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1 Introduction

Recently more and more game theorists and economists abandon the rather strong
assumption that agents have perfect knowledge about the economic environment in
which they live. Instead the focus has been turned to scenarios in which agents’ views
of the world may be erroneous. An open issue is what a plausible outcome of such
scenarios with imperfect knowledge could be.

The literature on learning in games has investigated many situations in which economic
agents have incomplete or erroneous information about the environment in which the
game takes place, e.g., see Kirman & Salmon (1995), Marimon (1997), Fudenberg &
Levine (1998), or Blume & Easley (1993, 1998). If an equilibrium of a game is thought
of an outcome of a mental process that takes place in virtual time, the question whether
the outcome is the same when such a process is made explicit naturally arises. Already
Kirman (1975) provided an example of a duopoly game showing that, in general, this
will not be the case. Several equilibrium concepts have been introduced to describe the
long-run outcome of games in which agents lack full information, such as self-confirming
equilibria or subjective equilibria, see Fudenberg & Levine (1993) and Kalai & Lehrer
(1993, 1995).

Under the assumption that agents lack full information, one is left to specify first how
informed agents are and second how agents try to retrieve the missing information.
From an abstract point of view it is clear that possible long-run outcomes of the cor-
responding subjective game depend heavily on the underlying behavioral assumptions.
The specification of a learning scheme according to which agents update their beliefs
will thereby play a crucial role. For duopoly games, it has long been recognized that
simple updating rules may lead to complex behavior of the system that may or may not
converge to a desired equilibrium, e.g., see Rand (1978) or Dana & Montrucchio (1986)
for an early contribution. Recent contributions have extensively investigated the result-
ing so-called learning dynamics, cf. Léonard & Nishimura (1999), Bischi, Mammana &
Gardini (2000), Bischi, Chiarella & Kopel (2002) and others.

On the other hand, however, a common and still prevalent paradigm is that economic
agents learn from errors they have made in the past and that they will try to elimi-
nate all systematic forecast errors. From this perspective, the plausibility of behavioral
assumptions concerning agents’ capability to learn has to be treated with care. Any
equilibrium concept based on incomplete information and subjective beliefs depends
crucially these assumptions which for this reason should be justified.

The question arises to what extent a learning scheme enables an agent to eliminate all
errors that are systematic from her perspective and what an agent will do if she finds
out that her learning scheme fails to do so. Conceptually this amounts to defining a
goal for a learning scheme before specifying the learning scheme itself. Depending on
a presumed level of rationality, plausibility of a behavioral assumption may then be
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inferred from the success of a particular learning scheme to achieve the prescribed goal.

For the case of duopoly games whose evolution is driven by non-linear maps the question
of which learning schemes find a desired subjective equilibrium in a systematic way
remains to a large extent unresolved. Following Kirman (1975), Dana & Montrucchio
(1986), Léonard & Nishimura (1999), Bischi, Chiarella & Kopel (2002) and others we
consider a Cournot duopoly of two quantity setting firms that lack perfect knowledge
of their rival’s cost function and of the market demand function. Time is discrete and
firms repeatedly play a subjective game with a one-period planning horizon. They
use estimated and therefore misspecified demand functions and determine their optimal
strategies from the corresponding subjective payoff functions. The central issue of this
paper is under which conditions a firm can learn to play best response, if outputs of
both firms and prices are observable quantities.

In order to be successful, such a firm will have to learn the true market demand function
as well as the response function of its competitor through repeated estimations from his-
torical market data. The present paper investigates the simple situation in which one
firm behaves like a naive updater while the other firm is assumed to be sophisticated.
For the latter firm we propose a learning scheme with two separate estimation rou-
tines that are carried out simultaneously. With the first routine the unknown market
demand is estimated in each trading period. With the second one the competitor’s re-
sponse function and/or a self-confirming beliefs is estimated. While the first routine is
a standard estimation problem, it is shown that finding a self-confirming beliefs equilib-
rium amounts to finding the zero of an unknown function. The whole response function
will be estimated using spline approximations which can be made arbitrarily precise.
As soon as estimation errors are negligible, the competitor’s correct response function
is known and a firm is able to play best response in the usual game theoretic sense.
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2 Duopoly as a subjective game

Consider a discrete-time Cournot duopoly game, in which two firms indexed by i = 1, 2
offer homogeneous products on a common market. If p denotes the goods price and
q = q(1) + q(2) the industry output of the two firms, the aggregate market demand
function D and its inverse f are given by

q = D(p), p ∈ R+ and p = f(q) := D−1(q), q ∈ R+,

respectively. Firms do not know the exact specification of the inverse demand function
f and instead use subjective estimates for f , given by the relationships

(1) p = f̂ (i)(q), i = 1, 2.

