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I

Summary

When humans communicate, we use deictic expressions to refer to objects in
our surrounding and put them in the context of our actions. In face to face
interaction, we can complement verbal expressions with gestures and, hence,
we do not need to be too precise in our verbal protocols. Our interlocutors hear
our speaking; see our gestures and they even read our eyes. They interpret
our deictic expressions, try to identify the referents and – normally – they
will understand. If only machines could do alike.

The driving vision behind the research in this thesis are multimodal con-
versational interfaces where humans are engaged in natural dialogues with
computer systems. The embodied conversational agent Max developed in the
A.I. group at Bielefeld University is an example of such an interface. Max
is already able to produce multimodal deictic expressions using speech, gaze
and gestures, but his capabilities to understand humans are not on par. If
he was able to resolve multimodal deictic expressions, his understanding of
humans would increase and interacting with him would become more natural.

Following this vision, we as scientists are confronted with several challenges.
First, accurate models for human pointing have to be found. Second, precise
data on multimodal interactions has to be collected, integrated and analyzed
in order to create these models. This data is multimodal (transcripts, voice
and video recordings, annotations) and not directly accessible for analysis
(voice and video recordings). Third, technologies have to be developed to
support the integration and the analysis of the multimodal data. Fourth, the
created models have to be implemented, evaluated and optimized until they
allow a natural interaction with the conversational interface.

To this ends, this work aims to deepen our knowledge of human non-verbal
deixis, specifically of manual and gaze pointing, and to apply this knowledge
in conversational interfaces. At the core of the theoretical and empirical
investigations of this thesis are models for the interpretation of pointing
gestures to objects. These models address the following questions: When
are we pointing? Where are we pointing to? Which objects are we pointing
at? With respect to these questions, this thesis makes the following three
contributions:

First, gaze-based interaction technology for 3D environments: Gaze plays
an important role in human communication, not only in deictic reference.
Yet, technology for gaze interaction is still less developed than technology for
manual interaction. In this thesis, we have developed components for real-time
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tracking of eye movements and of the point of regard in 3D space and integrated
them in a framework for Deictic Reference In Virtual Environments (DRIVE).
DRIVE provides viable information about human communicative behavior in
real-time. This data can be used to investigate and to design processes on
higher cognitive levels, such as turn-taking, check-backs, shared attention and
resolving deictic reference.

Second, data-driven modeling: We answer the theoretical questions about
timing, direction, accuracy and dereferential power of pointing by data-driven
modeling. As empirical basis for the simulations, we created a substantial
corpus with high-precision data from an extensive study on multimodal
pointing. Two further studies complemented this effort with substantial data
on gaze pointing in 3D. Based on this data, we have developed several models
of pointing and successfully created a model for the interpretation of manual
pointing that achieves a human-like performance level.

Third, new methodologies for research on multimodal deixis in the fields
of linguistics and computer science: The experimental-simulative approach
to modeling – which we follow in this thesis – requires large collections of
heterogeneous data to be recorded, integrated, analyzed and resimulated. To
support the researcher in these tasks, we developed the Interactive Augmented
Data Explorer (IADE). IADE is an innovative tool for research on multimodal
interaction based on virtual reality technology. It allows researchers to literally
immerse into multimodal data and interactively explore them in real-time and
in virtual space. With IADE we have also extended established approaches
for scientific visualization of linguistic data to 3D, which previously existed
only for 2D methods of analysis (e.g. video recordings or computer screen
experiments). By this means, we extended McNeill’s 2D depiction of the
gesture space to gesture space volumes expanding in time and space. Similarly,
we created attention volumes, a new way to visualize the distribution of
attention in 3D environments.
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Chapter 1

Introduction

When humans communicate, we use deictic expressions to refer to objects in
our surrounding and put them in the context of our actions. In face-to-face
interaction, we can complement verbal expressions with gestures and, hence,
we do not need to be too precise in our verbal protocols. Our interlocutors hear
our speaking; see our gestures and they even read our eyes. They interpret
our deictic expressions, try to identify the referents and – normally – they
will understand.

From its beginnings, the driving vision of informatics has been to create
computer systems which are capable of understanding and fulfilling our needs
without us having to learn dedicated user interfaces. Current research following
this vision can be found in attentive systems and situated communicative
systems, where the human’s way of interacting governs interface design.
Systems should adapt to humans, not the other way round. Research in
this area is thus highly interdisciplinary and disciplines such as psychology,
linguistics or neurobiology provide relevant information to guide the design of
such natural human-computer interfaces.

The overarching aim behind this thesis are multimodal conversational inter-
faces where humans are engaged in natural dialogues with computer systems.
The embodied conversational agent Max developed in the A.I. group at Biele-
feld University is an example of such an interface. Max is already able to
produce multimodal deictic expressions using speech, gaze and gestures, but
his capabilities to understand humans are not on par. If he was able to resolve
multimodal deictic expressions at the same level as he is producing them,
his understanding of humans would increase and interacting with him would
become more natural.
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1.1 Motivation

The primary questions addressed by this thesis are elaborated in this section
based on a reflection of deictic gestures in the context of two models for
communication – one from linguistics and one from mathematics/informatics.
A technical account of pointing gestures is presented based on Communication
Theory (Shannon, 1948), which addresses the accuracy of the transmission of
a deictic reference, but neglects the content of the message that is exchanged.
This approach is complemented by a semiotic approach (Peirce, 1965), which
concentrates on the meaning of the deictic reference.

1.1.1 Communication Theory

The general communication system described by Shannon (1948) in his
mathematical model sets the stage for human communication: an information
source communicates messages to a destination (see Figure 1.1, left). A
direct transfer of the messages is not possible, as sender and destination are
separated by matter. The information source thus makes use of transmitters
to convert messages to signals that can be transmitted over channels through
the matter towards the destination. The destination operates one or more
receivers, appropriate for the channels, and reconstructs the messages.

Figure 1.1: The schematic diagram of a communication system from
Shannon (1948) to the left describes the technical aspects of communication.
The accuracy of the direction of pointing is one such aspect. Semiotics is
concerned with the meaning of signals (diagram of Peirce’s triangle of meaning
to the right) and involves the question of which objects the interlocutor will
refer to using a pointing gesture.

In natural face-to-face interactions, we, as information sources or senders, use
different transmitters, or modalities, to communicate. We produce signals
using speech, facial expressions, gestures or eye gazes and distribute them
over different channels (visual, aural). The focus of Shannon’s model is on the
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accuracy of the transmissions and not on the semantics of the message which
has been transferred. In fact, he judges the semantics as being irrelevant to
the engineering problems he is adressing.

The message of a pointing gesture, in the sense of Shannon’s model, is defined
by the point in time when the pointing gesture is expressed and the direction
the pointing gesture is pointing to. A pointing gesture has been successfully
transmitted whenever the receiver decodes the time and the direction of
the gesture with a certain accuracy. The correct decoding of this “pointing
message” encoded in the interlocutor’s pointing gesture is the first challenge
for a human-computer interface. This thesis addresses this challenge and
creates models for the direction of gaze and manual pointing. These models
stipulate the relevant parameters which need to be identified to accurately
decode the direction of pointing gestures. As a consequence, initial questions
of this thesis are:

• When does the interlocutor perform a pointing gesture, and what is the
relevant time interval of the whole gesture trajectory?

• Where does the interlocutor point to (direction)?

1.1.2 Semiotics

Once the “pointing message” has been decoded and the more technical part
of understanding pointing gestures is solved, Shannon’s model should be
complemented by a model from the field of semiotics, which is concerned
with the meaning of signs. Peirce (1965) distinguishes three types of signs,
among them the index, a sign with a direct connection to the object it refers
to (see Figure 1.1, right). The pointing gesture is the sign and the task of
the receiver is to identify the object the interlocutor is referring to with the
gesture. As a consequence, a central question of this thesis is:

• Which object does the interlocutor refer to with the pointing gesture?

In this thesis, models for the extension of pointing gestures are developed
which can be used to identify referent objects.

An aspect which cannot be found in Shannon’s model, but which is explicit
in semiotics, is that the recipient is free to decode any of the signals the
interlocutor is transmitting, whether they are given intentionally, unintention-
ally or even involuntarily. Eye gaze is an example for a signal which can be
used intentionally, to explicitly refer to something, or unintentionally, when
attending to the object during the formulation of the verbal expression. The
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recipient can decode the eye gaze of the sender in both cases and identify the
object being referred to. Hence, in this thesis, the term gaze pointing refers
to explicit and implicit interpretations of gaze which is referring to objects.

Summing up, two types of model are developed and tested in this thesis:

• models for the direction of pointing gestures and

• models for the extension of pointing gestures.

An accurate model for the direction of pointing gestures is an essential
component of the model for the extension of pointing gestures. In this thesis,
the term pointing model will be used to refer to the model for the extension
of pointing gestures (which includes the model for the direction). An explicit
reference to models for the direction of pointing is provided if necessary.

1.1.3 Research Context at Bielefeld University

The environment provided by the A.I. Group of the Faculty of Technology at
Bielefeld University has provided an excellent atmosphere for this dissertation
project, both on the personal and the technological level. The group’s two
decades of research in knowledge-based human-machine interfaces, virtual
agents and interaction technology for virtual environments has built up
extensive knowledge in this domain and has further provided an exhaustive
set of tools and equipment that facilitated this research.

Communication between humans and between humans and machines has been
the research focus of two Collaborative Research Centres (CRC) established
at Bielefeld University by the German Research Foundation (DFG). The
first CRC 360 (running from 1993 to 2005), Situated Artificial Communi-
cators (Rickheit & Wachsmuth, 1996), motivated and funded the work on
manual pointing gestures presented in this thesis. The subsequent CRC 673,
Alignment in Communication (Rickheit & Wachsmuth, 2008), started in 2006
with the aim to investigate the more subtle, resource-conserving processes en-
abling human communication. To this ends, the research on manual pointing
gestures started in the frame of the CRC 360 has been extended to include
gaze pointing gestures in the CRC 673.
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1.2 Thesis Scope and Objectives

The main motivation for this thesis is the improvement of conversational
interfaces by empowering them to understand natural deictic expressions
using gaze and manual gestures. Consequently, the main focus of this thesis
is on studying human-human interaction to derive accurate models of human
manual pointing gestures, which ultimately inform the conversational interface
on how to understand human deixis. In addition, a second focus is on the
advancement of gaze interaction technology, as human eye gaze conveys more
often references to objects than manual pointing gestures do. Accordingly, this
thesis is embedded in a highly interdisciplinary area of research. The original
contribution of this thesis is a thorough investigation of the construction of
reference from a detected pointing gesture.

Following this research program, the following challenges have been identified:

1. Accurate models for human pointing have to be found.

2. Precise data on multimodal interactions has to be collected in order to
create these models. This data is multimodal (transcripts, voice and
video recordings, annotations) and not directly accessible for analysis
(voice and video recordings).

3. Technologies have to be developed to support the collection and the
analysis of the multimodal data.

4. The created models have to be implemented, evaluated and optimized
until they allow a natural interaction with the conversational interface.

The four cornerstones of the contribution of this thesis are detailed in the
following sections.

Deeper Understanding of Human Pointing This thesis aims at sub-
stantiating our knowledge on human pointing. We want to find answers on
the when, where and which of pointing gestures; questions which have been
stated in Section 1.1. For this, we will construct sound models of human gaze
and manual pointing which can be used as a basis for the development of
conversational interfaces. As a consequence of this requirement, the models
will be formalized in terms of mathematical expressions.

Advancement of Gaze Interaction Technology Gaze plays an impor-
tant role in human communication, not only in deictic reference. Yet, tech-
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nology for gaze interaction is still less developed than technology for manual
interaction. To allow the user to move around freely in our envisioned mul-
timodal conversational interface, we will develop innovative tools for the
real-time tracking and integration of eye movements with body movements.
This includes an estimation of the direction of gaze into 3D space. An even
greater achievement is the detection of the location of gaze in 3D space.

Improvement of Conversational Interfaces To be applicable in human-
computer interactions, the developed models of gaze and manual pointing
have to be integrated into a framework for multimodal deixis in virtual
environments. As a consequence, the framework has to support several levels
of abstraction:

• integration of sensor devices, such as eye tracking systems or motion
capturing systems

• extraction of relevant features from the raw sensor data

• detection of pointing gestures based on the extracted features

• interpretation of pointing gestures based on the spatial context

A framework constructed this way should provide viable information which
can be used to implement higher processes of communication such as turn-
taking, check-backs, shared attention and, finally, the resolution of deictic
references.

Cross-Cutting Issue: Advancement of Scientific Methods The thor-
ough investigations of pointing gestures undertaken in this thesis call for new
methodologies for research on multimodal deixis in the fields of linguistics
and computer science. The movements of the gestures have to be recorded in
3D to ensure highly accurate data which is free from perspective distortions –
a problem which is often encountered when using 2D video recordings. This
is crucial for the correct identification of the direction of a pointing gesture.
At the same time, there exists little prior knowledge on how to preprocess
and visualize the recorded 3D data, especially if aggregating over several
participants. Several other sources of data have to be integrated as well, such
as audio and video recordings or manual annotations. This thesis thus has to
develop techniques to make use of the recorded data in an appropriate way.
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1.3 Thesis Structure

Human pointing with hand and gaze has been observed and modeled by
several scientific disciplines and thus information valuable for the design of a
human-computer interface are summarized in an interdisciplinary review in
Chapter 2. More technical aspects and innovative approaches demonstrating
the use of gaze and gesture in the human-computer interface are discussed in
Chapter 3. At the end of Chapter 3, a classification of different approaches
to model the direction and the extension of pointing gestures is given, laying
the basis for the following empirical studies and the modeling of pointing
gestures.

Chapter 4 addresses manual pointing gestures. This chapter describes an
extensive study which has been conducted as a joint effort of computer
scientists and linguists to create a multimodal corpus on manual pointing
gestures in a human-human dialog game. In this context, the chapter also
presents the innovative tool IADE which has been created to record, analyze,
simulate and explore the data recorded in the study. Unusually for a linguistic
study, the recordings were made in 3D using motion capturing. For the
analysis of gestures in 3D, Gesture Space Volumes have been developed which
provide a coherent picture of the temporal and spatial development of gestures.
This chapter presents important findings on the interaction between speech
and gesture and on commonly occurring pointing strategies. It also provides
first insights into where manual pointing gestures are targeted to.

Gaze pointing is investigated in two studies presented in Chapter 5. A first
study on direction-based gaze pointing evaluates the accuracy achieved in
detecting gaze pointing of a free moving user with a combination of gaze and
body tracking. A second study evaluates different techniques and devices
for locating the point of regard in 3D for location-based gaze pointing. This
chapter also presents visualizations of the 3D gaze scanpath to support the
analysis and assessment of the obtained results. This chapter offers first
insights to the where of gaze pointing.

Chapter 6 focuses on the development of models for the direction and the
extension of pointing with a main emphasis on models for manual pointing.
To this end, this chapter reconsiders the corpus presented in Chapter 4
and proceeds step-by-step in a data-driven modeling approach. The resulting
models are evaluated and visualized using the Gesture Space Volumes described
in Chapter 4. Subsequently, the chapter considers gaze pointing and provides
a refined model for the extension of gaze pointing. The results of the study
on location-based gaze pointing are processed into Attention Volumes, newly



8 Chapter 1 Introduction

developed visualizations for the distribution of visual attention. This chapter
gives answers to the where and which of manual and gaze pointing.

Chapter 7 presents applications to demonstrate the use of the developed
models and technologies in different contexts. This chapter finally concludes
the main part of this thesis with a résumé highlighting the findings and
technical advancements achieved in this thesis.

Appended to this thesis is a description of the DRIVE framework for Deictic
Reference In Virtual Environments. DRIVE has been developed in this thesis
project to implement the models on human pointing (Appendix A).
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Chapter 2

Interdisciplinary Background

When confronted with the topic of deictic expressions, most people might
think of speech and gestures, most specifically manual pointing gestures (see
Figure 2.1 a and c). The role of the human eyes, besides their being necessary
to perceive the interlocutors’ pointing gestures, might be less obvious (see
Figure 2.1 b). Whilst senders use explicit eye gaze pointing less frequently
than manual pointing, the attention of interlocutors is strongly drawn toward
the eyes of their interaction partners, and the direction of the other’s attention.
Due to the dual function as sensor and actuator, relevant eye gaze is much
more difficult to detect than manual pointing gestures. Humans are experts
at interpreting the involuntary sensory movements of their interlocutors’ eyes,
as the following review will show. From the recipient’s perspective, the role
of gaze might be equally important for interpreting deixis as that of manual
gestures.

(a) Speech (b) Gaze (c) Gesture

Figure 2.1: Speech, gaze, and gesture contribute to human communication.
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The first section of this chapter provides an overview of the use of gaze
and manual gesture in communication. The following section discusses the
concepts of reference and deixis from a linguistic perspective and provides
a formal foundation for these terms. The next two sections concentrate on
the individual contributions of manual gesture and gaze to deictic reference,
with a special focus on how to derive the direction toward and, if possible,
the location of objects referred to using these modalities.

2.1 Gaze and Manual Gesture in Communi-

cation

Research on human communication tends to be dominated by verbal com-
munication. This is inter alia expressed in the common distinction between
verbal and non-verbal communication. It is interesting to note that most
language production and reception models in psychology used to concentrate
on verbal communication only. One reason could be that speech-symbolic
processing is quite accessible to computers. In contrast, simulating non-verbal
behavior requires an embodiment of the communicator with human-like fea-
tures. This view is shared by Herrmann (1982, pp 6f), who attributed the
imbalance in the discussion of verbal and non-verbal communication mainly
to the dominance of the computer metaphor in psychology.

The reference to the computer metaphor highlights how progress in basic
research is sometimes tied to advances in technology and to a general avail-
ability of methods and tools. Similarly, research on verbal communication has
primarily focused on the production side. The how-to express can be easily
observed and content can be easily acquired. Findings can also be easily
expressed and archived, as the object of investigation is naturally expressed
using language and symbols. Research on non-verbal behavior on the other
hand has primarily focused on the recipient side, the how-to evaluate, for
similar reasons.

The advent of video technology introduced new possibilities for recording
and – albeit with some restrictions – for reproducing non-verbal behavior.
Today, body movements can be recorded in space and time with very high
resolution using computer-based tracking systems. Other technologies, such as
brain-imaging or eye tracking, provide us with more insight into intrapersonal
processes. Finally, highly realistic artificial communicators can be produced
using virtual reality technology or robotics to test multimodal models of
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communication and to produce realistic, interactive stimuli for experiments
in a controlled manner.

2.1.1 Terms

The following section reviews research from several disciplines. Before that,
some terms are clarified which might otherwise lead to confusion between
disciplines.

When talking about communication, computer scientists are accustomed to
refer to the model introduced by Shannon (1948). In this thesis, the term
non-verbal modality, which is more commonly used in the context of human
communication, is used for the non-verbal communication link, instead of
the more general term channel. Similarly, as the participants in face-to-face
communication produce and process signals in parallel all the time, no strict
differentiation between the roles of sender and recipient is maintained, but the
more general term interlocutor is used instead. If appropriate, reference will
occasionally be made to the producer of a pointing gesture or an utterance.

2.2 Reference and Deixis

In linguistics, the term reference can be found both in semantics and prag-
matics (see Lyons (1968) for an overview). It refers to the relation between
an expression, for example a noun, and the entities that are named by such
an expression. First, there is the potential meaning tied to the expression
(semantics) and second, there is at least one entity that is linked to such a
referential expression, the referent (pragmatics). Intuitively, the referent of
an expression depends on the context. The term extension refers to the set of
possible referents of an expression, given a specific context (see Figure 2.2).
Analogously, denotation refers to the constant meaning of an expression in
semantics.

Deixis subsumes referential expressions used to locate and identify concrete
or abstract entities within a certain context. Such entities could be people,
objects, places, but also events or processes. The context comprises space and
time (where/when is the expression produced?), as well as the interlocutors
between whom the expression is exchanged. These expressions are called
deictic expressions.
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Figure 2.2: Deictic expressions are used to refer to objects in the world. In
the example depicted above, the interlocutor makes a deictic expression as
part of a command. The intended referent object is the bolt with the green cap.
The potential extension of the deictic expression in the speech alone covers a
set of possible referent objects. The manual pointing gesture adds the required
information to further restrict the potential extension to the intended object,
the referent of the multimodal deictic expression.

A successful exchange of deictic expressions depends on

• the properties of the producer of the expression,

• the quality of the medium (noise, etc.)

• and on the sensory abilities of the interlocutors.

Yet successful reference also depends on the interpretation of the expression
by the interlocutors.

2.2.1 Deixis

Different categories of deixis can be identified (as discussed, for example, by
Fillmore (1975) and Lyons (1977)):
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place deixis : references to locations of entities. Examples are “here” and
“there”.

time deixis : references to time. Examples are “now”, “tomorrow”, but also
the tenses used in an utterance.

person deixis : references to persons. Possible targets are the speaker (“I”),
the addressee (“you”), overhearers, and third parties whom the utterance
is about.

social deixis : references to social status. Examples are the German “Du”
and “Sie” when referring to the addressee, which express different states
of familiarity.

discourse deixis : references to parts of the ongoing discourse.

In addition, one can distinguish symbolic and gestural usages of deixis. If
general knowledge is sufficient to establish the reference, it is called symbolic
usage. If an active sensory process is needed to understand the deictic
expression, it is called gestural usage. A typical case are deictic expressions
that comprise a pointing gesture using the index finger, accompanied by a
verbal expression like “this X”. Besides such pointing gestures, the direction
of gaze may also be part of a gestural usage of deixis. According to Bühler
(1934), place deixis is one of the most basic means of human communication.
It establishes the link between internal symbols and the entities in the exterior
world.

This thesis concentrates on gestural usage of place deixis, in particular on
pointing gestures using index finger and eye gaze. Pointing gestures performed
by the arm, hand and index finger will be referred to as manual pointing.
Pointing gestures performed with the eyes will be referred to as gaze pointing.
Both types of pointing gesture will be investigated in detail in the two sections
to follow.

2.3 Manual Pointing

In pointing, the index finger and arm are extended in the di-
rection of the interesting object, whereas the remaining fingers
are curled under the hand, with the thumb held down and to the
side (Butterworth, 2003, p. 9).
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Figure 2.3: A manual pointing gesture modeled according to the quotation
from Butterworth (2003).

Butterworth (2003) provides us with a nice description of the prototypical
manual pointing gesture, which is visualized in Figure 2.3. Note that in the
quotation above, as in the literature on pointing, often a totum pro parte
use of the noun “pointing” can be found when referring to manual pointing.
This can be attributed to the strong tendency humans have to identify the
extended index finger with pointing and vice versa. This convention will be
adhered to in this section, where pointing in general and manual pointing
in particular are discussed. The following section will thus make use of the
introduced concepts and show how they apply to gaze pointing.

A comprehensive overview of the manifold gesture classifications in the lit-
erature has been assembled by Kendon (2004). According to Kendon, most
authors recognize the special role of pointing gestures and create a unique
category for such demonstrative gestures. In addition, McNeill (1992) dis-
tinguishes between concrete pointing, i.e., pointing at objects and events in
the concrete world, and abstract pointing, i.e., pointing at abstract concepts.
This thesis concentrates on concrete pointing, but the definition of concrete
pointing needs to be modified for use in virtual reality: this thesis concentrates
on pointing gestures targeted at entities which can be perceived in the current
situation of the pointer and do not require that the entities themselves have
a physical manifestation in the world (otherwise virtual and mixed reality
applications would be excluded).

A great deal of movement may be involved in a manual pointing gesture. The
climax or apex of the gesture with the index finger in the intended position
takes only a fraction of the overall time of the gesture. It is thus useful to
structure gesture movements in order to pin down the very moment where the
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(a) Preparation (b) Stroke (c) Retraction

Figure 2.4: The main phases of a manual pointing gesture as defined by
Kendon (1980).

intended direction is delivered. Kendon (1980) introduced a classification that
has been widely adapted and extended (see e.g. McNeill, 1992). He identifies
three main phases (see also Figure 2.4):

• preparation: from resting/previous position to intended position

• stroke: the apex of the gesture at the intended position

• retraction: from the intended position back to a resting position

Right before and after the stroke, the movement can decline into holds, which,
according to McNeill (1992), were later differentiated by Kita (1990) into
pre-stroke and post-stroke holds.

2.3.1 Direction

Although it is not inherently evident whether a pointing gesture indicates a
direction, a target location or a target object, the construction of a direction is
the essence of the pointing gesture. An intuitive interpretation of the function
of the pointing gesture is that of a vector directed by the producer to the
referent (see also Figure 2.5):

Pointing seems a straightforward matter: You stick your finger out
in the appropriate direction, perhaps saying some accompanying
words, and your interlocutors follow the trajectory of your arrow-
like digit to the intended referent (Haviland, 2000, p. 14).
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The prototypical pointing gesture is a communicative body move-
ment that projects a vector from a body part. This vector indicates
a certain direction, location, or object (Kita, 2003, p. 1).

Pointing gestures are regarded as indicating an object, a location,
or a direction, which is discovered by projecting a straight line
from the furthest point of the body part that has been extended
outward, into the space that extends beyond the speaker (Kendon,
2004, p. 200).

Mathematically, a vector is defined by its direction and length. It can
be applied to any point in space and thus has no specific origin. Deictic
expressions, however, have a dedicated origin, or origo as Bühler (1934) calls
it. Thus in addition to a direction and length, an origin is needed, which
defines the starting point of the vector.

Commonly, the origin is defined by some point within the body of the producer
of the pointing gesture. This could be, as Kendon (2004) seems to propose,
the furthest point of the body part that has been extended. A plausible
alternative for the origin could be the experienced position of the self of the
producer, e.g. behind his eyes.

The quotation from Haviland (2000) provides a specification for the direction
of the vector: it is given by the “arrow-like digit”. The other authors contend
that the direction is at least associated with a body part, but whether the
body part itself or its movements provides the direction remains unclear.

If one is only interested in the direction of a deictic expression, the length of
the vector can be neglected. For practical reasons it should then be normalized
to one. These kind of vectors will be called orientation vectors.

McNeill envisioned a gesture space as a shallow disk in front of each inter-
locutor in which gestures are performed (McNeill, 1992). This view is also
adopted here for now. Real pointing takes place in physical space and can be
perceived by the interlocutors. In contrast, immediate space can be populated
by abstract conceptual entities. As McNeill (1992) points out, these entities
do not necessarily need to have a correspondence in physical space (pointing
at the concrete vs. pointing at the abstract). Haviland (2000) consequently
differentiates between several gesture spaces. His local space is the physical
space (similar to McNeill’s gesture space) and his narrated space is superim-
posed on the local space and contains the concepts pointed to. According to
his view, a sequence of pointing gestures does not necessarily create a coherent
gesture space. Goodwin (2000) later extended McNeill’s gesture space to the
interactive space constructed in multi-party dialog.
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Figure 2.5: The pointing gesture can be interpreted as a vector ~v directed
at the referent.

2.3.2 Location

Orientation vectors directed from the producer to the referent are not sufficient
to specify a location. Thus, when the pointing is intended to refer to a location
or an object, additional information is needed: the distance from the origin
to the referent. This is a problem, because this information is not commonly
found in pointing gestures using arms and hands. An exception may be when
the producer of the gesture actually touches the referent object, so that the
distance between origin and referent is zero.

If the pointing is intended to refer to an object, the line projected through the
origin along the vector, the pointing ray, could be followed until it intersects
with an object. The first object intersected by the pointing ray will then be
the referent object (see Figure 2.6 a). A similar approach could be applied to
locations, where the target surface is given by the ground, the walls, or some
other physical manifestation of the location.

This approach is rather näıve and makes certain assumptions that do not
easily hold, as can be seen in the study presented in Chapter 4. It requires
that the interlocutors have already agreed upon which entities are relevant for
the deictic expression. For example, a car could be a relevant entity in some
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(a) Single object inter-
sected

(b) Multiple objects inter-
sected

(c) No objects intersected

Figure 2.6: Determining the referent of a pointing gesture is problematic.
Besides the ideal case (a), where the referent can, in principle, be identified,
at least two other cases exist, (b) and (c), where this is not possible.

dialogues as in: “Did you see my car?” Yet when talking to your mechanic it
is more likely that the car is taken only as an aggregation of relevant entities,
in order to locate the broken part that needs to be fixed. Another example
consists of objects that are placed on the table, a situation that is used in
one of the studies described in this thesis (see Figure 2.2). The interlocutors
in that study were instructed to concentrate on the objects. In a different
study, e.g. when talking about interior decoration, the table itself could be
relevant, not the objects on top of it. Thus, rather than an arbitrary object
that happens to be intersected first by the pointing ray, only relevant objects
should be considered as potential referents.

In other situations, the pointing ray may intersect with several objects that
are possibly relevant (see Figure 2.6 b). In this case the reference can only
be established by a contextual inference. A similar situation arises if the
pointing ray misses the referent object (see Figure 2.6 c). These examples are
not uncommon and it can be questioned whether the pointing ray as such
has a direct referential function.

Another problem consists of the requirement that the gesture be performed
with a high accuracy, such that the constructed vector effectively hits the
intended object. If this is not the case, the pointing gesture cannot establish
reference at all. In addition, the interlocutors perceiving the pointing gesture
must be very accurate in detecting the vector and extrapolating it to the target
object. Given that the interlocutors may have very different perspectives, this
seems unlikely when pointing at visually small objects.



2.3 Manual Pointing 19

2.3.3 Timing and Duration

Besides information about the spatial extension of a gesture, its timing is
highly relevant for multimodal integration. McNeill (1985) found that the
stroke phase of gestures coincided with speech in the majority of cases, later
confirmed by Nobe (2000) after controversial discussion in the literature.
Moreover, speech and gesture seem to form an integrated communication
system (Kendon, 1980; McNeill, 1992; Mayberry & Jaques, 2000).

In their study on general gestures, Morrel-Samuels & Krauss (1992) found
that the gesture onset preceded the onset of the lexical affiliate (the word
in the verbal modality corresponding with the gesture) by between 0 s and
3.8 s (with a mean of 0.99 s and a median of 0.75 s). They also found that the
asynchrony is correlated with the duration of the gesture: the longer it takes
to perform the gesture, the earlier it starts. On average, gestures terminated
1.5 s (SD = 0.97 s) after their lexical affiliates.

With regard to manual pointing gestures and speech, Levelt, Richardson &
La Heij (1985) present a series of studies on the timing of manual pointing
gestures and speech. In their setting, they used a tracking system called
Selspot to track the position of the index finger’s tip with an active infrared
LED in 3D. In the off-line condition (relaxed answer time) of their first
experiment, they measured a mean advantage of 14 ms (SD = 100 ms) for
the gestures’ apexes (climax of the stroke) compared to voice onsets, whereas
in the on-line condition (immediate answer), voice onset preceded apex by
53 ms (SD = 114 ms). These findings were replicated in a second experiment,
where they investigated the difference in the timing of manual gestures with
or without speech, among other things. They found that the apex onsets
of manual pointing gestures accompanied by speech were delayed by 14 ms.
While this difference in apex timings was not statistically significant, they
did find a significant delay of the movement onset of the gesture, again by
about 14 ms.

This thesis is primarily concerned with the dwell time of pointing gestures at
maximum extension during the stroke. This is the time when the orientation
vector is constructed. Ideally, the producer of the gesture remains motionless
during this period, which is presumably not what is found in real situations.
Therefore, small posture shifts should be allowed.

In a study on pointing to objects without direct feedback from the interlocutor,
Müller-Tomfelde (2009) observed a median dwell time of about 1 s, with 50%
of the data lying between 0.599 s and 1.598 s. He also presented the recorded
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pointing gestures to interlocutors and found that pointing gestures were
accepted after a median dwell time of 0.4325 s, with 50% of the data lying
between 0.292 s and 0.552 s. Based on a third experiment, he finally concluded
that feedback after dwell times of below 600 ms is experienced as natural.

Given these findings, it can be concluded that in co-verbal gestures the onsets
of gestures usually precede the onsets of their lexical affiliates by less than
a second. According to Levelt et al. (1985), manual pointing gestures are
even more finely aligned with speech than gestures in general. Interlocutors
producing manual pointing gestures use a dwell time of about one second
if they are not given any direct feedback. Interlocutors observing manual
pointing gestures accept them after a dwell time below 600 ms.

2.3.4 Accuracy of Gesture Recognition

Concerning the accuracy of gesture recognition, Butterworth & Itakura (2000)
present a series of experiments in which they study the accuracy of gesture
recognition for pointing with the combinations eye, head, head and eye, head
and hand. The task for the test person was to identify one of three objects to
which the instructor pointed. In their setting, the interlocutors were placed
face-to-face but 5.95 m apart (see Figure 2.7). The target objects were located
at a distance of 2.7 m from the wall where the test person was seated. The
objects were positioned at angles of 5◦, 15◦, and 25◦ to each side of the test
person.

They report that 4.5-year-old children could only manage to accurately identify
the indicated location when the instructor pointed using head and hand. Even
then, they could only accurately identify inner target objects or those in the
right periphery. Head only was the next-best condition, followed by head and
eye, and eye only, but all without statistically significant results. Overall,
the availability of the experimenter’s eye movements seemed to distract the
children more than it helped. However, interlocutors seldom have their eyes
closed while pointing in natural situations.

In an additional experiment, Butterworth & Itakura (2000) examined pointing
recognition in adults in a similar setting (see Figure 2.8). This time both
interlocutors were placed side by side. The position of the target objects
meant that they appeared at angles of 4◦, 6◦, 8◦, 10◦, 15◦ and 45◦ from each
other (only 4 objects in the latter case). In these studies, a limit of accurate
spatial localization was at 15◦ separation between objects. For all pointing
conditions, the test persons were able to identify the peripheral targets. In
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Figure 2.7: Setting used in the study on pointing recognition in children by
Butterworth & Itakura (2000) (redrawn from Butterworth & Itakura, 2000).

the conditions without manual pointing, they could also identify the inner
targets. Manual pointing actually obstructed the accurate localization of the
inner targets.

At separations below 15◦, peripheral objects were easier to identify for test
persons than those at inner positions, except for the condition with eye
movements only, where almost no correct identification was found for the
peripheral objects.

Reviewing these results it can thus be concluded that in crowded areas where
other potential targets are nearby, a minimum separation greater than 10◦

(they only tested for 15◦) is needed to fully disambiguate pointing. Note that
targets at the periphery do not follow this rule, which is an effect we also
found in our own studies (see Section 4.9.1).

In the second study mentioned above by Butterworth & Itakura (2000), both
interlocutors were sitting side by side and thus shared a similar perspective on
the target objects. This positioning also implies that the test persons could
have had perceptual problems with deictic expressions targeted at objects
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Figure 2.8: Setting used in the studies on pointing recognition in adults by
Butterworth & Itakura (2000) (original in Butterworth & Itakura, 2000).

on the contralateral side. For example, it may not have been possible to
see both eyes of the instructor except when demonstrating to the ipsilateral
periphery. Unfortunately, this aspect is not discussed by the authors. In
addition, nothing is said about the precision of the interlocutors’ pointing
gestures. It seems as if they were neither recorded nor were they exactly
replicated between test persons.

In terms of the preceding study, Butterworth (2003) concludes that the
precision of a vector-based interpretation of pointing is not sufficient to single
out the referent and additional cues are required:

Thus if there is vector extrapolation it is at best approximate and
sufficient only to differentiate between widely spaced, identical
objects (Butterworth & Itakura, 2000).

Butterworth & Itakura (2000) suggest that eye, head, nose and manual
pointing may differ in the morphology of the space to which they refer, but
they do not provide a proposal on how to model these spaces.

