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On Parsimony Haplotypirig

FERDINANDO CICALESE AND MARTIN MILANIC
AG Genominformatik, Faculty of Technology, Bielefeld Uargity, Germany
{nando, mmi | ani c}@ebi tec. uni - bi el ef el d. de

We present some structural and algorithmic results rekatéue parsimony haplotyping problem.

1 Preliminaries

A haplotypeis a 0-1 vectorh € {0,1}"™. A genotypes a vectorg € {0, 1,2}". We say that a haplotype
is consistent witta genotypey (or equivalently, thay is consistent witth) if k(i) = g(i) whenevery(i) €
{0,1}. We say that two haplotypds; andh, resolve(or parsg a genotypey if, for everyi € {1,...,n},
we havey(i) = { 9 otherwise. We denote this relation by = hy @ hs.

Fact 1. For any given pair of haplotypek, , ho in {0,1}", there is a unique genotype resolved/hyand
hs. For every genotype and for every haplotypé consistent withy, there is a unique haplotyp& such
thatg = h @ h'. Such a haplotypé’ is called the complement afw.r.t. g. If g = hy @ ho then bothh; and

hs are consistent witly.

A genotype matriG is a matrix whose rows are genotypes, that is, a matroir, 2}, Similarly
is defined daplotype matrixH. With a slight abuse of terminology, we shall identify evggnotype matrix
with the set of genotypes defining it. We say that a set of hgpésH resolvesa set of genotype&: if, for
every genotypg € G, there existi, ho € H such thaly = h; @ hs.

The RRSIMONY HAPLOTYPING problem is the following: Given a set of genotyp@s find a sefH of
haplotypes that resolvas and is of minimum cardinality.

This problem is known to be NP-hard in general, however, ¢édabst of our knowledge, its complexity
is still undetermined for the case ©f, 2)-bounded instances. A genotype mat@xis (k,[)-bounded if it
has at most 2s per row and at mo$2s per column. Itigk, «)-boundedif it has at mosk 2s per row, and
(*,1)-boundedif it has at most 2s per column.

Two genotypes are said to bempatibleif there exists a haplotype that is consistent with both. sTihwo
genotypes are compatible if and only if there is no positiomtdch one genotype takes value 0 and the other
1. Given a set of genotypes € {0,1,2}™*", its compatibility graphis the graphG = (V(G), E(G))
whereV (G) ={g : ¢ € G} andE(G) = {{g,¢'} : g andg’ are compatiblé.

*This work was supported by the Sofja Kovalevskaja Award 26Dthe Alexander von Humboldt Foundation and the Bun-
desministerium fur Bildung und Forschung.



We will say that a grapky is a(x, 2)-bounded compatibility grapifiit is isomorphic to the compatibility
graph of soméx, 2)-bounded set of genotypes.

2 Structure of (x, 2)-bounded compatibility graphs

In this section, we study the structure and propertiesdf)-bounded compatibility graphs.

Leta, b be two vertices in a grapfy. Following the terminology of Diestel [1], we say that tweb paths
areindependenif a andb are their only common vertices.

Lemma 1. A graphG is a(x, 2)-bounded compatibility graph if and only if for every pair, y} of (distinct)
non-adjacent vertices i&, there are at most two independenty paths.

Proof. Let G be a(*, 2)-bounded genotype matrix, and (gtbe its compatibility graph. Suppose that there
is a pairg, ¢’ of non-adjacent vertices i& with three independenj-¢’ pathsP;, P, P;. Sinceg, ¢’ are
non-adjacent vertices i@, they are incompatible as genotypes, so there is a posijt&uch that (up to
symmetry)g(j) = 0 andg’(j) = 1. It follows that each of the pathB must contain an internal vertex
such thaty’ () = 2. (Otherwise, there would be two consecutive vertigeg”+! on P such thay” (j) = 0
andg"*1(j) = 1, which would contradict the fact that they are adjacentrjc8ithe paths are independent,
the genotypeg’', ¢2, ¢° are all distinct. The fact that all of them have a 2 at positjocontradicts the
assumption that the instance was2)-bounded.

For the converse direction, suppose thats a graph such that for every pdiz, y} of distinct non-
adjacent vertices id7, there are at most two independent paths. We shall construct (&, 2)-bounded
genotype matridxG such that is the compatibility graph oG.

If G is a complete graph, the@ is the|V (G)| x |V (G)| matrix given by
Gij = { 0, otherwise. -

Clearly, G satisfies the desired properties.

In the rest of the proof, we assume tldats not complete. We start with an empty matrix. For each pair
{z,y} of (distinct) non-adjacent vertices @, we construct a colum&'*¥ whose rows are indexed by the
vertices ofGG, and addC*Y to G.

We construcC*¥ as follows. Since irZ there are at most two independeny paths, Menger’s theorem
(see e.g. [1]) implies that there is a setC V(G) with |S| < 2 that separates from y. Let C, be the
connected component 6f — S containingz. Then, for each vertex € V(G), we let

2, ifves,
C™w) =14 0, ifveCy;

1, otherwise.

