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Abstract

We set up the concept of connecting orbits of a general-
ized form which allows for discontinuities in the system or the
solution at time ¢ = 0. Moreover, it is possible to select solu-
tions which converge in a strong stable manifold by specifying
the asymptotic rates. We embed connecting orbits as defined
in the literature, and provide further applications which have
the structure of such generalized connecting orbits, e. g.
the computation of so called “Skiba points” in optimization
problems. We develop a numerical method for computing gen-
eralized connecting orbits and derive error estimates. In par-
ticular, we show that the error decays exponentially with the
length of the approximation interval, even in the strongly sta-
ble case and for periodic solutions. This is in agreement with
known results for orbits connecting hyperbolic equilibria. For
our method, we select appropriate asymptotic boundary condi-
tions, which depend typically on parameters. In order to solve
these type of boundary value problems we set up an efficient
iterative procedure, called boundary corrector method. As
an example we detect point to periodic connecting orbits in the
Lorenz system.
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1 Introduction

Usually, in the literature a connecting orbit is a pair (z,\) where A
is a parameter and z is a solution of £ = f(x, A\) which converges for
t — £00 to given sets. In particular, these sets are either equilibria
or periodic orbits. Therefore, the connecting orbit converges to so-
lutions vy (A) or v_(A) in these sets, respectively. More precisely, a
connecting orbit (z,\) solves

z=f(z,A), lim |z(t) —vL(N)(t)] =0. (1)

t—=+o0

We reformulate this and solve for ¢ € Ry

iy = fr(z4,A), (t) e R™
T = f(x_,N), =z_(t)eR™
951 (0),z_(0),)) = @)

|z (2) —y£(W)(#)] < e”it

where fi = f, f_ = 9(21(0),2-(0), ) := z4(0) — z_(0),
y+(A) () = ve(A)(£t), and C > 0, 7+ < 0 are admissible constants.’
Then z(t) := z(t) for t > 0 and z(t) := z_(—t) for t < 0 solves (1)
and is smooth in ¢ = 0. Here v are upper bounds for asymptotic
rates, e. g. if vy is a hyperbolic equilibrium, then v, is an upper
bound for the real parts of the stable eigenvalues. In particular,
z4(-) and y4(A)(-) are called y1—asymptotic (see [9]).

The system (2) generalizes the concept of connecting orbits with
asymptotic rates as provided in [9] and its solutions will be called
generalized connecting orbits. This system is rather flexible in
the functions f.i, in the coupling condition g and in the asymptotic
rates y+. In Sect. 2 we illustrate this by embedding the usual con-
necting orbits in the concept of generalized connecting orbits and by
providing additional applications.

Though (2) has the structure of the problems treated in [9], it is
not appropriate to apply the results there directly, because the so-
lutions y4(A) and y_(A) have, in general, different asymptotic rates.
Hence a gap in the eigenvalue structure might shrink or even vanish.
Therefore, we consider here a block partitioning of the system where
we take the different asymptotic rates into account. In Sect. 3 we de-
fine a generalized connecting orbit and its non-degeneracy and
relate the non-degeneracy to the non-singularity of a linear system.

! An assertion where variables are indexed by “+” means that this assertion
holds with both, an index “+” and an index “—".
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As numerical method for approximating generalized connecting
orbits on finite intervals Jy = [0,7%] we solve the boundary value
problem

Zy = f4(z4,0)
Z_ — f_(z_,I/)
g(z+(0),z,(0),1/) =0,
M (T4, v) (24(T4) — y+()(T4))
M_(T-,v)(z—(T-) —y-(v)(T-))

where the matrices M1 (T4, v) define appropriate asymptotic bound-
ary conditions. In Sect. 4 we analyze the error of this method, which
is shown to decay exponentially with the length of the intervals.
In particular, choosing asymptotic rates v+ and appropriate asymp-
totic boundary conditions allows to select solutions converging in the
strongly stable directions. To avoid the parameter-dependent com-
putation of the asymptotic boundary matrices My (T, v) we develop
the efficient iterative (at most three steps) so called boundary cor-
rector method for generalized connecting orbits?.

The computation of a point to periodic solution in the Lorenz
system is shown in Sect. 5 and in Sect. 6 we give some concluding
remarks on the theory of generalized connecting orbits.

2 Connecting orbits and other applications

In this section we provide some frameworks to which the notion of a
generalized connecting orbit applies.

2.1 Connecting orbits

In the literature (e. g. [3]) a connecting orbit from one compact in-
variant sets V_(\) to another V. (\) is a solution (Z, ) on R of a
parameterized dynamical system

= f(z,A), z(t)eR™, IXeACR
which converges to V1 (A\) as t — *oo. In particular, a connecting
orbit is called nondegenerate if a transversality condition holds and

the number of parameters is

P=Myy —M_y—M_c+1l=miy+m_s—m+1

2This is the same concept as in [9].
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where m4s +m4c, M4y + M4 are the dimensions of the center stable
and center unstable manifolds of V1 (\) and m = muyg + myc + may
holds (see [3]). As in the introduction we reformulate this as gen-
eralized connecting orbit (see system (2)). Further details, in par-
ticular the choice of additional conditions or parameters to get non-
degeneracy (as defined in the Sect. 3), are provided in [8, Sect. 4.2].

