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1 Introduction

Models with expectational leads describe economic scenarios in which forecasts about
state variables further than one period ahead of the current state feed back into the
system. Expectational leads are intrinsic in situations in which the planning horizon
of agents’ intertemporal decisions is longer than two periods and occur naturally in
overlapping generations with more than two-period lifes. In macroeconomics, these may
be related to announcement effects, describing the impact of possible future actions by an
authority such as a government or a bank on the current state, where the pursued policy
rule is unknown to agents. As optimal decisions of agents require a detailed knowledge
of all the relevant economic relations, much of the literature, with the pioneering work
of Bray (1982), Bray & Savin (1986) and others, is concerned with analyzing adaptive
learning algorithms designed to converge to rational expectations solutions.

For models with two-period-ahead forecasts, the existence of such rational-expectations
solutions and methods to learn these from historical data are understood quite well.
However, most of the convergence results in the literature are of a local nature such that
initial guesses of the system’s parameters may have to be quite close to their true values
in order to assure convergence, cf. Evans & Honkapohja (2001). A few contributions, as
Chen & White (1998), Chatterji & Chattopadhyay (2000), or Wenzelburger (2001a, b),
succeeded in providing global results for a specialized class of nonlinear Cobweb-type
models in which the endogenous variables do not feed back into the economic law and
which contain at most two-period-ahead forecasts. The special nature of these models
indicate that there is still need for more general convergence results. Moreover, the
learning literature has rarely addressed the question of generalizing these concepts to
multivariate systems with expectational leads of an arbitrarily finite length, an issue
which is much more complex than in a one or two period-ahead situation.

This paper attempts to fill this gap to some extent by applying a geometric approach
presented in Béhm & Wenzelburger (1999, 2000a,b) to linear multivariate models with
expectational leads of an arbitrarily finite length. We distinguish between an economic
law describing the basic market mechanism of an economy and a forecasting rule which
models the way in which a (forecasting) agency forms expectations. The combination of
both ingredients may be seen as an (economic) random dynamical system in the sense
of Arnold (1998) which is defined explicitly and globally on the whole state space. Fol-
lowing previous work, we generalize the notion of an unbiased forecasting rule which
by definition generates trajectories with rational expectations in the classical sense that
all forecast errors conditional on the available information vanish on average. In other
words, unbiased forecasting rules should be seen as the generators for rational expecta-
tions equilibria and as such provide an alternative way of characterizing these, an issue
which is still unresolved in the literature.

A structural key feature of systems with expectational leads is the fact that several fore-
casts, each formed at a different time, pertain to the same realization of an endogenous



variable. This is a primary cause for an inherent multiplicity of unbiased forecast-
ing rules and thus of solutions to rational expectations models. Extending Bohm &
Wenzelburger (2000a), we shed new light on this phenomenon by showing that a mere
invertibility condition of the economic law (nonlinear with additive noise) is responsible
for the existence of an unbiased forecasting rule which never updates forecasts formed
at previous dates. In the linear case, the existence for such a no-updating rule depends
on the non-singularity of a particular parameter matrix and is surprisingly easy to com-
pute whenever it exists. It yields the most precise forecasts in the sense that all forecast
errors conditional on information available at a particular date vanish, including those
which have been formed at a stage in which that information was not available yet. This
phenomenon is caused by the feedback nature of the forecasts and indeed holds true only
for forecasts which feed into to system in a non-trivial manner. We relate the concept
of a (linear) unbiased forecasting rule to minimal-state-variable solutions in the sense of
McCallum (1983, 1998, 1999) which, in the context of this paper, will be generated by
special forecasting rules. The main advantage of this approach is that it distinguishes
in a clear-cut fashion between the quality of the forecasts and the dynamic stability of
the economic system in which the forecasts feed into.

The proposed setup is the basis for developing an adaptive learning scheme for linear
stochastic models which is based on the recursive extended-least-squares algorithm well-
established in the engineering literature, cf. Caines (1988). The main difference between
our learning scheme and the approach of the literature is that at each point in time,
we first estimate the whole system including the feedback of all relevant forecasts and
then compute an approximation of an unbiased forecasting rule. This allows us to keep
the system dynamically stable at all stages of the learning procedure without any a-
priori choice of a particular forecasting rule which initially is unknown. Contrary to
Evans & Honkapohja (2001, p. 173), an approximation of the preferred forecasting rule
can, in principle, be selected on the basis of an adequate economic reasoning, as soon as
parameter estimates are sufficiently precise. In particular, (approximations to) minimal-
state-variable solutions, which are dynamically stable, may be chosen whenever these
exist, cf. McCallum (1999) for a further discussion of this issue. The idea of estimating
the expectations feedback is already implicit in Kuan & White (1994) who provide a
local convergence result for a class of nonlinear Cobweb-type models (i.e., models in
which the endogenous variables do not feed back into the economic law). Unfortunately
they give no clue on how to select between multiple solutions inherent in models with
expectational leads.

Using ideas from the literature on adaptive control and optimal tracking, this paper
applies results of several papers by Lai and Wei, notably their (1986b) paper. These
authors pursue a martingale approach paralleling and extending the original approach
of Ljung (1977) who instead uses a limiting non-random ordinary differential equation
(ODE) for his convergence analysis. We relax standard assumptions of the learning
literature in several respects. First, we admit leads of arbitrary length. Second, we



generalize the class of stochastic processes which governs the exogenous observable vari-
ables, where, in addition, we do not assume that the process is known. Third, we admit
colored noise for the unobservable stochastic perturbations acting on the system. This
generalizes the usual white-noise assumption and seems to be well known in the liter-
ature on adaptive control, cf. Caines (1988). Under simple and standard identifiability
conditions (which in the white-noise case are generically satisfied), we show convergence
of our learning scheme globally for all initial conditions. This strengthens well-known
convergence results from the literature, because the conditions require relatively mild
technical prerequisites and are much easier to verify and interprete as compared to those
based on Ljung’s ODE approach.

The focus of the present paper is on linear models, as they provide a benchmark dy-
namics for their nonlinear generalizations the appropriate treatment of which is beyond
the scope of the present paper. Linear models are popular in many economic applica-
tions, either as exact formulations or as linear approximations of originally nonlinear
specifications. Nevertheless, our results show that the proposed methodology carries
over to the nonlinear case (for a first example, see Wenzelburger 2001b) and in future

work should be combined with nonparametric estimation techniques such as provided
in Chen & White (1998).

The plan of the paper is as follows. The general assumptions of the model are given in
Sec. 2. Unbiased forecasting rules and their relation to minimal-state-variable solutions
are discussed in Secs. 3 and 4. The adaptive learning scheme is introduced in Sec. 5,
convergence of the scheme is investigated in Sec. 6, and conclusions are given in Sec. 7.
All technical proofs which could distract from the main issues of the paper are collected
in an appendix.

2 Linear Models

Consider the case of a linear economic law of the form

(1) Yo = F(ytfla <o Ytongy ytefl,t+n2a SRR ygfl,t) + gta

where
ni n2
F(Y-1,-- s Yt—n> Yttty - yf_u) = Z A® Yi—i + Z B Yi 14
=1 1=0

is a linear function of all arguments. y; € R? denotes a vector of endogenous variables
describing the state of the economy at date t, A®), BU) are non-random d x d matrices,
and {& }ien is a R%-valued stochastic process on a probability space (€2, F,P) adapted
to the filtration {F;}en. yf 1404 € R?, i =0,...,ny are forecasts for future realizations



Yiris ¢ = 0, ..., ng, respectively, which are based upon information available at date ¢t —1
and hence are assumed to be F;_;-measurable.