It follows by construction thaG has at most two 2's per column. L&Y be the compatibility graph of
G such that/’ (G') = V(G). We need to show tha¥ = G’. Suppose that andy are adjacent irdz. Then,
to see thatr andy are also adjacent i@, it is enough to observe that there is no colujmof G such that



{G.j, Gy} = {0,1}. Conversely, itz andy are non-adjacent it¥, thenz andy are also non-adjacent in
G’, since they will disagree in the colun@*¥. The proof is complete. O

Remark 1. The statement and the above proof of Lemma 1 generalizeatigitto (+, k)-bounded compat-
ibility graphs. For everyk > 1, a graphG is a (x, k)-bounded compatibility graph if and only if for every
pair {z,y} of (distinct) non-adjacent vertices @, there are at most independent-y paths.

Corollary 1. Every graph of maximum degréss a (x, k)-bounded compatibility graph.

For a pair{a, b} of (distinct) non-adjacent vertices @, we will refer to an({a, b}-)thetaas the union
of three independent-b paths. Therefore, Lemma 1 implies that f102)-bounded compatibility graph
contains a theta.

We denote byw(G) the size of a maximum clique in a grapgh and bytw(G) its tree-width. In the
following lemma, we show that the tree-width @f, 2)-bounded compatibility graphs can only be large due
to the presence of a large clique.

Lemma 2. For everyk there is anN such that the tree-width of evefy, 2)-bounded compatibility graph
G withw(G) < kis at mostN.

Proof. (Sketch.)Fork > 1, let G, denote the set of all«, 2)-bounded compatibility graph& such that
w(@) < k. By aresult of Robertson and Seymour [2], graphs of large-tviglth must contain a large grid
as a minor. Therefore, to show that the tree-width of graphgiis uniformly bounded, it is enough to
show that there is an integgf k) such that no graph fro; contains ary (k) x f(k) grid as a minor.

We will show thatG' € Gy, cannot contain 8 x (k + 1) grid as a minor. Suppose, by contradiction, that
there is a grapldé’ € Gy, containing & x (k+ 1) grid H = (V(H), E(H)) as a minor. Then, there exists a
collectionC = {V,, : = € V(H)} of pairwise disjoint subsets df (G) each of which induces a connected
graph, and such that there is an edge from a verté% ito a vertex inV, wheneverz,y} € E(H).

Let C' C C denote the subset @f consisting of the2k + 1 setsV,, corresponding to the middle row
of the grid. We enumerate the membersCofasV,,,...,V;, ., and for eachi € {1,...,k + 1}, fix a
vertexv; € V,, such thai contains three pathB,, P,, P, connectingy; to V., V,,, V respectively where
x,, z are three distinct neighbors of in 4, such thaty; is the only common vertex of any two of the
pathsP,, P,, P.. Sincew(G) < k, the setC' = {v,...,vp4+1} € V(G) is not a clique. Thus, there exist
two non-adjacent vertices, v; in C. Using the defining property of the verticesandv; and the structure
of the grid, it is now possible to find to fv;, v; }-theta inG. We leave to the reader the straightforward

verification of this claim.

By Lemma 1, the presence of a theta contradicts the factzhsia (x, 2)-bounded compatibility graph.
The proof is complete. O

Remark 2. The analogue of Lemma 2 does not hold (fer3)-bounded compatibility graphs. (There exist
triangle-free graphs of maximum degree 3 and of arbitraldlsge tree-width.)

In the following lemma, we prove another property of thesgphs. Asimplicial vertexin a graphG is
a vertex ofG whose neighborhood induces a complete graph. An edgé’(G) is adegree-2 edgé both
of its endpoints have degree twodah

Lemma 3. Every(x, 2)-bounded compatibility graph contains either a simpliciattex or a degree-2 edge.
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Proof. We say that &x, 2)-bounded compatibility grap@¥' is badif it has no simplicial vertices and degree-
2 edges. Suppose that there exists a bad graphn Letl be the smallest number of vertices that a bad
graph can have. Among all bad graphsrovertices, letG' be one with the maximum number of edges.

Then:

e (G is connected.
This is clear since every connected component of a bad gsamdudi.

e (G has no vertices of degree at most 2.
Clearly, G cannot have a vertex of degree 0 or 1 since such a vertex wewdriplicial.

Suppose that € V(G) is a vertex of degree 2, and letb denote the two neighbors af Then,
the verticess andb are not adjacent (otherwisewould be simplicial). Moreover, sincé€ has no
degree-2 edges, we haié:) > 3, d(b) > 3.

We claim thatx is the unique vertex it that is adjacent only te andb. Indeed, there is @ # =
with N(y) = {a,b}, then it is easy to verify that the gragl obtained fromG by adding to it the
edge{z, y}, is a bad graph on vertices and with more edges thaf contradicting the choice af.

