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1. Introduction

The theory of competition among monopolistic or oligopolistic firms constitutes one
of the most extensive research subjects in economics today. It forms the core part
of the theory of industrial organisation which has become one of the dominating
fields in the past decade. With the development of new concepts and techniques in
game theory, oligopoly theory now presents itself in a broader theoretical
framework which is much more capable to analyse the complex structure of
strategic interaction among economic agents than the traditional one shot full
information analysis of static oligopoly theory. In fact it seems that the general
dissatisfaction of researchers with the weak descriptive power of static equilibria
lead them to analyse, for example, issues of sequential decision making and/or
asymmetries in oligopolies. As a consequence some of the fundamental problems of
static oligopoly theory were left aside in spite of the fact that their solutions would
have an essential influence on more complex strategic models.

Most of the oligopoly models in particular within the literature of industrial
organization are presented in a partial equilibrium framework. Until recently no
satisfactory general equilibrium approach was available to investigate to what extent
the qualitative properties of the partial equilibrium models carry over to a fully
closed economy. The lack of a satisfactory general equilibrium oligopoly model is
particularly disturbing in the context of normative issues since neither productive
efficiency nor Pareto optimality can be examined properly. One other fundamental
issue is to what extent economies with large oligopolistic markets approximate
competitive economies. The available general equilibrium literature in this area
pursues the so called Cournotian approach (for a good account of the literature see
the special issue of Journal of Economic Theory, Volume 22, Number 2, 1980).
One of the prevailing criticisms against this theory centers around the point that it
fails to explain how prices are formed, since firms act strategically on quantities
while the price setting apparently still requires a Walrasian auctioneer. Bertrand’s
proposal of strategic price setting is considered to be an acceptable solution to this
problem making Cournot's model less convincing. The disturbing and counter
intuitive consequence of Bertrand price competition, however, is that competitive
equilibrium prices apparently require only two firms which constitutes a paradox to
some researchers (Tirole 1988). To resolve it additional restrictions like capacity
constraints, increasing marginal cost, and elements of rationing are introduced into
the partial equilibrium models to avoid the effect of too much market power of a
single firm. But even under these additional restrictions the available limit results
(e.g. Allen and Hellwig 1986 ab) are derived in a partial equilibrium framework



and their relationship to the limit results of the Cournotian general equilibrium
approach remain unclear.

The essential difference between the partial and the general equilibrium approach
to oligopoly rests in the way 1) how profits earned by oligopolistic firms enter the
demand functions faced by oligopolists and 2) how feasibility constraints on markets
for input factors required by oligopolists are influenced by the interaction of
oligopolistic firms. Typically these markets are taken to be competitive. The partial
equilibrium theory of oligopoly typically ignores all income effects as well as the
feasibility considerations embodied in 1) and 2). An analysis of these effects is
particularly important in models with Bertrand price competition since they
influence the feasible strategic possibilities of each firm. If, for example, a firm
undercuts the market price of the competitors who loose all of their sales, then the
demand function faced by the deviator must have shifted because of an income loss
(wages and profits) of consumers. Simultaneously, labor market conditions must
change, since zero production by the competitors implies zero factor demand. Thus,
for Bertrand equilibria in general rather than in partial equilibrium, a consistent
integration of these features is essential. Along similar lines of reasoning one finds
that income effects in economies with an increasing number of firms cannot be
ignored if firms operate under strictly decreasing returns. In this case aggregate
profits imply changes in demand. Simultaneously, the replication of individual
technologies generate an increase in aggregate productivity.

In a recent paper (1990) the author suggested a general approach to model Arrow-
Debreu economies with oligopolistic firms who take all feasibility and income
effects of their demand and supplies fully into account when setting their own
prices and quantities. One of the outcomes of this general equilibrium objective
demand approach is that in many cases it is not useful to distinguish between price
setting or quantity setting oligopolists. Rather, in the general situation, an
oligopolist must choose prices and quantities simultaneously given the
objective demand set of the rest of the economy which he faces. Within this new
general framework this paper describes and compares the different equilibrium
concepts of Bertrand, Cournot, Edgeworth, and of Walras. One of the important
findings is that Bertrand price competition among producers of homogeneous
products in general equilibrium leads to quite different qualitative results than
those presented in the partial equilibrium literature. The paper analyses the four
equilibrium concepts for a simple class of strictly convex economies with two
commodities, one consumer and an arbitrary finite number of identical firms, as



well as for the limiting case when the number of firms tends to infinity.