2.3.5 Visualization

Manual pointing gestures are swift body movements. Documenting them –
and the specific aspects one is interested in – is not as straight forward as
one might think. Individual pointing acts are often presented to an audience
using short video sequences, but referent and referrer are rarely seen at the
same time, except when pointing within personal space. Also, the perspective
captured by the camera is static and may even be distorted. Photos or sketches
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Figure 2.9: McNeill’s gesture space showing data of deictic gestures during
a narrative (redrawn from McNeill, 1992, page 91).

are also used, sometimes as a sequence, for example depicting preparation,
stroke, and retraction phases. Sometimes these visualizations are enriched
with arrows approximating the direction of the pointing.

The depiction of gesture space established by McNeill (1992) is one way
to visualize multiple gestures. In his diagrams (see Figure 2.9), each point
represents the position of the active hand during a gesture stroke, in this case
within a deictic gesture.

In human-computer interaction, visualizations are provided as online feedback
to the user, which forecasts consequences of ongoing interactions. Typical
examples are pointing rays that shoot from the pointing device towards the
object which would be selected if a certain action was triggered. Highlighting
the target object is another example, as demonstrated by the Nintendo Wii-
Remote: when pointing at the display, the position pointed at is marked
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with a hand-like cursor (with extended index finger), the icons pointed at
are visually highlighted and this effect is stressed even more by a rumbling
feedback generated in the Wii-Remote controller itself. These visualizations
document the essence of the pointing gesture, its direction and its extension in
the application specific context. Yet they are not intended for documentation;
they are transient and tailored to application specific needs. Summing up,
gesture research lacks appropriate visualizations to document the dynamic
movements of manual pointing gestures in 3D space.

2.4 Gaze Pointing

Butterworth & Itakura (2000) suggest that in ontogeny, comprehension of
the line of gaze comes first, before comprehension of manual pointing. A
major difference between manual pointing gestures and such usage of gaze
is that manual pointing gestures are produced explicitly as part of a deictic
expression and they are quite distinguishable. While there are occasions
where gaze pointing is instituted explicitly, most commonly interlocutors will
try to read their partner’s mutual gaze direction regardless of their partner’s
intentions. This is due to the fact that humans tend to direct their visual
attention to the objects they are talking about, or to be even more precise, to
the objects they are going to talk about. Interlocutors have learned to follow
the visual attention of their opposite (see Section 1.1.2 on semiotics).

In this thesis, the term gaze pointing is used metaphorically to refer to eye
gaze directed at objects to express the commonalities between following the
visual attention of interlocutors and following their manual pointing gestures
when interpreting deictic expressions.

2.4.1 Visual Attention

Our eyes allow us to perceive the world visually. They are, however, optimized
to see very accurately only within a small area of the retina, the fovea centralis.
The area in which the highest acuity can be achieved covers only 2◦ of the
visual field, the zone of high acuity extends up to 5◦ (Duchowski, 2007). The
lines projected from the environment through the center of the eye on the
retina are called visual lines. The visual axis of an eye is the visual line
stimulating the center of the fovea centralis.
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This implies that if an object is inspected, the orientation of the eyes is
changed, so that the projection of the object onto the retina falls (partly)
onto the fovea centralis to achieve high acuity. The eyes are thus rotated
toward a specific direction and then rest on the desired object, more-or-less
maintaining their orientation for a small period of time. These fast rotations
(up to 1000◦/sec are possible) are called saccades (20 ms to 200 ms, depending
on amplitude) and the periods of rest are called fixations. It is during fixations,
which last for about 150 ms to 600 ms (Duchowski, 2007), that humans obtain
their visual input and attend to their surroundings visually.

Two different types of this visual attention have been identified: covert visual
attention does not require shifts of the eye; overt visual attention is always
accompanied by detectable movements of the eye. Mutual awareness of
overt visual attention is an aspect of joint visual attention, as is the mutual
awareness of manual pointing. In the following, this thesis will concentrate
on the aspect of overt visual attention alone when referring to gaze.

2.4.2 Direction

In manual pointing, the direction has been modeled using a single vector,
constructed by the index finger. In gaze pointing, the referent can be assumed
to be the target of overt visual attention. During a fixation, the direction of
overt visual attention can be derived from the visual axis of the pointing eye.

The visual axis does not necessarily need to be aligned with the referent
object. It could be any visual line hitting the fovea centralis. Thus, instead
of a single vector, one is faced with a series of vectors. An appropriate model
for this is a cone with its apex in the eye, a central axis along the visual axis
and an opening angle defined by the angle of the fovea centralis (2◦).

Chi & Lin (1997) tested the horizontal and vertical accuracy of gaze pointing
using an ASL-4000 eye tracker in a fixation task on a computer-screen (50 cm
distance to user). In their setting, the user had to maintain a still head position
which was ensured using a chin-rest. They found a difference in accuracy
depending on the vertical position of the target. For targets presented above
or coinciding with the horizontal line of gaze, their advise is to use visual
targets with a width of 2.0◦ and a height of 2.4◦, while for targets presented
below the horizontal line of gaze, they recommend using visual targets with a
width of 2.6◦ and a height of 3.9◦. The results above the horizontal line of
gaze nicely fit to the model of a cone with an opening angle of 2.0◦. Regarding
the results for the lower part it is unclear, whether they are due to features
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of the visual system, or due to constraints of the optical eye tracking system,
which might have not a full view on the pupil when looking downwards (e.g.
due to occlusions by the eyelid or eyelashes).

2.4.3 Location

While the identification of the direction of gaze introduces some uncertainty,
there is an advantage of gaze pointing over manual pointing: overt visual
attention of both eyes will generally be aligned on the same referent object.
This provides two origins and thus two directions from slightly different
perspectives which can be use to determine the location of overt visual
attention, also called the point of regard.

Although the retina of the human eye only samples a two-dimensional pro-
jection of the surroundings, humans are capable of reconstructing a three-
dimensional impression of our environment by adding depth. In the literature
(Goldstein, 2002, e.g.) several criteria for the construction of depth perception
can be found:

monocular depth criteria such as occlusion, relative size/height in the field
of view, common size of objects, atmospherical and linear perspective,
the gradient of texture, or motion parallax convey spatial information
with a single eye only.

binocular depth criteria include disparity (differences in the retinal pic-
ture caused by the disparity of the eyes), vergence or accommodation.

Binocular depth perception, stereopsis, provides a way to differentiate the
depth of objects up to a distance of about 135 m. In determining the depth
of a fixation, only such criteria can be used that require measurable and
thus perceivable effort from the perceptual system. As most of the criteria
listed above do not have a sensory-motor component, only vergence and
accommodation remain for consideration. Both vary depending on the distance
of the fixated object.

If the projection of the object onto the retina falls (partly) onto the fovea
centralis of both eyes, the images can be fused. Only then can one have a
binocular fixation. Two categories of eye movements are distinguished: when
the eyes follow an object moving horizontally or vertically in the same direction,
they are called version movements, and when the eyes move locally in opposite
directions, they are called vergence movements. Vergence movements are
those associated with objects altering their depth. The horizontal component
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of the movement is relevant for stereoscopic depth perception (Wheatstone,
1838). Measuring vergence angles, one may differentiate fixation depths up to
a distance of 1.5 m to 3 m depending on the user’s visual faculty. Thus, the
working range of vergence movements nicely covers typical interaction spaces
in face-to-face communication.

In regards to accommodation, a healthy eye of a young adult has an opera-
tional range between focal lengths from 1.68 cm to 1.80 cm. Thus differences in
accommodation can theoretically be measured for distances between approxi-
mately 0.25 m and 100 m. At the time of writing, these measurements are only
possible with research prototypes of vision based eye trackers (Suryakumar,
Meyers, Irving & Bobier, 2007), but not with off-the-shelf technology. Thus,
for the time being, only vergence movements can be used to measure the
position of the point of regard in 3D space. However, at least to the author’s
knowledge, there is no evidence so far that the other’s accomodation is used
by interlocutors at all.

2.4.4 Timing and Duration

The timing of eye gaze is a highly relevant cue for its interpretation. The
stroke of a manual pointing gesture can be identified as an apex of the gesture.
There is no such apex in eye gaze, only fixations. Also, fixations are not used
solely to explicitly refer to objects; they are mostly used for perception and
search processes.

Fortunately, the different tasks behind eye movements can be identified by their
different processing times. Velichkovsky et al. (1997) have compiled findings
to create a diagram (see Figure 2.10) that shows the variation of fixation
duration depending on the purpose of fixation. The diagram shows that
short fixations (below 250 ms) can primarily be attributed to localization and
figurative integration processes. The fixations associated with the processes
of interest in this thesis, such as semantic or selfreferential processes and
processes of communication, have durations of 250 ms or greater.

2.4.5 Reading the Eye: Gaze Awareness and Recogni-
tion Accuracy

Summing up: humans look at referent objects when they utter deictic expres-
sions; and details have been presented on the speed, the accuracy and the
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Figure 2.10: Typical fixation durations for different tasks (redrawn from
Velichkovsky et al., 1997).

duration of these fixations. The question remains whether or not interlocutors
are aware of these factors and make use of them?

Gale & Monk (2000) define three types of gaze awareness. Knowledge about
the referent being looked at is coined full gaze awareness. In partial gaze
awareness, only the general direction in which someone is looking is recognized.
The third class is that of mutual gaze or eye contact, i.e., when interlocutors
are looking in each other’s eyes.

Mutual knowledge about full gaze awareness can be used as a conversational
resource. In their experiments on video-mediated communication, Monk
& Gale (2002) report a reduction to half the number of words and turns
using localization tasks when providing full gaze awareness. Their findings
emphasize the important role of full gaze awareness as a conversational
resource in face-to-face dialog.

Gibson and Pick (1963) report an accuracy of 2.8◦ in recognizing the direction
of mutual gaze. Cline (1967) reports errors of about 1.25◦ vertically and
0.75◦ horizontally. Gale & Monk (2000) investigated the accuracy of gaze in
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Figure 2.11: The gaze path shows the sequence of fixations of a single user
when visiting a web page. Fixations are represented as circles with a diameter
correlating to the duration of the fixation. Saccades are represented as lines
connecting fixations.

full gaze awareness situations, i.e., when recognizing looks to referents. For
combined head-eye-rotations they report an accuracy of 6◦ 84% of the time,
and 12◦ 98% of the time.

2.4.6 Visualization

Information about eye movements on a specific visual scene is of interest for
several research disciplines, for example, psycholinguistics or usability research.
There are several ways in which to visualize results of an eye tracking session.
For a single user, the gaze path, i.e., the sequence of fixations on a specific
scene, the scanpath, is a common method (see Figure 2.11).

When data from several persons need to be integrated, heatmaps often prove
useful to researchers (see Figure 2.12). Heatmaps use a color scale from
cold (black, blue, green) to hot (yellow, orange, red) to depict the amount of
attention the corresponding pixel has received over a series of trials (intra-
and/or interpersonal). Heatmaps are overlaid transparently over the 2D
stimulus to help establish the correspondence. These features make heatmaps
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Figure 2.12: The heatmap aggregates the visual attention from several users
(here seven) and highlights frequently attended areas in red.

easily accessible. The index visualized by the heatmaps could be any of the
following:

• the count of fixations on a given pixel,

• the percentage of participants that attended to the pixel, or

• relative or absolute gaze duration on the pixel.

A discussion of the pros and cons of heatmaps can be found in Bojko (2009).

2.5 Coupling of Gesture and Gaze

Human manual pointing gestures are often preceded by a saccadic eye move-
ment towards the target of the pointing gesture. In such situations, the speed
of the eyes is so fast that they fixate the target before the hand movement is
initiated (Bekkering et al. 1994, 1995; Frens and Erkelens 1991; Prablanc et
al. 1979, 1986). The accuracy of pointing decreases when the visual target is
not fixated (Abrams et al. 1990; Neggers and Bekkering 1999; Prablanc et
al. 1979; Vercher et al. 1994). This is the case even if the target is no longer
visible (Prablanc 1986).
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Neggers & Bekkering (2000) show that eye movements and hand movements
are interlinked. Eye movements also seem to be constrained to continue
fixating the target until the hand has reached the target as well. In a follow-
up study, Neggers & Bekkering (2001) show that this link is based on a
non-visual, probably proprioceptive signal.

2.6 Summary

Pointing is used to link internal concepts with entities in the real world and
thus contributes to a specific kind of reference. This chapter has distinguished
between manual pointing and gaze pointing. Both are considered in linguistics
under the concept deixis.

Conclusive findings have been presented addressing the when question of
the timing of manual gestures. Kendon, McNeill, Kita and others adhere
to a distinction between three main gesture phases, and provide detailed
accounts on when the meaningful phase of the gesture is the stroke. If
uttered co-verbally, manual pointing gestures and their lexical affiliates are
tightly aligned, which simplifies the integration of gesture and speech in the
multimodal interface. A dwell time between 300 ms and 600 ms has been
found to be typical for a meaningful pointing gesture. These findings are
similar to those for meaningful gaze pointing, where dwell times (duration
of fixations) above 250 ms are interpreted as relevant, and a communicative
function is attributed to those above 500 ms.

Concerning the where question, it has been argued that manual pointing is a
prototypical deictic gesture and that there is a strong tendency to model its
function with a vector oriented in the direction of the pointing index finger
(or the most extended body part), but no precise account is given in the
literature. This is different for gaze pointing, as a direkt link can be drawn
between overt visual attention and pointing. If humans focus their visual
attention on an object, they align the visual axis of their eyes with this object,
with a minor angular deviation given by the area of high visual acuity, which
is below 1◦ (given an opening angle of 2◦. It is thus reasonable to define the
visual axis as an appropriate model for the direction of gaze pointing.

Regarding the which-question, a frequently used strategy is to identify as the
one referent the object which is intersected by a vector extrapolated along the
direction of the pointing gesture. However, empirical evidence suggests that
this approach only provides dissatisfying results when inferring the referent
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location or object of manual pointing. The extension of gaze pointing will
typically be modeled by a cone describing the area of overt visual attention.
In addition, the vergence movements of eye gaze have been identified as a
promising source of information for deriving the depth of visual attention.
Knowledge about the estimated distance of the referent object could further
improve the success rate of pointing models, especially for cases of partial
occlusions or to locally expand the area within which candidate objects are
considered.

It is essential to develop versatile methods to visualize the data compiled
in empirical studies on gaze and manual pointing. The traditional methods
relying on 2D projections of the gesture space are not sufficient to accurately
measure the direction of a pointing gesture. An additional challenge is the
visualization of aggregated data, i.e. summarizing over several pointing acts
or visualizing data of rapid eye movement sequences. Regarding eye gaze,
heatmaps seem to provide valuable insights on the distribution of attention,
but they are restricted to 2D content.

A review of the existing literature provided viable answers to the when-
question for both gaze and manual pointing, and information about overt
visual attention has provided a very accurate answer to the where-question of
gaze pointing. Some questions, however, remain:

• What exactly defines the direction of manual pointing?

• How accurate is the direction of manual pointing or gaze pointing?
Data on the recognition of pointing gestures has been discussed. Yet
it remained unclear, whether the deviations can be attributed to the
recipient alone or whether the producer of a pointing gesture also
deviates from the ideal pointing direction.

• How does pointing to objects work? There is a tradition of associating
pointing with a vector and somehow deriving the referent object based
on this vector. Yet, to the knowledge of the author, no comprehensive
model of this process has been proposed.

• What is the shape of the referential space? The vector model for pointing
does not seem sufficient to describe the findings. Butterworth & Itakura
(2000) suggest modeling different referential spaces for each pointing
modality, but they do not offer any models.

• Are there appropriate visualizations for 3D data on pointing gestures?
Existing methods concentrate on 2D contexts and are not sufficient to
assess the direction of pointing in 3D space.
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These questions are approached in this thesis using a data-driven modeling
approach. To this ends, state-of-the-art tracking technology is used to record
precise data on pointing, which among other things is discussed in the following
chapter on the technological background of conversational interfaces.
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Chapter 3

Related Work in
Human-Computer Interaction

In Human-Computer Interaction (HCI), gestures are classically associated
with mouse gestures or – less frequently – with pen gestures. Only recently,
with the advent of multi-touch interfaces, natural finger and hand movements
have entered the focus of the commercial mainstream. However, there has
been continuous research, primarily in the lab, on HCI using natural human
arm and hand gestures or eye gazes for controlling computer systems. This
chapter provides an overview of the related work in this field, with an emphasis
on systems that allow for the selection of objects via gaze or hand/arm gesture,
and on those that combine these modalities with speech. A brief excursion into
frameworks for multimodal integration and reference resolution in particular,
provides insights into the general framework of conversational interfaces for
natural dialogs.

3.1 Multimodal Interaction with Gesture and

Gaze

Interaction techniques for 3D user interfaces can be assigned to three major
categories: selection, manipulation and navigation (Bowman, Kruijff, Joseph
J. LaViola & Poupyrev, 2005). The deictic expressions and pointing gestures
under consideration in this thesis are techniques for object selection. The
interpretation of deictic references is therefore, in terms of HCI, one aspect of
3D object selection. There are several other 3D object selection techniques
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that are quite different from natural pointing. In the following only such
techniques for 3D object selection will be considered that are similar or at
least close to the deictic expressions used in human-human communication.

3.1.1 Starting Point

One of the first interactive systems supporting deictic expressions and manual
pointing is Bolt’s “Put that there” system (Bolt, 1980). In his work on a
“Spatial Data-Management System” (SDMS), he developed a speech and
gesture interface supporting direct commands to manipulate graphical items
on a flat computer screen on a wall. The speech engine of his system, a
DP-100 Connected Speech Recognition System developed by NEC America,
Inc., recognized utterances of up to five words from a total of 120 different
words in its active memory. The latency of the speech recognition was about
300 ms. The position and orientation of the hand was sensed using a magnetic
field by a system from Polhemus Navigation Science, Inc. The developed
interface was able to resolve verbal references using accompanied manual
pointing gestures as in “Move that to the right of the green square”, with “that”
being the verbal affiliate of the manual pointing gesture. While Bolt’s system
required many pauses (in his own words: “the obligation to pause represents
. . . something of a breakdown in the general convenience of continuous vs.
discrete speech input” (Bolt, 1980, 269)), it demonstrated the power of natural
interfaces and inspired researchers all over the world.

A year later, Bolt (1981) envisioned a gaze interface (“eyes as input”) to a
multimedia installation “World of Windows” in a similar technical set-up.
Based on the point-of-regard of the user, individual videos on a videowall were
played and sound was mixed according to the history of videos attended to (so
that when looking at a new video the sound of this video faded in while the
sound of the video watched previously faded out). In contrast to the previous
work on speech and manual pointing, the user did not explicitly command
the system. Instead, the system was aware of the overt visual attention of
the user and adapted its presentation accordingly.

In a follow-up paper, Bolt (1982) elaborated on these ideas:

We may note that the eye is a “pointer” par excellence. We can
and do look at things in the visual field directly and steadily, micro
movements of the eye (“tremor” and “drift”) notwithstanding (Bolt,
1982, 361).
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This idea of gaze as a pointer is adopted in the work at hand. Nevertheless,
Bolt’s description of a “pointer” evokes the connotation of “mouse pointer” –
a technical view that does not extend well to 3D space. In this thesis, gaze
pointing is taken in a more natural sense, similar to manual pointing and not
a pointing that precisely pinpoints objects.

3.1.2 Research on Gestures in the AG WBS at Biele-
feld University

Wachsmuth, Lenzmann, Jörding, Jung, Latoschik & Fröhlich (1997) presented
a system for interactive design and exploration with a speech and gesture
interface. The system was able to recognize speech accompanied by pointing
gestures recorded using a DataGlove and an Ascension Flock of Birds. A
particularly interesting aspect of the system’s interface was its personalization
by a virtual character called Hamilton. Among other aspects, Hamilton made
the frame of reference of the system explicit and, alternatively, could also be
used as an avatar for the user, taking her or his perspective.

Subsequently, the group around Ipke Wachsmuth intensified their work on
gestures, creating classification algorithms mapping manual gestures and hand
shapes to a symbolic notation system in real-time (Fröhlich & Wachsmuth,
1998). This allowed for a top-level interpretation of the gestures, for example,
by attributing meaning to a performed gesture using a gesture lexicon or by
integrating gestures with speech (Sowa, Fröhlich & Latoschik, 1999). At the
same time, Latoschik & Wachsmuth (1998) extended their work on pointing
gestures to large screen installations and, in a follow-up paper, to direct
manipulations, such as translating and rotating objects (Latoschik, Fröhlich,
Jung & Wachsmuth, 1998). This work finally lead to ProSA (Latoschik,
2001), a framework for gesture detection, and the tATN (Latoschik, 2002), a
framework for multimodal integration.

3.1.3 The Case of Gaze

Bolt’s visionary papers (Bolt, 1980, 1981, 1982) anticipated many interesting
advantages of gaze-based interfaces and provided reasonable starting points to
approach the relevant challenges. Yet there is no follow-up paper elaborating
on the success of his projects until Starker & Bolt (1990), who describe
gaze-based interaction in a much simpler setting, with a user sitting directly
in front of a small display screen. It must thus be assumed that for that
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time Bolt’s propositions were too ambitious, given the available hardware and
software.

While Bolt was one of the first to provide a specific concept for the use of
wearable eye tracking systems in human-computer interaction, the idea of
using eye gaze to improve HCI had already been envisioned by Seymour
Papert and Marvin Minsky in 1967 (Papert & Minsky, 1967). At the time
they wrote their memo, eye movement analysis was done offline. Nevertheless,
they anticipated great opportunities for HCI using online eye tracking. One of
the examples they brought up is that of an information retrieval system where
looking at an area representing a high-level concept triggers an expansion of
this area to reveal next-level details. These ideas are quite similar to those
realized in Bolt’s work, and it is surely no coincidence that all of this work
happened at MIT.

First practical uses of eye tracking in HCI concentrated on command interfaces
for the disabled (Levine, 1981, 1984; Hutchinson, White Jr, Martin, Reichert
& Frey, 1989). Yet more fascinating and also more challenging is the idea
of using eye tracking for non-command interfaces (Nielsen, 1993), where the
system should be enabled to infer the intentions of the user, for example by
reading their eye movements. Jacob (1993) provides an early analysis and
summarizes apparent difficulties regarding the interpretation of eye gaze, such
as the Midas Touch problem (if involuntary and voluntary actions cannot be
distinguished), natural jittery motions of the eye and shortcomings of the
eye tracking equipment. At the end of his paper, he envisions a transition of
window systems from the desktop to three dimensions (as realized in virtual
reality) using these new styles of non-command interaction.

Ten years later, Jacob & Karn (2003) still attested to eye tracking in HCI
as a promising approach. Nevertheless, after summarizing the state-of-the-
art in eye gaze based HCI in 2003, they had to conclude that the slow
rate of improvement in eye tracking equipment had thus far prevented a
widespread adoption. Since then this has been in a continuous process
of change, as the costs for the required hardware equipment are steadily
decreasing while processing power and resolution are increasing at the same
time (see Section 3.2.2 on page 48).

Pomplun, Prestin & Rieser (1998) used a monocular eye tracker to record
gaze patterns during the inspection of a 3D toy airplane. The data was
recorded on 2D video and analyzed offline to elicit data on planning and focus
management. An interesting application where gaze was mapped onto objects
in 3D space was developed by Rötting, Göbel & Springer (1999). They tried
to improve the offline analysis of fixations on static real world objects in
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2.5D, i.e. 2D pictures with a fixed perspective. Their system combined eye
tracking with head tracking using a magnetic tracker. In a preprocessing
step, the depth of relevant objects was determined. They manually marked
the 2D bounding rectangles in at least two video frames taken by the scene
camera attached to the head-mounted eye tracker. They then integrated
the information about the movements of the regions in the local coordinate
system of the scene camera with the position and orientation of the head.
In this way they could derive a 2.5D reconstruction of the object position.
However, this technique achieved only a coarse tube-shaped approximation of
the object’s 3D shape (rotating the bounding rectangle). Nevertheless, their
technology had the potential to speed up post-hoc fixation analysis of real
world eye tracking by a factor of six.

In the last decade, non-command interfaces have, for example, made use of
the direction of gaze to improve visual fidelity at the point of regard. This
can be done by rendering high-resolution geometry models in the center and
models of reduced complexity in the periphery (Luebke, Hallen, Newfield &
Watson, 2000; Murphy & Duchowski, 2001), by saccade-contingent updates
(Triesch, Brian T. Sullivan, Hayhoe & Ballard, 2002) or, for example, by
applying visual effects such as depth-of-field and camera motions (Hillaire,
Lecuyer, Cozot & Casiez, 2008). These approaches adapt the visual display
to the user’s overt visual attention and may help to optimize the resource
allocation of computing power, but they are not used to communicate with
the user.

3.1.4 Multimodal Deixis for Conversational Interfaces

The type of interface developed in this thesis follows the collaborative manip-
ulation metaphor (Hutchins, 1987): it is embedded in an environment that
can be changed by the user using direct manipulation (Shneiderman, 1982).
The users have an interface intermediary at their side, such as an embodied
agent who functions as a conversational interface. The vision is that the user
can communicate with the embodied agent as if it was a human, relying on
natural language and gestures. This vision meets the criteria for Nielsen’s
noncommand interfaces (Nielsen, 1993), as the user is no longer required to
interact with a tedious user interface, but can interact with the agent in a
natural way, while the agent takes care of handling the system interface.

Embodied conversational agents (ECAs, Cassell, Sullivan, Prevost & Churchill,
2000) should be congruent in their capabilities of producing and understanding
multimodal utterances. If one side is more developed, this could either not pay
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off or even have a negative impact on the overall believability and performance.
If, for example, the system is very good at understanding the user, but does
not produce utterances on a competitive level, users might adapt to using
simpler utterances as well, and the advanced system capabilities would lie
idle. If the system produces very high-level utterances but fails to interpret
similar utterances from the user, this might be even worse, as the user might
get annoyed or frustrated.

The visual fidelity of virtual characters can already reach photo-realism and
there are highly articulated robots in real life. Techniques such as motion-
capturing or key-frame animation also allow for a realistic enlivenment of
such agents. Yet, the real challenge is to produce natural looking gestures
on-the-fly on a per task basis. Data about human behavior, such as collected
in the studies presented within this thesis, helps to improve both production
and interpretation of natural gestures. The following section provides a short
review of gesture production in agents before approaches to the interpretation
of gestures are considered.

3.1.4.1 Gesture Production

Indirect support of human-agent communication can be provided by creating
realistic gaze patterns to support the agents’ believability. Thus gaze plays
an important role in the design of ECAs (Torres, Cassell & Prevost, 1997).
Vertegaal, Slagter, van der Veer & Nijholt (2001) derive implications for gaze
behavior of ECAs in communicative situations from eye tracking studies of
human conversations. Others, such as Lee, Badler & Badler (2002), create
computational models for gaze pattern production in virtual agents based on
data on natural eye movements. Similar to this work, Raidt, Bailly & Elisei
(2007) created Hidden Markov Models to control gaze behavior suitable for
the cognitive state of the agent, based on multimodal data including gaze
recorded and labeled in previous studies. Three of the authors, Picot, Bailly,
Elisei & Raidt (2007) used computer vision implemented an online analysis of
the visual scene faced by the agent, followed by the generation of a saliency
map to locate potential fixation targets. A different approach was followed
by Torres et al. (1997) who modeled gaze behavior as a function of discourse
structure and turn-taking. Lee, Marsella, Traum, Gratch & Lance (2007) went
even further by implementing a model which drives gaze behavior depending
on conversational state and cognitive state, and on visual context.

A direct improvement of communication would require the intentional use
of gaze in ECAs. Raidt, Elisei & Bailly (2005) demonstrated that deictic
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expressions using gaze pointing in a virtual avatar could speed up selection
task performance of users compared to configurations without avatar or with
an avatar producing misleading gazes.

In a user study on the reception of gestures produced by an anthropomorphic
agent, Nobe, Hayamizu, Hasegawa & Takahashi (2000) report a high amount
of gaze on gestures. Their subjects used gaze to attend to 70.4% of the
gestures produced by the agent. This is more than expected for general face
to face human-human interaction. Yet this effect might have been caused by
participants concentrating on the agent alone and the agent producing only
relevant gestures. Gullberg & Holmqvist (2002) hypothesized that only the
absence of social pressure allowed for a high concentration on gestures in the
video with synthesized gestures used by Nobe et al. (2000). In their study on
human-human face to face interaction, Gullberg & Holmqvist (1999) found
that only 8.8% of their participants’ fixations were aimed at the gestures.
Instead, participants maintained eye or face contact, unless the interlocutors
performed the gestures in their peripheral gesture space or explicitly empha-
sized the gestures by gazing at them. Yet there are two kinds of gestures
the subjects in both studies dominantly attended to: auto-fixated facial
expressions and the concrete pointing gestures which are the topic of this
thesis.

3.1.4.2 Gesture Production in the Agent Max

In the group of Ipke Wachsmuth, the ECA Max (see Figure 3.1) has been
developed since 1999. Max has an anthropomorphic appearance and is capable
of moving his head, eyes and upper limbs in coordination with lip-sync speech
production in a similar way to humans (Kopp, 2003). This surface realization
of multimodal utterances is driven by a specification language for multimodal
utterances called MURML (Multimodal Utterance Representation Markup
Language) (Kranstedt, Kopp & Wachsmuth, 2002). Listing 3.1 shows a
MURML specification of the deictic expression “Take this bar!” with a manual
pointing gesture towards a certain Bar 1.

Kranstedt (2007) developed the MREC algorithm to select a (not necessarily
minimal) set of discriminative features for a given referent object and its
context objects. The algorithm thereby takes into account verbal expressions
and manual pointing. In a second step, the surface realization for the deictic
expression based on the selected features is specified using MURML and
delivered for execution by Max.
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Figure 3.1: The embodied conversational agent Max is able to produce and
interpret multimodal utterances incorporating speech, gestures and gaze.

During the evaluation of potential discriminative features, MREC needs to
decide whether or not to use a manual pointing gesture. For this decision, the
discriminative power of the manual pointing gesture has to be determined given
the current context objects. The evaluation is based on a pointing cone model
(see Figure 3.2) of the manual pointing gestures’ scope. The development
and parameterization of this cone model is based on data cooperatively
gathered in a study on manual pointing (Kranstedt, Lücking, Pfeiffer, Rieser
& Wachsmuth, 2006a), which is presented in Chapter 4.

Since then, the work on the production side of Max, gesture planning and
realization, has extended to iconic gestures, starting from Kopp, Sowa &
Wachsmuth (2004) and Kopp, Tepper & Cassell (2004).

3.1.4.3 Gesture Reception

In conversational interfaces, gaze input can be used as a “pointing device”
in co-verbal expressions, but there are other applications as well. Vertegaal
et al. (2001) showed in an experiment that interlocutors predominantly gaze
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� �
1 < d e f i n i t i o n>
2 <u t t e r a n c e>
3 < s p e c i f i c a t i o n>
4 Take <t ime i d=”t1 ”/> this bar <t ime i d=”t2 ”/>!
5 </ s p e c i f i c a t i o n>
6 <b e h a v i o r s p e c i d=”g e s t u r e 1 ”>
7 <g e s t u r e>
8 < a f f i l i a t e o n s e t=”t1 ” end=”t2 ”/>
9 < f u n c t i o n name=” r e f e r t o l o c ”>

10 <param name=” r e f l o c ” v a l u e=”$Loc−Bar 1 ”/>
11 </ f u n c t i o n>
12 </ g e s t u r e>
13 </ b e h a v i o r s p e c>
14 </ u t t e r a n c e>
15 </ d e f i n i t i o n>� �

Listing 3.1: Specification of a deictic expression with speech and manual
pointing gesture in MURML

at partners they are speaking to (77% of the gaze to all participants while
speaking) or listening to (88% of the gaze to all participants while listening).
This makes gaze an excellent predictor to infer the conversational attention
of an interlocutor. Oh, Fox, Kleek, Adler, Gajos, Morency & Darrell (2002)
have taken up these findings and implemented their look-to-talk interface
to trigger conversation with a conversational agent when being looked at.
They report that this perceptual interface was preferably used over a manual
push-to-talk interface in their study. Thus it seems that gaze pointing can
also stand on its own, for example, expressing to the interlocutors “it is him,
I am talking to”. In a related application context, Nakano, Reinstein, Stocky
& Cassell (2003) used the orientation of the user’s head to approximate the
direction of eye gaze. They exploited this information as a means to facilitate
mutual understanding in a dialog with the ECA kiosk MACK.

Beyond the scope of deictic expressions, gestures are also interpreted for
the purpose of turn-taking (Thórisson, 1997; Cassell, Bickmore, Billinghurst,
Campbell, Chang, Vilhjálmsson & Yan, 1998; Traum & Rickel, 2002; Less-
mann, Kranstedt & Wachsmuth, 2004), establishing joint attention (Pfeiffer-
Lessmann & Wachsmuth, 2008) or intention reading, as the following examples
document. Qvarfordt & Zhai (2005) demonstrated a tourist guiding system
that adapts its output according to gaze patterns detected in the eye move-
ments of the user. Morency, Christoudias & Darrell (2006) implemented a
recognizer to interpret gaze patterns of users. This allowed the agent to infer
whether the user was thinking about an utterance or waiting for the agent to
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Figure 3.2: One way to model the extension of pointing is using a pointing
cone. The cone is a formalized way to account for the decreasing accuracy of
pointing when pointing at distant objects.

respond. Similarly, Eichner, Prendinger, André & Ishizuka (2007) used an
online analysis of the user’s gaze patterns to monitor for successful grounding,
for example, after a deictic expression of an agent.

3.1.4.4 Gesture Reception in the Agent Max

Gesture reception in Max is handled via the frameworks ProSA and tATN
(see 3.1.2 on page 37). This enables Max to recognize manual pointing and
other types of gestures and interpret them together with speech input. Kopp
et al. (2004) extended Max’ capabilities to recognize and produce gestures
to include shape-related iconic gestures. These are based on the Imagistic
Description Trees described in Sowa (2006).

Max has only recently been enabled to interpret the user’s eye gaze by
Pfeiffer-Lessmann & Wachsmuth (2008), who used the DRIVE framework
(see Chapter A) developed in this thesis inter alia to establish joint attention
in a cooperative dialogue between Max and a human user.

3.2 Detecting Pointing in Gaze and Manual

Gestures

As has been shown, gesture and gaze were introduced in HCI in the 1980s.
Visionary ideas about multimodal interfaces that make use of gaze and gesture
have been the driving force of the research since then. Progress has always
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been tied to the development of appropriate sensing devices. In the following,
a short review of the state of sensing devices and algorithms used to detect
gaze and gesture pointing is given before investigating in detail the approaches
taken to identify referent objects.

A well-known challenge of natural conversational human-computer interfaces
is the midas-touch problem: a trigger is needed to activate referential use of
the modality, otherwise every movement has immediate consequences and
a controlled interaction is nearly impossible. An algorithm for detecting
pointing gestures thus has to provide an answer to the question “When is the
interlocutor pointing?”

In Section 2.3.1 it was argued that the typical function of a pointing gesture
is that of a vector directed at the intended referent. Although a vector might
not be sufficient to identify the referent, the origin and the direction of such
a pointing vector are also relevant cues for all other models of pointing. An
algorithm for detecting pointing gestures thus also has also to provide an
answer to the question “From where and in what direction is the interlocutor
pointing?”

3.2.1 Detecting Manual Pointing

Body movements, such as manual pointing gestures, are detected using
motion tracking (sometimes known as motion capturing) technologies. A non-
exhaustive list of tracking technologies includes inertial, magnetic, mechanical
and optical tracking.

Inertial tracking systems use gyroscopes or accelerometers to detect motions,
they are suited best for measuring velocity profiles and are not limited
by occlusions. In fact, they are not dependent on external devices and
are thus suited for motion tracking in the field. In order to determine
absolute positions and orientations, the measurements need to be inte-
grated over time, which is error prone due to the accumulation of noise
and drifts. Examples are the systems offered by Xsens Technologies
B.V. (2009).

