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Abstract. 4 Metabolites, small molecules that are intermediates and
products of the metabolism, participate in almost all cellular processes
such as signal transduction and stress response. There exist several
thousand metabolites for every species, the overwhelming majority
still being uncharacterized. Mass spectrometry has become a method
of choice to analyze the metabolites of a cell. High resolution mass
spectrometry allows us to determine the mass and isotopic distribution
of sample molecules with outstanding accuracy. Here, we provide a
method to determine the sum formula of an unidentified metabolite
(or, more generally, any chemical compound) solely from its mass and
isotopic pattern. This is a crucial step in the identification of an unknown
metabolite, as it reduces its possible structures to a finite and, hopefully,
manageable set.
In Part I, we show how to use integer decomposition techniques,
introduced earlier by two of the authors, for decomposing real valued
molecule masses, with large improvements over näıve methods that are
currently best known for this problem. We then show how to rapidly
match and rank simulated spectra against the measured spectrum. Our
method is computationally efficient and can be applied to metabolites
and other chemical compounds with mass up to 1000 Dalton. First results
on experimental data indicate good identification rates for chemical
compounds up to 700 Dalton.
In Part II, we present our method for rapid computation of isotope
distributions and mean masses of isotope peaks, i.e., for simulation of
isotopic spectra, improving on best-known results. Fast simulation of
isotope patterns is vital due to the large search space. Above 1000 Dalton,
however, the number of molecules with a certain mass increases rapidly.
Since the size of the search space thus becomes prohibitive, generating all

4 A shorter version of this paper appeared in the proceedings of the 6th Workshop
on Algorithms in Bioinformatics (WABI 2006), volume 4175 of LNBI/LNCS, pages
12-23, Springer 2006.
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potential solutions, simulating their isotope patterns, and matching them
against the input is often not feasible. Instead, we define several additive
invariants extracted from the input and then propose to solve a joint
decomposition problem: Given a finite weighted alphabet with character
masses {a1, . . . , aσ} and a query m, a decomposition of m is a non-
negative integer vector (c1, . . . , cσ) such that

P

i
ciai = m. Here, we have

the problem of finding a joint decomposition c for a set of queries, where
each query has to be decomposed over a different weighted alphabet. We
present an efficient algorithm for producing all joint decompositions of
the query vector and demonstrate its fitness on real data extracted from
a metabolite database.



Part I

Identifying metabolites

using high precision mass

spectrometry
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1 Introduction to Part I

The term “metabolite” is usually restricted to small molecules that are
intermediates and products of the metabolism. These small molecules participate
in almost all cellular processes such as signal transduction, stress response,
catabolism, or anabolism. It is widely accepted that every species hosts several
thousand metabolites; however, the overwhelming majority of these metabolites
is yet uncharacterized. The majority of metabolites have mass below 1000
Dalton: 96.5 % of sum formulas in the KEGG LIGAND database fall into this
mass range [9].

Mass spectrometry, along with nuclear magnetic resonance spectroscopy,
has become the method of choice to analyze the metabolites of a cell. Today,
metabolites are usually identified through fragmenting the metabolite using
electron impact ionization, and subsequent database lookup in a chemical
compound library [15]. Clearly, this method is limited to identifying metabolites
and chemical compounds that have been included in some library.

High resolution mass spectrometry, such as Fourier Transform Ion Cyclotron
Resonance mass spectrometry, allows us to determine the mass of a sample
molecule with an accuracy of about one thousandth of a single proton mass.
Using the mass and the isotopic pattern of an unknown metabolite, one can try
to identify the sum formula of the metabolite, that is, the number of atoms of
each element that make up the individual molecule. This is a crucial step in
identifying the unknown metabolite, because a fixed sum formula reduces the
number of possible structures to a closed set that can be further evaluated by
approaches for automatic structure elucidation. In the following, when talking
about “identifying a molecule” we refer to determination of its sum formula.

Molecules in the sample are separated using, say, liquid chromatography and
inserted into the mass spectrometer. After preprocessing, the output of a mass
spectrometry experiment is a list of peaks which ideally correspond to masses
and relative abundances of sample molecules and their isotopes. If a mixture of
molecules is present, then separating peaks that belong to different molecules is a
trivial task except for the very rare cases where peaks “overlap.” For readability,
we assume that our input is a vector of peak masses M0, . . . , MK and intensities
f0, . . . , fK corresponding to the isotopic distribution of a single molecule.

A straightforward approach of using this information for the molecule’s
identification is to generate all molecules with monoisotopic mass sufficiently
close to M0, compute the isotopic distribution of the candidate molecules, and
compare these simulated distributions to the measured data. [11] investigate the
resolving power of isotopic distributions using simulations, but ignore mean peak
masses. In 2006, [7] and [16] used high-precision mass spectrometry to infer sum
formulas of unknown molecules with mass below 321Dalton. To the best of our
knowledge, these are the first studies reported in literature where sum formulas
are derived solely from molecules’ isotope patterns. Both studies focus on the
experimental side of the problem. [16] do not give any computational methods,
while [7] give only basic computational methods for the automated analysis of
isotopic patterns.
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The problem of finding all molecules that have monoisotopic mass M0,
has been addressed frequently from the biochemical and mass spectrometry
viewpoint [6], but no efficient algorithms for this problem were given. There
exist time and space efficient methods to decompose integer masses [4, 5]. In
Sec. 3 we use these techniques for the decomposition of real-valued masses.

The number of molecules with mass M0 increases significantly for large M0.
Thus, the sheer size of the search space makes it necessary to develop efficient
methods for simulating the isotopic distribution of a molecule (see Part II) but
also to rank candidate molecules with respect to the measured spectrum, see
Sec. 4. This initial ranking is rather intended as a filter to efficiently discard
candidate molecules that show low agreement with the measured spectrum. As
a proof of concept, we have applied our method to high resolution mass spectra.

2 Physical and chemical background

The elements most abundant in living beings are hydrogen (symbol H) with
atomic number (i.e., number of protons) 1, carbon (C, atomic number 6),
nitrogen (N, 7), oxygen (O, 8), phosphor (P, 15), and sulfur (S, 16). For ease
of exposition, we will restrict ourselves to these elements for the remainder of
this paper, sometimes even ignoring sulfur; see Section 6 for a generalization to
arbitrary elements.

The mass number of an atom is its total number of protons and neutrons.
Elements can have atoms with equal atomic number but varying number of
neutrons, called isotopes. Several isotopes of each element can be found in nature:
Regarding the elements most abundant in living beings, see Table 1 for all natural
isotopes and their relative abundance.

The mass of an atom is measured in unified atomic mass units with symbol
“u” or, equivalently, in ”Dalton” (Da). One Da equals 1/12 of the mass of one
atom of the 12C isotope, approximately 1.66 · 10−27 kg. An atom that contains
n protons and neutrons will have a mass approximately equal to nDa. This
approximation does not account for the mass contained in the binding energy
of the atom’s nucleus. This explains the mass defect, the difference between the
atom’s mass and the larger sum of masses of the protons, neutrons, and electrons
contained: For example, 6 protons, 6 neutrons, and 6 electrons have a total mass
of 12.09596Da while the 12C isotope has a mass of exactly 12.0Da, a deviation
of about 0.8 %. See Table 1 or [1] for a detailed list.

A molecule consists of a stable system of two or more atoms. The sum
formula describes the number of atoms of the different elements that compose
the molecule. The nominal mass (also called nucleon number) of a molecule is the
sum of protons and neutrons of the constituting atoms. The mass of a molecule is
the sum of masses of the atoms it is composed of. The mass and nominal mass of a
molecule depend on the isotopes that constitute it. To this end, the monoisotopic
(nominal) mass of a molecule is the sum of (nominal) masses of the constituting
atoms where for every element, we choose the natural isotope with smallest
mass number. In this paper, the term “monoisotopic” consistently refers to the
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element (symbol) isotope mass mass diff. abundance av. mass

hydrogen (H) 1H 1.007825 99.985 %
2H 2.014102 +1.006277 0.015 % 1.007975

carbon (C) 12C 12.0 98.890 %
13C 13.003355 +1.003355 1.110 % 12.011137

nitrogen (N) 14N 14.003074 99.634 %
15N 15.000109 +0.997035 0.366 % 14.006727

oxygen (O) 16O 15.994915 99.762 %
17O 16.999132 +1.004217 0.038 %
18O 17.999161 +2.004246 0.200 % 15.999305

phosphor (P) 31P 30.973762 100 % 30.973762

sulfur (S) 32S 31.972071 95.020 %
33S 32.971459 +0.999388 0.750 %
34S 33.967867 +1.995796 4.210 %
36S 35.967081 +3.995010 0.020 % 32.064388

proton (p+, 1H+) 1.00728 Da, neutron (n) 1.008665 Da, electron (e−) 0.00054 Da

Table 1. Natural isotopic distribution: Relative abundance of isotopes and their masses
in Dalton, rounded to six decimal places.

lightest isotope, not the most abundant isotope. For example, 506.99575Da is
the monoisotopic mass of adenosine triphosphate (ATP) C10H16N5O13P3 with
monoisotopic nominal mass 507.

