets to easily access
parts of the command string.

Since AOSerialProtocol only defines the frame for serial protocol implemen-
tations, both implementations add helper functions for convenience use, such as
setSpeed and drive, which abstract the wheelSpeed function. Classes derived

54 CHAPTER 5. SOFTWARE IMPLEMENTATION

from AOSerialCode are meant to make the direct use of SerialAdapter unnec-
essary.

5.2 Software Modules

This section illustrates every base software module, developed in the course of this
thesis. To ease the understanding of the XCF data streams, diagrams, describing
the in- and output streams of each module, are included in the description of the
module.

5.2.1 Vision Module: Marker2XCF

The Marker2XCF module, which is depicted in Figure 5.3(b), is written using the
ICL (see section 3.4.1). It reads the image of an attached camera via Firewire
(DC), USB (Philips Web Cam (PWC)), Unicap driver or previously recorded image
files. Every taken picture of the video stream gets searched for fiducial markers
(see section 4.2.3).

(a) Marker2XCF XCF In- and Out-
put diagram

(b) Screenshot

Figure 5.3: Marker2XCF module

Every occurrence of a marker gets stored in a XML document like printed be-
low. The document contains a tag called MarkerList which takes every occur-
rence of a marker in the current frame. Each occurrence is documented by it’s
angle followed by x and y value. Due to compatibility with other object describ-
ing XML documents already used in the Neuroinformatics Group, the attributes
kind="relative" and ref="image" are included. Additionally the timestamp
is attached to the list.

5.2. SOFTWARE MODULES 55

1 <?xml v e r s i o n=” 1 . 0 ” e n c o d i n g=”UTF−8” standalone=”no” ?>
2 <M a r k e r L i s t imageHe ight=” 480 ” imageWidth=” 640 ”>
3 <TIMESTAMP>
4 <INSERTED v a l u e=” 1227121349 ”/>
5 </TIMESTAMP>
6 <Marker i d=”25” t y p e=” f i d ”>
7 <coord a n g l e=” 2.997053146362305 ” k i n d=” r e l a t i v e ”
8 r e f=” image ” x=” 239.4224548339844 ” y=” 235.7020416259766 ”

/>
9 </ Marker>
10 </ M a r k e r L i s t>

To be able to track different types of fiducial markers, the module expects a file
named all.trees. Like introduced in section 4.2.3, the configuration of the
heavy left sided trees of the markers are stored in this file. For the first four
markers depicted in Fig. 4.12 such a file has the following content. The IDs are
assigned line wise starting with 0:

1 0121
2 01221
3 01211
4 012211

To enable the module to track markers of other sets, only the configuration of these
sets need to added to the all.trees (or completely replaced). The quite popular
amoeba set, introduced by the reacTIVision software [rea08] is also included on
the enclosed CD in the module’s source directory.

5.2.2 XCF to Serial Module: XCF2Serial

Figure 5.4: XCF2Serial XCF In-
and Output diagram

The XCF2Serial module relays messages received
via XCF to a serial port and transmits received
data from the serial port back into the XCF ar-
chitecture. Once the command-line only module
is started, the module looks for a USB attached
serial port, such as /dev/ttyUSB0 and starts lis-
tening for incoming bytes. The module is designed
to be as common as possible, so it is possible to
control nearly every serial device available, e.g. the
Ambient Lights [HHK+08], introduced in the Am-
biD system [BHR06], or digital scales as another
example. The following code examples describe
the XML structure, used to exchange data with
the serial port from XCF enabled programs.

1 <?xml v e r s i o n=” 1 . 0 ” e n c o d i n g=”UTF−8” standalone=”no” ?>
2 <S e r i a l A c c e s s>
3 <send message=”0 whee lSpeed 255 2 5 5 ; ” />
4 </ S e r i a l A c c e s s>

56 CHAPTER 5. SOFTWARE IMPLEMENTATION

Of course the XCF2Serial module is enabled to read bytes from the serial port
and transmit them back via the following XCF string:

1 <?xml v e r s i o n=” 1 . 0 ” e n c o d i n g=”UTF−8” standalone=”no” ?>
2 <S e r i a l A c c e s s>
3 < r e c e i v e message=”0 : Set whee l speed to 255 255 ” />
4 </ S e r i a l A c c e s s>

5.2.3 Arduino Monitoring and Administration: RemoteArduino

For debugging purposes, the RemoteArduino module is created to monitor serially
attached TAOs at the XCF-Layer (see Fig. 5.5(b)). It views a list of all IDs of
recognized objects in the XBee network. When selecting one object, the pin states
of the object are represented in the GUI. Additionally it is possible, to change this
state directly from within the GUI. This can be done with one object, a selection
of a couple of objects and the changes can be broadcast to all objects in the
network.

(a) RemoteArduino XCF In- and
Output diagram

(b) Screenshot

Figure 5.5: RemoteArduino module

While RemoteArduino wraps all commands, provided by the serial protocols, not
only direct pin control is possible. Also higher-level control, such as remote con-
trolling the TAOs’ moving abilities by hand. There are buttons for driving forward,
backward and steering commands, a stop and a reset button button and a slider
for determining the desired velocity in PWM values. Finally there is a logging
widget, that logs all transmissions received over XCF.

5.2.4 When no real Objects are available: ObjectSimulator

The ObjectSimulator module acts like a virtual replacement of the table-top in-
terface and the active TUIOs. Figure 5.6(a) shows that the module receives the

5.2. SOFTWARE MODULES 57

/SerialAccess/send as input and sends in response /SerialAccess/receive
and /MarkerList as output messages. The module administrates a list of ob-
jects that the user can create instantly using the GUI, depicted in Figure 5.6(b).
The user has the opportunity to move the objects around using the mouse and
drag and drop. With the mouse wheel it is possible to rotate the objects. The
GUI shows the virtual objects mirrored (due to the simulation of a camera look-
ing from underneath a transparent table-top surface). Of course, these virtual
objects are controllable with the SerialAccess messages and react just like real ob-
jects would. Like the vision module, this module stores the object configurations
and it’s changes in the active memory in every iteration.

(a) ObjectSimulator XCF In- and
Output diagram

(b) Screenshot

Figure 5.6: ObjectSimulator module

With these abilities this module replaces completely the hardware setup and allows
to use the system without having access to the not very portable hardware. It was
also very useful as long the parts for the series production of the dozen of objects
did not have arrived.

5.2.5 Demonstrating Object Navigation: SimpleNavigator

This module demonstrates a naive navigation scenario. SimpleNavigator only
copes with one TAO. By clicking a desired target position in the GUI, the Simple-
Navigator module measures the angle between the heading direction of the TAO.
At first this angle gets minimized by rotating the object in the direction of the
goal position. When the direction is reached (±3◦ left/right tolerance) the object
moves forward. If the angle between heading direction and target increases and
crosses 45◦, again this angle gets minimized by rotation and so on. When the

58 CHAPTER 5. SOFTWARE IMPLEMENTATION

distance between the object and goal is almost zero (again with a small tolerance),
the goal is reached and the TAO stops.

(a) SimpleNavigator XCF In- and
Output diagram

(b) Screenshot

Figure 5.7: SimpleNavigator module

With this simple toy example it is possible to demonstrate the correct motion of
the active TUIOs.

5.2.6 Graph-based Path Planning Control Module: GraphPlanner

The GraphPlanner module implements an approximate cell decomposition ap-
proach (see section 3.5.1) almost completely. In every iteration, the path-planning
module generates graphs from the vision-input that covers Cfree.
As Figure 5.8(b) shows, the so far computable path elements are not optimal.
Except the active object with ID 4, all objects are tightly surrounded by path
elements. Using these paths would unavoidable result in a collision between TAOs.
This is the reason why the development of this module was canceled.