Magnetic tracking systems consist of active markers that detect their po-
sition and orientation in a magnetic field, which is emitted by a base
unit of the tracking system. A disadvantage is that they are sensitive
to magnetic or conductive objects that will distort the magnetic field.
Examples are the Flock of Birds from Ascension Technology Corpora-
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tion (Scully & Blood, 1986) (see Figure 3.3 a) or the FASTRAK system
from Polhemus (1994).

Mechanical tracking systems measure physical deformations. They do not
require a straight line of sight and are suited to track hand postures
without occlusions. They are also often found in combination with
force-feedback systems. They are, however, restricted to smaller spaces.
Examples of mechanical tracking systems for hand postures are the VPL
Data Glove (Lanier & Zimmermann, 1986) or the CyberGlove (Cyber-
Glove Systems, 1990) (see Figure 3.3 c).

Optical marker-based tracking systems need a line of sight between a
sensory unit, typically operating in the infra-red domain, and either
passive or active markers. Positions and orientations are derived by
triangulation, so either two sensors need to detect one marker or one
sensor needs to detect several unique markers to determine a position
or orientation. Using passive markers on the body, these systems
are relatively unobtrusive, but they have problems with occlusions.
Examples are the OptiTrack system from NaturalPoint, Inc. (1997),
the Impulse system from PhaseSpace (1994), the DTrack system from
Advanced Realtime Tracking GmbH (2010) (see Figure 3.3 b) or the
devices from Vicon Motion Systems (1984).

Optical computer vision-based tracking systems are the target of active
research. They promise to be unobtrusive and flexible. Yet the systems
available at the moment work best with a well-defined static background.
Examples of research systems are the Stanford Markerless Motion Cap-
turing System (Corazza, Mündermann, Chaudhari, Demattio, Cobelli
& Andriacchi, 2006), commercial systems include Stage from Organic
Motion, Inc. (2007).

For the studies in this thesis, body movements were tracked using an optical
marker-based tracking system (DTrack). The DTrack system provides high
accuracy, and tracks 3DOF (position) and 6DOF (position and orientation)
targets. The 6DOF targets were used for an accurate tracking of the head,
the elbows and the hands. In a pre-study, a CyberGlove was used to precisely
track the more fine-grained movements of the fingers. But in the full study,
a self-made glove using 3DOF targets from the optical tracking system was
used; details will be provided in Chapter 4.

To answer the “when” question, a manual pointing gesture can be identified
in the motion tracking data if at least two constraints hold:

1. The pointing hand has a typical shape, such as depicted in Figure 2.3
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(a) Magnetic tracking,
Flock of Birds from
Ascension Technology
Corporation

(b) Optical tracking,
DTrack/Qualisys from Ad-
vanced Realtime Tracking
GmbH

(c) Mechanical tracking,
CyberGlove

Figure 3.3: Manual pointing gestures are typically tracked using a combina-
tion of magnetic or optical tracking for the position and orientation of the
hand, and a glove-based tracker for the hand posture.

2. The trajectory of the hand follows a typical velocity profile along the
three main gesture phases (preparation, stroke, retraction). The most
relevant phase is the stroke.

One way to detect manual pointing gestures has been described by Latoschik
& Wachsmuth (1998). They expressed the hand shape of a pointing hand
using the declarative description printed in Listing 3.2. They expected the
index finger to be in the process of elongation, already having passed a certain
threshold and thus being nearly extended, while the other fingers are already
curled beyond a certain threshold. The flection of the thumb is not considered.
In the same paper, they suggested that this handshape, together with a pause
in the acceleration of the forearm, are features that can be used to represent
the stroke of a manual pointing gesture.

The “where” is typically identified with the tip of the pointing finger. The
direction, however, is not as clearly defined. Intuitively, the pointing direction
coincides with the extended pointing finger. We have coined this Index-Finger
Pointing (IFP) (Kranstedt, Lücking, Pfeiffer, Rieser & Staudacher, 2006) to
contrast it with an alternative approach for determining pointing direction.
The latter, coined Gaze-Finger Pointing (GFP), includes the direction of
gaze, aiming over the tip of the index finger (see Figure 3.4). GFP is referred
to as “occlusion selection” in HCI, whereas IFP is referred to as “raycasting
selection”. The two approaches can result in significant differences in the
assumed pointing direction, as Figure 3.4 highlights.
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� �
1 Point_To := Elongating(Index) AND

2 Elongate(Index , Min(threshI )) AND

3 Elongate(Middle , Max(threshM )) AND

4 Elongate(Ring , Max(threshR )) AND

5 Elongate(Pinky , Max(threshP ))

6 => Action(Select Vector)

8 Where threshX is the threshold for the given attribute

9 and finger X.� �
Listing 3.2: The specification of the handshape of manual pointing using
the index finger, as provided by Latoschik & Wachsmuth (1998). Note that
the flection of each finger is measured, and thus a value of zero represents an
elongated finger.

Kranstedt (2007) tested both approaches in a natural human-human inter-
action and was not able to clearly identify which one describes the pointing
direction best. It could be that both approaches are used depending on other
factors, for example, that gaze-finger pointing is used when pointing to more
distant objects when the arm is raised high at eye level. Wingrave, Bowman
& Ramakrishnan (2002) compared raycasting and occlusion selection in a
fully immersive virtual reality task and found that users preferred occlusion
selection as the faster and more accurate method in their study. Yet it is
unclear how their findings extend to natural pointing in communication where
the users perceive their own body.

3.2.2 Detecting Gaze Pointing

Eye movements are detected using so-called eye trackers. Today, most systems
employ computer-vision techniques to detect pupil movements, but other
techniques are available, for example based on muscle recordings. The vision-
based systems predominantly operate in the infrared domain, where the pupil
contrasts quite well with the surrounding matter. The most important feature
of an eye tracker is its spatial resolution. While the foveal area extends about
2◦, humans can differentiate between two points separated by about one arc
minute (Velichkovsky et al., 1997). The application areas for eye tracking
have different requirements on precision and temporal resolution. Accordingly,
different kinds of eye-tracking systems are available .

Tabletop systems are fixed installations. The user has to put his head into
an opening of the device. A chin rest is used to fixate the head during
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Figure 3.4: The direction of a manual pointing gesture is not clearly defined.
The graphic shows the intuitive interpretation along the direction of the
extended finger, coined index-finger pointing. Gaze-finger pointing is an
alternative suggestion that takes into account the line of gaze.

the study. These systems are very fast and precise. Their application
domain is primarily psychophysiological research and they are less suited
for HCI.

Remote systems are less obtrusive eye-tracking devices. The user is free to
move his head, and the camera unit is placed on the table, for example
below the display of a computer system used for stimulus presentation.
The tradeoff for unobtrusiveness is a restricted area in which the head
is allowed to move and a reduced precision both in time and space.
Typical values are an arc-accuracy of below 0.5◦ and a sampling rate of
50−60 Hz, though further improvements are to be expected. Remote
systems are predestined to be used in desktop-based HCI.

Head-mounted, stationary systems are split into at least two units. One,
the camera unit (see Figure 3.5 a), is worn by the user, the other,
the computer-vision system, is located in a black-box or a PC system.
These systems offer a moderate to high precision in time and space. At
the same time, the systems have to deal with artifacts induced by the
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(a) SMI EyeLink I (b) SMI iViewX (c) Arrington Research
ViewPoint PC-60

Figure 3.5: A broad range of eye-tracking devices is available. The pictures
show different head-mounted devices that may be used in Virtual Reality. The
trend in development goes towards more lightweight devices, such as the SMI
iViewX or the Arrington Research ViewPoint PC-60.

movement, shifts of the head gear and perspective distortions. Most
systems therefore include a local head tracking function operating in a
spatial volume of 303 cm. Typical arc-accuracies are below 0.25◦ and
typical sampling rates are 600 Hz. This system can be used in desktop-
based HCI or in virtual reality installations where the user remains
stable, probably seated.

Head-mounted, mobile systems are the more lightweight relatives of the
stationary systems (see Figure 3.5 b and c). They are designed to be
used in the field, for example for point-of-sale studies or in sports to
analyze decision processes. Most units are equipped with a scene camera
that video-records the area in front of the user. In an offline process,
the fixations of the user are then overlaid over the recorded scene movie
for further analysis. For online interaction, the eye-tracking system
needs to be combined with a tracking solution to obtain the position
and orientation of the user’s head. Typical values are an arc-accuracy
of 0.5◦ and a sampling rate of 50−60 Hz.

For conversational interfaces supporting natural gestures, head-mounted
mobile systems are the system of choice. They offer a moderate temporal
resolution sufficient to detect relevant fixations and provide an accuracy
that is better than that of human interlocutors. They also provide more
freedom for movements, compared with remote systems, and are not affected
by occultation during manual gestures.
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Similar to manual pointing, identifying gaze pointing means

• to identify the time span during which the user is targeting his attention
at something and

• to derive the direction of his gaze.

Considering the literature, two necessary preconditions can be identified.
First, the eye should be fixating the target object, and second, the dwell time
of the fixation should, according to Velichkovsky et al. (1997), be greater than
250 ms. However, these preconditions are not sufficient to separate voluntary
gaze pointing from other gazes during sentence processing or involuntary
gazes due to distractions. One way to deal with this is to require more explicit
gaze pointing gestures, either by requiring an increased dwell time or by
watching out for fixation patterns, such as a sequence of fixations starting on
the interlocutor, then moving to the intended referent object and then moving
back again on the interlocutor. Even then, false positives, i.e. detections
of gaze pointing events that are in fact the result of different processes, are
likely. In single-modality gaze-based interaction systems a typical threshold
for fixation duration of about 500 ms is used to identify application-relevant
gazes. Velichkovsky et al. (1997) recommend a threshold of 450− 500 ms.
This general threshold can be reduced in highly-specific applications and with
trained users, e.g. in gaze-typing systems. More robust approaches with
relaxed requirements can be applied in multimodal interfaces, where gaze
pointing is accompanied by speech and manual pointing. In such interfaces,
the detected potential gaze pointing events are considered as hypotheses, and
subsequent multimodal integration determines whether they are relevant or
not.

Several algorithms have been developed to identify fixations in the raw eye
movement data provided by the eye-tracking devices. Duchowski (2007)
reviewed two algorithms proposed by Anliker (1976), the position-variance
method and the velocity detection method. The position-variance method
is based on the fact that during fixations the eye movement is relatively
stable. The algorithm identifies a fixation if M out of N eye positions lie
within an ε-area around the mean of the N positions. The values for M, N
and ε have to be determined empirically. The minimum latency before a
fixation can be detected is contingent on M. The velocity detection method is
based on the fact that saccades have a higher velocity than the smaller eye
movements during a fixation. The velocity during a small sample window
of size N is measured and compared against a threshold V. If the velocity
is smaller than V, the sample window is considered to belong to a fixation.
Duchowski suggests combining both methods to bolster analysis and notes
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that the velocity detection method usually has a lower latency. Based on the
symmetric velocity profile of a saccade, one could also estimate the onset and
the location of a fixation. This would require an eye-tracking device with a
high temporal resolution.

Deriving the direction of gaze in 3D space is straightforward. It requires
both the orientation of the eye relative to the user’s head – this is provided
by the eye tracker – and the position and orientation of the user’s head
in the world, which can be tracked using one of the techniques described
above for tracking the hands during manual pointing. The HCI system needs
to integrate the information from both tracking systems to determine the
position and orientation of the eye in world coordinates, from which the 3D
viewing direction can be derived.

3.2.3 Which one is faster, gaze or manual pointing?

If one has to decide which modality to use for object selection tasks, the
speed of the interaction could be the decisive factor. Tanriverdi & Jacob
(2000) compared object selection with gaze against object selection with the
hand (the users were required to touch the objects) and found that gaze is
significantly faster when selecting distant objects that would require additional
movements to select manually. Cournia, Smith & Duchowski (2003) came to
contradicting results when using a vector-based object selection algorithm
for both modalities. They demonstrated significantly faster object selection
using manual selection than when using gaze.

These seemingly contradictory findings might be the product of different ways
of handling the “when” question. For gaze-based interaction, both studies
required high dwell times before an object was selected. Manual selection,
however, was triggered with the press of a button in the study of Cournia
et al. (2003), while Tanriverdi & Jacob (2000) used a dwell time which was
carefully adjusted to the dwell time used for the gaze-based selection. Thus,
the results might have been different if Cournia et al. (2003) had either used a
button to trigger gaze-based selection as well, or if they had used a dwell time
for both of their selection techniques. In general, gaze can be expected to
reach the target earlier than any manual interaction, but a certain dwell time
needs to be taken into account to be sure that a target is fixated intentionally.
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3.3 Interpreting Pointing

In Chapter 2 several informal, qualitative descriptions of pointing gestures and
their interpretations have been reviewed. It seems, that scientific discussion
so far lacks a rigid formal approach to model pointing. In the following, an
attempt is made to come up with such a formal model, to lay grounds for a
data-driven approach to model pointing in the remainder of this thesis.

Once a pointing gesture p ∈P has been detected, it needs to be interpreted
I(p) to identify its referent in the referential domain D :

Iideal : P → D (3.1)

p 7→ r
with P = {(~o,~v)|(~o,~v) ∈R3×R3}

The abstract representation of a pointing gesture used here is that of a tuple
(~o,~v) of the origin of the pointing gesture and its direction. The referential
domain D is given by the situational context; it may contain all objects visible
at the moment of pointing or else be further restricted by dialogue history,
for example when the interlocutors have agreed on a certain type of objects
as being relevant. In the following, this interpretation process is referred to
as dereferencing pointing. The ideal interpretation Iideal provides the one and
only referent for each pointing gesture. In reality this is unlikely to happen.
A more realistic version of I thus maps a pointing gesture to a set of possible
referents, the extension of p.

I : P → E (3.2)

p 7→ {r|r ∈ E }
with E ⊆ D

It is also convenient to provide a ranking or, more generally, a weighting of the
possible referents, sometimes further restricting the set of possible referents
by a threshold. The dereferencing can then be decomposed into a selection S
and a weighting W of possible referents.

I : P → {x|x ∈D×R} (3.3)

S : P → {r|r ∈D} (3.4)

W : P×D → R (3.5)

I : p 7→ {(r,w)|r ∈ S(p)∧w = W (p,r)} (3.6)
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3.3.1 Dereferencing Pointing based on Direction

In the following section, several approaches for modelling the dereferencing
function I will be presented. The approach most often found in HCI is the
vector extrapolation method. It is a representative of the direction-based
approaches, which have to deal with the problem that the distance of the
referent pointed to is unknown and thus there can be, in principle, an infinite
number of potential referents. To overcome this problem, heuristics or con-
textual information may be used to narrow down a set of potential referents.
The second category consists of location-based approaches, which use either
temporal or spatial integration to estimate the location of potential referents.

3.3.2 Vector Extrapolation

This method is technically often also referred to as raycasting selection and it
is the standard picking operation of many interactive 3D graphics systems.
As explained in Section 2.3.1, manual pointing is often associated with vector
extrapolation from an origin ~o, usually the tip of the pointing device, and an
orientation vector ~v. The function S can then be defined as an intersection
between the geometries of the objects in D and the pointing vector given by
~o+d~v, with d going from 0 to infinity. The mapping from the objects to their
geometries is handled by G, all geometries are in DG.

Svector(p) := {r|(G(r)∩~o + d~v) 6= /0} (3.7)

with G : D → DG

∩ := geometrical intersection

r ∈ D

~o,~v ∈ R3

d ∈ R

The operation ∩ is a magic intersection function, which solves a system of
equations describing geometries, and returns the solution if an intersection
is found, or /0 if the intersection is empty. The weighting function W for
vector extrapolation which represents common uses is W (px,r) =−d, with d
being the distance from the object to the pointing origin. According to this
weighting function, objects closer to the origin are rated higher than more
distant objects, and thus closer objects are preferred over distant objects.

Vector extrapolation for gaze pointing has been used by Duchowski,
Medlin, Cournia, Murphy, Gramopadhye, Nair, Vorah & Melloy (2002) and
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Barabas, Goldstein, Apfelbaum, Woods, Giorgi & Peli (2004). They use the
position of the eye as origin and direct the pointing vector through the 2D
fixation on a plane of projection which is provided by the eye tracking system.
Both works identify the closest object as the only possible referent. Examples
for uses of vector extrapolation for manual pointing are Lewis, Koved &
Ling (1991) and their successors Codella, Jalili, Koved, Lewis, Ling, Lipscomb,
Rabenhorst, Wang, Norton, Sweeney & Turk (1992), who used it in their
“Rubber Rocks” game.

3.3.3 Shape-based Approaches

The vector-based approach can be generalized to shape-based approaches if G
is extended to support shapes (or geometries) for the pointing gesture as well.

Sshape(p) := {r|(G(r)∩G(p)) 6= /0} (3.8)

In their study on raycasting selection, Wingrave & Bowman (2005) implicitly
use a cone-based approach when accepting 10 degrees of angular error during
selection. This is a common method to compensate angular errors within the
model, a claim that is also supported by Wingrave & Bowman (2005). The
geometry of a cone can be described as

Gcone : 0 ≥ ~y · ~v−|~y||~v|cosφ (3.9)

with ~y = ~x−~o

Besides the origin ~o and the orientation ~v, the cone is specified by its aperture
2φ . In Wingrave & Bowman (2005), the aperture was 20◦ or φ = 10◦.

Olwal, Benko & Feiner (2003) use shape-based approaches in their augmented
reality framework, where they call them “SenseShapes”. They use different
geometries, for example a pointing cone for the hand, to model the region of
interest for individual sensors. Their approach was detailed in Kaiser, Olwal,
McGee, Benko, Corradini, Li, Cohen & Feiner (2003a) where the authors
also provide more details on their weighting function. The weighting function
can be based on several features: accumulated duration within the area of
interest, stability (1 - number of enterings/maximum number of enterings
for any object), visibility (proportion of the projected area of interest taken
up by the object) and the ranking for center-proximity. Only features that
are appropriate for a specific modality are used, for example visibility is not
considered for manual pointing. For center-proximity two different features
are calculated: the distance from the closest point of the object to the center
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of the SenseShape, as well as the average distance of all points to the center
of the SenseShape. The description in Kaiser et al. (2003a) focuses on the
framework and an evaluation study and does not provide more details on the
parameters of the cones used for gaze or manual pointing. It is interesting
to note that during multimodal integration different combinations of the
rankings are used, depending, for example, on signals in the speech channel.
This approach is similar to the procedure for multimodal integration used in
this thesis, which is described in Section 6.5.

Shape-based Approaches for Manual Pointing An interesting shape-
based approach has been reported by Barakonyi, Prendinger, Schmalstieg &
Ishizuka (2007). They turn the problem of inaccurate pointing upside down
by associating dynamic selection volumes (boxes or spheres) with each object.
These selection volumes are then used for a classic vector-extrapolation based
selection. The volumes are updated in size depending on the objects’ distances
to the viewpoint and are adjusted to avoid overlapping. This is, in effect,
similar to a cone-based approach, but induces higher computational costs,
since proxy geometries for the selection process have to be updated in real-time
for all visible objects.

3.3.4 Dereferencing Pointing based on Location

Several approaches exist that try to infer the location pointed to either within
a single modality by temporal integration or between modalities by spatial
triangulation or using holistic approaches. Knowing the exact location pointed
to is helpful for differentiating between foreground and background objects.
This is difficult in direction-based approaches, as the pointing rays will hit
the background most of the time. Additionally, it enables one to point behind
objects, especially in the case where foreground objects are transparent.

Triangulation

A straightforward approach to locate the point of regard of a fixation is spatial
triangulation. Examples of successful applications of spatial triangulation
are Duchowski et al. (2002) and Kwon, Jeon, Ki, Shahab, Jo & Kim (2006).
They estimate the depth of the fixation by intersecting the optical axes of the
two eyes converging on the target (see Figure 3.6). However, the two visual
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(a) top view (b) side view

Figure 3.6: Using spatial triangulation, the depth of a fixation can be
calculated. However, usually the two visual axes of the eyes will not intersect
in 3D space. Seen from one perspective (a, top view) this might be the case,
but not if another perspective is taken (b, side view).

axes will usually not intersect due to noise and inaccuracies of the eye tracker
or in the natural sight of the participant.

The following equations assume a coordinate system with an origin between
the eyes of the observer. Given the positions of the two eyes ~ale f t and ~aright ,
as well as the fixations of both eyes ~sle f t and ~sright on the plane of projection,
we can derive the following parameterized line equations ~gle f t and ~gright for
the visual axes as follows:

~gle f t = ~ale f t + µ( ~sle f t− ~ale f t)

~gright = ~aright + η( ~sright− ~aright)

The points ~fle f t and ~fright on both visual axes in Figure 3.6 b are the points

with the lowest distance to the other axis. The point of fixation ~f then is the
mean of ~fle f t and ~fright .

This approach, though, has some disadvantages. First, the physical parameters
such as the height, the disparity and the geometry of the eyes vary between
users and would have to be measured for each person. Also, one of the eyes
typically dominates the other, that is, this eye’s fixations are likely to be more
precise and accurate than those of the other. More generally, users may have
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different behavioral patterns in their vergence eye movements. Together with
device-specific systematic errors and noise in the angles measured by the eye
trackers this will lead to differences between the real and the approximated
visual line. These parameters are not taken into account by this algorithm. An
accurate calibration procedure could help to estimate some of the parameters.
But to get reasonable data, calibration may have to be repeated several times,
which would make it a tedious procedure. As the maintenance of an accurate
tracking requires a recalibration every time the eye tracker slips, this would
soon be tiring. Section 5.6 presents data on accuracy and precision from a
study where spatial triangulation was used to estimate the point of regard in
3D.

Temporal Triangulation The difference between spatial and temporal
triangulation is that spatial triangulation uses several pointing rays targeted
at a referent from different positions (different modalities) but simultaneously,
whereas temporal triangulation uses the pointing rays from a single origin but
at different, consecutive points in time. In principle, the same equations as
for spatial triangulation can be used. The drawback of temporal triangulation
is its increased latency. The system has to wait for shifts in the position of
the origin of the pointing ray that are sufficiently different from the previous
position. However, if only monocular eye tracking is possible or the point
of regards can be calculated post hoc, temporal triangulation can be an
option. Mitsugami, Ukita & Kidode (2003) used temporal triangulation to
estimate the depth of gaze fixations, but only in an offline post-processing of
eye-tracking data.

Holistic Approximation via a Parameterized Self-Organizing Map

An alternative approach to triangulation has been proposed by Essig, Pom-
plun & Ritter (2006) for determining the 3D point of regard. They used
a Parameterized Self-Organizing Map (PSOM), a smooth high-dimensional
feature-map (Ritter, 1993) that adapts to the viewing behavior of the user
and the visual context. The PSOM learns the mapping between the 2D
coordinates of the fixations on a display and a fixated 3D point of regard.

The idea is to replace the fixed mapping provided by the linear algebra
triangulation with a flexible mapping provided by a machine learning approach.
This mapping translates the 2D coordinates provided for both eyes by the
eye tracker to a 3D coordinate describing a singular binocular fixation in
3D space. This mapping will have to be learned and thus will require user
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interaction. The 2D calibration procedure required for the 2D eye-tracking
software will thus be followed by a 3D calibration procedure using a 3D grid
of points. Another requirement therefore is that the learning procedure is as
smooth and fast as possible, as relearning will be necessary every time the
eye-tracking device slips.

The PSOM is derived from the SOM (Kohonen, 1990) but needs less training to
learn a non-linear mapping. It consists of neurons a∈ A with a reference vector
wa defining a projection into the input space X ⊆ Rd . The reference vector is
defined as wa = (xl,yl,xr,yr,xdiv) with (xl,yl) and (xr,yr) being the fixations on
the projection plane measured by the eye tracker. As the horizontal distance
of the fixations has a significant contribution to the determination of the
depth, it is added as an additional parameter xdiv = xr− xl to wa.

To train the PSOM, all 27 points of a three-dimensional 3×3×3 calibration
grid are presented consecutively, and the corresponding wa are measured.
From this, one can derive a function w(s) mapping the coordinates of the 3D
grid onto the reference vectors. For this, w(s) is parameterized as follows:

w(s) = ∑
a∈A

H(a,s) ·wa

with H(a,s) = 1 for s = a
H(a,s) = 0 ∀s 6= a;s,a ∈ A

In this case, A is a grid of 3×3×3 with 27 neurons

A = {axyz|axyz = x~ex + y~ey + z~ez;
x,y,z ∈ {0,1,2} }

H : A×R3→ R

To meet the required conditions, H is decomposed according to the product
ansatz:

H(x~ex + y~ey + z~ez,sx~ex + sy~ey + sz~ez)

= H(1)(x,sx) ·H(1)(y,sy) ·H(1)(z,sz)

For the one dimensional function H(1) : {0,1,2}×R→ R the following holds:

H(1)(n,s) = 1 for s = n

H(1)(n,s) = 0 ∀s 6= n;s ∈ R,n ∈ {0,1,2}
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As n can only take three different values, three cubic polynomials can be
found, matching the requirements:

H(1)(0,s) =
1
2

s2− 3
2

s + 1

H(1)(1,s) =−s2 + 2s

H(1)(2,s) =
1
2

s2− 1
2

s

Thus w(s) is constructed in such a way that the coordinates of the 3D grid
can be mapped to the 2D positions of the fixations. To find the fixation one
has then to find the solution of the inverse function numerically using gradient
descent, which is done in the network’s recurrent connections.

Essig et al. (2006) tested their approach in a desktop setting on a static
anaglyphic stereo projection with dot-like targets. In their setting, the PSOM
approach reduced the tracking error to 45% of the error produced by the
geometric approach.

In the study presented in Chapter 5.6, a PSOM approach is compared to
a geometric approach in a more realistic scenario with virtual objects in a
desktop virtual reality scenario using shutter-glasses.

3.4 Integrating Multimodal Deixis

This thesis concentrates on the processes and models required between the
detection of a gesture and the identification of its extension. The next
step in processing multimodal deictic expressions is the integration of the
contributions of the individual modalities. In the following, a selection of
technical approaches to multimodal integration is briefly reviewed with the
aim of deriving requirements which the results provided by the interpretation
of the pointing gesture have to meet.

Koons, Sparrel & Thorisson (1993) created a 2D interface allowing for si-
multaneous speech, gaze and gesture input. The multimodal integration
was achieved using frame-based representations created by modality-specific
parsers. Their first prototype concentrated on deictic gestures (manual and
gaze pointing) in an application scenario where objects had to be placed and
moved on a map. In a second prototype (Sparrell & Koons, 1994), 3D objects
were manipulated and iconic gestures were interpreted as well.
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Latoschik (2002) used augmented transition networks to integrate speech and
gesture. The dereferencing of individual modalities is done using SpaceMaps,
that feed ranked lists of possible referents into the ATN. An extended version
interpreted multimodal dereferencing as a fuzzy-based constraint satisfaction
problem (Pfeiffer & Latoschik, 2004).

Kaiser, Olwal, McGee, Benko, Corradini, Li, Cohen & Feiner (2003b) demon-
strate how mutual disambiguation greatly enhances the referencing process
in the multimodal—speech and gesture—case, using cone-based object in-
tersections for gestures. Their multimodal integration unifies typed feature
structures which are constructed from the ranked lists of possible referents
provided by the modality specific pointing modules. The unification is done
in a generalized chart parser.

The aforementioned approaches to multimodal integration seem to be compat-
ible with a basic set of information regarding the extension of an individual
pointing gesture: a list of candidate objects, possibly ordered according to
their relevancy. The approaches followed by Latoschik (2002) and Kaiser et al.
(2003b) explicitly also require a history of such lists of candidate objects to
support the integration of asynchronous contributions. These requirements
are compatible with the definition of the interpretation function given in
Section 3.3. The selection of candidates is handled by S and the ranking
can be provided by the weighting function W . The temporal aspect is not
explicitly represented in the interpretation function, but it is an inherent
aspect of the processes.

3.5 Summary

Gaze and manual pointing gestures have been topic of HCI at least since
Bolt’s work in the 1980s. They are often guided, for example by auditory,
force or visual feedback, and they may require a more tool-like pointing usage,
both in motion and timing. Interaction using eye gaze has been envisioned
as early as interaction using manual gestures, but the moderate technical
progress in this area has slowed things down pre-millennially compared to
interaction with manual gestures.

The vision of a conversational human-computer interface which is able to
understand natural pointing gestures with hands or eye gaze is within reach.
A detailed account of current work on life-sized embodied conversational
agents (ECAs) has been given. The ECAs of today are already able to
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produce a variety of human communicative gestures and facial expressions.
A review of the features that have been identified as relevant to improve
the communicative functions of the ECAs on the production side has been
presented. This review provided viable insights on the relevance of eye gaze
and manual gestures for human-human or human-agent communication.

Three major processes for understanding pointing have been identified: the
detection of the pointing gesture, the dereferencing process in which possible
referents are identified (often, but not mandatory unimodally) and multimodal
integration. This thesis is primarily concerned with the process of identifying
referents. The process of detecting the pointing gesture precedes this step and
defines the kind of input that is provided for the identification process. The
interpretation process similarly has to provide viable input to multimodal
integration and the basic requirements for this have been identified in this
chapter.

Regarding the timing of gaze pointing, two algorithms for identifying fixations
in raw eye movement data have been presented. For manual pointing a declar-
ative description of a pointing handshape has been found which formalizes
the description given in Chapter 2. Both contributions add valuable informa-
tion on the when, which can directly be used in implementing the software
framework.

Concerning the where-question, two alternative models for the direction of
manual pointing gestures have been introduced: index-finger pointing and
gaze-finger pointing. The index-finger pointing model covers the common
conception of the direction of pointing presented in Chapter 2. The gaze-finger
pointing model is based on the direction defined by the gaze aiming over the
tip of the pointing finger. It has been found that manual pointing gestures
have a technical equivalence in HCI, namely raycasting selection or occlusion
selection. Both techniques are used for object selection, which is the HCI
equivalent of pointing to objects.

Regarding the which-question, the model of a pointing cone has been intro-
duced. The pointing cone has already been successfully used to evaluate the
discriminative function of a pointing gesture in gesture production. As an
important step, a formalization of models for the extension of pointing has
been developed to summarize and unify the findings so far. On the conceptual
level, direction-based and location-based approaches are distinguished. The
vector extrapolation model and shape-based models, such as the pointing cone,
are examples of direction-based approaches. Examples for location-based
approaches are spatial or temporal triangulation or holistic approaches, such
as the presented machine-learning algorithm based on PSOMs. Especially
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the location-based approaches promise a high spatial accuracy and should be
superior to the direction-based approaches. However, they will only work for
gaze pointing, as they require at least two valid directions of pointing from
different origins.

Details on several tracking technologies have been provided, not only to give
an account of current devices for HCI, but also in preparation of the studies
which will be presented in the following chapters. Tracking technology for an
accurate tracking of gestures in 3D is one of the supporting columns of the
scientific methodology which has been developed to address the remaining
open issues on the where and which of pointing.
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Chapter 4

Manual Pointing

In this chapter the questions on the where and the which of manual pointing
are approached. To this aim, a study has been designed and conducted to
assess the morphology of the referential space of manual pointing. Particularly
accuracy and precision are measured to describe the quantitative aspects of
manual pointing gestures. Accuracy thereby refers to the degree of concor-
dance between a conducted pointing gesture and the ideal pointing gesture
under the vector extrapolation model. Precision refers to the similarity of
different pointing acts. In the focus of the study are two interlocutors interact-
ing over a domain of possible referents. The aim was to elicit natural deictic
expressions and gather quantitative data on the position and orientation of
the index finger during manual pointing acts in particular.

In pursuing these theoretical questions there was also a methodological chal-
lenge. Different modalities needed to be observed with a high precision and
accuracy in real-time. Standard procedures, such as the recording and anno-
tation of videos did not provide satisfying data. This meant that different
recording technologies had to be synchronized during the study and a large
amount of heterogeneous multimedia data had to be collected. In preparation
for the analysis, these recordings then had to be integrated, checked for
quality and annotated manually. Especially quality control and annotation
proved to be difficult with standard procedures and software tools. As a con-
sequence, the Interactive Augmented Data Explorer, a framework for studies
on multimodal interactions was developed (see Section 4.6), which combines
established scientific procedures with innovative techniques and integrates
well with the workflow of the study. The presentation of this framework
constitutes a second core theme of this chapter.
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The following Section 4.1 provides background information on the development
of the study. The empirical questions are detailed in the subsequent Section 4.2,
before the design and set-up of the study is presented. The aforementioned
methodological challenges are presented in Section 4.5 and the developed
solution is presented in Section 4.8. The results are presented in Section 4.9.

4.1 Deixis in Construction Dialogues

The following study on pointing has been a conjoint effort together with
Alfred Kranstedt, Andy Lücking, Hannes Rieser, and Ipke Wachsmuth in
the contexts of the projects B3, Deixis in Construction Dialogues, and C3,
Processing Instructions, of the CRC 360. Researchers from at least three
different perspectives, namely linguistic theory building (Andy Lücking and
Hannes Rieser), speech and gesture production (Alfred Kranstedt and Ipke
Wachsmuth) and speech and gesture understanding (Thies Pfeiffer and Ipke
Wachsmuth) met in this enterprise to create an annotated corpus of pointing
games to lay grounds for their research. Andy Lücking’s main contributions to
this study were in the study design and the qualitative annotation of speech
and gesture. Alfred Kranstedt focused on the study design, the conduction
and the modeling of the scenario. The author’s own contributions comprised
the study design, the development of the technological framework, the analysis
and the visualizations of the tracking data.

The author joined the group of the B3 project (Kranstedt, Lücking, Rieser,
Wachsmuth) in July 2004, after half a year of cooperations with the former
project members (Peter Kühnlein, Jens Stegmann). At this time, the project
B3 had successfully conducted a study on co-verbal pointing that had been
recorded using video cameras (see Figure 4.1). The analysis of this corpus had
been achieved by annotating the video on a frame-by-frame basis to estimate
the positions of the participants’ pointing hands within each frame (see
Lücking, Rieser & Stegmann (2004) and Kranstedt, Kühnlein & Wachsmuth
(2004)). However, since pointing gestures are performed within 3D space, the
2D projection on the video film resulted in a loss of information that could
not be compensated for. Thus, the results of this first study concerning the
precision of pointing were not as reliable and precise as had been hoped.

With the technology developed in the course of this thesis, the afore-mentioned
study was replicated using state-of-the-art tracking technology to precisely
record the pointing movements of the participants. The motions of relevant
body parts (fingers, hands or head) were captured in terms of absolute po-
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Figure 4.1: A screenshot from a previous study on co-verbal pointing shows
the difficulties in estimating the exact pointing direction (taken from Pfeiffer
et al. (2006)).

sitions and orientations in all three spatial dimensions without occlusions
or perspective distortions. Moreover, this data was directly accessible for
statistical analysis, without the need of manual annotations of finger positions.
However, a manual annotation to identify the relevant phases of the point-
ing gestures was still required. Here again, virtual reality techniques were
developed by the author that assisted in the annotation process by providing
interactive visualizations of the recorded motion capture data and by making
these recordings an object to manual annotation. The visualizations further
helped to assess the quality of the recordings and to improve the overall
quality of the gathered data.

In the end, an extendable methodological approach was developed that
comprised audio, video and body movement recordings as well as human
annotations. For this purpose, the IADE (see Section 4.6 or Pfeiffer et al.
(2006)) was created, which supports both the recording of human-human or
human-computer interactions, as well as the integration and visualization of
synchronized multimodal recordings in a simulative setting. This is a novel
experimental approach in the study of linguistic behavior.
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4.2 Study Objectives

In the following, open questions posed in Chapter 2 and Chapter 3 are
rephrased and substantiated, which form the starting points of the study
presented in this section.

• How does manual pointing to objects work? There is a tradition of
associating pointing with a vector and somehow deriving the referent
object based on this vector. Yet, to the knowledge of the author, no
substantial model for this process has been proposed. The study will
collect precise data on manual pointing acts to approach this question.