The stochastic perturbations acting on the system are given by
ns ng

(2) &=0+ Z COwyi + € + Z DY ¢_;,
i=1 i=1

where {w; }cn describes the process of R%-valued exogenous variables, which is assumed
to be observable, {€;};cn is a R?-valued martingale difference sequence describing an
unobservable noise process, the C?, D®) are non-random d x d matrices, and b € R? is
a constant non-random vector. (1) together with (2) provide a quite general specification
of a linear economic model with rational expectations, the complete treatment of which
seems as yet unaccomplished, cf. Evans & Honkapohja (2001, p. 173). Most models
treated therein have n; = 1; a relatively straightforward extension of a financial market
model treated in Bhm & Chiarella (2000) or Wenzelburger (2001b) may serve as a first
example for n; > 1. (Consider traders with a planning horizon which is longer than two
periods and who trade just once in a lifetime.)

To fix the probabilistic assumptions on the two exogenous processes, let Amin (B) denote
the minimum eigenvalue of a symmetric matrix B.

Assumption 2.1 The noise process {€ }ien i a {F; hen-adapted martingale differ-
ence sequence on the probability space (0, F,P) with values in RY which satisfies the
following.*

(i) sup;si Eflle]|* | Fr1] < oo P —as. for some a > 2.
(i)) S llell? = O(T) and? T inf T~ (zle e ) >0 P—as.
—00

(#i1) DM ... D™ n, >0 are non-random d x d matrices and the matriz polynomial
[(s) = Ig+ DWs + ... + DMlgna s € C, where Iy denotes the d x d identity
matriz, is strictly positive real, that s,

(a) detT'(s) # 0 for all s € C with |s| < 1.

(b) For each s € C with |s| < 1, the matriz T'(s) + T''(5), with 5 € C denoting
the complex conjugate of s, is strictly positive definite, that is, z' (F(s) +
I'7(s))z >0 for all 0 # z € R

'By a; = O(b;) P-a.s. for two sequences of random numbers (a;) and (b;), we mean that sup | <e

P-a.s. for some positive constant c.
2 Tt is shown in Lai & Wei (1983) that (ii) follows from (i) and the weaker assumption

(ii')  liminf Ain (Efe; € |Fi-1]) >0 P—as.



Assumption 2.1 includes the white-noise case I'(s) = I; (ny = 0) which is assumed in
most economic models, cf. Evans & Honkapohja (2001). This generalization seems to
be quite standard in the engineering literature (see Caines 1988) and is referred to as
colored noise.

Assumption 2.2 The exogenous variables {w;lien are given by a {F;}ien-adapted
stochastic process on the probability space (2, F,P) with values in R:. Let F| :=
o(Fi 1,€) denote the o-algebra generated by Fy 1 and €. Setting w; = wy — Elwy|F]],
the process {w; }ien is assumed to satisfy the following.

(i) sup,s; Bf||w ||| F]] <oo P —as. for some > 2.

(i) S0 |8 = O(T) and liminf T~ A, (z; Db ) >0 P—as.

— 00
(iii) S, B |FIP = O (N (S0, @] ) ) P = s

An analogous remark to that of Footnote 2 applies to Assumption 2.2. Assumption 2.2
(77) implies Apin (Zthl wtwj) = O(T) and thus Y., |lw]|> = O(T) P-a.s. Observe
also, that w; may have constant non-random entries.

In the sequel, we will restrict our analysis to forecasting rules ¢ = (¢, ..., p™+1) of
a particular functional form, where for each 2 =1,...,ny + 1,

g PR RIS SRS

yf—l,t—l—ki = Qp(i) (Et—l [é-t]a Yi—15- - Yt—ny s yf—Q,t—l-l—TLQ’ T yf—Z,t—l)

with E;_;[&] denoting the expected value of the exogenous perturbations conditional
on F;_1. A forecasting rule ¢ could, of course, depend on an information set larger
than implied by (3). It will turn out in Sec. 3 that the functional form (3) includes all
information necessary to obtain rational expectations along a trajectory of the system.

Assumptions 2.1 and 2.2 imply that the system (1) under the exogenous perturbations
(2) is stable in the sense that all realizations y; are P-a.s. bounded, provided that all
forecasts yy,,,; are a.s. bounded and that the matrix

AL A
I, 0 ... ... 0
(4) A=| 0 I ... ... 0
0o ... ... I 0

associated with (1) has all eigenvalues inside the unit circle. This is the contents of the
following.



Theorem 2.1  Consider the feedback system defined by (1), (2), and (3). Assume
that the following hypotheses are satisfied.

(i) All eigenvalues of A given in (4) have modulus less or equal to unity.

(i1) Assumption 2.1 (ii) and Assumptions 2.2 (ii) are fulfilled.
T

(iii) > |1y 14ll> = O(T) P —as. for all j =1,...,n5 + 1.
t=1

Then the system (1)-(3) is stable in the sense that P-a.s.

T
(i) ||z = O(t*) for some a >0 and (i) Z||xt||2 = O(T),
t=1
where = (Y- U p 110 Ystiitmgr - Yt Wiy, €€l )T

The proof of Theorem 2.1 is given in Appendix A.1. Theorem 2.1 will become important
when introducing our learning scheme, because it guarantees dynamic stability of the
whole economic system as long as the forecasts are on average bounded.

3 Unbiased forecasting rules

In this section we will develop the notion of an unbiased forecasting rule which is designed
to generate rational expectations along all trajectories of the system under consideration
or, in other words, rational expectations equilibria (REE). In order to derive such a
forecasting rule, observe that in each period ¢ there are n, forecasts yi_; ;1,1 =1,...,7n2
for y;11 which have been set at dates prior to ¢. The forecast errors for ;.1 conditioned
on information available at the respective dates vanish, if and only if

(5) E i [ysr1 — ytefi,t+1] =0 P—-as, 21=0,...,no,

where E; denotes the conditional expectations operator with respect to F;. Condition
(5) and the law of iterated expectations (Ey ;[Ey[ys41]] = B¢ s[vs41], 7 > 0) imply that
all forecasts yy ., 141, --,Yrs+1 10T Y11 have to satisty the consistency conditions

(6) Erilyipn] = ¥iipn P—as, i=1...,m,.

On the other hand, if all forecasts yf ,, ; 1, --, ¥, obey (6), then the law of iterated
expectations implies that (5) is automatically satisfied, provided that the most recent
forecast y;, ., has a vanishing conditional forecast error, that is, Ey[y441] — Yiryr = 0
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P-a.s. Since (6) has to hold for all times ¢ and analogously for all forecasts yy, +j» We can
transform (6) to consistency conditions for the first ny forecasts yf;,, ..., ¥f,, formed
at date t. These take the form

(7) lEt—l [yg,t—l—i] - yf—l,t—l—i =0 P— a.8., 1= 17 - -5 N2,

where yf 14 1,5 Yf1 440, are the respective forecasts formed at date ¢ — 1.

In order to express our consistency conditions (7) in terms of forecasting rules, let ¥; =
(Yts - - Yt—n1+1) € R denote the vector of past realizations and Y| = (yf_1 1 pyr - -

ca Y1) € R4 "2+1) the vector of past forecasts. Consider forecasting rules of the form
o= (M, ..., om2+D)) where for each i =1,...,n9 + 1,

(8) Pl R X R™ x RI™HD 5 RY, g o= 0O (B[], Vi, V)

The applicability of the forecasting rule (8) depends crucially on the observability of &
and hence of ¢; which is problem in the case of general colored noise (ny > 0). It will
be shown in Sec. 5 how this missing information can be obtained from historical data.?
Consistent forecasting rules can now be defined as follows.