(Clearly, G’ cannot have a degree-2 edge. Supposeuthgt simplicial vertex inG’. Thenv must
be adjacent to botlr andy, so we may assume without loss of generality that a. However, the
degree ofa is at least 3, so there is a vertexthat is adjacent ta but not tox, contradicting the
assumption that was simplicial. Thereforei’ has no simplicial vertices. Finally, suppose thét
contains a{u,v}-thetaT. Then, the edgdx,y} must appear in it, which in turn implies that the
verticesa, b, x, y must appear together either @s x,y, ) or as(a, y, z,b) on one of theu-v paths
in 7. But then, replacing such a sequence of Withz, b) yields a{u, v}-theta inG, contrary to the
assumption that is a(x, 2)-bounded compatibility graph.)

Let G’ be the graph obtained frofi by contracting the edggu, «}. (Formally,V(G') = V(G)\{z}
andE(G') = E(G)\{{z,a},{z,b}} U{a,b}.) Then, sinces’ has fewer vertices thaf, it cannot be
bad. There are three possible reasons for this, and we wilV shat neither of them can occur. First,
note that’ cannot contain du, v }-theta since replacing in such a theta the efigé} (if it is there)
with the path(a, , b) would result in alu, v}-theta inG. Next, we see that’ cannot have a degree-2
edge (asi(a) > 3, d(b) > 3, such an edge would have to be disjoint with b} and would thus also
be a degree-2 edge (#). Thus,G’ must have a simplicial vertex Then,v must either coincide with
one ofa, b, or be adjacent to botthandb. Suppose that = a. (The caser = b is handled similarly.)
Sinced(a) > 3, there exist two distinct vertices v’ in N(a)\{b}. However, ifa is simplicial, then
(a,z,b), (a,u,b) and(a, v’, b) are three independefit, b} paths inG, a contradiction. Thus; # a,
andwv must be adjacent to bothandb. It follows from the above observation thatis the unique
vertex inG that is adjacent only te andb, thatv must be adjacent to a vertexifferent froma and

b. Again, assuming thatis a simplicial vertex inG’, we conclude thata, ,b), (a,v,b) and(a, ¢, b)
are three independefit, b} paths inGG, which is impossible.

e (G has no cut vertices.

Suppose, for the sake of contradiction, thatontains a cut vertex. Consider a pait’, D of two
distinct connected components Gf— {z}, and letc andd denote two neighbors af in C and D
respectively. Then, sinceseparates the verticeandd in GG, they cannot be adjacent. L&t be the
graph obtained frond by adding to it the edgéc, d}. Then:
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— G’ has no degree-2 edges (since its minimum degree is at least 3)

— G’ has no simplicial vertices. (Since the degree & at least three, there is a vertex adjacent
to ¢ but not tod, which shows that (and similarlyd) cannot be simplicial irG’. Similarly x
cannot be simplicial since otherwise any neighbar other than- andd would have to adjacent
to bothc andd, contradicting the fact that separates andd. Any simplicial vertex inG’ other
thanc, d, x would also be simplicial ir7.)

— G’ has no thetas. (Otherwise, [Etbe a{u,v}-theta inG’. Then, sincel” is not a theta in7,
it must use the edgér, d}, which implies (up to symmetry) that € C andv € D. However,
deleting the edgéc, d} as well as the vertex from T leaves at least one-v path inG’ (and
thus inG) avoidingz, contradicting the fact that separates andv.)

So,G’ is a bad graph on vertices with more edges tha# contradicting the choice af.

G has no cutset consisting of two non-adjacent vertices.

Suppose that’ = {a, b} is a cutset inG consisting of two non-adjacent vertices. Then, for every
connected componett of G — {a,b}, there must exist an-b path Px whose internal vertices all
belong toK. (Otherwise, ifK” connected tda, b} only througha (b), thena (b) would be a cut vertex

in G.)

Since each of these components contributes-ampath whose internal vertices all belongAg and
sinceG has nofa, b}-theta, we conclude that the graph— {a, b} consists of at most two connected
components. On the other hand, siqeeb} is a cutset, there must be at least two such components.
Let us refer to these two components/as and K>. Let a; denote a neighbor af in K7; vertices

as, b1, by are defined similarly.

Let G’ be the graph, obtained frotd by adding to it the edgéa, b}.
Then:

— G’ has no degree-2 edges (since its minimum degree is at least 3)

— G’ has no simplicial vertices. (I was simplicial inG’, then there would be an edge
connectinga; to as, which is impossible. Similarlyh cannot be simplicial. Suppose that a
vertexz € K7 is simplicial. Then, since: is of degree at least 3, there is a veriek K that
is adjacent tac. But now, (a, z,b), (a,y,b) and ana-b path throughks are three independent
{a,b} paths inG, which is impossible.)

— G’ has no thetas. (Otherwise, [Etbe a{u,v}-theta inG’. Clearly, G’ cannot contain three
independent paths linking a vertex &f to a vertex ofK; (since{a, b} is a cutset inG'). Up to
symmetry, this implies thafu,v} N Ky = ). SinceT is not a theta in7, it must use the edge
{a,b}, and therefore we conclude tHa{7") N K, = (). However, replacing the edde, b} with
ana-b path inG through K results in &{u, v}-theta inG, a contradiction.)