Connecting orbits where the invariant sets are either equilibria
or periodic orbits are analyzed in [3] and [7]. In [7] “bifurcation
functions” are defined and it is proved that connecting orbits exist
if and only if the “bifurcation functions” are zero. In [3] the non-
degeneracy is related to the regularity of an operator and the non-
singularity of a linear map. A similar concept is used here.

An approximation method for periodic to periodic connections,
which is similar to ours, is set up in [5]. There, numerical solutions
for a specific Hamiltonian system arising from a reduced water-wave
problem are computed, but without error estimates for the method.

In our approach we deal with single orbits (depending on A) on
V_(A) and V4 (), respectively. In case of periodic solutions we fix
the phase of the periodic orbit to get a single solution, whereas equi-
libria are single orbits. As in [8] we may use the phase parameter as
additional “free” parameter to find the appropriate phase.

An approximation method for connecting orbits of hyperbolic sta-
tionary points is analyzed in [1], [2]. In our generalization we also
approximate connections starting or ending in the strong unstable
or strong stable manifold, respectively. For example we can apply
this to approximate orbit flip solutions (see [10] for details of this
codimension-2-bifurcation).

2.2 Solutions with discontinuity

The splitting at 0 allows discontinuities, e. g. f1 and f_ do not neces-
sarily have the form fi = a4 f as in the connecting orbit cases before.
We also might approximate solutions with “jumps” at 0, in this case
the condition at 0 is 4 (0) —z_(0) = v with v € R™. This can be used
to find initial approximations for connecting orbits as follows: First
compute solutions which satisfy all conditions of a connecting orbit
except z4(0) = z_(0) and define the difference vector v. Then use
the components of v as continuation parameters and try to continue
v to 0. Of course it is not clear whether such (global) continuation
works or not, nevertheless it is a heuristic approach for getting initial
approximations. A similar method for locating connecting orbits is
developed in [6]. It is called “successive continuation” and a local
convergence analysis for this method is presented in [6].
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2.3 Skiba points

The control problems discussed in [4], lead to m = 2n—dimensional
dynamical systems (state and costate system), where the first n state-
variables are fixed. We want to approximate two solutions z4 =
(z5,25) € R?" of & = f(x) which converge to different solutions
Y+, but which satisfy x5 (0) = z° (0) = v for given v € R*. To get
unique solutions converging to either equilibria or to periodic orbits
the stable manifold has to be n-dimensional (i. e. an equilibrium
y+ has mgc := n unstable eigenvalues and a periodic orbit y1 has
m;t :=n + 1 center unstable Floquet multipliers). We set fi = f,

z4(0) —v 2
z4(0),z_(0)) = e R"
(a0, 0) = (20 "")
and in the periodic case we add the phase of each periodic orbit as
“free” parameter, i. e. we have p = 0 parameter if the y. are both
equilibria, p = 1 parameter if one of the y. is a periodic orbit and
p = 2 parameters if both y1 are periodic orbits. Thus we see that

W= {(z4,2-,) € R*"P|g(z4,2-) = 0} (3)

is a manifold in R?™*P of dimension 2m +p — m = m;' +my . This
is the key condition for non-degeneracy (see Sect. 3). The aim is to
compare the values of an objective function U for both trajectories.
In particular, we want to “free” one component v; and approximate
solutions which satisfy U (z, (0)) = U(z_(0)). Thus we substitute for
a given index the side conditions z,(0) —v; =0 and z_,(0) —v; =0
by z1,(0) —z_,(0) = 0 and U(z, (0)) = U(z_(0)). For details see [4].

3 Nondegenerate generalized connecting or-
bits

In this section we generalize the concept of connecting orbits and
we use a transversality condition to define the non-degeneracy of a
generalized connecting orbit. Moreover, we relate the non-degeneracy
to the non-singularity of a linear operator.

Given two parameterized dynamical systems on R,
Ty = f_|_($+, )‘)7 iI"-|-(t) € R™, (4)
- = f_(x_,)), z_(t) eR™, (5)

two families of solutions {y;(A)}a of (4) and {y_(A)}a of (5) and
a manifold W C R?*"*tP. Then a generalized connecting orbit
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consists of (z4,z_,A) where (£4(0),z_(0),A) € W and z, and z_
are solutions of (4) and (5), respectively, such that z1 converge with
an exponential rate y+ < 0 to a solution y4(\). This means that
each pair (z4+(0),A) and (z_(0), ) is in the 7;—stable manifold of
y+(A) evaluated at 0 and in the y_—stable manifold of y_ () evaluated
at 0, respectively.? In other words, a generalized connecting orbit
(T,,Z_, ) has the properties

(-’i'+(0)7j* (0)7 A) eWw, (E+(O)’ X) € ng ("E* (O)a 5‘) € Mg,’

where Mg .. are the y;—stable manifolds of y evaluated at 0.

REMARK 1 The notion of a generalized connecting orbit is not only
applied to connecting orbits where we have a positive and a negative
part. Nevertheless we index the first two parts of (z4,z—_,A) by “+7
and “—”. Definitions and assertions which hold for both parts are of-
ten indezed by “£7, e. g. “(x1,A) solves (4), (5)” means that (x4, \)
solves &1 = fi(xzy,A) and (x_, ) solves &_ = f_(z_,\). We abbre-
viate pairs (x4,z_) by x and use the notions in [9] by indezxing with
“L7or “~7 e. g. MQH is the vy —stable manifold of y4 evaluated at
0 (we set an index “t” only at v and not in addition at M ).

