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Abstract. We study the function evaluation problem in the priced infation
framework introduced in [Charikaat al.2002]. We characterize the best possible
extremal competitive ratio for the class of game tree fumsti Moreover, we
extend the above result to the case when the cost of readengedle depends on
the value of the variable. In this new value dependent cagmeof the problem,
we also exactly evaluate the extremal competitive ratiotffier whole class of
monotone Boolean functions.

1 Introduction

Problem Statement.A function f over a set of variable¥ = {z1,22,...,2,} is
given and we want to determine the valuefofor a fixed but unknowrmassignmentr,

i.e., a choice of the values for the variabledafWe are allowed to adaptively read the
values of the variables. Each variablehas an associated non-negative egstwhich

is the cost incurred to read its valug(o). For eachi = 1,. .., n, the cost,, is fixed

and known beforehand. The goal is to identify and read a minmiroost set of variables

U C V whose values uniquely determine the vafife) = f(x1(0),...,2,(0)) of f
w.r.t. the given assignment regardless of the values of the variables not probed. We
say that such a sét C V is aprooffor f with respect to the assignment

An evaluation algorithm4 for f adaptively reads the variables ¥ until the set
of variables read so far is a proof for the value fofGiven a cost assignment=
(CayyevnyCa,), WE Ietcﬁ(a) denote the total cost incurred by the algorithtrio eval-
uatef under the assignmentandc’ (o) the cost of the cheapest proof founder the
assignment. We say thatA is p-competitive ifcﬁ(o) < pcf (o), for every possible
assignment. We usey/(f) to denote the competitive ratio of, that is, the minimum
p for which A is p-competitive. The best possible competitive ratio for aetedmin-
istic algorithm, then, isy/ = min_4 v/(f), where the minimum is computed over all
possible deterministic algorithn4.

The extremal competitive ratig(f) of an algorithmA is defined byy*(f) =
max. v (f). The best possible extremal competitive ratio for any deirgtic algo-
rithm is v(f) = mina~yA(f). This is a measure of the structural complexity fof
independent of a particular cost assignment and algorithm.

* This work was supported by the Sofja Kovalevskaja Award 2000dhe Alexander von Hum-
boldt Foundation and the Bundesministerium fur Bildund &orschung.
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Function evaluation problems have been extensively suidié\l, particularly in
the theory of computer aided games. The strategic evolofitre game is usually mod-
eled by a so called game tree [7,18, 16]. In a game tree (farethin Sect. 4), each
node represents a state of the game. The root is the cura¢git Bor each node/state
its children are the set of possible states reachable frgiaen the moves available to
the player moving in state. The possible moves for the two players are represented by
alternating levels of edges. A game tree of a certain defithiisby a computer in order
to explore the possible developments of the game from thestposition. By assign-
ing to each leaf-state an estimate of the “goodness” of thtd for the computer-player,
it is possible to evaluate all the inner states. The mostfiiunove for the computer is
the one corresponding to the edge from the root to its childfemaximum value. In
general, the evaluation of some leaf state might involvesagjye computations. Since,
on the other hand, not all the leaf-state evaluations ardate® compute the node of
maximum value in the first level, we have here an instanceeptbblem of evaluating
a function by only looking at aheapset of its variables.

In this paper we characterize the extremal competitivefoeske class of game tree
functions. Moreover, we also study the function evaluapooblem when the cost of
reading a variable depends on the value of the variable. daation algorithm knows
the coste,.(y) of readingz whenz (o) = y, for each variable: and for each valug
that the variable: can take.

This above model has applications in several situationesfder, e.g., the decision
making process of a physician—or of a computer aided detisiaking system—who
has to decide the cheapest sequence of tests to perform dieat pa order to reli-
ably diagnose a given disease. Different tests typicallplire different costs. In this
framework, costs are usually understood in an extendedimgancompassing the ac-
tual monetary costs, the distress of the patient, and th&ldeside-effects of the tests.
Also, tests’ costs might be dependent on the outcome: aeslaglanalysis might un-
dergo several phases, some of which are only performed demeon the result of the
previous ones. Analogously, there are tests that if p@sitive necessarily followed by
a sequence of other tests—on which the decision maker hdtenoadive. In this case,
the cost of the “triggering” test can be considered as thedithe whole set, in case its
outcome is positive, and only its own cost if the outcome igatige. It is then natural
to consider models in which tests’ costs are dependent onutteme of the test itself.
We refer the interested reader to [21] and references qubgdin for a remarkable
account of several types of costs to be considered in inferprocedures.

Besides the two examples above, function evaluation pnablare found in a
plethora of different areas both in theoretical and applkedputer science like
telecommunications [14], manufacturing [8], computemaks [9], satisficing search
problems [10]. For more on automatic diagnosis problemscanaputer aided medical
systems see also [1, 15] and references therein. Finadlyutittion evaluation problem
arises in query optimization, a major issue in databasds [13

Our Results. We obtain the tight extremal competitive ratio of monotomm@®an func-
tions in the new value dependent cost model extending thequgresult of [6]. This
is achieved via an adaptation of the Linear programmingdaperoach of [6].
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Outside the Boolean realm, we focus on the class of gameunstiéns. We obtain
the tight extremal competitive ratio for game trees. Inipatar we show that for any
game tree functiorf, but for special cases that we also characterize, the extEma
petitivenessy(f) is equal to the maximum size ofcartificatefor f, i.e., of a minimal
set of variables which allow to prove an upper or lower boundte value off, for
some assignmernt In fact, we provide a polynomial algorithm with competithgss
~(f) for any game tree functiofi We also extend this result to the value dependent cost
model. Our result significantly improves the previous besiviin result in [4], where a
polynomial time algorithm was provided which achieveg) competitiveness over a
restricted set of assignments, namely only th@'sdor which exactly one variable has
value f (o).