So,G’ is a bad graph on vertices with more edges tha# contradicting the choice af.

G is chordal.

Suppose not, and I€t be an induced cycle 6/ of at least four vertices. Consider a vertexn C'
and its two neighbors andb on the cycle. Then, by the previous observation, the ggi} cannot
separater from the remainder of the cycle. Lét be a shortest path fromto V(C)\{x,a, b}, and
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let ¢ be the vertex that belongs to bathandC. Then, using the twa:-q paths onC' and the path
P, we can construct i a {x,¢}-theta, contradicting the assumption tlfatis a (x, 2)-bounded
compatibility graph.

Since( is chordal, it must contain a simplicial vertex. This is heaea contradiction to the fact théat is
bad. Thus, there are no bad graphs, and the proof is complete. O

3 A polynomial reduction for (x,2)-bounded parsimony haplotyping

Lemma 4. Let G be a genotype matrix with at most two 2s per column, and’lee a clique of at least
three vertices in the compatibility graph 6f. Then, there is a unique haplotypethat is consistent with
every genotype if'.

Proof. Let C be the submatrix o6z defined by the rows id'. Consider thg-th columnC(j) of C. Since
the genotypes i’ form a clique, all the entries () different from 2 must be the same. Furthermore,
sinceG has at most two 2s per column, the same is truefott follows that for every columrC(;) there

is a unique elementi(j) € {0,1} that appears in that column (besides the possible 2s). Hfiised the
unigue haplotype consistent with all genotypeg€’in O

Lemma 5. Let G be a genotype matrix with at most two 2s per column.¢LetG be an input genotype,
and letgy, go € G be two distinct input genotypes different frgnthat are compatible witly. Then, there
is at most one paifhy, ho} of haplotypes that resolugsuch thath; is consistent witly; for i = 1, 2.

Proof. By means of contradiction, suppose tgatan be resolved b, andhs, as well as by} andhl,
whereh, b/ are consistent witly;, andhs, k), are consistent witly,. Note thath; # R (since otherwise
ho = h}, and we are done). Thus, there is a coluinmhereh; andh differ. Without loss of generality, we
may assume that; (j) = 0, k| (j) = 1. Sinceh; andh/ are consistent witp;, we conclude thag; (j) = 2.

Next, we observe thdt; andh’ are both consistent with(since each of them can be used in a resolution
of g). This implies thay(j) = 2, which in turn implieshs(j) = 1, R4 (j) = 0. Therefore, sincé, andh)
are consistent witlye, we getgs(j) = 2. However, we now have; (j) = g2(j) = ¢(j) = 2 which is a
contradiction to the assumption th@tis a(x, 2)-bounded instance. O

Lemma 6. LetG be the compatibility graph of g, 2)-bounded instanc& € {0, 1,2}"*" with |V (G)| =
m. Then,G hasO(m) maximal cliques.

Proof. This is a direct consequence of Lemma 3, since every simph@rtex is contained in only one
maximal clique, and every endpoint of a degree-2 edge isagwed in precisely two maximal cliques. By
induction, it follows thatG has at mos2m maximal cliques. O

Lemma 7. Given a genotype matrige € {0, 1}™*™ with at most two 2s per column, we can compute in
polynomial time a seH’ of O(m?) haplotypes such that there is an optimal solutidrto the parsimony
haplotyping problem o/ contained inH'.



Proof. We give a constructive proof. We start with an empty coltet#l’ of haplotypes, and perform four
steps of additions of haplotypes ¥ as follows.

First, we add td’ all the input genotypes that are haplotypes.

Second, we construct the compatibility gra@gtand compute all the clique haplotypes. This can be done
in polynomial time: by Lemma 6 hasO(m) maximal cliques, and they can be generated in polynomial
time e.g. by the algorithm of Tsukiyama et al. [4].

We add toH’ all the clique haplotypes. and for every such haplotype. and every input genotype
containingh,., we add taH’ the complement of. w.r.t. g.

Third, for every input genotype € G, we denote byP(g) the set of all pairgg;, g2 } of input genotypes
such that there exists a pdihi, ho} of haplotypes that resolve such thath; is consistent withy; for
i = 1,2. By Lemma 5,{g1,92} € P(g) implies that there exists a unique paily, g1,92) = {h1,ha}
of haplotypes that resolvg such thath; is consistent withy; for i = 1,2. Let H(g) = {h :there exists
{91,92} € P(g) such thath € p(g, g1,92)}. Moreover, letH = UycgH (g). The setd can be computed
in polynomial time, andH | = O(m3).

We add toH’ all the haplotypes i and also, for every such haplotypes H and every input genotype
g containingh, we add toH’ the complement ok w.r.t. g.

Next, for each edge = {g;, g2} of the compatibility graph, fix one haplotyge=: h(g1, g2) consistent
with g; andge and sett (e) = {h(g1,92), h1, ho} whereh; andh, are the complements éfw.r.t. g; and

g2-
For eache € E(G), add toH' the haplotypes it (¢).

