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1 Introduction

Recent search into the nature of asset prices has emphasized the importance of het-
erogeneity of traders in financial markets. Trade among heterogeneous agents occurs
since either preferences, beliefs or endowments differ. As a consequence, their attitudes
towards risk and their beliefs about the future development of asset prices constitute
the key influence on the determination of actual market prices. It is a commonplace
that traders, in general, will not share a common belief about future prices and it is for
this reason that the evolution of actual market prices cannot be self-confirming for all
traders. While this observation stresses the fact that an agent in an asset market will
most likely not have rational expectations along a price path, it is clear that a descrip-
tive and consistent theory of asset markets should pay adequate respect to the presence
of heterogeneous individuals. Situations in which an agent has rational expectations
should therefore be a special case of a general descriptive model.

The classical approach of the literature, however, derives asset prices from intertemporal
equilibrium conditions assuming that expectations are always rational. This leaves no
explanatory room for diverse and non-rational beliefs of traders (see e.g. Duffie (1996)
or Pliska (1997) and references therein). Following an approach put forward in Béhm,
Deutscher & Wenzelburger (2000) and Béhm & Chiarella (2000), we consider a model
with a structure of myopic market participants characterized by preferences and possibly
non-rational and heterogeneous beliefs. Such a structure, for instance, arises naturally
in models with overlapping generations of consumers. These consumers face investment
possibilities in one risk-free and K risky assets, where K is fixed but may be arbitrarily
large. Given consumers’ preferences and arbitrary heterogeneous beliefs, an explicit
rule determining market clearing prices at each date yields an explicit map determining
endogenous random asset prices. Combined with forecasting rules, which describe the
subjective assessments of the future evolution of prices, this yields an explicit time-one
map of a so-called random dynamical system (Arnold 1998) in which expectations feed
back into the actual evolution of the prices.

One of the most intriguing problems concerning financial markets is to understand the
structure of forecasting rules which generate rational expectations when investors are
heterogeneous. Following Brock & Hommes (1998) and Chiarella & He (2000), we as-
sume that consumers have no direct access to a forecasting technology. Instead, they are
allowed to choose between financial mediators, who are knowledgeable of certain fore-
casting techniques, according to a discrete-choice model of the type found in Anderson,
de Palma & Thisse (1992).

Extending a concept introduced in Béhm & Wenzelburger (1999, 2000a,b), a major
innovation of this paper is the notion of a perfect forecasting rule for first and second
moments in the presence of non-rational beliefs of other market participants. By def-
inition, these forecasting rules generate orbits with rational expectations in the sense
that they provide correct first and second moments of the price process conditioned



on the available information. From the perspective of a fundamentalist, this concept
takes the investment decisions of heterogeneous non-rational agents such as chartists
and noise traders into account regardless of how precise their forecasts are. Perfect
forecasting rules for first and second moments are particularly important for models in
which traders are characterized by mean-variance preferences.

The present paper addresses the natural question how a financial mediator, who is
assumed to be boundedly rational in the usual sense, can learn a perfect forecasting rule
from historical data, if initially the rule is unknown. The main informational constraint
encountered by a mediator stems from the fact that neither the fraction of consumers
choosing a particular mediator nor the beliefs of the mediators themselves are observable
quantities. We will show that this missing information can be retrieved by estimating
the excess supply function of all market participants. This will, in general, become a
highly nonlinear problem. However, in the case when consumers are endowed with linear
mean-variance preferences and chartists use simple linear forecasting rules, the main
nonlinearity consists of the discrete-choice model which governs the switching behavior
of consumers. Since rigorous techniques for estimating a discrete choice model exist
(see e.g. Judge, Griffiths, Hill, Liitkepohl & Lee 1985, Chap. 18), it turns out that the
problem reduces to estimating a stochastic linear functional relationship. Using a variant
of the ordinary-least-square scheme which is popular in the learning literature (Evans
& Honkapohja 2001), an adaptive learning scheme is developed which approximates
perfect forecasting rules from historical data. Necessary and sufficient conditions for the
convergence of the learning scheme are discussed.

The paper is organized as follows. After an introduction of the model in Section 2, we
develop the notion of a perfect forecasting rule in Section 3. Section 4 is concerned
with risk premia associated with heterogeneous beliefs and contains a generalization
of the famous security market line result. The special case with linear mean-variance
preferences is carried out in Sections 5 and 6, a benchmark dynamics under rational
expectations is discussed in Section 7. In Section 8, we develop our adaptive learning
scheme and provide a convergence theorem. Conclusions are given in Section 9, an
appendix outlines the concept of a random dynamical system.

2 The model

Following Bohm, Deutscher & Wenzelburger (2000) and Bohm & Chiarella (2000), con-
sider an overlapping generations model with a finite number of types h = 1,..., H of
young households. Each young household of type h lives for two periods, receives an
initial endowment e? > 0 of a non-storable commodity in the first period of life, and
does not consume. In order to transfer wealth to the second period of his life, such a
consumer will choose a portfolio of K + 1 € N retradeable assets whose proceeds he will
consume. He receives no additional endowment in the second period of his life, so that



his total consumption is equal to the return on the investment of his initial endowment
when young.

The K + 1 assets correspond to shares of firms whose production activities induce a
stochastic process of dividends which are distributed to the shareholders. There is
one risk-free real asset which has a constant real rate of return R = 1 4+ r > 0 given
exogenously, i.e., investing one unit of the consumption good in the risk-free asset yields
R units of the consumption good in the subsequent period.

Young consumers maximize expected utility over future consumption with respect to a
von-Neumann-Morgenstern utility function and subjective expectations for future asset
prices. Let 0 < y < e" denote the amount of the consumption good invested in the
risk-free asset and = € RE be the vector of shares purchased at the ez-dividend price
vector p € RX (in units of the consumption good). Since there is no consumption when
young, the future wealth of consumer h when old is w = Ry + (p + d) "z, where d € D
is the random dividend payment drawn from some subset D C Rf and p € ]Rff is the
future price vector of the assets. Setting ¢ = p + d for the cum-dividend price vector,
the budget equation y + p'z = e” gives

w=R ("-p'z) + q¢'z
~—— N~
risk-free investment equity return

Assuming that each consumer treats the price p at which he purchases as a parameter,
the remaining uncertainty of the return of the portfolio rests with the cum-dividend price
q of shares. Households have no direct assess to a forecasting technology and select a
mediator who solves their individual investment problems using subjective probability
distributions.

There is a finite number ¢ = 0, ..., I of financial mediators characterized by subjective
beliefs regarding the future cum-dividend price of the assets in form of subjective prob-
ability distributions ¥ € Prob(RE), i = 0,..., I with Prob(RE) denoting the set of all
Borelian probability measures. The asset demand of a young consumer of type h based
on the subjective belief #(*) provided by mediator ¢ is defined by an optimal portfolio
choice which maximizes expected utility of future wealth,

(1) " (WY, p) = argmaz /R u"(Re" + (g — Rp)"z) v (dg).

T h K
p z<e +

For simplicity, we abstract from intermediation costs for households and suppress the
constant e” in the expression (1). To assure existence and uniqueness of the solution (1)
of the consumer’s decision problem, we assume first that each utility function u” : R —
R, h =1,..., H is twice continuously differentiable, strictly monotonically increasing,
strictly concave, and bounded (see e.g. Grandmont 1982); second we assume that each
distribution 9, 4 =0, ..., I is such that no asset is redundant.



Let n") € [0,1] with Zfzo n) = 1 denote the fraction of households of type h employ-
ing the mediator ¢ and n = (n19, ... ) € R be the distribution of households
which employ i. Then w® = Y27 7(eh is the amount of capital invested by mediator
7 and

(2) 2 = ®O (@, 10, p) .= "y (WD, p)

denotes the aggregate demand of all households which employ . Let Z € R denote the
total amount of retradable risky assets in the economy which is equal to the aggregate
supply of old consumers. Then market clearing in the asset market defines an equilibrium
ex-dividend price p which is a solution to

(3) > 2000, p) — g~z =0.