Related Work. Most of the earlier work on function evaluation problems wage in
the classical unitary cost model for both deterministic amtdomized algorithms or
assuming some statistical knowledge on the values of thablas (see, e.g., [20, 19,
17,12]). The competitive analysis scenario was proposéthayikaret al.in [2] where
several classes of functions were studied in this novel émonk, including the class
of game trees. For game trees, Chariéial. [2] presented a pseudo-polynomial time
algorithm with competitivenes®y/. The extremal competitiveness for game trees was
also studied in [4] where a polynomial time algorithm wasvded achieving com-
petitivenessy(f) for any assignment such that there exists exactly one variable with
value f(o). In [5] the authors showed a polynomial time algorithm withmgeetitive-
nessdv/. However, to date, there was no complete and exact charzatien of the
optimal competitiveness for the evaluation of game trees.

All the above results are for the case when the cost is indigrerof the value of
the variable. In fact, this is the first paper taking into agaathe dependency of costs
on the values in the competitive analysis scenario. In [dtfion evaluation with value
dependent costs was also discussed, even though in thebgistimmodel considered
in [1] the dependency on the values can be absorbed in thédisin assigned to the
values of the variables. In [5], the case of unknown costsalss considered. This is
an attempt to address cases in which the algorithm has agdd#nowledge on the cost
assignment. It is important to notice that the model of [Sjrat be used to solve the
type of problems addressed here, and vice versa.

2 Preliminaries: the Linear Programming Approach

Let f : D — R be a real-valued function defined over a set of variatMes=
{x1,...,2,}, whereD C R". Forz € V, let D(x) denote the set of possible val-
ues that the variable can take in the elements of the domainfothat is,D(z) is the
projection of the seD on thex coordinate. For: € V andy € D(x), letc,(y) > 0
denote the cost for querying the variablegiven that the value of in the (unknown)
assignment is x(o) = y. Furthermore, let”"" = min{c,(y) : y € D(z)} and
M = max{c,(y) : y € D(x)}, for all z € V. We allow that the costs of query-
ing a certain variable arealue dependentn other words, the functions,(y) are not
necessarily constant as functiongof.e., it is possible that™" # ¢z,

We assume that a boumd> 1 is fixed (and known to the algorithm) on the maxi-
mum possible ratio between two costs of queries for a singl@ble. More precisely,
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we assume that the cost function satisfies, for:adl V, ¢ < rcmin, Equivalently,
for everyz € V, and for everyy;,y2 € D(x), we haved < ¢, (y1) < re.(y2). The set
of all such assignments of cost functions will be denoted’ lfyf ). Note that without
such bound, no algorithm could guarantee any competita®&ne

In order to make explicit the dependency of our results onbitnendr, we shall
now rephrase the definition of the competitive measures.

Definition 1 Letr > 1. Ther-extremal competitive ratio of a functioh: D — R,

whereD C R", is defined as,(f) = ming v2(f) where the minimum is taken over all

e
deterministic algorithms that evaluafeand wherey” (f) = max_cc, () max,ep % .

It is not hard to see that eveprcompetitive algorithm for the value independent
cost model is an(r x p)-competitive algorithm in the value dependent cost model.
Thereforeyy,-(f) < ry(f). However, we shall see that this estimateypf/) loses an
additive term of-— 1. For this we devise a variant of the Linear Programming Applnoa
introduced in [6] which is adapted to the value dependertmasiel. We denote this
new scheme by P.A*.

In order to describe th€P.A" we shall need some new notation. [2¢f) denote
the set of inclusion-wise minimal proofs ¢f i.e., the family of sets{ such that there
exists at least one assignmentwith respect to whichX is a proof for f, while no
subset ofX is. Consider the following linear prograi®:

LPs : { Minimize Z s(z) : Z s(x) > 1VP e P(f)ands(z) > 0Va € V}

zeV reP

Suppose that the set of variables already read.i$Ve shall denote withfy the
restriction of f with respect toY, that is, the function oveV'\Y" obtained fromf by
fixing the values of the variables i¥i as given by the valued read so far, according
to the underlying fixed and unknown assignment_et sy be a feasible solution to
the linear prograniP¢,,. The LP.A" chooses a variable that minimizes the value of

min
Cx

) (For definiteness, we I%t := 0. This assures that the variables of zero cost are
always queried before the others.) Then, the cost assignnienpdated to a new cost
assignment defined as follows: Far € V\(Y U {u}) andy € D(x), we let

cx(y) = ca(y) — dca(y) wWhere de.(y) = ca(y) - 1)

cmin gy (u)’
Note that the quantitie¥c, (y) are well-defined. More importantly, the values®fy)
are chosen so thate C.(fr.,y). (To see this, observe that equality(y:)/é.(y2) =
¢z (y1)/cz(y2) holds for everyr € V\{u} and everyy, y2 € D(x).) The above proce-
dure is repeated ovef-(,; using the new costd until the value off is determined.
The linear programming approach for the value dependentodel is formally
described in Fig. 1, where for the sake of efficiency, for each V \ Y only 7" is
actually updated. Aiimplementatiorof this meta-algorithm is then obtained by fixing
the rule used to choose at each iteration the feasible splofiLP¢, , whereY is the
set of variables already probed.
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LPA*(f,V,c)
Y — 0
While the value off is unknown
Let sy be a feasible solution fALPs., .