Definition 3.1 A forecasting rule o = (M), ... ™+D) of type (8) is called consis-
tent at (Y, Y, ) € R4+ 4n period t, if for each i =1,...,ny,

9) Byt [0 (B (€], Vi V)] = Yy peis P — aee

¢ is called consistent, if (9) is satisfied for all (Y3, Y ,) € REAM+m41) gnd all times t.

Definition 3.1 provides a minimum requirement a forecasting rule has to meet in order to
generate rational expectations, since otherwise (6) cannot be satisfied for all forecasts.
Using the economic law F' and a consistent forecasting rule ¢, the future state of the
economy is determined by the time-one map F, (&, Ei[&41], ), defined by

Fﬁﬂ(é-ta Et[§t+1]a ) : Ri™M x Rd(n2+1) — Rdn1 x Rd(n2+1)

(10) (;@1) R ( (F(Yi1, Y1) + &, pr_yY; 1) )
Ye, gp(]Et[gtH]’F(Yt_l,}g‘il)-l-&,Yf,l) ’

where pr_; denotes the projection onto the first n; components. Thus, given (Y;_1, Y ),

(Y;fa Y;te) = F(p(é.ta Et[€t+1]7 Y:‘,—ly Y;ge_l)

3By (2), K [&41] = b+30, COwyyq_i+ pO¥ C®e,pq_; such that K, [€t+1] in the expression for ¢
could be replaced by the list (wg, ..., Wt nzt1,€t-- -5 €—nyt1). This remark is valid for all subsequent
functions involving E;[£¢41]-




describes the next (lagged) state Y; of the economy together with all relevant forecasts
Y? at date t.

To see which forecasting rules generate rational expectations, notice first that the ex-
pected value of the future state y;1 is

By [yer1] = F(Yy, YY) + By [€ria]-

The forecast error E;[y;41] — yf,,, conditioned on information available at date ¢ is then
obtained from the (mean) error function associated with the economic law (1) which is
given by a function ep : R* x R¥™ x RU™2+1) 5 R?. defined by

(11) er(Be[i41], Yo, YY) = F(V3, YY) + E €] — ?Jf,t+1=

where Y = (Yf 1111y -+ Ybs +1)- Given an arbitrary state of the economy Y}, the error
function describes all possible mean forecasts errors, regardless of which forecasting rule
has been applied. Geometrically, the graph of the error function (11) is a hyper-plane
in R¥m1+72%3) " Given arbitrary forecasts Y = (Yf t414mps - - +» Yser1), the conditional
forecast error E;[y;11] — yf,,, vanishes, if and only if

(12) E; [ys41] — yte,H—l = ep(By[&41], Ve, Y;e) =0 P-as.

A forecasting rule which for given (V;, V¢ ,) € R +nm2+D) gots Ve = (B [€44], Vi, V)
such that (12) holds is called unbiased at (Y;,Y,? ;). A forecasting rule which is unbiased
along all trajectories can now be defined as follows.

Definition 3.2 A consistent forecasting rule ¢ = (¢, .., ™+ is called (glob-
ally) unbiased, if there exists a family U = {U(n)},cre of non-empty subsets U(n) C
Rim % RU™2+1) - sych that the following holds true:

(i) For eachn € R, ep(n,Y,Y®) =0 for all (Y,Y¢) € U(n).
(ii) For eachn € R%, U(n) contains R™ x {0} as a subset.

(iii) U is invariant under F, defined in (10), that is, for each (Y,Y¢) € U(Ei—1[&)),

Fo(&, By[&1], YY) € U(EL[E441]) P — a.s. forall t €N

Condition (i) describes states (;_1[&], Y, Y®) in which the forecast error (12) vanishes,
Conditions (74) states that (12) can be satisfied globally for all Y € R%! and Condition
(731) implies that (12) can be satisfied for all times t. If ¢, is unbiased in the sense
of Definition 3.2, then all trajectories v(Yp, V) = {V;, Yfhen with arbitrary initial
conditions (Y, Yy) € U(Eq[&1]) which are generated by the induced map F,, given in
(10) correspond precisely to rational expectations equilibria (REE).

9



Definitions 3.1 and 3.2 are valid for general non-linear economic laws F' with additive
perturbations. The existence of an unbiased forecasting rule is guaranteed if the error
function ey satisfies a global invertibility condition. To be specific, we exploit now the
linear structure of (1) and construct such a forecasting rule as follows. Suppose B is
invertible and define

no—1

ni
(13) 60,7, 2) = —BO1 |3 A0Y0 4 Y7 Boa-iZ6+) _ Z0) 4y
i=1 i=0

with YV = (Y(), ... V(™) and Z = (ZM),..., Z(")). Then er(n,Y, Z,%(n,Y,Z)) = 0
identically on Ré™+72+1) and the function (13) induces a forecasting rule of the func-
tional form (8) by setting

(14) yf,t—l—l—l—ng = w(Et [§t+1]’.Y;a yf—l,t—l—ng’ s ’yf—l,t—kl)’
yf,t+z‘ = yf—1,t+ia 1=1,...,no.

The forecasting rule (14) is clearly consistent in the sense of Definition 3.1 and will be
referred to as a no-updating rule. Inserting (14) into the system (1), the time-one map
(10) takes the form

(Y141 = Y11+ & — Be[&nl,
ni na2—1
(15) S y£t+1+n2 = _B(O)il ZA(Z)%H—Z' +Z B(n27z)yf—1,t+1+i - y§—1,t+1 +Et[§t+1] )
i=1 i=0
\yte,t—ki = yf—l,t—ki’ 'l: 1,...,”2.

It is easy to check that all conditional forecast errors generated by (15) vanish, since by
construction Ei[y;y1] = yf ;,,, and hence all forecasts for y;,1 satisfy

(16) Et[yH—l] = yf_i,H_l IP — a.S., 'l = 0, .., N,

as long as the no-updating rule (14) has been applied for the past ny+1 periods. Setting
U(n) =R? x R? for all n € R?, this shows that the no-updating rule (14) is unbiased in
the sense of Definition 3.2 and all trajectories of (15) correspond to REE in the classical

sense.*

A remarkable fact in economic systems with expectational leads (ny > 0) is that for
invertible B(®, the no-updating forecasting rule (14) generates rational expectations in
the sense that all forecast errors (16) conditioned on information available at date ¢
vanish, including those which have been made prior to that date. Thus, an unbiased
no-updating rule yields the most precise forecasts in the sense that forecast errors vanish
conditioned on information which is not available at the stage in which they have been

4Notice that an unbiased no-updating rule for nonlinear F is formally defined in the very same way.
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issued. This peculiar phenomenon is caused by the feedback nature of the forecasts
and indeed holds true only for forecasts which feed into the system in a non-trivial
manner. Since the forecasts are simply inputs which feed back into the system (1), the
no-updating rule (14) is closely related to the classical Astrom-Wittenmark self-tuning
regulator (Astrom & Wittenmark 1973), known from the literature on adaptive control
and optimal tracking, see e.g. Caines (1988).

The no-updating rule (14) is constructed in such a way that FE[y;1] = yf,,, for all
choices of yf;,;, @ = 1,...,n2. This implies a considerable freedom in selecting these first
ns (ng > 0) forecasts, because any martingale difference sequence could, in principle, be
added to these forecasts without violating the unbiasedness. It constitutes the primary
cause for the emergence of multiple unbiased forecasting rules and thus of REE in the
presence of expectational leads.