2. Objective Demand Functions

Consider a private ownership economy with one consumer, n 2 1 identical firms,
and two commodities, output x 2 0 and input (labor) I 2 0. The strictly convex
technology of each firm is described by a real cost function (input requirement
function) 1 = ¢(x) for which the following assumption holds:

Assumption Al: ¢ : R, er R, is twice continuously differentiable with ¢(0) = 0,
c'(x) >0, ¢c"'®) >0 for x> 0.

The consumer has no endowment of the output commodity and can supply at most
L > 0 units of labor. He receives all profit income and maximizes utility given
the price p of the output, the wage rate and total profit. The utility function u :
[0L] x Ry e Ry is quasi-concave, strictly monotonic, and twice continuously
differentiable. u(l,x) =6u/8x(l,x) and u(lx) = 6u/6l(l,x) denote the two marginal
utility functions. Monotonicity of u implies uy > 0 and u; < 0. The assumptions
made so far guarantee that for every n 2 1 there exists a unique Walrasian
equilibrium. If the boundary condition -u(0,0)/u,(0,0) > ¢'(0) holds then all
equilibrium prices, quantities, and profits are positive.

In order to analyze non-competitive equilibria in this economy the demand
behavior of the consumer is best described by the appropriate objective inverse
demand function (see Boéhm (1990)). For a given wage rate w, > 0, let

Uy (I,X)

P = -W —“‘—ul ) = -wy R (Ix)

denote the nominal price the consumer is willing to pay for the quantity x if he
chooses the consumption plan (1,x). The function R is the marginal rate of
substitution, i.e. it defines the relative supporting price for each consumption plan
(1,x). Hence, (1,x) is a utility maximizing supply and demand bundle at prices (w,p)
and for the total income I = wages + profit = wyl + (px - wgl) =px.

Assumption A2: Ry € 0 and R, < 0 with at least one strict inequality.

Assumption A2 stipulates that both commodities are normal and that the marginal
rate of substitution is not constant. '
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For an economy with n firms, called economy n, let

n
Xy = [( Xt ) 2 0| S cx) < T

n <
=1

denote the set of all feasible output plans. Under Al, X, is a non-empty, compact,
convex set. The maximal producible output y, for economy n is given by

n
> xi
]

=1

y, = max (XpyeeXy ) € Xy

Due to Al, |)7,,} is a strictly increasing sequence in n. lim y, for n e oo is finite
if and only if ¢(0) > 0. For the remainder of the paper set w, = 1. Then the
objective inverse demand function D" : X, e R4 is defined by

n

D (x;y..0X,) = R(Z c(x;) , nZ X{ )
=1

1=1

D" describes for all feasible output plans those prices at which the bundle
(LX) = (Tc(xj), Exj) is utility maximizing given the consumer receives all profits,
ie. D" incorporates all income effects as well as labor and commodity market
feasibility. For most of the analysis in this paper firms’ equilibrium decisions will
be symmetric since their technologies are identical. In this situation it is convenient
to use the "aggregate" inverse demand function

D,(x) = D (%-;‘T)

and the "individual" inverse demand function
d,(x) = D(x...x)
= R (n¢(x), nx).
It is clear from the definitions that for n=1 all of these functions coincide, i. e.
D!(x) = R (¢(x),x) = D(x) = d;(x).

Given the assumptions Al and A2 it is now straightforward to verify the properties
of the objective demand functions in the following proposition.



Proposition 1: Al and A2 imply for all n < 1 and ail x > 0:
() da(® <0 Dy <0
(i)  dy (x) > dp+ 1 (®)

(ili) Dps,(x) > Dy (X) if R, < 0.

