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Report 2008-04



Impressum: Herausgeber:
Ellen Baake, Mario Botsch, Robert Giegerich, Ralf Hofestädt,
Franz Kummert, Peter Ladkin, Ralf Möller, Tim Nattkemper,
Helge Ritter, Gerhard Sagerer, Jens Stoye, Ipke Wachsmuth

Technische Fakultät der Universität Bielefeld,
Abteilung Informationstechnik, Postfach 10 01 31,
33501 Bielefeld, Germany

ISSN 0946-7831



On Parsimony Haplotyping∗

FERDINANDO CICALESE AND MARTIN M ILANI Č
AG Genominformatik, Faculty of Technology, Bielefeld University, Germany

{nando,mmilanic}@cebitec.uni-bielefeld.de

We present some structural and algorithmic results relatedto the parsimony haplotyping problem.

1 Preliminaries

A haplotypeis a 0-1 vectorh ∈ {0, 1}n. A genotypeis a vectorg ∈ {0, 1, 2}n. We say that a haplotypeh
is consistent witha genotypeg (or equivalently, thatg is consistent withh) if h(i) = g(i) wheneverg(i) ∈
{0, 1}. We say that two haplotypesh1 andh2 resolve(or parse) a genotypeg if, for every i ∈ {1, . . . , n},

we haveg(i) =

{

h1(i), if h1(i) = h2(i);
2, otherwise.

We denote this relation byg = h1 ⊕ h2.

Fact 1. For any given pair of haplotypesh1, h2 in {0, 1}n, there is a unique genotype resolved byh1 and
h2. For every genotypeg and for every haplotypeh consistent withg, there is a unique haplotypeh′ such
thatg = h⊕ h′. Such a haplotypeh′ is called the complement ofh w.r.t. g. If g = h1 ⊕ h2 then bothh1 and
h2 are consistent withg.

A genotype matrixG is a matrix whose rows are genotypes, that is, a matrix in{0, 1, 2}m×n. Similarly
is defined ahaplotype matrixH. With a slight abuse of terminology, we shall identify everygenotype matrix
with the set of genotypes defining it. We say that a set of haplotypesH resolvesa set of genotypesG if, for
every genotypeg ∈ G, there existh1, h2 ∈ H such thatg = h1 ⊕ h2.

The PARSIMONY HAPLOTYPING problem is the following: Given a set of genotypesG, find a setH of
haplotypes that resolvesG and is of minimum cardinality.

This problem is known to be NP-hard in general, however, to the best of our knowledge, its complexity
is still undetermined for the case of(∗, 2)-bounded instances. A genotype matrixG is (k, l)-bounded, if it
has at mostk 2s per row and at mostl 2s per column. It is(k, ∗)-bounded, if it has at mostk 2s per row, and
(∗, l)-bounded, if it has at mostl 2s per column.

Two genotypes are said to becompatibleif there exists a haplotype that is consistent with both. Thus, two
genotypes are compatible if and only if there is no position at which one genotype takes value 0 and the other
1. Given a set of genotypesG ∈ {0, 1, 2}m×n, its compatibility graphis the graphG = (V (G), E(G))
whereV (G) = {g : g ∈ G} andE(G) = {{g, g′} : g andg′ are compatible}.

∗This work was supported by the Sofja Kovalevskaja Award 2004of the Alexander von Humboldt Foundation and the Bun-
desministerium für Bildung und Forschung.
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We will say that a graphG is a(∗, 2)-bounded compatibility graphif it is isomorphic to the compatibility
graph of some(∗, 2)-bounded set of genotypes.

2 Structure of (∗, 2)-bounded compatibility graphs

In this section, we study the structure and properties of(∗, 2)-bounded compatibility graphs.

Let a, b be two vertices in a graphG. Following the terminology of Diestel [1], we say that twoa-b paths
areindependentif a andb are their only common vertices.

Lemma 1. A graphG is a(∗, 2)-bounded compatibility graph if and only if for every pair{x, y} of (distinct)
non-adjacent vertices inG, there are at most two independentx-y paths.

Proof. Let G be a(∗, 2)-bounded genotype matrix, and letG be its compatibility graph. Suppose that there
is a pairg, g′ of non-adjacent vertices inG with three independentg-g′ pathsP1, P2, P3. Sinceg, g′ are
non-adjacent vertices inG, they are incompatible as genotypes, so there is a positionj such that (up to
symmetry)g(j) = 0 andg′(j) = 1. It follows that each of the pathsPi must contain an internal vertexgi

such thatgi(j) = 2. (Otherwise, there would be two consecutive verticesgr, gr+1 onP such thatgr(j) = 0
andgr+1(j) = 1, which would contradict the fact that they are adjacent.) Since the paths are independent,
the genotypesg1, g2, g3 are all distinct. The fact that all of them have a 2 at positionj contradicts the
assumption that the instance was(∗, 2)-bounded.

For the converse direction, suppose thatG is a graph such that for every pair{x, y} of distinct non-
adjacent vertices inG, there are at most two independentx-y paths. We shall construct a(∗, 2)-bounded
genotype matrixG such thatG is the compatibility graph ofG.

If G is a complete graph, thenG is the|V (G)| × |V (G)| matrix given by

Gi,j =

{

2, if i = j;
0, otherwise.

.

Clearly,G satisfies the desired properties.

In the rest of the proof, we assume thatG is not complete. We start with an empty matrix. For each pair
{x, y} of (distinct) non-adjacent vertices inG, we construct a columnCxy whose rows are indexed by the
vertices ofG, and addCxy to G.

