
Universität Bielefeld

Technische Fakultät
Abteilung Informationstechnik
Forschungsberichte

Computing with Priced Information: game trees
and the value dependent cost model.

Ferdinando Cicalese Martin Milanič

Report 2008-03

Impressum: Herausgeber:
Ellen Baake, Mario Botsch, Robert Giegerich, Ralf Hofestädt,
Franz Kummert, Peter Ladkin, Ralf Möller, Tim Nattkemper,
Helge Ritter, Gerhard Sagerer, Jens Stoye, Ipke Wachsmuth

Technische Fakultät der Universität Bielefeld,
Abteilung Informationstechnik, Postfach 10 01 31,
33501 Bielefeld, Germany

ISSN 0946-7831

Computing with Priced Information: Game Trees and
the Value Dependent Cost Model⋆

Ferdinando Cicalese and Martin Milanič

AG Genominformatik, Faculty of Technology, Bielefeld University, Germany
{nando,mmilanic}@cebitec.uni-bielefeld.de

Abstract. We study the function evaluation problem in the priced information
framework introduced in [Charikaret al.2002]. We characterize the best possible
extremal competitive ratio for the class of game tree functions. Moreover, we
extend the above result to the case when the cost of reading a variable depends on
the value of the variable. In this new value dependent cost variant of the problem,
we also exactly evaluate the extremal competitive ratio forthe whole class of
monotone Boolean functions.

1 Introduction

Problem Statement.A function f over a set of variablesV = {x1, x2, . . . , xn} is
given and we want to determine the value off for a fixed but unknownassignmentσ,
i.e., a choice of the values for the variables ofV . We are allowed to adaptively read the
values of the variables. Each variablexi has an associated non-negative costcxi

which
is the cost incurred to read its valuexi(σ). For eachi = 1, . . . , n, the costcxi

is fixed
and known beforehand. The goal is to identify and read a minimum cost set of variables
U ⊆ V whose values uniquely determine the valuef(σ) = f(x1(σ), . . . , xn(σ)) of f
w.r.t. the given assignmentσ, regardless of the values of the variables not probed. We
say that such a setU ⊆ V is aproof for f with respect to the assignmentσ.

An evaluation algorithmA for f adaptively reads the variables inV until the set
of variables read so far is a proof for the value off . Given a cost assignmentc =
(cx1

, . . . , cxn
), we letcf

A(σ) denote the total cost incurred by the algorithmA to eval-
uatef under the assignmentσ andcf (σ) the cost of the cheapest proof forf under the
assignmentσ. We say thatA is ρ-competitive ifcf

A(σ) ≤ ρcf (σ), for every possible
assignmentσ. We useγA

c (f) to denote the competitive ratio ofA, that is, the minimum
ρ for whichA is ρ-competitive. The best possible competitive ratio for any determin-
istic algorithm, then, isγf

c = minA γA
c (f), where the minimum is computed over all

possible deterministic algorithmsA.
The extremal competitive ratioγA(f) of an algorithmA is defined byγA(f) =

maxc γA
c (f). The best possible extremal competitive ratio for any deterministic algo-

rithm is γ(f) = minA γA(f). This is a measure of the structural complexity off
independent of a particular cost assignment and algorithm.

⋆ This work was supported by the Sofja Kovalevskaja Award 2004of the Alexander von Hum-
boldt Foundation and the Bundesministerium für Bildung und Forschung.

2 Ferdinando Cicalese and Martin Milanič

Function evaluation problems have been extensively studied in AI, particularly in
the theory of computer aided games. The strategic evolutionof the game is usually mod-
eled by a so called game tree [7, 18, 16]. In a game tree (formalized in Sect. 4), each
node represents a state of the game. The root is the current state. For each node/stateν,
its children are the set of possible states reachable fromν given the moves available to
the player moving in stateν. The possible moves for the two players are represented by
alternating levels of edges. A game tree of a certain depth isbuilt by a computer in order
to explore the possible developments of the game from the current position. By assign-
ing to each leaf-state an estimate of the “goodness” of that state for the computer-player,
it is possible to evaluate all the inner states. The most fruitful move for the computer is
the one corresponding to the edge from the root to its children of maximum value. In
general, the evaluation of some leaf state might involve expensive computations. Since,
on the other hand, not all the leaf-state evaluations are needed to compute the node of
maximum value in the first level, we have here an instance of the problem of evaluating
a function by only looking at acheapset of its variables.

In this paper we characterize the extremal competitivenessfor the class of game tree
functions. Moreover, we also study the function evaluationproblem when the cost of
reading a variable depends on the value of the variable. The evaluation algorithm knows
the costcx(y) of readingx whenx(σ) = y, for each variablex and for each valuey
that the variablex can take.

This above model has applications in several situations. Consider, e.g., the decision
making process of a physician—or of a computer aided decision making system—who
has to decide the cheapest sequence of tests to perform on a patient in order to reli-
ably diagnose a given disease. Different tests typically involve different costs. In this
framework, costs are usually understood in an extended meaning encompassing the ac-
tual monetary costs, the distress of the patient, and the possible side-effects of the tests.
Also, tests’ costs might be dependent on the outcome: a single lab analysis might un-
dergo several phases, some of which are only performed depending on the result of the
previous ones. Analogously, there are tests that if positive, are necessarily followed by
a sequence of other tests—on which the decision maker has no alternative. In this case,
the cost of the “triggering” test can be considered as the sumof the whole set, in case its
outcome is positive, and only its own cost if the outcome is negative. It is then natural
to consider models in which tests’ costs are dependent on theoutcome of the test itself.
We refer the interested reader to [21] and references quotedtherein for a remarkable
account of several types of costs to be considered in inference procedures.

Besides the two examples above, function evaluation problems are found in a
plethora of different areas both in theoretical and appliedcomputer science like
telecommunications [14], manufacturing [8], computer networks [9], satisficing search
problems [10]. For more on automatic diagnosis problems andcomputer aided medical
systems see also [1, 15] and references therein. Finally, the function evaluation problem
arises in query optimization, a major issue in databases [13].

Our Results.We obtain the tight extremal competitive ratio of monotone Boolean func-
tions in the new value dependent cost model extending the previous result of [6]. This
is achieved via an adaptation of the Linear programming based approach of [6].

Computing with Priced Information 3

Outside the Boolean realm, we focus on the class of game tree functions. We obtain
the tight extremal competitive ratio for game trees. In particular we show that for any
game tree functionf, but for special cases that we also characterize, the extremal com-
petitivenessγ(f) is equal to the maximum size of acertificatefor f, i.e., of a minimal
set of variables which allow to prove an upper or lower bound on the value off, for
some assignmentσ. In fact, we provide a polynomial algorithm with competitiveness
γ(f) for any game tree functionf. We also extend this result to the value dependent cost
model. Our result significantly improves the previous best known result in [4], where a
polynomial time algorithm was provided which achievesγ(f) competitiveness over a
restricted set of assignments, namely only thoseσ’s for which exactly one variable has
valuef(σ).
Related Work. Most of the earlier work on function evaluation problems wasdone in
the classical unitary cost model for both deterministic andrandomized algorithms or
assuming some statistical knowledge on the values of the variables (see, e.g., [20, 19,
17, 12]). The competitive analysis scenario was proposed byCharikaret al. in [2] where
several classes of functions were studied in this novel framework, including the class
of game trees. For game trees, Charikaret al. [2] presented a pseudo-polynomial time
algorithm with competitiveness2γf

c . The extremal competitiveness for game trees was
also studied in [4] where a polynomial time algorithm was provided achieving com-
petitivenessγ(f) for any assignmentσ such that there exists exactly one variable with
valuef(σ). In [5] the authors showed a polynomial time algorithm with competitive-
ness4γf

c . However, to date, there was no complete and exact characterization of the
optimal competitiveness for the evaluation of game trees.