2.1 Isotope species

Mass spectrometry cannot detect single molecules but is dependent on the
existence of millions of identical copies of some molecule.5 In living beings, this
means that elements follow their natural isotopic distribution and instead of
identical copies, we have different isotope species of a molecule. See Table 2 for
isotope species and their relative abundances of ATP.

Given the isotope species of two molecules, we can easily calculate the isotope
species of the joined molecule by folding the species (species with masses m1, m2

and probabilities p1, p2 result in an isotope subspecies with mass m1 + m2 and
probability p1p2 in the joined molecule), then sorting the subspecies with respect
to mass, and finally merging isotope subspecies with identical mass. The number
of isotope species is rather large for medium size molecules, even if we ignore
isotope species that show negligible relative abundance (see Part II, Section
9 for details): For example, ATP has 117 810 isotope species. Furthermore,
we usually cannot resolve isotope species with identical nominal mass using
present-day analysis techniques. Using FT-ICR this is not so much a problem of

5 More precisely, mass spectrometry cannot detect molecules but ions, molecules that
have picked up a net electric charge, while by definition, molecules have no net
electric charge. In particular, we have to shift masses according to the appended ion.
We ignore this for ease of exposition.
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12C 13C 1H 2H 14N 15N 16O 17O 18O 31P nominal mass (Da) abund. %
10 0 16 0 5 0 13 0 0 3 507 506.995751 84.9310

10 0 16 0 4 1 13 0 0 3 508 507.992786 1.5599
9 1 16 0 5 0 13 0 0 3 508 507.999106 9.5331

10 0 16 0 5 0 12 1 0 3 508 507.999968 0.4205
10 0 15 1 5 0 13 0 0 3 508 508.002028 0.2038

10 0 16 0 3 2 13 0 0 3 509 508.989821 0.0114
9 1 16 0 4 1 13 0 0 3 509 508.996141 0.1750

10 0 16 0 4 1 12 1 0 3 509 508.997003 0.0077
10 0 15 1 4 1 13 0 0 3 509 508.999063 0.0037
10 0 16 0 5 0 12 0 1 3 509 508.999997 2.2134
8 2 16 0 5 0 13 0 0 3 509 509.002461 0.4815
9 1 16 0 5 0 12 1 0 3 509 509.003323 0.0472

10 0 16 0 5 0 11 2 0 3 509 509.004185 0.0010
9 1 15 1 5 0 13 0 0 3 509 509.005383 0.0228

10 0 15 1 5 0 12 1 0 3 509 509.006245 0.0010
10 0 14 2 5 0 13 0 0 3 509 509.008305 0.0002

Table 2. Isotope species of adenosine triphosphate (ATP) molecules C10H16N5O13P3,
sorted by mass. Isotope species with nominal mass ≥ 510 omitted.

limited resolution of the mass spectrometer, but of the limited dynamic range
of the technique. See Section 6 for possible exceptions such as sulfur-containing
molecules.

2.2 Isotopic distributions and mean peak masses

One can simplify matters by combining isotope species with identical nominal
mass. Formally, we can represent the distribution of an element E by a discrete
random variable YE with finite state space ΩE ⊆ N: For example, carbon has
state space ΩE := {12, 13} and random variable YC with P(YC = 12) = 0.98890
and P(YC = 13) = 0.01110. The resulting distribution of nominal masses is
called the isotopic distribution of the molecule. In an ideal mass spectrum,
normalized peak intensities correspond to these probabilities. We refer to the
peak at monoisotopic mass as monoisotopic, and to the following peaks as +1,
+2, . . . peaks. See Table 3 on page 9 for the isotopic distribution of ATP.

Note that isotope species with distinct nominal masses may have almost
identical real masses, rendering it impossible to merge isotope species into an
isotopic distribution. But if we limit ourselves to the first, say, ten isotope peaks,
we can safely assume that such merging is possible: For every molecule over the
elements CHNOPS, the +10 peak is found between plus 9.97898Da and plus
10.06277Da.

Following Part II, Section 10, we can compute the isotopic distribution of
an arbitrary molecule as follows: We can restrict ourselves to computing the
first K non-zero values of the distribution, for rather small K such as K =
10. The isotopic distribution of a molecule El consisting of l atoms of element
E ∈ {H, C, N} follows a binomial distribution, and can be computed in time
O(K + log l). For other elements, we do not compute distributions on the fly
but during preprocessing, for all l ≤ L fixed. This results in O(KL) memory for
every such element, where L is small in applications: 64 oxygen atoms already
have mass of about 1024Da, exceeding the relevant mass range.
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Given two molecules with known isotopic distributions we can compute the
distribution of the joined molecule by folding distributions, which requires time
O(K2). So, to find the isotopic distribution of an arbitrary molecule, we fold the
distributions of the individual elements that are either present in memory (O, S)
or can be computed efficiently (C, H, N). We need O(nK2) time for n elements.

The imperfection of mass spectrometry results in a +1, +2, . . . isotope peak
that, in fact, are superpositions of peaks with almost identical mass. What is
the mass of such a superposition peak? It is reasonable to assume that its mass
is the mean mass of all isotope species that add to its intensity: Given a fixed
nominal mass we sum up the masses of all isotopic species of this nominal mass,
weighted by their relative abundance.

nominal mass 507 508 (+1) 509 (+2) 510 (+3) 511 (+4) 512 (+5)
abundance % 84.9309 11.7175 2.9653 0.3343 0.0469 0.0044
mean peak m. 506.995751 507.998347 509.000220 510.002655 511.004629 512.006961

Table 3. Mean peak masses and abundances of ATP C10H16N5O13P3 distribution.
Peaks with nominal mass 513 and above have abundances < 0.001 %.

In Figure 1, we plot the isotope species and mean peaks of ATP.

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 506.99  507  507.01  507.99  508  508.01  508.99  509  509.01  509.99  510  510.01

Fig. 1. Isotope species and isotope mean peaks of adenosine triphosphate (ATP)
molecules C10H16N5O13P3. Mean peaks marked with a triangle.

We can compute these masses by folding mean peak masses (for details, see
Part II, Section 10) analogous to the folding of distributions: We are given two
molecules with known isotopic distributions pk and qk and known mean peak
masses mk and m′

k, k ≤ K. Now, the mean peak mass of the +k peak of the
joined molecule is:

m̃k = 1
p̃k

·
∑k

j=0
pjqk−j

(

mj + m′

k−j

)
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In the following, the isotopic pattern of a molecule is its isotopic distribution
plus mean peak masses.

3 Decompositions of real valued numbers

We want to find all molecules with (monoisotopic) mass in the interval [l, u] ⊆ R

where l := M0−ε and u := M0+ε for some measurement inaccuracy ε. Formally,
we search for all solutions of the integer knapsack equation [10]

a1c1 + a2c2 + · · · + ancn ∈ [l, u] (1)

where aj are real-valued monoisotopic masses of elements satisfying aj ≥ 0. We
search for all solution vectors c = (c1, . . . , cn) such that all cj are non-negative
integers. We may assume a1 < a2 < · · · < an.

A straight-forward solution is to generate all vectors c with c1 = 0 and
∑

j ajcj ≤ u, and next to test if there is some c1 ≥ 0 such that
∑

j ajcj ∈
[l, u]. This results in O(mn−1) runtime where m := M0/a2. Alternatively, we
can compute all potential decompositions up to some upper bound U during
preprocessing, sort them with respect to mass and use binary search; this results
in O(Un) space requirement. These approaches are unfavorable in theoretical
complexity as well as in practice: For the alphabet CHNOPS there exist more
than 7 · 108 sum formulas with mass below 1000Da.

In case of integer coefficients, one can use dynamic programming to compute
all solutions efficiently, following the line of thought of [10, Sec. 8.3]. In a
preprocessing step, a bit table of size n × U is computed in time O(nU), where
U ∈ N is the maximal upper bound we want to consider in the following. Using
this table, we can efficiently find all solutions (1) for all queries l, u ≤ U . The
main disadvantage of this approach is the memory requirement of O(nU). An
alternative method for finding all solutions is given in [4], using a table of size
O(k a1). Every solution is constructed in time O(na1) independent of the input
l, u. In addition, we do not have to choose a maximal bound U we want to
consider. Regarding the application of decomposing molecule masses, the latter
approach uses only 1/15 of memory and shows slightly better runtimes.