5.2.7 Potential Field-based Path Planning Control Module:
PotentialPlanner

This navigation approach proposed in [Kha86] uses artificial potential field sim-
ulation to guide mobile robots around obstacles to the desired goal (see section
3.5.3). By introducing an attractive force between the TAO and the target and
repulsive forces between the TAO and other TAOs, it is guided around them to
the goal position. After adding the attractive and the repulsive potential field,
descending on the gradient of the field creates a trajectory, that guide the TAO to
the desired target. It is necessary to derive the potential field to get the gradient,
which results in a vector field of forces.

5.2. SOFTWARE MODULES 59

(a) GraphPlanner XCF In- and Out-
put diagram

(b) Screenshot

Figure 5.8: GraphPlanner module

(a) PotentialPlanner XCF In- and
Output diagram

(b) Screenshot

Figure 5.9: PotentialPlanner module

To make the PotentialPlanner start navigating objects to new positions, it awaits
incoming XML documents in the following structure:

1 <?xml v e r s i o n=” 1 . 0 ” e n c o d i n g=”UTF−8” standalone=”no” ?>
2 <A c t i v e O b j e c t s>
3 <n a v i g a t e i d=”0” toX=” 137 ” toY=” 423 ” t o A n g l e=” 1.56294 ”/>
4 <n a v i g a t e i d=”1” toX=”26” toY=” 115 ” t o A n g l e=” 3.05406 ”/>
5 <n a v i g a t e i d=”2” toX=” 309 ” toY=” 241 ” t o A n g l e=” 4.02461 ”/>
6 <n a v i g a t e i d=”3” toX=” 296 ” toY=”41” t o A n g l e=” 0.23969 ”/>
7 </ A c t i v e O b j e c t s>

60 CHAPTER 5. SOFTWARE IMPLEMENTATION

Once, navigation has started, the module reports about the state of each ob-
ject and the complete navigation task by transmitting XML documents with the
following patterns until the navigation task is completed.

1 <?xml v e r s i o n=” 1 . 0 ” e n c o d i n g=”UTF−8” standalone=”no” ?>
2 <A c t i v e O b j e c t s>
3 <n a v i g a t i o n i d=”2” s t a t e=” s t a r t e d ”/>
4 </ A c t i v e O b j e c t s>
5 <A c t i v e O b j e c t s>
6 <n a v i g a t i o n i d=”1” s t a t e=” r e a c h e d ”/>
7 </ A c t i v e O b j e c t s>

When the navigation task is completed and all objects have arrived at their new
positions, the PotentialPlanner transmits the following XML document to the
ActiveMemory:

1 <?xml v e r s i o n=” 1 . 0 ” e n c o d i n g=”UTF−8” standalone=”no” ?>
2 <A c t i v e O b j e c t s>
3 <n a v i g a t i o n s t a t e=” complete ”/>
4 </ A c t i v e O b j e c t s>

Thereby all modules awaiting XCF messages with the XPath /ActiveObjects/navigation
know about the state of running navigation tasks. This is important, if module
e.g. sonify the position or interaction with TAOs being moved. During navigation
these sonifications can then be diabled and started again when it is completed.
By reacting on those messages other events could be initiated, such as speech
output to signal the user that something is happening and interaction with system
is temporally not possible, etc.

61

6 Applications

This chapter describes two applications for TAOs that have been developed in the
course of this work to demonstrate the approach and potential of TAOs for HCI.
Every application is implemented as an additional module that is integrated into
the XCF communication of the existing modules. The first one allows to save
and restore arrangement of TAOs used as ordinary TUIOs in existing TUIs. The
second application proposes TAOs for exploratory data analysis.

6.1 Saving and Restoring TAO Locations for existing
TUIs

Except the actuated workbench (see section 2), there is no table-top-based TUI
known to us that is able to save and restore the state of the TUIOs’ positions on
the table. Comparable to a ’save as’ function in GUI programs, the TAO system
enables the user to save and restore positions and orientations of TAOs. This
capability allows to save the current work for later continuance. This application
can be used in combination with existing TUIs that fulfill the criteria of function
assignment [FIB95] to be permanent (see section 3.2). If the function assignment
is programmable or even transient and not space-multiplexed, the controlled sys-
tem needs to be able to save the assignment, because the controlling TAO system
is not able to do this without repeating all interactions that led to the state. For
this reason only systems with permanent function assignment are considered.
Examples for existing controllable systems:

AmbiD The Ambient Information Display (AmbiD) [BHR06] allows the user to
arrange data sources and sinks (ambient information displays).

TI-Son The Tangible Interaction Sonification System (TI-Son) [HBRR07] is a
TUI that allows to spatially arrange channels of an Electroencephalography
(EEG) sonification and to place a representation of the listener in this ar-
rangement. The sonification runs in real-time on a 8-channel audio setup,
that is installed around the tDesk running the TI-Son TUI.

AudioDB The Audio-Database System (AudioDB) [BEHR08] is used to explore
and group and organize large sets of audio chunks. The user can group
similar sounds into clusters of TUIOs.

62 CHAPTER 6. APPLICATIONS

The TAO system can immediately be intrgrated in these existing applications and
offers the service to save and restore object arrangements.

6.1.1 Interaction Design

In addition to the existing TUI, e.g. AmbiD, the user starts the TAO system and
this application module, called ’ConfigAdmin’. The user works with the TUI as
normal, except that the TAOs are used as TUIOs of the existing TUI. To store a
TAO configuration in a file, the user presses the ’Save’ button in the GUI of the
module. A file dialog opens, asking the user to specify a filename under which
the configuration is saved.
Later it is possible to restore a configuration using this application module. By
pressing the ’Load’ button, the user is asked by a file dialog to determine a file
containing a configuration. The configuration is then loaded and the TAOs move
to the positions stored in the file. The use of the existing TUI can continue using
the TAOs at the restored positions.

6.1.2 Implementation

The ConfigAdmin module, depicted in Figure 6.1(b), allows to store object con-
figurations on the interactive table-top surface in a simple text file from the
/MarkerList messages. For storage it is irrelevant if the tracked objects are
active or passive TUIOs. Only when loading configurations to restore the config-
urations using the /ActiveObjects/navigate message (see section 5.2.7), the
TUIOs need to be able to move. This allows to store configurations of TUIs and
reload them later again.

(a) ConfigAdmin XCF In- and Out-
put diagram

(b) Screenshot

Figure 6.1: ConfigAdmin module

6.2. DATASET VISUALIZATION: DATAPROCESSOR 63

The file format is a simple Comma-Separated Value (CSV) text format. The
following lines give an example:

1 0 ; 4 9 4 ; 2 9 0 ; 0 . 4 3 7 3 0 7
2 1 ; 3 3 1 ; 2 8 4 ; 4 . 3 3 6 6 8
3 2 ; 1 0 1 ; 8 3 ; 1 . 4 2 7 6 8

Every line represents a position and orientation of a certain TAO. The values are
delimited by the colons. The first value is the ID of the TAO. The second and
the third value describe the X and Y value of the TAOs’ position. The position
is stored in pixel-coordinates of the camera image. The last value describes the
orientation of the TAO in radians between 0 an 2π relatively to the camera image.
For instance the TAO with the ID 1 is located at pixel coordinates 331, 284 and
heads to 284 degrees. For the prove of concept the use of the camera pixel
coordinates is sufficient. But the development of later applications can benefit
from a coordinate system, that is aligned to the tDesk and uses metric units.

6.1.3 Discussion

As already mentioned, the combination with TUIs using TUIOs with non-
permanent function assignment is difficult. The existing TUI would have to sup-
port the saving of function assignment, which requires modification of the TUI.
This first implementation needs an additional GUI for the ConfigAdmin module.
The user has to switch between the TUI and the GUI, which is not desirable. To
get rid of this problem, additional TUIOs can be introduced in a later implemen-
tation that can act as a container for configurations. To save an arrangement,
such a TUIO can be placed on the table-top surface. Placing such a TUIO that
represents a configuration, restores that arrangement. This problem can also be
solved by making use of the multi-touch capabilities of the tDesk [Tü09]. If these
additional TUIOs or the multi-touch projection disturb the controlled TUI, speech
recognition can be another way to cope with that problem by introducing a simple
command system, which can make the GUI almost unnecessary.
Nevertheless this simple application demonstrates the great potential of the TAO
system. New scenarios are possible, that were so far not considered.