All the above results are for the case when the cost is independent of the value of
the variable. In fact, this is the first paper taking into account the dependency of costs
on the values in the competitive analysis scenario. In [1] function evaluation with value
dependent costs was also discussed, even though in the probabilistic model considered
in [1] the dependency on the values can be absorbed in the distribution assigned to the
values of the variables. In [5], the case of unknown costs wasalso considered. This is
an attempt to address cases in which the algorithm has a reduced knowledge on the cost
assignment. It is important to notice that the model of [5] cannot be used to solve the
type of problems addressed here, and vice versa.

2 Preliminaries: the Linear Programming Approach

Let f : D → R be a real-valued function defined over a set of variablesV =
{x1, . . . , xn}, whereD ⊆ R

n. For x ∈ V , let D(x) denote the set of possible val-
ues that the variablex can take in the elements of the domain off , that is,D(x) is the
projection of the setD on thex coordinate. Forx ∈ V andy ∈ D(x), let cx(y) ≥ 0
denote the cost for querying the variablex, given that the value ofx in the (unknown)
assignmentσ is x(σ) = y. Furthermore, letcmin

x = min{cx(y) : y ∈ D(x)} and
cmax
x = max{cx(y) : y ∈ D(x)}, for all x ∈ V . We allow that the costs of query-

ing a certain variable arevalue dependent. In other words, the functionscx(y) are not
necessarily constant as functions ofy, i.e., it is possible thatcmin

x 6= cmax
x .

We assume that a boundr ≥ 1 is fixed (and known to the algorithm) on the maxi-
mum possible ratio between two costs of queries for a single variable. More precisely,

4 Ferdinando Cicalese and Martin Milanič

we assume that the cost function satisfies, for allx ∈ V , cmax
x ≤ rcmin

x . Equivalently,
for everyx ∈ V , and for everyy1, y2 ∈ D(x), we have0 ≤ cx(y1) ≤ rcx(y2). The set
of all such assignments of cost functions will be denoted byCr(f). Note that without
such bound, no algorithm could guarantee any competitiveness.

In order to make explicit the dependency of our results on theboundr, we shall
now rephrase the definition of the competitive measures.

Definition 1 Let r ≥ 1. Ther-extremal competitive ratio of a functionf : D → R,
whereD ⊆ R

n, is defined asγr(f) = minA γA
r (f) where the minimum is taken over all

deterministic algorithms that evaluatef , and whereγA
r (f) = maxc∈Cr(f) maxσ∈D

c
f

A
(σ)

cf (σ)
.

It is not hard to see that everyρ-competitive algorithm for the value independent
cost model is an(r × ρ)-competitive algorithm in the value dependent cost model.
Therefore,γr(f) ≤ rγ(f). However, we shall see that this estimate ofγr(f) loses an
additive term ofr−1. For this we devise a variant of the Linear Programming Approach
introduced in [6] which is adapted to the value dependent cost model. We denote this
new scheme byLPA∗.

In order to describe theLPA∗ we shall need some new notation. LetP(f) denote
the set of inclusion-wise minimal proofs off, i.e., the family of setsX such that there
exists at least one assignmentσ with respect to whichX is a proof forf, while no
subset ofX is. Consider the following linear programLPf :

LPf :

{

Minimize
∑

x∈V

s(x) :
∑

x∈P

s(x) ≥ 1 ∀P ∈ P(f) ands(x) ≥ 0 ∀x ∈ V

}

Suppose that the set of variables already read isY . We shall denote withfY the
restriction of f with respect toY, that is, the function overV \Y obtained fromf by
fixing the values of the variables inY as given by the valued read so far, according
to the underlying fixed and unknown assignmentσ. Let sY be a feasible solution to
the linear programLPfY . TheLPA∗ chooses a variableu that minimizes the value of
cmin

x

sY (x) . (For definiteness, we let00 := 0. This assures that the variables of zero cost are
always queried before the others.) Then, the cost assignment c is updated to a new cost
assignment̃c defined as follows: Forx ∈ V \(Y ∪ {u}) andy ∈ D(x), we let

c̃x(y) = cx(y) − δcx(y) where δcx(y) = cx(y) ·
cmin
u

cmin
x

·
sY (x)

sY (u)
. (1)

Note that the quantitiesδcx(y) are well-defined. More importantly, the values ofc̃x(y)
are chosen so that̃c ∈ Cr(f{u}). (To see this, observe that equalityc̃x(y1)/c̃x(y2) =
cx(y1)/cx(y2) holds for everyx ∈ V \{u} and everyy1, y2 ∈ D(x).) The above proce-
dure is repeated overfY ∪{u} using the new costs̃c, until the value off is determined.

The linear programming approach for the value dependent cost model is formally
described in Fig. 1, where for the sake of efficiency, for eachx ∈ V \ Y only cmin

x is
actually updated. Animplementationof this meta-algorithm is then obtained by fixing
the rule used to choose at each iteration the feasible solution of LPfY , whereY is the
set of variables already probed.

Computing with Priced Information 5

LPA∗(f, V, c)
Y ← ∅;
While the value off is unknown

Let sY be a feasible solution forLPfY
.

Let u be the unread variablex that minimizesc
min
x

sY (x)
.

Read(u)

For eachv ∈ V \ Y do cmin

v ← cmin

v − sY (v)×
c

min
u

sY (u)

Y = Y ∪ {u}
End While
Return the value off

Fig. 1. The “value dependent cost” Linear Programming Approach

Lemma 1 Let LP be an implementation of theLPA∗. For eachY ⊂ V, let sY (·) be
the feasible solution used byLP when the set of variables already read isY . Then, for
everyr ≥ 1,

γLP

r (f) ≤ r · max
Y ⊂V

∑

v∈V \Y

sY (v)

− r + 1.

Proof. If f has only one variable the result holds. We assume as induction hypothe-
sis that the result holds for every function that depends on less thann variables. Let
f be a function that depends onn variables. Letc ∈ Cr(f) be a cost function such
that γLP

c (f) = γLP
r (f), and letσ be an assignment forf that maximizes the ratio

cf
LP

(σ)/cf (σ). For U ⊆ V , we denotec(U) =
∑

x∈U cx(x(σ)). Furthermore, letX
be a cheapest proof forf w.r.t. cost functionc and assignmentσ. Let us denotes∅(·)
with s(·). It is not hard to see that the0-cost variables do not affect the competitiveness
of LP. Then, letu be the first variable selected byLP with cmin

u > 0. Therefore, in
particular,cu(u(σ)) > 0 andcmin

x > 0 for all variablesx ∈ V . (Here and throughout
the proof,cmin

x denotes the value before the update.) Forx ∈ V \{u} andy ∈ D(x),
we define the new cost functioñc(·) as in (1).

The total amount that the algorithm spends onf to prove the value ofσ is at most
the total amount of change in the costs, summed over all the variables, plus the amount
that the algorithm spends on the remaining iterations, thatis, the cost spent onf{u} to
prove the value ofσV \{u} with respect to the new costs̃c(·). In formulae:

cf
LP

(σ) ≤
∑

v∈V

δcv(v(σ))+c̃
f{u}

LP
(σV \{u}) =

cmin
u

s(u)
·
∑

v∈V

cv(v(σ))

cmin
v

·s(v)+c̃
f{u}

LP
(σV \{u}) ,

(2)
wherec̃ is the cost function defined above.