Reconsider the original integer knapsack problem with real-valued coeffi-
cients. Choosing a blowup factor b ∈ R, corresponding to precision 1/b, we can
round coefficients by ϕ(a) := ⌈ba⌉, so a′

j := ϕ(aj) and l′ := ϕ(l), u′ := ϕ(u) form
a Diophantine equation. We stress that precision 1/b is merely a parameter of
the decomposition algorithm and in principle independent of the measurement
mass accuracy ε. To avoid rounding error accumulation, precision is usually set
one to two orders of magnitude smaller than the measurement accuracy. Now,
certain solutions c of the integer coefficient knapsack are no solutions of the real-
valued coefficient knapsack, and vice versa. We can easily sort out false positive
solutions checking (1), resulting in additional runtime. But first, we concentrate
on the more intriguing problem of false negative solutions that are missed by
the integer coefficient knapsack.
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Clearly
∑

j ajcj ≥ l implies
∑

j a′

jcj ≥ l′ since all a′

j are integer. We have to
increase the upper bound u′ to guarantee that all solutions of (1) are generated.
We define relative rounding errors

∆j = ∆j(b) :=
⌈baj⌉ − baj

aj
for j = 1, . . . , n

where 0 ≤ ∆j ≤ 1
aj

, and set ∆ = ∆(b) := max{∆j}. If c satisfies
∑

j ajcj ≤ u

then
∑

j a′

jcj ≤ bu + ∆u: Clearly,
∑

j a′

jcj ≤ bu +
∑

j(a
′

j − baj)cj and our claim
follows from

0 ≤
∑

j

(a′

j − baj)cj =
∑

j

⌈baj⌉ − baj

aj
ajcj ≤

∑

j

∆jajcj ≤ ∆
∑

j

ajcj ≤ ∆u.

One can easily check that this bound is tight. So, we re-define the integer interval
by u′ := ⌊bu + ∆u⌋. Then, we have to decompose ∆u integers in addition to the
(u − l)b integers we expect without rounding errors. We stress that the runtime
of this approach is dominated by the number of decompositions of these integers,
and not by the number of integers itself.

As an example, consider the alphabet CHNOPS and blowup factor b = 105,
then ∆ = ∆H = 0.492936, so for M0 = 1000 we have to decompose an additional
492 integers.

3.1 Optimal blowup factor b

If we had an infinite amount of memory then we could make the blowup factor b
large, thereby countering the effect of rounding error accumulation. But choosing
a blowup factor b results in a table of size O(na1b) which induces an upper
bound on the blowup factor. We are left with the question how to find a good
factor b that results in a small quotient ∆(b)/b of additional integers we have to
decompose.

Suppose that memory considerations imply a maximal blowup factor of B ∈
R. We want to find b ∈ (0, B] such that ∆(b)/b is minimized. We can explicitly
find an optimal such b by constructing the piecewise linear functions ∆j(b) :=
1
aj

(⌈baj⌉ − baj) with ⌈ajB⌉ + 1 sampling points, for all j = 1, . . . , n. Next, we

set ϕ1 ≡ ∆1 and for j ≥ 2, we define ϕj as the maximum of ϕj−1 and ∆j , a
piecewise linear function with (a1 + · · · + aj)B sampling points. Then, ∆ ≡ ϕn

is a continuous, piecewise linear function with O((a1 + · · · + an)B) sampling
points. We can construct ∆ in time O(n(a1 + · · · + an)B) = O(n2anB). For
every piecewise linear part I ⊆ R of ∆ the minima of ∆(b)/b must be located at
the terminal points, so it suffices to test the O(nanB) sampling points of ∆ to
find the minimum of ∆(b)/b.

Regarding our application of finding sum formulas over the alphabet
CHNOPS, we found that choosing an optimal blowup factor has a negligible
impact on runtimes. Still, the impact can be significant for other applications.
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4 Scoring candidate molecules

We want to discriminate between (tens of thousands of) candidate molecules
generated by decomposing the monoisotopic mass. To this end, we compare the
simulated isotopic distribution with the measured peaks. Matching peak pairs
between the spectra is trivial for this application.

[27] and [26] suggest to use Bayesian Statistics to evaluate mass spectra
matches:

P(Mj |D,B) =
P(Mj |B) P(D|Mj,B)

∑

i P(Mi|B) P(D|Mi,B)

where D is the data (the measured spectrum), Mi are the models (the
candidate molecules), and B stands for any prior background information. In
particular, we set the prior probability P(Mj|B) to zero for all molecules but
the decompositions of the monoisotopic mass. We can also use the abundance
of certain elements to assign a low prior probability to certain molecules (say,
molecules where phosphor constitutes more than 50% of the mass). In particular,
we assign prior probability zero to sum formulas that cannot correspond to a
molecule, because of chemical considerations: For any molecule, the degree of
unsaturation (DU ) [17]

DU = − v1

2 + v3

2 + v4 + 1 (2)

is a non-negative integer, where v1, v3, v4 denote the number of monovalent
atoms (hydrogen), trivalent atoms (nitrogen, phosphor), and tetravalent atoms
(carbon) if we assume that all elements are in their lowest valency state.
For higher valency states of sulfur and phosphor we may assign lower prior
probabilities, as we rarely observe phosphor (sulfur) with five (six) single bonds
in organic compounds.

Next, we assign probabilities to the observed masses and intensities.
Assuming independence (in particular from background information) we
calculate:

P(D|M,B) =
∏

j

P(Mj |mj)
∏

j

P(fj|pj) (3)

Here, P(Mj|mj) is the probability to observe peak j at mass Mj when its true
mass is mj , and P(fj |pj) is the probability to observe peak j with intensity fj

when its true intensity is pj . Clearly, the independence of peak intensities is
violated because these intensities sum to one, but (3) can be seen as a rough
estimate of the true probability.

4.1 Empirical distributions of mass and intensity differences

We want to compare the true peak masses and intensities of isotopic distributions
to the experimentally determined ones. In addition to the 69 mass spectra as
described in Section 5.1 we used spectra of 33 molecules with mass above 1000Da
to estimate these parameters.
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Our data shows a systematic mass shift due to calibration inaccuracies, but
this can be eliminated for all masses but the monoisotopic mass: We do not
compare masses of the +1, . . . peaks directly but instead, the difference to the
monoisotopic peak, Mj − M0 vs. mj − m0 for j ≥ 1. In accordance with expert
knowledge, mass differences increase with increasing mass of the molecule, so we
use relative mass differences: ∆m

0 := (M0 − m0)/m0 and ∆m
j := (Mj − M0 −

mj + m0)/mj for j = 1, 2, 3. Confer Table 4 for mean and variance of these
observations. There are only 29 +4 peaks and even fewer +5, . . . peaks present
in the measured mass spectra.

For intensities, our data indicates that ratios between measured and predicted
peak intensity fj/pj follow a log normal distribution, so we determine mean and
variance of ∆i

j := log10 fj − log10 pj for j = 0, . . . , 3, confer Table 4.

∆m
0 ∆m

1 ∆m
2 ∆m

3

# observations 102 102 73 29
mean 1.978 · 10−7 2.730 · 10−7 4.985 · 10−7 1.085 · 10−6

std. deviation 8.858 · 10−7 9.979 · 10−7 4.243 · 10−6 2.873 · 10−6

variance 7.847 · 10−13 9.958 · 10−13 1.800 · 10−11 8.253 · 10−12

∆i
0 ∆i

1 ∆i
2 ∆i

3

mean 0.0111 −0.0155 −0.0809 −0.0440
std. deviation 0.02018 0.03758 0.08060 0.07682

variance 0.00041 0.00141 0.00650 0.00590

Table 4. Estimated parameters for the distribution of mass and intensity differences.
See text for details.

4.2 Estimating mass and intensity probabilities

We want to estimate the probability that, given a peak with true mass mj ,
we observe a peak in the measured spectrum at mass Mj: More precisely,
the probability to observe a mass difference of |Mj − mj | or larger. For
simplicity we assume that relative mass differences follow a Gaussian distribution
with parameters (µ̄, σ̄). We can then compute this probability using the
complementary error function “erfc”:

P(mass difference ≥ x) = erfc
( z√

2

)

=
2√
2π

∫

∞

z

e−t2/2dt with z :=
|x − µ̄|

σ̄
(4)

Thus, we estimate

P(Mj|mj) = erfc
( |xj − µ̄j |√

2 σ̄j

)

(5)

with x0 = (M0 − m0)/m0 and xj = (Mj − M0 − mj + m0)/mj for j ≥ 1.
Parameters (µ̄j , σ̄j) are listed in Table 4 where we set µ̄j := µ̄3 and σ̄j := σ̄3 for
j > 3. Analogous computations can be executed for intensity differences.
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Note that the distributions of mass and log intensity differences may deviate
from Gaussian, and that (3) and (5) are only rough estimates. But time efficient
methods are available for computing erfc(z) with high accuracy, so this approach
may be used as a filter to find, say, 10–100 candidates that match the sample
spectrum reasonably well.

4.3 Estimating missing peak probabilities

So far, we have assumed that we can detect the first K peaks of the isotopic
distribution. But this is rarely the case, because peaks of small intensity are
regularly lost in the “noise” of the mass spectrum. What are mass and intensity of
a peak not present in the measured spectrum? We cannot estimate its mass, but
we can find an upper bound for its intensity: A measured mass spectrum contains
many “peak candidates”, and to decide whether any such peak candidate is a
“true peak”, an intensity threshold is applied. So, it is reasonable to believe
that, if peak +i was detected in the measured spectrum with intensity fi, then
any peak +j not detected in the spectrum must have intensity fj < fi because
otherwise, this peak should have been detected, too.