We constructCxy as follows. Since inG there are at most two independentx-y paths, Menger’s theorem
(see e.g. [1]) implies that there is a setS ⊆ V (G) with |S| ≤ 2 that separatesx from y. Let Cx be the
connected component ofG − S containingx. Then, for each vertexv ∈ V (G), we let

Cxy(v) =







2, if v ∈ S;
0, if v ∈ Cx;
1, otherwise.

It follows by construction thatG has at most two 2’s per column. LetG′ be the compatibility graph of
G such thatV (G′) = V (G). We need to show thatG = G′. Suppose thatx andy are adjacent inG. Then,
to see thatx andy are also adjacent inG′, it is enough to observe that there is no columnj of G such that
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{Gxj ,Gyj} = {0, 1}. Conversely, ifx andy are non-adjacent inG, thenx andy are also non-adjacent in
G′, since they will disagree in the columnCxy. The proof is complete.

Remark 1. The statement and the above proof of Lemma 1 generalize naturally to (∗, k)-bounded compat-
ibility graphs. For everyk ≥ 1, a graphG is a (∗, k)-bounded compatibility graph if and only if for every
pair {x, y} of (distinct) non-adjacent vertices inG, there are at mostk independentx-y paths.

Corollary 1. Every graph of maximum degreek is a (∗, k)-bounded compatibility graph.

For a pair{a, b} of (distinct) non-adjacent vertices inG, we will refer to an({a, b}-)thetaas the union
of three independenta-b paths. Therefore, Lemma 1 implies that no(∗, 2)-bounded compatibility graph
contains a theta.

We denote byω(G) the size of a maximum clique in a graphG, and bytw(G) its tree-width. In the
following lemma, we show that the tree-width of(∗, 2)-bounded compatibility graphs can only be large due
to the presence of a large clique.

Lemma 2. For everyk there is anN such that the tree-width of every(∗, 2)-bounded compatibility graph
G with ω(G) ≤ k is at mostN .

Proof. (Sketch.)For k ≥ 1, let Gk denote the set of all(∗, 2)-bounded compatibility graphsG such that
ω(G) ≤ k. By a result of Robertson and Seymour [2], graphs of large tree-width must contain a large grid
as a minor. Therefore, to show that the tree-width of graphs in Gk is uniformly bounded, it is enough to
show that there is an integerf(k) such that no graph fromGk contains anf(k) × f(k) grid as a minor.

We will show thatG ∈ Gk cannot contain a3 × (k + 1) grid as a minor. Suppose, by contradiction, that
there is a graphG ∈ Gk containing a3 × (k + 1) grid H = (V (H), E(H)) as a minor. Then, there exists a
collectionC = {Vx : x ∈ V (H)} of pairwise disjoint subsets ofV (G) each of which induces a connected
graph, and such that there is an edge from a vertex inVx to a vertex inVy whenever{x, y} ∈ E(H).

Let C′ ⊆ C denote the subset ofC consisting of the2k + 1 setsVx corresponding to the middle row
of the grid. We enumerate the members ofC′ asVx1

, . . . , Vxk+1
, and for eachi ∈ {1, . . . , k + 1}, fix a

vertexvi ∈ Vxi
such thatG contains three pathsPx, Py, Pz connectingvi to Vx, Vy, Vz respectively where

x, y, z are three distinct neighbors ofxi in H, such thatvi is the only common vertex of any two of the
pathsPx, Py, Pz. Sinceω(G) ≤ k, the setC = {v1, . . . , vk+1} ⊆ V (G) is not a clique. Thus, there exist
two non-adjacent verticesvi, vj in C. Using the defining property of the verticesvi andvj and the structure
of the grid, it is now possible to find to a{vi, vj}-theta inG. We leave to the reader the straightforward
verification of this claim.

By Lemma 1, the presence of a theta contradicts the fact thatG is a(∗, 2)-bounded compatibility graph.
The proof is complete.

Remark 2. The analogue of Lemma 2 does not hold for(∗, 3)-bounded compatibility graphs. (There exist
triangle-free graphs of maximum degree 3 and of arbitrarilylarge tree-width.)

In the following lemma, we prove another property of these graphs. Asimplicial vertexin a graphG is
a vertex ofG whose neighborhood induces a complete graph. An edgee ∈ E(G) is adegree-2 edgeif both
of its endpoints have degree two inG.

Lemma 3. Every(∗, 2)-bounded compatibility graph contains either a simplicialvertex or a degree-2 edge.
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Proof. We say that a(∗, 2)-bounded compatibility graphG is badif it has no simplicial vertices and degree-
2 edges. Suppose that there exists a bad graph. Letn ≥ 1 be the smallest number of vertices that a bad
graph can have. Among all bad graphs onn vertices, letG be one with the maximum number of edges.

Then:

• G is connected.

This is clear since every connected component of a bad graph is bad.

• G has no vertices of degree at most 2.

Clearly,G cannot have a vertex of degree 0 or 1 since such a vertex would be simplicial.

Suppose thatx ∈ V (G) is a vertex of degree 2, and leta, b denote the two neighbors ofx. Then,
the verticesa andb are not adjacent (otherwisex would be simplicial). Moreover, sinceG has no
degree-2 edges, we haved(a) ≥ 3, d(b) ≥ 3.

We claim thatx is the unique vertex inG that is adjacent only toa andb. Indeed, there is ay 6= x

with N(y) = {a, b}, then it is easy to verify that the graphG′ obtained fromG by adding to it the
edge{x, y}, is a bad graph onn vertices and with more edges thanG, contradicting the choice ofG.