Let u be the unread variablethat m|n|m|zes—%

Read(:) ,
For eachv € V \ Y do ™™ «— '™ — sy (v) x s%%
Y =Y U{u}

End While

Return the value off

Fig. 1. The “value dependent cost” Linear Programming Approach

Lemma 1 LetLPP be an implementation of th&P.A*. For eachY C V, let sy (-) be
the feasible solution used by when the set of variables already readyis Then, for
everyr > 1,

LP

Yr (f)g?"glca‘)/( Z Sy(v) 77’4’1
veEV\Y

Proof. If f has only one variable the result holds. We assume as induljipothe-

sis that the result holds for every function that dependsess tham variables. Let

f be a function that depends envariables. Letc € C,.(f) be a cost function such

thaw P(f) = ~LP(f), and lets be an assignment fof that maximizes the ratio

cw( o)/cf (o). ForU C V, we denotex(U) = Y . cz(2(0)). Furthermore, let{

be a cheapest proof fgt w.r.t. cost function: and assignment. Let us denote(-)

with s(-). Itis not hard to see that tliecost variables do not affect the competitiveness

of LP. Then, letu be the first variable selected by with ¢ > 0. Therefore, in

particular,c, (u(c)) > 0 andc*™ > 0 for all variablesr € V. (Here and throughout

the proof,c”" denotes the value before the update.) Fax V\{u} andy € D(x),

we define the new cost functiai-) as in (1).

The total amount that the algorithm spendsfoto prove the value of is at most
the total amount of change in the costs, summed over all thiablas, plus the amount
that the algorithm spends on the remaining iterations,ighahe cost spent off,,, to
prove the value oy (,,; with respect to the new cosi$ ). In formulae:

el
c]LIP’ Z 601} +CIL,IP’ }(UV\{u}) = s(u) Z C(m(ln ( )+C { }(UV\{u}) ,
veV veV v
2)

wherec is the cost function defined above.

Let X’ be a cheapest proof fof,, w.r.t. cost functionz and assignmenty\ (.}
Recall thatX is a cheapest proof fof w.r.t. cost functiorc and assignment. Note
that X'\ {u} is also a proof forfy,, w.r.t. assignment - r,,,. Then,

ot co(v(0))

= dey(v(0)) + EX\{u}) > S(u).z i s(0) + X)) (@)

veX veX
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Putting together the inequalities (2) and (3) and noting&ﬂa} (ov\fuy)/E(X") <
YF(fiuy), we have

f Z co(v(a)) | S(U)
LP LP cplo) veV  cpin LP
Y (f) =7 (f) = < max 2 e (Fray)
c(X) Soex AU . 5(p) ful

We shall now bound the first term in the maximum. In order topdiiy formulas,
let us writer, for ¢, (v(o))/c**™. We have that the first term in the maximum becomes

Dvgx ToS(V) + 22, e x Tvs(v) - > vgx Ts(v) T Y owey S(W) =73 ok s(v)

T ex 75(0) S s > ex S) o
§r25(0)7r+1,
veV

where the first inequality follows by < 7,, < r; the equality by writing the summation
overV \ X as the difference between the summation dJeand the one ovek'; the
second inequality follows becau}€, .  s(v) > 1 by definition of the linear program
LP¢ and the fact thakX is a minimal proof forf. Therefore we have

% (f) < max {T > s(v)—r+ 177?P(f{u})} :

veV

and sincef,;, depends on less thanvariables, the induction hypothesis yields the
desired result. O

3 Monotone Boolean Functions

By virtue of the above result, it is not hard to provide an ugpeund on the extremal
competitiveness for monotone Boolean functions in thee/a@lependent cost model.

Let A(f) = max Z sy ,(v) ¢, where the maximum is taken over all possible
7 veEV\Y
restrictionsfy, of f (i.e., fy,, is defined by an assignmemof the values to the vari-
ables inY C V), and wheresy, () denotes an optimal solution &P, ,. Recently,
Cicalese and Laber have proved in [6] that for a large clafsmaftions, which includes
all Boolean functionsA( f) is bounded above bROOF ( f), the size of a largest min-
imal proof of f. In particular, in conjunction with Lemma 1 this implies ttiar every
r > 1 and for every Boolean functiofy, it holds thaty,.(f) < r- PROOF(f) —r+1.
We shall now provide a lower bound that matches the aboverupmend. For
monotone Boolean functions, minimal proofs are usuallgnefd to agnaxtermsand
minterms A maxterm (minterm) can be defined as a minimal set of vaemblch that
for any o that sets their value t0 (1) we havef(c) = 0 (f(o) = 1). This is used in
the following lemma which provides the matching lower bolwydyeneralizing a con-
struction of [2] and [3]. We usg(f) andi(f) to denote the size of the largest minterm
and the largest maxterm gfrespectively. ThusP ROOF(f) = max{k(f),l(f)}.
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Theorem 1 Let f be a monotone Boolean function. Therif) > r - PROOF(f) —
r+ 1.