Let X ′ be a cheapest proof forf{u} w.r.t. cost functioñc and assignmentσV \{u}.
Recall thatX is a cheapest proof forf w.r.t. cost functionc and assignmentσ. Note
thatX\{u} is also a proof forf{u} w.r.t. assignmentσV \{u}. Then,

c(X) =
∑

v∈X

δcv(v(σ)) + c̃(X\{u}) ≥
cmin
u

s(u)
·
∑

v∈X

cv(v(σ))

cmin
v

· s(v) + c̃(X ′) . (3)

6 Ferdinando Cicalese and Martin Milanič

Putting together the inequalities (2) and (3) and noting that c̃
f{u}

LP
(σV \{u})/c̃(X ′) ≤

γLP
r (f{u}), we have

γLP

r (f) = γLP

c (f) =
cf

LP
(σ)

c(X)
≤ max

∑

v∈V
cv(v(σ))

cmin
v

· s(v)
∑

v∈X
cv(v(σ))

cmin
v

· s(v)
, γLP

r (f{u})

.

We shall now bound the first term in the maximum. In order to simplify formulas,
let us writeτv for cv(v(σ))/cmin

v . We have that the first term in the maximum becomes
P

v 6∈X
τvs(v) +

P

v∈X
τvs(v)

P

v∈X
τvs(v)

≤

P

v 6∈X
rs(v)

P

v∈X
s(v)

+ 1 =
r

P

v∈V
s(v)− r

P

v∈X
s(v)

P

v∈X
s(v)

+ 1

≤ r
X

v∈V

s(v)− r + 1,

where the first inequality follows by1 ≤ τv ≤ r; the equality by writing the summation
overV \ X as the difference between the summation overV and the one overX ; the
second inequality follows because

∑

v∈X s(v) ≥ 1 by definition of the linear program
LPf and the fact thatX is a minimal proof forf . Therefore we have

γLP

r (f) ≤ max

{

r
∑

v∈V

s(v) − r + 1, γLP

r (f{u})

}

.

and sincef{u} depends on less thann variables, the induction hypothesis yields the
desired result. ⊓⊔

3 Monotone Boolean Functions

By virtue of the above result, it is not hard to provide an upper bound on the extremal
competitiveness for monotone Boolean functions in the value dependent cost model.

Let ∆(f) = max
Y,σ

∑

v∈V \Y

s∗Y,σ(v)

, where the maximum is taken over all possible

restrictionsfY,σ of f (i.e.,fY,σ is defined by an assignmentσ of the values to the vari-
ables inY ⊂ V), and wheres∗Y,σ(·) denotes an optimal solution ofLPfY,σ

. Recently,
Cicalese and Laber have proved in [6] that for a large class offunctions, which includes
all Boolean functions,∆(f) is bounded above byPROOF (f), the size of a largest min-
imal proof off . In particular, in conjunction with Lemma 1 this implies that for every
r ≥ 1 and for every Boolean functionf , it holds thatγr(f) ≤ r ·PROOF (f)− r + 1 .

We shall now provide a lower bound that matches the above upper bound. For
monotone Boolean functions, minimal proofs are usually referred to asmaxtermsand
minterms. A maxterm (minterm) can be defined as a minimal set of variables such that
for anyσ that sets their value to0 (1) we havef(σ) = 0 (f(σ) = 1). This is used in
the following lemma which provides the matching lower boundby generalizing a con-
struction of [2] and [3]. We usek(f) andl(f) to denote the size of the largest minterm
and the largest maxterm off respectively. Thus,PROOF (f) = max{k(f), l(f)}.

Computing with Priced Information 7

Theorem 1 Let f be a monotone Boolean function. Thenγr(f) ≥ r · PROOF (f) −
r + 1.

Proof. Consider an algorithmA for evaluatingf . We construct an assignmentσA which
is ‘bad’ for A. Let C be a largest minterm off , i.e., |C| = k(f). For x ∈ C, we set
cx(1) = r, andcx(0) = 1. Forx 6∈ C, we setcx(1) = cx(0) = 0. For all variables inC
but the last one read byA we letx(σA) = 1. All the other variables are set to 0.

The algorithm spendsr(|C| − 1) + 1 to prove thatf(σA) = 0. In fact, sinceC is a
minterm,A cannot conclude thatf evaluates to 0 before reading all variables inC. On
the other hand, the cheapest proof costs exactly 1 since there is a maxterm off whose
intersection withC is exactly the last variable read byA. Thus,γr(f) ≥ r(k(f)−1)+1.
By an analogous argument, one can prove thatγr(f) ≥ r(l(f) − 1) + 1 yielding the
desired result. ⊓⊔

Combining this result with the above upper bound gives the exact value ofγr(f)
for monotone Boolean functions.

Theorem 2 For everyr ≥ 1 and for every monotone Boolean functionf , we have

γr(f) = r · max{k(f), l(f)} − r + 1 .

4 Game Trees

A game treeT is a tree, rooted at a noder, where every internal node has either a MIN
or a MAX label and the parent of every MIN (MAX) node is a MAX (MIN) node. LetV
be the set of leaves ofT . Every leaf ofV is associated with a real number, its value. The
value of a MIN (MAX) node is the minimum (maximum) of the values of its children.
The function computed byT maps the values of the leaves to the value of the root. We
shall identifyT with the function it computes. Thus, iff is the function computed by
the game treeT , we shall also writeT for f andTY for fY .

By aminterm(maxterm) of a game tree we shall understand a minimal set of leaves
whose values allow to state a lower (upper) bound on the valueof the game tree. More
precisely, a minterm (maxterm) for a game treeT rooted atr is a minimal setC of
leaves ofT such that ifx(σ) ≥ ℓ (x(σ) ≤ ℓ), for eachx ∈ C thenT (σ) ≥ ℓ (T (σ) ≤ ℓ)
regardless of the values of the leavesy 6∈ C. We shall use the more general termcertifi-
cateto either refer to a minterm or to a maxterm. We shall useFL

T andFU
T to denote

the family of all minterms and the family of all maxterms ofT , respectively.
As an example, for the game tree function

T = max{min{x1, x2, x3}, min{max{x4, x5}, x6}} ,

we haveFU
T = {{x1, x6}, {x2, x6}, {x3, x6}, {x1, x4, x5}, {x2, x4, x5}, {x3, x4, x5}}

andFL
T = {{x1, x2, x3}, {x4, x6}, {x5, x6}}.

These families can be obtained by the following recursive procedure:
• if r is a leaf thenFL

T = FU
T = {{r}} ,

8 Ferdinando Cicalese and Martin Milanič

• otherwise, letT1, . . . , Tp be the subtrees rooted at the children ofr. If r is a MIN
node thenFU

T =
⋃p

i=1 F
U
Ti

and1 FL
T =

∏p

i=1 F
L
Ti

. If r is a MAX node,FL
T =

⋃p

i=1 F
L
Ti

andFU
T =

∏p
i=1 F

U
Ti

. For the ease of notation, when the function/treeT is clear from
the context we shall simply writeFU andFL for FU

T andFL
T .

By the above recursion, it can be verified that every maxterm and every minterm
have a unique variable in common. Notice that the number of certificates of a game tree
can in general be exponential in the number of leaves. Therefore, an efficient algorithm
will never explicitly construct the whole families of certificates.

We shall usek(T) andl(T) to denote the largest minterm and maxterm ofT , respec-
tively. These quantities play a critical role in the following lower bound on the extremal
competitiveness of every algorithm that evaluates a game tree (in the value dependent
cost model).

Theorem 3 Let T be a game tree. If each certificate ofT has size at least 2 then
γr(T) ≥ r · max{k(T), l(T)} − r + 1.

Proof. Consider an algorithmA for evaluatingT . Mimicking the proof of Theorem 1,
fix a largest mintermC and consider the assignmentσA which sets to 1 all variables in
C but the last one queried byA and sets to 0 all other variables. Also, forx ∈ C, we
setcx(1) = r, andcx(0) = 1. Forx 6∈ C, we setcx(1) = cx(0) = 0.