To define a generalized connecting orbit precisely we assume

Al fy € CE@®R™P R™) k> 2 and £ is locally Lipschitz with
respect to 4.

A2 yy € CF (A, BCI(]R_H]R’”)), where A C RP is an open, bounded
set. Moreover y4 () is asolutionof £ = fi(z,A), foreach A € A
and y4 is bounded in A € A and ¢t € R;.

A3 Li(N) =4 —2f (y(N),)), X € A has a shifted exponen-
tial dichotomy with data (K, @y, B, PE(N), PE(N)), ax <0
which are of type C*¥~! with respect to A. The ranks of the pro-
jectors are independent of A and given by m¥ := dim R(PE(t)()\))
and mi := dim R (P (¢)(N)).

We describe the set of points (z,A) := (z4,z_,A) where the zy are
v+—asymptotic with y1(A)(0) by
Mg = {(:v+,$,,)\)|)\ €A, (zy,\) e M2

(@, ) e M} (6)
with the interpretation of v = (y4,7-) as index. As shown in [8],
Mg is an (m] + m; + p)-dimensional C*~!-manifold. To define

non-degeneracy we assume in addition to A1-A3

31f £(0) is in the y-stable manifold of y()\) evaluated at T, then = converges with
an asymptotic rate -y to the solution starting at y(\)(7). For an exact definition of
a y-stable manifold evaluated at 7 and its parameterization we refer to [9, Prop.
3, Corr. 1].
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A4 (dimension condition) W is an (m; + m, )-dimensional mani-
fold in R?™*P with W = {(z4,z_,p) € R2™"P|g(xy,z_,pu) =
0}, where g is a function with g € C*k—1(R?™+P  Rmd +ma +p)
and ¢'(z4,z_, ) has full rank for all (z4,2z_,u) € W.

A5 (transversality condition) Tz 3yW + T{z(0), /\)M = R?mtp,

Assumption A4 implies by 2m +p = (m} + m; +p) + (m +m;)
that A5 is equivalent to

Tiz(0), )W N Tz0) 5y My = {0}

REMARK 2 Arbitrary choices for the number of parameters p and the
manifold W in different applications are defined in [8, Sect. 4.2].

DEFINITION 1 (Generalized connecting orbit) Let A1-A4 hold. We
call (Z;,Z_,)\) a generalized connecting orbit from W to
y+ of type (v4,7v-) if Z+ and y+()\) are v+ -asymptotic at X and
(4+(0),z_(0),A) € W. If in addition the transversality condition A5
holds, then it is called a nondegenerate generalized connecting
orbit from W to y+ of type (v4+,7v-).

For each (z,A) = (z4,2_,A) € W we define a matrix

D(as,o_,A) = (ig«c M. sog(e ), g (w,x)) )

Oz
which is in R7™d Tma +p.2m+p Thys, TeyW = N (D(z4,2_, ) fol-
lows from the definitions of W and D.

As seen in [9, Prop. 3, Corr. 1] there exists an open neighbor-
hood V' x Q of (0,0, ) C R(P;(0)) x R(P, (0)) x RP, such that the
~v+—stable manifold Mg . is locally parameterized by b({y,£ ) :=
('7"+ (6-1-7 /\) (O)’ T— (6—’ A)(O)a A)a where x:l:(é.:l:a /\) and y:l:()‘) are 74—
asymptotic (i. e. |24 (€x, A)(#) —y+ (A\) (#)| < Cre?*t for some C1 > 0).
Moreover, b maps to

W = {($+(f+,A)(O),.’Ef(f,,k)(O),A) | (£+a£*7/\) eV x Q} cw
and the tangent map B(£T,&, A)(n4,n—, 1) of b is defined by
ag+$+(f+ ;s A)(0)n4 + /\x+(§+ A)(0)u

5= T z (§7,2)(0)n- +a)\$ (&=, 2 0)u - (8)
7
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Hence, for (z°,)) := (z4
space of M9 at ( O\

(:EO,)\)Mfy = R(B(§+a £, A))

Let S*(,-) be the solution operator of Liz = 0 on Jy = [0, 7]
(or Jy =Ry, i e “Ty = 00”), i. e. LyS*(-,s) = 0 and ST(s,s) =
Idgrm for all s € Jo. Then,

):B ,A)(0),z_(7,)(0), ) € W the tangent

/ SE(t,5) PE(syw(s)ds — [ SE(t 5)PE(s)w(s)ds
t
(9)

solves Lyz = w on Jx. With this notion the partial derivatives of
z+ at (0,\) are (see [9, Prop. 3])

a%xi(o N = SE(-0)PE(0) (10)
(%:Ei(o N =800 (P20) (11)
—55(, 01 (0) g5y (V0) + 2Ly (R,
where
0a6) = (el @6)N) — g (52060 7) ) ppus (D) 12

+ (g @26).0) = 55 200.9)).

Using this and the definitions (7) of D and (8) of B we obtain:

LEMMA 1 Suppose that A1-A4 hold, let T1 be i -asymptotic with
y+(A) at X and let (z,\) == (L (ET,0),2_(£7,)),\) € W be a gen-
eralized connecting orbit from W to y+ of type (y+,7v-).