Proof. Consider an algorithm for evaluatingf. We construct an assignmerit which
is ‘bad’ for A. Let C be a largest minterm of, i.e.,|C| = k(f). Forz € C, we set
¢z(1) =r, ande,(0) = 1. Forz ¢ C, we setc, (1) = ¢, (0) = 0. For all variables irC
but the last one read by we letz(c*) = 1. All the other variables are set to 0.

The algorithm spends(|C| — 1) + 1 to prove thatf (¢*) = 0. In fact, sinceC'is a
minterm,A cannot conclude that evaluates to 0 before reading all variable€inOn
the other hand, the cheapest proof costs exactly 1 since iharmaxterm of whose
intersection withC' is exactly the last variable read By Thus;y,-(f) > r(k(f)—1)+1.
By an analogous argument, one can prove thaf) > r(I(f) — 1) + 1 yielding the
desired result. O

Combining this result with the above upper bound gives trecexalue ofy,.(f)
for monotone Boolean functions.

Theorem 2 For everyr > 1 and for every monotone Boolean functiprwe have

ve(f) = r-max{k(f),I(f)} —r+1.

4 Game Trees

A game tre€l’ is a tree, rooted at a nodewhere every internal node has either a MIN
or a MAX label and the parent of every MIN (MAX) node is a MAX (M) node. Lef/

be the set of leaves @f. Every leaf ofV is associated with a real number, its value. The
value of a MIN (MAX) node is the minimum (maximum) of the vatuef its children.
The function computed by maps the values of the leaves to the value of the root. We
shall identifyT" with the function it computes. Thus, ff is the function computed by
the game tre&’, we shall also writd for f andTy for fy.

By aminterm(maxtern) of a game tree we shall understand a minimal set of leaves
whose values allow to state a lower (upper) bound on the \alttee game tree. More
precisely, a minterm (maxterm) for a game tfEeooted atr is a minimal setC' of
leaves ofl" such thatifz(c) > ¢ (x(0) < ¢), foreache € C'thenT'(c) > ¢ (T (o) < £)
regardless of the values of the leayeg C. We shall use the more general tecertifi-
cateto either refer to a minterm or to a maxterm. We shall #&eand FY to denote
the family of all minterms and the family of all maxterms’Bf respectively.

As an example, for the game tree function

T = max{min{x1, x2, x3}, min{max{z4, x5}, x¢}},

we have7-'TU = {{ml, 1'6}, {1'2, 1'6}, {1'3, mﬁ}, {1'1, Xy, 1'5}, {1'2, Ty, 1'5}, {1'3, x4, 1'5}}
and]-"% = {{$1, £172,$3}, {$4, 1176}, {1'5,$6}}.

These families can be obtained by the following recursieeedure:

o if ris aleaf thenfk = FY = {{r}},
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e otherwise, letl, . . ., T}, be the subtrees rooted at the childremdf r is a MIN
nodethenry = J!_, 7 and Ff =[[}_, F£.If risaMAXnode 7 = J_, Ff
andFf = [[’_, Y. For the ease of notation, when the function/tréis clear from
the context we shall simply writgV and 7> for FY andFx.

By the above recursion, it can be verified that every maxtarthevery minterm
have a unique variable in common. Notice that the numberrtificates of a game tree
can in general be exponential in the number of leaves. Thergdn efficient algorithm
will never explicitly construct the whole families of cditates.

We shall usé;(7") andi(T") to denote the largest minterm and maxterrii'pfespec-
tively. These quantities play a critical role in the followgilower bound on the extremal
competitiveness of every algorithm that evaluates a gaeee(tn the value dependent
cost model).

Theorem 3 Let 7" be a game tree. If each certificate @f has size at least 2 then
¥ (T) > r-max{k(T),|(T)} —r+1.

Proof. Consider an algorithm for evaluating?’. Mimicking the proof of Theorem 1,
fix a largest mintern©’ and consider the assignmerit which sets to 1 all variables in
C but the last one queried by and sets to 0 all other variables. Also, fore C, we
sete, (1) = r, ande,(0) = 1. Fora & C, we sete, (1) = ¢, (0) = 0.

Let = denote the last variable i@ queried byA (the existence of such a variable
follows from equation (4) and the fact that every maxterneris¢ctsC). Let X =
(V\C) U {x}.

Claim.The setX contains a minterm.

Proof of claim.Itis enough to show that” intersects every maxter6f. If C'NC =
{z}, the statement holds. Otherwise, sili¢antersects” in precisely one variable and
|C'| > 2 by assumptionC” must contain a variable fron¥, which again implies the
desired conclusion.