Moreover, firms have incomplete knowledge of the profit function of their rival. At the
beginning of each trading period, they estimate the produced quantity of the rival firm.
For an arbitrary period t, let q̂

(1)
t (q̂

(2)
t ) be the estimate of firm 1 (firm 2) for the output

q
(2)
t (q

(1)
t ) of firm 2 (firm 1) in that period. The anticipated profit of firm 1 has to be

based on two estimates, namely f̂
(1)
t for the true inverse demand function f and q̂

(1)
t for

firm 2’s output q
(2)
t of period t. If C(1)(q(1), q(2)) denotes the cost function of firm 1, the

anticipated profit function of firm 1 is given by

(2) Π(1)(q(1), q̂
(1)
t , f̂

(1)
t ) := q(1) f̂

(1)
t (q(1) + q̂

(1)
t ) − C(1)(q(1), q̂

(1)
t ).

Following Kopel (1996) and Bischi & Lamantia (2002), we allow for possible externalities
in the cost functions of the firms.

Let the strategy space of firm 1 be given by the compact interval [q
(1)
min, q

(1)
max] and the

strategy space of firm 2 be given by the compact interval [q
(2)
min, q

(2)
max]. Based on an

estimate f̂
(1)
t for the market demand, the subjective best response of firm 1 is a function

R(1)(·, f̂
(1)
t ) : [q̂

(1)
min, q̂

(1)
max] → [q

(1)
min, q

(1)
max], q̂

(1) 7→ R(1)(q̂(1), f̂
(1)
t ),

where

(3) R(1)(q̂(1), f̂
(1)
t ) := argmax

{
Π(1)(q(1), q̂(1), f̂

(1)
t ) : q(1) ∈ [q

(1)
min, q

(1)
max]

}
.

We assume that the compact interval [q̂
(1)
min, q̂

(1)
max] of possible beliefs of firm 1 may be

chosen large enough such that it includes firm 2’s strategy space assumed to be unknown
to firm 1.

Similarly, given the cost function C(2)(q(2), q(1)) of firm 2, the anticipated profit function
of firm 2 is

(4) Π(2)(q(2), q̂(2), f̂
(2)
t ) := q(2) f̂

(2)
t (q̂(2) + q(2)) − C(2)(q(2), q̂(2)).

4



If the compact interval [q̂
(2)
min, q̂

(2)
max] describes the beliefs firm 2 will choose from, then

based on the estimate f̂
(2)
t , the subjective best response of firm 2 is

R(2)(·, f̂
(2)
t ) : [q̂

(2)
min, q̂

(2)
max] → [q

(2)
min, q

(2)
max], q̂(2) 7→ R(2)(q̂(2), f̂

(2)
t ),

where

(5) R(2)(q̂(2), f̂
(2)
t ) := argmax

{
Π(2)(q(2), q̂(2), f̂

(2)
t ) : q(2) ∈ [q

(2)
min, q

(2)
max]

}
.

As above, we assume that the compact interval [q̂
(2)
min, q̂

(2)
max] of possible beliefs of firm 2

may be chosen large enough such that it includes firm 1’s strategy space assumed to be
unknown to firm 2.

The time-line of actions within a typical period t is now as follows. At the beginning
of period t, each firm i = 1, 2 forms estimates for the inverse demand function f̂

(i)
t and

for its rival’s output q̂
(i)
t , i = 1, 2, respectively. After forming these estimates, they both

maximize anticipated profit and produce their subjectively optimal quantities as given
by the respective subjective response functions. Thus

(6)





q
(1)
t = R(1)(q̂

(1)
t , f̂

(1)
t )

q
(2)
t = R(2)(q̂

(2)
t , f̂

(2)
t )

is the actual output of the economy in period t. Prices in period t are then determined
by

(7) pt = f(q
(1)
t + q

(2)
t ).

Notice that equations (6) and (7) are determined by subjective beliefs only. In particular,
if none of the firms updates their estimates, then output and prices are constant over
time. We will refer to eqs. (6) and (7) as the economic law of the subjective duopoly
game. The time-line of the trading structure is displayed in Figure 1.

Figure 1 about here.

A special situation occurs if one or both of the firms are able to perfectly predict the
rivals output and the (inverse) market demand function of the economy. Suppose firm
1 is able to do so. Then

q̂
(1)
t = q

(2)
t and f̂

(1)
t = f

and the subjective best response function (3) coincides with the best response function
of firm 1. Similarly, if firm 2’s estimates satisfy

q̂
(2)
t = q

(1)
t and f̂

(2)
t = f,
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then she is able to play best response as well. A Nash equilibrium of the economy is
then given by a solution

(8) (q(1)
?? , q

(2)
?? ) ∈ [q

(1)
min, q

(1)
max] × [q

(2)
min, q

(2)
max]

to the equations {
q(1) = R(1)(q(2), f),

q(2) = R(2)(q(1), f).

