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Abstract

We discuss two optimization problems from economics. The first is a model
of optimal investment and the second is a model of resource management. In
both cases the time horizon is infinite and the optimal control variables are
continuous. Typically, in these optimal control problems multiple steady states
and periodic orbits occur. This leads to multiple solutions of the state-costate
system each of which relates to a locally optimal strategy but has its own
limiting behavior (stationary or periodic). Initial states that allow different
optimal solutions with the same value of the objective function are called Skiba
points. The set of Skiba points is of interest, because it provides thresholds
for a global change of optimal strategies. We provide a systematic numerical
method for calculating locally optimal solutions and Skiba points via boundary
value problems. In parametric or higher dimensional systems Skiba curves (or
manifolds) appear and we show how to follow them by a continuation process.
We apply our method to the models above where Skiba sets consist of points
or curves and where optimal solutions have different stationary or periodic
asymptotic behavior.
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1 Introduction

Dynamic optimization has become an important method in economics. Numerous
examples have been given where dynamic optimization in economics can lead to
multiple steady states and periodic orbits. In earlier growth theory it has been
shown that a convex-concave production function leads to multiple steady states.
Examples are given in the literature on development economics, see Skiba (1978)
[32] and Azariadis & Drazen (1990) [1]. Multiple steady states have further been
studied in modern growth theory. In endogenous growth models of Lucas and
Romer type multiple steady states or a continuum of steady states may arise, for
the Lucas model see Benhabib, Perli & Xie (1994) [4] and for the Romer model see
Benhabib & Perli (1994) [3] and Evans, Honkapohja & Romer (1998) [12], see also
Santos (1999) [26]. The literature on resource economics and ecological manage-
ment problems show also numerous examples of models with multiple steady states
(see Brock & Starret (1999) [7] and Sieveking & Semmler (1997) [30]). Multiple
steady states solutions are also important properties in trade models (see Krugman
(1991) [15]), in models of addiction (see Orphanides & Zervos [20, 21]), in labor
market search (see, for example, Mortensen (1989) [19]) and in monetary control
models (see Benhabib, Schmitt-Grohe & Uribe (1998) [5] and Semmler & Greiner
(1999) [28]).

Such systems often lead to multiple solutions of the state-costate system each of
which relates to a locally optimal strategy but has its own limiting behavior (sta-
tionary or periodic). There are initial states that allow different optimal solutions
with the same value for the objective function. These are called Skiba points. The
set of Skiba points is of interest for economics, since it provides a threshold for
a global change of optimal strategies. Our paper develops a methodology of how
to numerically study such systems via the Hamiltonian and by solving boundary
value problems on finite intervals. In fact, for Skiba points one of the boundary
conditions states that the objective values for two trajectories are identical.

Our approach is limited to optimization problems with continuous controls. More-
over, we can at most detect finitely many locally optimal solutions with prescribed
asymptotic behavior (stationary or periodic). We apply our method to two proto-
type dynamic models, one from modern growth theory and the other from resource
economics.

Our method is based on a general technique for approximating so called general-
ized connecting orbits in continuous dynamical systems, as developed in [22], [24].
Setting up an appropriate boundary value problem we approximate solutions con-
verging either to steady states or periodic orbits. The specific setup of the method
used in this paper is summarized in Section 2.

In Section 3 we define the class of optimization problems with infinite horizon to
which our method applies. We employ a proper version of Pontryagin’s maximum
principle to define the set of “candidates for optimal solutions” with “stationary or
periodic asymptotic behavior”. These solutions are of particular interest, because
such candidates are bounded in state space and they satisfy the necessary first
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order conditions for locally optimal solutions. Connecting orbits are located in the
space of state and costate variables and they determine optimal controls as well
as the system response under this control, if the optimal solutions are asymptot-
ically stationary or periodic. For the solution technique to work we assume the
existence of an optimal solution (so that Pontryagin’s maximum principle applies)
and we restrict our analysis to solutions without jumps in order to get a continuous
dynamical system.

The algorithm detects solutions with specific asymptotic behavior. Comparing the
objective values (obtained by numerical integration) for different solutions we are
able to discard suboptimal solutions.

The topic of 3.3 is the computation of Skiba points with stationary or periodic
asymptotic behavior by using the method from [22, Chapter 5], [23].

In Section 4 we analyze a model of optimal investment and consumption policy
which is presented in [29]. In particular, we approximate two solutions converging
to different steady states. To the first one our method and the theory applies. This
is not the case for the second solution, which converges in finite time to a singular
point on the boundary of the domain. Here we derive some appropriate boundary
conditions and modify our approach so that it still works in practice.

A model of optimal exploitation of renewable resources and optimal consumption
policy, presented in [30], is analyzed in Section 5. Here we detect several periodic
solutions and determine appropriate solutions converging to either one or the other.

2 The numerical method

In this section we give a survey of the numerical method and its error analysis. We
are interested in solutions of a dynamical system

z=F(z), z(t)eR™ (1)

with initial value zp in a given subspace W C R™ and converging to a given
steady state (y(t) = §) or to a T—periodic orbit y(¢) (y(0) = y(T')). Therefore we
approximate solutions £(t) of

) =F(£(1), t Ry with £0) €W  and  lim [€(t) — (1) =0.  (2)

In the setup of this paper the subspace W is defined by fixing k initial coordinates,
iez,0) =z, fore el ={u,...,00} with1l <4 <--- <1 < m. Writing
zr = (z,,)%_; € R¥ we can express the condition £(0) € W as &;(0) = z1 € RF.

We call a solution of (2) a connecting orbit from W to y and we call it
nondegenerate if in addition the stable manifold of y intersects the subspace
W = {z € R™|z; = z1} transversally (for a precise definition and more general
type of connecting orbits see [22]).
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In the following we assume, that there exists a nondegenerate connecting orbit
which we want to approximate. Our method is based on a general technique for
approximating so called generalized connecting orbits in continuous dynamical sys-
tems, as developed in [22], [24].

The main tool is a solver for boundary value problems which also allows for con-
tinuation of parameters. In the applications we use the collocation based solver
COLCON/COLPAR by Bader & Kunkel [2]. In addition one has to locate zeros
of F (equilibria) and to compute eigenvalues and eigenvectors in order to set up
appropriate asymptotic boundary conditions.

Henceforward we assume that F is sufficiently smooth (at least twice differentiable)
and that y(t) is a given solution of (1) which is either a hyperbolic steady state
(y(t) = 9) or a hyperbolic T-periodic orbit (y(0) = y(T')).

REMARK A steady state is called hyperbolic, if its linearization has no eigenvalue
pu with Re(u) = 0 and a periodic orbit is called hyperbolic, if it has a simple
Floquet multiplier 1 and no other Floquet multiplier on the unit circle.