Consider now the setV U CL whereCY is a maxterm ofl" such thatC’¥ N C =
{x}, andC* is a minterm contained itX. Then,CY U CT is a proof forT'(c*) = 0;
moreover, the cost af'V U C'* is 1. Since every proof must contain a maxterm, and
every maxterm intersects, we conclude that the cheapest proofdércosts exactly 1.

On the other hand, sine@ is a minterm A cannot conclude th&t (o) < 1 before
reading all variables i6'. Thus,y,.(T") > r(k(T) — 1) + 1. By an analogous argument,
one can prove that.(T') > r(I(T) — 1) 4+ 1 yielding the desired result. O

Upper Bound. We shall now employ the Linear Programming Approach for ilg
an upper bound on the{)extremal competitive ratio for game trees that matches th
above lower bound.

We need to introduce some more notation. Tebe a game tree oWi. Consider a
run of an algorithmA for evaluating?'. Let Y C V denote the set of variables read
by A at some point during its run and let- be the assignment of real numbers to
the leaves inY” corresponding to the variables read. Suppose that thectesirTy

! For all families of setsFi, Fo, ..., F, we define[], F; as follows:[[F_, F; = {X|X =
U?:l X, Xi € Fi, X # (Z)}
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of T" according to the assignment given by is non-constant. Le€’ be a minterm
(maxterm) of". We define the (currentjalueof C' as the minimum (maximum) value
in oy of the leaves i’ N C. We say that a minterm (maxterm)dempletely evaluated
if it is entirely contained inY’. Let LB denote the maximum value of a completely
evaluated minterm (ofoc, if no minterm has been completely evaluated), and/Bt
denote the minimum value of a completely evaluated maxtemax(, if no maxterm
has been completely evaluated). Note that/## (LB) is finite, then every minterm
(maxterm) has a well-defined value.

In order to study the structure of a proof o it is useful to express the function
computed byl in terms of its certificates as follows. For every= RY, we have:

T(o)= i cxeCt) = i cxeCY). 4
(o) Jnax, min{z(o) : x } Snin, max{z(o) : } 4)
It follows that LB (UB) is the lower (upper) bound on the valueBfo) for any as-
signment that extends, . Moreover, sincéy is assumed to be non-constant, we have
LB < UB.

As we show next]" can evaluate to any value between the two bounds.

Lemma 2 Lety € RsuchthatlB < y < UB. Then:

(i) Thesetl/=Y := (V\Y)U{x € Y : 2(0y) < y} contains a maxterm df.
The setV=Y := (V\Y)U {z € Y : z(0y) > y} contains a minterm df".

(ii) There is an assignment € R that extends the current partial assignment
such thatl'(o) = y.

Proof. For part(i), we shall only prove that the set=Y contains a maxterm &f. The
other statement can be proved similarly.

Since the maxterms df are precisely the minimal hitting sets of the minterms of
T, it suffices to show that the s&t=Y intersects every minterm @f. Suppose, for the
sake of contradiction, that there is a mintetth of 7" disjoint fromV =¥, Then,C* is
contained in the séf\V<Y = {z € Y : z(oy) > y}. In particular, this implies that
C% has been completely evaluated. Moreover, the valug€ofis min{z(oy) : = €
CtY >y > LB, contradicting the definition of 5.

To see(ii), let CF (OY) be a minterm (maxterm) df' contained in the set’ =Y
(V=¥), and leto be the assignment of values to the leave® tifiat extends the current
assignmenty and satisfiesr(oc) = y for all x € V\Y. Then, the value of bott'”
andCY with respect tar is y. ThereforeI'(o) = y. O

We say that a minterm (maxterr@) is activeif for each leafr € C N'Y we have
x(oy) > LB (z(oy) < UB). In words, a minterm (maxternd) is active if the evalu-
ation of its unevaluated leaves can still lead to an imprayerin the lower bound. B
(upper boundUB), i.e., can provide information on the value of the game.th&te
that if all leaves of a certificat€’ have already been read, th€ris non-active.

The following lemma characterizes the proofs of the redgame tredy. By
saying that a set of variablé3is a proof of (a value) for (a function)f we mean here
that P is a proof forf w.r.t. an assignmemnt s.t. f (o) = y.
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Lemma 3 (Proofs of a restricted game tree)Let P C V\Y. Then:

(1) [minterm proofs] Suppose that/B is finite. P is a proof of UB for Ty if and only
if there is an active minterr@'” of value at least/B such thatC*\Y C P.

(2) [maxterm proofs] Suppose that B is finite. P is a proof of LB for Ty if and only
if there is an active maxterfi¥ of value at mostL. B such thatCV\Y C P.

(3) [combined proofs]Lety € (LB, UB). P is a proof ofy for Ty if and only if there
is an active mintern©'” of valuey” and an active maxterr@? of valuey? such
that LB < yY <y <yl < UB and such thatC*\Y)u (CY\Y) C P.

If UB = oo theny” = oo is allowed. Similarly, ifLB = —oco theny? = —c0o'is
allowed.