Then (z,)\) is nondegenerate if and only if the linear operator
D (w4 (64, )(0), 2 (€5, )(0), ) 0 B(E¥,67,)) is nonsingular.

PROOF Analogous to the proof of [9, Lemma 3]. |

We define for a generalized connecting orbit (Z4,7—, A) from W
to y+ a linear operator D := D(z(0),z_(0), ) and for (£7,£7,) =
(0,0, ) we define B := B(0,0, ) and hence

Nt + 2x71(0,A)(0)u
B(ny,n—p) = | n-+ akwf(O,A)(O) (13)
W
In particular, non-degeneracy of (Z,,Z_, ) implies non-singularity
of D o B (see Lemma 1).
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4 The approximation of generalized connect-
ing orbits

A numerical method for approximating generalized connecting orbits
on finite intervals is presented in 4.1. Moreover, we analyze the error
which is shown to decay exponentially with the length of the inter-
vals. In 4.2 we present the boundary corrector method for generalized
connecting orbits.

4.1 The approximation theorem

In this section we set up an approximation theory for generalized
connecting orbits. The technique is the same as in [9]. We truncate
R, to finite intervals Jy = [0,7] and J_ = [0,7_] and approximate
both parts Z and Z_ of a generalized connecting orbit on J; and J_,
respectively. At T and 7 we use asymptotic boundary conditions.
The proof and a lot of estimates are similar to those in [9].

Assume A1-A4 and let (Z,)\) = (Z4,%_, ) be a nondegenerate
generalized connecting orbit from W to y+ of type (y—, 4 ), such that
@+ < 7+ < min(0,23+). Moreover, suppose that the linearizations
L, = % — 8% f+(Z+,)) have shifted exponential dichotomies with
exponents oz, B+ (ax < v+ < 2B1) near as, (4, projectors P,
Pbi and constants Ki. Furthermore we assume that the boundary
conditions are regular in the following sense:

A6 Let My(Ty,-) € C! (A,ij+m1)_’m) be matrix valued functions
with N(Mi(Ti, /_\)) N 7@2’[ = {0} for all Ty € Dy, where D1 C
R, are sets, such that there exist sequences {T" };cn C D+ with
lim; 00 7L = co. Assume that My (T4, ) and &My (T4, )
are uniformly bounded by M., MJ{/& and Lipschitz contin-
uous with constants Laz,, L}Vli and let the inverses Ny :=
(M4 (Ty, 5\)|7zbi)*1 be bounded by M, > 0 uniformly in T, €
D..

REMARK 3 In the case where the yi(A) are 1-periodic (scaled sys-
tem) we choose Dy = Unen|N — 17—, N + 7], 7—,7+ € [0,1] and
in the case where the yi(\) are equilibria we choose Dy = Ry.
We abbreviate 7?,,:)'[ = ’R(Pbi(O)(/_\)) and th = R(Pbi(O)()_\)) and

as in [8], we see that the Mi(T:t,/\)\Rbi are nonsingular and that
their inverses Ny := (Mi(Ti’S‘”Rbi)_l are uniformly bounded by
My, :==4KMpy, > 0 for sufficiently large T € D1. To get suitable
M4 (Ty,-) we compute asymptotic boundary conditions by solving an
eigenvalue problem (equilibrium) or the adjoint variational equation
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(periodic solution), for details we refer to [8, Sect. 8.2] or [9, Sect.
4.1].

For some Ty € Dy, Ji :=[0,T4] (notice that 7_ > 0) we define
Banach spaces Y = C1(J;,R™) x C*(J_,R™) x RP with norm

(s 2, Mlly Izl + llz-1l3 + Al

_ 2
1+ ePxt

|ENIEs sup (Iz+(®)]ax (), =)

and Z = C°(J,,R™) x CO(J_,R™) x RMd +ma +P x R™y x R™ with

norm

||(U+,'Ui’r0"r+"r7)||z
J. J- — — _ _
= Cyt|lvills + Co -3 + Iro| + CEry|e T+ + Cxlr—|eP-T-,

where
J.
Czt = (Ki+ My, My, K3)||R5]|,
+ +
Cz = My, K. ||Ry|
and
Ty
osllE = lloxllss + /0 o (s)]e~P+5ds,
losl[F, = sup(lvx(t)e ).
teJ+

Here we define (Rj Ry Qo) := D(Z.(0),Z-(0),)) as in (7) and B as
in (13), and we obtain that

DoB(Ef &1 = Ri(E + oo (0,2)O0)

+Ry (65 + %w—(O, A)(0)p) + Qop

(14)

is nonsingular (Lemma 1). Hence D o B(¢T,67,0) = R{¢T + Ry ¢
implies that rank(RZT) > 0 and ||RZ|| > 0.

For (IBaT) = (/8+51873T+’T*)3 we define

r(B,T) = rT (B4, T4) +7r (B, T-), (15)
|B+|T+ 1 (BT _ .
4 . e + (e 1) By #0,
r B Ty) = { 1+ ﬁt‘ : B = 0.
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Before setting up the theorem we define a set of pairs (7,77 ) for
which the estimate

€
(S e

holds (see Fig. 1). The set depends on € > 0, f1 € R and Ay < 0.
Moreover we assume Ay < —|f1| and define v(0,7%) = 1+ T4 and

v(Bx, Te) = min(l + g0, 1+ T4 ), By # 0.