In other words, both demand functions, “individual" as well as "aggregate”, are
downward sloping in the conventional price-quantity diagram. Moreover, as the
number of firms increases the aggregate demand function shifts to the right and
outward due to income effects, while the individual demand function shifts to the
left due to efficiency gains in production. Both properties are of course only
different aspects of the same effect. The assumption of a single consumer simplifies
the analysis substantially. With more than one consumer and/or with weaker
assumptions than A2, the objective inverse demand function no longer needs to be
downward sloping (see Bohm (1990)). If R, = R, = 0, then the objective inverse
demand is a constant function independent of the technology. In this case Walras
and Cournot equilibria coincide.

3. Bertrand versus Walras

A competitive equilibrium or Walras equilibrium for the economy n 2 1 consists
of a price p¥ and outputs (X} ,..., xy) such that

py = D*(xY,.... x7)
pY = c'(x¥) i=1,.n

Since the cost functions are identical for all firms a Walrasian equilibrium must be
symmetric, ie. x¥ = x7 al i,j = 1 ,., n Hence, the set of Walrasian equilibria
for the economy n 2 1 can be written as

WE, = | (p) € B3| p = 4,(9 = 't |.
Assumption A3: limosup D,(x) > ¢'(0) and c'(y;) > Dy(yy).

Then one can demonstrate the following proposition.

Proposition 2: Assumption Al - A3 imply that for every n 2 1



Proposition 2: Assumption Al - A3 umply that for every n 2 1

(1) WE, consists of a wugque strictly positive pair (Py, X3).

oo
(11) {(p:' . ,\(:)in_i is a strictly decreasing sequence,

(iii) lim p¥= Min E(X"—) = ¢'(0)

n . o0

lim = 0.

n —oo

Figure 1

Proposition 2 is the general equilibrium analogue of the standard text book partial
equilibrium analysis in a market with free entry and increasing marginal costs. The
normality of output and leisure which is responsible for the downward sloping
demand curve simultaneously drives the limit result, since aggregate demand for



any given price increases with the number of firms and associated higher profits.
Figure 1 describes the typical situation for an. economy n > 1. MC and AC
denote the marginal and average cost curves respectively of a single firm.

According to any of the standard presentations of Bertrand price competition in a
homogeneous market (see e.g. Tirole (1988)), firms share aggregate demand in
some way or another if they all charge the same price. Any firm deviating from
such a situation will loose all of its demand if it increases its price above the
common level. It will "attract the whole market' if it lowers its price below the
common level thereby forcing all other firms to a zero sales position. In a general
equilibrium model such a decision to undercut everybody else has two effects,
which are ignored in the partial equilibrium setting. First, if all the other firms are
forced to produce zero output, they reduce their factor demand to zero. Hence,
their profit is zero creating an income loss for consumers. Thus, the demand
function faced by the deviator must shift because of a nonnegligeable income effect.
Second the deviating firm is the only one generating employment. Labor market
clearing by one firm then implies a loss in aggregate productivity because of strictly
decreasing returns. The general equilibrium analysis here fully incorporates both
effects since the objective inverse demand function with one firm alone is well
defined. Therefore feasibility considerations and the demand behavior of the
consumer imply that the deviating firm faces the objective inverse demand function
D,, no matter how many other competitors there are in the economy. This leads to
the following definition of a Bertrand equilibrium.

Definition: 4 list (P, Xq ey X,) is a Bertrand equilibrium for the economy T 2 2, if

(l) p = Dn (xl ey xn)

(ii) for evey i = 1 ,.,n:

(,p') such that p' < p and p'x- () > Px - c(x)
implies p' = D, (x)).

Condition (i) simply states that firms charge the same price. (ii) excludes the
possibility of feasible and profitable downward deviations from the common price.
Although there are non-symmetric equilibria in general, only the symmetric ones
will be discussed here in detail. The set of symmetric Bertrand equilibria BE, for
economy n 2 2 consists of all pairs (x,p) €RZ with p = d,(x) such that ', p)
with p' < p and p'x' - ¢(x') > px - c(x) implies p' = D,(x).



One immediately observes that the price in any Bertrand equilibrium must be less
than or equal to p¥ the Walrasian price in economy I, since otherwise small price
reductions are always beneficial. Moreover the set BE; is always non-empty.
Consider the price p, which implies zero profit in economy 1, ie. p; = Dy(x) =
c(x)/x. Then, (x,. Bx—) € BE, if p, = d,(x,), since setting a price lower than p,
implies a loss to the deviator. Continuity of the profit function then suggests that
the same argument can be made for a whole interval of prices around p, for all
n 2 2. Hence, one finds that there exists a continuum of symmetric Bertrand
equilibria. The precise formulation of these findings is given in Proposition 3.