Here ¢ € RX denotes a random quantity of assets which noise traders purchase or sell
in the market.! If for a fixed distribution of households 1 and fixed beliefs v(*) the
aggregate excess demand for assets (3) is globally invertible with respect to p, then
there exists a unique price p which clears the asset market. As pointed out in Bohm &
Chiarella (2000), this implies that the market-clearing price of assets is a deterministic
function of individual characteristics of young consumers and mediators.

Let p = (i), € R" denote the joint distributions of households, (ML, describe
the subjective beliefs of all these mediators at date ¢, and & represent the action of
noise traders at that date. Then under the above invertibility assumption, the asset

price vector in period t which clears the market is uniquely determined by the map
S : RE x R¥! x Prob(R¥)! — RY,

(4) pe =S (&1, (Vt(i))fzo)-

The map (4) is an economic law with an expectations feedback in the sense of Bohm &
Wenzelburger (1999, 2000a,b). Observe that S does not contain the price itself as an
ar%ument, such that the map S is of the Cobweb type. The dating of the expectations
I/t(Z relative to the actual price p; reveals that the economic law (4) has an expectational
lead, i.e., expectations are with respect to the realization of prices one period ahead
of the map S, cf. Béhm & Wenzelburger (2000a). This is illustrated in Fig. 1. The
functional form of (4) shows moreover that the evolution of the asset prices is driven
exclusively by the expectations formation of the financial mediators and the way in

which households choose among mediators.

1See De Long, Shleifer, Summers & Waldmann (1990, p. 709) for alternative ways of specifying noise
traders.
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Figure 1: Timing of the price formation.

The decision of a household is based on the performance of a mediator. Let r = R — 1
be the interest rate payed for the risk- free asset. If :vtl 1 denotes the portfolio held by
mediator ¢ after investing the amount wt | = Zh 1 nt in period ¢t — 1, then the

realized return resulting from selling a:g_)l in period t is

(5) R =1+ o — Rpia] (21 /w)?)).
For each i, the sample means ﬂgi) and the sample standard deviations 6t(i) of the time
series {Rs _o are recursively given by

ﬂgz) = H%Zizo RY = H%[Rgz) +tﬂ§1_)1],
®) S0 [y (pl) _ a0y]? _ @Ay 502
00 = |51 Qos—oBs’ — i) = T+m ;

where ,u()1 = 0 and A(Z)l = 0. Given (6), the Sharpe ratio associated with the realized
returns (5) of mediator 7 is precisely the inverse coefficient of variation of the returns
(5), defined by (uﬁ " r)/ a( ") The fraction 77,5 7 of households of type h which employs a
particular mediator j in period ¢ is now assumed to be determined by the discrete-choice
probability

exp <5h (Ut 1 7")/675]—-)1)
ZZI o €XpP (5h (,Ut 1 )/691)

(7) = , t>0,

with arbitrary n(()hj). The parameter 3" appearing in the discrete choice model (7)
describes the intensity of choice of a household of type h, that is, how fast a typical
consumer of type h will switch to a different mediator. The behavior of households is

thus modeled using a LOGIT model?, see e.g. Anderson, de Palma & Thisse (1992).

2There are numerous ways of modeling the switching behavior of boundedly rational households,
see Brock & Hommes (1998, footnote 3, p. 1241). The choice probabilities (7) take into account
that a boundedly rational trader with mean-variance preferences is expected to choose the portfolio
corresponding to the highest estimate for the Sharpe ratio, because such a portfolio promises to be the
most efficient one in the sense of the classical CAPM theory. This observation stems from a private
communication with Volker Béhm.



To obtain the evolution of the asset prices, we need to specify the probabilistic assump-
tions on the exogenous noise and the exogenous dividend process.

Assumption 2.1 Let (2, F,P) be a probability space and {F;}ien an increasing family
of sub-o-algebras of F. Then we assume the following.

(i) The dividend payments are described by a predictable {F;}ien-adapted stochastic
process {di}ien on (Q, F,P) with values in RX such that each d;, t € N is F;_4
measurable;

(i) The behavior of noise traders is governed by a {F;}ien-adapted stochastic process
{&}ien on (2, F,P) with values in RX which is uncorrelated with the dividend
process {d; }ien, defined in (7).

Given the price law (4) for ex-dividend prices and Assumption 2.1 for the noise and for
the dividend process, the cum-dividend price in period ¢ is

(8) g = S(Em, M)y) +diy, tEN

Observe that the subjective beliefs (Vt(i))fzo and the distribution 7, = (ngi))fzo are based
on past information, that is, they are F;_; measurable at date ¢. The dividend payment
d; of the current period ¢ is assumed to be F;_; measurable and thus known before
trading in period ¢, whereas & and hence the ex-dividend price p; is F; measurable,
see Fig. 1. This implies that the uncertainty in ex-dividend prices and in the traded
quantities of assets rests solely on the behavior of the noise traders. In other words,
the randomness of ex-dividend prices is essentially due to the stochastic nature of noise-
trader behavior.

Notice that the price law (4) as well as the resulting price process (8) would be the same
for consumers with infinite lifes who maximize wealth myopically as done in Brock &
Hommes (1998) or Chiarella & He (2000). Thus, the underlying OLG structure is not
essential for this paper. In order to apply results from the theory of random dynamical
systems, we will later assume that the two processes of Assumption 2.1 are generated by
a metric dynamical system in the sense of Arnold (1998) such that the resulting price
process itself becomes a random dynamical system.

3 Heterogeneous beliefs

This section is concerned with the question which forecasting rules generate rational
expectations along orbits of the system. The problem is particularly challenging in
financial markets when investors by their very nature have heterogeneous beliefs. It
is well known that the two requirements of market clearing in all periods and rational
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expectations at all times can often not be fulfilled simultaneously. As shown in B6hm &
Wenzelburger (2000b), the evaluation of a forecasting rule can be carried out on several
levels. For the purpose of this paper, it suffices to compare moments of subjective and
true distributions with a particular emphasis on mean values and covariances.

To simplify the analysis, we assume that each mediator ¢ = 0,..., I picks his subjec-
tive distribution l/(i) from a fixed family of probability distributions parameterized in

subjective means ¢ and subjective covariance matrices V' such that v = Vi) v ) -

Identify each subjective distribution 1/,5) at a particular date ¢ with the corresponding

subjective mean qgi) for the future cum-dividend price ¢;11 = psy1 + diy1. Let 5 be an
arbitrary mediator and q( D = = ( ,SO), . q,g] v q(”l), e, q,gl)) € RXT denote the respec-
tive subjective means of all mediators 7 # j. By abuse of notation, mediator j’s forecast

error on the price ¢; prevailing at date t is
(9) g — =S, ) + dy — ¢,

where qg )1 denotes the forecast for ¢, = p; + d; made at date £ — 1. Notice that the
forecast error (9) depends decisively on the current forecasts of all mediators.
Assume for a moment that the distribution of households 7; as well as the forecasts qt(fj )
of the other mediators are known to mediator j. Then the remaining uncertainty rests
on the random transaction &; of the noise-traders, because d; was assumed to be F;_;
measurable. Following Béhm & Wenzelburger (2000a) and Wenzelburger (2001a), all
possible mean forecast errors on cum-dividend prices at a particular date ¢ are given by
the mean error function for mediator j, defined by

10) &P RIT x REUTY « RE x R — RX,
(m (67,08, diy a?y) — B [S (G a”, a8™)] + di — 7,

where the expectations operator [E;_; is taken with respect to F;_;. The error function
(10) describes all possible mean errors between actual cum-dividend prices and cum-
dividend forecasts for mediator j conditioned on information available prior to trading
in period t. An unbiased forecasting rule for j at date t, if it exists, is a map

(11) ng) : Rfl X REI X R—ilf X Rf — Rf, Qt(]) - ng) (nta qgij), dt: q}SJ)l)

such that _
575(‘7) (T’ta (J)(ntaqt dtaqt 1) qt dtaql‘, 1) =0

identically on RY x Rf(ﬂ_l) x RE x RE. An unbiased forecasting rule (11) exists, if the
error function (10) satisfies the conditions of a global implicit function theorem, which in
turn stipulates the particular functional form of (11), see Bohm & Wenzelburger (2000a)
and Wenzelburger (2001a). We will show below that an unbiased forecasting rule exists
in the case in which all households have linear mean-variance preferences. An unbiased



forecasting rule for ex-dividend prices is obtained from (11) by setting pgj) = qt(j) — dyq
as a forecast for pyy1. It then follows from (10) that all forecast errors on ex-dividend
prices for mediator j vanish identically, that is, E;[p;, 1] — pgj ) = 0 for all times ¢. In the
sequel, an unbiased forecasting rule will also be referred to as a perfect forecasting rule
for first moments.