Let x denote the last variable inC queried byA (the existence of such a variable
follows from equation (4) and the fact that every maxterm intersectsC). Let X =
(V \C) ∪ {x}.

Claim.The setX contains a minterm.
Proof of claim.It is enough to show thatX intersects every maxtermC′. If C′∩C =

{x}, the statement holds. Otherwise, sinceC′ intersectsC in precisely one variable and
|C′| ≥ 2 by assumption,C′ must contain a variable fromX , which again implies the
desired conclusion.

Consider now the setCU ∪ CL whereCU is a maxterm ofT such thatCU ∩ C =
{x}, andCL is a minterm contained inX . Then,CU ∪ CL is a proof forT (σA) = 0;
moreover, the cost ofCU ∪ CL is 1. Since every proof must contain a maxterm, and
every maxterm intersectsC, we conclude that the cheapest proof forσA costs exactly 1.

On the other hand, sinceC is a minterm,A cannot conclude thatT (σ) < 1 before
reading all variables inC. Thus,γr(T) ≥ r(k(T)− 1)+1. By an analogous argument,
one can prove thatγr(T) ≥ r(l(T) − 1) + 1 yielding the desired result. ⊓⊔

Upper Bound. We shall now employ the Linear Programming Approach for obtaining
an upper bound on the (r-)extremal competitive ratio for game trees that matches the
above lower bound.

We need to introduce some more notation. LetT be a game tree onV . Consider a
run of an algorithmA for evaluatingT . Let Y ⊆ V denote the set of variables read
by A at some point during its run and letσY be the assignment of real numbers to
the leaves inY corresponding to the variables read. Suppose that the restriction TY

1 For all families of setsF1,F2, . . . ,Fk we define
Q

i
Fi as follows:

Q

k

i=1 Fi = {X|X =
S

k

i=1 Xi, Xi ∈ Fi, Xi 6= ∅}

Computing with Priced Information 9

of T according to the assignment given byσY is non-constant. LetC be a minterm
(maxterm) ofT . We define the (current)valueof C as the minimum (maximum) value
in σY of the leaves inY ∩C. We say that a minterm (maxterm) iscompletely evaluated
if it is entirely contained inY . Let LB denote the maximum value of a completely
evaluated minterm (or−∞, if no minterm has been completely evaluated), and letUB

denote the minimum value of a completely evaluated maxterm (or ∞, if no maxterm
has been completely evaluated). Note that ifUB (LB) is finite, then every minterm
(maxterm) has a well-defined value.

In order to study the structure of a proof forT , it is useful to express the function
computed byT in terms of its certificates as follows. For everyσ ∈ R

V , we have:

T (σ) = max
CL∈FL

min{x(σ) : x ∈ CL} = min
CU∈FU

max{x(σ) : x ∈ CU} . (4)

It follows thatLB (UB) is the lower (upper) bound on the value ofT (σ) for any as-
signment that extendsσY . Moreover, sinceTY is assumed to be non-constant, we have
LB < UB .

As we show next,T can evaluate to any value between the two bounds.

Lemma 2 Lety ∈ R such thatLB ≤ y ≤ UB . Then:

(i) The setV ≤y := (V \Y) ∪ {x ∈ Y : x(σY) ≤ y} contains a maxterm ofT .
The setV ≥y := (V \Y) ∪ {x ∈ Y : x(σY) ≥ y} contains a minterm ofT .

(ii) There is an assignmentσ ∈ R
V that extends the current partial assignmentσY

such thatT (σ) = y.

Proof. For part(i), we shall only prove that the setV ≤y contains a maxterm ofT . The
other statement can be proved similarly.

Since the maxterms ofT are precisely the minimal hitting sets of the minterms of
T , it suffices to show that the setV ≤y intersects every minterm ofT . Suppose, for the
sake of contradiction, that there is a mintermCL of T disjoint fromV ≤y. Then,CL is
contained in the setV \V ≤y = {x ∈ Y : x(σY) > y}. In particular, this implies that
CL has been completely evaluated. Moreover, the value ofCL is min{x(σY) : x ∈
CL} > y ≥ LB , contradicting the definition ofLB .

To see(ii), let CL (CU) be a minterm (maxterm) ofT contained in the setV ≥y

(V ≤y), and letσ be the assignment of values to the leaves ofT that extends the current
assignmentσY and satisfiesx(σ) = y for all x ∈ V \Y . Then, the value of bothCL

andCU with respect toσ is y. Therefore,T (σ) = y. ⊓⊔

We say that a minterm (maxterm)C is activeif for each leafx ∈ C ∩ Y we have
x(σY) > LB (x(σY) < UB). In words, a minterm (maxterm)C is active if the evalu-
ation of its unevaluated leaves can still lead to an improvement in the lower boundLB

(upper boundUB), i.e., can provide information on the value of the game tree. Note
that if all leaves of a certificateC have already been read, thenC is non-active.

The following lemma characterizes the proofs of the restricted game treeTY . By
saying that a set of variablesP is a proof of (a value)y for (a function)f we mean here
thatP is a proof forf w.r.t. an assignmentσ s.t.f(σ) = y.

10 Ferdinando Cicalese and Martin Milanič

Lemma 3 (Proofs of a restricted game tree)LetP ⊆ V \Y . Then:

(1) [minterm proofs] Suppose thatUB is finite.P is a proof ofUB for TY if and only
if there is an active mintermCL of value at leastUB such thatCL\Y ⊆ P .

(2) [maxterm proofs] Suppose thatLB is finite.P is a proof ofLB for TY if and only
if there is an active maxtermCU of value at mostLB such thatCU\Y ⊆ P .

(3) [combined proofs]Lety ∈ (LB ,UB). P is a proof ofy for TY if and only if there
is an active mintermCL of valueyL and an active maxtermCU of valueyU such
thatLB < yU ≤ y ≤ yL < UB and such that(CL\Y) ∪ (CU\Y) ⊆ P .
If UB = ∞ thenyL = ∞ is allowed. Similarly, ifLB = −∞ thenyU = −∞ is
allowed.

Proof. We shall prove (1) and (3). Item (2) can be proved similarly as(1).
(1): First, suppose thatP is a proof ofUB for TY w.r.t. an assignmentσP of values

to the variables inP . Let LB ≤ y′ < UB , and consider the assignmentσ′ that agrees
with σP on the variables inP and assignsy′ to the variables inV \(Y ∪ P). By the
assumption onP , the restricted game treeTY evaluates toUB on σ′, or, equivalently,
T evaluates toUB on the assignmentσ composed ofσY andσ′. By equation (4), there
is a mintermCL such thatmin{x(σ) : x ∈ CL} = UB . In particular,CL is an active
minterm of valueUB , with CL\Y ⊆ P (by the choice ofy).

The other direction is considerably simpler. If there is an active mintermCL of value
at leastUB such thatCL\Y ⊆ P then assigningUB to each variable inP ⊇ CL\Y
makesCL evaluate toUB , which in turn raises the lower bound toUB , thus forcing
the game tree to evaluate toUB .

(3): LetLB < y < UB and suppose thatP is a proof ofy for TY w.r.t. an assign-
mentσP of values to the variables inP . Similarly as above, letLB ≤ y′ < y, and
consider the assignmentσ′ that agrees withσP on the variables inP and assignsy′ to
the variables inV \(Y ∪P). By the assumption onP , TY evaluates toy onσ′, or, equiv-
alently,T evaluates toy on the assignmentσ composed ofσY andσ′. By equation (4),
there is a mintermCL such thatmin{x(σ) : x ∈ CL} = y. Then,CL is an active
minterm of valueyL ≥ y, with CL\Y ⊆ P . Similarly, there is an active maxtermCU

of valueyU ≤ y, with CU\Y ⊆ P .
For the converse direction, suppose that there is an active minterm CL of value

yL and an active maxtermCU of valueyU such thatLB < yU ≤ y ≤ yL < UB

and such that(CL ∪ CU)\Y ⊆ P . SinceCL andCU are active, the setsCL\Y and
CU\Y are nonempty. Consider the assignmentσP that assignsy to the variables in
P ⊇ (CL\Y) ∪ (CU\Y). This makesCL evaluate toy, which impliesT (σ) ≥ y for
every assignmentσ that simultaneously extendsσY andσP . At the same time,CU gets
evaluated toy, which impliesT (σ) ≤ y. Therefore, the value of the restricted game
treeTY ∪P is constantly equal toy, proving thatP is a proof ofy for TY . ⊓⊔

Forz ∈ R
V , we denote‖z‖1 =

∑

x∈V |z(x)|.