So, we can use the smallest intensity of the detected peaks fmin as an upper
bound for the intensity of all missing peaks. We can derive tighter bounds from
the measured spectrum, but we used this bound for the following evaluation.
The probability to miss peak +j with theoretical intensity pj can be estimated
by

P(peak +j missing) =
1√
2π

∫ z

−∞

e−t2/2dt with z :=
x − µ̃j

σ̃j
(6)

where µ̃j , σ̃j are the parameters of the log normal distribution of intensities and

x = log fmin

pj
. Since for j ≥ 4 we cannot derive these parameters from our data,

we assume that they are identical to µ̃3, σ̃3.

5 Computational results

5.1 Data set

Our data set consists of 69 mass spectra with single charge from several organic
(macro)molecules, composed of the elements CHNOPS. For every such spectrum,
the sum formula of the sample molecule is known. The spectra were acquired over
the last two years; the molecules range in mass from 284 to 960Da. Electrospray
ionization (ESI) experiments were performed using a Fourier Transform Ion
Cyclotron Resonance (FT-ICR) mass spectrometer APEX III (Bruker Daltonik
GmbH, Bremen, Germany) equipped with a 7.0 T, 160 mm bore superconducting
magnet (Bruker Analytik GmbH – Magnetics, Karlsruhe, Germany), infinity
cell, and interfaced to an external (nano)ESI ion source. Peak detection and
estimation of peak masses and intensities (heights) are conducted using vendor
software.
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5.2 Identification accuracy and runtimes

Every input “mass spectrum” consists of masses M0, . . . , Mk and intensities
f0, . . . , fk. For every such spectrum, we compute all molecules such that
the monoisotopic mass m0 has relative mass difference of at most 2 ppm,
|M0 − m0| /m0 ≤ 2 · 10−6. To do so, we decompose integer masses with some
blowup b ∈ R, see Sec. 3, and discard molecules with real mass outside the
mass interval. Next, we discard molecules that have negative or non-integer
degree of unsaturation DU , confer (2). For every such molecule, we compute its
theoretical isotopic distribution (with K = 10) and compare it to the measured
isotopic distribution as described in Section 4. We rank the molecules according
to resulting probabilities. We do not use any other background information to
identify the molecule, in order to be able to evaluate the discriminative power
of isotopic patterns.

Out of the 69 mass spectra, 35 result in a correct identification; in 81 % of the
mass spectra, the correct interpretation is found in the top 10 interpretations.
There is a clear correlation between mass and identification accuracy, confer
Table 5. For mass spectra below 700Da, the correct interpretation is always
found in the top 10 interpretations.

no. rank in output list no. sum formulas
mass range spectra 1 2 3–5 6–10 11+ int. real chem. runtime

200–300 3 3 0 0 0 0 60.7 26.3 5 0.0006
300–400 20 18 2 0 0 0 165.3 70.1 6.4 0.0012
400–500 25 13 5 5 2 0 560.3 236.4 17.8 0.0043
500–600 1 0 1 0 0 0 1956 833 51 0.0164
600–700 2 1 0 1 0 0 2204 934.5 30.5 0.0190
700–800 5 0 2 1 0 2 7548.6 3205.2 167.6 0.0706
800–900 8 0 1 0 1 6 12521 5325.9 340.6 0.1217

900–1000 5 0 0 0 0 5 23443 9972.8 770 0.2338

Table 5. Number of correct sum formulas at certain positions of the output list, for
several mass ranges. Runtimes in seconds per spectrum. See text for details.

We analyzed all 69 mass spectra on a Pentium M 1.5 GHz processor with
blowup b = 5·104, using only a few Megabyte of memory. This results in runtimes
of less than 1/4 second per spectrum for the complete analysis of one mass
spectrum, including generation of molecule candidates, simulation of isotopic
patterns, and ranking the measured data against the simulated pattern. Clearly,
runtimes depend on molecule masses, see Table 5. Optimizing the blowup b
(Sec. 3.1) did not show a significant impact on runtimes. Increasing the blowup
beyond 5 · 104 increased runtimes: A similar behavior was observed in [5],
presumably because the smaller table can be kept in the processor cache whereas
the larger has to be stored and accessed in main memory.

For every mass range, we also report in Table 5 the number of integer
decompositions, the number of real decompositions (cf. Sec. 3), and the number
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of sum formulas with non-negative integer degree of unsaturation (2). These
numbers are averages over all molecules in the mass range.

6 Generalization to other elements

As noted in Section 2, we have sometimes restricted ourselves to the elements
CHNOP. Regarding the natural isotopes of these elements, the isotope with
smallest mass number is by far most common. For example, consider molecules
consisting solely of carbon: The second isotope species exceeds the first only if
90 or more carbon atoms, with a total mass of 1080Da or more, are present.
Thus, we may assume that the monoisotopic peak can be detected and identified
in the mass spectrum. Furthermore, these molecules have isotopic distributions
that decrease rapidly with increasing mass.

We have ignored elements such as sulfur for the sake of brevity: These
elements can have isotopic distributions that differ significantly from that of
carbon, the element usually dominating a molecule’s isotopic distribution. We
now describe the adjustments and modifications needed for our approach to
carry over to arbitrary elements. In particular, we show how to deal with sulfur-
containing molecules.

The isotopic distribution of sulfur assigns lower probability to the monoiso-
topic molecule than even carbon: For the molecule S23 with monoisotopic mass
735.358Da, the intensity of the +2 peak exceeds that of the monoisotopic peak.
For the molecule S63 with monoisotopic mass 2014.240Da and nominal mass
n = 2016, the normalized intensity of the +9 peak is 4.7% and the intensities of
the +10, +11, . . . peaks sums up to 14.0%. To allow an accurate normalization
of peak intensities we therefore have to take into account peaks past the +10
peak. Other elements may force us to increase K for even smaller masses. This
results in increased runtimes, but no changes to our method are necessary.

Let us have another look at the isotopic distribution of the molecule S63: The
monoisotopic peak has a relative intensity of 4% compared to 17% of the most
intense +4 peak. So, we can detect (and decompose) the monoisotopic peak of
molecules with mass up to 2000Da that contain sulfur. In case the molecule
contains other elements such as tungsten (also known as wolfram; the lightest
natural isotope 180W has abundance of only 0.12%) then the monoisotopic signal
will not be observable. In this case, we estimate the average mass of the molecule
as Mav :=

∑

i fiMi. Due to missing peaks this estimation is erroneous, but this
error is superseded by measurement errors. The average mass of an element E
can be estimated as the weighted sum of isotope masses, see Table 1. Then,
instead of decomposing the monoisotopic mass we decompose the molecule’s
average mass, while the rest of our analysis remains unchanged.

If resolution and dynamic range of the mass spectrometer are very large, this
may violate our assumption that the superposition of isotope species results
in single +1, +2, . . . peak. For elements CHNOP we may safely ignore this
fact. For sulfur, we note that the second most abundant isotope is not 33S but
34S with abundance of more than 4%, and this isotope has a mass difference
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of 1.995796Da that differs significantly from the mass difference of two 13C
isotopes, 2.00671Da. So, mass spectrometers may detect two +2 peaks in the
isotope pattern, one corresponding to a molecule having exactly one 34S isotope,
the other being a superposition of all remaining isotope species. To simulate this
behavior, we compute the isotopic distribution of the molecule without sulfur,
and the isotope species of the molecule consisting solely of sulfur. We then fold
the isotope species and eventually merge species that cannot be differentiated
due to resolution constraints. Elements that require this particular attention
can be identified by experts; a rigorous formal analysis is in preparation. For
the data presented in this paper, no special care was taken of sulfur because the
resolution of the instrument used was not sufficient to resolve sulfur peaks.

7 Conclusion of Part I

We presented an approach to determine the sum formula of an unknown
metabolite solely from its high resolution isotopic distribution. Our approach
allows us to reduce the number of potential sum formulas to only a few
candidates; in many cases we were able to determine the correct sum formula.
The approach is time and memory efficient and can be executed on a regular
desktop PC. Results on experimental data show the potential of our approach,
in particular for metabolites below 700Da.

Nevertheless, our results are only a first step towards automated determi-
nation of sum formula from high resolution mass spectrometry data. We want
to conduct further studies regarding mass and intensity variations for this type
of data, to achieve better discrimination between sum formula candidates. We
are currently gathering an independent test set of about 100 sample spectra.
Note that we have deliberately ignored some information available in the data,
in order to evaluate the discriminative power of a single isotopic pattern. For
example, a mass spectrum often contains different charge states of the same
molecule. Also, we may use the proportion of elements in a sum formula as
a prior probability for our identification: Regarding phosphor, for only 10%
of sum formulas in the KEGG LIGAND database [9] more than 18 % of the
molecule’s mass results from phosphor atoms. We are currently evaluating the
impact of using such (background) information. We will apply our techniques
to molecules that contain elements different from CHNOPS, such as selenium
and silicon. [7] use ions resulting from neutral losses of the parent ion to further
increase the resolving power, and we plan to extend our approach to incorporate
information from neutral losses, even when multiple parent ions are present
simultaneously. We also plan to process raw mass spectra, because peak picking
software commonly tries to fit a peak model (Gaussian) to the data, whereas we
are interested in the mean peak mass for a collection of isotope species.