The notion of a perfect forecasting rule for second moments, i.e., a forecasting rule which
generates correct covariances matrices of the cum-dividend prices conditioned on the
available information, could be derived using an analogous reasoning. We will postpone
the discussion of such a rule to Sec. 6 when a more concrete example is available.

The natural question now is how an unbiased forecasting rule can be learned from histor-
ical data, if the rule is unknown. Let ®® (n® 1@ p) = @@ () ¢@ p) for the respective
aggregate demand functions (2), where we identify v} with ¢ as before. Assume, in
addition, that for each p € Rf and each n) the aggregate demand &\ (n\9), ¢\9), p)

of mediator j is invertible with respect to the price forecasts ¢¢/). Let qt(f )1 € Rf and
n: € RYT be arbitrary and p; denote the market-clearing price in period ¢. The market-
clearing condition (3) then implies that an unbiased forecasting rule (11) for j yielding

g must satisfy

i#]

The functional relationship (12) shows that the existence of an unbiased forecasting
rule depends exclusively on the fundamentals of the market mechanism, the subjective
beliefs of all mediators who take part in the market, and on the way in which households
choose their mediators. It reveals that the essential unknown quantity for a particular
mediator j is the excess supply of all other market participants. Consequently, any
mediator with rational expectations has to be able to replicate the demand behavior
of his fellow mediators. The main informational constraint is the fact that neither the
fraction of households joining a particular mediator nor the beliefs of the mediators
themselves are observable quantities.

4 Risk premia

In order to evaluate the performance of a mediator and thus quality of the households’
investment decisions, we analyze the risk premia obtained by mediators. Suppose that
some investor, say mediator 0, has rational expectations but will not necessarily parti-
cipate in the market such that the assumption of rational expectations for him is always



fulfilled.® Let

(13) xﬁo) = Vi[gi+1] " [Et[gi1] — Bpi

denote the reference portfolio in period t. The portfolio xgo) may be held by mediator
0 after a fictitious trading in period ¢ such that mediator 0 may be thought of being
endowed with linear mean-variance preferences and a coefficient of risk aversion o(? = 1,
see Sec. 5. Investing one unit e®) = 1 of the consumption good into the risk-free and
the risky assets, gives the portfolio (1 —p, m§°), xgo)) € Rx R¥, where x§°) is determined
by (13). If r = R — 1 is the interest rate payed for the risk-free asset, then the return of

the portfolio (13) obtained after a (fictitious) selling at prices in period ¢ + 1 is
(19) R =7 +lgr — RplTaf?,

The conditional variance of Rgi)l is V; [Rﬁ?l] =(z (0))TVt [qt+1]act Combined with (13),
this shows that the mean equity premium of the reference portfolio (13) satisfies

(15) B[R] - r = V,[RY)]

and for this reason is always non-negative.

Let xt denote the portfolio held by a mediator 7 = 1,...,I after investing w()
0

thl nthz e’ in period t. As before, the realized return resultmg from selling z;” in
period t + 1 is . .

R =1+ g — BpT (ol fuf?).
The conditional covariance (Covt[Rt P Rg?l] between the return of mediator ¢ and the
return associated with (13) is

i 0) i) (i 0
(16) Covi[Ry)y, R = (24 /w)”) Vilgrin]ai”,
implying that the expected return of mediator i takes the form
0
(17) Et[Rt-l—l] =r+ Covt[Rt—}-b §+)1]

Thus the mean equity premium of mediator ¢ is equal to the covariance between i’s return
and the return of a ‘rational’ mediator 0 with linear mean-variance preferences. Contrary
to mediator 0, the equity premium of any mediator 7 with non-rational expectations may
on average well be negative. Comparing (17) with (15) yields the following theorem.

3Mediator 0 can be treated as an outside observer with full information. As long as he does not
interfere with the market by trading, the assumption of rational expectations poses no existence prob-
lem.

10



Theorem 4.1 Let i be an arbitrary mediator. Assume that preferences and beliefs
of all market participants are such that the asset market clears in each period t at prices
pt. Then for each t € N,

; Cov,[R{),, R}
B[R] - r = AT T
Vt[RH-l]

(B[R] —7].

Theorem 4.1 states that the mean equity premium ]Et[Rgl] — r of any mediator ¢ can
only be higher than the mean equity premium [, [R,Ei)l] —r of the reference portfolio (13),
if the variance of the corresponding return is greater than the variance of the reference
portfolio, i.e. V, [Rgl] >V, [Rt(i)l]. Observe that the result in Theorem 4.1 requires
neither an assumption on the preferences of mediator ¢ nor on the quality of the beliefs.

Using (14), the inverse coefficient of variation conditioned on information at date ¢

associated with the return Rg?l of mediator #’s portfolio :vgi) is

Et[Rii)l] —-r_ [E;[gi+1] — Rpt]T$§i)

\/ Vi [R{)] \/(mgz) AT

Observe that the coefficients (18) are invariant under rescaling of the portfolio xti), that
is, any portfolio " = Az{" with A € R will induce the same coefficient. Theorem 4.1
combined with (15) implies in particular that for each mediator i = 0, ..., I, the inverse

coefficients of variation satisfy

(@1 071
(19) Bl —r < Elfa]—r =V [R§$1] for all times ¢.
7 0
V,[RY)] Vi [RY]

(18)

Combining (13) with (15) yields

Vi [Rgfu)ﬂ = []Ec [Qt+1] - Rpt]TVt [Qt+1]_1[Et [(Zt+1] - Rpt]

which shows that the upper bound in (19) is exclusively determined by the first two
moments of the involved price process.

In our setting, Theorem 4.1 is a generalization of the famous security market line result
(see e.g. Pliska 1997) to asset markets with heterogenous beliefs and preferences which
are not necessarily of the mean-variance type. However, Theorem 4.1 shows that in a
world of heterogeneous investors, perfect forecasting rules for first and second moments,
if they exists, generate efficient portfolios for an investor with mean-variance preferences
in the sense of classical CAPM theory. Since the Sharpe ratios given with (6) can been
interpreted as estimators for the coefficients (18), households which switch according to
the discrete choice model (7) may be seen as boundedly rational in the sense of CAPM
theory.

11



5 Mean-variance preferences

Starting with the work by Markowitz (1952) and Tobin (1958), mean-variance prefer-
ences provide a popular parameterization of preferences under risk. In the linear case, it
is shown in Béhm & Chiarella (2000) that the resulting aggregate demand function for
shares is explicitly invertible. This allows for an explicit functional form of the market-
clearing prices which is needed for a systematic analysis of the quality of an adaptive
learning scheme. The relationship of mean-variance preferences to standard expected
utility theory is given in the following definition (see e.g. Béhm & Chiarella 2000).

Definition 5.1 Let U : R2 — R denote a concave function which is strictly in-
creasing in its first component and decreasing in its second. U is said to represent
mean-variance preferences, if there exists a von-Neumann-Morgenstern utility function
u:R — R and a class of probability measures P C Prob(R) such that

/u(w)u(dw) =U(E,[w],V,[w]), forallveP.