(Clearly,G′ cannot have a degree-2 edge. Suppose thatv is a simplicial vertex inG′. Thenv must
be adjacent to bothx andy, so we may assume without loss of generality thatv = a. However, the
degree ofa is at least 3, so there is a vertexz that is adjacent toa but not tox, contradicting the
assumption thata was simplicial. Therefore,G′ has no simplicial vertices. Finally, suppose thatG′

contains a{u, v}-thetaT . Then, the edge{x, y} must appear in it, which in turn implies that the
verticesa, b, x, y must appear together either as(a, x, y, b) or as(a, y, x, b) on one of theu-v paths
in T . But then, replacing such a sequence of with(a, x, b) yields a{u, v}-theta inG, contrary to the
assumption thatG is a(∗, 2)-bounded compatibility graph.)

Let G′ be the graph obtained fromG by contracting the edge{a, x}. (Formally,V (G′) = V (G)\{x}
andE(G′) = E(G)\{{x, a}, {x, b}}∪{a, b}.) Then, sinceG′ has fewer vertices thanG, it cannot be
bad. There are three possible reasons for this, and we will show that neither of them can occur. First,
note thatG′ cannot contain a{u, v}-theta since replacing in such a theta the edge{a, b} (if it is there)
with the path(a, x, b) would result in a{u, v}-theta inG. Next, we see thatG′ cannot have a degree-2
edge (asd(a) ≥ 3, d(b) ≥ 3, such an edge would have to be disjoint with{a, b} and would thus also
be a degree-2 edge inG). Thus,G′ must have a simplicial vertexv. Then,v must either coincide with
one ofa, b, or be adjacent to botha andb. Suppose thatv = a. (The casev = b is handled similarly.)
Sinced(a) ≥ 3, there exist two distinct verticesu, u′ in N(a)\{b}. However, ifa is simplicial, then
(a, x, b), (a, u, b) and(a, u′, b) are three independent{a, b} paths inG, a contradiction. Thus,v 6= a,
andv must be adjacent to botha andb. It follows from the above observation thatx is the unique
vertex inG that is adjacent only toa andb, thatv must be adjacent to a vertexc different froma and
b. Again, assuming thatv is a simplicial vertex inG′, we conclude that(a, x, b), (a, v, b) and(a, c, b)
are three independent{a, b} paths inG, which is impossible.

• G has no cut vertices.

Suppose, for the sake of contradiction, thatG contains a cut vertexx. Consider a pairC,D of two
distinct connected components ofG − {x}, and letc andd denote two neighbors ofx in C andD

respectively. Then, sincex separates the verticesc andd in G, they cannot be adjacent. LetG′ be the
graph obtained fromG by adding to it the edge{c, d}. Then:
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– G′ has no degree-2 edges (since its minimum degree is at least 3).

– G′ has no simplicial vertices. (Since the degree ofc is at least three, there is a vertex adjacent
to c but not tod, which shows thatc (and similarlyd) cannot be simplicial inG′. Similarly x

cannot be simplicial since otherwise any neighbor ofx other thanc andd would have to adjacent
to bothc andd, contradicting the fact thatx separatesc andd. Any simplicial vertex inG′ other
thanc, d, x would also be simplicial inG.)

– G′ has no thetas. (Otherwise, letT be a{u, v}-theta inG′. Then, sinceT is not a theta inG,
it must use the edge{c, d}, which implies (up to symmetry) thatu ∈ C andv ∈ D. However,
deleting the edge{c, d} as well as the vertexx from T leaves at least oneu-v path inG′ (and
thus inG) avoidingx, contradicting the fact thatx separatesu andv.)

So,G′ is a bad graph onn vertices with more edges thanG, contradicting the choice ofG.

• G has no cutset consisting of two non-adjacent vertices.

Suppose thatC = {a, b} is a cutset inG consisting of two non-adjacent vertices. Then, for every
connected componentK of G − {a, b}, there must exist ana-b pathPK whose internal vertices all
belong toK. (Otherwise, ifK connected to{a, b} only througha (b), thena (b) would be a cut vertex
in G.)

Since each of these components contributes ana-b path whose internal vertices all belong toK, and
sinceG has no{a, b}-theta, we conclude that the graphG− {a, b} consists of at most two connected
components. On the other hand, since{a, b} is a cutset, there must be at least two such components.
Let us refer to these two components asK1 andK2. Let a1 denote a neighbor ofa in K1; vertices
a2, b1, b2 are defined similarly.

Let G′ be the graph, obtained fromG by adding to it the edge{a, b}.

Then:

– G′ has no degree-2 edges (since its minimum degree is at least 3).

– G′ has no simplicial vertices. (Ifa was simplicial inG′, then there would be an edge inG
connectinga1 to a2, which is impossible. Similarly,b cannot be simplicial. Suppose that a
vertexx ∈ K1 is simplicial. Then, sincex is of degree at least 3, there is a vertexy in K1 that
is adjacent tox. But now,(a, x, b), (a, y, b) and ana-b path throughK2 are three independent
{a, b} paths inG, which is impossible.)

– G′ has no thetas. (Otherwise, letT be a{u, v}-theta inG′. Clearly,G′ cannot contain three
independent paths linking a vertex ofK1 to a vertex ofK2 (since{a, b} is a cutset inG′). Up to
symmetry, this implies that{u, v} ∩ K2 = ∅. SinceT is not a theta inG, it must use the edge
{a, b}, and therefore we conclude thatV (T )∩K2 = ∅. However, replacing the edge{a, b} with
ana-b path inG throughK2 results in a{u, v}-theta inG, a contradiction.)