Concrete and worked-out examples that fit into the present formulation may be found
in Bischi & Lamantia (2002) or Bischi, Chiarella & Kopel (2002).

3 Information, forecasting, and dynamics

As pointed out in the last section, the evolution of outputs and prices of the duopoly
game described by (6) and (7) is exclusively driven by the forecasting technology that
firms use. We therefore have to discuss the information set on which firms may base their
subjective evaluation of the future. We distinguish between two kinds of information,
public information and private information. For an arbitrary period t, we assume that
past prices and realized outputs are observable, such that

(9) {q(1)
s , q(2)

s , ps}
t−1
s=0

constitutes the set of publicly observable quantities in period t. The private information
of a firm consists of its cost function and past estimates for the rival’s output and for
the market demand function. That is, apart from the knowledge of its cost function
firm i’s private information consists of the set

(10) {q̂(i)
s , f̂ (i)

s }t−1
s=0, i = 1, 2.

The information set on which firm i will base its decision in period t then is

(11) I
(i)
t := {q(1)

s , q(2)
s , ps, q̂

(i)
s , f̂ (i)

s }t−1
s=0, i = 1, 2.

Forecasting rules for firm i in period t are formally functions, say ψ
(i)
t and φ

(i)
t , that map

historical data known at date t into forecasts

(12)

{
q̂
(i)
t = ψ

(i)
t (I

(i)
t ),

f̂
(i)
t = φ

(i)
t (I

(i)
t ).

Inserting the forecasting rules (12) into the economic law (6) yields a (non-autonomous)
dynamical system

(13)

{
q
(1)
t = R(1)

(
ψ

(1)
t (I

(1)
t ), φ

(1)
t (I

(1)
t )

)

q
(2)
t = R(2)

(
ψ

(2)
t (I

(2)
t ), φ

(2)
t (I

(2)
t )

)
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that describes the evolution of the Cournot duopoly game. Many contributions have
investigated the dynamics of the case with forecasting rules that are independent of time,
e.g., see Rand (1978), Dana & Montrucchio (1986), Léonard & Nishimura (1999), Bischi,
Mammana & Gardini (2000), Bischi, Chiarella & Kopel (2002) and others. Observe,
however, that as in the classical cobweb model, the evolution of the outputs is exclusively
driven by subjective beliefs of the two firms and thus by a behavioral assumption on the
rationality of firms.

4 Dynamics with perfect knowledge

Consider the case with a ‘naive’ and a ‘sophisticated’ firm. Let firm 1 be the naive
one that never updates her subjective demand function and has naive expectations
concerning the future output of firm 2. The two forecasting functions of firm 1 at any
date t ∈ N then take the simple form

(14)

{
q̂
(1)
t = ψ

(1)
t (I

(1)
t ) := q

(2)
t−1,

f̂
(1)
t = φ

(1)
t (I

(1)
t ) ≡ f̂ (1).

Notice that both forecasting rules in (14) are independent of time. Accordingly, the
subjective best response function (3) of firm 1 becomes

(15) q
(1)
t = R(1)(q

(2)
t−1, f̂

(1)).

The response function (15) is similar to the one used by Dana & Montrucchio (1986),
Léonard & Nishimura (1999), Bischi, Chiarella & Kopel (2002) and others.

Consider now the sophisticated firm 2. Suppose for the moment that firm 2 has no
forecasting errors on the demand function f such that

(16) f̂
(2)
t = φt(I

(2)
t ) ≡ f.

Assuming that firms use the forecasting rules (14) and (16), the economic law (6) takes
the form

(17)





q
(1)
t = R(1)(q

(2)
t−1, f̂

(1)),

q
(2)
t = R(2)(q̂

(2)
t , f).

The forecast errors ζt of firm 2 are given by the relationship

(18) ζt = q
(1)
t − q̂

(2)
t = R(1)(q

(2)
t−1, f̂

(1)) − q̂
(2)
t , (q

(2)
t−1, q̂

(2)
t ) ∈ R

2
+.

The forecast error function (18) confirms the intuition that in order to have perfect
foresight on the rival’s output for all times t, firm 2 has to know the subjective response

7



function of firm 1. The forecasting rule that provides firm 2 with these correct forecasts
is formally given by the function

ψ(2)
? : [q

(2)
min, q

(2)
max] → R+,

where

(19) q̂
(2)
t = ψ(2)

? (q
(2)
t−1) := R(1)(q

(2)
t−1, f̂

(1)).