R

Here, E, and V, denote the expected value and the variance with respect to v.

As before, identify each measure l/,gi) with the respective parameterization (g, 2 V;( )) and
let ( —p'z,z) € RET! denote the portfolio associated with z € R¥. Then for each

(Qt ) V; )a . .
E [w] = Re" + (¢” — Rp) Tz

defines the subjective expected return of the portfolio conditioned on information avail-
able at time ¢ prior to trading and Vi [w] = 27V, its subjective conditional variance.
Let each household A be characterized by linear mean-variance preferences such that

(20) U" (B w], V¥ [w]) = B[] — -V [u]

describes the expected utility associated with the portfolio z € RX in period ¢, where

o measures risk aversion.

Let n; (") denote the fraction of households h which employ mediator ¢ according to the
discrete choice model (7). Then the aggregate demand (2) of all households A which
employ ¢ is given by

(21) (¢, V", p) = ¢’V (4" — Ryl,
where
‘ H
(22) ay = (ago), c agl)) with al? := Z(nghz)
h=1



denotes the risk-adjusted fractions of households employing a particular mediator. Set

I -1
(23) Ay = (Z agz)Vt(z)—1>
=0

and note that A; is well defined due to the positive definiteness of all covariance matrices.
From the market-clearing condition (3), one immediately obtains an explicit functional

form of the ex-dividend price law (4) which for arbitrary beliefs (¢!, V" ))Z o takes the
form

(24) Dt = S(§t= ag, (qu), V(. )i=o (ZA — Az + ft))

with
t )

25) AW .= (OO A1t = e ! .
(25) i i (Ve Al [Id+2#i(a§”/a§“)vﬁ) V;(J)—l} if o > 0.

All coeflicient matrices (25) and (23) in the price law (24) are determined by subjective

covariances matrices V and risk-adjusted distributions of households (22) and hence
are JF;_ 1 measurable. Since (6) provides a recursive formula for the sample coefficients
of returns, the distributions (22) can also be computed recursively.

The return Rgi)l obtained by mediator ¢ in period ¢ + 1 after trading is
(i)

i a i)—1r (i
(26) R§421 =r+ % (@41 — Rpt]TVt( ) 1[(]75 )~ Rp],
Wy
where wt Zh 1 nthl e" is the amount of capital provided to and invested by ¢. The

realized returns (26) depend on the risk-adjusted fraction of households (22), the amount
of provided capital, and on the subjective belief of the particular mediator. On the
contrary, the inverse coefficients of variation given in (19) take the form

E‘t[Rng] -r [t [ge1] — Rpt]TV;i _1[ @) — Rpy]

V Vi[R t+1 \/[Qt Rpt]T V;tz 'V, [Qt—l—l]Vt ) [ Rpt]

showing that these depend essentially on the beliefs of the mediator and not on the frac-
tion of households. The behavior of households influence the corresponding coefficients
of variation (27) only indirectly through the asset prices. In the special case of only one
type of household, i.e. H = 1, one obtains a considerable simplification of (26), because

(27)

each o /w{” = 1/(ale!), i =0,..., I then is constant over time.
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6 Perfect forecasting rules

In this section we investigate the existence of forecasting rules which generate ratio-
nal expectations on cum-dividend prices for mediator O in the sense that the first two
moments of the future asset price are correctly predicted. In what follows we assume
a,EO) > 0 throughout this section.* Recalling that d; is assumed to be F;,_; measur-
able, the expected cum-dividend price conditioned on information available at date ¢

associated with the price law (24) is

(28) B 1[q:] = % + d.

I
i=1

The condition that the forecast errors for mediator 0 vanish in the mean is

(29) Eyi g — )] =0

for all times ¢. Inserting (28) into (29) and rearranging, yields an explicit expression for

the new forecast qt(o), given by

(30) ¢ = A0

I
R(g?, —d) = > AV + Az + By [&])] :

=1

Replacing the coefficients in (30) with (25), the unbiased forecasting rule for mediator
0 takes the form

qt(o) = Tﬁ(o) (Etfl[ft], dy, (aii),qg), V;t(i))z[:b Clt(g)l)
(31) = R(q) — dy)
+a§°)_11/;(°) [:& YR, 6] - Zle agi)vt(i)—l [%gi) _ R(qt(g)1 _ dt)]] .

The functional form of the unbiased forecasting rule (31), also referred to as a perfect
forecasting rule for first moments, is closely related to that of (12) in Sec. 3. The only
quantity in (31) which is not observable for mediator 0 is the term in the large brackets.
Since by (29) Ei_1[p:] = q?@l — dy, this term describes precisely the expected excess
supply of all mediators ¢ > 0 including the expected transactions of the noise traders
E; 1[&]. Thus, the functional form (31) of the unbiased forecasting rule supports the
idea that precise forecasts require good knowledge of the investment behavior of all

market participants.

4 As noted before, this imposes no restriction on the rationality of 0, because a§°) = 0 simply means

that no household employs mediator 0 such that his beliefs do not feed back into the price process. In
this case the perfect forecasting rules coincide with the first two moments of the resulting price process.
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While in the case of linear mean-variance preferences perfect forecasting rules for first
moments exist generically, the requirements for forecasting rules which generate correct
second moments of the price process are much stricter. Such rules will be referred to
as perfect forecasting rules for second moments. Observe that the subjective covariance
matrix Vt(o) of mediator 0 in the expression for (31) was as yet arbitrary. We will now
try to stipulate this matrix as to provide correct second moments of the price process.

Assuming that & and d; are uncorrelated, the conditional covariance matrix of the
cum-dividend prices are obtained from the price law (24) and (28) yielding

(32) Vialg] = %AtVt—l €] As-

. . -1
Recall that A; = (Zfzo a,ﬁ”vﬁ‘l) is positive definite implying that (32) is invertible,
if V;_1[&] is non-degenerate. That is, the covariance of the price process receives an

expectations feedback from the subjective covariance matrices (Vt(z))i[:O as long as there
is noise in the system, i.e. V;_;[&] is different from the zero matrix. This implies that the
volatility in the price process described by (32) is exclusively generated by the noise-
trader behavior, the switching behavior of households, and the subjective covariance
matrices of the mediators. The condition that mediator 0’s forecast errors for second
moments (32) of the price process vanish for all times ¢ is

(33) Veala] - V& =0,

Inserting (32) into (33) gives the necessary condition
I . . I . .

& (S v (Soloweo ) = v
i=0 i=0

(0)

for the subjective covariance matrix V;"’. In other words, perfect forecasting rules for

second moments are given by symmetric positive definite solutions V;(O) to (34). Before
we provide conditions under which these forecasting rules exist, we establish a technical
lemma.

Lemma 6.1 Let B,C be arbitrary symmetric positive definite matrices. Then

D :=VB-'4/(VBCVB) VB!

1$ a symmetric positive definite matriz with C = DBD.

Proof. Since B is symmetric and positive definite, it can be diagonalized such that
B = OTdiag()\l, ..., Ak)O for real eigenvalues \i,...,A\x > 0 and some orthogonal
matrix O, i.e. OTO = Id. The square root /B of B is a symmetric positive definite
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matrix, defined by v’B = O'diag(yv/AL,...,vAk)O, such that B = v/Bv/B. Define
F :=++vB71CvB~! to see that D := v B~1FvB~! is a symmetric positive definite

solution to
C =DBD.

Q.E.D.

Proposition 6.2  Let V; 1[&] be non-degenerate and a§°) > 0. Suppose that Vt(o),
given by the forecasting rule ©© for second moments

I —1
(35) Vt(O) — QD(O) (Vt—l [ft], (CL,EZ), Vt(Z))zI:Ia V;(,O)) — CL,EO) (Ht _ Z agz)‘/;(Z)—1> ’
=1

where

m =1 vj“%‘l\/ ( A th[ft]w;“?) ¢ AR

is well defined and positive definite. Then ¢©) provides correct second moments of the
price process at date t, that is, (33) is satisfied in period t. If, in addition V;_1[&] =

02 1d, then II, = % /V,) .