There are well-known examples in which B is not invertible, see Evans & Honkapohja
(2001, Chap. 10). In these cases (14) does not exist and the construction of unbiased
forecasting rules may become quite involved. However, the first condition in Definition
3.2 implies local invertibility of the error function and one way out of the problem with
singular B may be as discussed in Appendix A.2. Another approach is presented in
the next section.

4 MSYV predictors

In the literature on rational expectations, the notion of minimal-state-variable solutions
is a popular concept to describe situations in which agents have rational expectations
along particular trajectories of the system, cf. McCallum (1983, 1998, 1999). We relate
this concept to our notion of a consistent forecasting rule by introducing minimal-state-
variable predictors (MSV predictors) for expectational leads of arbitrary length. For
simplicity, we assume throughout this section that n; = n3 = 1 for the lag length of both
the endogenous and exogenous variables, we let ny > 0 of arbitrary size, and consider
the white-noise case ny = 0 with an AR(1) process {w; };en. Consider a perceived law of
motion of the form

(17) {ym = Ay + Dwy + b+ e,

W1 = Hwy + My,

on the basis of which a forecasting agency forms expectations. y; and w; denote vectors
of endogenous and exogenous variables, respectively, A and D are non-random matrices
of respective dimensions, and b a non-random vector. {€t}sen and {m; }1en are martingale
difference sequences on (€2, F,P) adapted to the filtration {F;};n which are assumed to
be unobservable. If (wy,y;) describes the state of the economy at date ¢, the perceived

11



state at date t 4+ j derived from the model (17) is
(18) Yt+j = Aly, + Z{_Zl Aj_i[Dthﬂ +b+ €tvil,
Wiy = Wwy+ 377 IV My

With the notation above, E;[&,1] = Dw, + b, such that E;[£:41] will be replaced by w;
in all subsequent expressions. Taking conditional expectations with respect to J; and
using the fact that B [w; ;] = [Iw,, we obtain a forecasting rule ¢ = (™), ... pr2t1)
by setting

J
(19) Usiss = 09 (w, ) := Aly, + ZAJ_Z[DHZ_IUR +b], j=1,...,na+1

1=1

Since the forecasting rule ¢ defined in (19) uses a minimal amount of endogenous as
well as exogenous variables, it will be referred to as a minimal-state-variable predictor
(MSV predictor). By construction, one has yf, ; = E;[ys1,], if y41; is thought of being
generated from (18), and a straightforward calculation shows that each forecast (19)
satisfies

]Et—l[yte,tﬂ] = Et—l[w(”(wt, yi)| = (p(j+1)(wt—17yt—l) = yf—l,t+ja J=1...,np+1L

This implies that a MSV predictor is a consistent forecasting rule in the sense of Defi-
nition 3.1. Moreover, for each j > 1,

(20) Virrs = 07 (wg, @ (we, 1)) = @ (I g, 090 (wy, 1)),

such that all forecasts can be obtained from a repeated application of the one-period-
ahead forecasting rule (1.

In order to construct an MSV predictor ¢ = (¢, ..., ¢©™+1) which is unbiased in the
sense of Definition 3.2, for each w € R?, let

Ly(w) := {(y, 20, ..., 2*D) e RU#D | 20 = o0 (w,y), 1 < j < mp + 1}

Then, replacing E;[;11] by w; as above, each I',(w) contains R? x {0} as a subset and it
is easy to see that the family of sets {I',(w)},era is invariant under the corresponding
time-one map F,. Hence ¢ satisfies Properties (4i) and (4i¢) of Definition 3.2. A MSV
predictor ¢ = (oM, . .. pMm+1) is therefore unbiased in the sense of Definition 3.2, if

(21) er(w,y, 0V (w,y),..., 0" (w,y)) =0 V(w,y) € R x R,

where ep denotes the error function associated with the economic law (1) (with n; =
ng = 1 and ny = 0).

12



If ¢, is an unbiased MSV predictor with coefficients /Al*, lA)*, and 13*, it follows from (3.2)
that R R .
Yerr = 0 (we, 4r) + €1 7= Aye + Dawper + be + €14

for all times t. Thus, unbiased MSV predictors, if they exist, generate minimal-state-
variable solutions to (1) in the sense of McCallum (1983) which correspond to the
perceived law (17). Notice that all relevant forecasts are obtained from (20) such that
all conditional forecast errors vanish along any trajectory of the resulting system and in
particular for any initial values wy, € R%, y, € R?.

To compute an unbiased MSV predictor may become a difficult problem. Inserting (19)
into A(21), a MSV predictor ¢ is unbiased, if and only if the unknown coefficients A, D,
and b in (19) satisfy

(22) AM + [B (n2) _ Id]A + Zm 1 nri)AiH =0,
(23) Zm IZH—I B(m % Az+1 ]DHJ 1 + [B(n2 - ]]D+D(1) _ 0’
(24) (an 1 Z’H—l B(na—i Az—l—l J + [B(ng _ I]) 6—}— bh=0.

Eqs. (22)-(24) correspond to Egs. (10.5)-(10.7) in Evans & Honkapohja (2001, p. 230)
for an arbitrary length of leads. It is shown in Lancaster (1969, Thm. 8.4.1, p. 262)
that (23) can be transformed to a linear matrix equation. Thus (23) and (24) are linear
equations for D and b once A is known. It is straightforward to verify that A, is a
solution to (22), if and only if the linear factor (\M; — A,), A € R is a right divisor of
the matrix polynomial
na—1
L) = AW +[BM™) — []x+ Y B OX# A €R,

1=0

see Gohberg, Lancaster & Rodman (1982, p. 125). Solutions A, with real coefficients
need neither exist nor be uniquely determined, because multiple right divisors may, in

general, exist. In fact, the full set of solutions may be obtained from a decomposition
of L()\) into linear factors, cf. Gohberg, Lancaster & Rodman (1982, p. 113).

However,explicit solutions for the case ny = 1 are found in McCallum (1983, 1998, 1999).
The existence of solutions to (22)-(24), in general, do not require an invertible B().
However, it requires full knowledge of the coefficient matrix II, which is not needed for
a no-updating rule. Notice also that all eigenvalues of a solution A, must have modulus
less than unity, in order to obtain a stable process and thus an economic meaningful
solution. There are simple examples for which unbiased MSV predictors do not exist (see
McCallum 1983) whereas no-updating rules exist, cf. Bohm & Wenzelburger (2000a).°
Despite this fact, unbiased MSV predictors are important as they may generate stable
long-run behavior under rational expectations in an otherwise unstable situation.

5The deterministic case treated there carries over to the stochastic case. Take d = 1 and a polynomial
with complex roots only.
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5 Adaptive learning of unbiased forecasting rules

In this section we introduce a learning scheme for unbiased forecasting rules for the
general system (1) using methods from control theory, found in Lai & Wei (1986b). For
simplicity of exposition, we assume that the constant term in (1) is b = 0.° Inserting
(2), the linear law (1) takes the form

ni na ns n4g
(25) Y = Z A® Yt—i + Z B> yf_1,t+z~ + Z c® Wy—; + € + Z D €t—g-
i=1 i=0 i=1 i=1

Setting
0 =AY, ... A BO B oW ol ph  plra)
and
(26) xll = (ylla Tt 7y;|;n17 yfj—l,t+n27 T yfjl,t’ wlla Tt w;;nga 6;1’ Tt 62;n4)7
the system (1) may be rewritten as
(27) Y = HiEt_l + €.