This forecasting rule may be referred to as perfect forecasting rule. If firm 2 knows the
perfect forecasting rule and the market demand function f , she is able to play best
response for all times t. Inserting the perfect forecasting rule (19) into the economic law
(17) gives

(20)





q
(1)
t = R(1)(q

(2)
t−1, f̂

(1)),

q
(2)
t = R(2)

(
R(1)(q

(2)
t−1, f̂

(1)), f
)
.

This shows that the dynamics under perfect foresight for firm 1 is generated by the
second function in (20) alone and hence are essentially one dimensional. The fixed point

(q
(1)
? , q

(2)
? ) of the perfect-foresight dynamics generated by (20) satisfies the equations

(21)





q
(1)
? = R(1)(q

(2)
? , f̂ (1)),

q
(2)
? = R(2)(q

(1)
? , f).

In comparison with the Nash equilibrium (8), this fixed point will be referred to as a
(stationary) self-confirming beliefs equilibrium (SBE) of the duopoly game. It is easily
seen that the SBE coincides with the Nash equilibrium, if firm 1 had the correct speci-
fication of the market demand function f . In a self-confirming beliefs equilibrium, both
firms correctly predict their rivals output, whereas only firm 1 knows the correct market
demand function.1

5 Adaptive learning of SBE

In this section we investigate the problem of how firm 2 can learn to play best response if
she has incomplete knowledge of the market demand function and the response function
of the rival firm 1 is unknown. In order to be successful, firm 2 will have to learn
true market demand function as well as the response function of its competitor from
repeated estimations of historical market data. As proposed above, we will separate

1Our notion of a self-confirming beliefs equilibrium is closely related to the notion of a self-confirming
equilibrium of Fudenberg & Levine (1993) but not the same, because f̂ (1) may be arbitrarily wrong.
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the estimation of the market demand and the rival’s response function as follows. In
each trading period, a first routine is used to estimate the unknown market demand.
A second one approximates a self-confirming beliefs equilibrium from an estimate of
the competitor’s response function. While the first problem is a standard estimation
problem, we will show that finding a a self-confirming beliefs equilibrium amounts to
finding the zero of an unknown function.

An adaptive learning scheme that instead of a SBE approximates a whole response
function of the rival firm will be introduced in Section 6. There are many reasons for
focusing on SBE. First of all, if a SBE is asymptotically stable under the perfect-foresight
dynamics, then all successful learning may in long run end up in that SBE. A method
that searches directly for a SBE might then be more efficient. On the contrary, if a
SBE is unstable under perfect foresight, one is likely to end up with complex dynamics
implying that the whole response function of the rival has to be learned over time. In
order to reduce the learning speed it again might be advantageous to first identify and
at the same time stabilize a SBE. In either case it therefore is a good strategy to first
localize a SBE and from there on approximate a response function in a second step, if
necessary.

Following Dana & Montrucchio (1986), Léonard & Nishimura (1999), Bischi, Chiarella
& Kopel (2002) and others, we adopt the popular assumption that the market demand
function f is linear and given by

f(q) = a− bq, q ∈ R+,

where q is the aggregate output and a, b > 0 are unknown parameters. Suppose that
two different aggregate outputs q1 6= q2 along with the corresponding market prices p1

and p2 have been observed, such that

(22) p1 = a− bq1 and p2 = a− bq2.

Since q1 6= q2, these two equations can be solved for the unknown coefficients a and b,
yielding

a =
q1p2 − q2p1

q1 − q2
and b =

p2 − p1

q1 − q2
.

As a consequence, the linear market demand function (22) is perfectly known after
two different observations of the aggregate output. It is readily seen from (17) that
two different aggregate outputs can easily be generated by firm 2. In the deterministic
setting with a linear market demand function f , as adopted for the remainder of this
paper, it is therefore justified to assume that the market demand function is perfectly
known to firm 2.

Before we complete our learning scheme we make the following observation. Replacing
the realization q

(2)
t−1 in first equation of (17) gives

(23) q
(1)
t = R(1)

(
R(2)(q̂

(2)
t−1, f), f̂ (1)

)
.
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This implies that the dynamics of the repeatedly played duopoly is now exclusively
driven by the forecasting rules ψ

(2)
t , t ∈ N that firm 2 uses to predict firm 1’s output.

In particular, if firm 2 does not update the forecast such that q̂
(2)
t−1 ≡ q̂

(2)
0 for all times

t, then we see again from (23) together with the economic law (17) that the output of

both firms is constant over time. Observe that (q
(1)
? , q

(2)
? ) is a SBE, iff

(24)

{
q
(1)
? = R(1)

(
R(2)(q

(1)
? , f), f̂ (1)

)
,

q
(2)
? = R(2)(q

(1)
? , f).