Proof. We shall prove (1) and (3). Item (2) can be proved similarly1gs

(1): First, suppose that is a proof of UB for Ty w.r.t. an assignmentp of values
to the variables inP. Let LB < y' < UB, and consider the assignmeritthat agrees
with op on the variables irP and assigng’ to the variables ii/\ (Y U P). By the
assumption orP, the restricted game tré- evaluates taJB on¢’, or, equivalently,
T evaluates td/B on the assignmemt composed ofy ando’. By equation (4), there
is a mintermC* such thatmin{z(c) : x € C*} = UB. In particular,C* is an active
minterm of valueUB, with CL'\Y C P (by the choice ofy).

The other direction is considerably simpler. If there is etiva mintermC'” of value
at leastUB such thatC*\Y C P then assignind/B to each variable i O C1\Y
makesC* evaluate toU/B, which in turn raises the lower bound 6B, thus forcing
the game tree to evaluate t63.

(3): Let LB < y < UB and suppose thdt is a proof ofy for Ty w.r.t. an assign-
mentop of values to the variables i. Similarly as above, leL.B < 3y’ < y, and
consider the assignmeat that agrees witlr» on the variables ir® and assigng’ to
the variables i\ (Y U P). By the assumption oR, Ty evaluates tg ong’, or, equiv-
alently, T evaluates t@ on the assignmemt composed ofry ando’. By equation (4),
there is a minternC” such thatmin{z(c) : # € C'} = y. Then,C* is an active
minterm of valuey” > y, with CL'\Y C P. Similarly, there is an active maxter@t
of valueyV <y, with CY\Y C P.

For the converse direction, suppose that there is an activeerm C'* of value
y” and an active maxterr@V of valuey? such thatLB < ¢V < y < y* < UB
and such thatC U CY)\Y C P. SinceCL andCV are active, the set§’\Y and
CUY\Y are nonempty. Consider the assignmeptthat assigng to the variables in
P D (CH\Y) U (CY\Y). This make<C" evaluate tay, which impliesT' () > y for
every assignment that simultaneously extends- ando p. At the same time(’V gets
evaluated tay, which impliesT' (o) < y. Therefore, the value of the restricted game
treeTyp is constantly equal tg, proving thatP is a proof ofy for Ty . a

Forz € RV, we denoté|z||1 = >, . |2(z)].

Lemma 4 There is a solutiony to theLPr,, such that|sy ||1 < max{k(T),1(T)}.
Moreover, such a solution can be found in polynomial time.

Proof. We split the proof into two cases, according to the valu&6f
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Case 1.No maxterm has been completely evaluated &t = o). In particular, all
the maxterms are active, and there are no minterm proofgZEee a minimal hitting
set of the family{CY\Y : OV is an active maxterfy and letsy be the characteristic
vector of HV. We claim that thissy is a solution with the desired properties. Indeed,
since there are no minterm proofs, all the minimal proofstaiona member of the
family {CY\Y : CY is an active maxtert which implies thaty is a feasible solution
to the linear progranL.Pr, . Furthermore, it was shown in [3] that every minimal
hitting set of the family{ CV\Y : CY is an active maxtermis contained in a minterm
of T. Hencel|sy || = |HY| < k(T).

Case 2.There is a completely evaluated maxterbA < oo). In this case, letP;
denote the family of all minimal minterm proofs, and 8t denote the family of all
(CY\Y)-parts of the other (i.e., maxterm and combined) minimabfsoBy Lemma 2,
the familiesP; andP, are nonempty.

Claim.

(t) max{|P|: P € Py UPa} <max{k(T),(T)}.

(i) Every member of; intersects every member &%.

Proof of Claim.Part(7) follows from the observations that every elemenPgfis con-
tained in a minterm, and every element/®fis contained in a maxterm.

We prove(ii) by contradiction. Suppose that there is a minimal minterowopr
CE\Y and a minimal non-minterm pro6€©+\Y) U (CY\Y), with (CY\Y') nonempty
and (CE\Y) possibly empty, such thdCE\Y) N (CY\Y) = 0. Lety be the value
of CY. Then, by the above characterization of minimal progfs, UB.

Consider the partial assignmenthat extends the current assignmentby setting
all the leaves o€/'\ Y to UB, and all the leaves af'Y \ Y to y. Then, the minternt¥
proves that the value @f at o is at leastUB, while the maxternCV proves that the
value ofT" ate is at mosty < UB. This is a contradiction, and the proof of the claim is
complete.

We recall the following result implicitly contained in [6].

Theorem 4 ([6]) Let.A;, Ay be two nonempty set families odéisuch thatX NY = (),
for eachX € A; and eachY” € A,. Then, there is a feasible solutierto the linear

program{Minimize IIs]|1 s-t. Z s(x) >1VA € A UA,, ands(z) > 0Vz € V}
z€A
such that|s||; < max{|A|: A € A3 UAs}.

In conjunction with the above claim, this theorem implieattthere is a feasible
solutionsy to the linear program

{Minimize ||Sy||1 S.t. Z Sy(x) > 1VP e Py UPs, andSy(Z‘) >0Vz e V\Y}
zeP

such that|sy |1 < max{k(T),{(T)}.

It remains to show thaty- is a feasible solution th P, . But this follows from the
fact that every minimal proof df’y contains a member 6%, U Ps.

This concludes Case 2 and completes the proof of the exesteribe desired solu-
tion sy-.
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We now present a polynomial-time algorithm that computesdblutionsy de-
scribed in Lemma 4.