Proof. By Lemma 6.1, II; as given above is a solution to the equation
LV, = 25V, (&),

If 11, — Zle agi)%(i)_l is positive definite, then (35) is well defined and the assertion
follows from (34). Q.E.D.

If the r.h.s. of (35) is neither well defined nor positive definite, the resulting expression
on the left defines no covariance matrix such that a forecasting rule (35) which is perfect
for all times ¢ may fail to exist. Hence additional requirements which guarantee that
(35) is well defined in all periods are needed. Lemma 6.3 shows that the case in which
all mediators agree upon subjective second moments meets such a requirement.

Lemma 6.3 Let V;_{[&] be non-degenerate and suppose Vt(i) = Vt(o) for all v =
1,...,1I and all times t. Then

H -1
Vo — (RZ L) \/vf_‘?\/ ( vﬂvtl[&]\/%@) VAR
h=1

is a forecasting rule which is perfect for second moments. If Vi_1[&] = Z is constant

over time, then the constant rule Vt(o) = (R Zle a—lh) 2~ is perfect as well.
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Proof. We have A;' =77 aLth(O)_l and both statements follow from (34).
Q.E.D.

Another special situation in which (35) is perfect for all times ¢ arises when all mediators
¢ > 0 believe in constant covariance matrices.

Proposition 6.4  Let V, (&) = o7 Id with a positive number o7 > 0 and al” > 0.
Assume that the following hypotheses hold true:

(i) all mediatorsi > 0 use constant covariance matrices V") = V. such that V-1 =
O7 diag( A\, ..., A5 O, i =1,...,I for some orthogonal K x K matriz O;

2
(i) there exists a constant ¢ < i35, such that the risk-adjusted distributions of house-
holds satisfy

Za MK <¢e k=1,... K, P-a.s. for all times t.

Set VO(O) = OTdiag()\gm) /\(OK N0, where )\(01) .,/\SOK) > 0 and O is given in

(1). Then the forecasting rule ( 35 ) is perfect for second moments provided that the initial
. (01) (0K) .

eigenvalues Ay ', ..., Ay ' are suitably large.

Proof. We seek a symmetric matrix Vt(o) which satisfies (34) and which stays positive

definite for all times . Under the given hypotheses, this is equivalent to the existence

of a symmetric and positive matrix V;(O) with

I

e VO = VO - Y v

i=1

Choose VO(O) as in (47¢). Then (36), the definition of the square root and induction imply
that
VO = 0Tdiag W™, ..., A",

where

(37) VN A8 Z“gow> =1,...,K.

Equation (37) is a system of K strictly monotonically increasing and strictly concave
scalar maps with random coefficients of the type \; = biy/A;_1 — ba. These determine

the eigenvalues of the covariance matrix Vt(o). Condition (i7) now guarantees that each
of the maps (37) has two positive deterministic fixed points, of which the larger one
is asymptotically stable. Hence, there exists a compact set A C ]Rf + which is forward

invariant under the maps (37) such that ()\(01), ce A§°K)) € Afor all timest > 0. Q.E.D.
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7 Dynamics under rational expectations

In this section we discuss the dynamics of asset prices when, under the hypotheses of
Sec. 6, mediator 0 has rational expectations in the sense that first moments of cum-
dividend prices are correctly predicted for all times ¢ and second moments whenever
possible. Assuming that each mediator i > 0 uses some forecasting rules ¢® and @,
the prices under rational expectations for group 0 are determined by

( qt = C],S% + %At(ft —E; 1 [&])
qu‘) = YO (q_1,...,q-) Vi=1,...,1,
(38) < V;:(i) = 0N g1, ., q-r) Vi=1,...,1,
0 = OB, @ a0 Vi) a),
|V = OVl (0 V)LL),

where ¢ coincides with (35) whenever (35) is well defined. The cum-dividend price g
in (38) is essentially determined by the forecasting rule /(%) of mediator 0 which takes
the form

Q) D o D— i
w 4 1+ 3L, SOV 4% = L S VOV
+a YO [5? +E 6] - i, agi)‘/}(i)_ldt] :

The map (38) together with the discrete choice model (7) with (22), defines a time-
one map of a random dynamical system in the sense of Arnold (1998) which describes
the evolution of the asset prices. The map (38) will, in general, be nonlinear, because
nonlinearities may enter the system through forecasting rules ¢® for the covariance
matrices as well as through nonlinear forecasting rules 1, i > 0.

A random dynamical system is complete only, once a model for the exogenous pertur-
bations, in our case the behavior of noise traders and the dividend process, is specified.
Following Arnold (1998), we represent the exogenous perturbations by means of an
ergodic metric dynamical system. This amounts to using the (equivalent) canonical
realization process of an ergodic stochastic process. To be specific, let {€;}scz, where
Z := {0,+1,£2,...} is called two-sided time, be a sequence of ¥-valued i.i.d. random
variables whose probability distribution is u supported on some subset ¥ C RX. Then
(Q, F,P) = (3%, B(X)%, u%), where Q is the space of all sample paths of the process,
B(X)Z is the Borel o-algebra of all cylinder sets, and uZ is the product measure. Each
element w = {w(s)}sez € © is a doubly infinite series describing a sample path of the
process. The map ¥ : Q@ — Q, w — Yw is defined by (Jw)(s) := w(s+ 1), s € Z and
is called the left shift such that (J'w)(s) = w(s + t) for all t,s € Z. With the help
of the evaluation map € : Q — X, e(w) := w(0), we have ¢(w) = e(P'w), t € Z and
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thus obtain a representation of the original i.i.d. process as an ergodic metric dynamical
system (Q, F,P, {9 }1ez). It is well known that any stationary ergodic process {; }ez
can be represented by an ergodic metric dynamical system, see Arnold (1998, Appendix
A) for more details.

A brief outline of the notion of a random dynamical system is given in Appendix A. In
order to obtain a linear benchmark dynamics, assume for the remainder of this section
that there are only two mediators 7 = 0,1. Let mediator 1 be a chartist who uses the
simple technical trading rule

L

(40) qt(l) = ¢(1)(Qt—1, e Gor) = ZDU) q—1
=1
as a forecasting rule, where D d1ag(5 ...,5&?), [ =1,...,L are diagonal ma-

trices whose non-zero entries denote the expected weighted trends of the asset prices,
1respect1vely5 In addition, let all subjective covariance matrices be constant over time,
ie. V = V@, 4§ = 0,1. Suppose that the distributions of households are constant
over time, that is a\’ = a®, i = 0,1. This case, for instance, obtains, if the in-
tensity of choice parameters in (7) are all set to zero and no household switches be-
tween mediators. Then, under the hypotheses of Proposition 6.4, mediator 0 may have
correct second moments which are constant over time, since no switching occurs. If

Q: = (qt sty -y Qir1-1) € RK+ denotes the vector consisting of the last price forecast

of mediator 0 and past L realized prices, then (38) defines an ARMAX process

(41) Qi = AQi1 + By,

where the coefficient (block) matrix A is given by

(42)

R(Id + E;i VO M-1) —%8) yvOyL-1pa) ... ... L. —%8) VO (1)-1 (L)

Id 0 Cee e e 0

A= 0 1d 0 +-v - 0
0 Id 0

and

(43) By = (aO7'VO [z + By [&]) — Ady], A& — Ei1[4]),0,...,0)

with A = [a(O)V(O)—l + a(l)v(l)—l]—l‘

Now assume that the three processes {& }iez, {Er 1[&]} ez, and {d;}iez can be repre-
sented by an ergodic metric dynamical system (Q, F, P, {1 };cz) as above. This implies

5This corresponds to trend traders in K > 1 risky assets as in Brock & Hommes (1998) and Chiarella
& He (2000).
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that the stochastic process (43) can be written as By(w) = B(9'w) with some measurable
map B(w) and that (41) is an affine random dynamical system in the sense of Arnold
(1998, Chap. 5). A stationary solution to the stochastic difference equation (41) is given
by a so-called® random fized point Q*(w) which is defined by the random variable

(44) Q*(w) = iAsB(ﬁ(”l)w), w € Q.
5=0

Under certain conditions given in the next proposition, the random fixed point Q*(w)
is said to be globally asymptotically stable, implying that P-almost all solutions to the
equation (41) will eventually behave like the stochastic process {Q*(9'w)}en induced
by (44). See Appendix A for the basic definitions and for an existence theorem for the
general non-linear case.