Finally, for every input genotype not resolved with the haplotypes addedi6so far, add td’ a pair
of haplotypes resolving.

This completes the description of the construction of thé&Ee This set satisfies the following property.

Property 1.For every input genotype and every haplotypé consistent with it, ifh € H thenh’ ¢ H’
wherel’ is the haplotype that together withresolves;.

It remains to show that there is an optimal solution to theipaony haplotyping problem o@& contained
in H'. To see this, leH,,; be an optimal solution to the parsimony haplotyping probtemG such that
|H,,: N H'| is maximized. Suppose that there is a haplotymentained inH,,; but not inH'.

We consider three exhaustive cases.
Case 1.h is consistent with three or more input genotypes.

Then, the set of genotypésconsistent with forms a clique of size at least 3 in the coibpidy graph.
Thus,h is a clique haplotype and belongskH by construction.

Case 2.h is consistent with exactly two input genotypes.

Let g; and g, be the two input genotypes consistent withLet h; andh, denote the complements of
h w.rt. g; andgs. By Property 1, neitheh; nor hy belong toH'. Therefore, by construction di’ and
Lemma 5, neither ofi; andh, is consistent with an input genotype. (For examplé, ifvas consistent with
an input genotype’ # g1, then{h, h; } would belong toP(g;) and thus taH,.)

So we can replace the three haplotygésh,, ho} with the three haplotype§h(g1,92), ', h”} where



h’ andh” denote the complements bfg;, go) W.r.t. g; andg,. This gives a set of haplotypd¥” resolving
G such thatH,,: N H"| > |H,,; N H'|, which contradicts the choice &1,,;.

Case 3.h is consistent with only one input genotype.

Let g € G be the input genotype consistent with Let »’ € H,,, be the complement df w.r.t. .
By Property 1,/ does not belong té1’. Since Cases 1 and 2 are impossillés the only input genotype
consistent withh’. So we can replace the two haplotypgs i’} with any two haplotypes froni’ that
resolveg. This gives a set of haplotypd3$” resolvingG such thatH,,: " H”| > |H,,; N H'|, contrary to
the choice oft,,;.

This completes the proof. O

3.1 Parsimony haplotyping is polynomial on(x, 2)-bounded instances of bounded tree-width

We recall the following theorem from [3].

Theorem 1([3]). There is a polynomial algorithm for parsimony haplotypimgemumerable instances such
that the compatibility graph has bounded tree-width.

In [3], the authors define aanumerable instancas an input genotype matrix with a polynomial number
of haplotypes that are consistent with any of its genotypdewever, the proof of Theorem 1 remains
valid if we relax this condition and only require that, givan input genotype matrix, we can compute
in polynomial time a polynomially-sized set of haplotypésittcontains an optimal solution. Parsimony
haplotyping remains solvable in polynomial time for sucktéamces whenever the compatibility graph has
bounded tree-width. Together with Lemma 7, this impliesftiewing result.

Theorem 2. PH (x,2) is polynomially solvable on graphs of bounded tree-width.

4 Other results

Lemma 8 (Inference paths.)Let G be a genotype matrix with at most two 2s per column, angl, l¢tand
g" be three distinct genotypes fro@ such that there exist haplotypésh’ and h” such thaty = h @ 1/,
g = W @ h”, andh” is consistent withy”. Then, the haplotypé’ is uniquely determined by, ¢, ¢".
Moreover, the three haplotypésh’, h” can be computed in tim@(n) wheren is the number of columns
of G.

Proof. Sincel’ is consistent with botly andg’, we haveh'(j) = a whenever there is am € {0, 1} such
thatg(j) = aorg'(j) = a. If g(4) = ¢'(j) = 2, then, sinceG has at most two 2s per column, we have
g"(j) = a € {0,1}. Then, since’” is consistent withy”, we must havé:” (j) = a, which in turn implies
R'(j) =1 —a (sinceg’(j) = 2). Therefore}' is uniquely determined by, ¢’, ¢”. To see thah, k', h” can
be computed in linear time, observe that the haplotypesid/” are uniquely determined by, g) and
(W', ¢") respectively. O

(Lemma 8 also follows directly from Lemma 5.)



5 Parsimony haplotyping on trees

In this section, we will show that one can solve the parsimloaglotyping problem on trees by dynamic
programming. Under certain conditions, this approachdeagolynomial-time solutions.

Let G € {0,1,2}"*™ be an instance of parsimony haplotyping whose compailiiliaph7 is a tree.
To avoid trivialities, we assume > 3. We root the tred” at an arbitrary node with at least two neighbors.
We shall develop a dynamic programming solution to the gnobiwhich will consist in a single bottom-up
traversal of the tree.