Finally, we note that mass spectrometry instruments with better mass
accuracy and resolution than the instrument used in our evaluation, are available
these days. The development of new mass spectrometry techniques with ever
increasing mass accuracy will presumably continue in the next years, and will
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allow us to push the mass limit for sum formula determination even further. We
are currently conducting simulations to evaluate the impact of increased mass
accuracy.



Part II

Decomposing metabolomic

isotope patterns
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8 Introduction to Part II

Mass spectrometry (MS) allows determining accurately the molecular mass of
sample molecules. As with most analysis techniques in the life sciences, not one
but millions of copies of the same molecule are needed. The output of a mass
spectrometer, after preprocessing, consists of peaks that ideally correspond to the
masses of the sample molecules and their abundance, i.e., the number of sample
molecules with this mass. This brings into play the natural isotopic distributions
of the elements: Several peaks in the output correspond to the same type of
sample molecule, reflecting its isotope pattern. In this paper, we make use of
this isotope pattern to identify the sample molecule.

Metabolites, such as sugars or lipids, are small molecules that are
intermediates or products of the metabolism and that participate in most
processes of the cell. Yet, to date most remain uncharacterized. Large metabolite
libraries exist but their use is limited to identifying metabolites that are already
known. High resolution mass spectrometry allows to determine the mass of
a sample molecule with very high accuracy (up to 10−3 Dalton), and has
become one preferred method of analyzing metabolites. When trying to identify
a metabolite, the first and most crucial step is determining its sum formula, i.e.,
the number of atoms of each element.

Our input is a list of masses M0, . . . , MK with intensities6 f0, . . . , fK ,
normalized such that

∑

i fi = 1. We assume that these have been extracted
from a mass spectrum in a preprocessing step, and that they correspond to the
isotope pattern of a sample molecule.7 Our goal then is to find the molecule, or
rather its sum formula, whose isotope pattern best matches the input. In the
following, we use “molecule” and “sum formula” interchangeably.

One way to solve this problem is by computing all molecules with
monoisotopic mass sufficiently close to M0, simulating their isotope pattern, and
matching it with the input. However, the number of molecules with a certain
mass increases rapidly for large masses, see Section 11. Thus, it is essential to
find methods for fast simulation of isotope patterns. This problem has previously
been addressed e.g. in [8,25]. Here we present a method for rapid computation of
isotope distributions and, in particular, mean masses of isotope peaks, improving
on results in [20].

Even more importantly, methods for reducing the search space are needed.
The problem of determining the sum formula of a sample molecule was addressed
frequently from the biochemical and mass spectrometry viewpoint [3, 6, 18, 23].
It can be stated in mathematical terms as follows: Given σ positive numbers
a1, . . . , aσ and a query M , find a non-negative integer vector (c1, . . . , cσ) such

6 The height of the peaks is referred to as “intensity” (of the signal). Note that high
resolution mass spectrometry allows for such high accuracy within a small range
that, as opposed to most other MS applications, here the intensities of the peaks can
be relied upon, and the isotopic peaks can be well separated.

7 Note that, for molecular mixtures, separating isotopic peaks that belong to different
molecules is trivial in this case.



22

that
∑

i ciai = M . Here, a1, . . . , aσ correspond to the masses of the elements and
M to the mass of the sample molecule. This is an Integer Knapsack Problem; the
variant where the ai are positive integers is also known as Coin Change Problem.
Both are NP complete, and can be solved by a simple dynamic programming
algorithm in pseudo-polynomial time.

We employ an algorithm introduced in [4] for computing all solutions c, which
is greatly superior to simple backtracking in the classic dynamic programming
table both in its time and space requirements. We develop certain pruning
conditions which we employ during runtime, and which successfully reduce the
search space, discarding many candidates before they are computed. To this end,
we introduce the problem of jointly decomposing a set of queries. These are not
the input masses M0, . . . , Mk, but other values derived from the input such as
intensities or average mass, for which we define appropriate weighted alphabets.
Details of how to postprocess and rank the remaining candidates can be found
in Part I.

The problem of deriving sum formulas from isotope patterns has recently
been investigated in [7,11,16], but these studies concentrate on the experimental
side of the problem. The authors of [11] disregard mean peak masses;
computational methods are only given in [7], however, the descriptions do
not yield themselves to runtime comparisons. For runtime comparisons of the
decomposition algorithm and the classical DP algorithm on the amino acid,
nucleotide, and CHNOPS alphabets (the latter used in this paper), see [13,
Sec. 4.6]. In this paper, we give experimental results using data extracted from
the KEGG LIGAND database [9].

The paper is organized as follows. We give the necessary physical background
in Section 9. We introduce our model in Section 10 and show how to generate
isotope patterns efficiently. After a brief sketch of the decomposition problem
(Section 11), we show how to extract a joint decomposition problem from the
input (Section 12) and discuss joint decompositions and how to solve them in
Section 13. Finally, in Section 14, we provide first experimental results.

9 Isotope species

Atoms are composed of electrons, protons, and neutrons. The number of protons
(the atomic number) defines what element the atom is. The elements most
abundant in living beings are hydrogen (symbol H) with atomic number 1,
carbon (C, 6), nitrogen (N, 7), oxygen (O, 8), phosphor (P, 15), and sulfur
(S, 16). The number of neutrons, on the other hand, can vary: Atoms with the
same number of protons but different numbers of neutrons are called isotopes of
the element. For example, hydrogen has two natural isotopes (i.e., isotopes that
occur in nature), 1H and 2H (deuterium): 1H consists of one proton and one
electron, while 2H consists of one proton, one electron, and one neutron. Each
of these isotopes occurs in nature with a certain abundance. The superscript
preceding the symbol denotes the mass number of the atom: the number of
protons plus the number of neutrons. Regarding the other elements listed above,
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carbon and nitrogen have two natural isotopes, oxygen has three, sulfur four,
and phosphor occurs in only one isotopic type.

The mass of an atom is measured in Dalton (Da), which is defined as one
twelfth of the mass of a 12C isotope.8 An atom’s mass is roughly but not exactly
equal to its mass number, the difference being due to the binding energy in
the atom’s nucleus. The masses of the different isotopes and their abundance
are known up to very high precision; for example, 1H has mass 1.007825Da
with abundance 99.985%, and 2H mass 2.014102Da with abundance 0.015%.
See Part I, Section 2 for an isotope table of the six elements listed above, and [1]
for a complete table.

The nominal mass (also called nucleon number) of a molecule is the sum of
protons and neutrons of the constituting atoms. The mass of the molecule is
the sum of masses of these atoms. Clearly, nominal mass and mass depend on
the isotopes the molecule consists of, thus on the isotope species (isobars) of the
molecule. The isotope species where each atom is the isotope with the lowest
nominal mass is called monoisotopic. Likewise, the mass of the monoisotopic
species is called the monoisotopic mass of the molecule. For example, sucrose
C12H22O11 has monoisotopic mass 342.116215Da with monoisotopic nominal
mass 342. We note that metabolites are “rather small” molecules with mass
seldom exceeding 1000Da.9

The number of isotope species with distinct mass for a molecule with iH
hydrogen, iC carbon, iN nitrogen, iO oxygen, iP phosphor, and iS sulfur atoms
is

number of isotope species = (iC + 1)(iH + 1)(iN + 1)
(

iO+2
2

)(

iS+3
3

)

, (7)

if we assume that all mass differences are linearly independent over the rational
numbers. This follows because for an element E with r isotope types, a molecule
El consisting of l atoms of the element has

(

l+r−1
r−1

)

different isotope species.

The probability that a certain isotope species occurs can be computed by
multiplying the probabilities of the underlying isotopes. See Table 6 for the first
eleven isotope species of sucrose. In total, sucrose has 13 · 23 ·

(

13
2

)

= 23 322
isotope species.

Given the isotope species of two molecules, we can easily calculate the isotope
species of the joined molecule by folding the species: Species with masses m1, m2

and probabilities p1, p2 add a contribution of p1p2 to the isotope species with
mass m1 + m2 in the joined molecule.

We will refer to the set of elements as our alphabet Σ, and to the six elements
mentioned above, simply as CHNOPS.

8 Dalton is the unit commonly used in molecular biology and biochemistry, while in
physics, the same quantity is denoted ”u” (unified atomic mass unit).