Proposition 7.1  Assume that the following hypotheses are satisfied.

(i) {&i ez, {Bo-1[&il}iez, and {di}iez can be represented by an_ergodic metric dynam-
ical system (Q, F,P, {0 }icz), where E[§] = 0 and E|d;| = d with ||d|| < oo;

(1) Vt(i) =V®, i =0,1 such that the coefficient matriz A given in (42) is constant;
(1) det(A— AT) # 0 for all A € C with |\ > 1, that is, all eigenvalues of A lie inside
the unit disk.

Then the random fized point Q*(w) defined in (44) is well defined, uniquely determined,
and globally asymptotically stable. The mean price level § € Rff 1 the uniquely deter-
mined solution of the linear equation

[Id+ (a@ /W)Y DYV O-11-Y(D — Id) — r Id|g = Az — d,
where EQ* = (q,...,q), D = Zle DO, and A = [a@VO-1 4 Dy H-1]-1
Proof. The stability property follows from Arnold (1998, Corollary 5.6.6). The second

statement is due to the fact that Z — A is invertible such that (Z — A)EQ* = EB has a
unique solution of the form EQ* = (g,...,q). Q.E.D.

Another special case arises when the two mediators agree on the subjective covariance
matrices, such that Vt(o) = Vt(l) for all times ¢. This implies that all A§“), i =0,1 are
time-invariant diagonal matrices and the map (39) takes the form

L
45) ¢¥ =R (1 + %) ¢ — % > DWg +a WOz +E, 1 [6]) - (1 + Z%) dy.-
=1

6Tn classical terminology, a random fixed point of (41) corresponds to a ‘steady state solution’ of a
linear stochastic system, see Hannan & Deistler (1988, Chap. 1).
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Since all DY, | = 1,..., L are diagonal matrices, (45) splits into K scalar equations
which are coupled only via Vt(o). The stability properties of (38) are now obtained from
an analysis of each scalar equation for each asset £k =1,..., K.

Corollary 7.2 Assume that V. = V" with E[||V,”||] < co. Then the price pro-
cess for the k-th asset is globally asymptotically stable, if all zeros of the characteristic
polynomial x* associated with (45), given by

W) = N = R (14 25) A 4 25 25” AL

lie inside the unit circle. The mean price level of the k-th asset §* is given by

k —k
Y —_
—k a(0) 4+¢(1) d

aV) 1)
a(0)+a(1) (Zl 1 - 1)

where y* is the k-th entry of the vector y = IE[Vt(O)]a_: € RX and d" is the mean of the
dividend payment of the k-th asset.

Since the sum a(® + o) = Zh 1 or is constant, Corollary 7.2 shows in particular that
an asset price decreases on average Wlth an increasing fraction of chartists a"). From
Jury’s test (see Elaydi 1996, p. 181) it is known that a necessary condition for the zeros
of x* to lie inside the unit circle is

x*(0) >0 and (—1)E Ik (=1) > 0.
If 6% = ... = 6% are equal to some &%, then a routine calculation shows that this is the

case precisely when
a®

k
g —R)>R-1.

8 Adaptive learning with heterogeneous beliefs

8.1 The general idea
The discussion in Sec. 6 revealed that the primary object which mediator 0 has to

know in order to obtain an unbiased forecasting rule is the aggregate supply function of
all market participants. We first introduce the general idea of estimating an unbiased

21



forecasting rule from historical data and then turn to the particular example with the
two mediators treated in Sec. 7. Using the notation of Sec. 2, let

(46) o(&, ", ¢, VL p) =2+ 6 - Zq) 49 VO

denote the aggregate excess supply of all mediators except mediator 0. Assume that
each mediator i > 0 uses forecasting rules 1)) and ¢ of the functional form

¢ = v (g 1, g 1) and VO =00 1, 1)

Inserting these forecasting rules into (46) and suppressing the respective functional ex-
pressions for notational convenience, the excess supply (46) takes the form

(47) @(§t> (ﬁgi))fzh P, Qi-1,--. 7Qt—L)-

Let xff” denote the portfolio held by mediator 0 after trading in period ¢. Then the
market-clearing condition (3) implies that

(48) 7% =P (&, (ntt )Z 0 Pty Q-1 -, q—1) for each t €N

Observe that the prices and the portfolios :vg ) appearing in (48) are observable quanti-

ties, whereas the distribution of households (7 (Z))Z 1 along with the realization &; of the
noise process is not observable for mediator 0. Moreover, the concrete functional form
(47) including the involved forecasting rules are unknown to mediator 0.

Assume for a moment that a good approximation for the discrete choice model (7) with
unknown intensity of choice parameters has been developed along with a model for

the exogenous noise process {& }ien. Suppose that these models yield sufficiently good

estimates nt( D for nt( ), 1=1,...,1 and ft for &, respectively. Then the following adaptive

estimation procedure is at hand. At an arbitrary date t ﬁrst estlmate the functlonal
relationship (48) from past observed or estimated data {x &, (7]S )1, ps, qs}o—g. This
yields an approximation ®; of (47) such that

(49) (I)t (fta (nt )z P15, Qth)

describes the approximate excess supply function for assets in period ¢t. Second, as-
suming the asset demand function ®© of mediator 0 to be invertible with respect to
expected prices, a possible candidate for an approximation of the unbiased forecasting
rule (12) in period ¢ is then given by

0) 2O (E

a; = )

gtant 7(77:‘,())1 1 -1, Q- 17"'7Qt—L)

(0) (0)

(50)
= (I)() (nt aQt 1,(I)t(§t7 (nt )’L 13 9415 Gt— 1:"'aQth))-

This forecasting scheme can be carried out at each point in time as soon as a technique
to estimate (49) is available. It will be shown in the next section that this procedure
may be successful in the case of linear mean-variance preferences.
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8.2 The case of two mediators

Consider the case of two mediators treated in Sec. 7, where we will allow the households
to switch between mediators according to (7). The proposed learning scheme now takes
a particularly simple form. Assume to this end that the estimates for the fraction of
households are sufficiently good such that we can abstract from prediction errors of the
distribution of households. This assumption seems not to be too strong, because the
sum nt(ho) + nt(hl) = 1 is constant over time for all 1 < h < H and each nt(ho) is known
to mediator 0. On the other hand, for the unknown choice intensities in (7) there are
maximum-likelihood estimators available which are consistent under standard regularity
assumptions. In the present case of our discrete choice model of the LOGIT type, these
estimators are found in Judge, Griffiths, Hill, Liitkepohl & Lee (1985, Chap. 18, p.
765). The estimators for the choice intensities yield estimates ﬁt(hl), h=1,...,H for
the fractions of households nghl), h = 1,..., H joining mediator 1. The informational
constraints faced by mediator 0 are now summarized as follows.

Assumption 8.1 The information of mediator 0 encompasses the following:

i) the realized returns R\" of mediator 1 as given by (26) are observable quantities; a

(1) i g Y q ;
discrete choice model for the switching behavior of households has been estimated,
consistent estimates of the fraction of households are known, such that, for simplic-

A~

ity of exposition, prediction errors are neglected and nghl) = n,ghl), h=1,...,H.
(i) the total amount of retradable assets T is known;

(#ii) the correct functional form of mediator 1’s forecasting rules is known; these are a
simple technical trading rule of the type (40) and a constant subjective covariance
matriz.