We first introduce several definitions needed to describealyperithm. For a nodg of 7', let G(g)
denote the instance of parsimony haplotyping consistingefienotypes ifx that belong to the subtree of
T rooted atg. Furthermore, lebpt(g) denote the optimal value &&(g), that is, the minimum number of
haplotypes needed to resolve all the genotypés (in). For a nodey of T different from the root, leC'(g)
denote the set of all haplotypes consistent both witimd with its parenf(g), and letD(g) denote the set
of all haplotypes inC'(¢) that appear in some optimal solution to the parsimony hgpiog problem on

G(g)-

Given a sefV of haplotypes that are consistent with a genotype/e denote byl ) the set of their
complements with respect tg that is,W(g) = {h:3n" € W such thati & b’ = g}.

The algorithm is based on the following recursive formutasopt(¢g) andD(g).

Lemma . If g is a leaf of T, then:

1, ifge{0,1}";
opil9) = { 2, otherwise. @
D(g) = C(9)- )

Let g be an internal node of7’, with children{gi, ..., g} (Wherek > 1). LetW(g) = UE_ D(g,).

Then:
0, if 3h,h" € W(g) suchthaty = h @ 1/;

2, it W(g)=0; 3)
1, otherwise.
0, if 3n,h' € W(g) suchthaty =h @ 1/;
D(g) ={ C(9), if W(g)=10; (4)
Cle) N W ()™, otherwise.

Proof. The equations (1) and (2) are straightforward.

Now, let g be an internal node off", with children{gi,...,gx}, and letiW(g) be defined as in the
lemma. We split the remainder of the proof into three cases) the above recursions.

Case 1:3h,h/ € W(g) suchthaty =h @ 1.

First, we show thabpt(g) = Zle opt(g;). Clearly,opt(g) > Zle opt(g;), since every set of haplo-
types optimally resolving=(g) must contain disjoint solutions @ (g1 ), . .., G(gx)-



For the converse inequality, I8th’' € W (g) such thay = h @ h'. Letiy, iz € [k] such that € D(g;,),
L' € D(g;,). Suppose tha; = i5. Then, every haplotype that is consistent wjtts also consistent with
gi,- In particular, since the children gfare pairwise inconsistent, this impliés= 1. Moreover,g must
be the root since otherwise the parenyaiould not be inconsistent wity,. However, this contradicts our
choice of the root as a vertex with at least two neighbors.

Thus,i; # i2, and combining two sets of haplotypes that optimally res@l(g;,) and G(g;,) and
containk andh’ respectively with arbitrary optimal solutions (g;) for all otherg;’s yields a solution to
G(g) of cardinality 3% opt(g;).

Next, we show thaD(g) = ). The equalityopt(g) = Zle opt(g;) implies that every set of haplotypes
optimally resolvingG(g) must consist of disjoint solutions @(g¢; ), . . ., G(gx ). However, every, € C(g)
is consistent with the parent gf and therefore inconsistent with all genotypes fr@hg; ), ..., G(gx).
Therefore s cannot belong to any optimal solution to the parsimony hgplag problem orG(g). Conse-
quently,D(g) = 0.

Case 2:W(g) = 0.
First, we show thabpt(g) = 3% opt(gi) + 2.

Suppose thatpt(g) < Zle opt(g;) + 1, and letH be a set of haplotypes resolving(g) such that
|H| < Zle opt(gi;) + 1. Fori =1,... k, let H; be a minimal subset d that resolve<z(g;).

Suppose thatl = U*_, (H;). Then, there must be two haplotypesh’ in UF_, (H;) that resolvey. Let
i1,i2 € [k] such thath € H;,, h' € H;,. Then, as in Case 1, we conclude thatt io. Moreover, since:
is consistent with botly andg;,, h belongs toC(g;, ). Similarly, " belongs toC(g;,). SinceW (g) = 0,
we conclude thak cannot belong td(g;, ) andh’ cannot belong td(g;,). In particular, this implies that
|Hi,| > opt(gi,) + 1 and|H;,| > opt(gi,) + 1. Therefore,|H| > >°._x [Hi| > >, 1k opt(gi) + 2,
contradicting the assumption.

Therefore, there is a haplotygesuch thatH\ (Uf_, (H;)) = {h}. Since the cardinality of{ is at
mosth:1 opt(g;) + 1 and at Ieas[:f:1 |H;| + 1, we conclude that each of thé;’s is optimal forG(g;).
Moreover, the fact thakl is optimal forG(g) and the observation thatcannot be used in the resolution of
any genotype fronG(g) other thary imply thath must be used in the resolution @f Let ' € H be the
haplotype that together with resolvesy, and letj € [k] such that’ € H;. SinceH; is optimal forG(g;)
and sincéy’ € C(g;), we conclude thak’ € D(g;). However, this contradicts the assumption of the case.

This shows thabpt(g) > Zle opt(g;) + 2. The converse inequality is considerably simpler. Com-
bining setsH, . .. Hy, of haplotypes that optimally resol@&(g1), . . . , G(gx) together with two additional
haplotypesh, i’ that resolvey yields a solution tda(g) of cardinalitny:1 opt(g;) + 2. This observation
also implies thatD(g) = C(g), as anyh € C(g) can be used in a resolution @f

Case 3: Neither Case 1 nor Case 2.
First, we show thabpt(g) = Zle opt(g;) + 1.