• How accurate is manual pointing? Data on the recognition of pointing
gestures has been presented in Chapter 2. But is it only a problem that
can be attributed to the recipient if the interpretation of a pointing
gesture fails? How accurate, in the first place, is the pointing gesture
itself, considered from an objective perspective?

• What defines the direction of pointing? If the vector extrapolation
model is applied, is the direction of the pointing gesture defined by the
index-finger alone (Index-Finger Pointing) or by the direction of gaze
of the producer aiming over the top of the index finger (Gaze-Finger
Pointing)?

• Is there an interaction between manual pointing and speech? Are there
differences in pointing gestures when they are produced co-verbally or
not?

Throughout this thesis, the following definitions of accuracy and precision are
used:

accuracy The term accuracy describes, how close each value obtained using
a certain measurement system is to the real value. If the accuracy of a
measurement system is high, then the measured values are close to the
real values. The lower the accuracy of a measurement system is, the
larger the errors get between the observed values and the real values. A
low accuracy can be the result of a systematic error in the measurement
system, e.g., a wrong assumption in the underlying model.

precision The term precision describes, how close the values obtained using
a certain measurement system are when a specific real value is measured
repeatedly. If the measurement system has a high precision, repeated
measurements of the same real value provide measured values that are
close together. However, they do not necessarily have to be close to
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Figure 4.2: Snapshot of a session in the study. The description giver, who
is sitting on the left, is pointing at objects on the table. The object identifier,
here on the left-hand side of the description giver, tries to identify the referent.

the real value (which is described by the accuracy of the measurement
system). If a measurement system has a low precision, repeated mea-
surements will show large differences. If a system has a low precision,
increasing the sample size could help to increase precision by averaging
over several measurements.

If precision and accuracy of a measurement system are high, the system is said
to be valid. Thus, when searching for models to describe manual pointing, one
strives for such models that build the basis for a valid measurement system
which offers high precision and accuracy. In this sense, the terms accuracy
and precision are also used when referring to the quality of the models.

4.3 Study Design

The empirical study involved two participants for each trial who were engaged
in a restricted object identification game. Each participant was assigned a
certain role; one was the Description Giver (DG) and the other the Object
Identifier (OI). The game was designed in such a way as to elicit deixis
using manual pointing gestures, either co-verbal or standalone. The game
was repeated in two trials with differently positioned objects and in random
order. In one trial the DG was allowed to use speech and manual gestures
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(henceforth Speech and gesture trial (S+G trial)) and in the other trial the
DG was restricted to use manual gestures only (Gesture-only trial (G trial)).

The interaction between DG and OI was restricted to avoid uncontrollable
negotiation processes. Within each trial, 32 objects were demonstrated in a
controlled order by the DG and identified by the OI along the following steps:

1. start of a new identification game

2. the object to demonstrate was presented to the DG on a display (M1 in
Figure 4.4) via remote control

3. DG referred to the object on the table (S+G trial or G trial)

4. OI identified the possible referent using a pointing-stick

5. DG gave restricted feedback (yes/no)

6. in both cases, the identification game terminated and the participants
began with step number 1 again, until all 32 demonstrations were
completed

The procedure was explained to both interlocutors at the beginning of the
session until all questions had been answered. The task was easily understood
and there was no need for repetitions. While participants were asked in the
G trials to generally use manual gestures to demonstrate the objects, they
were not restricted to use a certain type of gesture and also the experimenter
made no demonstrations, so as not to bias the genuineness of the participant’s
pointing behavior.

4.4 Domain of Possible Referents

Both OI and DG were located around a real table (70 cm× 155.5 cm) with 32
parts of a Lorentz Baufix toy airplane, the experimental domain. The objects’
centers were lined up on an underlying grid, ensuring that they are laid out
equidistantly (Figure 4.3).

With respect to the measurements of pointing accuracy that will be presented
later, some data on the perceived layout of the objects on the table from the
perspective of the DG are provided in this paragraph. The distance between
the centers of the objects of the same row was 20 cm, the distances between
the DG and the rows are shown in Table 4.1. The table also shows estimates
of the angular differences the DG could perceive between the rows. The angle
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Figure 4.3: The domain of possible referents was divided up into 8 rows and
4 columns, counted from the perspective of the description giver (DG) sitting
to the left. It covered an area of 70 cm× 155.5 cm. In the study, the object
identifier (OI) stood on the right side of the table. In the PDF version of this
paper, a click on the image loads a 3D model of the table and the objects of
the domain (Acrobat Reader might be required for that).

γ = arctan h
x is specified between the horizontal line of sight of the DG and

the direct line of sight straight to the specific row. These angles depend
on the height of the description givers, so the table provides values for two
exemplary heights, 50 cm and 70 cm, measured in seating position, with the
surface of the table at 0 cm. Note the differences in angles between different
rows (δr,r+1 in Table 4.1): they specify the minimal angular distance between
two objects as perceived by the DG. The data in Table 4.1 can be used to
estimate the maximum deviation a pointing gesture can have from the ideal
pointing direction before it could be mistaken as pointing to a different object.
If the origin of the pointing vector is at gaze position and the direction lies
exactly on the line of sight to the center of the demonstrated object, then the
error should be less than α = 1

2δr,r+1. For a larger error, the pointing gesture
could be interpreted as referring to a different object in the next row.
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Table 4.1: Configuration of the pointing domain. The distances x
are given from the position of the DG, also the angles between the horizontal
line of sight and the direct line of sight straight to the row, for two sizes of
description givers (in seating position, measured from the table surface). In
addition, the difference in angle between the current row r and the following
row r + 1 is given as δr,r+1.

row r distance x
h=50cm h=70cm

γ50cm δr,r+1 γ70cm δr,r+1
1 7.75cm 81.2 20.2 83.7 19.3
2 27.75cm 61 14.7 68.4 12.7
3 47.75cm 46.3 9.9 55.7 9.8
4 67.75cm 36.4 6.7 45.9 7.3
5 87.75cm 29.7 4.8 38.6 5.6
6 107.75cm 24.9 3.5 33 4.3
7 127.75cm 21.4 2.7 28.7 3.3
8 147.75cm 18.7 − 25.4 −

4.5 Data Acquisition

DG and OI were placed in the area of the TRI-SPACE virtual environment in
the AI Lab at Bielefeld University to utilize its marker-based optical tracking
system. The motion tracking system (Advanced Realtime Tracking GmbH,
2010) consisted of nine cameras positioned around a cube of 2.6 m × 2.6 m ×
2 m (see Figure 4.4), in which the study was set up. Two video cameras were
positioned to provide one perspective from the side (see Figure 4.5 a) and
one from above the OI. Only the DG was motion-tracked. He was sitting on
a stool equipped with carefully positioned markers for the tracking system,
measuring arm, index finger, hand and head movements. All DGs who entered
the analysis were right-handed. Speech was captured by the DG’s headset.
The whole set-up with the prepared DG can be seen in Figure 4.5 (a), a
screen shot from our video recordings. The special gloves used to track the
stretched index finger are displayed in Figure 4.5 (b).

In a pre-study, the optical tracking system was used for tracking head and
arms only. The hands were tracked using a CyberGlove (CyberGlove Systems,
1990) to obtain the full configuration of each hand. After five sessions, however,
it turned out that some participants felt impeded by the cable-bound gloves,
which resulted in a robot-like use of the pointing hand. This hampered the
naturalness of their pointing behavior. Thus the CyberGloves were replaced
by self-made gloves built from lightweight and flexible gloves normally used
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Figure 4.4: The technical set-up of the study. The interaction area with
the domain of possible referents on the table in the middle is surrounded
by tracking cameras and video cameras to record every movement of the
description giver.

for golfing (see Figure 4.5 b), to which optical markers for the tracking system
were attached. The markers were positioned on the second proximal and
distal phalanges of each index finger. In the critical phase of manual pointing,
the stroke, the index finger is partly extended, and thus the markers can be
seen easily by the camera array. The markers on the phalanges provided a
reliable pointing direction for Index-Finger Pointing even in cases when the
finger was not fully extended. Subsequent tests showed that the new gloves
eliminated the robot-like pointing problem.

Besides video and motion data, the utterances of the participants were
recorded using microphones. This was relevant for the S+G trials as well
as for the G trials, where the DG had to affirm a correct identification with
a single “yes” or “no” for validation purposes. The audio recordings were
mixed into the two video recordings on the fly to reduce synchronization
overhead. Video and motion capture data were synchronized visually during
a postprocessing step, using the time signal of the motion capturing system
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(a) Video camera perspective (b) Self-made soft gloves for optical tracking
of the index finger

Figure 4.5: (a) The study was recorded using two video cameras, here showing
the side perspective, with the DG to the left. The system time needed for
synchronizing motion tracking and video recording is displayed on a monitor
on the floor. (b) Self-made gloves were used to track the DG’s index finger.

presented within each camera’s perspective (see M2 and M3 in Figure 4.4 and
the display in the lower part of Figure 4.5a).

4.6 The Interactive Augmented Data Explorer

(IADE)

For the acquisition of the data during the trials and the integration and analysis
of the multimodal data, the Interactive Augmented Data Explorer (IADE)
was created (Pfeiffer et al., 2006). The data and process flow supported by
IADE during the recordings is depicted in Figure 4.6.

During the recording of the study, IADE defined the primary time signal
against which all other recording facilities were synchronized. While the
motion capture system was directly connected to IADE, video recordings
were synchronized by means of computer displays presenting the primary time
signal to all camera perspectives (see M2 and M3 in Figure 4.4). Using the
IADE framework, the motion capture data was integrated into a graph-based
user model (see Figure 4.7). This model was then sampled at 25Hz and written
to a file in the IADE Tracking Data file format. The video was recorded
from the side and from above the setup using two camcorders with Mini-DV



4.6 The Interactive Augmented Data Explorer (IADE) 75

Figure 4.6: The parallel recording of the multimodal data during the study
was controlled by IADE.

Figure 4.7: A graph-based model of the description-giver was built by aggre-
gating the data from the motion capture sensors. For each node on the right,
the IADE system provided the exact position and orientation (except for the
points) in space for each time step.

cassettes. The audio recordings were made through a wireless head-set worn
by the DG.

In a preprocessing step, the audio and video recordings were transferred from
DV-tape to hard discs via firewire and transcoded and scaled from raw DV
format to a size and format constrained by the requirements of the annotation
software.

IADE was created as a fully immersive tool for the recording and simulation
of multimodal data. It allows the user to literally enter the collected corpus
data in virtual reality. During interactive exploration sessions, IADE displays
the synchronized multimedia streams from the recordings as well as the
annotations (see Figure 4.8 a). The user can enter the virtual space showing a
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3D reconstruction of the study set-up and navigate freely through the setting,
for example to switch between the perspectives of the DG or the OI at any
time. In parallel, the audio and video recordings are available on movable and
sizeable virtual panels that can be placed arbitrarily within the virtual world.
In addition, the different annotation layers may also be visualized, so that
the user is able to match the results from the motion tracking with the video
recordings and the annotations. In this way, the quality of the recordings as
well as of the annotations can be checked and corrected, if errors are found.

For the analysis of multimodal data and the iterative evaluations during
data-driven modeling, IADE also features a powerful scripting interface. This
interface can be used to create additional visualizations based on the data
from the motion tracking and from the annotations. In the present study, this
was used to visualize the pointing rays based on the tracked position of the
index finger whenever a gesture’s stroke was identified in the annotations (see
Figure 4.8 b). In this way, the simulation can also be used to generate new
data, such as the intersection points of the beams with the table’s surface
during the gesture’s strokes. These can be easily calculated on the fly during
the simulation.

For further analysis, IADE provides support to record videos of the interactive
sessions. These can be made available for further offline analysis, for example
for annotating different perspectives or visualizations of computations, thus
closing the loop of iterative annotation, simulation and visualization.

While IADE was primarily developed by the author of this thesis, over time,
several people and projects contributed work: Alfred Kranstedt and Andy
Lücking did the set-up modeling for the gesture study. Under the supervision
of the author, Tobias Gövert assisted in the implementation of the data
recording and the simulations and Nikita Mattar helped in implementing the
manipulation techniques for the scalable video displays. IADE uses basic
technologies developed in the Virtuelle Werkstatt (Biermann, Jung, Latoschik
& Wachsmuth, 2002) and the PASION project (Pfeiffer & Latoschik, 2007)
(floating video panels, see Figure 4.8).
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(a) IADE visualizes relevant objects (bottom
left), data from motion capturing (left) and
video recordings (virtual panel, right).

(b) Added computations can be visualized
in real-time. The example shows extrapola-
tions of different types of pointing beams.

(c) IADE in action during the gesture study. In the PDF version, a click on the image
starts the youtube video http://www.youtube.com/v/21JD3uwWQLY.

Figure 4.8: IADE allows the researcher to interactively explore an integrated
real-time simulation of all data gathered and annotated during the course of
the study.

http://www.youtube.com/v/21JD3uwWQLY&hl=de&fs=1&hd=1
http://www.youtube.com/v/21JD3uwWQLY
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4.7 Annotation

The video recordings and the data from motion capturing were reviewed, and
the success, the demonstrated object and the identified object were annotated
for each interaction game. In addition, the manual pointing gestures were
identified and the critical interval of the stroke was marked. Only straight
pointing gestures were considered; gestures simply following the morphology of
the objects’ geometries were ignored (for example drawing a circle or moving
back and forth while pointing to a bar). Also, only one pointing gesture
per game was considered, excluding exaggerated repetitions, for example
when the DG was impatient. Three raters annotated 64 pairs of videos with
2048 demonstrations. Inter-rater agreement was assessed regarding semantic
classification and the identification of valid gestures on selected videos, and a
high level of agreement was attested (Kranstedt et al., 2006).

Besides IADE, Anvil (Kipp, 2001) was used for the manual annotation,
supported by Praat (Boersma, 2001) for the transcription of spoken language
in the S+G trials. The annotation of the manual gestures was restricted to
the DG’s first pointing act in each game. The main annotation layers were
the following:

gesture.phase [preparation, stroke, retraction] the phases of the pointing
gestures were identified according to McNeill (1992). Relevant for the
later analysis is the stroke phase.

gesture.handedness [left, right ] although only right-handed DGs took part,
they still used the left hand in some cases, and this was annotated
accordingly.

speech.transcription the DG’s exact words were transcribed.
speech.number the number of words used in the S+G trials for one move

was counted.
speech.quality [shape, color, function, position, proxy ] an internal categori-

sation of aspects of the speech that were relevant for later analysis.
The category proxy labeled taxonomically unspecified nouns, NPs or
determiners, like “Ding” (thing) or “Das” (that) or “Dieses Teil” (this
thing).

move.referent [γ ] the internal identifier γ of the referent object prompted
to the DG.

move.success [yes, γ ] marked whether a move had been successful (yes); if
the OI identified a false referent, its internal identifier γ was annotated.
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Figure 4.9: Processing of recorded and transformed data was done itera-
tively: data was annotated, integrated and enriched in simulation runs, and
analyzed by statistical processes. In parallel, an interactive visualization
of the results allowed for qualitative analysis by human raters, for example
doing cross-modality checks, which sometimes led both to re-annotations or to
a refinement of annotation schemes.

4.8 Simulative Analysis and Visualization with

IADE

During the progress of the annotation and analysis, the data was iteratively
integrated and evaluated using IADE. This process is depicted in Figure 4.9.
After starting the analysis, the manual annotations were fed into IADE’s
simulation core, together with the primary corpus data (XML IADE Tracking
File) consisting of the tracking data and the recorded videos. IADE features
a scriptable compute kernel which can be used to interactively design data
evaluations or extrapolations and to compute statistics. The statistics were
then exported to R or SPSS.
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The results of the simulation were then visualized in a virtual reality envi-
ronment where they were explored interactively (see Figure 4.8) to control
data quality and to visually verify the hypothesis generated by the different
pointing models. The results of this analysis are presented in the following
sections.

4.9 Results

Overall, data from 32 description givers and 32 object identifiers was recorded.
The data was cleaned by removing cases where there had been a technical
problem with the recordings during the trial and by removing cases with no
pointing gestures. In one removed case, for example, the DG used a schematic
approach by manually indicating column number and row number. After
cleaning the data, a high-quality dataset consisting of 22 S+G trials and 22
G trials was selected from 25 description givers (19 females, 6 males) and
25 object identifiers (11 females, 14 males). For three G trials, pairings of
interlocutors different from the S+G trials had to be chosen. The mean age
of the participants, most of them students at Bielefeld University, was 26.02
(SD = 7.07). In the S+G trials, 514 successful demonstrations with manual
pointing gestures were identified, compared to 443 in the G trials.

The quality of annotations and motion capturing was assessed using IADE
by displaying the two perspective videos, the annotation data and the data
from motion capturing simultaneously. Using this method, 957 high quality
data records of demonstrations were identified. For most pointing gestures,
several samples of tracking data during each stroke were collected. This data
was reduced to the median per stroke, resulting in a final set of 957 postures,
one for each annotated demonstration.

The organization of the domain of possible referents into a grid layout of
8 rows and 4 columns induced an analysis of the collected data that was
also oriented on this design. This layout had been introduced for studies
on co-verbal pointing in the DEICON project of the CRC 360 (Kühnlein
& Stegmann, 2003) and the follow-up study presented here adhered to this
scheme (see the related publications, authors in these publications are always
in alphabetical order, (Kranstedt, Lücking, Pfeiffer, Rieser & Wachsmuth,
2006b; Kranstedt et al., 2006a; Kranstedt, 2007)). The following presentation
of the results will do likewise and adhere to the grid layout model. Chapter
6 then presents a different topological model for the interpretation of the
results, which is better suited for geometric analysis.
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Figure 4.10: The barplot shows the number of failed identifications per row
for the G trials (there were no failures in the S+G trials). Failed identifica-
tions increase from row 4 on.

4.9.1 Success of Manual Pointing

In the S+G trials, the OIs were able to identify the referents demonstrated
by the DG perfectly, with a success rate of 99.8%. This was expected, as
the objects in the domain have features (color, shape, type) that are easily
distinguishable using speech. A different picture, however, was found in the
G trials. The failed moves, i.e. moves where the OI did not manage to identify
the demonstrated object, are shown per row in Figure 4.10.

The number of failures starts to rise beginning with row 4, which is 67.75 cm
away from the description giver, and increases until row 8. The initial increase
in failures around rows 4 and 5 can be interpreted as marking the border
between proximal and distal pointing in our setting. The proximal area resides
within easy grasping space of the seated description giver, while the rows
beyond 5 do not. The drop in error rate in row 8 is surprising. After reviewing
the videos it was noticed that some description givers exhibited a different
pointing behavior when pointing to this border of the pointing domain: they
exaggerated their gestures vertically to clearly indicate a reference to the last
row, and differentiated only horizontally between single objects. This helped
to reduce interpretation errors, as these objects then only had to be separated
from the neighbors in their own row.

The distinction into proximal and distal areas for pointing gestures fits nicely
into the dichotomy common in many languages for deictic expressions (here vs.
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there). The distinctive feature is whether the self is included (near/proximal)
in the area, or not (far/distal) (see Sennholz, 1985). For manual pointing, the
grasping/touching area is an intriguing candidate for the proximal area, and
everything beyond may be attributed to the distal area. This and the results
shown in Figure 4.10 motivates splitting the pointing domain into a proximal
area comprising rows 1 to 4, and a distal area, rows 5 to 8.

4.9.2 Applying the Vector Extrapolation Model

To investigate closer why the OIs had so much difficulty in identifying referents
in the distal area, which was actually closer to where they were standing,
one can ask how precise the pointing gestures from the DGs were. One way
of answering this question is by applying the vector extrapolation model to
the motion tracking data. It basically identifies the direction of the pointing
gesture and can be used to test where the direction intersects with the pointing
domain. This was done by simulating the recorded data with IADE, and the
results are shown in Figure 4.11 for the S+G trials. For both variants of the
vector extrapolation model, index-finger pointing and gaze-finger pointing,
the resulting intersections of all 514 demonstrations are shown, for all objects
and for all participants. The positions of the objects are marked as black
squares. All pointing gestures targeted at a specific referent are drawn in
the same color. While these dot-clouds are quite compact and stand out
quite nicely in the proximal area, the dots alone would not have provided a
good understanding of the distal area. Therefore, each cloud of intersections
per object has also been approximated by an ellipse around 0.75% of the
intersections.

Accuracy and Precision Very early in the analysis of the motion cap-
turing data in IADE it was confirmed that pointing is, as expected, quite
imprecise. For selected objects Figure 4.12 shows a different kind of visualiza-
tion, called bagplots (Rousseeuw, Ruts & Tukey, 1999), of the intersections
between the extrapolated pointing vector, here directed using the Gaze-Finger
Pointing model, and the surface of the table during a pointing stroke. Both
accuracy and precision decrease badly with increasing distance from the
description giver, considering that row 8 is only 150 cm away.

To answer the question about accuracy and precision of manual pointing, an
error measurement is required that captures the relevant discrepancy. Two
such measurements have been used: orthogonal distance and angular distance.
Orthogonal distance is defined as the distance between the center of the
referent object and the pointing ray. Angular distance is defined as the angle
between the pointing ray and an ideal ray, starting in the same origin but
directed exactly to the referent object. The angle is measured in the origin of
the pointing ray.
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Figure 4.11: If the vector extrapolation model is applied, the intersections
of the pointing vectors with the surface of the table can be calculated. The
graphics show these intersections for the S+G trials with different pointing
directions, GFP (top) and IFP (bottom).
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Figure 4.12: For a selection of representative objects, the distributions of
the intersections between the extrapolated pointing vector and the surface of
the table are shown as bagplots for the S+G trials (50% of the points lay in
the dark grey, 75% in the light grey area).

The orthogonal measurement is more objective, as it does not take into
account the perception of the description giver. Thus, the orthogonal distance
will expectably be higher for objects more distant to the DG. This might
be a better description of the difficulties the OI had in identifying referents.
The angular distance abstracts away from the distance of the object to the
DG. Given two distant objects, the angular distance approximates the visual
distance of the objects, as perceived by the DG. In contrast to the orthogonal
distance, the angular distance measured between two points decreases if the
distance from the DG to the objects is increased. The angular distance better
describes the accuracy as perceived by the DG.

The angular error describes the accuracy of manual pointing perceived
by the DG. The orthogonal error describes the objective error of manual
pointing, which can also be perceived by the OI.

Using IADE, the distance errors were calculated over all demonstrations.
The results are depicted in Table 4.2 for the Index-Finger Pointing and the
Gaze-Finger Pointing model regarding the two distance measures. Given
the spacing of 20 cm between the objects, a mean orthogonal distance above
10 cm already means that the pointing gesture could have been targeted at a
neighboring object. The mean errors shown in Table 4.2 underline what has
already been seen in Figure 4.11: manual pointing is extremely imprecise.
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Table 4.2: Pointing Accuracy and Precision Means and standard
deviations for the orthogonal and angular measures. The table shows the data
for both trials and the IFP and the GFP model. Angular errors are given in
degrees, orthogonal errors in cm.

r
S+G Trials errors per row

Gaze-Finger Pointing Index-Finger Pointing
angular orthogonal angular orthogonal

1 36.3 ±18.0 7.4 ±4.2 30.1 ±13.3 6.4 ±3.5
2 23.5 ±14.6 6.7 ±5.0 24.4 ±12.9 6.8 ±3.6
3 16.4 ±11.7 6.2 ±4.7 19.3 ±10.4 7.1 ±3.8
4 13.3 ±13.4 8.2 ±10.5 19.0 ±12.0 11.3 ±10.1
5 7.3 ±3.8 6.9 ±4.0 13.2 ±7.0 12.2 ±6.1
6 9.0 ±7.2 11.8 ±10.3 12.0 ±5.3 15.6 ±8.0
7 8.8 ±7.7 14.7 ±14.1 11.8 ±6.2 19.3 ±10.9
8 9.2 ±9.0 19.1 ±19.2 10.8 ±4.9 22.2 ±11.0

r
G Trials errors per row

Gaze-Finger Pointing Index-Finger Pointing
angular orthogonal angular orthogonal

1 32.1 ±15.7 6.0 ±4.7 34.1 ±11.8 6.1 ±2.7
2 23.6 ±13.8 5.1 ±3.6 32.0 ±10.2 6.8 ±2.5
3 19.6 ±18.2 6.6 ±10.8 26.4 ±11.0 8.1 ±8.6
4 17.5 ±15.3 7.8 ±9.1 21.6 ±11.7 8.2 ±5.3
5 13.0 ±9.2 7.3 ±6.2 14.8 ±7.2 7.5 ±3.3
6 12.3 ±9.1 9.8 ±8.8 15.0 ±5.2 11.7 ±6.1
7 11.3 ±6.0 13.4 ±7.5 11.0 ±4.9 12.8 ±5.2
8 11.1 ±5.7 18.9 ±9.3 11.7 ±6.3 19.6 ±9.1

It can also be seen in the data for row 8 that orthogonal errors are still
increasing, while Figure 4.10 shows the drop in identification failures for the
same row. This underlines the explanation given above that this effect is
not due to a sudden boost in pointing accuracy, but to a borderline effect:
referent objects in row 8 only have to be distinguished from other objects in
row 7 and within row 8. There is, however, no row 9, and this fact was used
by the DGs to exaggerate their gestures, thus reducing the chance that the
OI misinterpreted the pointing gesture as targeting an object from row 7.

Index-Finger Pointing or Gaze-Finger Pointing One initial question
driving the study was whether the direction of the pointing gesture is ap-
proximated better with the GFP or the IFP model. In addition to Table 4.2,
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Figure 4.13 depicts the medians of the results for both models side-by-side.
A statistical analysis (paired t-test, α = 0.05) reveals that for the S+G trials
IFP produces a significant larger angular error in rows 3 to 7 than GFP. The
errors are significantly lower for the first row, and no significant difference
can be found for rows 2 and 8. Considering the orthogonal errors, rows 4 to
6 show the same pattern of significantly larger angular error for IFP than
GFP; while in row 1 IFP produces significantly lower errors than GFP, the
differences in all other rows are not significant.

The results for the G trials are less clear. Here IFP produces a significant
larger angular error for the rows 2, 3 and 4, and a significant larger orthogonal
error for rows 2 and 3. All other differences are not significant. Summarizing
these findings, in the S+G trials, GFP produces significantly lower angular
errors than IFP for rows 3 to 7 (most of the distal area). In the G trials, GFP
is only superior over IFP in rows 2 to 4. Overall, GFP approximates the ideal
pointing direction better than IFP when using angular error measurements.

Pointing Accuracy in S+G trials vs. G trials When comparing the
results between the trials, the angular errors for IFP are significantly lower in
rows 2, 3 and 6 in the S+G trials than in the G trials. However, the orthogonal
errors of IFP are significantly greater in rows 4 to 7 in the S+G trials. There
are less significant differences for GFP. In the S+G trials, the orthogonal
error of GFP is significantly greater in row 2 than in the G trials and in row 5
the angular error is significantly lower in the S+G trials than in the G trials.
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Figure 4.13: Comparison between Index-Finger Pointing and Gaze-Finger
Pointing in the S+G trials (top) and the G trials (bottom). In contrast to
Table 4.2, the graphs show the medians of the errors.
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4.9.3 Patterns of Pointing Use

Gesture Handedness Of all pointing gestures produced by the right-
handed DG, 76% were right-handed and 24% left-handed. As expected, most
of these left-handed pointing gestures occured when pointing to the left side
of the pointing domain. In column 1 to the left of the description giver, 48%
of the pointing gestures were left-handed, and about 30% in column 2. On
the right side of the domain, the percentage of left-handed pointing gestures
was about 5% over both columns. This schema was consistent in the S+G
and the G trials. Thus if not explicitly forced to point single-handedly, DGs
made use of both hands, depending on the laterality of the targets, but with
a strong bias towards the dominant hand.

Stroke Durations Over all games in the G trials, the minimal recorded
duration of a stroke was 40 ms, which is the lowest detectable duration due
to the sampling rate of 25 Hz. The longest recorded duration of a stroke was
6.04 s. The mean was 1.217 s and the median 1.28 s. In the S+G trials, the
minimal recorded duration of a stroke was also 40 ms. The longest recorded
duration of a stroke was 6.64 s. The mean was 1.25 s and the median 1.16 ms.

Interplay of speech and gesture The relation between speech and point-
ing gestures is not in the direct focus of this thesis. However, these interactions
have been analyzed and this brought up some interesting findings. First of all,
it can be questioned whether the DG is aware of the loss in discriminating
power of his manual pointing gesture (see Figure 4.11). It is difficult to
answer this question in retrospect, as the DGs were not interviewed on this
specific aspect. However, there are strong indices that this is indeed the
case. Take, for example, the number of words used in the speech part of the
deictic expression (see Figure 4.14). Between rows 3 and 6 there is a notable
increase from a mean of 3 to a mean of 6 words (the matching digits are a
coincidence) that can be interpreted as a verbal compensation for the loss in
manual pointing precision. The absence of identification failures by the OI
in the S+G trials underlines that this is part of a successful strategy. Note
that the location of the threshold between rows 3 and 6 for the number of
words matches nicely with the location of the threshold between rows 4 and
5 that has been identified for the G trials as the distance beyond which the
identification failures of the OI increase.

Before continuing the presentation of the results, a brief description of a new
kind of visualization technique will be given, that has been developed as part
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Figure 4.14: The number of words used by the DG in his deictic reference
move is depicted here as a function of the row of the referent object. Between
rows 3 and 6 there is a notable increase in the number of words used, from a
mean of 3 to a mean of 6 words per deictic reference.

of this thesis to visualize certain aspects, such as the locations of index-fingers
during strokes for large numbers of participants.

4.10 Visualizing Gesture Space in 3D

McNeill’s gesture space has already been introduced in Section 2.3.1. The
gesture space is conceived as a shallow disk in front of each interlocutor
in which gestures are performed (McNeill, 1992). A schematic 2D drawing
depicting his categorization of different areas in gesture space is shown in
Figure 2.9. McNeill and others used this diagram to annotate gestures by
marking points with a dot corresponding to the positions of relevant body
parts during the gesture. Using a 2D categorization to specify gestures in 3D
space is symptomatic for research on gestures and presumably constrained
by the technology available. The observed interlocutors are usually recorded
during the studies using a video camera from a frontal perspective, and the
manual annotations are carried out post-hoc. One way of proceeding is to
overlay the 2D gesture space category scheme on top of the video and note
down the areas of the gesture space traversed by a specific gesture, or the
area the stroke of the gesture is performed in.
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Figure 4.15: This visualization of the gesture space has been created auto-
matically based on the tracking data from the motion capturing system. Each
blob marks an end position during a pointing stroke. If several blobs overlap,
the shading is adjusted accordingly, transitioning from green (single instance)
to red (multiple instances).

The new methodology developed for the study allows for an automatic tracking
of the interlocutors’ gestures, and the position of the hand in the gesture
space can be sampled automatically without the need for manual annotation.
The picture of the gesture space in the tradition of McNeill is presented
in Figure 4.15, with one difference: the frequency of gestures sampled at
the same position is visualized using different shades of color, similar to the
heatmaps (see Section 2.4.6 on page 29) used to visualize attention. However,
to the knowledge of the author, the literature on gesture research does not
provide a common way of visualizing 3D data sets on gesture production. In
the following, a visualization technique for the gesture space is presented,
that aims to fill this gap in displaying a real 3D gesture space.

4.10.1 Gesture Space Volumes

A visualization of the 3D gesture space should be able to show the distribution
of the gesture movements in space, aggregating, for example, over time or over
participants. Based on the set of 3D positions sampled by the tracking system,
the frequency of gesture occurrences at each point in space can be computed,



4.10 Visualizing Gesture Space in 3D 91

Figure 4.16: Gesture Space Volumes visualize the 3D gesture space and thus
extend the well-known gesture space visualizations of McNeill to 3D. In the
interactive viewer, the perspective from which the Gesture Space Volumes are
shown can be dynamically changed, and the user can zoom in on details.

and the relative probability for a gesture occurring at each point in space can
be derived. This 3D volume of frequencies or probabilities (if normalized)
represents the distribution of gestures in this gesture space. In computer
graphics, volume rendering techniques have been developed to visualize these
kinds of data. Examples of volume rendering commonly known are found in
brain imaging or flow patterns, e.g. in aerodynamics.

The visualization for 3D gesture space proposed here is the gesture space
volume (see Figure 4.16). The gesture space volume uses volume rendering
to visualize the distribution of certain aspects of gestures of one or more
interlocutors in space. The original data of gesture space volumes are 3D
positions of relevant extremities as sampled by the tracking system. These
samples can be filtered in accordance with the aim of the visualization, for
example samples during relevant gestures can be extracted. Each sample
will then be associated with a 3D function that maps the sample to the
volume space. This 3D function determines shape and coloring of the final
visualization of the sample. An example for the manual pointing study will
be provided soon. Typically, these 3D functions model a distribution. The
3D functions are then discretized on a 3D array and rendered using volume
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rendering. During the rendering process, a transfer function can be applied
to map the values at the individual discretized grid points to colors. This can
be used to emphasize different aspects of the data.

4.10.2 Gesture Space Volumes of Manual Pointing

The gesture space volumes were developed by the author during the analysis of
the manual pointing study to gain an overall picture of the pointing behavior
of an individual or a group. Examples with data from the study are depicted
in Figure 4.17 and Figure 4.18. For individuals, the sampled positions of the
index finger are depicted for both hands during a stroke. The time span of the
stroke has been manually annotated. Each sampled position is represented by
a 3D function modeling a gaussian sphere (see Equation 4.1) with a radius of
σ , which could represent the precision of the tracking system:

f (x,y,z) = de−
(x−posx)2+(y−posy)2+(z−posz)2

σ (4.1)

In the present study, the tracking system’s precision was below one millimeter,
which would render the visualizations nearly invisible in print, so σ was
increased to 5 cm to produce more expressive visualizations. The gaussian
function is also amplified by the duration the position was held, so time is
represented as color in the graphics. For visualization, all 3D functions are
discretized on a 3D array. The transfer function used for these visualizations
is a heatmap that associates a spectrum from red over green to dark with
decreasing probabilities. In addition, transparency increases with decreasing
probabilities, otherwise the images would only show black boxes. Thus, a light
green color represents areas that were touched during a pointing stroke, and
red colors represent areas that either have been passed through by multiple
strokes, which is unlikely in the intra-individual case given the tasks in the
study, or where the individual dwelled for a longer period during a stroke.

The different strategies of the description givers for coping with the situation
that they are not allowed to use speech are carved out of the raw tracking
data using the gesture space volumes. Person 04 is an exponent of the leaning
forward strategy (see Figure 4.17 a,b). During the S+G trials, the pointing
gestures do not exceed the second row. However, in the gesture-only trials
P04 tries to decrease the distance between finger tip and referent by extending
the range up to the fifth row. In the data set of interactions between 23
description givers and object identifiers, 61% of description givers follow this
strategy. This explains why the orthogonal error using IFP is significantly
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greater in the S+G trials: the participants use leaning forward in the G trials
to reduce the distance to the referent object, and thus errors in pointing
direction have a lower amplitude.