2.1 Steady states

To detect a steady state § we solve F(9) = 0. Then we compute the eigenvalues
of F'(§) and denote the number of eigenvalues with negative real part by m,.
To obtain an orbit connecting to § one has to fix k = m, initial values, i. e.
#I = my and Ty € R™. If m, = 0, then there is no solution converging to
7, except the stationary solution ¢ itself. If m, = m, then all solutions in a
neighborhood of § converge to § and hence (2) is an initial value problem without
an asymptotic condition. Therefore we assume henceforward 0 < m, < m and
define my = m — my.

REMARK Fizing k = mq inital values is necessary to get a transverse intersection
of the stable manifold with the subspace defined by {z € R™|z; = Zr}. In the
economic examples (1) is usually a state-costate system. If mg is larger than the
number of state variables then one has to fix some costate variables (and hence
there is a continuum of solutions converging to §), but if mg is smaller than the
number of state variables then one has to free some state variables to obtain initial
values with a solution converging to 4.

To define an asymptotic boundary condition we compute a matrix V' € R™ ™,
where the rows of V span the unstable subspace of F'(¢)7, i. e. we solve

VF'(j) = UV, 3)
where U € R™™ with Re(a(U)) > 0.

REMARK Here we use an eigenvalue solver which computes the eigenvectors of
F'T(@) and we define the rows of V by the eigenvectors corresponding to the unstable
eigenvalues. For a complex pair two columns are defined, one by the the real part
and one by the imaginary part of the complex eigenvector.
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Using this matrix V' one obtains V(z — §) = 0 if z — § is in the stable subspace
of F'(§). The approximation of a solution ¢ of (2) on a finite interval [0,7%] is
then obtained from the solution of the boundary value problem

£t) = F(E1), telo,Ty], (4.a)
&0) = =z, el .
V(ET)-9) = 0. (4.c)

REMARK A main problem is to define a “good” initial approximation of the
boundary value problem (4.a—4.c). One strategy is, to start in the stable subspace
of 9, integrate backwards and choose as a final value some Ty which comes close to
W. This defines a solution of (4.a), (4.c) with initial value T;. The coordinates
of £1(0) are then successively used as continuation parameters in (4.a—4.c) until
&r(0) = Zy is satisfied. A similar strategy, called “successive continuation”, is
developed in [10].

If F' depends on parameters and one wants to get solutions for different parameter
values, it is useful to compute the steady state, the asymptotic boundary condition
and the solution from a single parameter dependent system as follows:

F(§,0)
§—F(§A)
£r(0) —zy

V(1) - 9)
VEF(§,))-UV
vvt —vvT

Here X is the continuation parameter and the unknowns are the steady state ¢,

the matrices V and U, and the asymptotic solution &. In addition V e Rwm

is a normalizing matrix obtained from the eigenvalue problem (3) at an initial

parameter A

2.2 Periodic solutions

To detect a T-periodic solution y we solve the (n + 1)-dimensional boundary value
problem

0(t) = TF(n(®), T(t) =0, t€[0,1], 7n(0) =n(1), (6)
x(n) = 0, (7)

where ¥ is a scalar phase condition, e. g. x(n) = F(7)7 (9(0) — 7) with 7 in a
neighborhood of the (expected, but yet undetected) period orbit. The result is the
period T and a 1-periodic solution 79 of the scaled system (6), hence y(t) := 7o (¢/T)
is a T-periodic solution of (1). Systems of the type (6), (7) are due to [9], [14].

In addition to 7y, each “phase shifted solution” solves (6). In the later applica-
tions we usually cannot fix the phase of the periodic orbit as in (7). Rather we
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introduce an additional phase parameter ¢ and the value of ¢ becomes part of the
problem (for determining optimal solutions). To specify the periodic orbit which
corresponds to a phase parameter ¢ we define a phase fixing condition x(n,¢) =0
which depends smoothly on ¢ and satisfies x(70,0) = 0 (examples for x are given
below). We replace (6), (7) by

i(t) = TF(n()), te€o,1],
"(t) = 0,

S

(P(t) = 0, (8)
n(0) = n(1),
x(m,p) = 0.

Its solution (n,,T) is the periodic solution corresponding to ¢.

REMARKS 1. The function x should be chosen in such a way that the exis-
tence of a phase shift (and hence a periodic solution) satisfying the phase con-
dition can be guaranteed. An example for a phase fizing function is x(n,p) =
0(@)T (n(0) — no(y)), where ny is a periodic solution already calculated and the
additional parameter ¢ is the phase shift itself. If we expect ¢ to be small, then
instead of computing ny we can use for x(n, ) a simpler expression based on the
initial approzimation 7 like x(n, ©) = F(7)T (n(0) — (7 + @F (7). In the application
in Section 5 we choose yet another phase condition described there.

2. The problem of detecting periodic orbits and hence a sufficiently good initial ap-
prozimation for the boundary value problem remains. In the application in Section
5 we use the continuation software CONTENT [17] for this task.

Let U be the solution of the variational equation U = TF'(n,(-))U, U(0) = Idgm.m.
Then the eigenvalues p of U(1) are the Floquet multipliers and we denote the
number of stable Floquet multipliers (i. e. |u| < 1) by m,. Since 1 is a Floquet
multiplier we have my := m — m, > 0. As in the steady state case we fix the
number £ of given initial values by the dimension of the stable manifold of the
periodic orbit and hence #I = k = m, + 1 (the center direction corresponding to
the Floquet multiplier 1 is part of the stable manifold).

To define appropriate asymptotic boundary conditions we solve the adjoint varia-
tional equation

W =-WTF'(n,(-)) with W(0) = Idgmm.

From the fundamental matrix W we need only a submatrix V,, the rows of which
belong to the eigenvalues |u| < 1 of W(1). For this purpose we solve

V = -VTF'(n,() with V(1) =AV(0), 9)

for V(t) € R™™ and some A € R™>™ gatisfying |u| < 1 for all eigenvalues p of
A. Then we set V,, = V(0).
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If we assume that we can compute 7, and V,, smoothly in ¢, then we approximate
the solution (&, @) of the scaled problem

1) =TF(£(t), t€ Ry with £(0)=% and lim [&(t) — n,(t)] = 0 (10)

t—00

on a finite interval J = [0,74], T+ € N by the solution (£7, ;) of the boundary
value problem

&) = TF(E®), te0,Ty],
£&(0) = zp, (11)
Vo (E(Ty) —my(T4)) = 0.

Note that the approximation £; has been scaled, so that §J(E/T), 0<t<T.T
approximates the solution of the original system (2) on [0, 7 T].