Under Assumption 8.1, mediator 0 is left to estimate the excess supply (49) of mediator
1. In order for any learning scheme to be successful, the behavior of the noise traders
may not be too arbitrary. We therefore place the following identifiability assumption
(see, e.g. Lai & Wei 1986, p. 247) on the unobservable noise process which governs the
behavior of the noise traders.

Assumption 8.2 The noise-trader behavior is driven by the process {&}iez, given by

N
& =€+ Z C™e oy,

n=1

where {€ }iez is an i.i.d. process on the probability space (2, F,P) with zero means
Ele;] = 0 which satisfies the following:
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(1) supy> Ef[|e]|*] < oo P — a.s. for some a > 2;

(2) CO ... ,CN) N > 0 are K x K matrices and the matriz polynomial T'(z) =
Id+CWz 4 ... 4+ CWNZN 2 € C is strictly positive real, that is,

(i) detT'(z) # 0 for all z € C with |z| < 1;

(ii) For each z € C with |z| < 1, the matriz I'(z) + '7(2), with z € C denoting
the complex conjugate of z, is strictly positive definite, that is, x' (F(z) +
I'7(2))z >0 for all 0 # z € R¥.

Observe that E,_;[&] = Z;V:l C™e¢,_, and V,_; [&] = V,_1[¢;] and that Assumption 8.2
includes the i.i.d. case (take N = 0 and {¢ }en 1.i.d.). By Assumption 8.1, mediator
0 has correct knowledge about the functional form of the forecasting rule (40) used by
mediator 1 but not its concrete parameterization. Set z; = x§°) — Z to adjust mediator
0’s portfolio by the total amount of available assets. Then the market-clearing condition

(48) for period ¢ reads

H L ’I'](hl) N
(51) Ty = — Z ;—hv(l)il[D(l)qt,l — Rpt] + €t —+ Z C(n)ﬁt,n.
h=1 I=1 n=1

Setting
0= (AW, . AHD O B oM )

for the unknown coefficient matrices, where
AW = LyW=1p® - ) — By M- for 5]l h=1,...,H, 1=1,...,L

and

(52) v = (0 Mae) s )T 0 ) T R T )
the market-clearing condition (51) may be rewritten as

(53) T =0y + €.

We use the representation (53) to estimate the unknown coefficient matrix 6. This is
done by applying the so-called approzimate-mazimum-likelihood (AML) algorithm. This
algorithm is an extension of the ordinary-least-square (OLS) algorithm as usually applied
in the learning literature (see e.g. Evans & Honkapohja 2001) to a class of more general
noise processes. The methods provides a recursive scheme which generates successive
estimates

(54) ét = (Agll)’ R ’AEHL)7 B7£1)7 Tt B)SH)7 C/\Yt(l)’ Tt Ct(N))’

24



for 6 based upon information available at date t. Since the noise process {€;}en is
assumed to be unobservable, for each ¢ € N set

(55)
€& = x4 — 07y, .
. 11 H1 11 H1 R
Yt = ((7715 )Qt—l)Ta---a(ng )Qt—L)Ta (77§ )pt)Tv' (7715 )pt)T’ etT—l"' €tTN) ’

where the ¢ are also called a posteriori prediction errors. The AML algorithm’
recursively defined by

{@H==@+m—@mwa,

(56)
P, = Py =Py )P (1 + 9 Praie)™,

for arbitrary initial conditions P_; and . The estimated coefficients (54) obtained from

applying (56) can now be used to construct an approximation of the perfect forecasting

rules defined in (31) and (35) based on information available at date t. An approximation

of (31) is defined by

(57) 00 = 50 (¢ = d), Vi) := R, - dy) + {7V O%,
where
H L H
S A ) = 3 B, - 0+ 3 60 ]
h=1 =1 =1

denotes the estimated excess supply of shares in period ¢ corresponding to (49); We
call (57) a least-square-based forecast for the realization ¢;y;. Observe that & :=

25:1 CA’t(n) €:—, is an approximation for the expected behavior of noise traders E;_; [&].

In order to obtain an approximation for (35) assume that V;_[¢;] = Id. Noticing that
1—1% Zle f?gh) is an approximation for agl)Vt(l)_l, set

H
Vt()- R(O)(/ 0)1 ZBt(h)>
h=1

An approximation of (35) is then given by

(58) v =9 VY

)) . VO it V9 s positive definite,
' Vt(,oi otherwise.

“We adjusted the dating according to our needs and made use of the matrix inversion lemma. This
algorithm is also referred to as recursive extended-least-squares (RELS) algorithm, see Caines (1988, p.
540 and p. 557).
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The series of forecasts (57) and (58) generated by (56) defines a least-square based
adaptive learning scheme for mediator 0.

The proof that the learning scheme converges to rational expectations in the sense
that first and second moments are correct along each orbit of the system depends on
whether or not the AML algorithm defined by (55) and (56) generates strongly consistent
estimates, that is, estimates 6, which converge P-a.s. to #. Observe that the requirement
of constant second moments of the noise process is needed only for the approximation
of (35). It is important to realize that the learning scheme (56) is meaningful only
if the dynamics under rational expectations as well as under the scheme itself is in
some sense stable. Before we state conditions under which strongly consistent estimates
obtain, recall that Ayin(B) and Apax(B) denote the minimal and maximal eigenvalue of
a symmetric matrix B, respectively.

Theorem 8.1 Assume that the following hypotheses are satisfied:

(i) mediator 1 uses a linear rule (40) and constant covariance matrices as forecasting
rules;

(#) the informational constraints of mediator O satisfy Assumption 8.1;

(7i) the noise process {& }en satisfies Assumption 8.2 with Vy,_1[&] = Id and is uncor-
related with the dividend process {d;}ien;

(iv) the price process (24) is stable under rational expectations as given in (38) as
well as under the application of the least-square-based learning scheme (56), in the
sense that all sample means are bounded, i.e.

If the stochastic process {y;}ien defined in (52) satisfies the weak excitation condition

log (6 + Amac (Zi:l ysy;—))
)\min (Zi’:l ysy;r)

then the sequence of estimates {9t}t€N generated by the AML algorithm (56) is strongly
consistent, that is

—0 P—as. ast— oo,

0}—)0 P—a.s ast— oco.

The proof follows directly from Lai & Wei (1986, Theorem 4, p. 241), see Appendix B for
more details. Observe that the essential obstacle for convergence is the weak excitation
condition such that the result is independent of initial conditions as long as the system
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is stable under the learning scheme. In feedback systems such as (38), it is well-known
that the weak excitation condition may be violated. This caveat, however, can be cured
by occasionally perturbing the inputs which in our case are the forecasts. See Lai &
Wei (1986) for the concept and Wenzelburger (2001b) for an economic application.

9 Conclusions

The analysis of adaptive learning in a financial market with heterogeneous traders
showed that the correct use of the structural information about the market mechanism
enables a mediator to learn those forecasting rules which generate rational expectations
in the presence of diverse beliefs. In a financial market good, forecasts hinge essentially
on good estimates of the demand behavior of all market participants. This structural
information is encoded in an error function associated with the economy which captures
the true nature of the expectations feedback.

The learning scheme proposed in the present paper was based on the simple observation
that the excess demand function is linear when households are endowed with linear
mean-variance preferences. The remaining nonlinearity rests on the switching behavior
of households for which consistent maximum likelihood estimators exist and which in the
special case with only two mediators is observable. The learning scheme converges under
assumptions which are standard in the literature on estimation and optimal control.

The potential of this strand of research is outlined as follows. First, the learning scheme
could be extended to an algorithm which uses on-line estimations of the distributions
of households instead of the true values. Second, non-linear estimation techniques as
described in White, Gallant, Hornik, Stinchcombe & Woolridge (1992) could be applied
to identify and estimate forecasting rules for models in which excess demand function
of traders is nonlinear.