Person 07 follows a different strategy, raising high (see Figure 4.17 c,d), by
raising the pointing hand higher above the table. The range is only slightly
extended from second row to third row. This strategy is used by 48% of the
description givers. The strategies raising high and leaning forward are not used
exclusively, as the percentages reveal. About 30% of the description givers
combine both strategies, such as for example Person 11 (see Figure 4.17 e,f).
Other strategies that can be found are frantic hand-waving (see Figure 4.18
a,b), which happens once (4% of the cases) and an increased dwell time during
the stroke, which happens twice (see Figure 4.18 c,d). Only three description
givers do not show any different behavior in their gesture-only trials. Overall,
taking the data from all participants together, the gesture space volume for
the gesture-only trials is extended both along the rows of objects on the table
and high above the table (see Figure 4.18 e,f).
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(a) P04: S+G trial (b) P04: G trial, strategy: leaning for-
ward

(c) P07: S+G trial (d) P07: G trial, strategy: raising high

(e) P11: S+G trial (f) P11: G trial, strategy: raising high
and leaning forward

Figure 4.17: A study on different pointing strategies using gesture space
volumes. The graphics show examples from the speech and gesture trials on
the left and from the gesture-only trials on the right. The wooden mannequin
represents the position of the DG.
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(a) P18: S+G trial (b) P18: G trial, strategy: frantic hand-
waving

(c) P31: S+G trial (d) P31: G trial, strategy: increased
dwelling

(e) ALL: S+G trials (f) ALL: G trials

Figure 4.18: There are different strategies for coping with the gesture-only
trials. Some lean forward to bring their index finger closer to the referent,
some raise their hands, some do both and some increase their dwelling time,
which is depicted as a darker red shading. Overall, the gesture space volume
expands in the gesture-only trials when compared to the speech and gesture
trials.
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4.11 Visualizing Reference Volumes for Man-

ual Pointing

In Section 2.4.6 on visualizing attention, heatmaps were introduced as a way
to visualize the distribution of attention on a 2D image, such as a webpage.
Heatmaps depict both the location (position) as well as the duration (color)
of attention, typically visual attention recorded using eye tracking.

This concept can be transferred to 3D space using the same technique as
for the gesture space volumes to visualize the locations that have been the
target of a pointing gesture, defining the reference volume. The reference
volume is the space that has been the target of a referring act, which is a
cautious expression to emphasize that the reference does not necessarily need
to be successful nor does the referring act necessarily need to be intentionally
directed to this specific space. Whether the referring act itself must be given
intentionally or not is arguable. In principle, any produced utterance or
body movement that has the outer form of a referring act can contribute
to a reference volume. It depends mainly on the perspective. The DGs, for
example, might only include reference acts in their reference volumes if they
produced them intentionally. Also, they will probably interpret their own
pointing gestures as being directed exactly at the target referent. The OIs,
however, can only add reference acts they detected as such.

For the present study, this means that the intersections of the pointing rays
with the surface of the table can be taken as points being technically referred
to, although the intention of the DG had been to refer to the object. This
was done by applying the IFP and the GFP model for vector extrapolation
on both trials. Again a gaussian function was used to model individual points,
here with a σ of 1 cm. In the S+G trials, see Figure 4.19, the difference
between GFP and IFP can clearly be seen. GFP leads to a more compact
reference volume, while IFP leads to a reference volume projecting far over
the border of the domain.

In the G trials, see Figure 4.20, the difference between GFP and IFP is less
clear, which is according to expectations. However, for GFP the reference
clouds surrounding the objects in the first four rows stand out more clearly
than those for IFP.
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(a) IFP in S+G trials

(b) GFP in S+G trials

Figure 4.19: Reference volumes for the S+G trials. GFP leads to more
compact reference volumes, while the reference volume of IFP extends far
beyond the border of the domain of possible referents.
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(a) IFP in G trials

(b) GFP in G trials

Figure 4.20: Reference volumes for the G trials. The difference between
GFP and IFP is less clear than for the S+G trials.
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4.12 Summary

This chapter has presented an extensive study on multimodal pointing to assess
manual pointing gestures in an identification game between two participants.
Several methodological challenges had to be faced when approaching this
study. Finally, the study was successfully conducted using an empirical
methodology based on a combination of well-tried linguistic methods with
state-of-the-art tracking and virtual reality technology. To this ends, the
Interactive Augmented Data Explorer (IADE) (see Section 4.6 and Section 4.8)
has been developed, which provides the technical basis for the recording and
integration of multimodal data. Interactive Augmented Data Explorer (IADE)
offers exciting new possibilities for data-driven computer simulation. With
its basis in virtual reality technology, IADE also allows the researchers to
literally immerse into their data and inspect the body movements from any
perspective.

A first conclusion of the study is that manual pointing is fuzzier than expected.
Even in simple domains, as the one used in the study, the description givers
(DGs) fail to accurately direct their pointing gesture at a single object. In
the G trials only the rows within direct reach of the DGs yielded good
identification results, but the object identifiers (OIs) failed to identify many
distant referents. In contrast, the OIs were able to identify all the referents in
the S+G trials. Considering the weak identification results for the distal rows
in the G trials, these successful identifications have to be based on information
from other modalities than manual pointing. The increased number of words
used by the DGs in deictic expressions referring to the distal rows indicates
that speech is used to compensate for the inaccuracy of the pointing gesture.

Considering the where-question, two models for the direction of manual
pointing gestures have been tested: IFP and GFP. It has been shown that
GFP produces significantly lower angular errors than IFP – at least for the
distal rows in the S+G trials. The course of the angular and orthogonal errors
of IFP and GFP shows a clear trend towards low angular errors between 9◦

and 11◦ in the S+G trials and a linearly increasing orthogonal error. The
results for the G trials show small irregularities in the distal rows, and a clear
distinction between IFP and GFP cannot be made. Nevertheless, they appear
to follow a similar trend approximating slightly larger angular errors between
11◦ and 12◦. In the mean, GFP and IFP approximate the ideal pointing
direction up to an angular error between 9◦ and 11◦ in the S+G trials. GFP
performs slightly but significantly better than IFP in the distal rows.
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Given that the distances between the objects in the grid were only 20 cm,
the mean orthogonal errors were found to be too high to uniquely identify
the referent, which consequently led to a drop in the success rate for the
distal rows in the G trials. Pointing rays cast from the predicted pointing
direction were actually closer to the neighboring objects (mean orthogonal
deviation M>10 cm in the distal rows) than to the referent in most of the
cases. The data on the accuracy of the pointing direction predicted by the two
candidate models IFP and GFP suggests that vector extrapolation is not a
suitable model for the extension of pointing.

An important finding is the dichotomization of the gesture space into a
proximal and a distal area. This finding is supported by evidence from the
interaction between speech and gesture, as well as the distribution of the
measured errors. The border between proximal and distal area lies between
the 3rd and the 5th row (47.75 cm to 87.75 cm). The exact position might
correlate with the armlength of the description giver.

The pointing behavior to objects in row 8 is different from that to closer rows.
The DGs use the fact that row 8 marks the border of the pointing domain
and exaggerate their gestures by overshooting to clearly differentiate them
from gestures towards objects in row 7.

To visualize the recorded 3D movements that occurred during the relevant
gesture phases, a new visualization of gesture space in 3D, the Gesture Space
Volumes, has been developed. These visualizations show the positions of
gestures in the gesture space over time, either for a single trajectory or
integrating over all gestures from several interlocutors. The Gesture Space
Volumes generated for the positions of the pointing hand during the stroke
revealed different coping strategies which were used by the DGs to compensate
for the deficiencies of pointing to the distal area: leaning-forward and raising-
high.

These findings shed new light on the interaction between speech and gesture.
In the S+G trials the DGs seemed to compensate for loss of precision of their
pointing gestures when targeting distant referents by increasing the words in
their deictic expressions. In the G trials, when they were not allowed to speak,
they put more effort into their pointing gestures, either by raising them higher
or by leaning forward to reduce the distance to the referent object. This is
a bidirectional interaction between speech and gesture: either modality is
adapted to compensate the absence of the other.
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The corpus of manual pointing acts collected during this study will be used for
data-driven modeling in Chapter 6 to find optimized models for the direction
and the extension of pointing.
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Chapter 5

Gaze Pointing

Whereas the previous chapter provided insights on manual pointing from a
study on demonstrations to real objects, this chapter focuses on gaze pointing.
Two studies are presented that investigate the use of gaze as a pointing device
in human-computer interaction.

In the first study, the combination of eye tracking and motion tracking was
tested in a virtual reality setting where users were asked to use gaze pointing
to refer to spheres at different levels of depth. In this scenario, the participants
were able to walk freely in the area of the TRI-SPACE virtual environment
at the A.I. group at Bielefeld University. The study provided results on the
accuracy and precision of gaze pointing using a direction-based approach. It is
also the first study that tested the gaze-specific components of the prototype
of the interaction framework DRIVE described in the Appendix (Chapter A).

The second study investigated location-based approaches to interpret gaze
pointing. The participants were asked to use gaze pointing to refer to certain
objects located in a complex assembly of Baufix parts. Using two binocular
eyetracking devices, their eye movements were monitored, and the location of
the point of regard in 3D was estimated based on two algorithms presented
in Section 3.3.4, triangulation and the PSOM approach. Both algorithms and
two different eyetracking devices were evaluated.

This chapter concludes with the presentation of a visualization technique that
extends standard 2D visualization methods to 3D space.
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5.1 Study 1: Direction-based Pointing

Gaze-based interaction is not part of the standard repertoire of virtual reality
systems, as is the case with motion tracking systems and basic gesture-based
interactions. In fact, only few desktop or head-mounted virtual reality systems
make use of gaze-based interaction, and even less do so in immersive CAVE-
like environments. The aim of the study presented in this section is to test
a new framework for gaze-based interaction in a virtual reality setting, and
especially to gather data on the accuracy and latency of the interaction. This
study has been published in Pfeiffer (2008). In contrast to the set-up used in
the previous study on manual pointing, the target objects used in this study
are virtual objects.

In preparation of this study, a prototype of the gaze-based interaction frame-
work was developed. This prototype is described in some detail in Section 5.2.1.
An essential part of the framework is the mapping from the 2D gaze positions
provided by the vendor-specific eyetracking software to the orientation of the
eyes of the participant in the 3D world coordinate system. This mapping
requires a calibration process which can easily be handled by the user, is oper-
ated self-controlled and does not require too much time. A calibration process
that complies to these requirements is presented in the same Section 5.2.1 as
well.

As one of the questions is the latency that can be achieved using this set-up,
the specification of the hardware that was used for the study is given in
Section 5.2. One problem was to find a procedure to measure the latency of
such an interactive system. A task-specific solution is proposed in Section 5.3
with the Visual Ping procedure.

The study itself is presented subsequently. The questions addressed by the
study are:

• What latency can be achieved with the system? Is it fast enough to be
used in interactive settings?

• How accurately can the 2D gaze positions be mapped to 3D space?

5.2 Study 1: Hardware Set-Up

In the following, the hardware set-up of the TRI-SPACE virtual environment
in the AI Lab at Bielefeld University in 2007 is described (see Figure 5.1).
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Figure 5.1: The immersive virtual reality set-up used for the study on
direction-based gaze pointing in 2007. Compared to the study on manual
pointing, an eyetracking server has been added to the set-up, as well as a GBit
Ethernet connection between the interaction servers.

The virtual reality application was driven by AVANGO (Tramberend, 2001)
on a dual AMD Opteron 248 2.2GHz machine with 3GB RAM. The views
were distributed by Chromium (Humphreys, Houston, Ng, Frank, Ahern,
Kirchner & Klosowski, 2002) (version 1.6) to six render clients, each with
AMD Athlon 64 3000+, 1GB RAM, and a NVIDIA Quadro FX 5600 card.
They were running Ubuntu with a Linux Kernel 2.6.20 and a NVIDIA Kernel
Module version 100.14.19. The cluster was networked by InfiniBand using
Mellanox Technologies MT25204.

A ViewPoint PC-60 EyeFrame BS007 eye tracker (see Figure 5.2(b)) manu-
factured by Arrington Research Inc. (2008) was used, which could be easily
combined with the markers for the optical tracking system ARTtrack1 by
Advanced Realtime Tracking GmbH (2010), and the polarized filters for the
stereo projection. The ViewPoint PC-60 offers moderate resolutions in time
and space (see Table 5.2(a)), which should be adequate for normal interaction
tasks (disregarding saccades or microsaccades). Of the two different operation
modes, higher temporal resolution was chosen over higher spatial resolution,
as a higher priority was given to the reaction time of the system. The eye
tracker was driven by the ViewPoint software in version 2.8.3,33 on an Intel
Core2Duo 6600 machine with 2.4 GHz running Windows XP Professional SP
2. The machine was connected to the virtual reality application via a 100
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ViewPoint PC-60
temporal res. (Hz) 30 / 60
optical res. (pixel) 640×480 / 320×240
accuracy 0,25◦ - 1,0◦

precision 0,15◦

(a) Technical specifications of the ViewPoint PC-60
eye tracker from Arrington Research

(b) Eye tracker mounted
with markers for optical
tracking

Figure 5.2: In order to reduce latency, the eye tracker was configured to run
at 60Hz with a lower optical resolution in the study. The eye frame of the
eye tracker has been mounted with a 6DOF marker from the optical tracking
system to monitor the position and orientation of the tracker. Polarized
glasses were also added, as required by the stereo projection technique used by
the TRI-SPACE.

MBit Ethernet connection (see Figure 5.3(a)). Tracking the user’s head was
done using a 6DOF marker to the left side of the frame of the ViewPoint
PC-60 (see Figure 5.2(b)). The tracking set-up consisted of nine ARTrack1
cameras which ensured a stable presence of the 6DOF marker in at least three
cameras during the interactions. The tracking data was sent to the application
computer over a 100 MBit Ethernet connection (see Figure 5.3(a)).

5.2.1 Study 1: Software Framework

A first prototype of the gaze interaction framework DRIVE (see Chapter A)
was created and tested in this study. The basic architecture is based on a
data-flow network partly embedded in the scenegraph of the virtual reality
application (see Figure 5.3(b)). The EyeNode represents one eye of the user
in the scenegraph of the virtual reality application. It is fed by the tracking
data provided by the head tracking (Head actuator) and the eye tracking
(Eye Data Client). Based on the current tracking data and information
gathered using a calibration procedure, the EyeNode constructs a position
and an orientation vector representing the pathway of the eye’s visual axis in
space. The calibration is handled by a Calibration Module which manages a
step-by-step procedure using a regular grid of 3D spheres to gather fixations
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to reference points in the relevant view area. By letting the Calibration
Module follow head tracking in real-time, the calibration grid maintains a
stable position relative to the center of the eye. Using this closed system
approach to calibration, eye tracking can be calibrated independently of the
viewing perspective of the head.

In this prototype, object selection is realized using a pointing-cone model
with an aperture (the angle at the apex) of 5◦. This is motivated by the
range of high acuity vision, as described in Section 2.4.1 on visual attention.
In the Ray Construction the central axis of the cone is calculated based on
eye position and orientation. A Histogram node collects the angular distances
of all objects within an angle of 2.5◦ around the ray during an interval of
400 ms. From this histogram, the object with the highest ranking for at
least 200 ms is taken as the fixated object. The minimum duration of 200 ms
is motivated by the findings described in Section 2.4.4 on the timing and
duration of fixations. The filtering is necessary to remove noise, for example
if the eye tracker shortly lost the eye, which happens during blinks.

It has to be noted that a non-standard interpretation of fixation is used here.
The fixation model that is used could be coined semantic fixation model, as
it is based on stable fixations of individual objects, not on stable positions
or directions of the eye, as is usually the case. In general operation, the eye
tracking software has no knowledge about the semantic structuring of the
visual field, and thus the software calculates fixations based on eye movements
alone. For interactive settings, where the user is able to move around freely,
the object-oriented fixation model subsumes the standard fixations as well
as small eye movements called smooth pursuit that happen when the eye
relocates the focus of attention if either the object or the human has moved.
This leads to a more robust detection of fixations in dynamic settings.

The semantic fixation model only accounts for fixations to objects as a whole,
not on substructures. Yet the objects in this study are small and show no
interesting substructures. Other approaches exist that also detect fixations on
substructures. Duchowski et al. (2002) used a more fine-grained fixation model
based on gaze intersection points (GIP). A GIP is calculated by intersecting
the gaze ray with the geometry of the object, and fixations can be detected on
the level of individual triangles. The fixation model used in the current study,
however, is bound to objects, which are the atomic interactive entities of the
scenario. Longer and/or frequent fixations of objects could then result in a
selection, based on an application-specific threshold (see again Section 2.4.4).
However, in the current study, the gaze pointing was done iteratively and
out of context, so the minimum fixation duration of 200 ms was used as an
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Application Node

Eye Tracker Node

Viewpoint Software

VPX_InterApp.dll

ServiceProvider

ART-Tracker Node
Head Tracking

Eye Data ClientHead Actuator

Eye Tracking
ART DTrack

Version 1.24.3

(a)

Object Picking

Point History

Fixation Detection Module

Calibration Module

TriggerGrid
Grid Position

Head actuator

Fixation Detection

Eye Data Client
Position 2D

Histogram Ray Construction

EyeNode
OutViewDirection 3D

Position 2D Grid Position

Sensor Interface

Evaluation

Representation & Integration

(b)

Figure 5.3: (a) The interaction handling is distributed over the network. The
ART tracking system and the Arrington Research eye tracker are controlled
with separate computers. The tracking data is then sent to the application
over network using a proprietary protocol. (b) Embedded into the application
the tracking data is interpreted using a data-flow graph. Details are given in
the text.

indicator of a gaze pointing act instead of the longer dwell times which are
required in more versatile settings.

5.3 Study 1: Visual Ping

To evaluate accuracy and latency of the system, a human-in-the-loop procedure
was developed for the study called visual ping. In this procedure, the task
of the participants is to fixate a single highlighted sphere from a test-grid
of 64 spheres. These spheres are placed on one of four test-grids in a plane
perpendicular to head orientation at the distances near (0.7 m), normal (1.7 m),
far (2.7 m), and very far (6.7 m). All test-grids are placed in such a way that
they are within angular eye movements of horizontally -35.29◦ to 35.36◦ and
vertically -36.33◦ to 36.33◦. The test-grids exceed the grid used for calibration
in each direction by about half the distance between the rows/columns. Thus
the calibrated points lay in between the points of the test-grids.

The loop of the visual ping starts with the participant fixating the highlighted
sphere (all others are invisible). When the system detects this fixation, it
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Figure 5.4: The mannequin demonstrates the set-up of the direction-based
gaze pointing study. Participants had to point to 256 target spheres via gaze,
following a given sequence. The spheres were arranged in 4 quadratic grids of
64 spheres each. The grids were presented at 4 different distances.

hides the current sphere and highlights a new sphere from the grid taken at
random. This exact moment defines the start time of the visual ping. The
participant detects the vanishing of the fixated sphere and answers with a
search movement of the eyes for the next sphere. The search is easy, as the new
sphere is the only visible object and well within the visual field. The time of
the first eye movement that is detected moving more than 2.5◦ away from the
originally fixated position is taken as the response. The difference between the
time of the response and the start time of the visual ping defines the wanted
latency. Once the participant has found and fixated the newly highlighted
sphere, the procedure continues. The deviation between the position of the
detected fixation and the target sphere defines the accuracy.

This loop is iterated over all spheres within each test-grid. In between
individual grids, a calibration run with the 4x4 calibration grid is executed at
normal distance.

5.4 Study 1: Results

A total of 10 untrained people with no immersive virtual reality experience
participated in the study (6 women and 4 men). The mean age was M=27.7
years with a standard deviation of SD=6.17 years. The recorded data was
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Figure 5.5: Overview of the results for the visual ping test.

cleaned by removing individual fixations beyond 2 SD. These were mostly
outliers with large vertical deviations that can be attributed to eye blinks.
Using this procedure, altogether 10.43% of the entries were removed.

Latency The results for the latency in the visual ping procedure are depicted
in Figure 5.5(a) for each distance. The mean latency over all distances is
307.9 ms, the median is 317 ms and the standard deviation is 99.9 ms. The
results for the participants are depicted in Figure 5.5(b).

Accuracy The accuracy of the detected fixations is depicted in Figure
5.6(a) for the horizontal and in Figure 5.6(b) for the vertical deviation. The
horizontal accuracy over all distances is 1.18◦ (mean) or rather 0.94◦ (median).
The precision (in standard deviations) is 1.51◦. The vertical accuracy over all
distances is 2.52◦ (mean) or rather 1.91◦ (median). The precision (in standard
deviations) is 2.24◦. A detailed overview is given in Figure 5.7 with median
and standard deviation for each grid point.
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5.5 Study 1: Discussion

The combination of a lightweight eye tracker with an optical tracking system
allows the user to interact freely in the CAVE-like system. The polarized
glasses needed for the stereo projection fit well in the frame of the eye tracker’s
glasses. The cameras of the eye tracker, however, needed a clear sight of the
eye below the frame of the glasses. Systems with indirect eye recording over
a semi-transparent mirror might be more difficult to handle. No interference
between the infrared optical tracking system and the infrared eye tracking
was observed. However, an additional infrared LED was needed in the dark
environment of the CAVE to cast enough light on the eye for a robust eye
tracking.

The results from the user study exceeded expectations. An accuracy of about
1◦ on the horizontal axis is nearly perfect, considering that the opening angle
of the foveal high-accuracy vision is about 2◦. The vertical accuracy is also
good, although it is less than the horizontal. This fits nicely with the findings
of Chi & Lin (1997) presented in Section 2.4.2, who also detected higher errors
(or larger optimal object extensions) for the vertical. In most applications the
slightly larger vertical inaccuracy should not matter, as horizontal differences

near normal far very far all

0
2

4
6

8
10

A
ng

le
 in

 °

(a) Horizontal accuracy

near normal far very far all

0
2

4
6

8
10

A
ng

le
 in

 °

(b) Vertical accuracy

Figure 5.6: The mean horizontal accuracy of the detected fixations is quite
high, with 1.18◦. Vertical accuracy, however, is quite low with a mean error
of 2.52◦.
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Figure 5.7: The plots show the angular accuracy of the detected fixations for
each distance. The arrows show the deviation of the median, and the circles
highlight one standard deviation around the median. The outer grid-points
exceed the calibrated area and are depicted in a lighter color.

are more important, for example in stereo vision. Also, if a higher accuracy is
required, the eye tracking device could be operated in high resolution mode,
which, however, has not been tested here. The performance was also quite
stable over all tested distances, even though calibration was done only at
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normal distance. This stability is not initially surprising, as the test-grids
were arranged to overlap exactly. However, while the normal distance was
more or less presented exactly on the projection surface and thus was not
affected by ghosting (shine-through of the image presented to the other
eye) or other influences due to stereo projection, the visual systems of the
participants had to cope with disparity for the near, far and very far distances.
Nevertheless, the fixations were detected very accurately. This projection
technique therefore does not seem to reduce accuracy and one can safely rely
on a single distance for calibration.

The results for latency of the visual ping show that the performance was
quite similar for every tested distance. The individual performances were also
quite comparable for practical reasons, except for participants 9 and 10, who
showed very large differences in their latencies. The question remains, how a
mean latency of 307.9 ms should be rated. For a meaningful interpretation,
the performance of the human has to be separated from the overall system
performance. The model for human performance of Card, Moran & Newell
(1983) might provide a rough approximation for this separation. According to
their model, the perception of the missing sphere (100 ms), the deliberation
about the task (70 ms), and the issuing of the motoric response (70 ms) should
sum up to 240 ms. The contribution of the system to the latency would
then be about 70 ms, including frame grabbing with 60 Hz, image processing,
networking and visualization with a frame-rate of 60 Hz. Such a latency could
be noticeable if contingent continuous interaction is required. If, for example,
the point of regard is visualized in real-time, the latency would make the
visualization trail the actual fixation. However, for discrete interactions such
as gaze pointing the latency appears to be fair enough.
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5.6 Study 2: Location-based Pointing

The first study on gaze pointing focused on direction-based pointing (see also
Section 3.3.1), which is in its principles similar to the vector extrapolation
used in the study on manual pointing. An alternative to the direction-based
pointing is the location-based pointing that is possible with gaze (see also
Section 3.3.4). In principle, location-based pointing should be superior to
direction-based pointing, as it rigorously restricts the referential space. Thus,
the questions driving this study are:

• Is it possible to estimate the point of regard in 3D space?

• How do the different algorithms presented in Section 3.3.4, triangulation
and PSOM, perform in terms of accuracy?

• Does it need a high-end eye tracker, such as the SMI EyeLink I, or is a
medium-sized device, such as the Arrington ViewPoint PC60, sufficient?

• Is it possible to point to objects via gaze using an estimated point of
regard in 3D space?

• Does location-based pointing have advantages compared to direction-
based approaches in practice?

Parts of this study were conducted by Matthias Donner as part of his diploma
thesis, which was supervised by the author. The results were published in
Pfeiffer, Latoschik & Wachsmuth (2009) and presented in Pfeiffer, Donner,
Latoschik & Wachsmuth (2007a) and – awarded third place in the best paper
and presentation competition – in Pfeiffer, Donner, Latoschik & Wachsmuth
(2007b). This work was partly funded by the German Research Foundation
within the Collaborative Research Center 673 Alignment in Communication,
and by the EU within the project PASION (Psychologically Augmented Social
Interaction Over Networks). The following presentation of the study is an
extended version of Pfeiffer et al. (2009).

5.7 Study 2: Hypotheses

The questions formulated above were investigated in terms of the following
three hypotheses:
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Table 5.1: Technical details of the two eye tracking systems tested

Features Arrington PC60 SMI EyeLink I

temporal resolution (Hz) 30 / 60 250
optical resolution (pixel) 640×480/ -

320×240
deviation from 0.25◦ - 1.0◦ < 1.0◦

real eye position visual angle visual angle
accuracy 0.15◦ 0.01◦

visual angle visual angle
compensation of not possible ±30◦ horizontal,
head movement ±20◦ vertical

A: The PSOM-approach is more precise and accurate than the
triangulation-approach Of the two algorithms, the PSOM should have
noticeable advantages. The PSOM adapts to individual biases in the alignment
of the visual axes of the eyes and can compensate minor errors of the 2D
calibration. This approach is therefore expected to provide higher precision
and accuracy when compared to triangulation.

B: The SMI EyeLink I provides higher precision and accuracy in
this task than the Arrington ViewPoint PC60 Two different head-
mounted eye tracking systems were tested (see Figure 3.5, left and right):
the EyeLink I from SMI as a representative of high-end devices (> e 30,000)
and the ViewPoint PC60 from Arrington Research as a representative of
medium-scale devices (< e 12,000). The technical details presented in Table
5.1 show that the device offered by SMI has noticeable advantages regarding
temporal resolution (more than 4 times faster than the ViewPoint PC60) and
accuracy (one fifteenth of the error reported for the ViewPoint PC60).

C: Gaze pointing to partly occluded objects can be disambiguated
using the 3D point of regard Exploiting knowledge about the depth of a
fixation should improve the disambiguation of difficult cases where objects are
partially occluded, but have significant differences in depth (see the critical
area in Figure 5.8). Therefore this approach should have a higher success rate
for gaze pointing to such objects than traditional direction-based approaches.
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(a) In the online version you may click on this
image to explore a 3D view of the setting.

(b) This set of occluding objects de-
fines the critical area for the 3D
selction algorithm.

Figure 5.8: Position of the objects in the model (left). The objects 17 to
20 define the critical area where direction-based pointing leads to ambiguities
(right).

5.8 Study 2: Scenario

In the study the participants looked at a 3D scene showing a structure built
from Baufix toy building blocks (see Figure 5.8). The dimensions of the
relevant target objects are provided in Table 5.2. A 21” Samsung SyncMaster
1100 cathode-ray monitor was used together with a NVidia Quadro4 980
XGL, and Elsa Retaliator consumer class shutter-glasses for the stereoscopic
projection. Both eye tracking systems were prepared to be used in monitor-
based settings. The implementation of the experiment was based on the 3D
extension of the VDesigner software that was developed by the author for a
previous study, published in Flitter, Pfeiffer & Rickheit (2006).

The study had four conditions, resulting from an intra-personal covariation of
two tested eye trackers and two algorithms. To stabilize external factors for
the comparison between the different algorithms, the distance from the head
to the projection plane was fixed at 65 cm using a chin rest. The height of
the chin rest was adjusted so that the eyes of the user were on a level with
the upper edge of the virtual calibration grid (see Figure 5.9).
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Figure 5.9: Sketch of the set-up for the study (side view): the participant
(left) gazes straight at the upper edge of the screen (right) from a distance
of 65 cm. The virtual space fits exactly inside a cube with an edge length of
30 cm located behind the plane of projection.

The two eye trackers, the SMI EyeLink I and the Arrington PC60, are both
head-mounted. In addition to the eye tracker, the participants also had
to wear the shutter-glasses. The combination of a projection technology
requiring special glasses and vision-based eye tracking systems is delicate,
as the cameras of the eye tracking systems cannot see clearly through the
glasses. In the study, the cameras were positioned below the glasses with a
free, but very steep perspective onto the eye. For the SMI EyeLink I, a special
mounting for the glasses was constructed, as the original one interfered with
the bulky head-mounted eye tracking system. The construction also allowed
for an increased gap between the eyes and the glasses, so that orienting the
cameras of the eye tracking systems was easier.

After the standard 2D calibration procedure provided by the accompanying
eye tracking software, a 3D calibration procedure was run. For this a sequence
of points from a 3D calibration grid was presented to the participants; for
a side view see Figure 5.9. To fixate the leftmost calibration point on the
front side of the cube the right eye of the user had to rotate 49.27◦ to the left,
whereas the rightmost point was 32.19◦ to the right. To fixate all points on
the back side of the cube, the right eye had to rotate 36.16◦ to the left and
22.15◦ to the right. To fixate a point in the upper center of the front side,
the eyes had to converge 8.99◦, and for a corresponding point on the back
side 6.16◦.

A pilot study had shown that each person needed an individual time span to
acquire 3D perception with the projection technology used, so the calibration
was self-paced. During the calibration procedure, all points of the grid were
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Table 5.2: Object dimensions (in mm) of the target set of objects used for
the fixation and selection task. The numbers refer to the objects as specified
in Figure 5.8.

Object Number x y z
1, 2 23 8 23
3, 4, 17, 19, 22 20 24 17
5 30 30 30
6 30 10 30
7, 18, 20, 21 20 24 20
8 20 34 20
9 20 60 17
10 20 20 34
11 20 17 24
12, 15 20 20 24
13, 14, 16 20 17 24

presented dimly lit and only the point to be fixated was highlighted. The
points were traversed on a per plane basis, as recommended by Essig and
colleagues (Essig et al., 2006). However, Essig and colleagues displayed
the points one plane at a time, while in this study all points were shown
simultaneously, but dimly lit, to improve orientation.

A life-sized virtual reality model of a Baufix structure was shown during the
experiment (see Figure 5.8). The experimenter verbally referenced objects
within the model which should then be fixated by the participants. As soon
as they fixated the object, the participants affirmed this by pressing a key.
The 3D fixation points were calculated internally for each fixation using
both algorithms, and the results were logged. This was performed with each
participant using the 22 objects depicted in Figure 5.9.

5.9 Study 2: Results

Overall, 10 participants (4 women and 6 men) were tested. Their mean age
was 26.2 years; the youngest participant was 21 years and the oldest 41 years
old. All participants had normal or corrected sight (contact lenses) during
the experiment. They rated the difficulty of the experiment with 2.2 on a
scale from 1 (very easy) to 6 (extremely hard).
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Table 5.3: Results comparing the different conditions. A significant difference
of the means of the fixation depths was found in favor of the PSOM-algorithm.

Results Arrington SMI
geom. PSOM geom. PSOM

normally no yes no yes
distributed p < 0.001 p = 0.943 p = 0.038 p = 0.661
mean -195.77 mm -18.75 mm -248.55 mm -70.57 mm
difference sig. p < 0.001 sig. p < 0.001
btw. alg.
nominal sig. sig. sig. sig.
error p < 0.001 p = 0.005 p < 0.001 p < 0.001
standard 526.69 mm 96.92 mm 149.3 mm 60.06 mm
deviation

Four participants reported difficulties in fixating the virtual calibration crosses:
they experienced problems getting the crosses to overlap for experiencing the
3D impression. However, a post-hoc analysis of calibration data and fixations
revealed no significant differences compared to other participants.

Precision and Accuracy

The relative deviations of the calculated fixations from the real object positions
(defined by the center of the object geometries) over all participants are shown
in the bagplots (Rousseeuw et al., 1999) for the axes y and z (depth) in
Figure 5.10.

The Kolmogorow-Smirnow test (Conover, 1971) showed that both datasets are
not normally distributed. Therefore the Mann-Whitney-Wilcoxon test (Hol-
lander & Wolfe, 1973) was applied to examine whether the absolute means
of both datasets were significantly different and whether they differed sig-
nificantly from the nominal values. An alpha level of 0.05 was considered
significant (see Table 5.3) in all tests.

In the test series for the two eye trackers, the results for the z axis show that
the means of the fixations approximated by the PSOM are significantly closer
to the nominal value than those calculated by the geometric approach (5.10
from left to right). Still, all means differ significantly from the nominal value.
The means of the results for the device from Arrington Research were closer
to the nominal value than those from the SMI eye tracker (5.10 from top
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to bottom). Thus it can be said that the device from Arrington Research
showed a higher accuracy in our study.

The SMI device, however, achieved a higher precision, which is expressed in
the lower standard deviations when compared to the device from Arrington
Research. The precision using the PSOM algorithm is higher than the
precision of the geometric algorithm for both devices.

Performance on Pointing Dereference

Besides the described quantitative accuracy study, qualitative implications
for applications were tested on a gaze pointing task. It was tested whether a
dereferencing algorithm based on the 3D fixations manages to successfully
identify more referent objects than an approach based on the direction of
gaze only. Backed by the previous results, only the PSOM approach using
the Arrington Research PC60 was evaluated in the gaze pointing task.

The direction-based dereferencing model determines the Euclidean distance
between the 2D coordinates on the projection plane provided by the eye
tracking software and the projected screen coordinates of the 22 objects
(center of object). The object with the smallest distance to at least one of
the fixations of both eyes was taken as the referent object. This is equivalent
to the angular error measurement used in the manual pointing study, as
the image shown on the projection plane is rendered for the perspective of
the user; the distances measured are thus visually perceived distances. The
referent object was then checked against the prompted object.

The location-based dereferencing model worked similarly using a standard
3D distance metric. Of the 22 objects, 4 were positioned in such a way that
their projections partially occluded each other and thus led to an ambiguous
situation for the direction-based model. This set of objects defined the critical
area for the test.

The direction-based model successfully identified 165 (75%) of the 220 possible
referent objects (22 per participant). The location-based model identified
92 (42%) objects. In the critical area with occluded objects (numbers 17
to 20), the location-based model managed to disambiguate 17 (42%) object
selections, and the direction-based model only successfully identified 12 (30%)
objects. Figure 5.11 shows the successful identifications per referent object.
The numbering of the objects is depicted in Figure 5.8.
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Figure 5.10: Bagplots showing the relative errors of the different conditions
for the y axis and the z axis. The perspective is equal to Figure 5.9, thus the
user is looking from left to right towards negative z. The darker areas contain
the best 50% fixations (those with the lowest deviations) and the brighter areas
contain the best 75% fixations. The red dots mark outliers and the asterisks
within the darker area marks the mean value. The extensions of the plots in
z are smaller when the PSOM algorithm is used to determine the depth of
the fixation (higher precision) and the mean values of the plots are closer to
the center of the plot (higher accuracy). When the PSOM is used, the SMI
system is more precise, but the Arrington system is more accurate.
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5.10 Study 2: Discussion

The following conclusions for the three hypotheses can be derived from the
results of the study:

A: accepted. PSOM is more precise than the geometric approach
The fixations approximated by the PSOM are significantly more precise and
accurate than the results of the geometric approach for the y and z coordinates,
for both eye trackers.

This result replicates the findings of Essig et al. (2006). Compared to their
results, greater deviations of the means and of the standard errors were found.
This was expected, as in the setting used in this study, objects were considered
at distances between 65 cm and 95 cm from the observer, whereas Essig and
colleagues used objects located in an area between 39 cm and 61 cm in front of
the observer. They had already shown that the error increases with distance
from the observer.

Further, in this study models of small real objects (diameter: 1◦−3◦ of visual
angle), such as bolts and nuts, were used as referent objects instead of dots
or crosses (diameter: 1◦ of visual angle). Thus the error, which is defined as
the deviation of the fixation from the center of the object, will have a higher
standard deviation because the participant can fixate on a larger area to refer
to an object than when referring to dots.