It follows from (24) that any SBE defines a fixed point of the map (23) and vice versa

any fixed point q̂
(2)
? = q

(1)
? of (23) defines a SBE. A learning scheme that attempts to

learn a SBE must therefore try to find a fixed point of the univariate map (23).

These considerations lead to the following behavioral assumptions concerning the struc-
tural knowledge of the two firms.

Assumption 5.1 The information of the two firms encompasses the following:

(i) Prices and outputs of both firms are observable for both firms.

(ii) The market demand function is unknown.

(iii) Firm 1 is a naive updater whose behavior is described by (15).

(iv) Firm 2 correctly anticipates firm 1’s behavior in the sense that she knows the
functional form of (15) but not its correct specification. She is aware that the
market demand function along with the response function has to be estimated.

We will now introduce a learning scheme for firm 2 that finds a SBE. Such a learning
scheme will have to search for a fixed point q̂

(2)
? of the map (23) in some uncertainty

interval [q̂
(2)
min, q̂

(2)
max] that is assumed to contain a SBE. For simplicity of notation we

rewrite (23) as a map2

F : [q̂
(2)
min, q̂

(2)
max] → [q

(1)
min, q

(1)
max]

defined by

(25) q
(1)
t = F (q̂

(2)
t−1) := R(1)

(
R(2)(q̂

(2)
t−1, f), f̂ (1)

)
.

Consider now linear forecasting rules of the form

(26) ψL(q̂(2);α) = q̂(2) + α, q̂(2) ∈ [q̂
(2)
min, q̂

(2)
max]

2Note that for the purpose of this paper, it is only relevant that the function F depends on one
variable only. Thus simple updating of f̂ (1) that depends on the same variable, albeit somewhat
unrealistic in this context, would not affect the arguments that follow.
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where α ∈ R is some parameter. Within the uncertainty interval, α > 0 will induce
a sequence q̂

(2)
t = ψL(q̂

(2)
t−1;α), t ∈ N of increasing forecasts, whereas α < 0 induces a

sequence of decreasing forecasts. With the help of Assumption 5.1, we now introduce
the following naive learning scheme for firm 2.

Algorithm 5.1 Let q̂
(2)
0 ∈ {q̂

(2)
min
, q̂(2)

max
} be arbitrary, m ≥ 2 be an integer and ε > 0 be

a given tolerance level.

1. Orientation stage. Set k = m.

(a) If |F (q̂
(2)
0 ) − q̂

(2)
0 | ≤ ε, then stop.

(b) If q̂
(2)
0 = q̂

(2)
min

, then set α = [q̂(2)
max

− q̂
(2)
min

]/k.

(c) If q̂
(2)
0 = q̂(2)

max
, then set α = −[q̂(2)

max
− q̂

(2)
min

]/k.

2. Iteration stage. Set q̂
(2)
t = ψt

L(q̂
(2)
0 ;α) = q̂

(2)
0 + tα with ψt

L(·;α) denoting the t-th

iterate of ψL(·;α), until [F (q̂
(2)
t ) − q̂

(2)
t ] · [F (q̂

(2)
0 ) − q̂

(2)
0 ] ≤ 0 or t = k.

3. Updating stage.

(a) If [F (q̂
(2)
t ) − q̂

(2)
t ] · [F (q̂

(2)
0 ) − q̂

(2)
0 ] > 0 for all t ≤ k, then set m = 2k.

(b) Let τ denote the first time for which [F (q̂
(2)
τ )− q̂

(2)
τ ] · [F (q̂

(2)
0 ))− q̂

(2)
0 ] ≤ 0. Set

q̂
(2)
min

:= min{q̂
(2)
τ−1, q̂

(2)
τ }, q̂(2)

max
:= max{q̂

(2)
τ−1, q̂

(2)
τ }, q̂

(2)
0 := q̂(2)

τ ,

and continue with stage 1.

Figure 2 about here.

The idea of Algorithm 5.1 is to reduce the length of an uncertainty interval [q̂
(2)
min, q̂

(2)
max]

in which a possible fixed point of the function (25) lies. The search may be started from

either end of the interval [q̂
(2)
min, q̂

(2)
max]. Whenever the sign of the forecast error changes,

one obtains a smaller interval that contains at least one fixed point of (25). If no sign
changes were observed, the step size is reduced in order to increase precision. This
procedure is repeated until the length of the uncertainty interval is below the tolerance
level.