9 In the KEGG LIGAND database, 95, 6% of sum formulas have mass below 1000 Da.
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12C 13C 1H 2H 16O 17O 18O nom. mass mass (Da) abundance %

12 0 22 0 11 0 0 342 342.116215 84.9204

11 1 22 0 11 0 0 343 343.119570 11.4384
12 0 22 0 10 1 0 343 343.120431 0.3558
12 0 21 1 11 0 0 343 343.122492 0.2803

12 0 22 0 10 0 1 344 344.120460 1.8727
10 2 22 0 11 0 0 344 344.122925 0.7062
11 1 22 0 10 1 0 344 344.123786 0.0479
11 1 21 1 11 0 0 344 344.124647 0.0007
12 0 22 0 9 2 0 344 344.125847 0.0378
12 0 21 1 10 1 0 344 344.126708 0.0012
12 0 20 2 11 0 0 344 344.128769 0.0004

Table 6. Isotope species of sucrose molecules C12H22O11, sorted by mass. Isotope
species with nominal mass ≥ 345 omitted.

10 Isotope patterns

No present-day analysis technique is capable of resolving isotope species with
identical nominal mass. Instead, these isotope species appear as one single peak
in the MS output.10 For this reason, we merge isotope species with identical
nominal mass; we refer to the resulting distribution as the molecule’s isotope
pattern.

For each element E ∈ Σ we define two discrete random variables, denoted XE

and YE , representing the mass and the mass number, respectively. For example,
XC with state space {12, 13.003355} and YC with state space {12, 13} and

P
(

XC = 12
)

= P
(

YC = 12
)

= 0.98890,

P
(

XC = 13.003355
)

= P
(

YC = 13
)

= 0.01110

are the random variables of carbon. Given a molecule consisting of l atoms, we
assign to the ith atom, i = 1, . . . , l, two random variables Xi and Yi, where Xi ∼
XE and Yi ∼ YE , with E being the corresponding element. Now we can represent
the molecule’s mass distribution by the random variable X := X1 + . . . + Xl,
and its nominal mass distribution, or isotopic distribution, by Y := Y1 + . . .+Yl.
Note that X and Y are correlated, since XE can be viewed as a function of YE

and E.
In an ideal mass spectrum, normalized peak intensities correspond to the

isotopic distribution of the molecule. For ease of exposition, the peak at
monoisotopic mass is also called monoisotopic, the following peaks are referred
to as +1, +2, . . . peaks. See Table 7 for the isotopic distribution of sucrose.

It is important to observe that regarding the six elements most abundant in
living beings, all resulting molecules have isotopic distributions that decrease

10 The case of sulfur-containing molecules is an exception and needs special attention,
we omit the details.
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rapidly with increasing mass. In particular, we can restrict ourselves to
computing the first K non-zero values of the distribution, for rather small K
such as K = 10. For example, consider the molecule C166 with nominal mass
1992: The intensities of +10, +11, . . . peaks sum up to less than 0.00003.

10.1 Computing the isotopic distributions of El

The atoms hydrogen, carbon, and nitrogen have only two isotopes. Thus, the
isotopic distribution of a molecule El consisting of l identical atoms of type E
with E ∈ {H, C, N} follows a binomial distribution: Let qk denote the probability
that El has nominal mass n+k, where n is the monoisotopic nominal mass of El.
Then, qk =

(

l
k

)

pl−k(1−p)k where p is the probability of the monoisotopic isotope.

The values of the qk can be computed iteratively, since qk+1 = l−k
k+1 · 1−p

p qk for

k ≥ 0, thus computation time is O(K + log l) if we compute q0 = pl using log l
multiplications.

Where an element E has r > 2 isotopes (such as oxygen and sulfur), the
isotopic distribution of El can be computed as follows: Let pi for i = 0, . . . , r
denote the probability of occurrence of the ith isotope.

P(El has nominal mass n + k ) =
∑

(

l
l0,l1,...,lr

)

·
r

∏

i=0

pli
i , (8)

where the sum runs over all l0, . . . , lr ≥ 0 satisfying
∑r

i=0 li = l and
∑r

i=1 i·li = k
[8].

How do we find all tuples (l0, . . . , lr) that satisfy both conditions
∑

li = l
and

∑

i · li = k? Those satisfying
∑

i i · li are the integer partitions of k into
at most r parts, which can be computed recursively with a greedy approach.
However, this approach faces the problem that the number of partitions grows
rapidly, at least with a polynomial in k of degree r − 1 [22].

10.2 Folding isotopic distributions

Given two discrete random variables Y and Y ′ with state spaces Ω, Ω′ ⊆ N, we
can compute the distribution of the random variable Z := Y + Y ′ by folding
the distributions, P(Z = n) =

∑

k P(Y = k) · P(Y ′ = n − k). If we restrict
ourselves to the first K values of this sum, we can compute this distribution
in time O(K2). Kubinyi [12] suggests to compute the isotopic distributions of
oxygen Ol and sulfur Sl by successive folding of the respective distribution: Using
a Russian multiplication scheme for the folding, this results in an algorithm
with runtime O(K2 log l). For molecules consisting of different elements, we first
compute the isotopic distributions of the individual elements, and then combine
these distributions by folding in O(|Σ| · K2) time.

Finally, note that we can use Fourier transforms of atom distributions, and
instead of folding these distributions multiply the Fourier transforms [19]. Doing
so we can eventually replace the K2 factor in the algorithm’s runtime by a
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K log K factor. As we limit our attention to small K such as K = 10, this will
not result in a speedup of the algorithm. In practice, this approach may face the
problem of numerical errors.

10.3 Isotope peak masses

As we have seen, the imperfection of mass spectrometry results in +1, +2, . . .
isotope peaks that, in fact, are superpositions of peaks with almost identical
mass. What is the mass of such a superposition peak? It is reasonable to assume
that its mass is the mean mass of all isotope species that add to its intensity [20].
Formally, we define a mass function µ̃ : N → R that maps the mass numbers
of the different isotopes11 to the corresponding real masses: µ̃(1) = 1.007825,
µ̃(2) = 2.014102, . . . , µ̃(34) = 33.967867, µ̃(36) = 35.967081.12 Thus, XE =
µ̃(YE) for all elements E. Let the mass distribution X = X1 + . . . + Xl and
isotopic distribution Y = Y1 + · · ·+ Yl of a molecule with monoisotopic nominal
mass n be given. Then, the mean peak mass of the +k peak is:

mk = E(X | Y = n+k) =
∑

P

i ni=n+k

P(Y1 = n1, . . . , Yl = nl)

P(Y = n + k)

(

µ̃(n1)+· · ·+µ̃(nl)
)

.

(9)
See Table 7 for mean peak masses of sucrose. We refer to the isotopic distribution
together with the mean peak masses as the molecule’s isotope pattern.

nominal mass 342 343 (+1) 344 (+2) 345 (+3) 346 (+4)

abundance % 84.9204 12.0745 2.66683 0.297583 0.0370679
mean peak m. 342.116215 343.119663 344.121254 345.124197 346.126084

Table 7. Isotope pattern (isotopic distribution and mean peak masses) of sucrose
C12H22O11. Peaks with nominal mass 347 and above have abundance < 0.01%.

Computing the mean peak mass using (9) is highly inefficient, because we
have to sum up over all isotope species, so pruning strategies have been developed
that lead to a loss of accuracy [20, 25]. But there exists a simple recurrence for
computing these masses analogous to the folding of distributions, generalizing
and improving on results in [20]:

Let Y = Y1 + · · ·+Yl and Y ′ = Y ′

1 + · · ·+Y ′

L be isotopic distributions of two
molecules with monoisotopic nominal masses n and n′, respectively. Let pk :=
P(Y = n + k) and qk := P(Y ′ = n′ + k) denote the corresponding probabilities,
mk and m′

k the mean peak masses of the +k peaks. Consider the random variable
Z = Y + Y ′ with monoisotopic nominal mass ñ = n + n′.

11 See Table 1 in Part I I, Section 2.
12 This is only possible because there exist no overlaps in mass numbers between

distinct elements. For other sets of elements such overlaps do exist and we need
a formally more complicated setup to define our mean peak masses. Still and all, the
results of this section remain valid.
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Theorem 1. The mean peak mass m̃k of the +k peak of the random variable
Z = Y + Y ′ can be computed as:

m̃k =
1

∑k
j=0 pjqk−j

·
k

∑

j=0

pjqk−j

(

mj + m′

k−j

)

(10)

Proof. Note that
∑k

j=0 pjqk−j = P(Z = ñ + k). Let n = (n1, . . . , nl) ∈ N
l

and n
′ = (n′

1, . . . , n
′

L) ∈ N
L be vectors of nominal masses. We denote

∑

n :=
∑l

i=1 ni and
∑

n
′ :=

∑L
i=1 n′

i. Let Y := (Y1, . . . , Yl) and Y
′ := (Y ′

1 , . . . , Y ′

L) be
vectors of the input random variables, and note that

P(Y = n, Y ′ = n
′) = P(Y = n)P(Y ′ = n

′)

due to the independence of the underlying random variables. Finally, we set
µ̃(n) =

∑l
i=1 µ̃(ni) and analogously define µ̃(n′). We can rewrite (9) for the

mass of the +k peak as

P(Z = ñ + k) · m̃k =
∑

P

n+
P

n
′=ñ+k

P(Y = n, Y ′ = n
′) ·

(

µ̃(n) + µ̃(n′)
)

.