So,G′ is a bad graph onn vertices with more edges thanG, contradicting the choice ofG.

• G is chordal.

Suppose not, and letC be an induced cycle inG of at least four vertices. Consider a vertexx on C

and its two neighborsa andb on the cycle. Then, by the previous observation, the set{a, b} cannot
separatex from the remainder of the cycle. LetP be a shortest path fromx to V (C)\{x, a, b}, and
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let q be the vertex that belongs to bothP andC. Then, using the twox-q paths onC and the path
P , we can construct inG a {x, q}-theta, contradicting the assumption thatG is a (∗, 2)-bounded
compatibility graph.

SinceG is chordal, it must contain a simplicial vertex. This is however a contradiction to the fact thatG is
bad. Thus, there are no bad graphs, and the proof is complete.

3 A polynomial reduction for (∗, 2)-bounded parsimony haplotyping

Lemma 4. Let G be a genotype matrix with at most two 2s per column, and letC be a clique of at least
three vertices in the compatibility graph ofG. Then, there is a unique haplotypeh that is consistent with
every genotype inC.

Proof. Let C be the submatrix ofG defined by the rows inC. Consider thej-th columnC(j) of C. Since
the genotypes inC form a clique, all the entries ofC(j) different from 2 must be the same. Furthermore,
sinceG has at most two 2s per column, the same is true forC. It follows that for every columnC(j) there
is a unique elementh(j) ∈ {0, 1} that appears in that column (besides the possible 2s). This defines the
unique haplotype consistent with all genotypes inC.

Lemma 5. Let G be a genotype matrix with at most two 2s per column. Letg ∈ G be an input genotype,
and letg1, g2 ∈ G be two distinct input genotypes different fromg that are compatible withg. Then, there
is at most one pair{h1, h2} of haplotypes that resolveg such thathi is consistent withgi for i = 1, 2.

Proof. By means of contradiction, suppose thatg can be resolved byh1 andh2, as well as byh′
1 andh′

2,
whereh1, h

′
1 are consistent withg1, andh2, h

′
2 are consistent withg2. Note thath1 6= h′

1 (since otherwise
h2 = h′

2 and we are done). Thus, there is a columnj whereh1 andh′
1 differ. Without loss of generality, we

may assume thath1(j) = 0, h′
1(j) = 1. Sinceh1 andh′

1 are consistent withg1, we conclude thatg1(j) = 2.

Next, we observe thath1 andh′
1 are both consistent withg (since each of them can be used in a resolution

of g). This implies thatg(j) = 2, which in turn impliesh2(j) = 1, h′
2(j) = 0. Therefore, sinceh2 andh′

2

are consistent withg2, we getg2(j) = 2. However, we now haveg1(j) = g2(j) = g(j) = 2 which is a
contradiction to the assumption thatG is a(∗, 2)-bounded instance.

Lemma 6. LetG be the compatibility graph of a(∗, 2)-bounded instanceG ∈ {0, 1, 2}m×n with |V (G)| =
m. Then,G hasO(m) maximal cliques.

Proof. This is a direct consequence of Lemma 3, since every simplicial vertex is contained in only one
maximal clique, and every endpoint of a degree-2 edge is contained in precisely two maximal cliques. By
induction, it follows thatG has at most2m maximal cliques.

Lemma 7. Given a genotype matrixG ∈ {0, 1}m×n with at most two 2s per column, we can compute in
polynomial time a setH′ of O(m3) haplotypes such that there is an optimal solutionH to the parsimony
haplotyping problem onG contained inH′.
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Proof. We give a constructive proof. We start with an empty collection H
′ of haplotypes, and perform four

steps of additions of haplotypes toH′ as follows.

First, we add toH′ all the input genotypes that are haplotypes.

Second, we construct the compatibility graphG and compute all the clique haplotypes. This can be done
in polynomial time: by Lemma 6,G hasO(m) maximal cliques, and they can be generated in polynomial
time e.g. by the algorithm of Tsukiyama et al. [4].

We add toH′ all the clique haplotypeshc and for every such haplotypehc and every input genotypeg
containinghc, we add toH′ the complement ofhc w.r.t. g.

Third, for every input genotypeg ∈ G, we denote byP (g) the set of all pairs{g1, g2} of input genotypes
such that there exists a pair{h1, h2} of haplotypes that resolveg such thathi is consistent withgi for
i = 1, 2. By Lemma 5,{g1, g2} ∈ P (g) implies that there exists a unique pairp(g, g1, g2) = {h1, h2}
of haplotypes that resolveg such thathi is consistent withgi for i = 1, 2. Let H(g) = {h : there exists
{g1, g2} ∈ P (g) such thath ∈ p(g, g1, g2)}. Moreover, letH = ∪g∈GH(g). The setH can be computed
in polynomial time, and|H| = O(m3).

We add toH′ all the haplotypes inH and also, for every such haplotypeh ∈ H and every input genotype
g containingh, we add toH′ the complement ofh w.r.t. g.

Next, for each edgee = {g1, g2} of the compatibility graph, fix one haplotypeh =: h(g1, g2) consistent
with g1 andg2 and setH(e) = {h(g1, g2), h1, h2} whereh1 andh2 are the complements ofh w.r.t. g1 and
g2.

For eache ∈ E(G), add toH′ the haplotypes inH(e).