Proposition 3: Assume Al - A3.
For every economy n 2 2 :
(i)  there exist prices Py > P,
with Y > Po > P > P > €(0)
such that
BE, = | (xp) €RI| B, 2P 2D, P = 4 |

(i) Pa > PY > Pn s

ie. WEn € BEn ,
(iii) I-)-n > I;ni-l and Linjooﬁn =P
. . T _
(iv) P, > Pns1 and Lxglwgn = lim _py= c(0).

The proposition substantially modifies the partial equilibrium results and the typical
folklore of the effects of price competition in homogeneous markets. Most
importantly, (i) states that price competition of the Bertrand type does not lead to
a determinate result since a non-degenerate interval of prices is the outcome.
ii) states that Walrasian equilibria are always immune to price cutting for any size
of the economy. (iii) and (iv) indicate that the indeterminacy prevailing in any
finite market does not disappear as the market grows, but rather increases
downward. This shows that, as the number of competitors grows, individual market
power forces the maximum Bertrand price down. At the same time, however, more
low non-competitive prices become immune to price cutting. Hence with increasing
competition any single firm looses its market power at low prices since it cannot
maintain the same productivity as several separate firms jointly. Finally, as a



consequence of the Proposition it is immediate that the set of all (symmetric and
non-symmetric) Bertrand equilibria has full measure in R™' since the inverse
demand function D" and therefore profits are continuous. However, all of the non-
symmetric equilibria are inefficient because cost functions are equal.

Proof:

(i) Consider the regular demand functions f, = d;'and F = D;j! and define the
function

H,: [p, pf] = R by
H.(p) = p f.(p) - c(f,@) - [ p F(p) - c¢(Fp) 1.

Because of Al - A3, one easily verifies that
H)(p) < 0 and H,(p;) < 0 < H,(pP-

Therefore there exists a unique p, such that H,(f,) = O and p¥ > p, > p,
with the same profit for the firm on d, and on D,. On the other hand, H.(p)< 0
implies that all p € [p, , p,] are Bertrand prices.

Let p, = dy(x) = ¢(x)/x. Proposition 1 implies that p, < p,. Moreover, for all
P € [pn, py) one has

P fu(P) - cfa@) 2 0 > p F(p) - c«(Fp)) ,
which proves (i).
(ii) is a straightforward consequence of the fact that x§ maximizes any firms profit

at pp.

(iii) Proposition 1 implies that H,,,(p,) < H.(p,) = 0. Therefore, p,,; < Pp,
follows from the fact that H,,,(p) < 0. Suppose lim p, = p > p;. Let

n— OO

x, = f(p,)- Then feasibility and the boundedness of n c(x,) implies x, — 0.



This yields

0 < p F(p) - «(Fp)

llmoo [ ﬁn fn(ﬁn) - C(fn(p_n)) ]

n —

1

lim [ py - clg) 1 =0

Hence, lim p, = p,.

n -0

(iv) follows directly from Proposition 1.

QED.

Figure 2

Figure 2 provides a geometric characterization for economy n 2 2. In
addition to the curves plotted in Figure 1, the critical isoprofit contour for
Q = PaX - (%) = P - c(x)) has been inserted with p, = dy(x;) = Di(x)). The
set of Bertrand equilibria BE, consists of the whole line segment of d. for



- 11 -

P € [Py, Pa) Since d, shifts to the left as n increases it is clear that py — MC(0)
and p, —» MC(0). For the same reason p, — p;, so that

BE, — {0} x [MC(0), p,}-

The analysis so far has ignored all boundary problems, assuming in particular that
feasibility considerations are never binding for all equilibria. With increasing
marginal costs it was shown that the size of the market matters for the outcome of
price competition, but that there are too many Bertrand equilibria one of which
always is the Walrasian one. This contrasts sharply with the results of the partial
equilibrium literature claiming that with decreasing returns and/or capacity
constraints Walras equilibria are not Bertrand equilibria (Tirole (1988)) and that
prices converge to the competitive price in large markets (Allen and Hellwig
(1986)). The partial equilibrium literature always uses some form of consumer
rationing which is not needed here. Moreover, a consistent analysis with rationing
in general equilibrium analysis requires a full consideration of spill over effects
between markets, which would lead to a different equilibrium concept with strategic
price and quantity setting in a disequilibrium model.