A Random Dynamical Systems

A random dynamical system in the sense of Arnold (1998) consists of two basic ingredi-
ents, a model of the exogenous noise and a model of the system which is perturbed by
noise. In what follows we restrict ourselves to the case of discrete time. The noise will be
modeled by a metric dynamical system in the sense of ergodic theory which essentially
amounts to using the (equivalent) canonical realization process of a stochastic process.
Details are found in Arnold (1998, Appendix A). To fix the notation, let ¥ : Q@ — Q
be a measurable invertible map on a probability space (§2, F,P) which is measure pre-
serving with respect to P and whose inverse 9! is again measurable. Assume that P is
ergodic with respect to 1 and let ¥* denote the ¢-th iterate of the map 9. The collection
(Q, F,P, {9 }icz) is called an ergodic metric dynamical system. It is well known that any
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stationary ergodic process {€;}+cz can be represented by an ergodic dynamical system.
This implies that there exists a measurable map € : {2 — X such that for each fixed
w € Q, a sample path of the process {€;}scz is given by € (w) = e(V'w), t € Z.

The second ingredient consists of a time-one map f: Q2 x X — X, X C R™ with
(59) 21 = f(P'w,2) = f(Iw)z,

which governs the evolution of the system. If the system started at z(, then the iteration
of the map f under the perturbation w induces a measurable map ¢ : Z x 2 x X — X,
defined by

(f(ﬂtflw)o...of(w))xo ift>0
(60) o(t,w,x9) =< o ift=0
(fWw)™ o ..o flw™) M)z ift<0

such that z; = ¢(t,w, zo) is the state of the system at time t. For an arbitrary initial
condition zy € X and any perturbation w € Q, the sequence of points y(zo) := {x; }ten
with x; = @(t,w, xg), t € N is called an orbit of the random dynamical system ¢.

The long-run behavior of a random dynamical system is described by random attractors
which is the random analogue of an attractor of a deterministic system (see Arnold
1998, p. 483). Each orbit starting from the corresponding domain of attraction will
then eventually end up on such an attractor. Typical candidates for these special orbits
are generated by asymptotically stable random fized points. The following definition of a
random fixed point (Schmalfufl 1998, 1996)® includes a stability notion given Definition
7.4.6 in Arnold (1998).

Definition A.1 A random fixed point of ¢ is a random variable x* : Q@ — X on
(Q, F,P) such that

*(Jw) = ¢(1,w,z*(w)) for all we Y,

where ' C Q is a Y-invariant set ' C Q of full measure P(Y) = 1.° A random fized
point x* is called asymptotically stable with respect to a norm || - || on X, if there ezists
a random neighborhood U(w) C X, w € Q such that P — a.s.

tliglo 6 (2, w, zo(w)) — 2*(P'w)|| =0 for all zo(w) € U(w).

8Random fixed points can also be defined via a special class of invariant measures for the random
dynamical system ¢, also called random Dirac measures, see Arnold (1998, p. 25).

9Tn the context of random dynamical systems, the term almost surely (a.s.) is used in a non-standard
sense: a property holds a.s. if there exists a ¥-invariant set Q' C Q (9Q' = Q') such that the property
holds for all w € .
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The first part in Definition A.1 implies z* (9""'w) = f(¥'w)x*(P'w) for all times ¢. Hence,
a random fixed point generates orbits {z*(9'w)}ien, w € Q which solve the random
difference equation (59) induced by ¢. If ¢ is independent of the perturbation w, then
Definition A.1 coincides with the notion of a deterministic fixed point. A random fixed
point x* is asymptotically stable, if for almost all perturbations w € €2 all orbits starting
in sufficiently close points z¢(w) € U(w) eventually converge to orbits of the random
fixed point. By stationarity and ergodicity of 9, the process {z* 09" },cy is stationary and
ergodic. Let z*P denote the probability distribution of z*. If, in addition, E ||z*|| < oo,
then the ergodicity and the stability property of z* imply that

qli_I)I;oTHZlB (t,w, To(w))) _Th_I,I;oTHZlB )) = z*P(B)
for all zy(w) € U(w) P-a.s., with 15 denoting the indicator function of a subset B C X.
In other words, the empirical law of any ‘nearby’ orbit {¢ (¢, w, To(w)) }en is for P-almost
all w € Q2 well defined and converges to the true probability distribution of z*.

We review a simplified version of an existence theorem for random fixed points due to
Schmalfuf§ (1998, 1996). Let G(w) C R™,w € Q be a random set, that is, each G(w) is
closed a.s. and {w € Q | G(w) NU # 0} is measurable for all open sets U (Arnold 1998,
Prop. 1.6.2). Consider random variables g : Q@ — R™ which are tempered, meaning
that

tlirgo e %|g(0'w)|| =0 for all § > 0.

Let
G:={g9:Q2—R"| gistempered and g(w) € G(w), w € O}

denote the set of all tempered random variables with values g(w) in G(w).

Theorem A.2 Let¢p:Z xQx X — X, X CR™ be a random dynamical system
over an ergodic dynamical system (2, F,P,{9'}icz) and assume, in addition, that the
time-one map x — ¢(1,w,x) is continuously differentiable a.s. Suppose there exists a
random set G(w) C X,w € Q, such that G is nonempty and the following holds:

(i) The map w — ¢(1,9 'w, g(¥ 'w)) is contained in G for all g € G;

(1) SUP ey 108 [ Dad(1,w, z)|| < c(w), w € Q for some random variable ¢ with Ec <
0;

(iti) if, for some g € G, {(t, 9w, g(9'w)) hen is a Cauchy sequence for each w € Q,
then its limit is contained in G.

Then there exists a unique random fixed point g* € G of ¢ with
tlim ¢t w, g(w)) — g*(F'w)|| =0 forall g€ G, P— a.s.
—00
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B Convergence of the AML algorithm

We briefly review a convergence theorem for the AML algorithm. A major prerequisite
is that the noise process satisfies the following so-called identifiability assumption.

Assumption B.1 The noise process {& }ien is given by

N
&S =e+ Z c™ €t n
n=1

where {€ }ien 18 a {Fi}en-adapted martingale difference sequence on the probability
space (2, F,P) which satisfies the following:

(1) sup;s; Effle]|* | Fimi] <00 P — a.s. for some o > 2;

(2) CO, ... ,CN) N >0 are non-random K x K matrices and the matriz polynomial
[(2) =Id+CWz+---+ CWMN » € C is strictly positive real, that s,

(1) detT'(z) # 0 for all z € C with |z| < 1;

(ii) For each z € C with |z| < 1, the matriz I'(z) + '7(2), with z € C denoting
the complex conjugate of z, is strictly positive definite, that is, x" (F(z) +
I'T(2))z >0 for all 0 # z € R¥.

Theorem B.1  (Lai & Wei 1986, Thm. 4, p.241)
Consider the stochastic regression model
Ty = A,Zt + €t + C(I)Gt_l + -+ C(N)Gt_N,

where A is a M x K non-random matriz and CV,...,C®™) are non-random M x M
matrices and {€;}iez satisfy Assumption B.1. Let z; be F; 1 measurable and

0=(A4,CY ..., C%™)) and y = (2], ¢ ;... el )"

Consider the AML algorithm, given by

{ 0, = O+ (2 — 9t—1§t)?3tTPt;
Pt_l = Pt_—ll + (ﬂt@t)Ta
where R

€& = xz;— O,

Y = (Zg—aella"'aez——N)T'
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If t
log (6 + Amac (25:1 ysy:))

/\min (Zizl ysy;r)

—0 P—a.s ast— oo,
then R
0; >0 P—a.s ast— oo,

where Apin(B) and Ape(B) denote minimal and mazimal eigenvalue of a symmetric
matrix B, respectively.
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