Finally, for every input genotypeg not resolved with the haplotypes added toH
′ so far, add toH′ a pair

of haplotypes resolvingg.

This completes the description of the construction of the set H′. This set satisfies the following property.

Property 1.For every input genotypeg and every haplotypeh consistent with it, ifh ∈ H
′ thenh′ ∈ H

′

whereh′ is the haplotype that together withh resolvesg.

It remains to show that there is an optimal solution to the parsimony haplotyping problem onG contained
in H

′. To see this, letHopt be an optimal solution to the parsimony haplotyping problemon G such that
|Hopt ∩ H

′| is maximized. Suppose that there is a haplotypeh contained inHopt but not inH
′.

We consider three exhaustive cases.

Case 1.h is consistent with three or more input genotypes.

Then, the set of genotypesh consistent with forms a clique of size at least 3 in the compatibility graph.
Thus,h is a clique haplotype and belongs toH

′ by construction.

Case 2.h is consistent with exactly two input genotypes.

Let g1 andg2 be the two input genotypes consistent withh. Let h1 andh2 denote the complements of
h w.r.t. g1 andg2. By Property 1, neitherh1 nor h2 belong toH′. Therefore, by construction ofH′ and
Lemma 5, neither ofh1 andh2 is consistent with an input genotype. (For example, ifh1 was consistent with
an input genotypeg′ 6= g1, then{h, h1} would belong toP (g1) and thus toH0.)

So we can replace the three haplotypes{h, h1, h2} with the three haplotypes{h(g1, g2), h
′, h′′} where
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h′ andh′′ denote the complements ofh(g1, g2) w.r.t. g1 andg2. This gives a set of haplotypesH′′ resolving
G such that|Hopt ∩H

′′| > |Hopt ∩ H
′|, which contradicts the choice ofHopt.

Case 3.h is consistent with only one input genotype.

Let g ∈ G be the input genotype consistent withh. Let h′ ∈ Hopt be the complement ofh w.r.t. g.
By Property 1,h′ does not belong toH′. Since Cases 1 and 2 are impossible,g is the only input genotype
consistent withh′. So we can replace the two haplotypes{h, h′} with any two haplotypes fromH′ that
resolveg. This gives a set of haplotypesH′′ resolvingG such that|Hopt ∩ H

′′| > |Hopt ∩ H
′|, contrary to

the choice ofHopt.

This completes the proof.

3.1 Parsimony haplotyping is polynomial on(∗, 2)-bounded instances of bounded tree-width

We recall the following theorem from [3].

Theorem 1([3]). There is a polynomial algorithm for parsimony haplotyping on enumerable instances such
that the compatibility graph has bounded tree-width.

In [3], the authors define anenumerable instanceas an input genotype matrix with a polynomial number
of haplotypes that are consistent with any of its genotypes.However, the proof of Theorem 1 remains
valid if we relax this condition and only require that, givenan input genotype matrix, we can compute
in polynomial time a polynomially-sized set of haplotypes that contains an optimal solution. Parsimony
haplotyping remains solvable in polynomial time for such instances whenever the compatibility graph has
bounded tree-width. Together with Lemma 7, this implies thefollowing result.

Theorem 2. PH(∗, 2) is polynomially solvable on graphs of bounded tree-width.

4 Other results

Lemma 8 (Inference paths.). LetG be a genotype matrix with at most two 2s per column, and letg, g′ and
g′′ be three distinct genotypes fromG such that there exist haplotypesh, h′ andh′′ such thatg = h ⊕ h′,
g′ = h′ ⊕ h′′, and h′′ is consistent withg′′. Then, the haplotypeh′ is uniquely determined byg, g′, g′′.
Moreover, the three haplotypesh, h′, h′′ can be computed in timeO(n) wheren is the number of columns
of G.

Proof. Sinceh′ is consistent with bothg andg′, we haveh′(j) = a whenever there is ana ∈ {0, 1} such
thatg(j) = a or g′(j) = a. If g(j) = g′(j) = 2, then, sinceG has at most two 2s per column, we have
g′′(j) = a ∈ {0, 1}. Then, sinceh′′ is consistent withg′′, we must haveh′′(j) = a, which in turn implies
h′(j) = 1 − a (sinceg′(j) = 2). Therefore,h′ is uniquely determined byg, g′, g′′. To see thath, h′, h′′ can
be computed in linear time, observe that the haplotypesh andh′′ are uniquely determined by(h′, g) and
(h′, g′) respectively.

(Lemma 8 also follows directly from Lemma 5.)
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5 Parsimony haplotyping on trees

In this section, we will show that one can solve the parsimonyhaplotyping problem on trees by dynamic
programming. Under certain conditions, this approach leads to polynomial-time solutions.

Let G ∈ {0, 1, 2}m×n be an instance of parsimony haplotyping whose compatibility graphT is a tree.
To avoid trivialities, we assumem ≥ 3. We root the treeT at an arbitrary noder with at least two neighbors.
We shall develop a dynamic programming solution to the problem, which will consist in a single bottom-up
traversal of the tree.

We first introduce several definitions needed to describe thealgorithm. For a nodeg of T , let G(g)
denote the instance of parsimony haplotyping consisting ofthe genotypes inG that belong to the subtree of
T rooted atg. Furthermore, letopt(g) denote the optimal value ofG(g), that is, the minimum number of
haplotypes needed to resolve all the genotypes inG(g). For a nodeg of T different from the root, letC(g)
denote the set of all haplotypes consistent both withg and with its parentP (g), and letD(g) denote the set
of all haplotypes inC(g) that appear in some optimal solution to the parsimony haplotyping problem on
G(g).