Lemma 4 There is a solutionsY to theLPTY
such that‖sY ‖1 ≤ max{k(T), l(T)} .

Moreover, such a solution can be found in polynomial time.

Proof. We split the proof into two cases, according to the value ofUB .

Computing with Priced Information 11

Case 1.No maxterm has been completely evaluated yet (UB = ∞). In particular, all
the maxterms are active, and there are no minterm proofs. LetHU be a minimal hitting
set of the family{CU\Y : CU is an active maxterm}, and letsY be the characteristic
vector ofHU . We claim that thissY is a solution with the desired properties. Indeed,
since there are no minterm proofs, all the minimal proofs contain a member of the
family {CU\Y : CU is an active maxterm}, which implies thatsY is a feasible solution
to the linear programLPTY

. Furthermore, it was shown in [3] that every minimal
hitting set of the family{CU\Y : CU is an active maxterm} is contained in a minterm
of T . Hence‖sY ‖1 = |HU | ≤ k(T).
Case 2.There is a completely evaluated maxterm (UB < ∞). In this case, letP1

denote the family of all minimal minterm proofs, and letP2 denote the family of all
(CU\Y)-parts of the other (i.e., maxterm and combined) minimal proofs. By Lemma 2,
the familiesP1 andP2 are nonempty.
Claim.

(i) max{|P | : P ∈ P1 ∪ P2} ≤ max{k(T), l(T)}.
(ii) Every member ofP1 intersects every member ofP2.

Proof of Claim.Part(i) follows from the observations that every element ofP1 is con-
tained in a minterm, and every element ofP2 is contained in a maxterm.

We prove(ii) by contradiction. Suppose that there is a minimal minterm proof
CL

0 \Y and a minimal non-minterm proof(CL
1 \Y)∪(CU

1 \Y), with (CU
1 \Y) nonempty

and(CL
1 \Y) possibly empty, such that(CL

0 \Y) ∩ (CU
1 \Y) = ∅. Let y be the value

of CU
1 . Then, by the above characterization of minimal proofs,y < UB .

Consider the partial assignmentσ that extends the current assignmentσY by setting
all the leaves ofCL

0 \Y to UB , and all the leaves ofCU
1 \Y to y. Then, the mintermCL

0

proves that the value ofT at σ is at leastUB , while the maxtermCU
1 proves that the

value ofT atσ is at mosty < UB . This is a contradiction, and the proof of the claim is
complete.

We recall the following result implicitly contained in [6].

Theorem 4 ([6]) LetA1,A2 be two nonempty set families overV such thatX∩Y 6= ∅,
for eachX ∈ A1 and eachY ∈ A2. Then, there is a feasible solutions to the linear

program

{

Minimize ‖s‖1 s.t.
∑

x∈A

s(x) ≥ 1 ∀A ∈ A1 ∪A2, ands(x) ≥ 0 ∀x ∈ V

}

such that‖s‖1 ≤ max{|A| : A ∈ A1 ∪ A2} .

In conjunction with the above claim, this theorem implies that there is a feasible
solutionsY to the linear program
{

Minimize ‖sY ‖1 s.t.
∑

x∈P

sY (x) ≥ 1 ∀P ∈ P1 ∪ P2, andsY (x) ≥ 0 ∀x ∈ V \Y

}

such that‖sY ‖1 ≤ max{k(T), l(T)} .
It remains to show thatsY is a feasible solution toLPTY

. But this follows from the
fact that every minimal proof ofTY contains a member ofP1 ∪ P2.

This concludes Case 2 and completes the proof of the existence of the desired solu-
tion sY .

12 Ferdinando Cicalese and Martin Milanič

We now present a polynomial-time algorithm that computes the solutionsY de-
scribed in Lemma 4.

Since game trees are monotone functions, the value ofUB can be computed in
linear time by a single bottom-up traversal of the tree, in the same manner as the game
treeT would be evaluated—with the exception that infinite values are allowed. More
precisely, we haveUB = T (σU) ∈ R∪ {∞}, whereσU is the assignment that extends
σY by assigning to every unevaluated leaf the value∞.

If we are inCase 1, then we compute the setHU in linear time by a single bottom-
up traversal of the tree, as follows. We associate to each nodex of T a setH(x) ⊆ V .

If x is a leaf, then letH(x) = {x}\Y . For an internal nodex, let C(x) denote the
set of children ofx.

If x is a MAX node, then let

H(x) =

{

∅, if H(y) = ∅ for all y ∈ C(x);
H(y), wherey ∈ C(x) such thatH(y) 6= ∅ otherwise.

If x is a MIN node, then let

H(x) =

{

∅, if ∃y ∈ C(x) such thatH(y) = ∅;
∪{H(y) : y ∈ C(x)}, otherwise.

For every nodex of the game tree, letFU
x denote the set of maxterms of the game

tree defined by the subtree ofT rooted atx. Moreover, letFU
Y (x) denote the set of

all inclusion-wise minimal sets in the set{CU\Y : CU ∈ FU
x }. It can be proved by

induction on the height of the subtree rooted atx that for each nodex of T ,

H(x) =

{

a minimal hitting set ofFU
Y (x), if FU

Y (x) 6= {∅};
∅, otherwise.

Clearly, the desired setHU is then given byH(r) wherer is the root ofT .

If we are in Case 2, then we will show how to compute in polynomial time an
optimal solutionsY to the linear program

{

Minimize ‖sY ‖1 s.t.
∑

x∈P

sY (x) ≥ 1 ∀P ∈ P1 ∪ P2, andsY (x) ≥ 0 ∀x ∈ V \Y

}

.

As shown above, such a solution will be feasible forLPTY
and will satisfy‖sY ‖1 ≤

max{k(T), l(T)} .
There could be exponentially many constraints in this linear program. Nevertheless,

we will show that the separation problem can be solved in polynomial time. Using the
ellipsoid method, an optimal solution to the above linear program can be found with
only polynomially many calls to the separation oracle [11].

Let sY be a rational vector inRV \Y . We may assume thatsY (x) ≥ 0 for every
x ∈ V \Y , for otherwise we have a separating hyperplane.

To verify whether
∑

x∈P sY (x) ≥ 1 for everyP ∈ P1∪P2, we proceed as follows.

Computing with Priced Information 13

First, we compute the value ofα := min{
∑

x∈P sY (x) : P ∈ P1}, together
with a P ∈ P1 such that

∑

x∈P sY (x) = α. If α < 1, we output the character-
istic vector ofP as a separating hyperplane. Otherwise, we compute the valueof
β := min{

∑

x∈P sY (x) : P ∈ P2}, and proceed similarly.
The following observations show that these computations can be carried out in poly-

nomial time.
LetFL

≥UB
denote the set of minterms ofT of value at leastUB . Similarly, letFU

<UB

denote the set of maxterms ofT of value less thanUB . Then:

– α = min{
∑

x∈CL\Y sY (x) : CL ∈ FL
≥UB

};

β = min{
∑

x∈CU\Y sY (x) : CU ∈ FU
<UB

}.
This follows directly from the definitions ofα, β and the two familiesP1, P2.