6.2 Dataset Visualization: DataProcessor

TUIs take advantage of the human’s spatial awareness. This can be very useful
for exploratory data analysis. The use of TUIOs lets the user bind ’his immediate
environment to dedicated points in model-space and therefore constructs a virtual
map of the data itself’ [BHR]. By clustering high-dimensional datasets using
cluster-algorithms it is possible to use TAOs to represent the found centroids on
the table-top surface and give the user a physical handle for active exploration of
these data. To enable the exploration, different interactive sonification approaches
can be utilized.

64 CHAPTER 6. APPLICATIONS

6.2.1 Interaction Design

In a typical interaction scenario, the user selects a dataset by pressing the ’load’
button and selecting a CSV file from the opening file dialog. The dataset is then
instantly visualized in a 2D scatter plot in the GUI (see Fig. 6.2(b)). By changing
the plotted dimensions, the visualization can be adjusted. Before the clustering
can be started by clicking the ’Cluster’ button in the GUI, the number of desired
clusters can be adjusted using the appropriate widget. After the clustering process,
the TAOs are navigated into the computed cluster centroids as their prototype
representations.
Two interaction scenarios are considered so far:

• The first scenario utilizes different model-based sonifications [HR99]. By
shaking single TAOs representing cluster centroids, the sonification at-
tached to the data model can be excited for data exploration. Model-based
Sonification (MBS) provides data-driven sonification techniques, that allow
to analyze the underlying data exploratory.

• Another interaction scenario describes the exploration of clusters by soni-
fying the cost/energy change while moving the cluster’s centroid represen-
tative TAO and thereby it’s prototype. This allows the exploration of the
cluster structures.

6.2.2 Implementation

This application can be used to visualize datasets with the TAOs. The TAOs
can be remotely moved to the cluster centers of a dataset to visualize the data.
This application module uses the Cluster library (see section 3.4.5), to process
the loaded dataset.
The user is able to load a dataset and to visualizes it in a 2D scatter-plot, which
is part of the GUI, depicted in Figure 6.2(b). It is possible to choose the number
of clusters and the desired dimensions for the visualization. Clustering can be
started by clicking the ’Cluster’ button, as described in the Interaction Design
section. The cluster centers calculated by the Cluster library are used to generate
a ’Navigate’ XML document string in a format such as introduced in section 5.2.7.
If the PotentialPlanner module is running, the available TAOs are navigated to
the cluster centers.
Videos on the enclosed CD demonstrate this application (see /videos/ directory
of the CD, files appDemo1.mp4 to appDemo3.mp4). All three videos show the
selection of a dataset in the GUI, it’s clustering and the navigation of two TAOs
to the computed cluster centroids from two perspectives. The first perspective
shows the navigating TAOs from above the tDesk, the second perspective shows
them from the user’s point of view.
Due to lack of time, the interaction methods of this application could not be
implemented, yet. To make the application interactive, the module must be

6.2. DATASET VISUALIZATION: DATAPROCESSOR 65

(a) DataProcessor XCF In- and
Output diagram

(b) Screenshot

Figure 6.2: DataProcessor module

made aware of the TAOs’ tracked positions. Now these data can be used to
determine the inter-cluster distance of the data points and the prototype to sonify
the cost/energy change. Here an Open Sound Control (OSC) connection to the
sound server of the AmI-Lab [ami08] running an instance of the SuperCollider
[sc08] synth server would be beneficial.
In the second interaction scenario such a connection could be used. The applica-
tion module computes the model of the sonification and control the synth server.
E.g. a Particle Trajectory Sonification [HR99] can be created from each cluster.
The shaking of the TAO representing the cluster would excite the sonification.

6.2.3 Interaction Example

The following interaction example is illustrated here with photos (see Fig. 6.3).
Photo 6.3(a) shows the TAOs unarranged and unassigned. As described above,
loading a dataset and clustering it makes the TAOs move to their assigned cen-
troids (see Fig. 6.3(b)). When the centroids are reached, interaction can start.
By shaking a TAO its corresponding cluster is excited for instance by injecting
energy to all data points belonging to the cluster, e.g. using the data sonogram
model described in [Her02] (see Fig. 6.3(c) and Fig. 6.3(d)). In result, a sound
would be generated that allows to distinguish the distribution of points to classes,
in case that the class feature would have been responsible for the spring stiff-
ness in the Data Sonogram model. As benefit compared to traditional interfaces,
two handed interaction can be used to quickly compare sonification of different
clusters.

66 CHAPTER 6. APPLICATIONS

(a) Unarranged TAOs are on the table that
do not represent data so far

(b) After loading and clustering a dataset, the
TAOs move to the cluster centroids

(c) Excitation of the MBS attached to the
yellow TAO by shaking it

(d) Excitation of the MBS attached to the
green TAO by shaking it

Figure 6.3: Interaction Example: Exploring a dataset

When the user moves a TAO it is propably not returned to the exact position of
the clusters’ prototype, it represents. Therefore the TAOs are navigated back to
their prototypes’ position when put back on the table surface. Figure 6.4 shows
the sequence of this interaction. The file appDemoDetail.mp4 in the videos

directory demonstrates the interaction with a single TAO as described here.

6.2.4 Discussion

This application requires a cognitive switch between the TUI and the GUI. This
application can be extended to cope with this problem by introducing an interac-
tive projection, that allows load and visualize the dataset on the table-top surface.
A similar concept has already been introduced in the TRecS project [DHKR08],
that allows to assign TUIOs with functionality or data and interact with them.
All this is done using a TUI. The multi-touch application described in [Tü09] can
be used as an alternative to solve the problem of switching between the TUI and
the GUI.

6.2. DATASET VISUALIZATION: DATAPROCESSOR 67

(a) Assigned TAOs at the centroid positions (b) Interaction with a TAO (moving)

(c) Moving the TAO away from it’s centroid (d) The TAO moves back to it’s old position

Figure 6.4: Interaction Detail: After moving a TAO to explore its underlying data, it
moves back to the exact position of its prototype, the TAO represents.

Although it is not completely implemented, this application proposes rich inter-
action methods, that underline the potential of the TAO system. It gives a first
insight into this pretty novel interactions.

69

7 Evaluation and Observations

This chapter discusses the performance of the TAOs that were designed in the
curse of this project according to aspects such as their accuracy in reaching tar-
gets, velocity and operating time. Additionally suggestions for the evaluation of
interactions with TAOs are given. The following subsections cover the implemen-
tation of an additional module for evaluating these parameters and the results of
the evaluation. Finally suggestions for further evaluation of interactions with the
TAOs are considered.

7.1 Performance Specifications

Linear motion and rotation are the movement options that are implemented as
active modes in the TAOs. In this section the accuracy of this motion and it’s
linear and angular velocity, as well as the operating time of the batteries are
discussed. These parameters are used to evaluate the performance of the TAOs.

7.1.1 Implementation

For evaluation purposes, a module, that allows to generate a random trajectory
and navigates a TAO along the different targets of the trajectory, was developed.
The distance between two successive points on the trajectory as well as the time a
TAO needs to travel from one point to the other is measured. All measurements
are written into a file of the format CSV for later analysis.
To evaluate the performance of a single TAO, it is placed in the middle of the
table-top surface. Two kinds of evaluation data can be collected by, checking
either the ’movement’ button or the ’angle’ button, of which only one button can
be selected at the same time. The number of points or angles of the trajectory
can be adjusted by changing the number in the designated widget before starting
the evaluation. By clicking the ’start’ button in the GUI of the module, depicted
in Figure 7.1(b), the evaluation starts. The evaluation runs until the end of the
trajectory is reached. If the ’movement’ button is checked, the euclidean distance
and the time between two targets are stored in a file. Accordingly when the ’angle’
button is checked, the angle difference and the elapsed time between two targets
are stored.