REMARK Above we have assumed Ty € N for simplicity. For more general Ty €
Ry we can keep (11) but need to replace (9) by

V=-VTF (ny(-+Ty)) with V(1) =AV(0).
Notice that in case Ty € N both equations agree.

Typically, computing 7, and V,, smoothly in ¢ is cumbersome because during the
solution procedure for (11) the large system (9) has to be solved many times.
Therefore we use a simpler approach, called the boundary corrector method.

1. Select an initial approximation .
2. Compute V,,, by solving (9) for ¢y.
3. Calculate (£7,9.,7,,,T), the solution of

)
) =| WO (12)

£1(0) — 21
Voo (6(T4) — n(Ty))

4. Repeat step 1. with @9 = s and step 2. and terminate.

REMARK The first three lines of (12) define a periodic orbit ) and the period T
corresponding to the phase @, the fourth line defines the dynamical system, the fifth
line fizes the my+1 initial values and the sizth line defines the asymptotic boundary
conditions.

2.3 Approximation theorem

The numerical method is supported by an error analysis which was derived for a
more general setting in [22], [24]. Here we restrict the method to the cases of steady
states (Theorem 1) and periodic orbits (Theorem 2).
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THEOREM 1 Suppose that T is a nondegenerate connecting orbit from {z € R™ |z =
Zr} to a steady state § and let v < 0, 8 > 0 satisfy Re(u) < v for all eigenvalues
of F'(§) with negative real part and Re(u) > B for all eigenvalues of F'(§) with
positive real part.

Then there exist § > 0, C > 0 and Ty > 0 sufficiently large, such that for Ty > T
there exists a neighborhood B(8,8,Ty) of Z|; (restricted to J = [0,T4]) in which
the operator equation (5) (or (4.a—4.c) respectively) has a unique solution ;.

Furthermore, the following estimate holds

€(t) — & ()| < CeP=AT 0 <t < T

In the case of periodic orbits we state the theorem according to the boundary
corrector method.

THEOREM 2 Suppose that T is a nondegenerate connecting orbit from {z € R™ |z =
Zr} to ng in the scaled system (10) and let v < 0 satisfy |p| < €7 for all Floguet
multipliers within the unit circle.

Then there exist 6 > 0, C > 0 and T, > 0 sufficiently large, such that for T, > T,
there ezists a neighborhood B(6,Ty) of Z|; (restricted to J = [0,T]) such that
the boundary corrector method defined by (12) has a unique solution (£5,¢y5) in
B(6,Ty).

Furthermore, the following estimates hold

Ce¥ T+

€5 (t) — 2|5 (2)| ceT+ 0<t<T,.

REMARK The theoretical results are derived for F defined on all of R™. Never-
theless, both, the numerical method and the error estimates work in a neighborhood
of the exact solution. Hence we can apply the results to F, defined on a subset
U C R™, provided that the exact solution and the steady state or periodic orbit are
in the interior of U.

3 The general setup

In this section we follow [18] and define a class of optimization problems with infi-
nite horizon to which the methods of Section 2 apply. Using Pontryagin’s maximum
principle we arrive at a continuous dynamical system as in (1) if we assume con-
tinuity of the control variables. We apply the techniques from Section 2 to detect
continuous solutions which satisfy the necessary first order conditions (hence they
have a chance to be optimal and will be called candidates in 3.2) and which have
stationary or periodic asymptotic behavior.
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The methods of Section 2 require a twice differentiable function and therefore, we
cannot deal with systems where solutions with jumps in the control are optimal.
Moreover, it is obvious that an optimal solution can only be detected by this
method, if it has the prescribed asymptotic behavior. Yet the method allows to
rule out suboptimal solutions.

The optimization problem is to maximize the objective function

A~

0(z,c) = / et (a(t), () dt (13)

0
subject to
(t) = f(z(t),c(t)), t €Ry,  x(0) = mo, (14)
where z(t) € R™ are the state variables and ¢(t) € R™ are the control variables which

are assumed to be piecewise continuous. Moreover, we assume U € C3(R?",R),
f € C3(R*™ R™).

DEFINITION 3 A pair (z(-),c(-)) is called an admissible trajectory, if z(-) is a
solution of (14) with control c(-), except at the jumps of ¢, and if the integral (13)
converges. The set of all admissible trajectories is denoted by Taq(zo).

A pair (Z(-),(+)) is called an optimal solution of the problem (13), (14), if it is
admissible and if it mazimizes (13) over all admissible pairs (z(-),c(-)) € Taa(z0)-
The set of all optimal solutions is denoted by Topt(zo).

A first observation implied by recurrence in the state variables is stated in the
following proposition.

PROPOSITON 4 If there is an optimal solution (z(-),c()) with z(0) = z(T), T > 0,
then the following solutions are optimal:

A: The solution itself, i. e. (za(-),ca(")) = (z(),c(+)),
B: The solution starting at x(T) with control c(-+T), i. e.

(zB(-),ca()) = (a(- +T),c(- + 1)),
C: The T—periodic solution which switches at each nT, n € N to z(0), i. e.

(zc(-)scc(+)) = (z(-modT), c(-modT)).

PROOF Breaking up the integral in (13) and using the geometric series one obtains

A~

Oep,cn) — /0 T et (a(t + T), et + T))dt = e_leT /T " U (1), et)dt

o T
U(ecrec) = 3 / =TI (54 4+ 4T), et + 4T))dt
1=0 0

T
_ ﬁ /O 0T ((t), c(t))dt
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and

Oz, cn) = / e~ (2(2), c(t))dt = e T0 (2, c5) + (1 — )T (20, co)-
0
Hence Proposition 4 follows from the optimality of solution A. |

REMARK If (z(-),c(-)) is T-periodic, then the solutions A, B and C coincide.

It is not our intention to prove existence of optimal solutions, hence we assume:

ASSUMPTION 1: There exists at least one optimal solution of the problem (13),

(14).

REMARK For sufficient conditions for optimality in infinite horizon problems see
e. 9. [27]. However, in our applications the Hamiltonian is not concave in the state
variables and hence the theorems of that paper do not apply.

The technique used here is to apply Pontryagin’s maximum principle to detect
candidates for optimal solutions. These are admissible trajectories which satisfy
the necessary conditions for optimal solutions stated in the forthcoming Theorem
5. For these solutions we compute the values of the objective function (13) by
numerical integration and choose those with maximum value. We do not claim
that these solutions are optimal, but we can state that the remaining ones are
suboptimal.

The following theorem is a special version of Pontryagin’s maximum principle from
[18, Theorem A].

THEOREM b A necessary condition for an admissible trajectory (f(), E()) € Taa(zo)
to be an optimal solution of (13), (14) is, that there exist A € {0,1} and an initial
costate value yo € R*, such that

1. (\yo) #0.