We observe that we can split this formula into two independent sums of the form

∑

P

n+
P

n
′=ñ+k

P(Y = n, Y ′ = n
′) · µ̃(n) (11)

and a second summand where µ̃(n) is replaced by µ̃(n′); we concentrate on (11)
in the following. Now,

∑

P

n+
P

n
′=ñ+k

P(Y = n, Y ′ = n
′) · µ̃(n)

=
k

∑

j=0

∑

P

n=n+j

∑

P

n
′=n′+k−j

P(Y = n)P(Y ′ = n
′) · µ̃(n)

=
k

∑

j=0

∑

P

n=n+j

P(Y = n) · µ̃(n)
∑

P

n
′=n′+k−j

P(Y ′ = n
′)

=
k

∑

j=0

∑

P

n=n+j

P(Y = n) · µ̃(n) · P(Y ′

1 + · · · + Y ′

L = n′ + k − j)

=

k
∑

j=0

P(Y ′ = n′ + k − j)
∑

P

n=n+j

P(Y = n) · µ̃(n)

=

k
∑

j=0

qk−jpjmj
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where the last equality follows from the definition of mj ,

mj =
1

pj

∑

P

n=n+j

P(Y = n) · µ̃(n).

Analogously, we can show that

∑

P

n+
P

n
′=ñ+k

P(Y = n, Y ′ = n
′) · µ̃(n′) =

k
∑

j=0

qk−jpjm
′

j .

This concludes the proof of the theorem.

The theorem allows us to “fold” mean peak masses of two distributions to
compute the mean peak masses of their sum. This implies that we can compute
mean peak masses as efficiently as the distribution itself, confer the previous
section.

11 Integer decompositions

Determining the sum formula of a molecule from its mass M amounts to writing
M as a non-negative integer linear combination of the masses of the individual
atoms, or finding a decomposition of M over these masses.

Let for a moment both the masses {a1, . . . , aσ} of the alphabet Σ and the
query mass m be positive integers. We are looking for a non-negative integer
vector (c1, . . . , cn) such that

∑

i ciai = m. This is a well-studied problem,
referred to in its different variants as Coin Change Problem, Change Making
Problem, or Money Changing Problem, and can be solved with a simple dynamic
programming algorithm in pseudo-polynomial time [14]. Recently, two of the
authors presented a novel algorithm for determining all such decompositions [4],
with runtime O(a1σγ(m)) and space O(a1σ), where σ is the size of the alphabet,
a1 is the smallest mass and γ(m) the number of decompositions of m.

We briefly sketch the algorithm. Given an integer alphabet a1 ≤ . . . ≤ aσ

relatively prime, a data structure of size σa1, referred to as Extended Residue
Table (ER table), is computed in a preprocessing step. Entry ER(r, i), for r =
0, . . . , a1 − 1 and i = 1, . . . , σ, is the smallest number congruent r modulo a1

which is decomposable over the alphabet {a1, . . . , ai}. Thus, the last column
ER(·, σ) of the table gives, for each residue r, the smallest number congruent r
modulo a1 that is decomposable over the given alphabet. Computation time is
O(σa1), using a modification of the Round Robin Algorithm introduced in [5].
All decompositions of the query m are then recursively generated, limiting the
number of unsuccessful paths by using information from the ER table. As a
result, the runtime of the algorithm is proportional only to the size of the table
σa1 and the number of decompositions γ(m), and does not depend directly on
the input m itself.

For decomposing molecule masses, this decomposition technique has several
advantages over classical dynamic programming, such as improved runtimes
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and favorable preprocessing. However, the main advantage of this method is
the strongly reduced memory requirement that drops by a factor of about one
thousand.

In order to be able to employ the algorithm, the masses need to be scaled
to integers, using some precision δ. Moreover, when interpreting a mass M from
the input, measurement errors have to be accounted for, thus we have to search
for decompositions in the interval [M, M + ε] for some ε depending on the mass
spectrometer. To avoid rounding error accumulation, δ is usually set one to two
orders of magnitude smaller than ε. Further non-trivial rounding error problems
need to be carefully considered and eliminated; details are discussed in Part I,
Section 3.

The number of decompositions γ(m) for an integer mass m over {a1, . . . , aσ}
grows rapidly with increasing m, and asymptotically behaves like a polynomial
of degree σ − 1 (Schur’s Theorem [24]):

γ(m) ∼ 1

(σ − 1)! a1 · · · aσ
mσ−1. (12)

For our alphabet CHNOPS this implies that the number of molecules with
real mass in the interval [M, M + ε] asymptotically behaves like 3.10657 · 10−9 ·
ε M5. Note that this is a rather crude approximation of the true number of
decompositions as convergence is slow. A closer approximation is given in [2], of
which the first few terms are:

1

a1 · · ·aσ





mσ−1

(σ − 1)!
+

mσ−2

2(σ − 2)!

σ
∑

i=1

ai +
mσ−3

4(σ − 3)!
(
1

3

σ
∑

i=1

a2
i +

∑

i<j

aiaj)



 .

(13)

In Figure 2, we plot the number of decompositions for masses of up to 2000
Da over the alphabet CHNOPS, and show that Equation (13) gives a very good
approximation of γ(m):

We have computed the number of decompositions of a monoisotopic mass
over the weighted alphabet CHNOPS using a classic dynamic programming
approach described in [4]. Masses were rounded to integers with a precision
of δ = 10−6 Da. Then, for every interval of width 0.001Da we computed the
number of decompositions in this interval. The resulting numbers vary due to the
combinatorial structure of the problem, see the inlay in Fig. 2. For visualization,
we then computed the minimal and maximal number of decompositions for every
interval of width 1Da, the resulting functions can be found in Fig. 2. We also
plot the two approximations from Section 11, Equations (12) and (13). Unlike
the alphabet of amino acids [4, Fig. 8] the number of decompositions over the
CHNOPS alphabet does not vary strongly, that is, similar masses also have
similar numbers of decompositions. This is due to the presence of hydrogen with
mass one order of magnitude smaller than all other masses.
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Fig. 2. Number of decompositions over the weighted alphabet CHNOPS. Interval width
0.001 Da, minima and maxima taken in intervals of width 1Da. The true number γ(m)
of decompositions in comparison with the asymptotic formula given in Eq. (12) (Schur)
and the approximation of Eq. (13) (approx). As is shown in the inlay, γ(m) varies with
a periodic function of period approx. 1 Da.

12 Additive invariants

The mass of the monoisotopic peak is an additive invariant of the decompositions
we are searching for: Given any solution, the sum of monoisotopic masses of
all elements is the input mass M0. In this section, we present other additive
invariants for molecules resulting from the observed isotopic distribution. For
the following, we define a weighted alphabet (Σ, µ) as an alphabet Σ together
with a mass function µ : Σ → N. For simplicity, we often write {µ(si) | s ∈ Σ} for
(Σ, µ). For the alphabet CHNOPS, we have already defined one mass function:
µ(E) denotes the monoisotopic mass of element E. We will now define other
mass functions for the same alphabet.

In the rest of this section, we consider a theoretical molecule where iE
denotes the multiplicity of element E in the molecule, E ∈ Σ. Recall that we
can decompose integers only, so we assume in the following that all masses are
rounded using appropriate precisions. We also ignore measurement inaccuracies
and refer the reader to Part I for a detailed discussion of how to deal with these
problems.

12.1 Average mass of the molecule

Given the observed normalized intensities f0, . . . , fK and peak masses
M0, . . . , MK , we easily estimate the average mass of the molecule as Mav :=
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∑

i fiMi. This will underestimate the average mass of the molecule, but this
error is superseded by measurement errors. The average mass of an element E
can be estimated by E(XE). Let µ1 denote the corresponding weight function;
we decompose the number Mav over these weights.

12.2 Intensity of the monoisotopic peak

For every element E, let pE denote the probability that an isotope of this element
is monoisotopic. What is the intensity of the monoisotopic peak of our molecule?
Clearly, this is the probability that the molecule has monoisotopic mass, which
implies that all atoms must have monoisotopic mass:

p∗ := P(molecule has monoisotopic mass) =
∏

E∈Σ

p iE

E (14)

Recall that f0 ∈ [0, 1] denotes the observed normalized intensity of the
monoisotopic peak, so the measurement f0 should agree with p∗; taking the
logarithm we find

∑

E∈Σ

iE · log pE = log f0. (15)

Defining a third set of weights for our alphabet, µ2(E) := − log pE for every
element E, we can decompose the number − log f0 over these weights. Note that
by definition, µ2(P) = 0 holds for phosphor.