Since game trees are monotone functions, the valu&®fcan be computed in
linear time by a single bottom-up traversal of the tree, mghme manner as the game
treeT” would be evaluated—uwith the exception that infinite valuesalowed. More
precisely, we havé/B = T'(cV) € RU {oo}, wheresV is the assignment that extends
oy by assigning to every unevaluated leaf the valoe

If we are inCase 1 then we compute the sétV in linear time by a single bottom-
up traversal of the tree, as follows. We associate to eacenodiT a setH (z) C V.

If zis aleaf, then lef () = {z}\Y. For an internal node, let C'(x) denote the
set of children ofc.

If x is a MAX node, then let

Hiz) — 0, if H(y) =0forally e C(z);
() = H(y),wherey € C(x) such thatd (y) # () otherwise.

If x is a MIN node, then let

0, if 3y € C(x) such thatH (y) = 0;
H(z) = {U{H(y) ry € Clx)}, othgrwise. ’

For every noder of the game tree, leFY denote the set of maxterms of the game
tree defined by the subtree @f rooted atz. Moreover, let7Y (z) denote the set of
all inclusion-wise minimal sets in the sé€V\Y : CV ¢ FU}. It can be proved by
induction on the height of the subtree rooted: @hat for each node of T',

H(p) — J @minimal hitting set ofFY (z), if FY(z) # {0};
() = 0, otherwise.

Clearly, the desired sét ¥ is then given byH () wherer is the root of" .

If we are inCase 2 then we will show how to compute in polynomial time an
optimal solutionsy to the linear program

{Minimize ||Sy||1 S.t. Z Sy(x) >1 VP ePLUPs, andSy(Z‘) >0 Ve V\Y} .

zeP

As shown above, such a solution will be feasiblelfBrr,, and will satisfy||sy [|; <
max{k(T),l(T)}.

There could be exponentially many constraints in this ligagram. Nevertheless,
we will show that the separation problem can be solved inmatyial time. Using the
ellipsoid method, an optimal solution to the above lineargpam can be found with
only polynomially many calls to the separation oracle [11].

Let sy be a rational vector ilRY\Y. We may assume that (z) > 0 for every
x € V\Y, for otherwise we have a separating hyperplane.

To verify whether) sy (x) > 1foreveryP € P, UP,, we proceed as follows.
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First, we compute the value ef := min{}  _,sy(z) : P € P}, together
with a P € P; such that)” _,sy(z) = a. If a < 1, we output the character-
istic vector of P as a separating hyperplane. Otherwise, we compute the adlue
f:=min{}_ psy(x): P € P2}, and proceed similarly.

The following observations show that these computationdeecarried out in poly-
nomial time.

Let L, denote the set of minterms ®fof value at least/B. Similarly, let7Y
denote the set of maxtermsdfof value less tharW/B. Then:

-—a= min{zzecb\y sy(x): OF € fﬁUB};
B=min{d, ccov\y sy (@) : CY e FUyst.
This follows directly from the definitions af, 5 and the two familie$;, Ps.

— Foreveryw : V — RU{oo},amintermC € F% minimizingw(C) := > .- w(x)
over all minterms can be computed in polynomial time. Sifyila maxtermC' €
FY minimizingw(C) over all maxterms can be computed in polynomial time.
Using the recursive structure of the minterms (maxterntsy easy to see that
such a minterm (maxterm) can be computed in linear time byglesibottom-up
traversal of the tre@".

- AmintermC* € FL; of T that minimizes the quantify’ . ..\, sy (x) over all

C € FL; can be computed in polynomial time.
This follows from the previous observation, by definimg: V' — R U {cc} as
follows:
sy (x),if x € V\Y
w(z) =< 0, if x € Y andoy (z) > UB;
0, otherwise.

Let CL be a minterm minimizingo(C*). Since the sef% ,, is nonempty, and

w(C) is finite precisely forC' € FL,,, the mintermC” must belong taFZ ;.

But clearly, for allC' € ]-"éUB, we havew(C) = Yecw(@) =Y eony sy (2).
— A maxtermC? € FUyp of T that minimizes the quantity’ . v\ y sy () over

all C e ]-"<UUB can be computed in polynomial time.

This statement can be proved in a similar manner.

This concludes the description of the polynomial-time safian procedure, and with
it the proof of the lemma. a

The following result follows from Lemmas 1 and 4 and Theorem 3

Corollary 1 Let7 be a game tree, and let > 1. If each certificate ofl’ has size at
least 2 theny,(T') = r - max{k(T),l(T)} — r + 1. Moreover, there is a polynomial
time algorithm for evaluating game trees each certificatevbich has size at least 2
with optimalr-extremal competitiveness, for eackr 1.

In the case when not all the certificates/oére of size at least 2, it is possible to im-
prove the upper bound. We Ig{T") (¢(T")) denote the number of minterms (maxterms)
of T of size 1.
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Theorem 5 LetT" be a game tree with at least two leaves(T") > 1, then~, () =
r-max{k(T),[(T)—p(T)}—r+1.Similarly, if¢(T) > 1, then,(T') = r-max{k(T)—
q(T), (T} —r+1.

The following two lemmas provide the matching bounds.