2. The costate variable y(-) is a solution of the initial value problem

i) = e (LU (0,e0)) - (2/6E0.0)) vb 5

3. For each t € Ry where ¢(t) is continuous, (z(t),c(t),y(t), ) satisfies
H(z(t),c(t),y(t), A, 1) = max H(z(t), ¢, y(t), A, 1), (16)
C
where H is the Hamiltonian function

H(z,c,y,\t) = /\e*HtU(a:,c) + f(a:,c)T Y.
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4. The mazimum value of the Hamiltonian satisfies for every t
M(t) := H(z(t),c(t),y(t), A1) = —q(2), (17)
where the function q(t) € R is the solution of

g = Ne U (z(t),e(t)),

limy o0 g(t) = 0. (18)

PROOF See [18, Theorem A]. [ |

REMARK The initial costate value yo is unknown. If yo and ¢(-) were given, then
(14) and (15) constitute an initial value problem for z and y.

For admissible (Z,¢) the integral (13) converges (see Definition 3) and hence (18)
leads for A =1 to the formula

o) = -0 /t " eI (3 (s), 2(s))ds. (19)

In this section we will henceforward assume A = 1. In the applications such a
“normality condition” requires a proof (see e. g. [33]).

In particular, we deal with systems where we can express ¢(¢) by (16) in terms

of Z(t) and the scaled costate function z(t) := e’y(t), i. e. we can write &(t) =

C(z(t), #(t)). Thus we assume:

ASSUMPTION 2: Any candidate for an optimal solution satisfies A = 1 and there
ezists a twice differentiable function C, such that C(z,z) mazimizes the scaled
Hamiltonian function H(z,c,z) := U(z,c) + f(z,¢)" - z for all (z,z) € R*.

REMARK If the Hamiltonian is concave in the control variables, then the equation
%H(m, ¢, z) = 0 defines for each (z,z) the mazimizing C(z,z) except at the bound-
ary of the control set. The function C is twice differentiable if the Hamiltonian is
sufficiently smooth and if C(z, z) is in the interior of the control set.

Both, the state and the costate variables are continuous for an optimal solution
and hence the control is continuous by assumption 2. Thus we arrive at:

PROPOSITON 6 Assumption 2 implies that the control is continuous.

Using 2(t) = ey(t), e(t) = C(z(t), 2(t)), the equations (14) and (15) imply that
(z(t), 2(t)) solves the autonomous dynamical system

o) ) ' )eeren o
z 0z — (%U((E,O(z‘,z))) — (a%f(w,(}’(:v,z))) z

with (z(0), 2(0)) = (zo,0), if (Z(-),&(-)) is an optimal solution.

We consider (20) as initial value problem depending on yy € R® and denote its
solution by z(yo,t),2(yo,t). We abbreviate the solution functions by z(yy) :=
z(yo,+), #(yo) = z(yo,-) and the corresponding control by c(yo) = c(yo,-) =

C(w(yo, ), 2(Yo, '))-
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3.1 Candidates for optimal solutions

DEFINITION 7 An admissible trajectory (z(-),c(+)) € Tad(zo) is called a candidate
for an optimal solution or for short a candidate, if it satisfies the necessary
conditions of Theorem 5. The value yg is called the corresponding costate value
and the set of all candidates for optimal solutions is denoted by Tean(xo)-

REMARK In the literature a solution which satisfies the necessary conditions 1.—
3. is often called an equilibrium (here a candidate if 4. is also satisfied) and
a stationary solution is called a steady state-equilibrium (here simply a steady

state), e. g. [5].

Suppose that the assumptions 1 and 2 hold, then we reformulate the optimization
problem and maximize

U (yo) = /0 " e (ayo, ), elyo, 1)) dt (21)

over all yo € R", for which (z(yo), c(y0)) is a candidate. The conditions 1.-3. of
Theorem 5 are satisfied for all (z(yo),c(yo)). Thus, for the set of candidates we
include the conditions that the integral (21) exists and that the optimality (17)
holds and get

Tean(z0) = { (z(y0), c(¥0)) ‘ yo € R" and the integral (21) exists and (17) holds}.

PROPOSITON 8 Suppose that the assumptions 1 and 2 hold and that (x,c) is a
candidate with initial costate variable yo and with ©(T) = zy and ¢(T') # ¢(0) for
some T > 0. Then (x,c) cannot be optimal.

Otherwise the T—periodic solution (z(-modT),c(-modT)) which jumps at T to
(z0,v0) is also optimal (trajectory C in Proposition 4), but its control is not con-
tinuous at T'. This contradicts Proposition 6.

Additional information whether a solution is optimal can be obtained from (17)
and (19). If (z,¢) is a candidate, then we have

o] e—ﬂt
/t e U(z(s),2(s))ds = T(U(;E(t),é(t)) + f(i(t),é(t))Tz(t)). (22)
Maximizing this at t = 0, i. e.
v(z0,Y0) = 1[U(ﬂco,C(»’L‘oayo)) + f(l‘o,C(mo,yo))Tyo], (23)

0

over all initial values of costate variables yy € R"® does not solve the original prob-
lem, because yo has to be restricted to initial values of costates which correspond
to candidates. However, we can test (22) at ¢ = 0 for single admissible trajectories
by numerical integration to see whether they satisfy (17) or not. Moreover, (22)
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is of particular importance for our approximation method, because it allows to
determine the value of the objective function in terms of the initial values of an
optimal solution.

REMARK The equation (22) always holds true for steady states (Z,z) of (20) and
c= C(a‘c,z). If (a‘:(t),z(t)) 18 an optimal T—periodic solution, then one can show
(using periodicity and the geometric series) that (22) is equivalent to

1—e 0T

5 (U (@®),20) + 1 (20, 2(1) " =(1)) (24)

T
/ =0T (s +1), 5(s +1))ds =
0
for all t € [0,T]. Hence, testing (22) for periodic orbits requires only integration
on a finite interval.

3.2 Asymptotic solutions

Using the techniques of [22, Chapter 3] we approximate candidates for optimal
solutions with special asymptotic behavior, i. e. those solutions which converge to
given solutions 7. In particular, we restrict our study to the case where 7 is either
a steady state or a periodic solution.

We consider a finite set Y = {n;}icr, I = {1,...,l} of stationary or periodic
solutions of (20), where 7;(t) € R™, m = 2n. In the applications the 7; are either
given or computing them is part of the problem. Our purpose is to decide for given
zo € R® whether there are solutions converging to any of the 7; and to rule out
among these the suboptimal solutions. Thus we define

DEFINITION 9 Suppose that the assumptions 1 and 2 hold.