We will use the representation (27) to approximate the unbiased no-updating rule
given in (13) from estimates for the coefficients 6 in two steps. In the first step, we
estimate the unknown coefficient matrix € from historical data. In the second step
we compute the desired approximation of the forecasting rule. The estimation of 8 is
done by means of the so-called approzimate-mazimum-likelihood (AML) algorithm, see
e.g. Caines (1988) and Lai & Wei (1986b). The AML algorithm is a recursive scheme
which successively generates estimates for 6 based on information available at date ¢.
This algorithm is an extension of the ordinary-least-square (OLS) algorithm known from
time-series analysis to a class of more general noise processes defined in Assumption 2.1.
Let

(28) 0, = (AW, .. A BO B ¢ ) DML DMy

denote the estimate for § based on information available at date ¢. Since the noise
process {€;}en is assumed to be unobservable, we replace the regressor z; 1 in (27) by

A — T T eT eT T T ~T ~T T
(29) Tt—1 = (yt—la e ’yt—nl’ yt—l,t—i—nzi ] yt—l,ta Wy_15--- ’wt—ng’ €—15--+> 6t—n4) )
€—i = Ypi — iy, 1=1,...,n4,

6This term could be treated as an d x 1 matrix together with an additional constant scalar input
equal to 1. The generalizations of all technical theorems stated below (see Sec. 6) to additional inputs
are straightforward.
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where the é_; are also called a-posteriori prediction errors. The AML algorithm? is
recursively defined by

(30) { ét = étfl + (ye — étfljtfl)itt1ptfla
Py, = P_y— Pt—2(£t—1§3;r_1)Pt—2 (1+ i";r_lPt—Zit—l)ila

where by the matrix inversion lemma P;' = PZ} + ;4. The initial conditions P, and
éo may be chosen arbitrarily with invertible F.

The approximations Aﬁ“, Bgi), (:‘t(i), and D,EZ) may now be used to estimate an unbiased
no-updating rule (14) as follows. Since {€;};en is unobservable, » ™, DP¢,,, ; is an
estimate for Eyfe;pq1] = Doty Dt(i)etﬂ_,-. Let B# denote the generalized inverse of a
matrix B, also referred to as Moore-Penrose inverse, see Lancaster (1969, p. 303). B#
coincides with the inverse B!, if B is invertible. Using (30), an approximation of the

unbiased no-updating rule (14) is

yf,H-j = y}\gfl,ﬂ-ja ] = 15 -5 Ng,
yf,t+1+n2 = ¢t(~1’t)
~ (0 s 1 A(mo—i
(31) = _Bfg # Z:L:ll Ag” Ye1—i T 2?220 Bgm ) Yitr1+i — Ytas

+302 CH w1 + Dot D ey

We will show next how the approximated no-updating rule (31) together with the AML
algorithm (30) can be used to design an AML-based learning scheme.® Instead of (31),
an approximation of any other unbiased forecasting rule, in particular of a MSV pre-
dictor, could be taken. However, since the computation of a MSV predictor is rather
involved (the case no = 1 already requires several hidden invertibility conditions which
need not be satisfied for approximations) and the focus of this paper is on global con-
vergence of the AML algorithm, we take (31). Notice in this connection, that contrary
to (31), MSV predictors require also full knowledge of the actual exogenous observable
process. If the design matrix pertaining to the (recursive-least-squares) estimates of the
corresponding coefficients does not satisfy a so-called persistent excitation condition,
strongly consistent estimates for these coefficients may be unavailable (cf. Lai & Wei
1986a) which in turn may result in a failure of the learning scheme.

"This algorithm is also referred to as recursive extended-least-squares (RELS) algorithm, see Caines
(1988, p. 540 and p. 557).

81f B() is known to be invertible, then an approximation of the no-updating rule can directly be
obtained from regressing over (14) instead of (25), thereby avoiding the somewhat involved computation
of a Moore-Penrose inverse, see Wenzelburger (2001b).
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6 Convergence of an AML-based learning scheme

We will now investigate under which conditions a learning scheme based on the AML
algorithm (30) and the forecasting rule (31) converges to rational expectations globally
for all initial conditions. Under a number of stability assumptions which will be stated
below, global convergence obtains, if the coefficient estimates 0, generated by the AML
algorithm are consistent in the sense that 0, converges a.s. to #, independently of initial
states of the systems and independently of initial parameter estimates. The convergence
of the AML algorithm has first been investigated by Ljung (1977) using the stability
analysis of a limiting non-random ordinary differential equation and by Solo (1979) using
a martingale approach. Ljung (1977) showed that under certain standard assumptions,
0, converges to f a.s., if the estimated regressors Z; given in (29) satisfy the persistent
excitation property

1 T

(32) T Zaﬁ“tﬁ:; converges a.s. to a positive definite matrix.

t=1

The main problem with property (32) is that the regressors &; cannot be manipulated
directly. Moreover, it has long been recognized that in feedback systems such as (25),
(32) may be violated such that the parameter estimates may fail to be consistent, see Lai
& Wei (1986b, pp. 228-231) for an account of the literature. However, Lai & Wei (1986b)
showed that the persistent excitation condition (32) can be translated to conditions
on the inputs alone which in our case are the forecasts and the exogenous variables.
Following Lai & Wei (1986b), we first provide a technical theorem which establishes
strong consistency of the AML algorithm under much weaker assumptions than used by
Ljung and Solo.

Proposition 6.1  (Lai & Wei 1986b, Thm. 4, p.241)
Consider the stochastic regression model
yr=An_ 1+ e +DWVey + -+ D¢,

where A is a d x k non-random matriz and where DV, ..., D™ gre non-random d x d
matrices and {€; }en is a stochastic process which satisfies Assumption 2.1. Let n, be Fy
measurable and

0=(A,DY ... D™ and =z 1= 1€ 1, eln)"

-y Gt_n4

Consider the AML algorithm, given by

{ ét = étﬂ + (v — étflitfl)ittlptfl,
Pt__ll = Pt_—12 + (fi‘t—ljt—l)—ra
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where

AT N\T L A oa
) and € = Y — th‘t_l.

~ T AT
Tp1= My, €15 - - - €t—ny

If the (weak) persistent excitation condition

Amin <Zf:1 xtx;r)
log (e + Amax (Zthl actxtT)>

(33) —00 P—as asT — o0,

holds, then R
0, —60 P—a.s ast— oo,

where Amin(B) and Amax(B) denote the minimum and mazimum eigenvalues of a sym-
metric matriz B, respectively.

Corollary 6.2  Under the hypotheses of Proposition 6.1,

16, — 0> =0 <M) P—as.

)\min (Pt_ 1)

The proof of Corollary 6.2 is found in Lai & Wei (1986a). It provides upper bounds for
the convergence of the AML algorithm in terms of observable quantities. The persis-
tent excitation condition (33) in Proposition 6.1 will now be replaced by a more direct
assumption concerning the forecasts alone. Let A(s), B(s), C(s) and D(s), s € C be
matrix polynomials of the form

A(s) = Ism — AW gm=1 _ ... gl
o B(s) = BWOgm 4 B)gna=1l ... 4 B2)
(34) C(s) = CWsgna=l4...4 M)

D(S) — Id8n4 + D(1)8n4_1 4+ -4 D("4),

where I; denotes the d x d identity matrix and A®, B® C® and D@ are the d x d
matrices appearing in the representation (25). Letting ¢ denote the unit shift operator
(i.e., txy = x441), the system (25) may be rewritten as

(35) AWYt-n = B()ttns 1 + C(0)Wing + D(1)€—n,;

where we have set w1 = y§_;,,,, for the forecasts.