Given a setW of haplotypes that are consistent with a genotypeg, we denote byW
(g)

the set of their

complements with respect tog, that is,W
(g)

= {h : ∃h′ ∈ W such thath ⊕ h′ = g}.

The algorithm is based on the following recursive formulas for opt(g) andD(g).

Lemma 9. If g is a leaf of T , then:

opt(g) =

{

1, if g ∈ {0, 1}n;
2, otherwise.

(1)

D(g) = C(g) . (2)

Let g be an internal node ofT , with children{g1, . . . , gk} (wherek ≥ 1). Let W (g) = ∪k
i=1D(gi).

Then:

opt(g) =
k

∑

i=1

opt(gi) +







0, if ∃h, h′ ∈ W (g) such thatg = h ⊕ h′;
2, if W (g) = ∅;
1, otherwise.

(3)

D(g) =











∅, if ∃h, h′ ∈ W (g) such thatg = h ⊕ h′;
C(g), if W (g) = ∅;

C(g) ∩ W (g)
(g)

, otherwise.

(4)

Proof. The equations (1) and (2) are straightforward.

Now, let g be an internal node ofT , with children{g1, . . . , gk}, and letW (g) be defined as in the
lemma. We split the remainder of the proof into three cases, as in the above recursions.

Case 1:∃h, h′ ∈ W (g) such thatg = h ⊕ h′.

First, we show thatopt(g) =
∑k

i=1 opt(gi). Clearly,opt(g) ≥
∑k

i=1 opt(gi), since every set of haplo-
types optimally resolvingG(g) must contain disjoint solutions toG(g1), . . . ,G(gk).
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For the converse inequality, leth, h′ ∈ W (g) such thatg = h⊕h′. Let i1, i2 ∈ [k] such thath ∈ D(gi1),
h′ ∈ D(gi2). Suppose thati1 = i2. Then, every haplotype that is consistent withg is also consistent with
gi1 . In particular, since the children ofg are pairwise inconsistent, this impliesk = 1. Moreover,g must
be the root since otherwise the parent ofg could not be inconsistent withgi1 . However, this contradicts our
choice of the root as a vertex with at least two neighbors.

Thus, i1 6= i2, and combining two sets of haplotypes that optimally resolve G(gi1) andG(gi2) and
containh andh′ respectively with arbitrary optimal solutions toG(gi) for all othergi’s yields a solution to
G(g) of cardinality

∑k
i=1 opt(gi).

Next, we show thatD(g) = ∅. The equalityopt(g) =
∑k

i=1 opt(gi) implies that every set of haplotypes
optimally resolvingG(g) must consist of disjoint solutions toG(g1), . . . ,G(gk). However, everyh ∈ C(g)
is consistent with the parent ofg, and therefore inconsistent with all genotypes fromG(g1), . . . ,G(gk).
Therefore,h cannot belong to any optimal solution to the parsimony haplotyping problem onG(g). Conse-
quently,D(g) = ∅.

Case 2:W (g) = ∅.

First, we show thatopt(g) =
∑k

i=1 opt(gi) + 2.

Suppose thatopt(g) ≤
∑k

i=1 opt(gi) + 1, and letH be a set of haplotypes resolvingG(g) such that
|H| ≤

∑k
i=1 opt(gi) + 1. For i = 1, . . . , k, let Hi be a minimal subset ofH that resolvesG(gi).

Suppose thatH = ∪k
i=1(Hi). Then, there must be two haplotypesh, h′ in ∪k

i=1(Hi) that resolveg. Let
i1, i2 ∈ [k] such thath ∈ Hi1 , h′ ∈ Hi2 . Then, as in Case 1, we conclude thati1 6= i2. Moreover, sinceh
is consistent with bothg andgi1 , h belongs toC(gi1). Similarly, h′ belongs toC(gi2). SinceW (g) = ∅,
we conclude thath cannot belong toD(gi1) andh′ cannot belong toD(gi2). In particular, this implies that
|Hi1| ≥ opt(gi1) + 1 and |Hi2| ≥ opt(gi2) + 1. Therefore,|H| ≥

∑

i=1k |Hi| ≥
∑

i=1k opt(gi) + 2,
contradicting the assumption.

Therefore, there is a haplotypeh such thatH\
(

∪k
i=1(Hi)

)

= {h}. Since the cardinality ofH is at

most
∑k

i=1 opt(gi) + 1 and at least
∑k

i=1 |Hi| + 1, we conclude that each of theHi’s is optimal forG(gi).
Moreover, the fact thatH is optimal forG(g) and the observation thath cannot be used in the resolution of
any genotype fromG(g) other thang imply thath must be used in the resolution ofg. Let h′ ∈ H be the
haplotype that together withh resolvesg, and letj ∈ [k] such thath′ ∈ Hj. SinceHj is optimal forG(gj)
and sinceh′ ∈ C(gj), we conclude thath′ ∈ D(gj). However, this contradicts the assumption of the case.

This shows thatopt(g) ≥
∑k

i=1 opt(gi) + 2. The converse inequality is considerably simpler. Com-
bining setsH1, . . . Hk of haplotypes that optimally resolveG(g1), . . . ,G(gk) together with two additional
haplotypesh, h′ that resolveg yields a solution toG(g) of cardinality

∑k
i=1 opt(gi) + 2. This observation

also implies thatD(g) = C(g), as anyh ∈ C(g) can be used in a resolution ofg.