A candidate for an optimal solution (x(),c()) € Tean(zo) with corresponding
costate value yo is called asymptotic to Y, if the solution & = (x,z(yo)) of
(20) is asymptotic to some n; € Y, 1. e. limy_ ||E(t) —ni(t)|| = 0. The set of these
solutions is denoted by Tqey(Y)(0).

We call a candidate (Z(-),c()) € Tasy(Y)(z¢) optimal with respect to Y, if it
mazimizes the objective function over all (z,c) € Tasy(Y)(20), i- e.

A~

U(z(-),e(-)) = (U(z,c)), where U(z,c) = / Ooe’atU(:v(t),c(t))dt.

max
(2,6)€Tasy(¥)(x0) 0

The set of candidates which are optimal with respect to Y is denoted by Tk (V) (xo).

Notice the obvious relation

TNV (@0) C Tasy(Y)(@0) C Tean(®0) C Tad(wo)-

We restrict to 7; which are hyperbolic, i. e. the linearization of a steady state has
no eigenvalue p with Re(u) = 0 or a periodic orbit has a simple Floquet multiplier
1 and no other multiplier on the unit circle, respectively.
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Moreover, we define ¢; € {—n,...,n}, such that n + ¢; is the dimension of the
stable manifold of 7;, i. e. in the stationary case n + g¢; = m, and in the periodic
case n+ q; = mq + 1. Let Zy € R" be a given initial value of (14) and let ) be the
set of solutions to which an optimal solution may converge.

Analyzing asymptotic candidates

1. Compute the n; by solving F(n) = 0 or (6), (7), respectively.

2. Compute m,, the number of stable eigenvalues (and ¢; = m, — n) or stable
Floquet multiplier (and ¢; = m,+1—n), respectively, and define m, = m—my,.

3. Compute asymptotic boundary conditions V' € R™™ by solving (3) or (9),
respectively.

4. Try to find solutions converging to 7;.

(a) If ¢; = 0, then we fix the n initial state values Zy and apply either (5)
or the boundary corrector method (12).

(b) If ¢; < 0, i. e. ; has a stable manifold of dimension less than n, then
generically it will not intersect in the state-costate space R?" the n
dimensional affine subspace {Zo} x R" of initial values of (20). In this
case we fix only n+ ¢; < n inital state values and apply either (5) or the
boundary corrector method (12). A solution of this procedure defines
an initial state value where a solution converging to 7; is possible, but
in general this does not coincide with Z.

(c) If ¢; > 0, then there exists typically a g;—dimensional surface of candi-
dates which are asymptotic to 7;. This leads to the problem of maximiz-
ing U(yo) ((21)) on a ¢;~dimensional surface. To approximate a solution
on this surface we fix the initial state values Zy and additional g; costate
variables and apply either (5) or the boundary corrector method (12).
To get further solutions on this surface we use the fixed costate variables
for parameter continuation.

Let (z;,2;) be the corresponding solution and define ¢; = C(z;, 2;).

5. Test (22) by numerical integration to decide whether these solutions are can-
didates or not.

6. Choose those solutions which maximize the objective function (13) and hence
rule out suboptimal ones.

REMARKS 1. We need sufficiently good initial guesses for the solutions of (5) or
(12), respectively. Here we use the strategy described in Section 2 as successive
continuation.

2. The method in 4.(c) only computes single solutions on the surface and it is not
clear how to find an optimum on this surface. One strategy might be successive
continuation of fized costate variables in the direction where the objective function
grows until it reaches a local mazimum. For an analysis and implementation of
such methods see [11].
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3.3 Skiba points

Now we define “Skiba” points [32] and derive an approximation procedure based
on the results of [22, Chapter 5], [23].

DEFINITION 10 Suppose that assumption 1 holds. We call an initial value zg €
R™ g Skiba point, if there are multiple optimal solutions. Suppose in addition
assumptions 2, then we call an initial value xo € R™ a Skiba point with respect
to Y, if there are multiple candidates which are optimal with respect to Y. The set
of all Skiba points with respect to ) is called Skiba set with respect to Y and
it 1is denoted by S()).

In this section we restrict to hyperbolic n € Y with n—dimensional stable manifolds.

In order to approximate Skiba points with respect to Y = {n;,n-} (two alter-
natives) we have to solve two problems of the type in 3.2 and detect initial state
values where the values of the objective functions are equal.

At first we approximate simultaneously two solutions (z.(t), 24 (t)) € R?® which
converge to different 7, - € ) and have the same initial state value zy. The
corresponding controls are denoted by c. (t) = C(z+(t), z+(t)). This is done in an
obvious way by doubling the system and possibly scaling the differential equations.

To detect a Skiba point we define one coordinate j of the initial state value zo € R*
as unknown parameter. Thus we substitute the conditions z;(0) = zo;, z—;(0) =
wo; by z4,(0) = z_,(0) and the condition that the values of the objective functions
are the same. We abbreviate for z € R', [ > n the vector of the first n coordinates
except the j—th by z* = (.’L'Z)v,=1;én € R*!. To define the second new condition

J
we employ (23) for both solutions to achieve a condition which only depends on
the initial values. Hence the conditions at ¢ = 0 are z% (0) = zj, z*(0) = zg,
z1,(0) = z_,(0) and v(z(0),24(0)) = v(z_(0),2-(0)) with v given by (23).

To detect a Skiba point, where 17— and 74 are steady states we assume that V_
and V, are computed by (3) and we solve the boundary value problem

-7 F(E)
£+ —T-F(&4)
£2(0) — zg
GSF(,&y) = &0) — = 0,

Here the 71 are scaling factors which can be chosen appropriately. This allows us
to solve both parts (£) of the boundary value problem on the same finite inter-
val [0,T], while the un-scaled solutions are approximated on different intervals
[0,74+T%] and [0, T ].
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To approximate a higher dimensional Skiba set, we can use the initial state variables
(except the zo, above) as continuation parameters.

CoNcLUSION 11 If Zy is a Skiba point and there is a neighborhood V of gy, such
that for each xo € V there exist solutions (xi(mo),ci (xo)) which are optimal with
respect to {1y} and {n_}, respectively, then, in a generic sense, the Skiba set with
respect to Y = {n4,n_} is locally a manifold of dimension n — 1. In particular it
s a point if there is one state variable and it is a curve if there are two.

This can be seen by the following arguments:

Let Uy(zg) be the value of the objective function at (24 (20), e+ (20)) for each
zo € V, then we require U, (Zo) = U_(Z,) for a Skiba point Z.

The sets Wi = {(wo, ﬁ+($o)) |zo € ]R"} are manifolds of dimension n in R**1.

Moreover, generically they intersect transversally at (zg, Us (%)), hence Ty, W +
T, W— = R, Thus Ty, W, N Ty, W_ is of dimension 2n — (n + 1) =n — 1.