70 CHAPTER 7. EVALUATION AND OBSERVATIONS

(a) Evaluation XCF In- and Output
Diagram

(b) Screenshot of the module’s GUIs

Figure 7.1: This Figure shows (a) a Diagram to depict the XCF in- and ouptu streams
and (b) a screenshot of the Evaluation module’s GUI.

7.1.2 Results

For the experiments that were conducted to evaluate the performance of the
TAO, five trajectories consisting of five target positions and three trajectories
consisting of six target angles respectively were analyzed. The evaluation was
filmed with a video camera. The videos can be found in the /videos/ direc-
tory on the enclosed CD. The MPEG4 encoded video files evalLinear1.mp4 to
evalLinear5.mp4 show the evaluation of the linear velocity and the video files
evalRotation1.mp4 to evalRotation3.mp4 show the evaluation of the angular
velocity. After the removal of outliers, caused by implausible measurement, 18
points for each movement and rotation remained. By adding the distances of

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5

(a) Velocity (cm/s)

50 100 150

(b) Angular Velocity (degrees/s)

Figure 7.2: Evaluation Results

7.1. PERFORMANCE SPECIFICATIONS 71

Linear Velocity [cm/s] Angular Velocity [degrees/s]

Mean 1.56 62.31
Median 1.5 49.01
Minimum 0.47 8.34
Maximum 3.44 166.53
Variance 0.58 2270.28
Standard deviation 0.76 47.65

Table 7.1: Statistical values computed from the gathered raw data

difference angles, the evaluated TAO travelled approximately 1,60 m or turned
about six times around it’s own axis for rotation evaluation. The following results
are gathered with a PWM speed of 90, using a series type TAO.
The accuracy according to reaching a certain target position or angle is determined
by the path planning and the vision module. It is possible to reduce the threshold
down to one pixel (then the accuracy is only determined by the vision). For the
evaluation the threshold around the target position is set to 10 pixels in diameter,
which corresponds to 0.8 cm on the surface of the tDesk. The rotation threshold
was set to 5◦ around the target angle.

Velocity The evaluation of the movement velocity (see the box-whisker-plot Fig-
ure 7.2(a) and the Table 7.1) showed that to reach a goal that is 1.5 cm
afar, a TAO needs and average of approximately one second. The average
velocity is 1.56 cm/s with a standard deviation of 0.76 and a variance of
0.58. When there is much need for direction readjustments, the approxi-
mate velocity decreases to a minimum of 0.47 cm/s. The outlier at 3.44
cm/s resulted from an observed trajectory stretch, for which no readjust-
ment of the direction was needed. Perfect linear movement of the current
TAO generation is unlikely. Due to drifting, caused by inaccuracy in the
mechanics, the TAOs drive curves. This shows that there is much room for
improvement.

Angular Velocity The box-whisker-plot in Figure 7.2(b) and the Table 7.1
present the values that were measured in the evaluation of angular velocity.
The median angular velocity is w = 49◦/s and the average angular velocity
is w = 62, 3◦/s. The standard deviation shows that much readjustment is
needed, to exactly stop at a certain angle.

From the evaluation can be read that a crucial factor for a fast trajectory is the
number of necessary rotations. Decreasing the need of direction readjustments can
increase the velocity. The angular velocity can be slightly increased by reducing
the PWM velocity. Another improvement may be achieved through a faster marker
tracking allowing higher frame rates and lower latency to allow faster adaption.
Due to the latency of the inter-module communication, the TAOs can have turned

72 CHAPTER 7. EVALUATION AND OBSERVATIONS

further, until the stop command is received by the TAOs, which again requires
readjustment of the direction.
Further evaluations can consider other parameters, such as the average distance
from the ideal trajectory. Because this parameter is not important for the pre-
sented applications. Accurate trajectory reproduction is not required, but exact
reaching of target positions. It is not carried out in this evaluation.

Operation time Experiments have shown, that under permanent load (contin-
uous use with direction changes about every half second and continuous
transmission and reception of messages over the XBee radio module) the
batteries allow an operation time of about 30 minutes. When the batter-
ies run low, the motors stop and the XBee connection breaks down after
two additional minutes. It can be assumed, that a longer operation time is
possible, if the system is not used continuously.

7.2 Suggestions for the Evaluation of Interaction

User-studies need to be done to evaluate the interaction with the new TAOs.
The reaction of users that are confronted with TAOs for the first time can be
investigated by observation and questionnaires. Some users may be frightened
of self-moving objects, but the active feedback, given by the TAOs, may also
encourage the user to interact with the TUI more than passive TUIOs would do.
An additional questionnaire can help to investigate the personal impressions of the
users and thus to get suggestions for improvements and extensions of the TAOs.

73

8 Conclusion

This chapter summarizes the outcome of this work, discusses the results and
presents an outlook into possible future research. In this work TUIOs with active
feedback capabilities, called TAOs were introduced. To support this idea, a de-
tailed theoretical background and examples of the state of the art were presented.
After describing the components, the hardware design was described in detail,
followed by the software implementation. Further, the base classes and all devel-
oped software modules were explained. Two applications for the proposed system
were presented in the applications chapter. Finally the developed hardware was
evaluated.

8.1 Discussion

The evaluation of the TAOs showed that even though the system fulfills it’s
purpose, there is still room for improvement. The wireless communication using
XBee modules is good, but when multiple TAOs have joined the network, messages
can be lost due to transmission collisions (see Section 4.1.2). A readjustment
of the XBee modules’ configuration may solve this problem. Otherwise further
means such as detailed analyze of the wireless communication may have to be
taken to make the connection more robust. Beside the electronics, the mechanic
of the TAOs has potential for improvements. Since all parts are produced with
a 3D rapid-prototyping printer, the results are not as accurate as the models
that were constructed in the CAD program. For this reason the wheels of the
TAOs can seize or the rubber belts can slip. In both cases the TAO is restricted
in it’s movement of may not move at all. These problems can be solved by
turning new wheels on a turning lathe and installing ball bearings on the wheels’
axes, to make the mechanics move much smoother. Additionally the software
implements the potential field approach in a direct way, which leaves room for
further improvements.
While these suggested improvements offer a stating point for further research,
this work successfully implemented the basic concept of TAOs and discussed their
possible applications, as the demonstration and evaluation videos show. The new
kind of TUIO that was introduced and described in detail gives the basis for
extensive further research in this area as part of the research field of Tangible
Interaction.

74 CHAPTER 8. CONCLUSION

8.2 Outlook

The first next step of further research would be the implementation of the proposed
interaction methods of the application for exploratory data analysis. A new point-
to-point navigation that controls the wheels of the TAOs dependent on the angle
to the target, and thus adjusts the rolling direction accordingly to the linear
movement may lead to significant performance improvement. This would result
in curved trajectories and probably a much faster target attainment. A detailed
analysis of the wireless serial communication and the XBee radio modules can
disclose reasons for the transmission problems that were mentioned.
Beside these general improvements, the functionality of the TAOs could be ex-
tended by introducing new active modalities. So far only the capability of linear
movement and rotation is implemented; however visual feedback could be bene-
ficial to support multi-modal feedback. It could be implemented by introducing a
new hardware layer, that contains a small display (e.g. an Organic Light Emitting
Diode (OLED) display) on top of the TAOs. This would allow to display words,
symbols or even simple animations.
To include the proposed sonification into the TAOs, another hardware layer
equipped with a small piezoelectric speaker and a synthesizer chip could be de-
veloped. We believe, that this may lead to a shorter interaction loop, because the
sound comes directly from the TAOs, which represents the underlying data of the
sonification model.
Tactile feedback could add an additional output modality. A new hardware layer
that contains pager motors, such as the ones that are integrated in common
cellular phones can be used to allow tactile feedback. Providing tactile feedback
can encourage the user to interact with TAOs physically.
All these extensions require adaption of the used communication protocols. More
commands need to be introduced to allow the handle the additional modalities.
The resulting new interaction possibilities promise to allow a wide range of new
applications. The TAOs could for instance be used to synchronize the configura-
tion of two or more tDesks and this would enable long-distance cooperative work
and communication. Regarding the evaluation of the system, interaction record-
ing and replay can be interesting features that could be used to learn and analyze
how TUIOs and TAOs are used and about how they can be improved to better
suit the needs of the user. We hope that TAOs will make a useful contribution to
improve TUIs and HCI in general.