The matrix polynomials A(s), B(s), C(s) and D(s) are said to be left coprime, if their
greatest common left divisors are unimodular (i.e., with constant determinants # 0),
or equivalently, if there exist matrix polynomials K(s), L(s), M(s), and N(s) such
that A(s)K(s) + B(s)L(s) + C(s)M(s) + D(s)N(s) = I, cf. Kailath (1980, p. 399) or
Hannan & Deistler (1988, Chap. 2) The left coprime assumption is often referred to as an
identifiability assumption for an ARMAX system with general colored noise, as defined
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in Assumption 2.1. It is automatically satisfied for the white-noise case C(s) = I,
(ng = 0). Ljung, Soderstrom & Gustavsson (1975) provide counter-examples to the
strong consistency of the AML algorithm, if the so-called positive real condition, i.e.
Assumption 2.1 (74i), is violated.”

Proposition 6.3  Suppose that the matriz polynomials A(s), B(s), C(s) and D(s)
defined in (34) are left coprime and that (25) holds for all t. Let Gy := o(Fi_1, ys, wy)
denote the o-algebra generated by Fy_1, yi, and wy. Set 4y = uy — Elug|Gy] with Fy-
measurable u; and assume, in addition, that P-a.s.:

(36) sup E[||@¢]|%|Gt] < 00 for some « > 2,
£>1

)\min (2?:1 at'a;)
log T+||@r|?

(39) 1 |G = O (Amin (XL, ) )

Then the following properties hold true P-a.s.:

— 00 asT — oo,

T—o0 )\min(zz;l ﬂtﬂ';r)

(39) (i) Y llul®=0(T), (i) Y lal®=0(T), (i) lim inf Jmn{Zmzeel) o

The proof of Proposition 6.3 is a generalization of Lai & Wei (1986b, Thm. 5 (7i), p.
242) to a system with additional exogenous variables as inputs and given in Appendix
A.1. The next theorem is an analogous generalization of Lai & Wei (1986b, Thm. 6 (7))
and provides conditions under which strong consistency of the AML algorithm obtains.

Theorem 6.4 Let the following hypotheses be satisfied.

(i) All eigenvalues of the matriz A defined in (4) have modulus less or equal to unity.
(1) Assumptions 2.1 and 2.2 on the exogenous perturbations are fulfilled.

(i11) Identifiability assumption. The matriz polynomials A(s), B(s), C(s) and D(s)
given in (34) have no common left factor.

(iv) The inputs uy = Y4\ 1,,, satisfy Assumptions (36)-(38) of Proposition 6.3.

The AML-algorithm (30) generates strongly consistent estimates, i.e.,

9t—>0 P—as as t — oc.

9This condition seems to be standard in linear systems theory, see e.g. Caines (1988, p. 245) for
details.
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Proof. By Assumptions (4i7) and (iv), the hypothesis of Proposition 6.3 are satisfied
such that Zthl lue]|> = O(T). In view of the assumptions, the prerequisites of Theorem
2.1 are then satisfied as well, implying that there exists a > 0 such that ||z||* = O(t*)
P-a.s. Hence

10g Amax (Zthl xta:tT) =O(logT) P-—as.
By (37) and (39), it is seen that

T T
Amin (Zt:l TtTy )

: —00 P—as. asT — o
ogT

and the assertion follows from Proposition 6.1. Q.E.D.

In order to arrive at the desired AML-based learning scheme which converges to rational
expectations, we need to ensure that the forecasts generated by the approximation of the
no-updating rule (31) satisfies Assumption (iv) of Theorem 6.4. According to Proposi-
tion 6.3, this conditions entails a boundedness condition of the forecasts which cannot be
guaranteed beforehand. We therefore amend the approximation (31) as follows. Using
the forecast vy (#;) as given in (31), define

Z/te,t+j = ?Jte_},tﬂ'a J=1,...,n9 R
(40) e (@) + oy if [|1(24)]| < e,
Y¢tt14n, — AN =1 S A )
el (@) e (2r) + vy otherwise,

where {v;}4en represents an exogenous white-noise process (small in magnitude) satisfy-
ing certain assumptions given below and {c¢;}sn is a sequence of positive numbers such
that ¢; = oo and Zthl ¢? = O(T). Such a sequence, for example, is given by ¢; = logt.
The motivation for the forecasting rule (40) is to meet the requirements (36)-(38) for
inputs imposed by Proposition 6.3 thereby controlling the growth of the forecasts. We
call (40) an AML-based forecast for the realizations v 1,...,¥s114n,- Lhe series of
forecasts generated by the AML algorithm (30) and the forecasting rule (40) define an
AML-based adaptive learning scheme for the linear system (1).

Theorem 6.5 Let Assumptions (i)—(iii) of Theorem 6.4 be satisfied and the forecasts
be generated by the AML-based learning scheme defined by (30) and (40). Assume, in
addition, that the following hypotheses are fulfilled.

(i) The system (1) under the unbiased no-updating rule (14) is stable, that is, all
eigenvalues of the coefficient matriz associated with (15) have modulus less or
equal to unity;

(ii) The process {ven in (40) satisfies

(a) E[v;|G:] = 0 for all t € N and sup, E[||v:||%|G:] < oo P-a.s. for some a > 2,
where Gy = o(Fy_1, Y, wy) as before;
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(b) lim inf Ain (B[vv, [Gi]) > 0 a.s.
—00

Then the AML-based adaptive learning scheme generates strongly consistent estimates,
1.e., By — 0 P-a.s. ast — oo. and all trajectories of the AML-based learning scheme
converge to trajectories with rational expectations.

Proof. Let u; = y§,,,,, as before. Then i; = u; — E[u;|G;] = v; by (40) and (36) is
satisfied. As shown in Lai & Wei (1983), Assumption (4¢) implies that P-a.s.
(41)

T T
(@) > llvll> = O(T),  (id) [lor|*/T — 0, (iid) “T“LE}fT_lAmin (ZWJ) > 0.

t=1 t=1

Properties (74) and (i4) in (41) imply Condition (37). Since ||E[u: |G| = |Juc — ve]| < &
by (40), S°7, |E[u¢|G:||> = O(T) and using (iii) in (41), this yields Condition (38). Thus
Assumption (iv) of Theorem 6.4 is satisfied and we can apply Theorem 6.4 to conclude
that ét — 6 P-a.s. Since ¢; — oo and the dynamics under rational expectations is
stable by Assumption (7), all trajectories of the AML-based learning scheme converge
to trajectories with rational expectations. Q.E.D.

The concept of continually disturbed inputs, also referred to as dither, is originally due
to Caines, see e.g. Lai & Wei (1986b, p. 247) and references therein. The idea is that the
system under rational expectations should be stable implying that the forecasts must be
bounded with probability one. If the forecasting rule (31) yields large values of yf,,; .,

we can interpret this as an indicator that the precision of the parameter estimates 6;
involved in (31) is insufficient. The perturbations v; which can be taken of small magni-
tude are designed to satisfy the weak excitation condition (33) which assures convergence
of the AML algorithm. As pointed out above, in feedback systems with inputs of the
form (31), the weak excitation condition may well be violated. Note in this connection
that Corollary 6.2 may serve as an indicator for the quality of the parameter estimates
and that the no-updating rule could be replaced by an MSV predictor, whenever the
estimates are sufficiently close to their true values.