B: rejected. The ViewPoint PC60 proved more accurate in the
study Although the EyeLink I has a higher precision, the PC60 proved to
be more accurate in this setting. One possible explanation could be that the
2D calibration using the shutter-glasses is more difficult with the EyeLink
I because the adjustment of the cameras for the EyeLink I system is more
difficult. In the study, the calibration fixations were often only rated as
poor by the provided software. Thus the base data was less precise. This
predication therefore holds only for the combination of eye tracking device,
projection technology and shutter-glasses. However, while the results may not
be transferable to different set-ups, they are still relevant for many desktop-
based virtual reality set-ups that can be found in basic research. As a result,
one cannot overemphasize that a good 2D calibration of the eye tracking
system is critical for gaze-based interaction, and that special gear has to be
developed that hosts stable perceivable motion tracking markers, glasses for
the projection technology and eye tracking cameras in a comfortable way.
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C: accepted. Considering fixation depth improves disambiguation
for occluded objects The location-based model to dereference gaze point-
ing improved the disambiguation of occluded objects (objects 17 to 20 in
Figure 5.8) from 30% to 42%. However, the performance of the location-based
model on the whole scene yielded a lower success rate than the direction-
based approach. This can be explained as follows: First, a comparison of
the coordinates estimated by the location-based model with the coordinates
provided by the eye tracker shows that the values estimated by the PSOM for
x and y are less precise than those generated by the direction-based model.
The direction-based model always chooses the best matching gaze direction,
either from the left or the right eye, to trigger the identification. This should
in most cases be the fixation from the dominant eye. If one gaze direction is
noisy, the direction-based model is not affected. The PSOM depends on both
gaze directions and thus is affected by inaccuracies of the subdominant eye.
Second, the self-paced 3D calibration was not coupled with a quality control
as the 2D calibration is. This could have led to less than optimal calibrations
for the PSOM approach. The accuracy of the PSOM approach could thus
be further increased by improving the detection of the dominant eye and by
optimizing the calibration procedure.

The results show that 3D fixations can be derived from vergence movements,
and the findings of Essig et al. (2006) can be generalized to more realistic
virtual reality scenarios, as the present setting with the objects from the toy
building block set demonstrates.

The adaptive PSOM approach based on five parameters (x/y coordinates
of left and right 2D fixations and difference in x coordinate) outperforms
geometric triangulation. However, the performance shown in this study is
not as good as in the study of Essig et al. (2006). This can be attributed
to larger fixation target sizes and the more difficult set-up: in the original
setting, the fixation targets were distributed over four levels of depth, two
behind the screen (-3.67 cm and -11 cm) and two in front of the screen (3.67 cm
and 11 cm). The fixation targets in this setting were all presented behind
the screen (-4.5 cm to -25.5 cm). Fixations closer to the user require greater
vergence movements and thus measurement errors have a smaller effect.

External factors, for example the virtual reality technology used for the study,
may limit the performance. Insufficient channel separation (ghosting) of the
applied stereoscopy method and a tracking from below the glasses complicates
the procedure. More advanced technologies, such as passive projections based
on polarized light, could thus further improve the performance. Also, the
limited interaction space of the desktop-based VR platform led to a crowded
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Figure 5.11: Histogram of the correct referent identifications over all 10
sessions (see Figure 5.8). The critical area of overlapping objects (numbers 17
to 20) is highlighted. While the location-based pointing model is outperformed
by the direction-based model in unambiguous cases, it achieves better results
in the ambiguous cases, especially for objects 18 and 20.

scene, reaching the limits of the resolution of the eye tracker. In this study, 22
objects were used as fixation targets on a single display. Most studies in basic
research that employ eye tracking on a computer screen, restrict themselves
to four to eight objects on one screen.

Location-based dereferencing of gaze pointing has shown first successes when
occluded objects need to be disambiguated. Several weaknesses, such as
the dependency on the subdominant eye and the need for a quality control
for calibration, have been identified that define concrete starting points for
further optimizations. For current applications, a hybrid approach that uses
direction-based gaze pointing per default and disambiguates occluded objects
using location-based pointing in cases of ambiguity could be a viable solution.

5.11 Visualizing the Point of Regard in 3D

Eye gaze movements on 2D surfaces, such as web pages, pictures or videos
have been analyzed in basic research and usability studies for years. Chapter 2
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has presented two different visualization techniques for the distribution of
attention on 2D surfaces (see Figure 2.11 and Figure 2.12). Yet, the increased
interest in investigating real-world interactions demands for more flexibility
in the scenery to be analyzed. Not all scenarios can be mapped to a 2D
computer screen and the manual analysis of videos taken by a scene camera
during online interactions is time-consuming and error-prone.

Applications for the technologies brought together in the interaction frame-
work and tested in the studies are thus not restricted to human-computer
interactions. There is indicated interest in basic research, for example in
visual attention, linguistics or sports, as well as in the industry, for example
to test product designs or optimize the point of sale. These disciplines require
descriptive visualizations of the gathered data. The following visualization
has been developed for the description of 3D points of regard in analogy to
the established scanpath technique for attention on 2D surfaces.

5.11.1 3D Scanpaths

Scanpaths of individuals are depicted as a sequence of dots marking the target
of fixations, which are overlaid on top of the image. A similar procedure can
be applied to the visualization of the point of regard in 3D as well. To give
an impression, Figure 5.12 shows an ideal scanpath for the gaze pointing task
used in the study on location-based pointing. This visualization is not based
on gaze data, but depicts the locations of the target referent objects as well
as their sequence during the task.

The 3D model of the Baufix assembly that was used in the study is defined
in X3D, an ISO-standard (ISO 19775-1:2004, 2004) for describing 3D worlds
in a scenegraph. This description is the starting point for the visualization.
The points of regard and links in between them are added automatically by
the developed visualization algorithm based on the eye tracking data. For
this, the algorithm instantiates external X3D prototypes whose definitions
can be altered to change the appearance of the visualization.

Figure 5.13 provides an overview of the results of the different algorithms and
eye tracking devices for participant 4. What is visible in the 3D scanpaths
but could not be seen in the statistics presented so far: while the errors of the
geometric triangulation are greater than the errors of the PSOM approach,
they are systematic, and the structure of the underlying assembly of Baufix
parts can be recognized, albeit spatially distorted in depth. This is an added
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Figure 5.12: The picture shows a 3D scanpath on the Baufix assembly used
for the study presented in Section 5.6. The scanpath depicted is the purely
hypothetical optimal scanpath for the target objects. Not all objects were used
in the instructions, thus some, such as the green ring at the lower right corner
and the yellow block in the center, are excluded from the scanpath.

value the 3D scanpath visualizations provide to the scientific evaluation of
the results.

3D scanpaths can also be used to visualize the data aggregated over all
participants of a study. The results are shown in Figure 5.14. These aggregated
scanpaths provide a feedback of the overall distribution of the points of regard,
but they lack the clarity of the individual scanpath visualizations. It is neither
possible to identify individual scanpaths, nor can the amount of points of
regard on a specific object be estimated well enough to provide further insights.
Thus, 3D scanpaths naturally face the same problems as 2D scanpaths. The
attention volumes presented in Section 6.4.1 overcome these problems.
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(a) P04, Arrington, geometric (b) P04, Arrington, PSOM

(c) P04, SMI, geometric (d) P04, SMI, PSOM

Figure 5.13: A comparison of the 3D scanpaths of participant 4. The model
is rotated in these visualizations to provide a better viewing perspective. The
participants gazed at the model from the lower left from a distance twice
as long as the width of the base plate. In the visualizations, the difference
between the geometric triangulation and the PSOM approach can be clearly
seen. The results from triangulation are spread more in depth than the PSOM
results. Yet the structure of the underlying Baufix assembly can be more or
less recognized in all visualizations.
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(a) All, Arrington, geometric (b) All, Arrington, PSOM

(c) All, SMI, geometric (d) All, SMI, PSOM

Figure 5.14: If more than one scanpath is depicted, the clarity of the picture
is reduced. While the extension of the area where points of regard have been
detected can be determined, the areas that get the most attention cannot be
retrieved and the objects themselves get obscured.
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5.12 Summary

The studies presented in this chapter attest that gaze-based pointing can be
used for human-computer interaction in immersive virtual reality. Additionally,
it was shown that the prototype of the interaction framework for gaze-based
interactions DRIVE (see Chapter A) provides reasonable latency and accuracy
for HCI. This was demonstrated on the Visual Ping test, which was devised
to estimate the latency of the system during a gaze pointing task. The total
latency of the system was about 300 ms, and the approximated latency of the
DRIVE framework about 70 ms.

For testing direction-based gaze pointing, a pointing cone model for the
extension of pointing with an aperture angle of 10◦ was used. The mean
horizontal accuracy of the gaze direction was 1.18◦ and the mean vertical
accuracy 2.52◦, both very accurate measures within the expected ranges.
Summing up the findings for direction-based gaze pointing, the DRIVE
framework in combination with the deployed tracking technology supports
an accurate detection of gaze pointing and offers a high success rate for
identifying the referent objects (see Figure 5.7).

Whereas manual pointing gestures can only be dereferenced using direction-
based approaches, gaze pointing also allows for location-based models if binoc-
ular eye trackers are available. The additional information about the depth
of the point of regard is valuable, for example to disambiguate between over-
lapping possible referents. The näıve approach using geometric triangulation
does not provide sufficient accuracy. The more advanced PSOM approach
tested in study 2 (Section 5.6) provides an improved accuracy. The point of
regard can be located in 3D up to a mean error of M=1.88 cm (SD=9.69 cm).
Location-based pointing, however, requires a longer 3D calibration procedure
to provide the parameterization of the PSOM. The 40% increase in discrimi-
native power for the disambiguation of occluded objects which was achieved
by the location-based approach shows room for further improvements, and
promising approaches have been discussed.

The detection of the point of regard in 3D space provides relevant information
which can be of great benefit for other research disciplines and commercial
applications beyond gaze pointing in conversational interfaces. The 3D
visualization presented in the preceding section provides valuable feedback
to the researcher. Together with the motion capturing and the interaction
framework for recording, DRIVE (see Chapter A), tracking visual attention
is now detached from flat surfaces and can be applied to real objects as well
(see also Section 7.1.4).
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Chapter 6

Modeling the Extension of
Gaze and Manual Pointing

This chapter presents precise models for gaze and manual pointing. Section 6.1
reconsiders the corpus on manual pointing gestures which was collected in the
study presented in Chapter 4. It provides essential reflections on the way the
corpus was initially analyzed and presents an alternative frame of reference.
The proposed frame of reference breaks with the segmentation of the pointing
domain into discrete rows and introduces a continuous measure based on the
distance from the finger tip to the referent. This change in the basis of the
analysis lays grounds for the development of generalized models of manual
pointing.

Answering the where-question for manual pointing The question
on where interlocutors are pointing to is approached in Section 6.2, which
is concerned with finding a model to describe the pointing direction. An
accurate model of the direction of pointing is a fundamental requirement for
models of the extension of pointing. To these ends, this section presents data
on a comparison between the Index-Finger Pointing model (IFP) and the
Gaze-Finger Pointing (GFP) model (see Section 3.2.1), based on the corpus
on manual pointing.

The basis for this comparison are measurements of the precision and accuracy
in predicting the ideal direction of pointing which are achieved by IFP and
GFP. A first comparison of IFP and GFP presented in Section 4.9.2 already
came to the conclusion that the GFP model is a better approximation of the
ideal pointing direction. The results, however, were not optimal, indicating
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that the validity of the GFP model is not optimal. This comparison is
reconsidered based on the new frame of reference.

As a consequence of the previous results, Section 6.2 also introduces more
sophisticated variations of the GFP model which include information about eye
dominance. The evaluations confirm that the refined model, called GFP/dom,
produces accurate predictions of the direction of pointing and thus constitutes
an adequate candidate for modeling the spatial extension of manual pointing.

Answering the which-question for manual pointing Section 6.3 starts
with a series of tests of models for the spatial extension of pointing, such as the
vector extrapolation model (see Section 3.3.2) and the shape-based pointing
cone model (see Section 3.1.4.2 and Section 3.3.3), on the corpus of manual
pointing. Both models are parameterized with the GFP/dom model for the
optimal pointing direction. Based on these findings and the observations of
the dichotomization of the pointing domain into a proximal and a distal area,
a hybrid model is developed that combines the advantages of the pointing
cone model and the distance-based approach.

Answering the which-question for gaze pointing Section 6.4 turns
towards pointing models for gaze pointing. The two studies on direction-
based and location-based gaze pointing presented in Chapter 5 have already
testified that gaze pointing is accurate and precise, especially when compared
to manual pointing. The section thus reconsiders the results from the study
on location-based gaze pointing, provides a refined model for gaze pointing
and finally presents Attention Volumes as a new visualization method for the
distribution of attention in 3D.

Integration into a conversational interface In addition to the empirical
findings on human pointing which stand on their own, the aim of this thesis
is to use the models of pointing to improve conversational interfaces and
make interactions with the machine more natural. Section 6.5 describes how
the developed models of pointing can be used in one specific conversational
interface. This section provides an example of an integration of the models
in a constraint-based satisfaction approach to resolve multimodal deictic
expressions. This example also concludes the contributions of this chapter to
the thesis.
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6.1 Study on Manual Pointing Reconsidered

One drawback of the analysis of the study on manual pointing presented in
Chapter 4 is that it uses the underlying grid layout of the pointing domain
as a distance measure. Among other reasons, this decision was motivated
by the fact that the presented study started as a replication of the previous
study of the DEICON project in the CRC 360, and thus the same frame of
reference was used for the analysis. This decision, however, makes it difficult
to transfer the findings to other domains. The discrete grid-scale generalizes
too much over the recorded data, as referent objects in the same row can be
targets of pointing acts of quite different morphologies.

The visualizations of the Gesture Space Volumes presented at the end of
Chapter 4 illustrate that the participants of the study exhibited different
behaviors with respect to co-verbal manual pointing and uni-modal manual
pointing. About 61% participants used the leaning-forward strategy to reduce
the distance between the tip of their pointing finger and the referent. These
new insights about the coping strategies motivate a break with the discrete
grid-scale. Hence, the following analysis steps out of the self-imposed grid-
constraints by using the distance between the finger tip and the referent as
frame of reference.

6.1.1 Distance between Finger Tip and Referent

The Description Givers (DGs) adjusted their upper body, e.g. by leaning
forward, to extend their gesture space further over the domain of possible
referents. Thereby they dynamically changed the distances between finger tip
and referent on a per move basis. The distance is individually different for
two DGs pointing to the same referent object. During the S+G trials, the
pointing hand of the DG remained closer to the upper body in most cases. In
the G trials, its extension was generally increased. To take these variances
into account, each pointing move is considered separately – neither aggregated
over rows nor over objects – and distances are computed accordingly.

The qualitative impression of the effects of the different pointing strategies on
the morphology of the 3D gesture space has already been shown in Figure 4.17
(page 94). The results of quantitative evaluations are depicted in Figure 6.1.
The plot shows how close the DGs moved their finger tips to the referent
as a function of the target row. Overall, when pointing at referents in the
distal area during the G trials, the DGs extended their finger tips in the
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mean about 0.30 cm further than in the S+G trials. In the S+G trials, the
DGs moved their finger tips close to the referent up to row 3, which was at a
distance of 47.75 cm from the edge of the table. This is roughly the length of
a human forearm and hand. In the G trials, the DGs invested more effort and
maintained a short distance to the referent until row 4, which was at 67.75 cm.
In normal seating position with the shoulders about 10 cm behind the table,
the arm had to be extended by about 85 cm to nearly touch referents in row 4
(without leaning forward). It is thus reasonable that leaning forward started
from row 4 on with individual differences, e.g. based on the personal height
when sitting. In row 8 the mean distance between finger tip and referent
exceeds one meter. Row 8 is 147.75 cm from the front edge of the table or
approximately 157.75 cm from the shoulder of the DG. The boxplot for the
G trials in row 8 shows that about half of the DGs reduced the distance even
further, which they could not have managed without leaning forward.
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Figure 6.1: The leaning-forward behavior found as a coping strategy in the
G trials of the manual pointing study (see Figure 4.17) can be identified in the
plot shown above. It depicts the distances from the tip of the DG’s pointing
index finger to the referent as a function of the row of the referent.

The change in the frame of reference clearly affected the distribution of the
number of identifications, which are now accumulated per distance. In the
old grid-scheme, 4 objects needed to be identified per row, which amounts to
100 identifications per row over all 25 participants. For the distance-based
frame of reference, the distribution is more heterogeneous. Figure 6.2 shows
the number of identifications as a function of the distances the DGs covered
with their finger tips during the stroke in the S+G and G trials. As can be
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seen, for the majority of the identifications, the finger tip was close to the
referent. This was even more so for the G trials. But the graphs also show
something else: they highlight the identification failures of the OI. Failures
occured only in the G trials, and only if the tip of the index finger was at
least 30 cm from the referent. Based on the data, it can be assumed that
manual pointing in this scenario started to get ambiguous at 30 cm from the
finger tips. This, however, is surely a domain-specific effect which depends
on the distribution of the possible referents. As such it has to be considered
with care and cannot be generalized. Nevertheless, the DGs quite successfully
tried to reduce the distance below this critical threshold as if they were aware
of it, and they automatically adapted their pointing behavior to the situation.

In the scenario used for the manual pointing study, pointing gestures are
unambiguous if the index finger is less than 30 cm away from the referent.

A second strategy which was used by 48% of the DGs is raising high. The
distribution of the number of identifications relative to the height of the index
finger during the stroke is depicted in Figure 6.3. During co-verbal manual
pointing, the height levels between 2 cm and 30 cm are represented equally
well, there is no clear preference. This changed in the G trials, where the
height levels below 10 cm were clearly preferred. Above 10 cm the OIs started
to fail with their identifications. In addition, it can be observed that during
the S+G trials the maximum index finger position was below 38 cm, while
in the G trials the height levels extended up to 48 cm. Maintaining a higher
position, however, does not seem to be a very good strategy, as all failed
identifications concern heights above 10 cm. This is detailed further in the
scatterplot of the heights as a function of the distance shown in Figure 6.4.
The failed identifications are brushed in red. The failures are clustered in an
area starting at 10 cm above the table and 40 cm away from the DG.

The leaning-forward strategy is successful in coping with the short range
of distinctiveness of manual pointing in this scenario. The raising-high
strategy leads to an increase in misinterpretations on the part of the OIs.
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Figure 6.2: In the G trials, the OI only failed to identify referents which
were relatively far from the DG. This was already shown in the row-based
analysis. The distance-based analysis reveals that failures increased with the
distance from the finger tip, starting from a minimum distance of 30 cm.
Pointing gestures to referent objects in row 5, for example, did not fail if the
DG leaned forward to reduce the distance between finger tip and object below
30 cm.
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Figure 6.3: During co-verbal manual pointing, the index finger is held
at different heights above the table and – as can be seen in the plot at the
top – the height levels between 3 cm and 33 cm are equally distributed. In the
G trials, the index finger is held more often at a lower height level and this
coincides with successful pointing acts. Above a height level of 11 cm failures
increase in the G trials.
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Figure 6.4: The demonstration acts in which the OI failed to identify the
referent object are distributed over the upper distal area of the 3D gesture space
(top right area in the graph). The locations of the index fingers are depicted
as circles, green circles mark successful and red circles mark unsuccessful
pointing acts.

6.2 Modeling the Direction of Manual Point-

ing

A precise model of the direction of pointing is the essential basis for models of
the extension of pointing. The GFP model used so far estimates the direction
of manual pointing based on a vector from a point between the eyes, the
“cyclopean” eye, towards the tip of the index finger. This first approximation
is efficient and converges on the ideal pointing direction better than the IFP
model. Nevertheless, the obtained accuracy is still far from optimal. The
imagined cyclopean eye used in the GFP approach is a simplification. The
two human eyes do not contribute equally to aiming at the referent object.
Humans have a preferred eye, the dominant eye, and sometimes they even
shift dominance between eyes depending on the context. Banks, Ghose &
Hillis (2004) for example attested a positive effect of perceived relative image
size on eye dominance.
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It thus seems advisable to further optimize the GFP model by taking eye
dominance into account. For this, different submodels of GFP have been
implemented and tested on the data from the manual pointing study. In
the following, the original GFP model is called GFP/cyc(lopean), the GFP
variants for a preferred left or right eye are GFP/left and GFP/right. In
addition, a dynamic GFP model GFP/dom is introduced which switches
dominance between the eyes based on the context. A coherent model for eye
dominance switching is not available at the moment, so the current GFP/dom
model uses a post-hoc test based on the knowledge about the current referent
to evaluate the accuracy of the GFP/left and GFP/right models. Based
on the results of this test, the GFP/dom model switches eye dominance to
the eye whose GFP model led to the best approximation of the pointing
direction. The GFP/dom model thus demonstrates the performance that can
theoretically be achieved by a GFP model with dynamic dominance switching
if the dominant eye can be either detected or reliably predicted.

6.2.1 Analysis of Accuracy

Figure 6.5 shows the distributions of the angular errors for all models for
the S+G trials. The closer the peak of the model curves are towards zero
and the smaller the curve, the better the corresponding model approximates
the direction of pointing. The IFP model, for example, has a rather broad
maximum with a peak at about 14◦. The original GFP, GFP/cyc, has a peak
at about 4◦ and is also more narrow than IFP. The GFP/left model is worse
than GFP/cyc, but the GFP/right model shows a very good performance.
GFP/dom and GFP/right show a peak performance at 0◦, which means that
they are very good approximations of the ideal direction of pointing. As eye
dominance in the right eye is more common (not only in this study, but also
generally, see Chaurasia & Mathur, 1976), GFP/dom uses the GFP/right
model for most pointing acts.

The specialized GFP/dom model is a good approximation of the ideal
direction of the pointing gesture. It clearly outperforms the previous
models IFP and GFP in predicting the direction of manual pointing.

At the moment, however, a model to predict switches of eye dominance is
missing and GFP/dom can only be used post-hoc once the target referent is
known. As a good approximation, the GFP model for the preferred eye can
be chosen (here GFP/right) for online use in human-computer interaction. A
closer examination of the pointing acts where GFP/left performs better than
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GFP/right reveals that 63% of these acts were performed left-handed (see
Figure 6.6). The GFP/left model only provides better results in one single
case of right-handed pointing gestures. So a change in the pointing hand
might also indicate a switch of eye dominance.

If eye dominance cannot be measured or detected online, GFP/left or
GFP/right can be used to approximate GFP/dom, depending on the
default eye dominance. When pointing, also the laterality of the pointing
hand can be used to indicate the dominant eye.
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Figure 6.5: The graph shows a comparison of the accuracy of the models
for pointing direction. Shown is the density of angular errors. An optimal
solution should have a peak at zero. The GFP/cyc model comes close to
zero with a peak at 7.5◦. The GFP/dom model has the best accuracy, closely
followed by GFP/right, which outperforms GFP/left because the DGs were
right-handed.
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Figure 6.6: This graph shows the distribution of right- and left-handed
pointing gestures. For all pointing acts, the positions of the finger tip during
the stroke are marked. If the direction of pointing is described best by the GFP
model which is equilateral to the pointing hand, the symbol is solid, otherwise
it is only outlined.

6.2.2 Analysis of Distance Dependencies

The main motivation for reconsidering the manual pointing study was to tell
which model for the direction of pointing, either IFP or GFP, is better. This
could not clearly be answered in Section 4.9.2, which is inter alia reflected by
the graphs depicted in Figure 4.13 (page 87), where the graphs for IFP and
GFP in the G trials are not easily disentangled in the distal area.

The differences between IFP and GFP stand out much clearer than in the
original graph in Figure 4.13 if the mean angular and orthogonal errors are
plotted as a function of the distance between the finger tip and the referent.
Figure 6.7 shows the data smoothed by the LOWESS smoother (Cleveland,
1981). In the S+G trials, the angular errors of IFP approximate 11.7◦ in
the distal area, while GFP/cyc achieves lower angular errors of about 6.5◦.
The most accurate results are generated by the GFP/dom model with 4.1◦.
A similar qualitative behavior can be found in the G trials, but with lower
quantitative differences (IFP 10◦, GFP/cyc 8.7◦ and GFP/dom 7.3◦).
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The pointing direction can be predicted best by the GFP/dom model,
with an error as small as 4.1◦ in the distal area.

The shapes of the curves for the angular errors suggest a distinction between
proximal and distal pointing. Within the first 40 cm the curves show a steep
negative slope with angular errors going down from 20◦ and 40◦ to about
10◦. Beyond 40 cm the curves show a nearly asymptotical course. In the
G trials, GFP/cyc and GFP/dom provide distinctly better results in the
proximal area, but for distances above 40 cm, IFP and GFP models provide
nearly identical results. As a consequence, it could be necessary to distinguish
between proximal and distal pointing in the pointing models to do justice to
the observed differences.

In the G trials, the DGs extended their pointing hands more often to get as
close as possible to the object. This amounts to fewer pointing acts with
larger pointing distances, as has been shown in Figure 6.2. By implication
this means that for pointing distances greater than 40 cm, the arm of the DG
is already extended, the line of gaze and the direction of the index finger are
nearly conform and thus also the different error measurements coincide.

This is different for the S+G trials, where the DGs also point at distant
objects with a nearly completely flexed elbow. In doing so, they do not reduce
the distance between finger tip and referent. Instead, they reduce the distance
between their dominant eye and the finger tip. This makes aiming with the
dominant eye more accurate, but at the same time small errors have a larger
effect and thus models with an incorrect or only approximated origin of the
gaze will provide larger errors. This behavior is directly observable in the
graphs for the S+G trials showing differences between the three models which
are larger than those found in the G trials.

The closer the referent gets, the lower the accuracy of the GFP models.

In the S+G trials, differences between IFP and GFP models show up in both
orthogonal and angular measurements. The orthogonal errors of IFP increase
about twice as fast with increasing distance than those of GFP. The slope
of the orthogonal errors measured for IFP is also greater for the S+G trials
than for the G trials. Also, the angular errors of IFP are higher than those of
GFP and even higher than the angular errors in the G trials. The GFP/dom
model, on the other hand, produces the smallest angular errors for S+G trials,
even smaller than for the G trials.
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The GFP/dom model is the most accurate model in describing the direc-
tion of pointing over all trials.

The GFP/dom model constitutes a very accurate description of the direc-
tion of human manual pointing gestures. This model also does not require
much additional effort in its application compared to the GFP/cyc model.
The distance between the eyes of the user can be easily obtained – for the
stereo projection in 3D environments this distance is already required – and
knowledge about the defaults regarding the dominant eye of the user can be
used as a good approximation, if no model to dynamically predict changes
in eye dominance exists. As a consequence, the optimization of the model
for the direction of pointing is considered as settled. The following section
proceeds with the evaluation of models for the extension of pointing.
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Figure 6.7: The angular and orthogonal errors produced by the different
models for the pointing direction (IFP, GFP/cyc and GFP/dom) are com-
pared in these diagrams for the S+G trials and G trials. Overall, GFP/dom
produces lower errors in all trials and for both measurements.
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6.3 Modeling the Spatial Extension of Man-

ual Pointing

In the previous section, alternative models for the direction of pointing were
developed which take into account the dominance of an individual’s eyes.
From these models, the GFP/dom model, which dynamically switches between
the eyes, emerged as the best solution (p = (~otip,~vGFP/dom)). This optimized
model for the direction of pointing can now be used to parameterize and
evaluate the models of the spatial extension of manual pointing. In the
following, the Vector Extrapolation Model and the Pointing Cone Model will
be tested.

6.3.1 The Vector Extrapolation Model

Based on the GFP/dom model, the inital equation of the vector extrapolation
model (see Equation 3.7 on page 54) can be refined to:

Svector(p) := {r|(G(r)∩~otip + d~vGFP/dom) 6= /0} (6.1)

with ~vGFP/dom := ~otip−~oeye/dom

The vector extrapolation model requires that the referent is hit by the vector
defined in Equation 6.1. If the findings presented so far are considered, it
is evident that vector extrapolation will not successfully dereference many
pointing gestures. This can be seen in the distribution of the intersections of
the pointing rays with the table presented in Figure 4.11 and the distribution
of the angular errors depicted in Figure 6.5. Figure 6.8 shows the predictions
of the vector extrapolation model applied to the data recorded for a single
individual. Over all participants, the vector extrapolation model identified
9.7% of the referents in the S+G trials and 8.0% in the G trials.

The strict vector extrapolation model is no explanation for the extension
of manual pointing.
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(a) Perspective of the OI, GFP/dom

(b) Alternative perspective, IFP

Figure 6.8: These Gesture Space Volumes are augmented to show the
referential space of the pointing gestures of an individual DG in the S+G trials.
The referential space is predicted by the vector extrapolation model, using
GFP/dom (top) and IFP (bottom).



6.3 Modeling the Spatial Extension of Manual Pointing 147

6.3.2 The Pointing Cone Model

Figure 6.9: The pointing cone model for pointing is parameterized by the
origin (here the tip of the pointing finger), the direction (here GFP/dom) and
an angle defining the aperture of the cone.

A better candidate to model the extension of pointing is the pointing cone
(see Figure 6.9), one of the shape-based dereferencing models. Pointing cone
models try to take the increasing ambiguity of pointing into account. The
equation for the pointing cone (Equation 3.9 on page 55) can be refined for
GFP/dom in analogy to the vector extrapolation above:

Gcone : 0 ≥ ~y · ~vGFP/dom−|~y||~vGFP/dom|cosφ (6.2)

with ~y = ~x−~otip

The equation of the pointing cone model requires an additional parameter
φ , which is half of the aperture angle of the cone. If φ is 0, the pointing
cone model is identical to the vector extrapolation model. The aperture
angle should be small enough to exclude false positives, i.e. objects that
are mistakenly identified as referents. It should also be large enough, that
as many referents as possible are correctly identified. In the following, an
optimal φ for the manual pointing study will be approximated based on the
recorded data.
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Finding the Optimal Aperture Angle To this ends, simulations were
run with aperture angles between 0◦ and 100◦ (φ ∈ {0◦ · · ·50◦}) to find the
optimal angle for which the pointing cone model identifies most referents. In
previous simulation runs to estimate the optimal angle of the pointing cone
model the same data was used. In these simulations, distance errors were only
measured based on the grid layout, which turned out to be an incomplete
measure. These tests only probed whether the target referent was within the
range of the pointing cone and whether the angular error was smaller than the
minimal angles to the next row (see Table 4.1 on page 72). These preliminary
results are published in Kranstedt (2007). However, as it turned out, these
tests abstracted away too much from the exact topology of the neighboring
objects. They did not provide a valid description of the performance of the
pointing cone model, as they included too many false positives.

The simulation runs for the following analysis tested the intersections of the
pointing cone models with the full set of objects in the pointing domain. In
addition to the strict test which requires the referent object to be the one
and only object within the cone, a pointing cone model with an additional
weighting function is used. By use of the weighting function, the objects
intersected by the cone are ordered according to their angular deviation from
the axis of the cone. Objects closer to the central axis are ranked higher.
Equation 6.3 shows the distance-based weighting, with 0 being the highest
rank. An increasing distance will lead to more negative weights and thus a
lower ranking.

Wortho : P×D →R (6.3)

Wortho(p,r) = −
|( ~G(r)−~otip)× ( ~G(r)− (~otip +~vGFP/dom))|

|~vGFP/dom|
(6.4)

As an illustration, the pointing cones for participant 04 of the manual pointing
study are depicted in Figure 6.10.
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(a) S+G Trials

(b) G Trials

Figure 6.10: Pointing cones for participant 04 of the manual pointing
study. The cones are primarily visible when pointing to distant objects in the
S+G trials. In the G trials, the participant leaned forward and reduced the
distance to the referent. In these cases, the cone model has problems similar
to those of the vector extrapolation model.



150 Chapter 6 Modeling the Extension of Gaze and Manual Pointing

The simulations were run for the S+G trials and the G trials with similar
results. As the accuracy of the GFP/dom model for the pointing direction is
better for the S+G trials than for the G trials, the success rates of the pointing
cones are also better in the simulations for the S+G trials than for the G trials.
In addition, the human object identifiers only had problems dereferencing
manual pointing gestures during the G trials. This makes the G trials more
interesting when comparing the performance between the pointing model and
the human. Therefore, the presentation in the following will concentrate on
the G trials. The results of the simulation runs are categorized as follows:

unique the target referent object is the one and only object intersecting the
cone; this is the strictest test

inference the target referent intersects the cone among other objects, but
the target referent is ranked highest

failure the target referent intersects the cone among other objects, but a
different object is ranked highest

clear failure some objects intersect the cone but the target referent is not
among them

Figure 6.11 shows the simulation runs for the G trials. The data has been
split into pointing acts that were directed at referents in the proximal area
with a distance below or equal to 40 cm, and into pointing acts that were
directed to referents beyond 40 cm. Referent objects in all rows of the pointing
domain were considered.

Proximal area In the proximal area, a pointing cone with a φ of 13◦

uniquely identified the most referent objects (20.9%). This is about twice as
many as were identified by the vector extrapolation model. With the same
angle, an additional 7.8% were identified based on the weighting heuristics.
At the same time, the weighting heuristics also falsely identified 6.7% objects
that were not the intended referent, although the referent lay in the same
cone. About 8.4% of the objects were falsely identified as a referent while
the intended referent did not lie within the cone. The results also attest that
the weighting function is important when dereferencing using the pointing
cone. With a φ of 60◦, the inference over the weighting function is able to
successfully identify 58.2% of the referent objects. At the same time, however,
35.7% failed with the intended referent object inside the cone, and 3.9% failed
completely. The human object identifier was able to correctly identify all
referent objects (100%).
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Distal area In the distal area, a pointing cone with a more narrow angle
of φ = 7◦ uniquely identified the most referent objects (20.9%). Also, more
identifications than in the proximal area were successfully achieved based on
inference (14.1%). This went along with an increase in false positives (17.2%)
and clear failures (17.8%). The results again attest the importance of the
weighting function. With a φ of 60◦, the inference over the weighting function
is able to successfully identify 44.8% of the referent objects. This is close to
the performance of the human object identifier, who was able to correctly
identify 56.4% of the referent objects in the distal area. The number of false
positives at φ = 60◦ exceeded 50% (55.2%), but the intended referent object
was always within the pointing cone.

Interpretation of the results The repeated simulations of 1037 pointing
acts from the corpus on manual pointing have provided the optimal parame-
terization of the pointing cone model for the target scenario. For the proximal
area an aperture angle of 26◦ (φ = 13◦) and for the distal area an aperture
angle of 14◦ (φ = 7◦) should be chosen to optain the maximum number of
unique identifications. This might be relevant in some application contexts to
play safe.

With these settings, the pointing cone models perform much better than the
vector extrapolation model. In the proximal area, the performance of the
perfect human object identifier could not nearly be achieved. However, by
applying the weighting function and increasing the aperture angle to 120◦

(φ = 60◦) the inference mechanism can be optimized to identify more than
50% percent of the referents.

In the distal area, the performance of the pointing cone model is slightly better
than in the proximal area, regarding the absolute number of successes. At
the same time, the number of false identifications nearly doubles. Compared
to the human, the pointing cone model can win ground, but only because the
performance of the human drops down to 56.4%.
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• Proximal area: the pointing cone model is better than the vector ex-
trapolation model, but not a good approximation of the performance
of the human OI.
• Distal area: performance of the OIs decreases, but the pointing cone

model maintains most of its discriminating power and thus achieves
79.4% of the OIs’ performance.
• Narrow aperture angle: good to obtain a reasonable number of

unique identifications.
• Wide aperture angle and weighting heuristics: the pointing cone

model can identify about half of the referents, but at the same time
a comparable number of false positives will be found.