Edgeworth (1897) introduced capacity constraints for firms in order to "solve" the
Bertrand paradox. These considerations lead to the so-called Bertrand-Edgeworth
equilibria which have been studied extensively in the partial equilibrium literature.
As with the situation of decreasing returns, a general equilibrium analysis of
Bertrand price competition with capacity constraints does not require any form of
consumer rationing. The remdim'ng question then is whether binding capacity
constraints for each individual firm change the results of Propositon 3 in a
substantial way.

In a general equilibrium model binding output constraints for a firm may have two
different causes: 1.) there exist upper bounds for output and/or input quantities
because of a capacity choice, or 2.) limited input availability restricts output. In
both cases the maximal feasible output K for an economy with one firm constitutes
a binding upper bound for the sales of any individual firm, and the lowest feasible
price p;, = D,(K) will be higher in the one firm economy (see Figure 3). This
clearly increases the set of potential Bertrand equilibria since for any
feasible allocation all prices not greater than p, but greater than or equal to
average cost are Bertrand prices for any economy n. Deviations by any firm below
p; vield no feasible allocation. If the maximal Bertrand price p, calculated for the
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case without a capacity constraint is less than the lowest feasible price p) , then the
set of Bertrand equilibria is larger than without the capacity constraint. Since p,
decreases monotonically to p, , this effect appears from some n, on. Proposition 4
states these properties. The proof requires only minor modifications from the one
of Proposition 3 which is not given.

Figure 3

Proposition 4: Assume Al - A3 and consider two technological capacity constraints
0 < K, <K, with xf <K, <K, ff

c(K)
Ki

< Di(K) < Ky,

then the sets of Bertrand equilibria BE (K,) for the constraimts K, , i = 1,2 satisfy

(i) WE, € BE,(K;) ¢ BE,(K) for all m 22
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Moreover, the maximal Bertrand prices satisfy, for all 10 large enough.

(i) 5.(K,) = max [D\(K),p.] > pu(Ky) = max [Di(Ky),Pa! 2 P,
and
(iii) lim p, (K) > lim p, (Ky) 2 p, ,

where P, denotes the maximal Bertrand price for economy N if no capacity constraint €exists.

The results show that binding capacity constraints increase the maximal Bertrand
price, which is above average cost at full capacity output. Thus the set of Bertrand
equilibria, symmetric as well as non-symmetric, increases under capacity constraints.
It should be noted that the analysis assumes that all firms charge the same price at
equilibrium. This is consistant with the consumer model used here, but different
from the typical Bertrand-Edgeworth analysis of partial equilibrium theory which
allows for price differentiation. To introduce this in the general equilibrium model
here seems to require more than one consumer. It seems that this would not
change the general qualitative nature of the results of Proposition 3 and thus the
contrast to the partial equilibrium results of the literature remains.

4. Bertrand versus Cournot

Consider now the quantity oligopoly a la Cournot. If each firm i = 1 .., n
chooses a quantity x; as its strategy, its profit is given by

I (xp, o0 %) = % D%(xy, o X) - (X))
Then, a list (x*), i = 1,.,n is a Cournot equilibrium if for all i = 1,..,n
I (xf, o x3) 2 % D (x,x5) - c(x)
for all x;, 2 0 such that (x, x%) €X,.
Since the cost functions are strictly convex and identical for all firms, any Cournot

equilibrium must be symmetric. Therefore, for all n 2 2, the set of Cournot
equilibria CE, for economy n can be described as a subset of R
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CE, = | (5, pS) €R2|p¢ = d, (xO)]

where x¢ is the best response of each firm and pS$ ist the Cournot equilibrium
price. The necessary first order conditions imply

R (nc(x$)nx§) + x§[Ric'(x) + R,] = ¢'(x)
and Al - A3 yield p§ > pY and x§ < xV.