REMARKS 1. The above arguments may fail if Y = {y1,...,yi} holds with | > 2.
In this case we observe

symc U SHwud-

1<i<j<l

Consider, for example I > 2 in case n = 2 where the Skiba sets S({yi,y;}) form
curves. If these intersect then S(Y) is not a manifold near this point.

2. If the dimension of the stable manifold of an n is less than n, we have to
free additional state variables by replacing further x4 (0) = zo,, z_,(0) = zo, by
z4,(0) = z_,(0). In this case the assumptions of Conclusion 11 are not satisfied
and hence the arguments above fail.

3. If the dimension of the stable manifold of an n is large than n, we may fiz
additional costate variables and apply the method above. A problem is, that this
typically will not be optimal with respect to {n} and it is not clear whether parameter
continuation of the fixed costate variables really terminates in an optimum.

4 Optimal investment

We analyze a model of optimal investment and consumption policy which is pre-
sented in [29]. There it is shown that a non-explosiveness condition yields a region
in state space, where the borrower remains credit-worthy.

The full problem can be split into the problem of optimal investment for maximizing
the wealth of the economy and into the problem of optimal consumption policy to
maximize the utility of this wealth.

We restrict to the problem of optimal investment. Using Pontryagin’s maximum
principle yields a 2-dimensional dynamical system in state-costate space. It will
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be seen that the stable manifolds of stationary points are candidates for optimal
solutions.

The model

There are two control variables, the investment j(¢) and the consumption ¢(t) > 0.
The two state equations for the per capita capital stock k(t) > 0 and the per capita
stock of debt b(t) are:

Z(kaj)’ k(O) = kO,
b= Ob+e—f(kg), b(0) =ty (29)

with the net investment function i(k, j) = 7 — ok (depreciation rate o), net income
function f(k,j) = cpk® — (j + %—i), k>0, f(0,0) = 0 and the rate of interest 6.
We assume 0 > 0,6 >0,c; >0,7€(0,1),0<a<2—7.

Moreover, the following non-explosiveness condition for the debt is required:

lim e~%b(t) = 0. (26)
t—o00
This asymptotic boundary condition implies that the state variables have to stay
bounded if the borrower remains credit-worthy (see [29]).

To optimize the utility U(c) := Jo° e %"U(c(t))dt we have to solve

max, j [ e PtU(c(t))dt,
b=0b+c— f(k,j); b(0) = bo,
limy_,oo e %b(t) = 0,

(Pr(ko, bo))

where U is a strictly monotone increasing utility function.

This problem can be separated into two optimization problems.

a) Solve the investment problem for ky € Ry

{ max; [ o0 (k(s), (s))ds,

k= i(k, j); k(0) = ko. (Pr (ko))

By using an optimal solution (k*(t),j*(t)) of (P;(ko)) we define the wealth
of the economy at time ¢ = 0 by w* := [° e 95 f(k*(s),5*(s))ds — bo.
b) Solve the problem of optimal consumption for given (k, j,by), and w € Ry

maxe,e<uw fooo Ul(c(s))e f5ds,
b=0b+c— f(k,j), b(0) = by, (Pc(w, k, j,bo))
lim; o0 e~ %b(t) = 0,

where ¢ := [;®e %c(s)ds. We denote a solution of (Pc(w,k,j,by)) by

(6% (2), ¢* (1))
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It can be seen, that (k,b,7,¢) is an optimal solution of (Pp(ko,bo)) if and only
if (k,7)_is an optimal solution of (Pr(ko)) and (b,¢) is an optimal solution of
(Po(w, k,7,bo)), where @ := [ e f(k(s), j(s))ds — bo.

An analytical treatment why and under what conditions such problems can be
separated is given in [31]. Henceforward we treat (Pr(ko)). Let us apply Theorem
5 to this system.

THEOREM 12 A necessary condition for (k*(t),7*(t)), 0 <t < o0, to be an optimal
solution of (Pr(ko)) is that there ezist a real number A € {0,1} and an initial
costate value g € R, such that

1. ()\, .’E()) 7é 0.
2. The costate variable z(-) is the continuous and piecewise differentiable solu-
tion of
() = —Ae MG f(R*(2), 5% () — o (t) ik (2), 5* (2)),
(27)
z(0) = xy.

3. The investment j*(t) mazimizes the Hamiltonian function
H(E* (1), j,2(t), A, t) = Ae " F(K*(2), ) + =(t) i(K* (1), 5),
at each t where 7*(t) is continuous.
4. The mazimum of the Hamiltonian satisfies for every t
M(t) := H(k*(t), % (%), z(t), A, 1) = —q(?),
where the function q(t) is the solution of

| = 0e " f(k* (1), 5%(1)),
{ ;]imt—wo Q(t) = 0. : (28)

Now we consider the special choice for f, ¢ above and draw some conclusions from
this theorem. Let (k*,j*) be an optimal solution of (Pr(kg)) and let A, zy, z and
g be as in Theorem 12.

o If A =0, then 1., 2. imply zo # 0 and &(t) = z(t)o (notice i(k,j) = j — ok),
hence z(t) = e®'zy # 0. Thus (%.H(k*(t),j,:c(t),a,t) = x(t)a%i(k*(t),j) =
z(t) # 0. This contradicts condition 3. and hence A = 1.

e Condition 8. implies j*(t) = j(k*(t),e%z(t)) for each 0 < t < oo, where
ik, y) = y%lk"ﬁ Continuity of z and k* imply continuity of j*. Thus, an
optimal solution must have a continuous control.
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e The scaled function

(k(®), (1)) := (K*(t), e"(2))

is a solution of

k L — ok
(y> - ( (9 + o')y —acsk ! — (y—1)? g1 ) =: F(k‘,y) (29)
f O

with £(0) = ko, y(0) = yo := xo-
e By integration (28) implies q(t) = —0 [ e7% f(k*(s), *(s))ds.

e The definition of y and 4. yields for each ¢:
YOk (t) = 9/ e YD f (k" (s), 57 (s))ds — F(K*(2),57(1))-  (30)
t

For the phase portrait of the dynamical system (29) see Figure 1.

The system has two stationary points, (ky,v,) is a sink and (ks, ys) is a hyperbolic
saddle.

We approximate a solution z (t) = (k4 (t),y+(t)) on the stable manifold of (ks, ys)
by the techniques from Section 2 by solving the boundary value problem

() = re0a0). e
() -6) =

k() = ko,

where V7 is the eigenvector of F'(k,,ys)” corresponding to the unstable eigenvalue.
The solution 2 (t) = (k4(t),y+(t)) is drawn in Figure 1. Moreover, we define the
value of the objective function by F (ko) := [ e % flky(s), (24 (s))]ds. These
values are plotted in Figure 2 as a function of kq (with sign +).