Then we see that 7+(84,Ty) < elf+T: . (B4, T) and that (16)
holds for each pair (7,7 ) which satisfies

AT | AT

(16)

(AT + &A1) (P Tru(By, Ty) + € To(B_,T0)) <. (17)

The estimate (17) is satisfied, if

A T, +|B_|T- +1n (v(B_,T.)) < 1n(§), (18)
AT +|BITy +1n (0B, 7)) < W(5),  (19)
(A + |B)Te +1n (0(82,T2)) < In(5) (20)

holds. First we choose the minimal 7% € R, , such that (20) holds
for all Ty > T'+. Then we define

oury _ BTt (U_(Z:T—))—ln(i)’

g, = VPl ) Zhni)

and obtain that (18), (19) holds in the domain

D(eaﬂiaAi) = {(T—aT-I-) ‘ T} > max (T-I-aQ-I-(T—))a
and T_ > max (T,,Q,(T+))}.

If B+ # 0 and T4 > -+, then the functions Q, and Q_ are linear
with slopes J_%Jr— and %, respectively. Therefore the assumption
Ai < —|B4| implies that |G| - [f—] < A4 - A_ and hence %,
the slope of Q)_ is less than %, the slope of Q;l. Thus, J_ and
Q:Ll intersect and D(e,f+,A1) # (. In particular, for each a €
(%, %) there exists some T, such that (T,aT) € D(e, S+, Ax)

for all T > T. Similar results hold for 8, = 0 or _ = 0 by using
definition of Q1. Thus we obtain the following Lemma:

LEMMA 2 Lete >0, B+ € R, and Ay < —|B+|. Then (16) is satisfied
fOT‘ all (T+7T—) € D(GMB:I:’A:I:) and D(6718:|:’A:|:) 7é 0.
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T A |
_ D(GMB:I:’A:E)

Q+1(T+)§

Q;(T+)

T =
A !
2T |

T, T:

Figure 1: Typical diagram for D(e, B+, A1), where B4+ # 0

REMARK 4 Typically, € is small. If € < 4, then (20) is satisfied at T,
with equality and Q4 (T_) = 2—;T_, Q_(Ty) = %ﬁ_. If Dy x D_
is defined as in Remark 3 then D(e, B+, A+) has a sufficiently large
intersection with Dy x D_.

THEOREM 1 Suppose that A1-A6 hold, let dr = 1 and let (Z, ) be
a nondegenerate generalized connecting orbit from W to yi of type
(v=,7v+). Let the linear operators Ly = % - (%fi(:ii, A) have shifted
exponential dichotomies with dichotomy data (Ki,ai,ﬂi,P;t,Pbi)
and ax < v+ < min(0,284).

Then there exist § > 0, C* >0, € > 0 and Ty sufficiently larg_e,
such that for all (T, T-) € D(€,Bx,dsv+ —B+)NDy xXD_, Ty > Ty
the operator equation

Hj(zq,2_,v) = 9(24(0),2-(0),v) =0 (21)
Ty) =y (v)(T4))

has a unique solution (z}L,zj,l/J) in B 2 )(E+|J+,E,|J_,)_\) in ).
r(B,T

Furthermore, the following pointwise estimates with d+ = 1 hold

IA

lvg — )| Ct AT 4 0~ 2T, (22)

Bt .
25 (t) — 22l (0)]] < (C+6A+T++C(3A‘T‘){ 7 ;gj 2(83)

where Ay :=dyyy — B < —|B+].



12 Thorsten Pampel

If M (T4, \) satisfies
| My (T, M) (E(T4) — y W) (T4))| < CLIZL(Ty) —yr (AN)(T4) [P (24)

for a constant C;\L;I > 0 and sufficiently large T € Dy, then the
estimates hold for d; = 2 and we can replace ay < -y < min(0,24;)
by ay < v+ < min(0,54). The analogous result holds in the “—”
case.

PROOF The proof is similar to that of [9, Theorem 4] and a lot of
ideas and estimates can be carried over.

Sketch of the proof of Theorem 1

We apply the following perturbation lemma (see also [2], [13])
with F' = Hj and yo = (Z4|7.,Z-[7_, A) = (Z]1, N).

LEMMA 3 (Perturbation lemma) Let F : K;(yo) — Z be a C'—function
from a ball in Y into Z (Banach spaces). Assume that F'(yo) is a
homeomorphism and there exist constants k and o, such that

1F'(y) = F'lyo)ll < 5 < o <|[F'(y0) "I,
IF(o)ll < (o —k)d

holds for all y € Ks(yo). Then F has a unique zero y in Ks(yo) and

19 =wll < (- R EH)I,
lyr =22l < (0= rK)7HIF(y1) = Fly2)]]

Jor all y1,y2 € Ks(yo).

Here and in the remainder part we abbreviate sometimes for exam-
ple (wy,w_,7r9,7+,7—) by (w,79,7). We prove the assumptions of
Lemma 3 by the following steps:
S1 There exists Cyy, > 0 such that ||(v, p)|ly < Cunl|(w,70,7)||2
holds for each solution (v, ) of H%(Z| s, A)(v, ) = (w, 7o, 7).