12.3 Relative intensity of the +1 peak

Let qE denote the probability that an isotope of this element has nominal mass
one above the monoisotopic, for every element E. Note that qE = 1 − pE for
E ∈ {C, H, N}, qE < 1 − pE for E ∈ {O, S}, and qP = 0.

What is the probability that exactly one carbon atom is of isotopic type
+1, while all other atoms of our molecule are monoisotopic? One can easily see
that this probability is iC

qC

pC
p∗, see (14) for the definition of p∗. In total, the

probability to find exactly one atom of the molecule of isotopic type +1 and,
hence, the intensity of the +1 peak, is

P(molecule has nominal mass n + 1) =
∑

E∈Σ
iE

qE

pE
p∗. (16)

Recall that f1 ∈ [0, 1] denotes the normalized intensity of the +1 peak, then
comparison to the monoisotopic peak leads to the equality:

∑

E∈Σ

iE · qE

pE
=

f1

f0
(17)

Hence, we can define a fourth set of weights for our alphabet, µ3(E) := qE/pE

for every element E. We can decompose the number f1/f0 over these weights.
Note that again µ3(P) = 0 holds.
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12.4 Mass of the +1 peak

Let Y := Y1 + · · · + Yl be the random variable corresponding to our molecule
with monoisotopic nominal mass n. We calculate the difference between expected
masses of +1 peak and monoisotopic peak, see (9) for the expected mass m1

of the +1 peak. Let δE be the mass difference between the +1 mass and
monoisotopic mass of element E, for example δC = 13.003355− 12 = 1.003355.
For phosphor we define δP := 0. Then,

m1 − m0 =
P(Y = n)

P(Y = n + 1)

∑

E∈Σ

iE
qE

pE
δE , (18)

where P(Y = n) = p∗. Recall that M0, M1 denote the observed masses of the
monoisotopic and +1 peak. The measured mass difference M1−M0 should agree
with m1 − m0, and in view of P(Y = n + 1) = f1 and P(Y = n) = f0, we infer

f1

f0
· (M1 − M0) =

∑

E∈Σ

iE · qE

pE
δE . (19)

Hence, we can define a fifth set of weights for our alphabet, µ4(E) := qE

pE
δE

for every element E. We can decompose the number f1

f0
(M1 − M0) over these

weights. Again, µ4(P) = 0 holds.

13 Joint decompositions

For the current problem, we need to find joint decompositions for two or more
masses m1, . . . , mk where each mass is decomposed over a different weighted
alphabet of the same size. Formally, we state the

Joint Decomposition Problem.

Let {a1,1, . . . , a1,σ}, . . . , {ak,1, . . . , ak,σ} be k weighted alphabets of non-
negative integers. Let m1, . . . , mk ∈ N. Find all joint decompositions c
of m1, . . . , mk, i.e., all c = (c1, . . . , cσ) ∈ N

σ such that Ac = m, where
A = (aij)i=1,...,k,j=1,...,σ and m = (m1, . . . , mk).

The problem is also known as multidimensional integer knapsack problem.
In general, it is NP complete to decide if there exists at least one solution when
the matrix has integer entries [21]. At the other extreme, if we have σ many
equations, then A is a square matrix, and if its rows are linearly independent,
we can compute its inverse A−1. We then only need to check whether c =
A−1m has only non-negative integer entries; if this is the case, then c is a joint
decomposition of m1, . . . , mσ.

Using decomposition techniques of Section 11, a näıve approach to solve the
joint decomposition problem is to generate all decompositions c of m1 and then
test whether

∑

i ciaj,i = mj for all j = 2, . . . , k. However, this involves generating
many decompositions unnecessarily. Another approach is to construct ER tables
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for all alphabets. Then, while running the algorithm on the ER table for alphabet
{a1,1, . . . , a1,σ}, in each step of the recursion, we check whether there is still a
feasible solution for all mj , j = 2, . . . , k, as well. If the answer is negative for one
j, we terminate the current recursion step and continue with the next candidate.
Note that this is a runtime heuristic only, since there may exist decompositions
over each alphabet, but they may contradict each other.

Consider matrix A of dimension (k × σ). By Gaussian elimination, we can
find a lower triangular matrix L ∈ R

k×k of full rank, and an upper triangular
matrix R ∈ N

k×σ such that A = LR. Then, Ac = m if and only if Rc = m′,
where we can compute m′ = L−1m. In particular, c must satisfy the bottom
equation of Rc = m′:

0 · c1 + · · · + 0 · ck−1 + rk,kck + · · · + rk,σxσ = m′

σ, (20)

which has at most σ−k+1 non-zero coefficients. If all coeffiecents of R are non-
negative integers, we have a new instance of the joint decomposition problem,
which we can solve iteratively, beginning with the bottom equation: We build
ER tables for each (new) weighted alphabet, run the decomposition algorithm
on the bottom one, checking in each step of the recursion whether the solution
is feasible over all alphabets. When having computed a decomposition of m′

σ

over alphabet {rk,k, . . . , rk,σ}, we continue with the next equation, which has
one variable more. In view of (12), the number of solutions of Equation (20)
is considerably lower than of any of the original equations, so we improve on
runtime.

However, even though we can guarantee that all entries of R are integers,
some could be negative, yielding infinitely many solutions. In order to avoid
negative entries, one needs to exchange columns, details will be described
elsewhere. We describe the algorithm for two equations below.

We refer to this algorithm as Dimension Reduction (DR) algorithm. In
Section 14, we will see that the DR algorithm yields a significant improvement
over the approach of simulateously decomposing over the individual alphabets.

13.1 DR algorithm for two alphabets

Consider a joint decomposition problem over two weighted alphabets:

a1,1c1 + a1,2c2 + . . . + a1,σcσ = m1

a2,1c1 + a2,2c2 + . . . + a2,σcσ = m2 (21)

Find column j such that
a1,j

a2,j
is minimal, and exchange columns 1 and j,

renaming coefficients. Thus, we have
a1,1

a2,1
≤ a1,i

a2,i
for all i. Now, applying

Gaussian elimination, we can transform matrix A into an upper triangular
matrix, retaining integer entries:

a1,1c1 + a1,2c2 + . . . + a1,σcσ = m1 (22)

0c1 + (a2,1a1,2 − a1,1a2,2)c2 + . . . + (a2,1a1,σ − a1,1a2,σ)cσ = a2,1m1 − a1,2m2
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We have: a2,1a1,i − a1,1a2,i ≥ 0 ⇐⇒ a2,1a1,i ≥ a1,1a2,i ⇐⇒ a1,i

a2,i
≥ a1,1

a2,1
. We

now construct ER tables for alphabet {a1,1, . . . , a1,σ} and for the new weighted
alphabet {a2,1a1,i − a1,1a2,i | i = 2, . . . , σ}. We then decompose a2,1m1 − a1,2m2

over this alphabet, checking in each step of the recursion in the first ER table
whether the current solution is still feasible.

14 Computational results
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Fig. 3. Runtimes of decomposition algorithms in comparison (logarithmic scale):
decomposing the monoisotopic mass with no additional information (dots), simul-
taneously decomposing the monoisotopic and average masses (crosses), and the
DR-algorithm on monoisotopic and average masses (circles). Input data extracted from
the KEGG LIGAND database.

As a first evaluation of our algorithms for decomposing metabolite isotope
patterns, we decomposed molecular masses over the CHNOPS alphabet, using
data from the KEGG LIGAND database [9]: We extracted 10 300 sum formulas
over the alphabet CHNOPS, which reduced to 5 627 non-redundant sum
formulas. We computed the monoisotopic and average masses and used these
as input for our algorithms, using precision δ = 10−4 Da. Runtimes on a Sun
Fire 880 with 900-MHz UltraSPARC-III-CPU, 32 GB RAM, are shown in
Fig. 3: (i) computing all decompositions of the monoisotopic mass, (ii) doing
the same respecting decompositions of the average mass of the molecule, and
(iii) using the DR algorithm on the monoisotopic and average masses. Runtimes
for δ = 10−3 Da are similar (data not shown).
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Our experiments show that using dimension reduction as is done by the DR
algorithm is greatly superior to using additive invariants directly. It should be
noted, though, that these simulations are a proof of concept only, since for real
applications, measurement errors need to be taken into account. This is dealt
with in Part I, along with the ranking of solutions. It is realistic to expect that
results will carry over straighforwardly, since the runtimes of all algorithms are
effected in the same way.

15 Conclusion of Part II

We have studied the problem of decomposing isotope patterns, that is, computing
the sum formula of an unknown molecule solely from its isotope pattern. In
this context, we have presented methods for the efficient simulation of isotope
patterns, as well as an approach to significantly reduce the search space of
molecule candidates. We have shown that our algorithm for joint decompositions
performs well on real data using the monoisotopic and the average mass of the
molecule. In the future, we want to extend this approach by including the other
additive invariants introduced in this paper, and by incorporating methods for
respecting measurement errors (see Part I). Furthermore, we will test our method
on validated isotope patterns of known metabolites.
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