– For everyw : V → R∪{∞}, a mintermC ∈ FL minimizingw(C) :=
∑

x∈C w(x)
over all minterms can be computed in polynomial time. Similarly, a maxtermC ∈
FU minimizingw(C) over all maxterms can be computed in polynomial time.
Using the recursive structure of the minterms (maxterms), it is easy to see that
such a minterm (maxterm) can be computed in linear time by a single bottom-up
traversal of the treeT .

– A mintermCL ∈ FL
≥UB

of T that minimizes the quantity
∑

x∈CL\Y sY (x) over all

C ∈ FL
≥UB

can be computed in polynomial time.
This follows from the previous observation, by definingw : V → R ∪ {∞} as
follows:

w(x) =

sY (x), if x ∈ V \Y
0, if x ∈ Y andσY (x) ≥ UB ;
∞, otherwise.

Let CL be a minterm minimizingw(CL). Since the setFL
≥UB

is nonempty, and
w(C) is finite precisely forC ∈ FL

≥UB
, the mintermCL must belong toFL

≥UB
.

But clearly, for allC ∈ FL
≥UB

, we havew(C) =
∑

x∈C w(x) =
∑

x∈C\Y sY (x).

– A maxtermCU ∈ FU
<UB

of T that minimizes the quantity
∑

x∈CU\Y sY (x) over

all C ∈ FU
<UB

can be computed in polynomial time.
This statement can be proved in a similar manner.

This concludes the description of the polynomial-time separation procedure, and with
it the proof of the lemma. ⊓⊔

The following result follows from Lemmas 1 and 4 and Theorem 3.

Corollary 1 Let T be a game tree, and letr ≥ 1. If each certificate ofT has size at
least 2 thenγr(T) = r · max{k(T), l(T)} − r + 1 . Moreover, there is a polynomial
time algorithm for evaluating game trees each certificate ofwhich has size at least 2
with optimalr-extremal competitiveness, for eachr ≥ 1.

In the case when not all the certificates ofT are of size at least 2, it is possible to im-
prove the upper bound. We letp(T) (q(T)) denote the number of minterms (maxterms)
of T of size 1.

14 Ferdinando Cicalese and Martin Milanič

Theorem 5 Let T be a game tree with at least two leaves. Ifp(T) ≥ 1, thenγr(T) =
r·max{k(T), l(T)−p(T)}−r+1. Similarly, ifq(T) ≥ 1, thenγr(T) = r·max{k(T)−
q(T), l(T)} − r + 1.

The following two lemmas provide the matching bounds.

Lemma 5 LetT be a game tree with at least two leaves. Ifp(T) ≥ 1 (and thenq(T) =
0), thenγr(T) ≥ r ·max{k(T), l(T)− p(T)}− r+1. Similarly, ifq(T) ≥ 1 (and then
p(T) = 0), thenγr(T) ≥ r · max{k(T)− q(T), l(T)} − r + 1.

Proof. We shall only prove that ifp(T) ≥ 1, thenγr(T) ≥ r · max{k(T), l(T) −
p(T)} − r + 1. The proof of the other inequality is similar.

For simplicity, let us writep = p(T) and l = l(T). Let p ≥ 1. First, note that
the inequalityγr(T) ≥ r(k(T) − 1) + 1 is proved exactly the same as in the proof of
Theorem 1.

It remains to proveγr(T) ≥ r(l − p − 1) + 1. Note that, since every maxterm
intersects every minterm, we havel ≥ p. If l = p, the inequality holds true. Assume
now that l > p. Let X ⊆ V denote the set of leaves ofT that correspond to the
minterms of size 1, and letC be a largest maxterm ofT . ThenX is a proper subset
of C.

Consider an algorithmA for evaluatingT . We construct an assignmentσA which
is ‘bad’ for A. For x ∈ C\X , we setc1(x) = 1, andc0(x) = r. For x 6∈ C\X , we
setc1(x) = c0(x) = 0. For all variables inC\X but the last one read byA we set
σA(x) = 0. All the other variables are set to 1. The algorithm spendsr(|C|−p−1)+1
to prove thatT (σA) = 1. In fact, sinceC is a maxterm,A cannot conclude thatT
evaluates to 1 before reading all variables inC. On the other hand, it is easy to see that
the cheapest proof costs exactly 1. Thus,γr(T) ≥ r(l − p − 1) + 1 and the proof is
complete. ⊓⊔

Lemma 6 Let T be a game tree with at least two leaves. Ifp(T) ≥ 1, thenγr(T) ≤
r·max{k(T), l(T)−p(T)}−r+1. Similarly, ifq(T) ≥ 1, thenγr(T) ≤ r·max{k(T)−
q(T), l(T)} − r + 1.

Proof. We shall show the first statement only: ifp := p(T) ≥ 1, thenγr(T) ≤ r ·
max{k(T), l(T)− p} − r + 1. The other statement can be proved similarly.

First, consider the case whenT is of the formT = max{x1, . . . , xp}. Then, every
algorithm must query all the variables in order to evaluateT , andγr(T) = 1 (indepen-
dently ofr).

Otherwise,T can be written in the formT = max{x1, . . . , xp, T
′} whereT ′ is

a game tree overV ′ := V \{x1, . . . , xp}. By Lemma 1, it is sufficient to show that
there is an implementationLP of the LPA∗ such that, for each subsetY ⊂ V of
queried variables, the solutionsY (·) to theLPTY

chosen by theLP satisfies‖sY ‖1 ≤
max{k(T), l(T)− p} .

ForY = ∅, we letLP chooses∅ as the characteristic vector of the singleton{x1}.
It is easy to see thats∅ is a feasible solution toLPT such that‖s∅‖1 = 1. Then,LP

reads the variablex1 (settingY = {x1}), and proceeds in the same manner: when

Computing with Priced Information 15

Y = {x1, . . . , xi}, for 1 ≤ i < p, we letLP choosesY ∈ R
V \Y as the characteristic

vector of the singleton{xi+1}.
WhenY = {x1, . . . , xp}, the restricted function is of the form

TY = max{C, T ′} ,

whereC = max1≤i≤p{xi(σ)}. Moreover,C is a lower bound on the function’s value.
It is easy to see that, for everyY ′ ⊆ V such that{x1, . . . , xp} ⊆ Y ′, and every

corresponding assignmentσY ′ , any active minterm ofT ′ is an active minterm ofT , and
vice versa, and any active maxterm ofT ′ is the intersection of an active maxterm ofT
with the setV ′, and vice versa. Thus, one can use the same approach as in the proof of
Lemma 4 to show that there is a solutionsY ′ to theLPT

Y′ such that

‖sY ′‖1 ≤ max{k(T ′), l(T ′)} = max{k(T), l(T)− p} .

This concludes the proof. (The proof assumed that all costs were positive. The proof
could easily be modified to take care of the zero costs as well.The variables with zero
costs would be queried before the others, and the solutionssY could be chosen so to
assure that any variable with positive cost from the set{x1, . . . , xp} is queried before
any variable with positive cost from the setV \{x1, . . . , xp}. Then, the same arguments
as above would apply.) ⊓⊔

The following theorem summarizes our findings on the (r-)extremal competitive-
ness for game trees.

Theorem 6 LetT be a game tree. Then

γ(T) =

{

max{k(T), l(T)}, if p(T) = q(T) = 1;
max{k(T)− q(T), l(T)− p(T)}, otherwise.

Furthermore, for eachr ≥ 1, we haveγr(T) = r·γ(T)−r+1, and there is a polynomial
time algorithm for evaluating game trees with optimalr-extremal competitiveness, for
eachr ≥ 1.