The idea of perturbing the inputs is generalized in Lai & Wei (1986a, 1987) to the concept
of occasional excitation of the inputs, where the dither is exerted only if the precision of
parameter estimates appears to be insufficient. These techniques are readily available
for the univariate version of our model, however, their presentation and extension to the
multivariate case are beyond the scope of this paper.
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7 Conclusions

We introduced a learning scheme based on the recursive-extended-least-squares algo-
rithm which converges globally for all initial conditions under standard assumptions.
Although the scheme can be used for linear models only, the analysis reveals that is
advantageous to first estimate the whole system including the feedback of any forecast
acting on the system itself and then compute an approximation of an unbiased forecast-
ing rule which generates the desired rational expectations equilibria. The main lesson
suggests a careful distinction between four separate issues. First, the existence of a de-
sired forecasting rule; second, the dynamic stability of the system under this forecasting
rule; third, the dynamic stability of the system under the applied learning scheme and,
fourth, between the success of the learning scheme in terms of providing strongly con-
sistent estimates of the system’s parameters. As shown in Wenzelburger (2001a, b), this
methodology carries over to the non-linear case and the lesson strongly suggest that the
mathematical object to be estimated from time series data is an appropriately defined
error function associated with the economic law. There is a considerable amount of hope
that such a task could, at least in part, be accomplished by combining our approach with
the nonlinear estimation methods provided in White, Gallant, Hornik, Stinchcombe &
Woolridge (1992) and Chen & White (1998).

A Appendix

A.1 Proofs of main theorems

Proof of Theorem 2.1.
The proof of (i) is an adaptation of Lemma 4 in Lai & Wei (1982). Let

— ¢ na—1t) , e T
Yt:(yt—r,...,yz_mﬂ)T and :t:((ZB( )yt_ljt+i+b+§t)T,0...,0) )
i=0

Using (4), the system (1) and (2) may be rewritten as ¥; = AY; ; + Z; and thus
T

(12) Vo= ATV, + 30 ATIE,
t=1

Let C be nonsingular such that A = CJC~!, where J is the Jordan normal form of A.
Since all eigenvalues of A lie inside the unit circle, it follows from Varga (1962, Thm.
3.1, p. 65) that

(43) AT < lleg e~ < llefllie=H 1T < o(T™),
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where M = max; m; and m,; denotes the multiplicity of the j-th eigenvalue of A. In
view of Assumptions (i7) and (7i7), we have ||Z;|] = O(¢") for some suitable vy > 0 and
therefore by (42) and (43)

T
Yzl < IATHIYll + D IATIEN < O@) P —as.

t=1

This proves (7). In order to prove (ii), note first that the Schwarz inequality implies

T t 2 T t t
Z( IIAt_SIIIIESII) < ) (ZIIAHIO (ZIIA“‘SIIIIESIIZ)
1 s=1 s=1

t=1 §= t=1 =
[e§] T T
< (Z IIAt||> > (Z IIAt_SH) [=Als
t=0 s=1 t=s
o0 27
< (ZHAtII) =
=0 s=1

In view of (42), it follows from Assumptions (i) — (¢i¢) that

T T 00 2 r
> oIviP <2 (Z IIAt||2> 1Yoll” + 2 (Z ||v4t||> dIENP=0(T) P-as.
t=1 t=1 t=0 s=1
This implies (7). Q.E.D.

Proof of Proposition 6.3.

Property (39, i7) follows from (36) as shown in Lai & Wei (1983). This, in turn, implies
Amin (Zthl ﬂt&:) = O(T) and (39, 7) follows from (38).

The last property (39, éii) follows from Proposition A.1 by first showing that the re-
gressors (26) can be reduced regressors (45) consisting only of inputs (see below) and
then applying Proposition A.4, noting that Ay, (Zthl 22 ) > Amin (ZtTZI Z 7" ) for
any sub-vector zr of Z;, where the latter will be defined in (51). Note in this connection
that interchanging any vector entries of a regressor z; will not change the eigenvalues of

the (design) matrix z;2, , since it amounts to interchanging columns and rows simulta-
neously.

Q.E.D.

Proposition A.1  Suppose that the matriz polynomials A(s), B(s), C(s), and D(s)
given (34) are left coprime and that (35) holds for all times t, that is,

(44) Ao = BWtt-nass + C001ny + D(er-ny-
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Let

T _ T T T T T T T T
Ty = (ytfla et yt,m, Up 15-+ -5 utfn2+1’ Wy 15+ wt*n;;’ € 150 etfm)’
T _ T T T T T T
(45) ‘i1 — (ut—1+dn17 R ut—n2+17 wt—l—l—dnl: ey wt—n3> et—l—l—dnla R et—n4)'

Then there exists p > 0 such that for all T > dn,

T T
Amin (Z ] ) > pAmin (Z %z ) :
t=1

t=1

The proof of Proposition A.1 is a generalization of Theorem 2 in Lai & Wei (1986b, p.
235) for an additional source of inputs and will be prefaced by two technical lemmatas.
Let A(s) denote the adjoint of the matrix A(s) such that A(s)A(s) = a(s)I; with
a(s) = det A(s). We have a(s) = ijlo a;s? for suitable real coefficients a; with ay = 1.

Lemma A.2 Let A(s), Ki(s),. .., Kn(s) be left coprime matriz polynomials. Assume
that the degree of the matriz polynomial A(s) is degA(s) = ny with the identity matriz
as leading coefficient and let A(s) denote the adjoint of A(s) with a(s) = det A(s). If

there exist matriz polynomials Ni(s), ..., Np(s) and vectors ay, . .., ap, € R such that
(46) ia:A(S)Kj(s)sil =a(s)Nj(s) forallj=1,...,m,
i=1
then oy = -+ = Qu, -
Proof. By the coprimeness, there exist matrix polynomials My(s), ..., M;,(s) such that

A(S)M()(S) + Kl(S)Ml(S) + - Km(S)Mm(S) = Id-
Suppose that (46) holds. Then

m

Zaj,li(s)si—l = Zajﬁ(s)[A(s)Mo(s)+2Kj(s)Mj(s)]si—1

(47) = a(s) [ZaJ Ma(s) + D Ny()My() |

Since the degree of A(s) is degA(s) = (d— 1)n; and the degree of a(s) is dega(s) = dny,

deg (Z a:g(s)si_1> < ny—1+degA(s) = dny — 1 < degal(s).
i=1

It follows from (47) that (331, azs'=1)" A(s) = 0 for all 5. Since the leading coefficient
of A(s) is the identity matrix, A(s) and thus A(s) has full rank for almost all s. Thus
Yot ;s =0 for almost all s and therefore g = -+ = o, = 0. Q.E.D.
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Lemma A.3 Let A and be an dy X dy matriz with kerAT = {0} and B be a symmetric
dy x dy matriz. Then there exists p > 0 with Apin(ABAT) > pAmin(B)-

Proof. By Theorem 3.2.1, Lancaster (1969, p. 109), Amin(C) = miny=: (2" Cz) for any
symmetric matrix C. Since AA" is nonsingular, for any 0 # z € R,
2'ABA'x 2"ABATz x"AATx _ xTAA'x

= : > )\min B).
Tz xTAATx 'z T xTx (B)

T

The lemma follows from another application of Theorem 3.2.1 with p = A\pin(4AAT) > 0.
Q.E.D.
Proof of Proposition A.1.