75

Enclosed CD

The enclosed CD contains the complete source code of this work including the API
documentation and firmware. It also includes technical drawings of the hardware
and circuit diagrams, demonstration videos of the developed system and this thesis
in Portable Document Format (PDF). The complete directory tree of the enclosed
CD is as follows:
CD root

• code

– bin

– doc

– firmware

– src

∗ configadmin

∗ dataprocessor

∗ marker2cf

∗ objectsimulator

∗ potentialplanner

∗ remotearduino

∗ simplenavigator

∗ tools

∗ xcf2serial

• drawings

– housing

– schematics

• thesis

• videos

76 ENCLOSED CD

Installation Remarks

The TAO system requires several different software components, the installation
of which on a Linux workstation in the network of the Faculty of Technology is
explained in the following. These components include Qt version 4.4 and ICL
4.1 revision 1535 (see Sections ?? and 3.4.1). To install the system on a Linux
workstation in the network of the Faculty of Technology, a self build version of
the ICL is needed. The installation of the complete system (including the ICL
and the ICLProjects) will be described here (see 3.4 for details on the software
components). All other used components are installed in the network of the
Faculty of Technology by default.

ICL

To install the the system the following lines have to be added to the .bashrc file
in the home directory:

1 export PKG CONFIG PATH=/u s r / l i b / p k g c o n f i g
2 export LD LIBRARY PATH=$LD LIBRARY PATH : / u s r / l i b
3

4 # qt
5 export QTDIR=/ v o l / qt / 4 . 4
6 export PATH=$QTDIR/ b i n : $PATH
7 export PKG CONFIG PATH=$QTDIR/ l i b / p k g c o n f i g : $PKG CONFIG PATH
8 export LD LIBRARY PATH=$QTDIR/ l i b : $LD LIBRARY PATH
9

10 # XCF
11 export XCF ROOT=/ v o l / x c f
12 export PKG CONFIG PATH=$PKG CONFIG PATH : $XCF ROOT/ l i b /

p k g c o n f i g
13 export PATH=$XCF ROOT/ b i n : $PATH
14

15 # ICL
16 export NIVISION ROOT=/ v o l / n i v i s i o n
17 export UNICAP ROOT=/ v o l / v i d e o
18 export ICL INSTALL ROOT=/ l o c a l v o l / ICL / b u i l d # adapt path
19 export LD LIBRARY PATH=$ICL INSTALL ROOT/ l i b : $LD LIBRARY PATH
20 export PKG CONFIG PATH=$PKG CONFIG PATH : $ICL INSTALL ROOT/ l i b

/ p k g c o n f i g
21 export PKG CONFIG PATH=$PKG CONFIG PATH : $NIVISION ROOT/ l i b /

p k g c o n f i g
22

23 # I C L P r o j e c t s
24 export ICL PROJECTS INSTALL ROOT=/ l o c a l v o l / I C L P r o j e c t s / b u i l d s
25 export LD LIBRARY PATH=$ICL PROJECTS INSTALL ROOT/ I C L P r o j e c t s

/ I C L F i d u c i a l T r a c k e r / 1 . 0 / l i b : $LD LIBRARY PATH
26 export PKG CONFIG PATH=$PKG CONFIG PATH :

$ICL PROJECTS INSTALL ROOT/ I C L P r o j e c t s / p k g c o n f i g

INSTALLATION REMARKS 77

After sourcing the new configuration of your Bash, the source code of all compo-
nents needs to be checked out from their source code repositories, using Subver-
sion, a version control system.

ICL

The ICL is checked out with the following command:

1 svn co https :// svn.techfak.uni -bielefeld.de/cor -lab/
projects/icl/trunk /localvol/ICL -r 1535

It is configured and build at /localvol/ICL with

1 autoreconf --install --force
2 ./ configure --with -IPP -Root=/vol/nivision/IPP /6.0 --

with -LIBDC -Root=/vol/nivision --with -UNICAP -Root=/
vol/nivision --with -QT -Root=/vol/qt/4.4 --prefix =/
localvol/ICL/build

3 make all install

After these initial steps the ICL is installed and ready for use.

ICLProjects

Thereafter the ICLProjects can be checked out to install the ICLFiducialTracker
(see Section 3.4.1).

1 svn co svn+ssh:// priamos.techfak.uni -bielefeld.de/vol
/ni/src/svnroot/vision/ICLProjects/trunk /localvol
/ICLProjects

The ICLFiducialTracker is activated, build and installed by typing the following
commands in the ICLProjects directory:

1 ./ enableProject ICLFiducialTracker

2 make

3 make install

Active Objects System

To build the TAO system, copy the source code from the CD to a writable directory
and execute the script

1 build.sh

This script can be found in the root of the source directory (/code/src/).
For convenience, it is recommendable to add the newly created binary directory
/code/bin/ directory to the PATH environment variable, defined in the .bashrc
file. All components are installed and ready for use.

78 ENCLOSED CD

The firmware running on the TAOs has been developed using the Arduino In-
tegrated Development Environment (IDE) version 0012 alpha. The code of the
firmware can be found in the firmware subdirectory in the code directory on the
enclosed CD.

Setting up the System

After building all pieces of software and writing the firmware into a few TAOs,
the system can be started by running the XCF infrastructure and the needed TAO
modules.
The XCF infrastructure consists of three programs, which are part of the XCF
distribution. The first needed program is the dispatcher. By simply running
this program the first component is set up properly. The dispatcher acts as the
naming service, that transparently connects all programs that take part at the
XCF communication.
The second program needed is spread. This allows to virtually spread the com-
munication over different computers to enable distributed computing. This is
quite useful when the number and computational complexity of the modules rise.
spread needs to be configured by creating a configuration file, that specifies
the computers that take part at the communication. The following lines give an
example of the structure of this configuration file.

1 Spread_Segment 127.0.0.255:4803 {
2 localhost 127.0.0.1
3 leonardo 127.0.1.1
4 }

The file specifies two nodes (which both are the same in this example). The
first line describes the network segment and port, where the communication will
take place and opens the description of the part taking nodes. The second and
the third lines describe the nodes with name and Internet Protocol (IP) address.
The last line closes the description of nodes and thereby marks the end of the
configuration file. Now it is possible to run spread by simply calling spread from
the command line.
Finally the hart of XCF needs to be started, the ActiveMemory. This allows to
transparently subscribe on certain content, not on processes data streams, which
makes the communication much more transparent. The ActiveMemory needs
a directory to store it’s XML database and a Uniform Resource Identifier (URI)
root and can be started by calling memory_server /tmp/dump/ ActiveObjects

from the command line, assuming that the given directory exists.
All components of the infrastructure are running and the needed TAO modules can
be started. For instance the modules Marker2XCF, XCF2Serial, PotentialPlanner
and an application module would make a usable system. Alternatively the Ob-
jectSimulator can be used instead of Marker2XCF and XCF2Serial, when no real
TAOs are available.