Suppose thatpt(g) < Zle opt(g;), and letH be a set of haplotypes resolvigg(g) such thai H| <
Zle opt(g;). Then, for anyi = 1,...,k, the subsetd; of H that resolvedz(g;) must be optimal for
G(gi). Thereforeg must be resolved by a pdir 1’ of haplotypes belonging to¥_, H;. By the optimality
of the H;’s, we haveh, ' € W (g), contradicting the fact that we are not in Case 1.
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Therefore,opt(g) > Zle opt(g;) + 1. For the converse inequality, l&tbe an arbitrary haplotype in
W(g), and letj € [k] such thath € D(g;). Combining a set of haplotypes containihghat optimally
resolvesG (g;) with arbitrary optimal solutions td&(g;) for all other g;'s, together with the haplotype
R’ such thath & b/ = g yields a solution toG(g) of cardinality Zle opt(g;) + 1. This shows that

opt(g) = o1, opt(gi) + 1
We now showD(g) = C(g) N W(g)(g) by proving both containments.

First, leth € D(g). Then,h € C(g), and there is an optimal solutiolf to G(g) that contains:. We

only need to show that € W(g)(g), that is, that the haplotypl satisfyingh & h' = g belongs tolW (g).
Sinceh belongs taC'(g), it cannot be used in the resolution of any genotype f@(g) other thary; thus,
h must be used in the resolution @fthereforeh’ belongs toH. Fori € [k], let H; be a minimal subset of
H that resolve$z(g;). Sinceopt(g) = Zle opt(g;) + 1, each of thet;’s is optimal forG(g; ). Letj € [k]
be the index of the sdt/; that containg:’. SinceH; is optimal forG(g;), we conclude thak’ belongs to

D(g;). Thus,h’ belongs tdV (g) and this shows thab(g) € C(g) N W(g)(g).

To see the converse, lete C'(g)N W(g)(g). Therefore, the haplotyp€ such that: 1’ = ¢ belongs to

W(g). Letj € [k] be the index of the sdD(g;) that containg:’. Combining a set of haplotypes containing
h' that optimally resolve$z(g;) with arbitrary optimal solutions t€x(g;) for all otherg;’s, together with
the haplotypé:’ yields an optimal solution t6(g). Therefore» belongs taD(g). O

At each internal nodeg, the algorithm stores an integept(g) € {1,...,m}, and a (possibly empty)
matrix D(g) € {0, 1,2}P(9)*" whosep(g) rows represent the genotypesii{g). The algorithm traverses
the tree bottom-up, using the recursive relatiohs— (4) from Lemma 9 to compute the values@ft(g)
andD(g).

The minimum number of haplotypes needed to resolve all tmetgpes inG(g) is given byopt(r),
wherer is the root ofT". Also, an optimal set of haplotypes can be constructed bynalsibacktracking
procedure, traversing the tree top-down. We omit the detail

Details of the implementation. Analysis of the running time
The following observation is easily proved by induction be height ofy.

Claim 1. EachD(g) can be represented by a (possibly empty) set of pairwiseripatible genotypes.

Claim 2. Given genotypegi,g2,9 € {0,1,2}" such that every haplotype consistent withor go is
consistent withy, we can determine in tim@(n) whether there exist haplotypésand /’, each consistent
with eitherg; or g9, suchthaty = h & 1.

Proof. One only needs to verify that there is no colughgsuch thaty(j) = 2 andg;(j) = ¢2(j) € {0,1}.
]

At each leaf of the tree, the algorithms spentis:) time.

Consider an internal nodgeof the tree, with childred ¢, , . .., gx }. For each € [k], let the matriXD(g;)
be of dimensiong; x n.
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Suppose that aj;'s are zero. The@/ (g) = ), and the algorithm sett(g) = Zle opt(g;) + 2 and
(unlessy is the root), set®(g) to be thel x n matrix given by

0, ifatleastone ofj(j),q (j)is 0;
1, if atleastone of(j),4¢'(j)is 1;
2, otherwise.

D(g); =

for all j € [n], whereg' is the parent of.

Suppose that not all the'’s are zero. TheV (g) # (). Let M(g) be the matrix of dimensiong x n
(wherep = Zle p;) Whose set of rows is the union of the sets of rows of the megii¥(g;) ..., D(gx).
For each of the(g) pairs{gi, g»} of rows of M(g), the algorithm verifies whether there exist haplotypes
andh/, each consistent with either or g9, such thay = h @ h’. Using Claim 2, this can be verified in time
O(mp?).

If there exists such a pair of haplotypesnd/’, the algorithm setspt(g) = Zle opt(g;) and (unless
g is the root) set®(g) to be the empty matrix.

Otherwise, the algorithm setgt(g) = Zle opt(g;) + 1 and (unlesg is the root) compute®(g) as
follows. D(g) is initialized to be the empty matrix. For each rgivof M(g), let ¢” be the complement of
¢’ with respect tgy, that is,

9"(j) =1 1, ifeitherg(j) =1, org(j) = 2andg'(j) = 0;

0, ifeitherg(j) =0, org(j) = 2 andg/(j) = 1;
2, otherwise.