Let A(s) denote the adjoint of the matrix A(s) as before. We have a(s) = ijlo a;s’,
(ap = 1) and thus

dni

a(t)T 1 = Z AjTt—1+dny—j-

§=0

Since A(¢)A(1)zi—1 = a(t)zy_1, (44) implies

Q

12

(VY-
(48) a()u—; = a()" N uy_p, 4,
a(wi—; = a(L)™ 7wy,
a(t)eg—; = a(t)™ ey,

Now set X; = (Xt(l)T, L XONT = g1z, with

Xt(l) = ((a(b)yt—l)T, cees (a(l')yt—rn)—r)—ra Xt(Q) = ((a(b)ut—l)Ta EEE (G(L)“t—anrl)T)T’
Xt(g) = ((a(L)wt_l)T, ey (a([/)wt—ng)T)Ta Xt(4) = ((G(L)Gt—l)Tv R (a(b)et—m)T)T

and
T T
Uy = (“tT—1+dn1’ e ’utT—n2+1) , W= (th—1+dmv x -ath—ng) ’
T
Et == (6t71+dn1)—|—’ sy 67;'——714)

Then (48) has a block-matrix representation as

X . D, D, Dy
x| ! | Dy o0 0
(49) Xt(S) =D VEV: Where D= 0 D5 0

x® 0 0 Ds
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The block matrix D in (49) is a d(n1 + 1+ N9 + N3 + TL4) X d(3d’fl1 + 1+ N9 + N3 + TL4)
matrix with constant coefficients. If the rank of D were less than d(n; +14mng+n4+n3),
then there exist vectors ai,...,n,, Biy -+ Bugtls Vi« > Yng, a0d 01, . .., 0y, in R? such
that

n2

Z o) A(s)B(s)s'' = —a(s) Z B 1457,
i=1 =0
ng—1

Za?ﬁ(s)(}’(s)si_l = —a(s) Z 7J-TId8j,
i=1 =0

ni na—1
Z o A(s)D(s)s" ' = —a(s) Z 5jTIdsj,
i=1 =0

which is impossible by Lemma A.2. Hence the matrix in (49) has full rank. Noting that
21 = (UT, W, E])T, we can apply Lemma A.3 to see that there exists p > 0 such

that
T—dn1 T—dn,
mln(z Xt ) Zp)\min(z tht—r)
t=1

To complete the proof, it suffices to show that

T—dn1 dni T
(50) Amin ( Z XtXT> (dny +1) (Z a§> Amin (Z zx, ) :
t=1

j=0

Let ¢ be a unit vector. Then

dni dn1 dn1
(XX, ¢ = (Z achdemj) (Za ) > (€ Trdna—4)?
7=0

=0
implies
T—dny dni T
D TXX[C< (dny + 1) (Z a§> S (Tl
t=1 =0 t=1
proving (50). Q.E.D.

Proposition A.4  Under the hypotheses of Propositions 6.3 and A.1, for arbitrary
n >0, let

T T T T . T T T\T
(51) Zy = (6t+n7 Ui 15 Wepn 19€qppn 153U y Wy 1 & ) -

Then
lim inf i (1 2127

— P — a.s.
ot T ) >0 a.s

25



Proof. The proof consists of an induction argument on n and of a repeated application of
Theorem A.5 stated below. To apply Theorem A.5, let n = 1 and proceed in three steps.
Step 1. Consider the random vector (") = (w/},€¢/)T. Set Hy_1 = o(Fi_1, &), 7 = €,

& = Elwy|Hy_1], and 0y = wy—E[w; |H;_1]. By Assumptions 2.1 and 2.2, all requirements
of Corollary A.6 are fulfilled. In particular, since Ay, (Z; Ty, ) = O(T),

(52) lim i 2min (i 674)

T—00 )\min(th=1 11tatT)

>0 P-—as.

Step 2. Consider a second random vector ({2 = (Ct(l)T, ul)". Set 7, = ¢ ¢ = E[us| G,

m = iy, and H; = Gi 1. By Step 1, log¥,_, ||7||> = O(logT). In view of (36)-
(38), Ct@) again meets all requirements of Corollary A.6. Hence, we conclude from
Auia (L, ] ) = O(T) that

T

(53) lim inf 2 (1 676

T—00 Amin(zzzl ﬁtag—)

) >0 P-a.s.

Step 3. Consider a third random vector (¥ = (¢27,¢/.,)T, where i, = ¢, & = 0,

m = €1, and H; = Fypq. Since again log Y., ||7:/|> = O(logT), it follows from
Assumption 2.1 (4) and (ii) that ¢ satisfies all hypotheses of Corollary A.6. From an
analogous argument used in Step 2, we obtain

(54) lim inf 2 (St 6760T)

T— oo Amin(zle ﬂtﬁz—)

>0 P-—a.s.

This proves the case n = 1. By (37), we have'® A\, (ZtTZI Uyt ) ~ Amin (ZtT:_lm Ty, )
for any fixed m and a repeated application of the above three steps establishes the
desired conclusion for arbitrary n. Q.E.D.

Theorem A.5 (Lai & Wei 1986b, Thm. 3, p.235)

Let ¢, = ( {.:t;t??t ) be a random vector and {H;}ien be an increasing sequence of

o-algebras. Suppose that the following properties hold with probability 1.

(1) {n:}sen is an R%-valued martingale difference sequence with respect to {H;}ien
such that

(a) supE[||n:||*|Ht] < oo for some o> 2, (b) Amin (Zthl nmtT) — 00 as T — oo.
teN

10 By a; ~ by P-a.s. for two sequences of random numbers (a;) and (b;), we mean that Jim =1
—00

P-a.s. By a; = o(b;) P-a.s., we mean that lim |#| =0 P-a.s.
t—o0 ' Ut
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(2) & € R® is H;_, measurable with
S e = 0 (Aamin (S0 200 ) + Ain (S0 7777 ) ) -
(3) 7 € R% is H,_1 measurable with'
(a) 10g S, 17l = 0 (Ao (Sumenl ) )+ (8) Ain (S 77 ) = 00 a5 T — 0.

Then (57, 0T
. . Alnin Zt=1 Ct(t;
111—’111)1010}f min{Amin(Ezzl Tt'TtT) » Amin (Ele "7t772—

T >0 a.s.

Corollary A.6  Under the hypotheses of Theorem A.5, if, in addition,

. . Amin ZTzl T TT
(55) lim inf (t—”T)

>0 a.s.
T Amin(ZtT=1 ayn ) ’

then -
hm 1nf Amin (Zt:l Ct(t )

—ar —7, >0 as.
T—o0 )\min(zg;l ntntT)

A.2 Example with singular B

We present a particular easy example, indicating to what extent an unbiased forecasting
rule will exist, if the invertibility condition of the coefficient matrix B(® in Sec. 3 is vio-
lated. This example provides a complementary approach to the one found in McCallum
(1998) and may easily be extended to the general case. With the notation of Sec. 2,
consider the simple economic law

(56) Yo = Byp 140 + &

where B = B is a possibly singular d x d matrix. A similar example to (56) is found in
McCallum (1998), although with different dating. Assume that there exists a coordinate
transformation z = QQy with a nonsingular d x d matrix ) such that

0 0 .
(E(zn E(zm)ZQlBQ

with a nonsingular d; x d; matrix B and a d; x dy matrix B, where d; + d» = d.
Setting z; = QUs, 2f 1411 = QU1 441, and Ny = Q&;, (56) takes the form

1 el 1
(57) Zt; = ( O~<21) 0~(22) ) Z%El;’t“ + 77%2; :
2 B B Rt—1,t+1 Y
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Thus (56) decouples into two (vector) equations (57), the first of which receives no

feedback of the forecasts. Since zt(l) = nt(l) and B@Y is invertible, an unbiased forecasting

rule for (57) is
(58)

el 1
) = (Mo S ) (P2 < (ot )
Zt(il),tﬂ _B@2-1p(21) pB@2)-1 Z§i2),t B(22)71]Et_1[77t ]

Setting

(59) yf—l,t+1 = Q_lzf—l,t—H

with 2{ ; ,,, given by (58), we obtain an unbiased forecasting rule in the sense of Defi-
nition 3.2. Notice that (59) is a no-updating rule for the second component, that is,

E; 4 [952) - ygeQ),t] =0,
if ]Et—l[nt(l) - m(i)l] = 0.
Note: See www.wiwi.uni-bielefeld.de/"boehm to download the author’s discussion papers.
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