S2 H'\(z|s, ) is a homeomorphism, o := Cz < ||H%(z|,, ) 4t
S3 There exists a constant Cr;, > 0 such that for § := 57— >0
and & := BT T ) the following holds:
| HY(2,v) = Hy (2|5, M| < 6 2= § V(z,v) € B;(z]1,A).

S4 There exist constants € > 0, CE>0 and Ty sufficiently large,
such that || H;(Z|7,A)|| < Cret+T+4C~eA-T- < (O'—fi)r(ﬂ—éT_”
for all (T'y,T-) € D(e, B,dsys — f) NDy x D, Ty > Ty



Approximation of generalized connecting orbits with asymptotic rate 13

S5 Lemma 3 implies that (21) has a unique solution (z;,v;) in

B_s. (@7, X) with [|(z7,v5) = (2|5, A)|ly < CTed+TH4C7ed T,

where C* := 20;,C*.

Now we derive the details.
S1 Let (wq,w_,r9,74,7—) € Z be arbitrary and let (vy,v_,u) € Y
be a solution of the inhomogeneous equation

H(I]('f+|J+a'f—|J7,X)(U-HIU—’U) = (w4, w—, 70, T4,7-).

This is equivalent to the variational equation

by — AL (g —Vi(p = wy, (25)
v —A_(Jv- = V_()p = w-, (26)
Rjv4(0) + Ryv_(0) + Qop = 70, (27)
Rivi(Ty) +Qep = 714, (28)
Ruv (T)+Q-p = r_, (29)
where
Ax() %fﬁ:(j:}:()a;‘)a
V:I:() = a_éf:t(jzt(')’)‘)a _
Ry = 5579(2+(0),2-(0),4),
Qo = %g(a_c+((2),i_(0),)\),
Ry = M:l:(T—H)\)’_ B
Qr = LM (Te,N)(ZL(Ts) — y2(N)(T4))

— My (T, N) Zry= (V) (T).

Defining & = P;(Ty) (v (Tx) — v+ (\)(Te)u) € R(P;F(Ty)) and
& = PF(0)v1(0) € R(PE(0)) the unique solution v of

Live = (Va()p+ws), t€ Js,
PEOWL(0) =&, PF(To)va(Ty) = & + P (Te) Zy+ (V) (T )
is (see also [9, Egs. (51),(54),(55)])
ve(t) = Si(t,00&F + Su(t, Tw)& + s7(ws)(t) + s7 (Vi ()p)(t)

S8, ) P (1) 5y () (T )

= S0, 0)6F + a6 TE + 55 (wa) (1) + oy (N (D)

(1, 0)PEO) s RO+ 55 (L) (D (30)
= SL(L0)EE + Sult, T + 55 wa) () + s (0,3) (1)
+Si (t, T:t) - Si (T:t, S)Pbi(s)\I/i(s)uds. (31)

T+
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Here S+ and 33[ are defined as in (9) and the derivatives of z1 are
defined by (10)-(12). Therefore vy solves (25), (26). Using the defi-
nitions of D and B, and (14), (27) and (31) we obtain

(& &q s 1)
(DoB R{S (0.1t ByS-(0.T)l) | &
&
= Do B(é-(—zl—aga_’/‘) + RE)FS-F(O’T-I-)Q—;'— + RaS—(OaT—)Sb_
= ro+ RS (Ty)+ R, (T-)

with

x
RE(Ty) = —RySi(0,Ty) g S(Ts, )P, (s)Us(s)uds
+
T+
+R¥ S+(0, s)Pbi (s)wx(s)ds.
0

From s7 (U(-))(Tx) = PE(Ty)sy (T+(-)) (T), (11), (28), (29) and
(30) we get

My (Te, & =74 — %Mi(Tﬂ:a Mp(Z(Ts) — y=(A)(T))
—I-M:I:(T:I:a;\)Pét(T:t)(%y:t(j\)(T:t) - %wi(oa M(Ty))p
— M (Ts,N) S+ (Ts, 0085 — My (T, Vs (we) (T)
= RF(Ty).

Defining & := &fe 7 and R,(Ty,T-) == R} (Ty) + Ry (T-) we
get the linear system

~

DoB  R{S+(0,T4)lgse™™  RyS_(0,T-)lg ¢*~ "\ /et ex,
0 M+(T+=/\)|Rj 0 ( '5; )
0 0 M—(T—a’\)le_ €I;
ro + Ro(T4,T-)
— R;‘(T+)e_ﬁ+T+ .
R, (T_)e=P-T-

We estimate |szE (Ty)| and |R,:)IE (TjE)\e_ﬂTﬂE by

RS (T2)] < |(@2,0,0)l|z + | Rg || Ky g% T4y,
| Ry (T)]e 7= 1(@2,0,72)lz + g e P (I + |ul)
+)l€ >
’ K My, || R ||
with Wy = (w-l-ao)a T4 = (T-HO)a wo = (Oaw—)a T4 = (0,7‘_),

Ce,u :=||(D o B)"!|| and some constants Ci,ﬂ > 0 and & > 0.
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To estimate |(¢;, &, , )| we notice that p is involved in both parts
of the problem, thus we have to choose T4 as follows: Let ¢ > 1 and

_ A — _1
Ty > T, = In(é4) ;1(i7;)+1n(2)’ then & e(1= BT < %(1 _ %) holds.