API DOCUMENTATION 79

API Documentation

The API documentation is included in the /doc/ directory. It can alternatively be
build using doxygen, a documentation generator for C++ and other programming
languages, which is installed in the network of the Faculty of Technology by
default, by calling

1 doxygen doxyfile

from the src directory. A complete API documentation in Hypertext Markup
Language (HTML) format.

List of Figures

2.1 Illustration of photos of systems that are the state of the art in active
tangible objects and similar systems 6

2.2 Illustration of photos of systems that are the state of the art in active
tangible objects and similar systems 8

3.1 Model-View-Controller vs. Model-Control-Representation (physical /
digital) (graphic reproduced from [Loc06]) 11

3.2 TUImod (graphic reproduced from [BKHR08] by courtesy the author) 16
3.3 Arduino pro mini (graphic reproduced from [ard08]) 17
3.4 XBee network architectures (graphic reproduced from [xbe08]) 18
3.5 Different roadmap generation approaches. (graphic reproduced from

[Lat93]) . 22
3.6 ’This shows an attractive potential field (Figure b), a repulsive po-

tential field (Figure c) and the sum of the two (Figure d) in a two-
dimensional configuration space containing two C-obstacles (Figure
a). Figure e displays both several equipotential contours of the total
potential and a path generated by following the negated gradient of
this function. Figure f shows a matrix of the negated gradient vector
orientations over free space.’ (graphic reproduced from [Lat93]) . . . 27

4.1 Assembly Drafts of a TAO . 31
4.2 Scheme of the IR-Board . 33
4.3 XBee Transmitter . 34
4.4 Parts, used for the prototype . 37
4.5 Pin Assignment Overview. Pins 1 to 8 of the EXT B connector are

reserved for future extensions. 38
4.6 Arduino Carrier Board . 39
4.7 XBee Carrier Board . 40
4.8 Motor Module Board . 41
4.9 Schematics of the driver ICs used in the motor driver board (courtesy

of SGS-Thomson Microelectronics). 42
4.10 Photo of the functional Prototype, without upper housing. 42

81

82 LIST OF FIGURES

4.11 An amoeba fiducial marker and its left heavy depth sequence of
black-/white-changes. (graphic reproduced from [BKJ05]). The sub-
sequence of the nodes are printed right to each node. The unique
structure of the ’amoeba’ and ’alien faces’ marker sets allow to orga-
nize the tree structure in a sequence (beside the zero-depth node). . . 43

4.12 Alien faces fiducial markers for visual tracking of the active objects.
The number sequence below the markers are the left heavy depth
sequences of their corresponding tree graphs, see Fig. 4.12(a). 43

4.13 New version of the housing parts . 43
4.14 The manufactured PCBs . 44
4.15 Finished TAO series Model without upper housing 45
4.16 The tDesk hardware setup. 45

5.1 Overview of the Software Architecture 49
5.2 UML definitions . 51
5.3 Marker2XCF module . 54
5.4 XCF2Serial XCF In- and Output diagram 55
5.5 RemoteArduino module . 56
5.6 ObjectSimulator module . 57
5.7 SimpleNavigator module . 58
5.8 GraphPlanner module . 59
5.9 PotentialPlanner module . 59

6.1 ConfigAdmin module . 62
6.2 DataProcessor module . 65
6.3 Interaction Example: Exploring a dataset 66
6.4 Interaction Detail: After moving a TAO to explore its underlying data,

it moves back to the exact position of its prototype, the TAO represents. 67

7.1 This Figure shows (a) a Diagram to depict the XCF in- and ouptu
streams and (b) a screenshot of the Evaluation module’s GUI. 70

7.2 Evaluation Results . 70

83

List of Abbreviations

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CAD Computer Aided Design

CI Computer Interface

CORBA Common Object Request Broker Architecture

CSV Comma-Separated Value

DNA Deoxyribonucleic Acid

DOF degrees of freedom

DOM Document Object Model

DWENN Dynamic Wave Expansion Neural Network

EEG Electroencephalography

FTP File Transfer Protocol

GPL GNU General Public License

GUI Graphical User Interface

HCI Human Computer Interaction

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IC Integrated Circuit

ICE Internet Communication Engine

ICL Image Component Library

IDE Integrated Development Environment

IP Internet Protocol

84 LIST OF ABBREVIATIONS

IR Infra-Red

IRDA Infrared Data Association

KDE K Desktop Environment

LED Light Emitting Diode

LGPL GNU Lesser General Public License

MBS Model-based Sonification

MCRpd Model-Control-Representation (physical and digital)

MVC Model-View-Controller

OCI Oracle Call Interface

ODBC Open Database Connectivity

OLED Organic Light Emitting Diode

OSC Open Sound Control

PCB Printed Circuit Board

PIC Programmable Integrated Circuit (Microcontroller)

PDF Portable Document Format

PF Physical Functionality

PMD Planar Manipulator Display

PWC Philips Web Cam

PWM Pulse-Width Modulation

RMI Remote Method Invocation

SNUI Sensor Network User Interface

SAX Simple API for XML

SOM Self-organizing Map

SQL Structured Query Language

SSL Secure Sockets Layer

SVG Scalable Vector Graphics

TAO Tangible Active Object

85

TCP Transmission Control Protocol

tDesk Tangible Desk

TTL Transistor Transistor Logic

TUI Tangible User Interface

TUIO Tangible User Interface Object

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

USB Universal Serial Bus

WMR Wheeled Mobile Robot

XCF Extended Communication Framework

XML Extensible Markup Language

XMLTIO XML Template I/O

Bibliography

[ami08] Ambient Intelligence Group, November 2008. http://www.
techfak.uni-bielefeld.de/ags/ami/.

[ard08] Arduino - ArduinoBoardProMini, November 2008. http://www.
arduino.cc/en/Main/ArduinoBoardProMini.

[BEHR08] T. Bovermann, C. Elbrechter, T. Hermann, and H. Ritter. Audiodb:
Get in touch with sounds. In Proc. of the Int. Conf. on Auditory
Display 2008, 2008.

[BHR] T. Bovermann, T. Hermann, and H. Ritter. Tangible Data Scan-
ning Sonification Model. In Proceedings of the 12th International
Conference on Auditory Display, pages 20–23.

[BHR06] T. Bovermann, T. Hermann, and H. Ritter. A tangible environment
for ambient data representation. In D. McGookin and S. Brew-
ster, editors, First International Workshop on Haptic and Audio
Interaction Design, volume 2, pages 26–30, Glasgow, UK, 2006.
www.multivis.org.

[BKHR08] T. Bovermann, R. Koiva, T. Hermann, and H. Ritter. TUImod:
Modular objects for tangible user interfaces. In Proceedings of the
2008 Conference on Pervasive Computing, 2008.

[BKJ05] R. Bencina, M. Kaltenbrunner, and S. Jorda. Improved Topological
Fiducial Tracking in the reacTIVision System. In Computer Vision
and Pattern Recognition, 2005 IEEE Computer Society Conference
on, volume 3, 2005.

[clu08] Open source Clustering software, 2008. http://bonsai.ims.
u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm.

[CvDHM06] R. Companje, N. van Dijk, H. Hogenbirk, and D. Mast. Globe4D:
time-traveling with an interactive four-dimensional globe. In Pro-
ceedings of the 14th annual ACM international conference on Mul-
timedia, pages 959–960. ACM New York, NY, USA, 2006.

[DHKR08] J. R. Dawin, D. Hartwig, A. Kudenko, and E. Riedenklau. TRecS: Ein
tangibles, rekonfigurierbares system zur explorativen datenanalyse.

87

http://www.techfak.uni-bielefeld.de/ags/ami/
http://www.techfak.uni-bielefeld.de/ags/ami/
http://www.arduino.cc/en/Main/ArduinoBoardProMini
http://www.arduino.cc/en/Main/ArduinoBoardProMini
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm

88 BIBLIOGRAPHY

Technical report, Bielefeld University, 2008. Betreuer: T. Bovermann
and T. Hermann.