How bad are failures? Along with the increased number of correct identi-
fications comes an increase in false positives and clear failures when using the
weighting function. Thus, a correct identification is only above chance if the
pointing gesture is not interpreted detached from any context or from other
restrictors on the referent, which might be part of a multimodal expression. In
the cases marked as failures, the intended referent still lies within the pointing
cone, it is just not the one object nearest to the axis of the cone, which is
required by the weighting function. In these cases, the set of objects lying
within the pointing cone is much smaller than the set of possible referents
in the domain. The pointing cone can still provide valuable information if
other restrictors apply, and can eliminate the false positives from the set a
posteriori, for example in co-verbal manual pointing.
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Figure 6.11: Results of the simulation runs with GFP/dom pointing cone
models, parameterized with different angles (top = proximal area, bottom =
distal area).
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6.3.3 A Hybrid Pointing Model

The models for the extension of pointing evaluated so far did not provide
satisfactory success rates. However, the evaluations provided some valuable
insights.

1. If the weighting function is applied, an increase of the aperture angle
will also increase the successful identifications.

2. If the aperture angle is increased, the pointing cone loses its identity
and fewer referents are uniquely identified. In the end, the referent is
primarily identified by the weighting function and not by the cone.

3. Most of the deictic references that cannot be identified using the pointing
cone model are those to referents in the proximal area. This can
intuitively be read from Figure 6.7: the mean angular error in the
proximal area is much greater than the optimal aperture angles for the
pointing cone model. Consequently, the narrow pointing cones will lead
to more errors in this area.

On the other hand, the same diagram (Figure 6.7) also provides valuable
information about the weighting function: the orthogonal errors will increase
along with the increasing distance from the referent to the finger tip of the DG.
In the small setting used for the study, this does not have much consequence
on the performance of the weighting function, which is based on the orthogonal
distance. The mean error at the distance of 1 m is about 10 cm, which is
still enough to discriminate the referent in most cases. The DGs’ pointing
hand will be hovering about the same height above the table when pointing
to distant objects and thus already maintain at least a distance of 10 cm from
most other objects. In other scenarios this would be different. If the domain
of possible referents contains objects that are distributed over larger distances,
the weighting function based on the orthogonal error will not be able to “get
around” objects closer to the pointing hand.

The pointing cone model based on angular errors works best for precise
pointing and distant referents. The weighting function based on orthogonal
errors works best when pointing to proximal referents.

Considering these insights, the optimal pointing model would combine the
properties of both approaches: it would use orthogonal errors in the proximity
and angular errors in the distance. Such a hybrid model is specified in
Equation 6.5.
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Ghybrid :
{

Gcone if |~otip−G(r)| ≥ dthresh
Gcone∪|~otip−G(r)|< dmax if |~otip−G(r)|< dthresh

(6.5)

The arm length of the extended pointing arm can be used as threshold dthresh
to differentiate between the proximal and distal region. The performance
of this model has again been tested on the data from the manual pointing
study. Figure 6.12 shows the simulation runs for the G trials, again split into
proximal and distal areas.

In the proximal and distal area, the data for the unique identifications are
equal to those obtained by the basic pointing cone model, as this component
of the hybrid model was left unchanged. The relevant differences show up
when the orthogonal errors are considered.

In the proximal area, the orthogonal errors provide a basic rate of success
of 66.0%. As this is not a function of the opening angle of the cone, this
contribution of the orthogonal error to the success rate remains constant.
Even in the proximal area, the pointing cone model can increase the success
rate to 89.4% (φ = 69◦). If φ = 13◦, the combined success rate of unique and
inferential identifications is at 76.3% (22.3% unique and 54% inference).

In the distal area, the hybrid model achieves a higher success rate than the
human object identifier. The basic success rate contributed by the orthogonal
errors is 57.7% and the human OIs only identified 56.4%. The success rate is
further improved to 62% by the contribution of the pointing cone.

The created hybrid pointing model considers the distinction of proximal
and distal pointing by combining orthogonal and angular measurements.
It provides the best performance on the data from the manual pointing
study.
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Figure 6.12: Results of the simulation runs with the hybrid pointing cone
models, with a direction predicted by GFP/dom.
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6.4 Modeling Gaze Pointing

With the hybrid model developed in the previous section, an accurate model
of the extension of manual pointing has been found. This section now turns
towards pointing models for gaze pointing. The two studies on direction-
based and location-based gaze pointing presented in Chapter 5 have already
testified that gaze pointing is accurate and precise, especially when compared
to manual pointing. This section thus only refines the pointing model for
location-based gaze pointing. While the technology to detect the point of
regard of eye gaze in 3D has been developed in the context of deictic reference,
it can be used to assess more basic processes, such as the flow of visual
attention in space. This section presents a new technique to visualize the
volumes of attention, which can be identified in this way.

6.4.1 Attention Volumes

Attention maps or heatmaps were introduced in Section 2.4.6 for 2D surfaces.
Attention Volumes extend these concepts to 3D space. Figure 6.13 shows
the Attention Volume equivalent to the 3D scanpath depicted in Figure 5.12.
Similar to the 3D scanpaths, individual points of regard are depicted in
Attention Volumes. The sequence between individual points of regard is not
visualized. Attention Volumes focus more on aggregating information over
several fixations and/or participants than on individual scanpaths. Looking
closer at the visualizations of the points of regard one can recognize that
they are not depicted as a solid geometry as in the 3D scanpaths, but as a
color gradient. This gradient represents the likely distribution of attention
based on the assumption of the cone of attention defined by the area of high
acuity inside the visual field, as explained in Section 5.2.1. The distribution
of the colors ranges from red for areas of a high probability of attention, over
green and yellow to transparent unshaded areas where no attention has been
registered.

When aggregating over several participants, the distributions can be su-
perimposed and normalized to generate a visualization of the likely overall
distribution of attention. This has been done for the gaze pointing data
recorded in the study on location-based gaze pointing to create Figure 6.14,
similar to the 3D scanpaths shown in Figure 5.14.
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6.4.2 A Model for Gaze Extension

The point of regard in 3D is approximated in the first instance by the shape
of a sphere (see Ggaze in Equation 6.6). This sphere is accompanied by a
weighting function Wgaze, which models a gaussian distribution around the
center of the point of regard in 3D. This distribution is slightly distorted by
taking the opening angle of the area of high visual acuity into account.

Ggaze : 0 = ~y · ~v−|~y||~v|cosφ (6.6)

Wgaze(~x) = d(t)e
− |~x−~ppor |2

σ(~peye,~x) (6.7)

with ~ppor : 3D point of regard

~peye : position of the eye

d(t) : amplification factor depending on the duration

Examples of predictions of the updated model for gaze pointing are presented
in Figure 6.15. The amplification factor d(t) amplifies the distribution de-
pending on the duration of the fixation. Longer durations will lead to higher
amplitudes of the gaussian function, which will be visualized by a darker
shading.

If this function is used during on-line interpretation of gaze pointing, a
threshold can be used to detect the fixated area. The referent object can then
be identified by intersecting the volume with the domain of possible referents.
Possible thresholds have been specified in Section 2.4.4; a typical threshold is
250 ms. If the function is used on-line, the volume has to be updated regularly
to fade out older fixations. Otherwise the distributions will cumulate until
everything will be interpreted as being attended to.
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Figure 6.13: Attention volumes show the distribution of visual attention,
here demonstrated using the example of the purely hypothetical optimal target
attention distribution for the target objects presented in the study on estimating
the 3D points of regard (Section 5.6). Detected points of regard are visualized
as color distributions from red fading out over yellow and green to transparent.
Areas of red color are more likely to have received attention than yellow, green
or unshaded areas.
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(a) Arrington, geometric (b) Arrington, PSOM

(c) SMI, geometric (d) SMI, PSOM

Figure 6.14: Attention Volumes of the data collected in the study on location-
based gaze pointing (Section 5.6). Compared to the 3D scanpaths over all
participants (Figure 5.14), the underlying Baufix assembly is still visible, and
the intensity and the colors of the gradients reflect the amount of attention
the area has received.
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(a) Arrington Research, PSOM

(b) SMI, PSOM

Figure 6.15: The Attention Volumes presented here show the distribution
of attention as predicted by the updated gaze pointing model. The new model
takes the distance of the point of regard from the eye into account and modifies
the width of the gaussian distribution according to the angle of high visual
acuity.
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6.5 Integrating Pointing Models with a Con-

versational Interface

This section gives an account of the way the developed models for pointing
can be integrated in a conversational interface. First, the DRIVE framework
is described. DRIVE uses modality-specific models to derive the potential
referents of a pointing gesture. Its input are the raw sensor data provided
by the different tracking systems. Its output are weighted lists of potential
referents. The next step then is the multimodal integration, which is done
by a multimodal reference resolution engine. Both steps are described in the
following sections.

6.5.1 Deictic Reference in Virtual Environments

The models that have been developed in this thesis, especially those described
in this chapter, have been integrated in a component-based framework for
deictic reference called Deictic Reference In Virtual Environments (DRIVE).
In this section, only a brief overview of DRIVE can be given. An extensive
description of DRIVE can be found in Chapter A in the Appendix.

The DRIVE framework is based on X3D (ISO 19775-1:2004, 2004) and the
extensions provided by instantreality (Fellner, Behr & Bockholt, 2009) and
InstantIO developed by Fraunhofer IGD, Germany. In the DRIVE framework,
functional components, the nodes, are connected to a data-flow network
via routes. There are nodes for interfacing the tracking systems, such as
the IO::EyeTracker node and the IO::ARTpro node (see Section A.2.2 and
Section A.2.3) as well as computational nodes, e.g., to detect fixations (see
Section A.3.1). These nodes are interconnected to complex networks for
detecting pointing gestures and for deriving relevant features of the gestures.
Finally, once a pointing gesture has been detected, a set of dereferencing
nodes applies the appropriate pointing models developed in this thesis and
retrieves the potential referents, if there are any.

The components of the DRIVE framework are thus at the core of analyzing and
interpreting gaze and manual pointing in a staged process. In the context of
the interpretation of multimodal place deixis, the interconnected components
of DRIVE provide a rated set of possible referents for either gaze or manual
pointing as a result. The rating is thereby done according to the weighting
functions described above.
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� �
1 (and (instance ”? ob j e c t−1 ” ontology:coar:baufix:BLOCK)

2 (instance ”? ob j e c t−2 ” ontology:coar:baufix:BLOCK)

3 (has-color ”? ob j e c t−1 ” RED)

4 (very (is-target-of-manual-pointing ”? ob j e c t−1 ” t1))

5 (very (is-target-of-manual-pointing ”? ob j e c t−2 ” t2))

6 (prefer (is-target-of-gaze-pointing ”? ob j e c t−1 ” t1))

7 (prefer (is-target-of-gaze-pointing ”? ob j e c t−2 ” t2)))� �
Listing 6.1: The constraint satisfaction problem for the instruction “put this
red block on this block”.

The components provided by DRIVE can also be used to realize other aspects
of communication. The components for interpreting eye-tracking data have so
far been used to realize turn-taking, check-backs and high-level communication
functions such as shared attention and joint attention Pfeiffer-Lessmann &
Wachsmuth (2008) (see Section 7.1.2).

6.5.2 Multimodal Reference Resolution

The logical next step is the integration of this multimodal information. One
possible approach to this problem, which has been followed by Pfeiffer &
Latoschik (2004) in the contexts of the CRC 360 and the DFG project Virtuelle
Werkstatt (Virtual Workshop), is to define the multimodal reference resolution
process as a fuzzy constraint satisfaction problem (fCSP). This is illustrated
in the following with a small example.

An instruction such as “put this red block on this block” would result in the
specification of the constraint satisfaction problem shown in Listing 6.1. The
listing in the description language of the fCSP describes a graph of variables,
?object-1 and ?object-2, which can represent any object in the domain
of possible referents. The number of variables that are instantiated in the
graph depends in this example on the number of noun-phrases. The type
of variables in this case is determined by the specific noun which has been
used. Further information that is parsed from the verbal instruction, such as
the color of the first object, is attached to the variables as constraints (e.g.
has-color).

In addition to the constraints derived from speech, several other constraints
can be added, for details see Pfeiffer & Latoschik (2004) (or the full description
in German in Pfeiffer (2003)). Examples are constraints that express certain
preferences, such as that objects closer to the interlocutors will be more
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likely to be the target of a manipulation, or that objects which have recently
been the target of an action will be preferred over others. Relevant in this
context are the constraints that are added to integrate information from gaze
and manual pointing. The constraint is-target-of-manual-pointing, for
example, evaluates possible variable assignments based on the rated extension
set provided by DRIVE. The approximate moment in time at which the
pointing gesture occurred is provided as an additional parameter, which in
turn is derived from the time the associate word has been uttered in the
speech channel.

The default proceeding of the reference resolution component is always to
add constraints for gaze or manual pointing whenever a new reference has
been identified in speech, so that possible referents that have been gazed at
or manually pointed to are preferred over others in the current context. At
this stage it is unknown whether a pointing gesture was actually made. In
the fuzzy CSP, this uncertainty is modeled by the operator prefer, which
marks that the following constraint should be applied if possible, but, if there
has been no pointing gesture, the results are not affected. In the example
of Listing 6.1, this is the case for gaze pointing. For manual pointing, the
reference resolution component uses a different operator, very, because the
user used “this” in the speech channel. This could be taken as a signal for
a manual pointing gesture, and thus the harder fuzzy operator very is used
instead of the softer operator prefer. The reference resolution component
expects that the deictic pronoun goes along with a clarifying manual pointing
gesture.

In the example provided above, the pointing models and their implementation
in DRIVE allowed the reference resolution system to understand multimodal
deictic expressions where formerly only verbal expressions were understood.
The basic interface between DRIVE and higher-level processes for multimodal
integration is small and concise. It consists primarily of a data exchange of an
ordered weighted list of possible referents for a specific moment in time. The
component-based architecture of DRIVE is versatile enough to be adopted to
other systems as well.

6.6 Summary

This chapter presented a thorough investigation of the pointing studies to
derive models for the extension of pointing. Regarding manual pointing, it
identified the need for reconsidering the original method of analyzing the data
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from the corpus on manual pointing. Using the distances between the finger
tip and the intended referent as measurement, categorial answers were given
on the differences in accuracy of different models for the direction of pointing
(see Section 6.2). This paved the way for the development of the GFP/dom
model for the direction of gaze pointing, which takes the dynamically switching
dominance of an individual eye into account. This new GFP/dom model
predicted the direction of pointing with a previously unachieved accuracy.

Based on the GFP/dom model, different models of the extension of pointing
were tested subsequently in Section 6.3. The well-known vector extrapolation
model and the pointing cone model alone did not provide satisfying results.
A comparison of the strengths and weaknesses of the different approaches,
and an analysis of the interplay between the different pointing cones and
weighting functions led to the development of a new pointing model. The
key factor of this hybrid pointing model is the recognition of the differences
in proximal and distal pointing. The hybrid model finally achieves a success
rate of 76.3% in the proximal area and 62% in the distal area, which exceeds
the performance of the human object identifiers in the same area.

Gaze pointing had already been identified as being very accurate, especially
when compared to manual pointing. The model of location-based gaze pointing
was refined further in Section 6.4. The updated model takes the distance of
the point of regard and the eye into account to estimate the probability of the
visual attention in 3D space. To visualize the results of this updated model
and to reveal the flow of visual attention in 3D, a new visualization technique
called Attention Volumes has been introduced.

Finally, the integration of the pointing models in a conversational interface
was demonstrated in Section 6.5, where the DRIVE framework as well as
the multimodal integration using a fCSP-based reference resolution were
presented. This section also provided an example, which showed how gaze
and manual pointing can be integrated with speech. Applications which make
use of the models presented in this chapter are reviewed in the following
chapter.
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Chapter 7

Applications and Conclusion

This chapter demonstrates applications of the pointing models, the interaction
framework DRIVE (Deictic Reference In Virtual Environments) and the
technologies for 3D gaze tracking which have been developed in this thesis.
These applications are selected to highlight different aspects of this work and
to emphasize the transferability of the achievements. The résumé distills the
results on modeling pointing, discusses their implications for conversational
interfaces and concludes this thesis.

7.1 Applications with DRIVE

The DRIVE framework (see Chapter A) and its prototypes have been used
in several research projects and applications. First of all, the Interactive
Augmented Data Explorer (IADE) (see Section 4.6 and Section 4.8) for inves-
tigating multimodal interaction uses DRIVE in its simulations and during
interactive sessions to allow the researcher to interact with the objects of
investigation as well as the controls of IADE’s user interface.

7.1.1 DRIVE for Processing Multimodal Expressions

The work on understanding gaze and manual pointing presented in this
thesis started within the scope of the Collaborative Research Centre 360:
Situated Artificial Communicators. A central application to demonstrate the
research results is the Virtual Constructor (Jung, Hoffhenke & Wachsmuth,
1998), a system for rapid prototyping of construction processes using natural
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Figure 7.1: In the Virtual Constructor, users can interact with the system,
which is represented by the embodied conversational agent Max, to construct
aggregates from a virtual toolkit. The system is able to understand multimodal
deictic expressions to refer to objects in this immersive virtual environment.

speech and gestures (see Figure 7.1). In this multi-agent system, deictic
references are resolved using an agent specialized for reference resolution. The
most advanced reference resolution agent of the Virtual Constructor models
the dereferencing problem of multimodal expressions using fuzzy constraint
satisfaction problems (Pfeiffer, 2003; Pfeiffer, Voss & Latoschik, 2003; Pfeiffer
& Latoschik, 2004).

DRIVE detects gaze and manual pointing gestures of the user in real-time,
and dereferences them using the pointing models developed in Chapter 6.
The manual pointing model developed in this thesis has been evaluated in
Section 6.3.3 on a domain of possible referents consisting of the type of objects
used in the Virtual Constructor. The hybrid pointing model that has been
developed in this thesis outperforms the previous models in this domain (see
Section 6.3). It provides high accuracy by modeling the direction of pointing
using the new GFP/dom model, which takes the dominant eye of the user into
account (see Section 6.2). The model also provides a high rate of success in
identifying referents by using a pointing model that combines a pointing cone
for precise pointing to distant referents with a weighting of possible referents
in the proximal area, based on their orthogonal distance to the pointing ray.
For gaze pointing, DRIVE implements the location-based approach to detect
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the point of regard in 3D, which was evaluated in Section 5.6. Using this
model, DRIVE provides improved capabilities for identifying referents even if
they are partially occluded.

DRIVE provides histories (see Section A.5.7) of the identified referents to
the reference resolution engine in form of a list of ranked candidates. These
histories can be used in reference resolution to integrate gaze and manual
pointing with constraints identified in the verbal part of the multimodal in-
struction and constraints derived from the dialog context. Section 6.5 provides
a detailed description of how the results provided by DRIVE are formulated
as constraints in the fCSP system, and finally of how the multimodal deictic
references within an utterance can be interpreted.

The pointing models implemented in DRIVE provide accurate information
about the referents of gaze as well as manual pointing for multimodal
integration of place deixis within a conversational interface.

7.1.2 DRIVE for Embodied Conversational Agents

DRIVE has been used to support the work of Pfeiffer-Lessmann & Wachsmuth
(2008) in the project A1, “Modelling Partners”, of the Collaborative Research
Center 673, “Alignment in Communication”. In this project, a user interacts
with the embodied conversational agent Max within an immersive virtual
environment, powered by a TRI-SPACE virtual reality system. Max and his
interlocutor work on a 3D model of a small town (see Figure 7.2 and the
linked video). Using DRIVE, Pfeiffer-Lessmann & Wachsmuth (2008) made
Max aware of the visual attention of his human interlocutors. They made use
of this information in a Belief-Desire-Intention architecture to monitor turn-
taking signals, check-backs, shared attention and to establish joint attention
with the virtual human in cooperative dialogs.

For example, if Max wants to introduce a new object, he has multiple options:
he can use a complex verbal expression, an effortful multimodal expression
accompanied by a co-verbal manual pointing gesture, or just a short gaze
at the intended object. Without further feedback from the user, such as
check-backs, Max cannot know for sure whether the user is following his gaze.
Following a safe-play strategy, Max may thus put much effort into an explicit
reference.

DRIVE allows Max to follow the gaze of his interlocutor in real-time. To this
end, the user wears a ViewPoint PC60 eye tracker from Arrington Research,
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Figure 7.2: Conversational interfaces can use gaze information to monitor
attention and facilitate joint attention. The green cylinder pointing at the
church visualizes the current pointing ray of the user’s right eye (which narrows
down due to the perspective projection). The cylinder appears displaced, as
the current perspective has been corrected for the camera. Under normal
conditions, this cylinder can only be rendered for the opposite eye (so the left
eye sees the cylinder for the right eye), since otherwise the user would only
see the bottom of the cylinder in front of each eye, due to the high accuracy
of the system. In the PDF version, a video is linked that can be accessed by
clicking at the photo.

which was positively evaluated for this kind of interaction setting in the study
presented in Section 5.1. DRIVE integrates the 2D gaze positions provided
by the eye tracker with the 3D head position from a motion tracking system
to construct the direction of gaze in 3D space (see Section A.3.3). If the
binocular mode of the eye tracker is used, DRIVE can also provide the precise
location of the point of regard in 3D space (see Section A.3.4) using the
procedure developed and evaluated in Section 5.6. DRIVE further supports
Max by provisioning a history of the objects the user has attended to during
the last seconds (see Section A.5.7).

Supported by DRIVE, Max can now be informed of the attention of his
interlocutor and can establish whether the interlocutor has correctly identified

http://www.youtube.com/v/Zx0xAmJtTyc&hl=de&fs=1&rel=0&hd=1
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the referent. This allows Max to use swift gaze pointing to introduce and
refer to objects. If Max then notices that the interlocutor is not attending
to the object in a certain time frame, Max can escalate his efforts, e.g. by
making a manual pointing gesture or a full multimodal expression.

DRIVE enables embodied conversational agents to follow the visual at-
tention of their interlocutors. As a consequence, the agents can use this
information to plan their multimodal expressions more efficiently (e.g.
skipping expressions as soon as the user attends to the relevant object).
Overall, this contributes to a more natural appearance of the agent.

7.1.3 DRIVE for Attention-Aware Interfaces

Natural pointing via hand and gaze is not restricted to human-computer
interaction with systems which understand natural language. SoN∀R (Social
Networks in Virtual Reality) is an immersive 3D exploration tool for the social
network Last.FM. SoN∀R has been developed in one of the student projects
supervised by the author (Bluhm, Eickmeyer, Feith, Mattar & Pfeiffer, 2009).

SoN∀R is an interactive viewer for augmented graphs in immersive virtual
reality (see Figure 7.3 and the linked video). It visualizes the social network
of the user as a large universe of nodes. These nodes can represent users,
music tracks and artists. Relationships between nodes, such as the music
tracks produced by an artist or the artists liked by a user, are represented
as links between the nodes. In this way, users, tracks and artists form a
multidimensional graph that can be interactively explored by the user in
real-time.

DRIVE allows the user to select nodes using pointing gestures (see Section A.5).
These nodes can then be manipulated and the graph can be further expanded
to visualize different relations. User interface components, such as menus or
buttons, as well as auxiliary information augmenting the nodes (information
about the artist, the year of the release, etc.) are only presented on demand.
For this purpose, DRIVE provides information about the current visual
attention of the user (see Section A.3.3), which allows SoN∀R to selectively
fade in these augmentations in the local vicinity of the currently fixated node.

SoN∀R is an example par excellence for the hybrid model of manual pointing
(see Section 6.3.3) and for the point of regard in 3D. In the 3D visualization
of the network, the nodes are fully distributed across the proximal as well as
the distal area. In addition, nodes in the proximal area will partly occlude
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Figure 7.3: The use of natural pointing gestures and gaze-based interaction
extends to other interfaces and applications, such as SoN∀R , a tool for the
immersive exploration of social networks.

nodes in the distal area because of their great number. With the developed
models, DRIVE allows the user to point arround the nodes in the proximal
area, and to attend to and select nodes that are far away.

DRIVE enables interactive applications to react to pointing gestures. In
information visualization, DRIVE can be used to reduce clutter in the
user interface. DRIVE empowers the application to selectively present
relevant information in the area of visual attention.

7.1.4 DRIVE in Real World Applications

Virtual reality has been an important enabling technology to drive the research
of this thesis. The developed concepts and some of the technologies also extend
to the real world. In the following section, an example will be given that
demonstrates the application of the technology for tracking visual attention
in 3D space, developed and evaluated in Chapter 5, in the real world.

Figure 7.4 presents examples from a study where DRIVE was used to track
the visual attention of participants on a real-world replication of the Baufix
assembly used in one of the studies. Using the location-based gaze pointing
model (see Section 6.4), DRIVE is able to estimate the 3D points of regard in
real-time, without the need for a virtual representation of the scene. This is



7.1 Applications with DRIVE 173

new compared to other approaches to tracking attention in 3D, which either
do not work in real-time (Mitsugami et al., 2003), or use direction-based
models for gaze pointing (Duchowski et al., 2002). They therefore require an
explicit modeling of all relevant geometries – also over time – to intersect with
the pointing ray (see also Papenmeier & Huff (2010) for an offline analysis
using dynamic 3D models).

The examples in Figure 7.4 demonstrate that the developed visualizations,
attention volumes (see Section 6.4.1) and 3D scanpaths (see Section 5.11.1),
can be applied in the real world as well.
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(a) Left view of an attention volume recorded on a real object (SMI/PSOM). In this study,
data from 10 participants observing the real object was recorded.

(b) frontal view (c) right view (d) individual 3D scanpath

Figure 7.4: Measuring the 3D point of regard on real objects. Shown are
different perspectives of the target Baufix assembly.
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7.2 Résumé

This thesis covers the full cycle of scientific research, starting with basic
research, the development of scientific methods, modeling and finally imple-
mentation and evaluation. In the following, the most important contributions
are highlighted. The presentation is organized along three main pillars: basic
research, scientific methods and human-computer interfaces. The latter in-
cludes the implementation and evaluation of the developed models in different
application scenarios.

7.2.1 Contributions to Basic Research

Starting point of this thesis were the three fundamental questions about the
when, where and which of multimodal deixis with gaze and gesture:

• When does the interlocutor perform a pointing gesture, and what is the
relevant time interval of the whole gesture trajectory?

• Where does the interlocutor point to (direction)?

• Which object does the interlocutor refer to with the pointing gesture?

Answers to the When Question

Reviewing literature from linguistics and psychology (see Chapter 2), as well
as on human-computer interaction (see Chapter 3), it was found that there is
already a concise concept of the timing of manual and gaze pointing, which
can be directly derived from the movements. Hand, arm and eye movements
are visible and easily accessible to humans – otherwise pointing gestures
would be indeed pointless. Hence, the timing of pointing gestures has already
been addressed by scientific investigation employing methods such as video
recordings or eye tracking. As a result of the literature review, the question
on the when of pointing was considered as being answered. At the same time,
however, it was found that there were no satisfying answers to the where and
which questions and thus the thesis focussed on answering these.

Answers to the Where Question

We gesture in the 3D space that surrounds us. Approaching the where
question therefore requires a 3D perspective on the pointing act. Previous
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studies trying to extract these spatial information from 2D video sources
failed to do so (see Section 4.1). Also, a review of the literature on manual
pointing gestures revealed only qualitative descriptions. Manual pointing,
for example, was identified as direction-based pointing. However, these
descriptions were considered as being not satisfying, as they lacked formal
rigidity and quantitative support.

To address these issues, a new formalization of the
process of interpreting pointing in 3D space was in-
troduced in Section 3.3. As a starting point, vec-
tor extrapolation and shape-based models (or better
volume-based models) were formalized. The process

of formalization generated important questions on the features that define the
pointing direction, and on the selection and parameterization of the model
describing the extension of pointing.
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These questions were addressed in a comprehen-
sive study on manual pointing (see Chapter 4),
which generated high-precision data on point-
ing accuracy (see Section 4.9.2) for quantitative
analysis. This was only made possible by devel-
oping new methods to collect and analyze 3D
data on pointing acts (see Section 4.6 on the Interactive Augmented Data
Explorer (IADE)). As a first important consequence of the found low accuracy
of manual pointing, vector-extrapolation models for the extension of pointing
can be discarded. Pointing direction was best described by a model that takes
the direction of gaze into account (Gaze-Finger Pointing, see Section 4.9.2)
and not by the alternative model based on the orientation of the index finger
(Index-Finger Pointing). The study provided further results on the precision
of pointing that substantiated the model of the extension of pointing. An
important finding is the dichotomization of the gesture space into a proximal
and a distal area (see Section 4.9.1).
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The findings of the study were further general-
ized in Chapter 6, where a data-driven model
for pointing was developed. A change of the
frame of reference improved the analysis of the
data decisively (see Section 6.1). The partition-
ing of the gesture space into a proximal and
distal area was thus further substantiated. The

GFP model for the direction of pointing was elaborated into more fine-grained
models (GFP/left, GFP/right, GFP/dom). The big break was achieved by tak-
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ing into account the role of the dominant eye in pointing (see Section 6.2). The
developed GFP/dom model provides the most accurate model for describing
the direction of a manual pointing gesture.
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The direction of gaze was identified as a major parame-
ter for manual pointing, but gaze is also used for deictic
references on its own account. The literature coincides in
associating the direction of gaze pointing with the direc-
tion of the visual axis of the eye. It was, however, shown
that observing an interlocutor’s gaze could also reveal the
location of the point of regard. The technical applicability of this claim was
verified in two studies on gaze pointing, which tested a direction-based and
a location-based pointing model (see Chapter 5). The new developed algo-
rithm for estimating the 3D point of regard of a moving observer successfully
narrowed down the location to a small volume in 3D space.

Answers to the Which Question

Regarding manual pointing gestures, the presented
findings (see Chapter 4) clearly showed that vector-
extrapolation is not an appropriate model to identify
which objects are the target of a pointing gesture. Based
on the optimal description of the direction of manual

pointing gestures by the GFP/dom model, new volume-based models were
deviced that were found to be more accurate on the data from the study.
After a thorough analysis of the data (see Chapter 6), a hybrid model was
designed, which provides a very accurate description of the human capabilities
in interpreting manual pointing gestures (see Section 6.3.3). This model com-
bines the findings regarding the relevance of eye dominance for determining
the direction of pointing (GFP/dom) with the findings about the dichotomy
into proximal and distal pointing.

It was shown that volume-based approaches can success-
fully be used for selecting the targets of gaze pointing
(see Section 5.9). For the first time, a machine-learning
approach (PSOM) was integrated into a framework for
motion tracking to compute the 3D position of the point
of regard. This proved to be superior to an explicit solu-
tion based on linear algebra (see Chapter 5.6). Based on
the 3D point of regard, an Attention Volume model (see
Section 6.4.1) was created to compute the distribution of
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attention over a certain area in 3D space. This model can be used to identify
objects which received the most attention within a certain frame of time as
targets of gaze pointing.

Overall, this thesis contributes a formalized approach to modeling pointing
gestures and provides very accurate models for gaze and manual pointing.
Based on high resolution multimodal data, established assumptions, such
as “pointing as a vector”, are overthrown and replaced by more adequate
volume-based models.

The models presented in this thesis (see Chapter 6) are based on data from
very specific domains. The objects used as targets in the studies have very
distinct shapes and colors; their arrangement in space is highly artificial.
The estimated quantitative parameters therefore have to be considered with
care and external validations in different, more natural, settings are required.
However, it is reasonable to assume that the found general principles, such
as the dichotomy into proximal and distal pointing, the corresponding best
measurements (angular and orthogonal), the interaction between speech and
gesture or the importance of the dominant eye for determining the direction
of pointing scale to other domains as well.

7.2.2 Contributions to Scientific Methods

The main achievement of this thesis are the detailed an-
swers to the scientific questions on pointing. These an-
swers consist of pointing models based on data with a
precision hitherto exceptional for linguistic studies on mul-
timodal interaction. This high level of precision was only

made possible by developing novel empirical methodologies (see Chapter 4),
bringing together well-tried linguistic methods with state-of-the-art tracking
technology and virtual reality. The developed Interactive Augmented Data
Explorer (IADE) (see Section 4.6) not only provides a sound technical basis
for the recording and integration of multimodal data, it also offers exciting
new possibilities to the researcher. The collected data can be augmented by
manual as well as by automatic annotations, and different model hypotheses
can be played out in the data-driven computer simulation. In doing so, the
scientist can immerse into the data in 3D and is freed from prior restrictions
imposed by the perspective of the camera once chosen. Also, by introducing
virtual artifacts representing the important features that have been identified
(e.g. by annotations), the objects of investigation become literally graspable.
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The analysis of multimodal interaction data was sup-
ported by a newly developed visualization of the ges-
ture space in 3D, the Gesture Space Volumes (GSVs,
see Section 4.10.2). Gesture Space Volumes show
the positions in the gesture space that have been
traversed during the course of gesticulation. The
GSV provides an integrated view of the trajectory of a single gesture over
time, several gestures of an individual, or an aggregated view of all gestures
from several interlocutors. The GSVs were used to visualize the aggregated
gesture space over all trials from the study on manual pointing gestures (see
Chapter 4) by which different strategies were revealed. In particular, the two
primary coping strategies adopted by the participants of the study were found
using GSVs: leaning-forward and raising-high.

With the developed Attention Volumes (see Sec-
tion 6.4.1, scientists can now visualize the distribu-
tion of visual attention in 3D scenes, without being
restricted to stimuli which can be presented in 2D
on a computer screen. Knowledge about the distri-
bution and timecourse of visual attention (see also
the 3D Scanpaths in Section 5.11.1) is crucial for
many research questions in cognitive science and
human-computer interaction. The Visual World
paradigm (Tanenhaus, Spivey-Knowlton, Eberhard &
Sedivy, 1995), for example, is a popular method used
in psycholinguistic studies to investigate linguistic

processes by observing the gaze path over a selection of objects constituting
the visual world. The timing of the gaze path while listening to referential
expressions, for example, is then used to create process models of speech
understanding. Other examples include the analysis of product design by
observing the distribution of attention over the object, a method frequently
used in usability research. The algorithms for binocular eye tracking of a
freely moving observer (see Section 5.1 and Section 5.6) thereby provide the
basis for calculating the 3D point of regard during studies – either on virtual
objects (see Section 5.6) or on real objects (see Section 7.1.4).

Overall, the contributed scientific methods constitute an important step
towards better means to analyze human behavior in natural 3D environments.
The ultimate goal is to overcome the reduction of our 3D world to 2D or
2.5D stimuli in experiments. This reduction is often enforced not by scientific
demands, but by the restrictions of the technology at hand.
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7.2.3 Contributions to Human-Computer Interaction

Gaze pointing is expected to be more precise and much
faster than manual pointing. The DRIVE framework (see
Chapter A) was created to allow for gaze interaction in a
3D environment. The studies showed (see Section 5.1 and
Section 5.6) that fast response times and a high accuracy
can be achieved. A unique feature of the framework is
the very precise estimation of the 3D point of regard based on binocular eye
tracking.

The models for the interpretation of manual pointing
implemented in DRIVE are grounded in a full-scale
analysis of manual pointing acts in a direct human-
human interaction (see Chapter 4 and Chapter 6).
This approach contrasts strongly with the approaches
followed by others in this area, who either work only

constructively (Fröhlich & Wachsmuth, 1998; Latoschik & Wachsmuth, 1998),
eventually with post-hoc evaluations (Olwal et al., 2003), or work with
data from highly restricted, non-interactive studies to ground their models
on (Müller-Tomfelde, 2009).

The DRIVE framework itself is based on a data-
flow approach, which is a common design pattern in
highly reactive interactive applications. The flexibil-
ity and the broad scope of the DRIVE framework was
demonstrated in several applications: direct multi-
modal interaction (see Section 7.1.1), communication
with Embodied Conversational Agents (see Section 6.5 and Section 7.1.2),
attention-aware interfaces (see Section 7.1.3) and as data recording tool for
acquiring data on 3D manual pointing (see Section 4.6) and 3D attention
distributions in real world settings (see Section 7.1.4).