We have to verify whethey” is compatible withC'(¢), and if yes, to compute the set of haplotypes consistent
with both. If there is a columpi such thatC (¢)(j) = 0 andg”(j) = 1 or vice-versa, thep” is incompatible
with C'(g), and we do nothing. Otherwise, we define a new gduy

0, if atleast one of”(g)(j),¢"(j)is O;

3(j) =< 1, ifatleastone ot’(g)(4),¢"(j)is 1; 5)
2, otherwise.

We addg to D(g).

Overall, the amount of time the algorithm spends at npdeat mostO(n - p(g)?). Therefore, the total
time complexity of the algorithm i©(n deT(p(g))Q).

Itis easy to see that if is an internal node at height thenp(g) < A", whereA is the maximum degree
of a node inT". This shows that the time complexity of the algorithm is atst@(nA?"), whereh is the
height of the rooted tre®. This could result in an exponential worst-case time andepamplexity.

5.1 Parsimony haplotyping is polynomial for trees of small tameter

The upper bound(nA2") on the running time of the algorithm shows that the algoritans in polynomial

time for trees of diameter at most (}gi”&) Also, note that for every nodg with children{gy,...,gx}
such that all but one of the(g;)’s are zero, we have(g) < max;<;<x p(g;). In particular, this implies that
the possibly exponential growth pfcannot be due to the nodes with only one children. Thus, we tia

following conclusion.
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Theorem 3. Parsimony haplotyping is solvable in polynomial time oresr®f diameter) Tos A (where

m and A denote the number of nodes and maximum vertex degree reshgctas well as on subdivisions
of such trees.

Corollary 2. Parsimony haplotyping is solvable in tini&mn) on paths.

5.2 Parsimony haplotyping on(x, 2)-bounded tree instances: an alternative proof

In view of Theorem 2, parsimony haplotyping is polynomial (@n2)-bounded tree instances. In this sub-
section we provide an alternative and direct proof of thit,faased on Lemma 9. In particular, we will
show that the recursive formulas from Lemma 9 lead to a pahjabtime algorithm on arbitrary trees that
arise from(x, 2)-bounded instances.

Let G be a(x,2)-bounded instance of parsimony haplotyping, whose comifigtigraph 7" is a tree.
It is sufficient to show that for all internal nodeddifferent from the root, the values ofg) are bounded
above by a polynomial imn. In fact, we will show that for every internal nodedifferent from the root,
p(g) is bounded above by the number of childreryof

We start with an auxiliary lemma.

Lemma 10. Let g be an internal node ot different from the root that is of “Type 3” (that i}/ (g) # 0
andD(g) = C(g) N W(g)(g)). Then, each row dD(g) is a haplotype.

Proof. Let g be a row ofD(g), and suppose that there is a colugnsuch thatj(j) = 2. Then,g is obtained
via (5) fromC(g) andg”, the complement of’ with respect tgj, whereg’ is a genotype from (say)(g;, )
for a childg;, of g.

Sinceg(j) = 2, we have by (5) thaf'(¢g)(j) = ¢”(j) = 2. Denoting byP(g) the parent of, this implies
thatg(j) = (P(9))(j) = gi,(j) = 2. This is a contradiction to the assumption tigais a (*, 2)-bounded

instance. O
Lemma 11. Let g be an internal node of’, different from the root, with childredg;,...,gx}. Then,
p(g) < k.

Proof. Let us partition the set of children gfinto two sets, as followsC; := {g; : 1 <i < k,p(g;) < 1}
andCy :={g; : 1 <i < k,p(g;) > 1}.

Consider an arbitrary; € C,. Clearly, g; is of “Type 3" (that is,W(g) # 0§ and D(g) = C(g) N

W(g)(g)), for otherwisep(g;) would be at most 1. Therefore, by Lemma 10, each roviDgf;) is a
haplotype.

We now show that there is at most one rbwf D(g;) such that the complement afwith respect tgy
is consistent withC'(g). Suppose not, and léf, k2 be two rows ofD(g;) such that both, andh/, (where
h1 & W} = he @ hl, = g) are consistent witli’(g). Let j be a column such thadt, (j) # ha(j). Then, since
both h; andhs are consistent witly, we haveg(j) = 2, and similarly,g;(j) = 2. Next, hy(j) # ha(j)
implies thath/ (j) # h4(j). Let P(g) denote the parent of. Since by assumption both| andh, are
consistent withC'(¢) (and hence withP(g), we have(P(g))(j) = 2. However, this is impossible sindg
is a(x,2)-bounded instance.
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It follows that eachy; € C» contributes at most one row #(g). Thereforep(g) < >°, .o, p(g:) +
zging 1< ’Cl‘ + ’CQ‘ = k. ]

Theorem 4. PH (x,2) is polynomially solvable on trees.
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