An example for the economic intuition of the learning scheme proposed in Algorithm 5.1
is provided in Figure 2. As long as there are positive (negative) forecast errors, increase
(reduce) the current forecast by some quantity α. A positive (negative) forecast error
means that the expected output of firm 1 was too low (high). As soon as a negative
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(positive) forecast error is obtained, check how close to a SBE the current forecast is

and reduce the uncertainty interval [q̂
(2)
min, q̂

(2)
max] whenever possible.

Before starting the learning scheme (5.1), an initial uncertainty interval [q̂
(2)
min, q̂

(2)
max] can

be chosen as follows. Setting

(27)
q(2) := min

{
R(2)(q̂(2), f) : q̂(2) ∈ [q̂

(2)
min, q̂

(2)
max]

}
,

q(2) := max
{
R(2)(q̂(2), f) : q̂(2) ∈ [q̂

(2)
min, q̂

(2)
max]

}
,

for the range of firm 2’s response function, we see that [q(2), q(2)] ⊂ [q
(2)
min, q

(2)
max] for

any choice of the interval [q̂
(2)
min, q̂

(2)
max]. Thus, initially [q̂

(2)
min, q̂

(2)
max] should be taken as to

minimize [q
(2)
min, q

(2)
max] \ [q(2), q(2)]. In this way, [q̂

(2)
min, q̂

(2)
max] should be made large enough

to cover firm 1’s strategy space [q
(1)
min, q

(1)
max] as much as possible.

The next theorem shows that the forecasts generated by repeated application of Algo-
rithm 5.1 converge to a SBE.

Theorem 5.1 Let Assumption 5.1 be satisfied and assume that [q̂
(2)
min
, q̂(2)

max
] contains

at least one fixed point of (25). Let q̂
(2)
0 ∈ {q̂

(2)
min
, q̂(2)

max
} be an arbitrary initial forecast

and {εn}
∞

n=0 be sequence of tolerance levels with εn → 0 as n → ∞. Then a repeated

application of Algorithm 5.1 yields a sequence of forecasts {q̂
(2)
t }t∈N which converges to

a SBE.

Proof. By construction, for each εn the Algorithm 5.1 either yields a new uncertainty
interval if a sign change occurs or it ends if no sign change occurs. In the first case,
a new uncertainty interval [q̂

(2)′
min, q̂

(2)′
max] is obtained that contains at least one SBE. This

uncertainty interval is strictly contained in the initial uncertainty interval [q̂
(2)
min, q̂

(2)
max] and

thus smaller. Since εn becomes arbitrary small, for sufficiently large n an uncertainty
interval that contains a SBE will be obtained. Since εn → 0, the length of this interval
converges to zero. This yields the theorem. Q.E.D.

Algorithm 5.1 is inspired by a minimization scheme introduced by Berman (1966) and
can easily be generalized to practically all one-dimensional models of the Cobweb type,
cf. Wenzelburger (2002a). Notice that it stabilizes a SBE even for cases in which that
steady state is unstable under the perfect-foresight dynamics (20).

Under the conditions of Assumption 5.1 it is, in principle, no problem to find all SBE of
the nonlinear duopoly game and hence to choose among multiple SBE. This can be seen
as follows. Any uncertainty interval [q̂

(2)
min, q̂

(2)
max] with [F (q̂

(2)
min)− q̂

(2)
min]·[F (q̂(2)

max)− q̂
(2)
max] < 0

contains at least one SBE of the duopoly game. Choosing a sufficiently small step size
(i.e. take a large m), one obtains a fine partition of [q̂

(2)
min, q̂

(2)
max] by extending the updating

12



stage of Algorithm 5.1 to the whole interval. Whenever the function q̂(2) 7→ F (q̂(2))− q̂(2)

changes its sign, a SBE is found.

This naive learning scheme is clearly not the most efficient one but nevertheless surpris-
ingly successful. Any other more refined numerical method that approximates zeros of
a function could be applied as well. To see this, we show how Newton’s method can
be incorporated in an adaptive scheme searching for a SBE. Since the derivatives of the
function F defined in (25) are unknown to firm 2, we apply Newton’s secant method
(see Ortega & Rheinboldt 1970) to find a fixed point of the map F . A Newton step is
now given by

(28) q̂
(2)
τ+1 = q̂(2)

τ −

[
F (q̂

(2)
τ−1) − q̂

(2)
τ−1 − F (q̂

(2)
τ ) + q̂

(2)
τ

q̂
(2)
τ−1 − q̂

(2)
τ

]
−1

[F (q̂(2)
τ ) − q̂(2)

τ ], τ ∈ N.