[Dou04] P. Dourish. Where the Action Is : The Foundations of Embodied
Interaction (Bradford Books). The MIT Press, September 2004.

[eag08] CadSoft Online: EAGLE Layout Editor, 2008. http://www.
cadsoft.de/.

[ecm08] Standard ECMA-262, 2008. http://www.ecma-international.
org/publications/standards/Ecma-262.htm.

[far08] Farnell Deutschland, 2008. http://de.farnell.com/.

[FIB95] G.W. Fitzmaurice, H. Ishii, and W.A.S. Buxton. Bricks: laying the
foundations for graspable user interfaces. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages
442–449. ACM Press/Addison-Wesley Publishing Co. New York, NY,
USA, 1995.

[fir08] Arduino - Firmata, 2008. http://arduino.cc/en/Reference/
Firmata.

[FSMI00] P. Frei, V. Su, B. Mikhak, and H. Ishii. curlybot: Designing a new
class of computational toys. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 129–136. ACM New
York, NY, USA, 2000.

[hak08] HAKA Elektronik-Leiterplatten GmbH, 2008. http://www.
haka-lp.de/home.html.

[HBRR07] T. Hermann, T. Bovermann, E. Riedenklau, and H. Ritter. TANGI-
BLE COMPUTING FOR INTERACTIVE SONIFICATION OF MUL-
TIVARIATE DATA. 2007.

[Her02] T. Hermann. Sonification for exploratory data analysis. Bielefeld,
2002.

[HHK+08] Felix Hagemann, Thomas Hermann, Risto Kõiva, Eckard Riedenklau,
Patrick Mai, Stefan Wieschebrink, Oliver Lieske, and Till Bover-
mann. Ambient Lights, December 2008. http://www.lfsaw.de/
hardware/ambient_lights.shtml.

[HHR04] T. Hermann, T. Henning, and H. Ritter. Gesture desk - an inte-
grated multi-modal gestural workplace for sonification. 2915:369–
379, 2004.

http://www.cadsoft.de/
http://www.cadsoft.de/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://de.farnell.com/
http://arduino.cc/en/Reference/Firmata
http://arduino.cc/en/Reference/Firmata
http://www.haka-lp.de/home.html
http://www.haka-lp.de/home.html
http://www.lfsaw.de/hardware/ambient_lights.shtml
http://www.lfsaw.de/hardware/ambient_lights.shtml

89

[HHR06] T. Hermann, O. Honer, and H. Ritter. Acoumotion-an interactive
sonification system for acoustic motion control. Lecture Notes in
Computer Science, 3881:312, 2006.

[HJBdC06] M. Hauenstein, T. Jenkins, M. Baalman, and A. de Campo. Audio
Shaker. NIME. Paris, France, 2006.

[HR99] T. Hermann and H. Ritter. Listen to your data: Model-based soni-
fication for data analysis. Advances in intelligent computing and
mulimedia systems, pages 189–194, 1999.

[icl08] ICL, 2008. https://trac.cor-lab.uni-bielefeld.de/icl.

[Igo07] T. Igoe. Making Things Talk. O’Reilly, 2007.

[ipp08] Intel IPP - Intel Software Network, 2008. http://software.
intel.com/en-us/intel-ipp/.

[JKGB05] S. Jorda, M. Kaltenbrunner, G. Geiger, and R. Bencina. The re-
actable*. In Proceedings of the International Computer Music Con-
ference (ICMC 2005), Barcelona, Spain, pages 579–582, 2005.

[Joh87] R.E. Johnson. Model/View/Controller. Department of CS, Univer-
sity of Illinois, Urbana-Champaign, 1987.

[kde08] The KDE Project, 2008. http://kde.org.

[Kha86] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. The International Journal of Robotics Research, 5(1):90,
1986.

[KIMK00] Y. Kitamura, Y. Itoh, T. Masaki, and F. Kishino. ActiveCube: a
bi-directional user interface using cubes. In Knowledge-Based Intel-
ligent Engineering Systems and Allied Technologies, 2000. Proceed-
ings. Fourth International Conference on, volume 1, 2000.

[kon08] Konqueror - Web Browser, 2008. http://konqueror.kde.org/
features/browser.php.

[KSN+06] M. Kojima, M. Sugimoto, A. Nakamura, M. Tomita, H. Nii, and
M. Inami. Augmented Coliseum: An Augmented Game Environ-
ment with Small Vehicles. In First IEEE International Workshop on
Horizontal Interactive Human-Computer Systems, 2006. TableTop
2006, pages 3–8, 2006.

[Lat93] Jean-Claude Latombe. Robot motion planning. The Kluwer inter-
national series in engineering and computer s cience ; 124. Kluwer
Acad. Publ., Boston [u.a.], 3. print. edition, 1993.

https://trac.cor-lab.uni-bielefeld.de/icl
http://software.intel.com/en-us/intel-ipp/
http://software.intel.com/en-us/intel-ipp/
http://kde.org
http://konqueror.kde.org/features/browser.php
http://konqueror.kde.org/features/browser.php

90 BIBLIOGRAPHY

[leg08] LEGO.com The Official Web Site of LEGO products!, 2008. http:
//www.lego.com.

[lib08] LibSerial, 2008. http://libserial.sourceforge.net/
mediawiki/index.php/Main_Page.

[Loc06] Philipp Locher. Tangible User Interfaces - Classification. 2006.

[LSR03] DV Lebedev, JJ Steil, and H. Ritter. Real-time path planning in
dynamic environments: a comparison of three neural network mod-
els. In Systems, Man and Cybernetics, 2003. IEEE International
Conference on, volume 4, 2003.

[McN00] Timothy Scott McNerney. Tangible Programming Bricks: An ap-
proach to making programming accessible to everyone, February
2000.

[mes08] Arduino playground - Messenger, 2008. http://www.arduino.cc/
playground/Code/Messenger.

[MKM07] D. Merrill, J. Kalanithi, and P. Maes. Siftables: towards sensor
network user interfaces. In Proceedings of the 1st international con-
ference on Tangible and embedded interaction, pages 75–78. ACM
New York, NY, USA, 2007.

[NDNG03] H. Newton-Dunn, H. Nakano, and J. Gibson. Block jam: a tangible
interface for interactive music. In Proceedings of the 2003 conference
on New interfaces for musical expression, pages 170–177. National
University of Singapore, Sony Corporation, 2003.

[Phi04] R. Philippsen. Motion Planning and Obstacle Avoidance for Mobile
Robots in Highly Cluttered Dynamic Environments. PhD thesis,
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, 2004.

[PI07] J. Patten and H. Ishii. Mechanical constraints as computational
constraints in tabletop tangible interfaces. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages
809–818. ACM Press New York, NY, USA, 2007.

[pic08] pico, November 2008. http://poor-robot.com/pico/.

[PMAI02] G. Pangaro, D. Maynes-Aminzade, and H. Ishii. The actuated work-
bench: computer-controlled actuation in tabletop tangible interfaces.
In Proceedings of the 15th annual ACM symposium on User inter-
face software and technology, pages 181–190. ACM New York, NY,
USA, 2002.

http://www.lego.com
http://www.lego.com
http://libserial.sourceforge.net/mediawiki/index.php/Main_Page
http://libserial.sourceforge.net/mediawiki/index.php/Main_Page
http://www.arduino.cc/playground/Code/Messenger
http://www.arduino.cc/playground/Code/Messenger
http://poor-robot.com/pico/

91

[pre08] Precision Miniature Motors, Gearmotors & DC motor control by Pre-
cision Microdrives, 2008. http://www.precisionmicrodrives.
com/product_info.php?products_id=108.

[PRI02] J. Patten, B. Recht, and H. Ishii. Audiopad: A tag-based interface
for musical performance. In Proceedings of the 2002 conference on
New interfaces for musical expression, pages 1–6. National University
of Singapore Singapore, Singapore, 2002.