Overall, this thesis’ focus on natural interaction with conversational interfaces
gave reasons for an interdisciplinary approach to create the DRIVE framework,
grounding the model design on findings from linguistics and psychology, as
well as on own studies on natural communication behavior.



7.3 Further Perspectives 181

7.3 Further Perspectives

This thesis provides new insights on how multimodal deixis works. These
insights are supported by findings based on precise measurements and simula-
tions. They thereby complement existing work based on qualitative analysis
and theoretical consideration. The findings presented in Chapter 4 and Chap-
ter 6 have to be carefully reconsidered in the context of the scientific discourse
in linguistics, as they in particular challenge the traditional doctrine of deixis
as prototype for reference.

The focus of this thesis is on describing and interpreting pointing gestures. It
would, however, be interesting to see, how these models perform in gesture
production. This would require an implementation of the models to support
the gesture planning system of an Embodied Conversational Agent, such as
Max, and an evaluation in an appropriate setting. The setting used for the
study presented in Chapter 4 could be used as a baseline, which would allow
for a comparison between the original results for human-human interactions
with a human description giver and the agent-human interactions with an
artificial description giver.

In Section 7.1.4 a short example has been
given, where DRIVE has been used in a
context beyond conversational interfaces
to track the visual attention of humans in
3D on real-world objects. This is a promis-
ing and novel approach. The advantage of
the developed algorithms is that they do
not require an expensive modeling of the
real-world, but can work out-of-the-box on any objects or scenes. However,
the set-up and calibration of the system needs to be improved to be more
robust and support larger areas of investigation. Up to now, the tracking
is done outside-in using a tracking system based on optical markers. For
real-world settings, inside-out tracking systems, such as those being used for
augmented reality, could increase flexibility and reduce overall costs. A robust
tracking of visual attention in space would be beneficial for basic research
in psychology, biology and linguistics, as well as for the design and usability
evaluation of human-computer interactions, especially in the areas of ambient
intelligence and robotics.

Overall, the models for pointing developed in this thesis exceed other existing
model in terms of technical formality, precision and accuracy. The invented
scientific methods provide new technical means for studies on human commu-
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nication and visual attention in our 3D world. The technical soundness of
the DRIVE framework has been proven in several applications. Finally, the
models implemented in DRIVE have an exceptional level of empirical validity.
DRIVE thus provides a solid foundation for more natural conversational
interfaces.
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DRIVE: Deictic Reference in
Virtual Environments

This chapter demonstrates how the model for gaze and gesture pointing
developed in Chapter 6 can be used in Human-Computer Interaction. As
an example, an implementation to track visual attention and to identify and
interpret pointing gestures in X3D in accordance with the W3C standard
X3D is presented.

The chapter begins with a short introduction to the interaction concept
realized in X3D. On this background, extensions implementing the models
specified in Chapter 6 are discussed. While this is straightforward for low-
level interactions, such as attention awareness and direct manipulations,
the object-centered approach adopted by X3D seems to be less suited for
high-level interactions. The presented implementation consequently adopts a
user-centered approach.

A.1 X3D, InstantIO and InstantReality

The framework is implemented on top of instantreality (Fellner et al., 2009)
developed by Fraunhofer IGD, Germany. instantreality is a browser for the
eXtensible 3D (ISO 19775-1:2004, 2004) description language (X3D) for inter-
active 3D environments. X3D is primarily targeted at desktop environments
and standard interaction devices such as mouse and keyboard. instantreality
extends X3D to support augmented, mixed and virtual reality installations
using state-of-the-art technology, both for input and output devices.

The presented framework stays within standard X3D whenever possible, so
that most parts can be used in other X3D browsers as well. Only the basic
access to the interaction devices, the eye tracker and the motion tracking
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system, relies on the InstantIO system for networked device access provided
by instantreality.

X3D Scenegraph Interactive 3D environments are described in X3D using
a scenegraph. This is basically a hierarchical tree structure consisting of
nodes (leaves) and group nodes (branches). In the scenegraph, effects are
forwarded top-down. A common example is the TransformNode, a grouping
node that can be used to position objects in the environment. This is achieved
by changing the reference coordinate system for all of its children. The spatial
layout of the virtual environment is typically realized using a hierarchy of
such TransformNodes.

X3D Fields Nodes in X3D have properties, such as the translation of
a TransformNode, that are accessible using X3D fields. Several types of
field are supported, examples are fields for boolean values (SFBool), floating
precision numbers (SFFloat), vectors (SFVec2f, SFVec3f), strings (SFString)
or matrices (SFMatrix). Fields exist in two varieties, single fields holding one
value, as described above, and multi fields holding arrays of values. The two
kinds can be told apart by the first character, which is either S for single or M
for multi fields (e.g. MFString). In the illustrations in this chapter, fields are
depicted as rounded rectangles placed on top of their node (see Figure A.2
for an example). Fields also have an access type. They can either receive
values (inputOnly), produce values (outputOnly) or do both (inputOutput).
A special kind of field (initializeOnly) only receives an initial value, which
cannot be routed (see next paragraph) and cannot be changed once the node
is instantiated. Depending on the access type, the graphical representations
of the fields in the illustrations are extending beyond the frame representing
their parent node. If they extend to the left, they accept input and if they
extend to the right, they produce output.

X3D Routes The scenegraph describes the structure of the virtual envi-
ronment, which is rather static in most cases. The dynamic aspects of a
virtual environment are expressed in a data-flow graph orthogonal to the
scenegraph, by connecting individual fields using X3D routes. An X3D route
links a fromField of a fromNode with a toField of a toNode. If the value in
the fromField changes, the linked toField (or toFields, as there can be several
routes defined) is changed accordingly, during a field propagation process that
is executed in every application cycle.
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The TimeSensor node, for example, produces updates of the time that has
elapsed in terms of a fraction of the specified time cycle. This fraction has
the type SFFloat that can be routed, for example, in the transparency field
of a material definition to visually fade-out an object. Several other types of
nodes exist that produce field updates, which are either driven intrinsically,
as is the TimeSensor, or extrinsically, for example based on user interaction.
In the illustrations, routes are depicted as dashed lines between fields (see
Figure A.6), with an arrow indicating the flow of the data.

X3D Scripting More complex interactive behavior can be specified using
X3D ScriptNodes, either in JavaScript or in Java. The interface of ScriptNodes
can be defined by declaring a set of fields that operate as data channels between
the scenegraph and the script. ScriptNodes can then be used as first-class
scenegraph nodes, just as the sensor nodes defined in the X3D specification.
Most of the functionality provided by the DRIVE framework is implemented
using ScriptNodes.

InstantIO: Linking Devices to X3D InstantIO is a lightweight frame-
work for networked device access. The basic component of InstantIO is a node.
A node can be a driver for a specific device or a provider for auxiliary services.
The networking functionality of InstantIO as well as a web-based management
interface are implemented as auxiliary nodes. Nodes can provide typed input
and output slots, analogous to the fields of X3D. Input and output slots
can be linked using routes, similar to the procedure in X3D. Related slots
can be organized in hierarchical namespaces, orthogonal to the parent-child
relationship of nodes and slots. This flexible namespace system provides an
automatic routing mechanism by connecting output slots with input slots of
a corresponding fully qualified name (namespace plus field name, wildcards
allowed). More details can be found in the InstantIO documentation (Dähne,
2009).

A.2 Device Access

A.2.1 Example of a Hardware Set-Up

The interconnection of the devices and the InstantIO nodes that were set
up at our laboratory for this thesis are depicted in Figure A.1. The set-up
consists of three computer systems.
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Figure A.1: The device set-up for the integration of the tracking systems
used in this chapter. An InstantIO node IO::EyeTracker controls the eye
tracking software and publishes eye movements in the InstantIO namespace
on the network. This data is collected by the IO::Network node in the process
of the X3D browser InstantPlayer, and exposed via X3D fields for further
processing. A data flow directed in the opposite direction allows the X3D
browser to control the eye tracker, for example when calibrating. The motion
tracking system is attached using a different scheme. The DTrack software
broadcasts tracking data, which is collected by the IO::ARTpro node in the
InstantPlayer.

• The Eye Tracker Server is connected to the eye tracker. It runs the
vendor-specific eye tracking software. An IO::EyeTracker node controls
the eye tracking software using a vendor-specific API, and receives the
current eye positions, which are published to an InstantIO namespace.

• Motion tracking is handled by the ART DTrack System. It is con-
nected to the tracking cameras (not shown in the figure) and analyses
their data using the DTrack software. The tracking data is broadcast
via multicast or sent by the User Datagram Protocol (UDP).

• The Application Server hosts the application in the InstantPlayer
X3D browser. It connects to the eye tracker using networked InstantIO,
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Figure A.2: The InstantIO node IO::EyeTracker provides a generic interface
to eye tracking systems. The first part of the interface provides information
about the availability and the position of the eyes as output. A second part of
the interface can be used to control the calibration procedure to parameterize
the mapping between eye space coordinates and reference points on a 2D plane.

and to the motion tracking using the IO::ARTpro node, which receives
the data from the DTrack system via multicast or UDP.

A.2.2 Eye Tracking

The IO::EyeTracker node is shown in Figure A.2. The node uses a vendor-
specific API to connect to the eye tracking software. Currently, models from
Arrington Research and from SR Research (and early SMI devices) are sup-
ported. The IO::EyeTracker node publishes two output slots for each eye, Left-
/Right Available and Left/Right Position. Left/Right Available are
boolean slots, which are set when the device is connected and data is received
for the specific eye. In monocular settings, only one of the two slots can be
true. The Left/Right Position slots provide the current position of the
eyes in normalized eye space coordinates. The coordinates in eye space are
mapped to a 2D plane in a second step. For this mapping, an interactive
calibration step is required.
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The interactive calibration is controlled using the slots Calibration Enabled,
Calibration PointCount and Calibration RegisterPointNumber. Cal-
ibration Enabled switches between calibration mode and normal operation.
The number of reference points used in the calibration process can be specified
using Calibration PointCount. Typical counts are 9 or 16. A higher num-
ber of calibration points can improve accuracy, but the calibration procedure
will take correspondingly longer. Calibration RegisterPointNumber is
set to the number of the reference point the user is actively focusing on. In
the moment the number is set, the current eye position is taken as the feature
vector for the current reference point, and the mapping is adjusted accordingly.
If possible, the IO::EyeTracker node internally uses the calibration procedures
provided by the vendors of the devices.

A.2.3 Motion Tracking

The IO::ARTpro node to access the ART tracking system is shown in Fig-
ure A.3. The ART system tracks targets with 6 degrees of freedom (6 DOF),
that is, position and orientation. For each target, the IO::ARTpro node
publishes the slots Matrix X, Position X and Orientation X, with X
being the number of the target. The information is published redundantly for
convenience.

The ART system also provides active targets for finger tracking. The main
body of these targets is attached to the back of the hand, and the node
provides position and orientation in the slots HX Matrix, HX Position
and HX Orientation. There are several different sets of finger targets,
tracking either 3 or 5 fingers. The number of fingers currently being tracked
is published in HX FingerCount, and the position of the finger tips in
HX Finger Position, where Finger can be thumb, index, middle, ring or
pinky.

A.3 Detecting Gaze Pointing

The first step towards detection of gaze pointing is the detection of a fixation.
There are several coordinate systems in which fixations can be detected. The
first is the 2D eye space coordinate system, which is approximately a polar
coordinate system residing in the center of the eyeball. There is also the
2D coordinate system used by the eye tracking system, which can either be
similar or equal to the eye space coordinate system or it might be intrinsic
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Figure A.3: The InstantIO node IO::ARTpro provides access to the ART
tracking system. Positions and orientations for a number of 6 DOF tar-
gets are held in the Matrix/Position/Orientation slots (X is the number of
the target). Specific slots exist for each of the hand and finger tracking de-
vices. For individual fingers, the position of the finger tip is provided in
HX Finger Position.

to the recording video camera. Then there is the 2D projected coordinate
system of the 2D plane which the eye tracking system has been calibrated to.
This is the coordinate system most eye tracking applications operate in, and
most of the time its dimensions are given in terms of the pixel coordinates of
a computer screen. Finally, there is at least one 3D coordinate system, the
world coordinate system (real or virtual).

A.3.1 Detecting 2D Fixations

Several algorithms have been proposed to detect fixations in raw eye movement.
Salvucci & Goldberg (2000) compared the most prominent representatives
and came to the conclusion that HMM-based (hidden markov model) and
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Figure A.4: The X3D::FixationDetector2D detects fixations in eye space. In
the typical case, its InPosition is linked to one eye’s position field from the
IO::EyeTracker node. If a fixation is detected, the boolean flag Is Fixating
is set. More details about the fixation are provided in the remaining fields.

dispersion-based algorithms have a high accuracy. They are also very fast,
which is the most important requirement for fixation detection algorithms used
in human-computer interaction. An example implementation of I-DT written
in Java according to the description in Salvucci & Goldberg (2000) is shown in
Listing A.1. The algorithm is efficient and accurate for offline analysis, but is
less suited for interactive systems. To give an example, the duration covered
by the history of raw gaze points provided to the algorithm has to be longer
than the maximum duration of the expected fixations. Thus a delay is induced
before the algorithm will signal even the start of a fixation. In real-time
interaction, the algorithm will also be evaluated at every application cycle,
but in the original algorithm it is left unclear how such iterative applications
should be handled.

The component X3D::FixationDetector2D (see Figure A.4) therefore imple-
ments a dispersion-based algorithm that has been especially designed for
real-time interaction (see Listing A.2). In this implementation, called RI-DT,
the current hypothesis of the existence of a fixation is updated per incoming
raw gaze point, and no history is maintained. If an incoming raw gaze point
stays within range of the dispersion threshold, the fixation hypothesis is
updated accordingly. If the duration of the collected raw gaze points exceeds
the minimum threshold, a fixation is detected and the corresponding flag
is fixation is set. Once a raw gaze point lies outside the range, the state

is reset and the search for a new fixation starts. In borderline cases, the
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� �
1

2 public Vector detect_fixations ( Vector raw_points , Vector timestamps )

3 {

4 Vector fixations = new Vector ();

5 while( !raw_points.isEmpty () )

6 {

7 int index = 0;

8 float x_min = Float.MAX_VALUE , x_max = Float.MIN_VALUE;

9 float y_min = Float.MAX_VALUE , y_max = Float.MIN_VALUE;

10 Point center = new Point ();

11 foreach( Point p : raw_points )

12 {

13 x_min = Math.min( x_min , p.x );

14 x_max = Math.max( x_max , p.x );

15 y_min = Math.min( y_min , p.y );

16 y_max = Math.max( y_max , p.y );

17

18 if( x_max - x_min > X_THRESHOLD || y_max - y_min > Y_THRESHOLD ) break;

19

20 center.x = (center.x * index + p.x) / (index + 1);

21 center.y = (center.y * index + p.y) / (index + 1);

22 index ++;

23 }

24

25 if( timestamps.get(index) - timestamps.get(0) > MIN_FIXATION_DURATION )

26 fixations.add(

27 new Fixation ()

28 .setCenter( center )

29 .setStart( timestamps.get(0) )

30 .setDuration( timestamps.get(index - 1) - timestamps.get(0) ));

31

32 raw_points.removeRange( 0, index );

33 } return fixations;

34 }� �
Listing A.1: The I-DT dispersion-based algorithm for fixation detection.
The function detect fixations is called with the list of raw gaze points and
associated timestamps measured by the eye tracker. The function returns a
list of detected fixations.

behavior of RI-DT differs slightly from I-DT. In RI-DT, if two or more raw
gaze points have already been found within the dispersion thresholds, but
the duration threshold has not yet been exceeded, a new raw gaze point that
makes the total range exceed the dispersion threshold will start a completely
new search for a fixation. In contrast, I-DT will first try to remove the first
raw gaze point from the queue and test whether the remaining raw gaze points
together with the new one stay in range. The frequency of these borderline
cases depends on the X/Y thresholds, on the minimum fixation duration,
which can be lowered to reduce the effects of this difference, as well as on
the dispersion threshold, which can be raised to reduce the effects of this
difference.
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� �
1

2 public void detect_fix_RT ( Point raw_point , double time ) {

3 _x_min = Math.min(_x_min , raw_point.x );

4 _x_max = Math.max( _x_max , raw_point.x );

5 _y_min = Math.min( _y_min , raw_point.y );

6 _y_max = Math.max( _y_max , raw_point.y );

7

8 if( _x_max - _x_min > X_THRESHOLD

9 || _y_max - _y_min > Y_THRESHOLD )

10 { // this point does not belong to the last fixation , start new one

11 _x_min = raw_point.x; _x_max = raw_point.x;

12 _y_min = raw_point.y; _y_max = raw_point.y;

13 _center.x = raw_point.x; _center.y = raw_point.y;

14 _index = 1; _start_time = time; _duration = 0;

15 _is_fixation = false;

16 } else {

17 _center.x = (_center.x * _index + raw_point.x) / (_index + 1);

18 _center.y = (_center.y * _index + raw_point.y) / (_index + 1);

19 _duration = time - _start_time;

20 _is_fixation = _duration > MIN_FIXATION_DURATION;

21 ++ _index;

22 }

23 }� �
Listing A.2: The RI-DT algorithm, a version of the I-DT algorithm opti-
mized for real-time performance.

For human-computer interaction, it is essential to distinguish between the
different kinds of processes that drive eye gaze. Following fixations that are
part of the visual search trajectory of a user may enable a system to guide
the user in his search, for example by adding more specific constraints. If the
user is producing an utterance, the fixations at the end of the visual search
trajectory are most relevant, as they dwell with high probability on the object
the user is going to talk about.

A relationship between the type of processing and the typical duration of the
fixations it produces has been presented in Chapter 2. Figure A.5 presents
a classifier that was built based on the findings described in Velichkovsky
et al. (1997). It classifies fixations into the categories figurative, semantic
and communicative, solely based on their durations. This classification allows
the application to react to eye gaze on different levels of processing. The
typical fixation durations for the different classes overlap, and consequently
the classes are not disjunct. This may lead to transitions of fixations through
different classes over time.

The processing components presented so far are linked to a short cascade for
processing 2D eye gaze patterns, as depicted in Figure A.6.
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Figure A.5: The component for classifying fixations according to the schema
provided by Velichkovsky et al. (1997).

A.3.2 Mapping Eye Movements to a 2D Projection
Plane

Eye tracking systems are often used in computer-based studies, where stimuli
are presented on a flat computer display. As a consequence, eye tracking
systems often provide their gaze coordinates not in terms of the eye space,
but mapped on a 2D plane, or even in pixel coordinates. This mapping needs
to be calibrated before each use. The typical calibration procedure uses a
sequence of fixation targets, commonly arranged in a grid of 9 or 16, that
has to be followed by the user. This way, the systems can establish reference
points for the mapping (see Figure A.7).

The IO::EyeTracker supports an application-controlled calibration procedure
(see Figure A.2). The calibration module controls the presentation of fixation
targets, here red spheres. During the calibration procedure, each of the
spheres is highlighted once, and the calibration module waits for a detected
fixation above a certain duration threshold. If the threshold is exceeded, the
calibration module sets the Calibration RegisterPointNumber slot of the
IO::EyeTracker to the number of the currently fixated target. This is when
the eye tracker associates the current orientation of the eye in eye space with
the selected reference point. Alternatively to the automatic fixation detection
during calibration, the procedure can also be completed using a self-paced
iteration, for example controlled by a button. This way the calibration can
be performed faster by a trained user.
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Figure A.6: The short cascade of components for detecting 2D fixations.
Information about the 2D position of the pupil in the eye coordinate system is
used to identify 2D fixations. Based on the timing of the fixations, they are
classified as being the product of different levels of visual processing.

A.3.3 From 2D Positions to 3D Directions

To move from 2D gaze positions (either in eye space or projection space) to 3D
gaze directions along the visual axes of the eyes, the position and orientation
of the head of the user has to be taken into account, too. Technically, this
means that information from two sensor devices needs to be fused. Figure A.8
shows the wiring diagram of the essential components realizing the transition
from 2D to 3D.

The component X3D::GazeDirection provides the origin of the gaze direction,
which coincides with the center of the eye, and the direction along the visual
axes. To calculate both, it requires the current position and orientation
of the point between the eyes (Between Eyes Matrix), which is provided
by the motion tracking system, and the gaze position on the 2D projection
plane (Gaze Position 2D). In addition, the distances between the center
of the eye and the position between the eyes (Eye Separation), and the
transformation between the center of the eyes and the projection plane
(Eye Plane Transform) have to be specified.
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Figure A.7: For the calibration process, the user has to iterate over a grid
of fixation targets. The eye tracking system uses these fixations as references
for the mapping between eye space and projection space.

A.3.4 Detecting 3D Fixations

For the detection of the position of the point of regard in 3D, a triangulation
using the visual axes of both eyes can be made, as described in Chapter 3.
Figure A.9 shows the corresponding component X3D::Triangulation. The
advantage of this approach is that it is fast and does not require additional
calibration. The accuracy of the triangulation crucially depends on the
accuracy of both visual axes, and small divergences lead to a degraded accuracy.
Data on the accuracy and precision achieved in a study on estimating the 3D
point of regard has been presented in Chapter 6.

A second component, X3D::MultiTriangulation (see Figure A.9), extends
this approach to multiple axes. The idea is that small shifts of the user’s
perspective, which happen all the time in ongoing interaction, can be used to
estimate the 3D position of the point of regard. The accuracy of this approach
improves, the longer a user fixates a specific position in 3D space, and the
more the user moves perpendicular to the visual axes during that time.

The PSOM approach to estimate the 3D position of the point of regard is
implemented in the component X3D::PointOfRegard3DPSOM. Chapter 5.6
showed that the PSOM approach provides better accuracy and precision
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Figure A.8: Information from the eye tracker (eye) and the tracking system
(head) has to be integrated to construct the position and gaze direction of
the eye in 3D space. For the two IO components, only a subset of the field
interfaces are depicted for clarity.

than the approaches based on triangulation. A drawback is the duration
of the initial calibration procedure for the PSOM, which is longer than 2D
calibration. The calibration procedure is triggered using the interface shown
in Figure A.10. The calibration procedure is similar to that used for 2D
calibration, but instead of a 2D grid of 9 to 16 points a 3D cubic grid of at
least 27 points is used.

A.4 Detecting Manual Pointing

While manual pointing gestures show a great variety, the components described
in the following only detect ideal manual pointing gestures. Ideal manual
pointing gestures follow the description given in Section 2.3, that is, the
handshape shows an extended index finger, the remaining fingers are curled
towards the palm of the hand, and the movement of the hand has a clear
climax during the stroke. The small and robust detectors developed for this
thesis can be easily exchanged with high-quality detectors, which could, for
example, detect the curling of the fingers based on the angles of the finger
joints, instead of the detection based on the positions of the finger tips.
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Figure A.9: The X3D::Triangulation component to the left implements the
triangulation method described in Chapter 3 to estimate the 3D position of
the point of regard in space by intersecting the two visual axes calculated
in the X3D::GazeDirection components for the left and the right eye. The
X3D::MultiTriangulation component extends this approach to a triangulation
of multiple (2 or more) axes.

� �
1 (define is-pointing-shape?

2 (and (> (distance-current index-finger-tip hand-back)

3 (* 0.85 (distance-max index-finger-tip hand-back )))

4 (< (distance-current middle-finger-tip hand-back)

5 (* 0.75 (distance-max middle-finger-tip hand-back )))

6 (< (distance-current ring-finger-tip hand-back)

7 (* 0.75 (distance-max ring-finger-tip hand-back )))

8 (< (distance-current pinky-finger-tip hand-back)

9 (* 0.75 (distance-max pinky-finger-tip hand-back )))))� �
Listing A.3: The handshape of a pointing hand is detected using a set of
simple features.

A.4.1 Detecting the Handshape

The X3D::HandshapeDetector (see Figure A.11) uses the position and orien-
tation of the hand as well as the available positions of the finger tips (3 or 5
fingers) to detect a pointing with the index finger. As shown in Listing A.3,
the detector identifies a pointing shape if the index finger is extended to more
than 85% of its maximum extension and the remaining fingers curl to no more
than 75% of their maximum extension. The position of the thumb is ignored,
as the information of the curling of the remaining fingers is sufficient, and
in praxis the optical detection of the position of the thumb is difficult if the
thumb is hidden inside the palm.
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Figure A.10: The X3D::PointOfRegard3DPSOM component implements
the PSOM algorithm to estimate the 3D position of the point of regard using
machine learning.

A.4.2 Detecting the Stroke

The detection of the stroke is based on the velocity profile of the back of
the hand and the handshape detection (see Figure A.12). The basis of the
calculations is the direction of the pointing handshape. It defines the axis
along which in a second step the velocity of the back of the hand is calculated.
A stroke is detected if the velocity decreases from medium/high to about zero,
and the stroke is aborted if the velocity decreases (retraction) again.

A.5 Interpreting Pointing

With the components presented so far in this chapter, manual and gaze
pointing gestures can be detected. The interesting part now is how to
determine the extension of the pointing gestures. This will be shown in the
following.

A.5.1 Defining the Pointing Domain

First of all, the entities that could in general be the targets of a pointing
gesture, the pointing domain, have to be made known to the system. The
nature of the entities depends on the application domain. In the examples used
for the experiments (see Chapters 4 and 5), the entities in the pointing domain
were toy building blocks, each of which was represented in the scenegraph
as a group of X3D nodes for material, position or shape. Other applications
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Figure A.11: The X3D::HandshapeDetector component implements a basic
handshape detection on the basis of the positions of 3 to 5 finger tips and the
back of the hand.

could require a more fine-grained pointing domain, for example in interactive
geometry modeling, when individual vertices on a sub-node level are the
subject of the user’s investigation. The approach developed in this chapter is
restricted to the case described first, to entities that are described as nodes
in the X3D scenegraph.

The X3D standard provides Metadata nodes to support application-specific
extensions. Each X3D node can be the parent of a set of such Metadata nodes.
We will use Metadata nodes to add semantic annotations to existing nodes
in the scenegraph, marking them as entities that can be the target of deictic
expressions. This idea adopts the use of semantic entities (Biermann et al.,
2002) used to annotate virtual reality scenegraphs in the research tradition
of intelligent computer graphics. In this special case, the relevant entities
will be annotated with a MetadataSet node with the name Object and the
special property is-perceivable (see Listing A.4). As X3D does not provide
boolean metadata, an integer type is used and the usual convention where a
value of 0 stands for false and all other values stand for true is followed.

Technically speaking, deictic expressions are similar to so-called picking opera-
tions. Picking is the process of detecting intersections of a geometric model of
a user interface tool with object geometries. In case of success, a set of objects
that have been “picked” is returned. The X3D standard provides a specialized
set of nodes specifically geared to picking operations. First, pickable objects
can be marked with a special group node PickableGroup. Second, there are
several sensor nodes (LinePickSensor, PointPickSensor, PrimitivePick-
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Figure A.12: The X3D::ManualPointingDetector component identifies the
stroke of a pointing gesture and calculates the origin and direction of a pointing
ray when a manual pointing stroke is detected. The pointing ray is the basis
for many dereferencing mechanisms.

� �
1 <Group DEF= ’ Box−52 ’>
2 <Shape><Box s i z e= ’ 1 1 1 ’ /></Shape>
3 <MetadataSet name= ’ Ob ject ’>
4 <MetadataSt r i ng name= ’ i s −a ’ v a l u e= ’ box ’ c o n t a i n e r F i e l d= ’ v a l u e ’ />
5 <Metada ta I n t ege r name= ’ i s −p e r c e i v a b l e ’ v a l u e= ’ 1 ’ c o n t a i n e r F i e l d= ’ v a l u e ’ />
6 </MetadataSet>
7 </Group>� �

Listing A.4: An annotation of a geometry subgraph describing it as an
Object that can be the target of deictic expressions.

Sensor and VolumePickSensor) that are specialized for different geometry
models for picking. Using these nodes, the basic functionality of identifying
relevant entities can be achieved using X3D standard nodes. The advantage
of the X3D picking system thereby is its fast implementation, faster than
any implementation based on the metadata nodes can be, simply because the
picking system can prune irrelevant geometries early in the process. The X3D
picking system is therefore used internally, whenever possible, as one building
block of the deixis dereferencing system.

The X3D nodes make no assumption about the kind or parameterization
of the model used for dereferencing. This parameterization is provided by
the developed framework. In addition, the framework goes beyond the basic
functionality in some aspects:
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• Identifying pickable objects requires them to be grouped below a Pick-
ableGroup. This either has to be done when designing the content, or
the scenegraph needs to be rearranged during runtime, as the Pickable-
Group has to be inserted within the existing hierarchy. The method
based on the metadata nodes only requires nodes to be added as siblings,
leaving the original structure intact.

• Picking in X3D only works within one context, it does not, for example,
cross inlining of subgraphs. The use of picking thus has an impact on
the overall design of the scenegraph.

A.5.2 General Interface Description

The deixis dereferencing components all exhibit a common output interface.
The set of possible referent entities – the extension – is provided as MFNode
field Extension, along with a rating between −∞ and 0 in the MFFloat field
Ratings for each entity. The rating expresses the quality of the match. A
rating of 0 describes a perfect match and less likely matches receive ratings
below 0.

A.5.3 Vector-based Dereferencer

Figure A.13: The dereferencers construct the extension of a deictic reference
based on a parameterized reference model. This diagram shows two basic
dereferencers, the Deixis VectorDereferencer, which casts a ray from the
specified origin along the direction, and the Deixis ConeDereferencer, which
uses a cone with a specified opening angle instead. The dereferencers provide
the set of potential referents, the extension, and a rating between −∞ and 0
assessing the likelihood of the potential referent.
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The X3D::Deixis VectorDereferencer component (see Figure A.13, left) imple-
ments the naive ray intersection test to determine possible referent entities.
The Pointing Origin and Pointing Direction of the ray can be externally
defined, for example by routing from the output of the X3D::ManualPointing-
Detector for manual pointing gestures. The evaluation in Chapter 6 showed,
that the GFP/dom model provides the best approximation of the direction
of manual pointing. Entities that are hit by the ray are listed in the field
Extension. Several algorithms have been developed to calculate the ratings:

• distance: the negative distance from the origin of the pointing to the
intersection point is used as a rating score. Touching entities at the
pointing’s origin gives the highest rating (near 0).

• ranked-distance: this is similar to distance, but the distance is
expressed between −1 and 0. The first entity being hit has the rating
0, the last entity has rating −1.

• normalized-distance: this is similar to distance, but the distance is
expressed between −1 and 0, with 0 being at the origin of the pointing
and −1 being at the end of the pointing vector. For this rating algorithm,
the length of the vector needs to be set in an additional field.

• bbox-centrality: the entities are rated according to the angular dis-
tance between the pointing vector and a vector from the pointing origin
towards the center of the bounding box of the object. The smaller the
angle between the two vectors, the higher the ranking. This algorithm
prefers hitting objects in their center.

This deixis dereferencer based on vector extrapolation is, as has been shown in
the experiments on manual pointing (see Chapter 4 and especially Chapter 6),
not suitable for conversational interfaces without direct system feedback.
The precision and accuracy of unguided pointing is too low. For direct
human-computer interaction, where visual feedback such as a visual beam
shooting from the pointing hand’s index finger is provided as an aiming aid,
the algorithms provide heuristics to differentiate between multiple entities
that are intersected by the ray.

A.5.4 Cone-based Dereferencer

For manual pointing, a cone-based dereferencing model can be used to ap-
proximate the human’s pointing. The corresponding component is depicted in
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Figure A.13, on the right. It implements the pointing cone model described
in Section 6.3.2.

The parameters Pointing Origin and Pointing Direction should be cho-
sen according to the description of the vector-based dereferencer. In addition,
the cone-based dereferencer also requires the opening angle of the cone to
be set in the field Opening Angle. Suitable parameters for the opening
angle can be found in the evaluation of different opening angles presented
in Section 6.3.2. The Ratings are calculated according to the weighting
function based on orthogonal errors presented in the same section.

A.5.5 Hybrid Dereferencer

The HybridDereferencer is depicted in Figure A.14. It implements the
hybrid pointing model described in Section 6.3.3. The hybrid dereferencer
is basically a cone-based dereferencer as described above. In addition, an
evaluation of the orthogonal error for the proximal area is added. For this eval-
uation, the interface of the cone-based dereferencer has been extended by two
additional fields in the hybrid dereferencer. Max Orthogonal Distance
delimits the maximum distance from the pointing ray an object might have.
This restriction is not discussed in the section on the hybrid model. Never-
theless, it provides practical performance improvements in applications, as
it allows the application to restrict the evaluation of possible referents to a
smaller volume around the pointing ray. Typical values are 20 cm to 1 m,
depending on the setting. The second field, Proximal Distal Border, can
be used to specify the border between proximal and distal pointing. For
distal pointing, only the pointing cone model will be used, as described in
Section 6.3.3. In the proximal area, the orthogonal error will be measured
in addition to the pointing cone. In the study on manual pointing presented
in Chapter 4, the border between proximal and distal pointing was at about
40 cm.

A.5.6 Point of Regard Dereferencer

The component shown in Figure A.15 was developed in order to dereference
gaze pointing with a measured 3D point of regard. It implements the model
for location-based gaze pointing described in Section 6.4. To this end, the
position of the PointOfRegard and the EyePosition can be specified, from
which the model will be parameterized.
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Figure A.14: The Deixis HybridDereferencer combines a
Deixis ConeDereferencer with a weighting function for the orthogonal
error within the proximal area. A detailed description of the model
implemented in this dereferencer is provided in Section 6.3.3.

A.5.7 Interaction History

So far, the aspect of the asynchronous timing of multimodal interaction, with
gaze preceding pointing, has been deliberately ignored in the presentation of
the components, to reduce the complexity of the interface and to concentrate
on the essential operations. Section 6.5 presents an example, where infor-
mation about timing is necessary to arbitrate between manual pointing to
an object-1 and manual pointing to an object-2. In this chapter, only the
relevant aspects of the component interfaces for just-in-time processing are
described. At any particular moment, the components and their fields present
the current state of the interpretation of the ongoing user interaction. Yet
some events of user interactions can only be correctly identified once they
have been observed for a period of time or once they are already over. Also,
as pointed out in Chapter 3, when bringing together different modalities, it
will be necessary to detect patterns of asynchronous events, such as a gaze
fixation preceding the stroke of a manual pointing gesture.

All components therefore also provide an additional multi-field for each of
their fields, storing a history of previous field values. Each component also has
one field of type MFTime called HistoryIndex, which stores the timestamps
at which the other values in the multi-fields were valid and which serves
as an index to those fields. If a value at a specific point in time has to be
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Figure A.15: The Deixis PointOfRegardDereferencer uses a gaussian distri-
bution to model the extension of the point of regard in 3D as a function of its
distance from the eye.

retrieved, the HistoryIndex can be searched for the best matching timestamp,
and the index of this timestamp can be used as an index to the desired history
of values. Each component also has a field HistoryDuration, which can be
used to restrict the maximum length of the histories to an appropriate value.
Typically, components processing on lower levels require only short histories,
while components on higher levels, such as the components providing object
references, will have histories with durations of several seconds.

A.6 Summary

This chapter presented the DRIVE framework for deictic reference using gaze
and gesture in virtual environments, which was developed in this thesis. The
X3D standard and instantreality were chosen as a target platform, but the
general concept is not restricted to this platform. A previous version of the
interaction framework has been implemented for Avango/Performer as well.
The framework embraces all aspects of the interaction processing, starting
with accessing hardware devices, over detecting features, identifying gestures,
to finally interpreting the extension of pointing gestures. The presentation
in this chapter followed this data flow. Ultimately, the results are provided
to the reference resolution system of a conversational interface, as described
in Section 6.5. Through its component-based architecture, subgraphs of the
interaction framework can be used for other aspects of natural communication
as well. They have, for example, been used to inform turn-taking and to
monitor joint attention processes (Pfeiffer-Lessmann & Wachsmuth, 2008).
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