Newton’s secant method is useful, because it is known for its fast convergence. However,
global convergence of the Newton method and its refinements requires the uniqueness
of the fixed point.

6 Adaptive learning of best response functions

Recently, Nonaka & Matsumoto (2004) have argued that the long-run average profit for
chaotic output fluctuation may be strictly higher than the profit of stationary outputs.3

In such a case, a firm may be interested to learn the perfect forecasting rule (19). In
this section we therefore propose a learning scheme which finds an arbitrarily precise
approximation of a perfect forecasting rule (19) for firm 2 using ideas analogous to
Wenzelburger (2002a). We assume throughout the remainder of this paper that firm
1 behaves like a naive updater and that the conditions of Assumption 5.1 hold. In
this case the learning scheme for a sophisticated firm 2 amounts to estimate the whole
response function of firm 1 from historical data.4 In order to focus on the estimation of
the rival’s response function we abstract from estimation errors concerning the market
demand function f and assume that firm 2 knows f perfectly.

Since the specific functional form of the subjective best response function (15) is un-
known to firm 2, our approximations will be chosen from the class of cubic spline func-
tions which are well known for their good approximation properties, see e.g. Watson

3In such a situation a firm has an incentive to maximize discounted future profits instead of short-
term outputs. We leave the interesting question whether it is advantageous for firms to change their
objective function for future research.

4As soon as firm 1 uses more complicated forecasting rules or updating schemes, it will be impossible
for firm 2 to distinguish between the response function and the forecasting rule without observing firm
2’s beliefs. In such cases the composition of response function and forecasting rule has to be estimated
all together, using more general techniques, e.g., see White, Gallant, Hornik, Stinchcombe & Woolridge
(1992).
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(1980).5 To fix notation, let

(29) ∆ = {q(2) = a0 < a1 < · · · < an = q(2)}

denote a partition of the compact subinterval [q(2), q(2)] ⊂ [q
(2)
min, q

(2)
max] of firm 2’s strategy

space. This subinterval is conveniently taken as the range of firm 2’s response function.

Definition 6.1 A (cubic) spline function ψ∆ associated with ∆ is a real-valued func-
tion ψ∆ : [q(2), q(2)] → R with the following properties:

(i) ψ∆ is two times differentiable with continuous second derivatives,

ψ∆ ∈ C2[q(2), q(2)];

(ii) ψ∆ is a polynomial of degree 3 on each interval [ai, ai+1], i = 0, . . . , n.

The original idea of spline interpolation was to construct a smooth curve through a
prescribed set of points. The following result is standard, see e.g., Watson (1980) or
Stoer (1979).

Proposition 6.2 Let ∆ be given. Then for any prescribed set of values bi, i = 0, . . . , n,
there exists a unique cubic spline function ψ∆, such that

(i) ψ∆(ai) = bi, i = 0, . . . , n and (ii) D2ψ∆(q(2)) = D2ψ∆(q(2)) = 0.

Spline functions can also be used as approximations of continuous functions. To this end,
let ‖g‖∞ denote the supremum norm of a real-valued continuous function g, bi = g(ai),
i = 0, . . . , n be a prescribed set of values at the knots ai, i = 0, . . . , n, and replace
Condition (ii) by Dψ∆(ai) = Dg(ai), i = 0, n. The following result is due to Carlson &
Hall (1973).

Proposition 6.3 Let g ∈ Cm[q(2), q(2)] with m = 1, 2, 3, or 4, ‖ · ‖∞ denote the

supremum norm on [q(2), q(2)], and ψ∆ be the unique cubic spline approximation of g
such that

(i) ψ∆(ai) = g(ai), i = 0, . . . , n and (ii) Dψ∆(ai) = Dg(ai), i = 0, n.

Then there exist constants Cm,r, such that

‖Drψ∆ −Drg‖∞ ≤ Cm,r ‖D
mg‖∞ ‖∆‖m−r, 0 ≤ r ≤ min{m, 3},

where ‖∆‖ := max
i

(ai+1 − ai). For r < 3, the constants Cm,r are independent of the

partition ∆.

5Spline functions could as well be replaced here by other classes of approximating functions such as
wavelets.
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The precise values of the constants Cm,r are found in Carlson & Hall (1973).6 While it is
well-known how to compute a spline approximation for a known function g, firm 2 in our
model faces three basic problems. First, firm 1’s strategy space as well as the domain
of R(1)(·, f̂ (1)) are a priori unknown to firm 2. Second, since R(1)(·, f̂ (1)) is unknown,

so are the knots (ai, bi) with bi = R(1)(ai, f̂
(1)) associated with a partition ∆. These

are needed to construct the spline approximation. Third, the required partition ∆ is a
partition on the strategy space [q

(2)
min, q

(2)
max] of firm 2. This partition will be obtained only

indirectly via the response function R(2)(·, f) of firm 2 and a partition ∆̂ on a suitably

chosen interval [q̂
(2)
min, q̂

(2)
max] for forecasts.