Proposition 5: Assume Al - A3 and let {(XS, pf)l denote a sequence of Cournot equilibria
such that pS is bounded above and, for all n 2 2, nx$ 2 € for some € > 0. Then

() lim x$ =0 lim ps - c'(0)

n—o0oQ

(11) there exists Ny 2 2 such that for all N 2 ng
CE, ¢ BE, .
Proof: The feasibility constraint nc(x$) < L and Al imply x$ — 0. Since

nx${ 2 & > 0, the derivatives R, and R, remain bounded below by some constant
M < 0. Hence the first order condition implies for all n

ps - W0C|(x§) = R(nc(x5), nx) - w, C|("E)

A5 [Ric'0€) + RJ € -Mx§(c'(xf) + 1)

IA

M (c'(,) + 1)
where x, = c’!(L/n). Therefore,
lim p§ = lim R(nc(x$),nx$) = w, ¢(0)
and there exists n, 2 2 such that p$ < p, for all n 2 ny which proves

CE, ¢ BE, for n 2 n,
' QED



Proposition 5 contains in its first part the general equilibrium analogue of the well
known partial equilibrium result, i.e. quantity competition with free entry yields the
competitive outcome in the limit with zero profit for each firm and the price equal
to the minimum average cost. At the same time with increasing numbers of firms
prices will eventually fall below the critical value p,. Hence Cournot competition
in large markets generates prices which are immune to Bertrand price deviations. It
should be noted, however, that the assumptions A1-A3 do not guarantee the
existence of Cournot equilibria. Thus, for many cases CE, may be empty while
BE, was always non-empty.

5. An Example

Consider the following example of a strictly convex economy. Let the consumer’s
utility function u : [0,L] x R, — R be of the form

=L Ly
u(l,x)-——B—x ¥ 1
with 8 < 0 < 1 £ 7 and let the real cost function ¢ : R, = R, be given by

c(x) = x* x > 1.

If the wage rate w, is equal to one, the demand functions D;, D,, d, are

D(x) = x

n(e-1(7-1) x4

D,(x)

d,(x) = nf7 x4
where A = B - o (7-1) - 1 < 0. One verifies easily that
da(x) < Dy(x) € Dy(x)

for all x > 0 and for all n 2 2. If ¥ > 1, then the second inequality is strict too.
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Walrasian equilibria WE, = (x, p¥) are defined by
py = ') = d,()

This yields
X;V = [ « n7-8 ]1/(6-«7)
pY = [O(A n(7-8)(x-1) ]l/(B-uT) .

« > 1and y 2 1 > B guarantees that

lim pv¥=1lm x¥=0.

n— oo n— oo

Moreover, 8 < 0 guarantees that

lim nc(x) =0,

n - o0

i.e. total labor demand tends to zero. Hence, there exists a finite maximal labor
supply L < 0 , st the equilibria for all economies n are interior feasible
allocations.

Cournot equilibria CE, = ( xff,pf ) must satisfy

X Dy ,
Dy(x) | 1+ o c(x)

n

for every n > 2 and x; = x/n. One finds that (x, D;) / D, = A/n, ie. the
elasticity of demand is independent of the quantity x sold in the market, but it
decreases with the number of firms. The above condition yields the relationship

1

C = ~YMyC
Pr =TS o/ c(x5)

between price and marginal cost, i. e. - A / ( n+A ) is the percentage markup on
marginal cost. The formula shows clearly that the markup goes to zero as the
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number of firms grows which vyields the limiting result. Solving the above
equilibrium condition using d, vields

| L(B-ay )

x(‘: l .nr‘a I

" Il + 4 /n
and

1 A 1/(B=a7)

pS = ‘ [ —_— l n(a—l)(f—a)

" I+ a/n
«>1,721>8 and & < 0 imply

lim x¢ =lim p§ =lim p¥ = 0.

n -- 00 n — 00 n — O0

This confirms the result of Proposition S, that Cournot equilibria converge to
Walras equilibria if the number of firms increases without bound. For Bertrand
equilibria the interval for the prices has to be described. The lowest Bertrand price
p, is simply that price at which n firms supply at zero profit, i.e. p, = ¢ (x,)/ X,
Hence

nB‘T XA = xﬁ'l
yields
Pr = n(r-8)«-1)/(8-ary)