The only solution of (29) which ’converges’ to (ky,¥,) is the stationary solution

itself and its value of the objective function M is not optimal (see Figure 3).

For kg smaller than some critical value ko (see Figure 1) there is another trajectory
z_(t) = (k—(t),y—(t)) of (29) which converges to the singular point (0,1). In
fact this trajectory reaches (0,1) in finite time T and it defines another bounded
admissible solution of (Pr(kg)) by

o (k- @®),5(k-(t),y-(t)) for te[0,T),
(k(t)’](t))_{ (0,0) for ¢ e [T, o0).

The value of its objective function is ' (ko) := Jo7 €% flk_(s),j(2—(s))]ds. These

values are plotted in Figure 2 as a function of ky (with sign x).
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Figure 1: k-y phase portrait for (29) with parameters o = 1.1, ¢y = 0.29, 0 = 0.15,
0 =0.1 and v = 0.3.

Since the point (0, 1) is singular and at the boundary of the state space, we cannot
apply our approximation method from Section 2. The solution, however, is very
interesting because it describes a strategy where the complete capital stock is spent
in finite time. In order to approximate this solution near (0, 1) we use an analytical
approximation near singularities (compare [8]) as follows

K(t) := 04 byt + bot®,
Y(t) = 1+ait®™ +agt®.

The coefficients a1, ao, b1, by, 0 < §1 < 9 and 0 < €1 < ey are chosen, such that
(K(t),Y(t)) satisfies (for suitable d3 > 0 and €3 > 0)

() s esorn= (32)

where F' is defined by (29) and p(t) = O(#°) means that lim; ,q ’% exists. In

this particular case with 1 < a < 352, the exponents are §; = 1, ¢, = —=,

2 1—y
8y = M-ﬁ-l and e = 2% and the coefficients are a1 = —(o + 6)(1 — 7),

1—y 1—y
1
0)(1-7)2\ T7 _ - be -

by = ((o—+ )4(1 ) )1 T, ay = Ot L and by = _52(9i0)t1—7)' The remaining
exponents are €3 = —4(10‘__1) + —}fz and d3 = —4(1&__71). Thus (K,Y) is an approximation

for a solution of the time inverted system (29) with K(0) = 0, Y(0) = 1. We
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Figure 2: Values of the objective functions F_ (ko) for z_ (x- - -x) and F, (ko)
(+—) for z, depending on the initial state ko.

choose some (small) T > 0, compute K = K(T), Y = Y(T) and solve the following
boundary value problem on [0, 1]

(k> = T-F(ky),

Y

T = 0,

k(0) = ko,

k(1) = K,
where T is an additional “free” parameter, defining the time needed to reach (K,Y).
Thus we obtain an approximation for z_ = (k_,y_) by

 (k($),9(5) : te[0,T]

(k-(t),y- @)= (K(T+T—-t),Y(T+T—1t) : te(T,T+T]
(0,1) . t>T+T.

In particular, we obtain an approximation of the time 7' = T + T which is needed
to reach k = 0.

All solutions which leave the region R := {(k,y) | |y| < \/4cyk®=7 4+ 1}, where
f(k, yg—llﬂ) > 0, and stay outside do not satisfy (30), because when they pass the
boundary of R for the last time the right hand side of (30) is negative and the left
hand side is positive. The only solutions which do not leave this region R are those
converging to (0,1), (ku,yu) or (ks,ys)-
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Any solution of (29) with recurrence in the state variable and different value of the
costate variable at the recurrence time (i. e. k(t) = ko, y(t) # y(0) = z¢ for some
t > 0) cannot be optimal because j(k,y) = yT_lk”V implies for the control j(t) # 5(0)
and Proposition 8 excludes optimality of such trajectory. This has been confirmed
by numerical calculations.

Hence we can restrict to those solutions which converge monotonically to one of
the steady states. Let k1 be the minimum value of k4 (¢) and k2 be the the max-
imum value of k_(¢) (compare z; and z_ in Figure 1). If £(0) < k3, then the
solution defined by z_ which converges to (0,1) is one candidate, if £(0) > k1, then
the solution defined by z; which converges to (ks,ys) is another candidate. At
k(0) = k, the stationary solution (ky, jy), ju = 0k, is another candidate, but in a
neighborhood of &, there exists no solution converging to k, and hence k, is not
nondegenerate. Moreover, the value of its objective function is not optimal (see
Figure 3).

P (o) — L)

T T T T T T

0016 F /x ]
0.014
0012 | |
0.01 ||
0.008 »
0.006 4
0.004

0.002 1

Figure 3: Difference between the objective values Fi(ko) of z+ and the objective

f(ko,oko)
[

value of the stationary control j(t) := okg for different k.

If we compute the values of the objective function we get Figure 2. In Figure 3
we show the difference of the values of the objective function to [lko,oko) ich is
the value of the objective function of the admissible stationary solution of (Pr (ko))
defined by (ko, okg) (notice that this solution does not solve the differential equation

(29)).

Figure 3 shows that there is a Skiba point at a value ko ~ 0.28. Notice that this is
not k,, the value of the unstable steady state.
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At the Skiba point the global optimal strategy changes, for an initial capital stock
less than ko the optimal strategy is to “sell” the capital stock and for an initial
capital stock larger than kg it is optimal to reach the upper steady state.

5 Resource management

In [25] a model of optimization in resource management is presented and the solu-
tions near a steady state are analyzed. The existence of periodic orbits for rather
large discount rates is proved in [13] by detecting a Hopf bifurcation.

We analyze a similar model of optimal exploitation of renewable resources and
optimal consumption policy due to [30].

We demonstrate in this section the existence of periodic orbits for the latter system
and show how to approximate solutions converging to it by using the method from
[22].

Using Pontryagin’s maximum principle we get a 4-dimensional ordinary differential
equation and we detect periodic orbits by parameter continuation and bifurcation
theory using CONTENT [17].

The model

The control variables are the rate of extraction of resources 0 < q(t) < Q and the
consumption policy 0 < ¢(t) < C. The change of the stock of resource R(t) and
the level of countries debt B(t) is given by

R = g(R)-gqR, R(0) = Ry,
B = W(B)-f(gR)+c, B(0)= By,

where g(R) = eR(1 — R), e > 0 is the natural growth function of resource and the
costs of debt are h(B) = aB?, a > 0, 0 > 1. The production function is defined
by f(D)=p((1+ D)” —1), 0 <+ <1, where D is the amount of used resources.

There exists a critical curve z*(R), such that it is possible to hold debt bounded
if B(t) < z*(R(t)). In [30] it is shown how to compute this curve by using vector
field analysis.