Now we can estimate

€ & ml < (Do B) | [[(wy,w-, 7o, m4,m-)||2
+E (€8 |+ 1))+ TPHT £ & (167] + [ul)ed- AT
< a- Cﬁ,u”(w-f—aw—aT07T+7T—)||Z

and
] < e [[(,0,71) |2
K. ||RE|
1
b L ay (€E] + ) PT
CepKz |[RE| “
1+a 1

< Wy, W, 70, T+, T—
— 2 Kj: HRg:“ H( + IRAVERAE T )HZ

< H( + + )H
Wy, W_,Tg,17 r_ .
= K HR(:)t” ) PRAVERAS ) zZ

The estimate of ||vy(¢)|| is

1+ Pt

9 Cf a|[(wi,w—,ro,74,7-)||2

|v+(2))]
where Cf > 0 is some constant (for details see [8]). Therefore we

+
get [[vx]3 = supi s, (lox(®)llax(t)) < aCFll(wi, w—,ro,74,7-)|2
and ||(v4,v—, 1)|ly < Ciinl|(wy,w_,r0,74,7_)||z with the constant
Clin = a (Ceu + Cf +Cy).

S2 The equation H’(Z|s,A)(v4,v_,p) = (wy,w_,r0,74,7_) is
by assumption A4 a linear boundary value problem of dimension
mg + p+ mp = m+ p for which the Fredholm alternative holds. Thus
0= g < |[HY (@], 0

S3 For any (z,v), (v, u) € Y we can estimate as in [9]

|3 - 3661, )

< Crpll(z = zl5,v = Ny - (v, w)lly - (B, T)

with some constant Cr;, > 0 (for details see [8]). Therefore with

R . _ o = 3
k:= g and § := s, We see for any (z,v) € BT(;,T) (&7, N)

|1H}(2,v) = Hy(3l5,N)|lyz < 5 =5 < o < |[Hj(zl5, )75z

o
2
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S4 On the other hand the truncation error is

0
B 0
[|Hr(Z|7,N)||z = 0

(1) /5

= CHM (T4, M) (Z2+(T4) =y A)(Ty)) [e T+
Lo M (T N (@ (T) -y NI )| T
CF Citl|Z+(T4) — y+ (N)(Ty)[| e P4+

+05 Clle_(T) — y_ ()T )|[t-eP-T-
Creld+1+=B+)T+ 4 G pld-7-—B-)T-

IA N

C*(e(d+7+*5+)T+ + eld-7-—B-)T- ),
My, :dy =1,

) ] o tde=2 (% s. t. (24) holds),
C*:= C:Zth',:Cgi and C = max(C™,C~). Lemma 2 implies that

where Cf := {

s
r(B,T)

is satisfied for all (T'y,T-) € D(¢, B+,dxv+—B+)NDLxXD_, Ty > Ty,

—_ gd
where € = 58"

Cf(e(d+7+*ﬂ+)T+ + eld-7- *ﬂ—)T—) <

o] Q

S5 Lemma 3 implies that there exists a unique solution (z;,vy)

inB_s (%], ) with
(B, Ty)

[(z7,v5) = (2|7, M|y < Cteld+r+=B+)T+ | o= pld—7——B-)T-
where C* = 2C};,C*. Moreover, we see

vy = Al < Ctel+T+ 4 0™ BT,

1+ P+t
2 7

12 () — 2als, (1)) < (CHed+Tr + C=eA-T-) .

and hence the estimates (22) and (23) hold. |

For 54+ < 0 the following estimate holds

HZ}—L —Z|ryloo < Cteld+7+=BH)Ts | o= pld-7-—B-)T-
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We can apply Theorem 1 with 34 € (%8, B£]. Hence, if 4 > 0 and
B— < 0, then we can apply Theorem 1 with 8, = 0. The result is an
approximation which satisfies the following estimates:

vy oA € O Ty g T
< Cted+ T 4 g=eld-7-—B-)T-

bl

:l: _
27 — Zlss|oo

We get analogous results if 51 < 0 and S— > 0 or if both are positive.
To get a super-convergence in the parameter as in [1], [2], [11] for
B+ > 0 we restrict to those pairs (T,7-) satisfying .7y = S_T_.
For these pairs we see

vy—Al < C* eld+r+ =BT 4 0 eld-7-—B-)T-
Hzf —Zi|syllee £ CTed++ T+ 4 Cmed-71-T-,

4.2 The boundary corrector method

As in [9] we set up a boundary corrector method for generalized
connecting orbits and assume

AT There exists a neighborhood Ag of A and functions M (Tx,-) €

C'I(A(),]RmbjE ™), such that A6 and (24) hold for both, “+” and
“—” and each A € Ayg.

The Boundary Corrector Method for generalized connecting or-
bits is defined as follows:

1. Start with some pug € Ag, =10
2. Calculate (zjt1,pit1) = (z;:Ll,ziq_l,qu) as the solution of

Zy = f4(z4,v)
] Z_ _f (Z_, )
H(’l;’(z_k,zi’y): g(z+(0)727 O)al/) =0
M (T, i) (24 (T4 ) — 9+ (V) (T4))
M (T ) (e (T )~y (v)(T))
3. Repeat with 2. (“/ =14+ 1”) once if S+ > 0 or twice if 4 <0

or f_ < 0.