The maximal Bertrand price p, guarantees the same profit for each firm whether
alone or with (n-1) symmetric competitors in the market. Hence, (x,,p,) must satisfy

p—an-X:= Enxl'x?
with p, = d,(x,) and p, = D,(x;). Therefore, p, must be a solution of

(n(r-B)/8 _ 1) p(1+8)/8 _ (px(r-8)/8 . 1) p=/A



This yields
noz(r.B)/A -1 A/(1+A-x)

Pa = nG-8/8 - |

« > 1,7y >B and A < O implies for all n 2 2

(i) Pa > 1 > p,

(if) pY> Py > PV > Ps

(iii) rl,iTocﬁ“ =1
Liriloogn =0.

Therefore, for all n 2 2, BE, is a non-degenerate subset of the graph of d, (see
Figure 2) with lim BE, = {0} x [0,1]. These properties also confirm that for
some n, the Cournot price p§ must be a Bertrand price, since p¢ — 0. Hence
<, p9 € BE, for all n 2 n, Figure 4 summarizes the results of the price
sequences as n grows.

The qualitative features of the example also reveal the fundamental difference
of the effect of price competition and of free entry under constant and under
decreasing returns. With constant returns i.e. « = 1, one finds P = pa = 1 for all
n > 2. Hence Bertrand competition leads to a determinate result even with two
firms. Therefore the number of firms plays no role. With any degree of decreasing
returns, i.e. however small the difference «-1 may be, price competition among
any given number of firms does not yield a determinate outcome. Moreover, free
entry does not reduce the indeterminacy in spite of its impact on the aggregate
technology which displays constant returns in the limit. Thus the limiting case of
free entry does not generate the outcome of the limiting case of the constant
returns technology. The fact that, for any fixed n 2 2, lim (Po -~ Pn) = 0 as x =
| implies that price competition among a given set of firms becomes less
indeterminate and purely competitive in the limit. But free entry prevents in
general that Bertrand price competition implies marginal cost pricing. As a
consequence Bertrand equilibria are not Pareto optimal in general, whereas
Cournot equilibria become Pareto optimal in the limit.



Figure 4
6. Conclusion

The bulk of the literature treats monopolistic competition in a partial equilibrium
setting. This paper has analysed the main noncompetitive equilibrium concepts in a
general equilibrium economy. The results were derived for the simple prototype
text book model of a strictly convex economy with a unique competitive equilib-
rium. The primary purpose of the analysis was not to present the most general
version of a general equilibrium model with oligopolistic firms, but rather to
point out and develop the striking difference of the effects of Bertrand price
competition in general equilibrium as compared to the existing partial equilibrium
literature. The important results are 1) that for every finite number of firms the set
of Bertrand equilibria is a continuum which contains the Cournot as well as the
competitive outcome, and 2) that this indeterminacy does not disappear as the
number of firms tends to infinity.
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With the assumption of only one consumer the general equilibrium description
displays an almost partial equilibrium flavor, in spite of the fact that all income
and feasibility requirements are considered. Under some generalizations to more
than one consumer and more than two commodities, the partial equilibrium flavor
is maintained. In such cases the same type of analysis can be carried out leading to
similar results. However, in the general situation with more than one consumer or
more than two commodities the character of the analysis may change completely.
Even with one consumer and weaker assumptions on preferences, the objective
inverse demand function may no longer be monotonic (see Bohm(1990)). But it is
still true that the general character of equilibria under Bertrand competition
remains, i.e. that there exist many equilibria, that Cournot as well as Walras
equilibria are outcomes, and that the indeterminacy does not disappear as the
number of competitors increases. With a more general structure, however,
additional difficulties arise. The possibility of nonsymmetric equilibria has to be
taken more seriously. Many additional issues such as the existence of monopolistic
equilibria, whether Bertrand, Cournot or Nash in general, may become extremely
difficult to deal with. The conceptional extension of equilibria to situations which
include rationing may become necessary to obtain equilibria at all, which requires a
systematic analysis of spillover effects between markets.
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