[pro08] Processing 1.0, 2008. http://www.processing.org/.

[rea08] racTIVision, 2008.

[rei08] reichelt elektronik, 2008. http://www.reichelt.de.

[rob08] ROBOTmaker - Hobby Robots and Robotics, 2008. http://www.
robotmaker.co.uk/.

[Roy08] Michael Roybal. One Inch Robot, November 2008. http://www.
inklesspress.com/robots_4.htm.

[RZSP04] D. Rosenfeld, M. Zawadzki, J. Sudol, and K. Perlin. Physical Ob-
jects as Bidirectional User Interface Elements. IEEE COMPUTER
GRAPHICS AND APPLICATIONS, pages 44–49, 2004.

[sc08] SuperCollider, 2008. http://supercollider.sourceforge.
net/.

[sol08] Solid Edge: Velocity Series: Products and Solutions: Product
Lifecycle Management (PLM): Siemens PLM Software, 2008.
http://www.plm.automation.siemens.com/en_us/products/
velocity/solidedge/index.shtml.

[spa08] Sparkfun Electronics, 2008. http://www.sparkfun.com.

[SV08] B. Schiettecatte and J. Vanderdonckt. AudioCubes: a distributed
cube tangible interface based on interaction range for sound design.
In Proceedings of the 2nd international conference on Tangible and
embedded interaction, pages 3–10. ACM New York, NY, USA, 2008.

[swa08] swarmrobot.org, November 2008. http://www.swarmrobot.org/.

[tx-08] TX-IRHS High-Speed Serial Infrared Communication & Remote
Control IC, 2008. http://www.rentron.com/remote_control/
TX-IRHS.htm.

[Tü09] René Tünnermann. Modular Multi-Touch Interface for Direct Closed-
Loop Interactions, January 2009. Diplomarbeit; Bielefeld University,
Faculty of Technology, Ambient Intelligence Group; supervised by
Dr. Thomas Hermann and Prof. Helge Ritter.

http://www.precisionmicrodrives.com/product_info.php?products_id=108
http://www.precisionmicrodrives.com/product_info.php?products_id=108
http://www.processing.org/
http://www.reichelt.de
http://www.robotmaker.co.uk/
http://www.robotmaker.co.uk/
http://www.inklesspress.com/robots_4.htm
http://www.inklesspress.com/robots_4.htm
http://supercollider.sourceforge.net/
http://supercollider.sourceforge.net/
http://www.plm.automation.siemens.com/en_us/products/velocity/solidedge/index.shtml
http://www.plm.automation.siemens.com/en_us/products/velocity/solidedge/index.shtml
http://www.sparkfun.com
http://www.swarmrobot.org/
http://www.rentron.com/remote_control/TX-IRHS.htm
http://www.rentron.com/remote_control/TX-IRHS.htm

92 BIBLIOGRAPHY

[UI99] J. Underkoffler and H. Ishii. Urp: A luminous-tangible workbench for
urban planning and design. In Proceedings of the SIGCHI conference
on Human factors in computing systems: the CHI is the limit, pages
386–393. ACM New York, NY, USA, 1999.

[UI00] B. Ullmer and H. Ishii. Emerging frameworks for tangible user inter-
faces. IBM systems journal, 39(3):915–931, 2000.

[UIG98] B. Ullmer, H. Ishii, and D. Glas. mediaBlocks: physical containers,
transports, and controls for online media. Proceedings of the 25th
annual conference on Computer graphics and interactive techniques,
pages 379–386, 1998.

[vdHE04] E. van den Hoven and B. Eggen. Tangible Computing in Everyday
Life: Extending Current Frameworks for Tangible User Interfaces
with Personal Objects. Lecture notes in computer science, pages
230–242, 2004.

[web08] The WebKit Open Source Project, 2008. http://webkit.org/.

[wes08] Batteries (WES-Technik), 2008. http://www.wes-technik.de/
English/Battery.htm.

[xbe08] XBee & XBee-PRO 802.15.4 OEM RF Modules - Digi Inter-
national, 2008. http://www.digi.com/products/wireless/
point-multipoint/xbee-series1-module.jsp.

[xcf08] The XCF Integration Toolkit - Trac, November 2008. https://
code.ai.techfak.uni-bielefeld.de/trac/xcf.

[xer08] Verces-C++ XML Parser, 2008. http://xerces.apache.org/
xerces-c/.

[zig08] ZigBee Aliance, 2008. http://www.zigbee.org.

http://webkit.org/
http://www.wes-technik.de/English/Battery.htm
http://www.wes-technik.de/English/Battery.htm
http://www.digi.com/products/wireless/point-multipoint/xbee-series1-module.jsp
http://www.digi.com/products/wireless/point-multipoint/xbee-series1-module.jsp
https://code.ai.techfak.uni-bielefeld.de/trac/xcf
https://code.ai.techfak.uni-bielefeld.de/trac/xcf
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://www.zigbee.org

93

Acknowledgments

I have to thank Dr. Thomas Hermann and Prof. Helge Ritter for giving me
the possibility to do this work. Additionally I thank Tobias Großhauser for his
great support as another supervisor. Furthermore I want to thank the members of
the Ambient Intelligence Group and the members of the Neuroinformatics Group,
namely Jan Anlauff, Till Bovermann, Christof Elbrechter, Jessica Hummel, Florian
Schmidt and René Tünnermann for always lending me an ear when I had problems.
Last but not least I have to thank my family and Udo Schröter for the great
endurance, support and encouragement.

95

Declaration

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for
the award of any other degree or diploma of the university or other institute of
higher learning, except where the acknowledgment has been made in the text.

Bielefeld, June 2, 2009
Eckard Riedenklau

	Abstract
	Contents
	Introduction
	Goals
	Structure

	State of the Art
	Summary

	Background
	Tangible User Interfaces
	Tangible User Interface Objects (TUIOs)
	Taxonomy and Classification used in this work

	Components and Tools used for Hardware Design
	TUImod
	SolidEdge and Eagle
	Arduino pro mini
	XBee

	Used Software Frameworks and Libraries
	Image Component Library and Projects
	The Qt Framework
	LibSerial
	Extended Communication Framework and XML Template I/O
	The Cluster Library

	Path Planning Algorithms
	Roadmap Approaches
	Graph-based Path Planning Algorithms
	Continuous Approaches
	Summary

	Robotic Mobile Platform Designs

	Hardware Design
	Wireless Serial Transmitter
	IR Transmitter board
	XBee Transmitter Board

	Prototype
	Used Parts
	Schematics and Board Design
	Fiducial Marker

	Series Production
	Arduino Firmware
	SerialControl Protocol
	SerialControl2 Protocol

	Software Implementation
	Base Classes and their derivatives
	AOScene
	AObjectItem
	AMCallAdapter
	AOSerialProtocol

	Software Modules
	Vision Module: Marker2XCF
	XCF to Serial Module: XCF2Serial
	Arduino Monitoring and Administration: RemoteArduino
	When no real Objects are available: ObjectSimulator
	Demonstrating Object Navigation: SimpleNavigator
	Graph-based Path Planning Control Module: GraphPlanner
	Potential Field-based Path Planning Control Module: PotentialPlanner

	Applications
	Saving and Restoring TAO Locations for existing TUIs
	Interaction Design
	Implementation
	Discussion

	Dataset Visualization: DataProcessor
	Interaction Design
	Implementation
	Interaction Example
	Discussion

	Evaluation and Observations
	Performance Specifications
	Implementation
	Results

	Suggestions for the Evaluation of Interaction

	Conclusion
	Discussion
	Outlook

	Enclosed CD
	Installation Remarks
	Setting up the System
	API Documentation

	List of Figures
	List of Abbreviations
	Bibliography
	Acknowledgments
	Declaration