Case 3: Neither Case 1 nor Case 2.

First, we show thatopt(g) =
∑k

i=1 opt(gi) + 1.

Suppose thatopt(g) ≤
∑k

i=1 opt(gi), and letH be a set of haplotypes resolvingG(g) such that|H| ≤
∑k

i=1 opt(gi). Then, for anyi = 1, . . . , k, the subsetHi of H that resolvesG(gi) must be optimal for
G(gi). Therefore,g must be resolved by a pairh, h′ of haplotypes belonging to∪k

i=1Hi. By the optimality
of theHi’s, we haveh, h′ ∈ W (g), contradicting the fact that we are not in Case 1.
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Therefore,opt(g) ≥
∑k

i=1 opt(gi) + 1. For the converse inequality, leth be an arbitrary haplotype in
W (g), and letj ∈ [k] such thath ∈ D(gj). Combining a set of haplotypes containingh that optimally
resolvesG(gj) with arbitrary optimal solutions toG(gi) for all other gi’s, together with the haplotype
h′ such thath ⊕ h′ = g yields a solution toG(g) of cardinality

∑k
i=1 opt(gi) + 1. This shows that

opt(g) =
∑k

i=1 opt(gi) + 1.

We now showD(g) = C(g) ∩ W (g)
(g)

by proving both containments.

First, leth ∈ D(g). Then,h ∈ C(g), and there is an optimal solutionH to G(g) that containsh. We

only need to show thath ∈ W (g)
(g)

, that is, that the haplotypeh′ satisfyingh ⊕ h′ = g belongs toW (g).
Sinceh belongs toC(g), it cannot be used in the resolution of any genotype fromG(g) other thang; thus,
h must be used in the resolution ofg, thereforeh′ belongs toH. For i ∈ [k], let Hi be a minimal subset of
H that resolvesG(gi). Sinceopt(g) =

∑k
i=1 opt(gi)+1, each of theHi’s is optimal forG(gi). Let j ∈ [k]

be the index of the setHj that containsh′. SinceHj is optimal forG(gj), we conclude thath′ belongs to

D(gj). Thus,h′ belongs toW (g) and this shows thatD(g) ⊆ C(g) ∩ W (g)
(g)

.

To see the converse, leth ∈ C(g)∩W (g)
(g)

. Therefore, the haplotypeh′ such thath⊕h′ = g belongs to
W (g). Let j ∈ [k] be the index of the setD(gj) that containsh′. Combining a set of haplotypes containing
h′ that optimally resolvesG(gj) with arbitrary optimal solutions toG(gi) for all othergi’s, together with
the haplotypeh′ yields an optimal solution toG(g). Therefore,h belongs toD(g).

At each internal nodeg, the algorithm stores an integeropt(g) ∈ {1, . . . ,m}, and a (possibly empty)
matrix D(g) ∈ {0, 1, 2}p(g)×n whosep(g) rows represent the genotypes inD(g). The algorithm traverses
the tree bottom-up, using the recursive relations(1) − (4) from Lemma 9 to compute the values ofopt(g)
andD(g).

The minimum number of haplotypes needed to resolve all the genotypes inG(g) is given byopt(r),
wherer is the root ofT . Also, an optimal set of haplotypes can be constructed by a simple backtracking
procedure, traversing the tree top-down. We omit the details.

Details of the implementation. Analysis of the running time.

The following observation is easily proved by induction on the height ofg.

Claim 1. EachD(g) can be represented by a (possibly empty) set of pairwise incompatible genotypes.

Claim 2. Given genotypesg1, g2, g ∈ {0, 1, 2}n such that every haplotype consistent withg1 or g2 is
consistent withg, we can determine in timeO(n) whether there exist haplotypesh andh′, each consistent
with eitherg1 or g2, such thatg = h ⊕ h′.

Proof. One only needs to verify that there is no columnj such thatg(j) = 2 andg1(j) = g2(j) ∈ {0, 1}.

At each leaf of the tree, the algorithms spendsO(n) time.

Consider an internal nodeg of the tree, with children{g1, . . . , gk}. For eachi ∈ [k], let the matrixD(gi)
be of dimensionspi × n.
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Suppose that allpi’s are zero. ThenW (g) = ∅, and the algorithm setsopt(g) =
∑k

i=1 opt(gi) + 2 and
(unlessg is the root), setsD(g) to be the1 × n matrix given by

D(g)1,j =







0, if at least one ofg(j), g′(j) is 0;
1, if at least one ofg(j), g′(j) is 1;
2, otherwise.

for all j ∈ [n], whereg′ is the parent ofg.

Suppose that not all thepi’s are zero. ThenW (g) 6= ∅. Let M(g) be the matrix of dimensionsp × n

(wherep =
∑k

i=1 pi) whose set of rows is the union of the sets of rows of the matricesD(g1) . . . ,D(gk).
For each of the

(

p
2

)

pairs{g1, g2} of rows ofM(g), the algorithm verifies whether there exist haplotypesh

andh′, each consistent with eitherg1 or g2, such thatg = h⊕h′. Using Claim 2, this can be verified in time
O(mp2).

If there exists such a pair of haplotypesh andh′, the algorithm setsopt(g) =
∑k

i=1 opt(gi) and (unless
g is the root) setsD(g) to be the empty matrix.