We want to optimize the utility stream over an infinite time horizon

/ T U(elt), R()edt
0

with a discount rate § > 0 and a utility function U(c, R) = dc°RP, 0 < €,p < 1.

Using Pontryagin’s maximum principle (Theorem 5) and scaling the costate vari-
ables with e’ we get necessary condition for an optimal solution. In particular,
it turns out that only A = 1 is possible. Defining scaled costate variables z, y we
obtain, that an optimal solution (R, B,z,y) solves the 4-dimensional dynamical
system
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= eR(1 - R) —qR; R(0) = Ry,
aB° —p((14+¢gR)” —1)+¢; B(0) = By,
z0 — ze(l — 2R) — dpcRP™1,

= y((5 — aaB"fl)

< 8 W &
I

1

with g = ((—222) ™% — 1)/R and ¢ = (— 48¢) 7.

As in [30] we start with parameters v = 0.76, ¢ = 1.01, d = 0.19, ¢ = 0.21, a =
0.1,e=0.08, p=0.77, 6 = 0.1, p = 24.85 and we detect two steady states

(RElaBEla-TEl,yEl) = (05762 y 0.3697 ) 1.1738 ) —0.0624)
which leads to (cg1,gg1) = (0.3315, 0.0339) and
(REQ,BEQ,.’EEQ,yEQ) = (0.0272 , 0.3697 , 4.174, , —0.2211)

which leads to (cge, gre) = (0.0034 , 0.0778).

For further analysis of the system we use the continuation software CONTENT to
detect Hopf bifurcations and hence periodic orbits in this system. CONTENT has
been developed by Kuznetsov and V. V. Levitin (see [17]).

We follow the branch of steady states by variation of the parameter § and reach a
limit point. By continuation of the limit point in the 2-dimensional (e, §)—parameter
space we reach a Takens-Bogdanov point at erp = 0.52737, d7p = 0.10107.

At a Takens-Bogdanov bifurcation a branch of homoclinic orbits and a branch of
Hopf points emanate (see [16]). For details on the numerical treatment of a Takens-
Bogdanov bifurcation and the continuation of the branch of homoclinic orbits see

[6].
We follow the branch of Hopf points from (erp,drg) to (¢,0) = (0.6118,0.1).

At the branch of Hopf bifurcations unstable periodic orbits arise (no stable direc-
tion).

We follow the branch of periodic orbits by continuation of the parameter € and for
constant § = 0.1. This yields Figure 4, where we draw € versus the period of the
orbit.

Starting at the Hopf point H with unstable periodic orbits we reach a period
doubling P, such that one stable direction for the periodic orbit arises. At the
turning point for periodic orbits L there is another period doubling and the periodic
orbits which turn back have again one stable direction. Therefore, at ¢ = 0.6075
there are two periodic orbits for the same parameter value plotted by lines (—)
(period T' = 46.9) and (- -) (period T" = 39.7) in Figure 5.

By numerical integration one observes that (24) holds and hence both periodic
orbits are candidates if (R, By) is on the periodic orbit. The value of the objective
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Figure 4: Continuation of periodic orbits.
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Figure 5: Projection of both periodic orbits onto the R—B state space.
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function depends on the starting point (Rg, By, zg,%0) on the periodic orbits and
is defined by the function v in (23).

In Figure 6 we plot v for initial points on each of the periodic orbits in the R—B
space. In Figure 7 and Figure 8 we plot its projection onto the (R,v) and (B,v)
plane, respectively.

0.32
0.315
0.31
0.305
0.3
0.295
0.29
0.285

Figure 6: Values of the objective function of different initial points on both periodic
orbits in the R—B state space.

The numerical observations suggest that the objective functions have equal values
at the periodic orbits started at their point of intersection in state space.

CONCLUSION 13 If the projection onto the state space of two periodic orbits inter-
sect and the wvalues of the objective functions at the intersection are equal, then
none of the periodic orbits is optimal.

This can be seen by the following arguments:

If both solutions are optimal, then a solution starting on one periodic orbit and
switching at the intersection to the other periodic orbit is admissible and has the
same value of the objective function and hence is optimal. Thus, this solution is
optimal, but its control variable is not continuous. On the other hand continuity
of state and costate variables and ¢ = ((_y%z)ﬁ —1)/R and ¢ = (_%)ﬁ for
optimal solutions imply continuity of the control variables.
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Figure 7: Values of the objective function for each of the periodic orbits
parametrized by the initial values of R.
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Figure 8: Values of the objective function for each of the periodic orbits
parametrized by the initial values of B.
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Figure 9: Projection of two approximations of solutions converging to different
periodic orbits onto the R—B state space.
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Figure 10: Projection of two approximations of solutions converging to different
periodic orbits onto the z—y costate space.
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Figure 11: Control variables corresponding to the solutions converging to different
periodic orbits.

Nevertheless, we approximate two solutions which converges to the periodic orbits
by the boundary corrector method (12). We define F(R, B, z,y) by (31) and by

setting ¢(R, z,y) = ((—y%l)ﬁ —1)/R and ¢(R,y) = (_%)ﬁ_ As phase condi-
tion we choose x(R, B, z,y; ) = sin (2r(p+@)) (R—R*)—cos (2n(p+¢)) (B— B*),
where (R*, B*) = (0.274,0.4) is in the interior of the projection of the periodic orbit
R, B, %,5. Moreover, let @ solve sin (2r3)(R(0) — R*) — cos (273) (B(0) — B*) =0
to ensure x(R, B, #,%;0) = 0. The phase parameter ¢ defines the angle of rotation

around (R*, B*).

The projection of the phase portrait onto the R—B state space is drawn in Fig-
ure 9 the projection onto the z—y costate space is drawn in Figure 10 and the
corresponding controls are shown in Figure 11.

The structure of the dynamics near these periodic orbits is complicated and there
are several periodic orbits emanating from period doublings nearby. Thus it seems
that the non-degeneracy is “weak”. We were not able to detect a Skiba point in this
case, i. e. initial values with equal state variables and different costate variables,
such that the trajectories converge to the different periodic orbits and yield the
same value for the objective function.
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6 Conclusions

In this paper we discuss continuous optimization problems with infinite horizon.
We develop a numerical tool for approximating candidates for optimal solutions
or Skiba points with stationary or periodic asymptotic behavior. Moreover, this
approach allows continuation of parameters to compute parts of higher dimensional
Skiba sets. The main results of an error analysis for the numerical method, as
presented in [22], [24], are summarized in Section 2. We apply our method to an
optimal investment model, where a Skiba point occurs and to a model of optimal
exploitation of renewable resources, where periodic solutions occur, but a Skiba
point could not be detected.

This rather general concept is based on first order necessary conditions, hence the
question whether the approximate candidates are optimal in a global sense is not
resolved by our approach.
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