5 Concluding Remarks

We believe that the value dependent cost model deserves further investigation, as called
by its applications in several situations, particularly inthe medical setting. The study of
this model with respect to theγc competitiveness is a main direction for continued re-
search. Remarkably, already the situation of AND/OR tree functions, whose certificates
have a simpler structure than those of the game trees, seems to be challenging. We also
remark that the existence of an optimalγc-competitive algorithm for game tree function
is still an open problem even in the more classical value independent cost model.

Acknowledgment. We are grateful to Mike Paterson for suggesting to us the idea of
studying the value dependent cost model.

16 Ferdinando Cicalese and Martin Milanič

References

1. E. Boros and T.̈Unlüyurt. Diagnosing double regular systems.Annals of Mathematics and
Artificial Intelligence, 26(1-4):171–191, 1999.

2. M. Charikar, R. Fagin, V. Guruswami, J. M. Kleinberg, P. Raghavan, and A. Sahai. Query
strategies for priced information.Journal of Comp. and Syst. Sc., 64:785–819, 2002.

3. F. Cicalese and E. S. Laber. A new strategy for querying priced information. InProc. of the
37th Annual ACM Symposium on Theory of Computing, pages 674–683. 2005.

4. F. Cicalese and E. S. Laber. An optimal algorithm for querying priced information: Monotone
Boolean functions and game trees. InProc. of ESA 2005, LNCS3669, pp. 664–676. 2005.

5. F. Cicalese and E. S. Laber. On the competitive ratio of evaluating priced functions. InProc.
of SODA’06, pages 944–953, 2006.

6. F. Cicalese and E. S. Laber. Function evaluation via linear programming in the priced infor-
mation model. InProc. of ICALP 2008, LNCS5125, pp. 173–185. 2008.

7. C. G. Diderich. A bibliography on minimax trees.SIGACT News, 24(4):82–89, 1993.
8. S. O. Duffuaa and A. Raouf. An optimal sequence in multicharacteristics inspection.J.

Optim. Theory Appl., 67(1):79–86, 1990.
9. D. W. Gillies.Algorithms to schedule tasks with and/or precedence constraints. PhD thesis,

Champaign, IL, USA, 1993.
10. R. Greiner, R. Hayward, M. Jankowska, and M. Molloy. Finding optimal satisficing strategies

for and-or trees.Artificial Intelligence, 170(1):19–58, 2006.
11. M. Grötschel, L. Lovász, and A. Schrijver.Geometric Algorithms and Combinatorial Opti-

mization. Springer-Verlag, 1988.
12. R. Heiman and A. Wigderson. Randomized vs. deterministic decision tree complexity for

read-once boolean functions.Computational Complexity, 1:311–329, 1991.
13. J. M. Hellerstein. Optimization techniques for querieswith expensive methods.ACM Trans-

actions on Database Systems, 23(2):113–157, 1998.
14. J. Louis Anthony Cox, Y. Qiu, and W. Kuehner. Heuristic least-cost computation of discrete

classification functions with uncertain argument values.Ann. Oper. Res., 21(1-4):1–30, 1989.
15. Y. Qiu, L. A. Cox Jr., and L. Davis. Guess-and-verify heuristics for reducing uncertainties in

expert classification systems. In D. Dubois and M. P. Wellman, editors,UAI, pages 252–258.
Morgan Kaufmann, 1992.

16. S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.
17. M. Saks and A. Wigderson. Probabilistic Boolean decision trees and the complexity of

evaluating game trees. InProc. of FOCS 1986, pp. 29–38. 1986.
18. P. P. Shenoy. Game trees for decision analysis.Theory and Decision, 44:149–171, 1998.
19. M. Snir. Lower bounds on probabilistic linear decision trees.TCS, 38(1):69–82, 1985.
20. M. Tarsi. Optimal search on some game trees.Journal of the ACM, 30(3):389–396, 1983.
21. P. Turney. Types of cost in inductive concept learning. In Proceedings of Workshop Cost-

Sensitive Learning at the 17th International Conference onMachine Learning, 2000.

Bisher erschienene Reports an der Technischen Fakultät
Stand: 2008-09-05

94-01 Modular Properties of Composable Term Rewriting Systems
(Enno Ohlebusch)

94-02 Analysis and Applications of the Direct Cascade Architecture
(Enno Littmann, Helge Ritter)

94-03 From Ukkonen to McCreight and Weiner: A Unifying View of Linear-Time Suffix
Tree Construction
(Robert Giegerich, Stefan Kurtz)

94-04 Die Verwendung unscharfer Maße zur Korrespondenzanalyse in Stereo
Farbbildern
(André Wolfram, Alois Knoll)

94-05 Searching Correspondences in Colour Stereo Images – Recent Results Using the
Fuzzy Integral
(André Wolfram, Alois Knoll)

94-06 A Basic Semantics for Computer Arithmetic
(Markus Freericks, A. Fauth, Alois Knoll)

94-07 Reverse Restructuring: Another Method of Solving Algebraic Equations
(Bernd Bütow, Stephan Thesing)

95-01 PaNaMa User Manual V1.3
(Bernd Bütow, Stephan Thesing)

95-02 Computer Based Training-Software: ein interaktiver Sequenzierkurs
(Frank Meier, Garrit Skrock, Robert Giegerich)

95-03 Fundamental Algorithms for a Declarative Pattern Matching System
(Stefan Kurtz)

95-04 On the Equivalence of E-Pattern Languages
(Enno Ohlebusch, Esko Ukkonen)

96-01 Static and Dynamic Filtering Methods for Approximate String Matching
(Robert Giegerich, Frank Hischke, Stefan Kurtz, Enno Ohlebusch)

96-02 Instructing Cooperating Assembly Robots through Situated Dialogues in Natural
Language
(Alois Knoll, Bernd Hildebrand, Jianwei Zhang)

96-03 Correctness in System Engineering
(Peter Ladkin)

96-04 An Algebraic Approach to General Boolean Constraint Problems
(Hans-Werner Güsgen, Peter Ladkin)

96-05 Future University Computing Resources
(Peter Ladkin)

96-06 Lazy Cache Implements Complete Cache
(Peter Ladkin)

96-07 Formal but Lively Buffers in TLA+
(Peter Ladkin)

96-08 The X-31 and A320 Warsaw Crashes: Whodunnit?
(Peter Ladkin)

96-09 Reasons and Causes
(Peter Ladkin)

96-10 Comments on Confusing Conversation at Cali
(Dafydd Gibbon, Peter Ladkin)

96-11 On Needing Models
(Peter Ladkin)

96-12 Formalism Helps in Describing Accidents
(Peter Ladkin)

96-13 Explaining Failure with Tense Logic
(Peter Ladkin)

96-14 Some Dubious Theses in the Tense Logic of Accidents
(Peter Ladkin)

96-15 A Note on a Note on a Lemma of Ladkin
(Peter Ladkin)

96-16 News and Comment on the AeroPeru B757 Accident
(Peter Ladkin)

97-01 Analysing the Cali Accident With a WB-Graph
(Peter Ladkin)

97-02 Divide-and-Conquer Multiple Sequence Alignment
(Jens Stoye)

97-03 A System for the Content-Based Retrieval of Textual and Non-Textual
Documents Based on Natural Language Queries
(Alois Knoll, Ingo Glöckner, Hermann Helbig, Sven Hartrumpf)

97-04 Rose: Generating Sequence Families
(Jens Stoye, Dirk Evers, Folker Meyer)

97-05 Fuzzy Quantifiers for Processing Natural Language Queries in Content-Based
Multimedia Retrieval Systems
(Ingo Glöckner, Alois Knoll)

97-06 DFS – An Axiomatic Approach to Fuzzy Quantification
(Ingo Glöckner)