Otherwise, the algorithm setsopt(g) =
∑k

i=1 opt(gi) + 1 and (unlessg is the root) computesD(g) as
follows. D(g) is initialized to be the empty matrix. For each rowg′ of M(g), let g′′ be the complement of
g′ with respect tog, that is,

g′′(j) =







0, if either g(j) = 0, or g(j) = 2 andg′(j) = 1;
1, if either g(j) = 1, or g(j) = 2 andg′(j) = 0;
2, otherwise.

We have to verify whetherg′′ is compatible withC(g), and if yes, to compute the set of haplotypes consistent
with both. If there is a columnj such thatC(g)(j) = 0 andg′′(j) = 1 or vice-versa, theng′′ is incompatible
with C(g), and we do nothing. Otherwise, we define a new rowg̃ by

g̃(j) =







0, if at least one ofC(g)(j), g′′(j) is 0;
1, if at least one ofC(g)(j), g′′(j) is 1;
2, otherwise.

(5)

We addg̃ to D(g).

Overall, the amount of time the algorithm spends at nodeg is at mostO(n · p(g)2). Therefore, the total
time complexity of the algorithm isO(n

∑

g∈T (p(g))2).

It is easy to see that ifg is an internal node at heighth, thenp(g) ≤ ∆h, where∆ is the maximum degree
of a node inT . This shows that the time complexity of the algorithm is at most O(n∆2h), whereh is the
height of the rooted treeT . This could result in an exponential worst-case time and space complexity.

5.1 Parsimony haplotyping is polynomial for trees of small diameter

The upper boundO(n∆2h) on the running time of the algorithm shows that the algorithmruns in polynomial

time for trees of diameter at mostO
(

log m
log∆

)

. Also, note that for every nodeg with children{g1, . . . , gk}

such that all but one of thep(gi)’s are zero, we havep(g) ≤ max1≤i≤k p(gi). In particular, this implies that
the possibly exponential growth ofp cannot be due to the nodes with only one children. Thus, we have the
following conclusion.
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Theorem 3. Parsimony haplotyping is solvable in polynomial time on trees of diameterO
(

log m
log∆

)

(where

m and∆ denote the number of nodes and maximum vertex degree respectively), as well as on subdivisions
of such trees.

Corollary 2. Parsimony haplotyping is solvable in timeO(mn) on paths.

5.2 Parsimony haplotyping on(∗, 2)-bounded tree instances: an alternative proof

In view of Theorem 2, parsimony haplotyping is polynomial on(∗, 2)-bounded tree instances. In this sub-
section we provide an alternative and direct proof of this fact, based on Lemma 9. In particular, we will
show that the recursive formulas from Lemma 9 lead to a polynomial time algorithm on arbitrary trees that
arise from(∗, 2)-bounded instances.

Let G be a(∗, 2)-bounded instance of parsimony haplotyping, whose compatibility graph T is a tree.
It is sufficient to show that for all internal nodesg different from the root, the values ofp(g) are bounded
above by a polynomial inm. In fact, we will show that for every internal nodeg different from the root,
p(g) is bounded above by the number of children ofg.

We start with an auxiliary lemma.

Lemma 10. Let g be an internal node ofT different from the root that is of “Type 3” (that is,W (g) 6= ∅

andD(g) = C(g) ∩ W (g)
(g)

). Then, each row ofD(g) is a haplotype.

Proof. Let g̃ be a row ofD(g), and suppose that there is a columnj such that̃g(j) = 2. Then,g̃ is obtained
via (5) fromC(g) andg′′, the complement ofg′ with respect tog, whereg′ is a genotype from (say)D(gi1)
for a childgi1 of g.

Sinceg̃(j) = 2, we have by (5) thatC(g)(j) = g′′(j) = 2. Denoting byP (g) the parent ofg, this implies
thatg(j) = (P (g))(j) = gi1(j) = 2. This is a contradiction to the assumption thatG is a(∗, 2)-bounded
instance.

Lemma 11. Let g be an internal node ofT , different from the root, with children{g1, . . . , gk}. Then,
p(g) ≤ k.

Proof. Let us partition the set of children ofg into two sets, as follows:C1 := {gi : 1 ≤ i ≤ k, p(gi) ≤ 1}
andC2 := {gi : 1 ≤ i ≤ k, p(gi) > 1}.

Consider an arbitrarygi ∈ C2. Clearly, gi is of “Type 3” (that is,W (g) 6= ∅ andD(g) = C(g) ∩

W (g)
(g)

), for otherwisep(gi) would be at most 1. Therefore, by Lemma 10, each row ofD(gi) is a
haplotype.

We now show that there is at most one rowh of D(gi) such that the complement ofh with respect tog
is consistent withC(g). Suppose not, and leth1, h2 be two rows ofD(gi) such that bothh′

1 andh′
2 (where

h1 ⊕ h′
1 = h2 ⊕ h′

2 = g) are consistent withC(g). Let j be a column such thath1(j) 6= h2(j). Then, since
both h1 andh2 are consistent withg, we haveg(j) = 2, and similarly,gi(j) = 2. Next, h1(j) 6= h2(j)
implies thath′

1(j) 6= h′
2(j). Let P (g) denote the parent ofg. Since by assumption bothh′

1 andh2 are
consistent withC(g) (and hence withP (g), we have(P (g))(j) = 2. However, this is impossible sinceG
is a(∗, 2)-bounded instance.
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It follows that eachgi ∈ C2 contributes at most one row toD(g). Therefore,p(g) ≤
∑

gi∈C1
p(gi) +

∑

gi∈C2
1 ≤ |C1| + |C2| = k.

Theorem 4. PH(∗, 2) is polynomially solvable on trees.
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