The Proposition 1 states that the error of the solution of the boundary
corrector method has the same exponential rate (2y+ — f+) as the
solution of Theorem 1 with di = 2.

PROPOSITON 1 Suppose that the assumptions of Theorem 1 and AT
hold. Moreover, let Ty be sufficiently large.

Then there exists some Chyen > 0, such that for all Ty > Ty with
(T4, T-) € D(e,Bx,dsyr — Bx) for both, dy = 1 and dy = 2, the
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result (z7,vy) of the boundary corrector method can be estimated
by

1(25,v5) = (&|5, M|y < Cpopm (e 7P 4 r-=F)T),

PROOF The proof is analogous to that of [9, Prop. 4], noticing that
e(’7+_/3+)T+ . 6(7* —B-)T- S max(e2(7+_ﬂ+)T+’ 62(’7* _/B*)T*).

5 The Lorenz system

In this section we apply our theoretical results to the Lorenz system

1 = oz —21),
Ty = TIT1— Ty — T1T3,
T3 = x1x9 — bxs.

We detect the point to periodic connecting orbit plotted in Fig. 2
and continue this connecting orbit by varying the parameter . To

n
o
T T T T T T T T 1

Figure 2: Approximation of a point to periodic connecting orbit with

parameters ¢ = 10 and b = %

get an initial approximation of a point to periodic connecting orbit
we apply the strategy in [9]. We approximate the “first part” (a
solution in the unstable manifold of 0 which intersects the hyperplane
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{(0,z2,z3)|z2, 23 € R} at t = 0) for different parameter values r and
define an approximation of the intersection points which is linear in
r. For the “second part” (a solution in the stable manifold of the
periodic orbit) we compute a solution which has its initial value on
the linearization (mentioned above) and which is asymptotic to the
periodic orbit. As result we get an approximation for the unknown
parameter r ~ 24.05803, the unknown period T ~ 0.677167 and
initial solutions for the “first part” of the connecting orbit z(t) € R?,
the “second part” z(t) € R® and the periodic orbit y(t) € R3. To

50 T T T T T T T T T

40 +

30

20

-10

20 I I I I L I I I I
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25

Figure 3: The first and third component of the connecting orbit (—)
and the periodic orbit (- -) in the rescaled version

apply the results of this paper we solve the (forthcoming) boundary
value problem (32). We truncate the scaled solution on the interval
[0, 3], such that we compute three periods of the periodic orbit. The
periodic orbit is fixed at ¢ = 2 and ¢ = 3 by y(2) = y(3) and the phase
fixing function X(y(2),¢) = 41(2) — ¢, where the value ¢ = 6.5043
as well as the matrices V,V_ € R?>3 for the asymptotic boundary
conditions are also defined by the initial approximation.

The boundary value solver restricts us to compute on the interval
[0, 3] even for the first part z of the connecting orbit. Thus we also
scale the first part by a constant 7 = %, which is chosen to get
roughly similar exponents a; ~ —7.845 and a— ~ —6.76 for the
scaled system. At r = 24.0 the “unstable eigenvalue” of 0 is 10.1365
and the “stable Floquet multiplier” of the periodic orbit is 0.93-107°.

This yields for the systems scaled by T =~ 0.677167 and 7 = % the
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exponents a4 mentioned above. Therefore we solve

& —Tf(z,r;0,0)
y—Tf(y,r;0,b)
2+ 1f(z,1;0,b)
z(0) — 2(0)
x(y(2), 4)
y(2) —y(3)
Vi (z(3) —y(3))
V_z(3)

The phase portrait is plotted in Fig. 2 and in Fig. 3 we plot
the first and third component of the connecting orbit (—) and the
periodic orbit (- -) in the rescaled version, i. e. Z = z(-/T), z =
z(—- /1) and § =y(-/T) for t >0 and g =y(- /T + 3) for t < 0.

Parameter continuation with respect to ¢ yields a branch of point
to periodic connecting orbits. In Fig. 4 we plot the pairs of parameters
(r,0) corresponding to these point to periodic connecting orbits.

g

10 |-

95

85

1 1 1 1 ; 1 1 1 1 1

8
239 23.95 24 24.05 241 24.15 24.2 24.25 243 24.35 T

Figure 4: Parameterspace r—o. Branch of point to periodic connect-
ing orbits
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6 Concluding remarks on the theory

We have developed an approximation theory for a general type of
connecting orbits, which includes most of the common connecting
orbits. However, there is an additional kind of connecting orbit not
covered by our theory. These are solutions which converge, but not
with an exponential rate (in our notion this means o = 0). The case
of a homoclinic connecting orbit of a semi-hyperbolic equilibrium is
analyzed in [11], [12]. Continuation of the stable manifold of an
equilibrium to a Hopf-bifurcation yields that « has to tend to 0 and
hence the approximation interval must be enlarged and the error
estimates become worse. Therefore we cannot apply the theory to
approximate a Hopf-Shilnikov bifurcation.

It seems straightforward to transfer the results of this paper from
the case with two subproblems to the case with a finite number of
subproblems.
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