98-01 Kognitive Aspekte bei der Realisierung eines robusten Robotersystems für
Konstruktionsaufgaben
(Alois Knoll, Bernd Hildebrandt)

98-02 A Declarative Approach to the Development of Dynamic Programming
Algorithms, applied to RNA Folding
(Robert Giegerich)

98-03 Reducing the Space Requirement of Suffix Trees
(Stefan Kurtz)

99-01 Entscheidungskalküle
(Axel Saalbach, Christian Lange, Sascha Wendt, Mathias Katzer, Guillaume
Dubois, Michael Höhl, Oliver Kuhn, Sven Wachsmuth, Gerhard Sagerer)

99-02 Transforming Conditional Rewrite Systems with Extra Variables into
Unconditional Systems
(Enno Ohlebusch)

99-03 A Framework for Evaluating Approaches to Fuzzy Quantification
(Ingo Glöckner)

99-04 Towards Evaluation of Docking Hypotheses using elastic Matching
(Steffen Neumann, Stefan Posch, Gerhard Sagerer)

99-05 A Systematic Approach to Dynamic Programming in Bioinformatics. Part 1 and
2: Sequence Comparison and RNA Folding
(Robert Giegerich)

99-06 Autonomie für situierte Robotersysteme – Stand und Entwicklungslinien
(Alois Knoll)

2000-01 Advances in DFS Theory
(Ingo Glöckner)

2000-02 A Broad Class of DFS Models
(Ingo Glöckner)

2000-03 An Axiomatic Theory of Fuzzy Quantifiers in Natural Languages
(Ingo Glöckner)

2000-04 Affix Trees
(Jens Stoye)

2000-05 Computergestützte Auswertung von Spektren organischer Verbindungen
(Annika Büscher, Michaela Hohenner, Sascha Wendt, Markus Wiesecke, Frank
Zöllner, Arne Wegener, Frank Bettenworth, Thorsten Twellmann, Jan
Kleinlützum, Mathias Katzer, Sven Wachsmuth, Gerhard Sagerer)

2000-06 The Syntax and Semantics of a Language for Describing Complex Patterns in
Biological Sequences
(Dirk Strothmann, Stefan Kurtz, Stefan Gräf, Gerhard Steger)

2000-07 Systematic Dynamic Programming in Bioinformatics (ISMB 2000 Tutorial Notes)
(Dirk J. Evers, Robert Giegerich)

2000-08 Difficulties when Aligning Structure Based RNAs with the Standard Edit Distance
Method
(Christian Büschking)

2001-01 Standard Models of Fuzzy Quantification
(Ingo Glöckner)

2001-02 Causal System Analysis
(Peter B. Ladkin)

2001-03 A Rotamer Library for Protein-Protein Docking Using Energy Calculations and
Statistics
(Kerstin Koch, Frank Zöllner, Gerhard Sagerer)

2001-04 Eine asynchrone Implementierung eines Microprozessors auf einem FPGA
(Marco Balke, Thomas Dettbarn, Robert Homann, Sebastian Jaenicke, Tim
Köhler, Henning Mersch, Holger Weiss)

2001-05 Hierarchical Termination Revisited
(Enno Ohlebusch)

2002-01 Persistent Objects with O2DBI
(Jörn Clausen)

2002-02 Simulation von Phasenübergängen in Proteinmonoschichten
(Johanna Alichniewicz, Gabriele Holzschneider, Morris Michael, Ulf Schiller, Jan
Stallkamp)

2002-03 Lecture Notes on Algebraic Dynamic Programming 2002
(Robert Giegerich)

2002-04 Side chain flexibility for 1:n protein-protein docking
(Kerstin Koch, Steffen Neumann, Frank Zöllner, Gerhard Sagerer)

2002-05 ElMaR: A Protein Docking System using Flexibility Information
(Frank Zöllner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

2002-06 Calculating Residue Flexibility Information from Statistics and Energy based
Prediction
(Frank Zöllner, Steffen Neumann, Kerstin Koch, Franz Kummert, Gerhard
Sagerer)

2002-07 Fundamentals of Fuzzy Quantification: Plausible Models, Constructive
Principles, and Efficient Implementation
(Ingo Glöckner)

2002-08 Branching of Fuzzy Quantifiers and Multiple Variable Binding: An Extension of
DFS Theory
(Ingo Glöckner)

2003-01 On the Similarity of Sets of Permutations and its Applications to Genome
Comparison
(Anne Bergeron, Jens Stoye)

2003-02 SNP and mutation discovery using base-specific cleavage and MALDI-TOF mass
spectrometry
(Sebastian Böcker)

2003-03 From RNA Folding to Thermodynamic Matching, including Pseudoknots
(Robert Giegerich, Jens Reeder)

2003-04 Sequencing from compomers: Using mass spectrometry for DNA de-novo
sequencing of 200+ nt
(Sebastian Böcker)

2003-05 Systematic Investigation of Jumping Alignments
(Constantin Bannert)

2003-06 Suffix Tree Construction and Storage with Limited Main Memory
(Klaus-Bernd Schürmann, Jens Stoye)

2003-07 Sequencing from compomers in thepresence of false negative peaks
(Sebastian Böcker)

2003-08 Genalyzer: An Interactive Visualisation Tool for Large-Scale Sequence Matching
– Biological Applications and User Manual
(Jomuna V. Choudhuri, Chris Schleiermacher)

2004-01 Sequencing From Compomers is NP-hard
(Sebastian Böcker)

2004-02 The Money Changing Problem revisited: Computing the Frobenius number in
time

O(k a1)
(Sebastian Böcker, Zsuzsanna Lipták)

2004-03 Accelerating the Evaluation of Profile HMMs by Pruning Techniques
(Thomas Plötz, Gernot A. Fink)

2004-04 Optimal Group Testing Strategies with Interval Queries and Their Application to
Splice Site Detection
(Ferdinando Cicalese, Peter Damaschke, Ugo Vaccaro)

2004-05 Compressed Representation of Sequences and Full-Text Indexes
(Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, Gonzalo Navarro)

2005-01 Overlaps Help: Improved Bounds for Group Testing with Interval Queries
(Ferdinando Cicalese, Peter Damaschke, Libertad Tansini, Sören Werth)

2005-02 Two batch Fault-tolerant search with error cost constraints: An application to
learning
(Ferdinando Cicalese)

2005-03 Searching for the Shortest Common Supersequence
(Sergio A. de Carvalho Jr., Sven Rahmann)

2005-04 Counting Suffix Arrays and Strings
(Klaus-Bernd Schürmann, Jens Stoye)

2005-05 Alignment of Tandem Repeats with Excision, Duplication, Substitution and
Indels (EDSI)
(Michael Sammeth, Jens Stoye)

2005-06 Statistics of Cleavage Fragments in Random Weighted Strings
(Hans-Michael Kaltenbach, Henner Sudek, Sebastian Böcker, Sven Rahmann)

2006-01 Decomposing metabolomic isotope patterns
(Sebastian Böcker, Zsuzsanna Lipták, Anton Pervukhin)

2006-02 On Common Intervals with Errors
(Cedric Chauve, Yoan Diekmann, Steffen Heber, Julia Mixtacki, Sven Rahmann,
Jens Stoye)

2007-01 Identifying metabolites with integer decomposition techniques, using only their
mass spectrometric isotope patterns
(Sebastian Böcker, Matthias C. Letzel, Zsuzsanna Lipták, Anton Pervukhin)

2007-02 2-Stage Fault Tolerant Interval Group Testing
(Ferdinando Cicalese, José Augusto Amgarten Quitzau)

2008-01 Online Abelian Pattern Matching
(Tahir Ejaz, Sven Rahmann, Jens Stoye)

2008-02 A Space Efficient Representation for Sparse de Bruijn Subgraphs
(José Augusto Amgarten Quitzau, Jens Stoye)