The learning scheme which approximates a locally perfect forecasting rule will therefore
involve the following steps.

Algorithm 6.1 The basic steps of the learning scheme to approximate locally perfect
forecasting rules are the following:

1. Choose an interval [q̂
(2)
min
, q̂(2)

max
] along with a suitable partition ∆̂;

2. Determine knots (ai, R
(1)(ai, f̂

(1))) for the induced partition ∆;

3. Compute spline approximation ψ∆ of R(1)(·, f̂ (1)) associated with ∆.

1. Choosing an interval. Analogously to Section 5, [q̂
(2)
min, q̂

(2)
max] should be taken as to

maximize [q(2), q(2)], where the bounds are given in (27). In view of (15), [q(2), q(2)] is
the relevant part of the domain of firm 1’s response function.

2. Computing knots. Let

∆̂ = {q̂
(2)
min = â0 < â1 < · · · < ân = q̂(2)

max}

denote a partition of the compact interval [q̂
(2)
min, q̂

(2)
max]. Then the points

ai := R(2)(âi, f), bi := R(1)(ai, f̂
(1)), i = 0, . . . , n

determine the knots of the induced partition

∆ = {q(2) = a0 < a1 < · · · < an = q(2)},

after suitably renumbering the {ai} according to size if necessary.

3. Computing the spline function. Having determined all knots (ai, bi), i = 1, . . . , n,
the computation of the spline function ψ∆ with ψ∆(ai) = bi is a routine calculation in
numerical mathematics, see e.g. Watson (1980).

As an immediate consequence of Proposition 6.3, we obtain the following result.

6It is also relatively straightforward to see that Condition (ii) in Proposition 6.3 can be replaced by
Condition (ii) of Proposition 6.2, see Stoer (1979).
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Theorem 6.4 Let ψ?(·) = R(1)(·, f) be continuously differentiable. Then for each
partition ∆ of [q(2), q(2)] there exists a spline approximation ψ∆ and a constant C > 0
such that

‖ψ∆ − ψ?‖∞ ≤ C ‖Dψ?‖∞‖∆‖∞.

The constant C is independent of ∆.

Assuming that R(2)(·, f) is continuously differentiable,

‖∆‖∞ ≤ ‖DR(2)(·, f)‖∞‖∆̂‖∞.

Theorem 6.4 then shows that the spline approximation ψ∆ of ψ? can be made arbitrarily
precise by choosing a fine partition ∆̂ with sufficiently small ‖∆̂‖∞.

The stability of a self-confirming beliefs equilibrium (q
(1)
? , q

(2)
? ) with q

(1)
? = R(1)(q

(2)
? , f̂ (1))

and q
(2)
? ∈ [q(2), q(2)], can be seen from the slope of ψ∆, provided the partition was fine

enough. If ψ∆ is monotonically increasing locally around its fixed point, then the perfect-
foresight dynamics may become complex. However, whenever firm 2 realizes this fact she
may direct the system to a subjective beliefs equilibrium using the methods presented
in Section 5.

7 Conclusions

The analysis of adaptive learning in a dynamic non-linear duopoly game showed that
the correct use of the structural information about the market mechanism enables a
firm to learn self-confirming beliefs equilibria of the game. The idea was to estimate
the market demand function along with the response function of the rival firm from
historical data. While linear demand functions are easily identified, it was shown that
along an orbit of the system, a firm receives more and more information about the shape
of the rival’s response function and thus of the location of the stationary self-confirming
beliefs equilibria.

The learning scheme proposed in the present paper was based on a simple geometric
intuition. It converges globally for all initial conditions and all parameterizations which
guarantee the existence of solutions of the corresponding subjective games. The crucial
assumption for the success of the learning scheme was that the output of the rival firm
and prices are observable quantities.

The approach of this paper may be generalized in several respects. First, competitors
who are more sophisticated and use more intricate updating schemes should be consid-
ered. Second, using methods presented in Wenzelburger (2002b) the estimation tech-
niques of the paper should appropriately be altered as to take in to account stochastic
perturbations of possibly nonlinear market demand functions.
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Figure 1: Time-line of actions.

19



PSfrag replacements

q
(1)
t

q
(1)
t+1

45◦

q̂
(2)
t−1 q̂

(2)
tq

(2)
?

q
(1)
?

q̂
(2)
maxq̂

(2)
min

F

Figure 2: Adaptive learning scheme.

20