Lemma5 LetT be a game tree with at least two leave(I") > 1 (and thery(T') =
0), thenvy,.(T') > r-max{k(T),(T) —p(T)} — r+ 1. Similarly, if¢(7") > 1 (and then
p(T) = 0), theny,(T') > r - max{k(T) — ¢(T),1(T)} —r + 1.

Proof. We shall only prove that ip(T") > 1, then~,.(T) > r - max{k(T),|(T) —
p(T)} — r + 1. The proof of the other inequality is similar.

For simplicity, let us writep = p(T") andl = I(T). Let p > 1. First, note that
the inequalityy,(T') > »(k(T) — 1) + 1 is proved exactly the same as in the proof of
Theorem 1.

It remains to provey,(T') > r(l —p — 1) + 1. Note that, since every maxterm
intersects every minterm, we have> p. If [ = p, the inequality holds true. Assume
now that! > p. Let X C V denote the set of leaves &f that correspond to the
minterms of size 1, and l&t' be a largest maxterm df’. ThenX is a proper subset
of C.

Consider an algorithn for evaluatingl’. We construct an assignment which
is ‘bad’ for A. Forz € C\X, we setc;(x) = 1, andcg(z) = r. Forz ¢ C\X, we
setei(x) = co(x) = 0. For all variables inC\ X but the last one read h§ we set
o*(x) = 0. All the other variables are set to 1. The algorithm spers| —p —1) + 1
to prove thatl’'(¢*) = 1. In fact, sinceC is a maxtermA cannot conclude th&f
evaluates to 1 before reading all variable€inOn the other hand, it is easy to see that
the cheapest proof costs exactly 1. Thug,I') > r(I — p — 1) + 1 and the proof is
complete. a

Lemma 6 LetT be a game tree with at least two leavesp(T') > 1, then~,.(T) <
r-max{k(T),[(T)—p(T)}—r+1.Similarly, if¢(T) > 1, then,(T') < r-max{k(T)—
(), (T} —r+1.

Proof. We shall show the first statement only:pf:= p(T) > 1, then~,.(T) < r -
max{k(T),l(T) — p} —r + 1. The other statement can be proved similarly.

First, consider the case whéhis of the formT’ = max{x1,...,z,}. Then, every
algorithm must query all the variables in order to evali@tand~, (7') = 1 (indepen-
dently ofr).

Otherwise,I" can be written in the forll” = max{x1,...,z,, 7"} whereT” is
a game tree oveV’ := V\{z,...,z,}. By Lemma 1, it is sufficient to show that
there is an implementatiohP of the LP.A* such that, for each subs&t C V of
queried variables, the solutiony () to theLPt,, chosen by th&P satisfieq]|sy |1 <
max{k(T),(T) — p}.

ForY = 0, we letLP choosesy as the characteristic vector of the singlefan }.

It is easy to see thaj is a feasible solution t&.Pr such that|sy|; = 1. Then,LP
reads the variable; (settingY” = {z;}), and proceeds in the same manner: when
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Y = {x1,...,2;}, for1 <i < p, we letLP choosesy € RV\Y as the characteristic
vector of the singletokx; ;1 }.
WhenY = {z,...,z,}, the restricted function is of the form

Ty = max{C,T'},

whereC' = max<;<,{zi(c)}. Moreover( is a lower bound on the function’s value.

It is easy to see that, for evely’ C V such that{z;,...,z,} C Y, and every
corresponding assignmeny -, any active minterm of” is an active minterm of’, and
vice versa, and any active maxtermifis the intersection of an active maxterm®of
with the setl’’, and vice versa. Thus, one can use the same approach as iodfief
Lemma 4 to show that there is a solutieyv to theLPr_,, such that

sy~ llx < max{k(T"), (T")} = max{k(T),{(T) — p} .

This concludes the proof. (The proof assumed that all costs positive. The proof
could easily be modified to take care of the zero costs as Wed.variables with zero
costs would be queried before the others, and the solutipn=ould be chosen so to
assure that any variable with positive cost from the{sst ..., z,} is queried before
any variable with positive cost from the $ét {1, ..., z, }. Then, the same arguments
as above would apply.) a

The following theorem summarizes our findings on thgextremal competitive-
ness for game trees.

Theorem 6 LetT be a game tree. Then

(1) = { ma{k(D), 1T}, it p(T) = ¢(T) = 1;

i max{k(T) — q(T),!(T) — p(T)}, otherwise.

Furthermore, foreach > 1, we havey,.(T') = r-v(T')—r+1, and there is a polynomial
time algorithm for evaluating game trees with optimagxtremal competitiveness, for
eachr > 1.

5 Concluding Remarks

We believe that the value dependent cost model deservéefimyestigation, as called
by its applications in several situations, particularlyie medical setting. The study of
this model with respect to the. competitiveness is a main direction for continued re-
search. Remarkably, already the situation of AND/OR treefions, whose certificates
have a simpler structure than those of the game trees, sedrashallenging. We also
remark that the existence of an optimalcompetitive algorithm for game tree function
is still an open problem even in the more classical valuepeddent cost model.

Acknowledgment We are grateful to Mike Paterson for suggesting to us tha afe
studying the value dependent cost model.
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