
The Impact of Multiperiod Planning Horizons on

Portfolios and Asset Prices in a Dynamic CAPM∗

Marten Hillebrand

Bielefeld Graduate School of

Economics and Management

Jan Wenzelburger

Fakultät für

Wirtschaftswissenschaften

Universität Bielefeld, Postfach 100 131
D-33501 Bielefeld, Germany

marten.hillebrand@uni-bielefeld.de
jwenzelb@wiwi.uni-bielefeld.de

Discussion Paper No. 520

Abstract

This paper investigates a financial market in which investors with linear mean-
variance preferences and multiperiod planning horizons of arbitrary finite length
interact. Given heterogeneous subjective beliefs, the temporary equilibrium map
determining market clearing prices is calculated explicitly. The classical capital
market line result of CAPM theory is extended showing that under homogeneous
beliefs investors with identical multiperiod planning horizons hold portfolios with
equal proportions of risky assets. The existence of perfect forecasting rules for first
and second moment beliefs which generate rational expectations is established.

Keywords: CAPM, financial markets, multiperiod portfolio decisions,
rational expectations.

JEL Classification: E17, G12, O16

First version: Jul. 2004, this version: Jan. 2005.

∗Acknowledgment. We are indebted to Volker Böhm, Jochen Jungeilges, and Thorsten Pampel
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1 Introduction

A typical feature of financial markets is that traders will have different planning horizons
when investing their wealth in assets. It is intuitively clear that the length of the planning
horizon will affect investors’ risk taking behavior and thus their portfolio decisions.
Investors with long planning horizons are likely to invest more wealth into risky assets
than those with short horizons. In particular, institutional investors will pursue long-
term strategies rather than trying to follow a momentary trend. An open issue for
agent-based models with incomplete markets is to understand the impact of different
planning horizons on the dynamics of asset prices, asset returns, and portfolio holdings
and the impact of investors who are allowed to revise their portfolio plans over time to
incorporate the arrival of new and unexpected information. The analysis of these effects
requires a tractable model in which investors have heterogeneous multiperiod planning
horizons.

Starting with the work of Markowitz (1952) and Tobin (1958), economists have inves-
tigated portfolio decisions which, given a certain expected return, minimize the risk
of future wealth fluctuations. Based on this portfolio theory, Sharpe (1964), Lintner
(1965) and Mossin (1966) developed the famous Capital Asset Pricing Model (CAPM).
The CAPM has been extended by Stapleton & Subrahmanyam (1978) to the case in
which investors face a multiperiod rather than a single-period planning horizon. These
models, however, remain inherently static and the results depend significantly on the
assumption that beliefs of all investors are homogeneous and rational. All investors face
the same multiperiod planning horizon. These assumptions preclude an analysis of how
distinct planning horizons with possibly heterogeneous beliefs affect individual portfolio
decisions and how the trading behavior of investors with different planning horizons
affects asset prices. Most studies of multiperiod portfolio decisions in the literature as,
for example, Chen, Jen & Zionts (1971), Hakansson (1970, 1983), Ingersoll (1987) or
Pliska (1997) consider an essentially static one-shot optimization. The possibility to
re-optimize previously made portfolio plans is ruled out. Scenarios in which investors
permanently update subjective beliefs and for this reason want to revise their portfolios
are not considered.

The present paper addresses these issues and is based on work of Böhm, Deutscher &
Wenzelburger (2000), Böhm & Chiarella (2000), Wenzelburger (2004), and Hillebrand
(2003). The key feature is that asset prices are endogenously determined by the demand
behavior of traders. This allows for a fully explicit dynamic analysis of a financial market
where investors may be arbitrarily heterogeneous with respect to their individual beliefs
as well as their usual microeconomic characteristics like preferences and endowments.
The trading behavior of all agents is described by asset demand functions which are
derived from individual optimization problems. From these demand functions an explicit
temporary equilibrium map is derived determining market clearing prices in each period.
By employing the concept of a forecasting rule, the expectations formation of all investors
is made explicit. Combined with these forecasting rules, an explicit time-one map of a
stochastic difference equation is obtained in which expectations feed back into the actual
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evolution of asset prices, portfolios, and expectations.

In this spirit our analysis proceeds in three steps: First, we consider the individual
portfolio choice problem of a single investor with a planning horizon of arbitrary finite
length given subjective beliefs. Assuming linear mean-variance preferences, we compute
an explicit asset demand function depending on beliefs. This provides a first insight
how planning horizons of different length affect the demand behavior of investors. In a
second step, a temporary equilibrium map determining market-clearing prices is derived
from the aggregate excess demand function. The classical capital market line result of
CAPM theory is extended to the case with multiperiod planning horizons by showing
that portfolios of investors with homogeneous beliefs and identical planning horizons
contain equal proportions of risky assets while different planning horizons will generally
lead to structurally different portfolios. In a third step, the individual demand functions
and the price law are embedded into a sequential model, taking proper account of how
the individual demand behavior changes with new information and observations. By
allowing for re-optimization of portfolio decisions, we thus obtain a dynamic description
of how prices and portfolios evolve over time. Introducing forecasting rules that provide
correct first and second moments of the evolving price process, we relate our setup to
the more traditional CAPM. These forecasting rules generate rational expectations for
a group of investors in the sense that the subjective first two moments coincide with the
true first two moments while the beliefs of other market participants may be false.

The remainder of this paper is organized as follows. Section 2 is concerned with the
multiperiod portfolio choice problem of investors with linear mean-variance preferences.
An explicit temporary equilibrium map describing market-clearing prices is computed.
Section 3 treats the case with homogeneous expectations. Section 4 is concerned with
the existence of forecasting rules which generate rational expectations, the dynamics of
prices and portfolios under rational expectations are studied in Section 5. Conclusions
are found in Section 6, the mathematical proof of the main theorem is placed in the
appendix.
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2 The Model

2.1 Overlapping cohorts of investors

Consider a financial market in which a population of overlapping cohorts of investors
who trade in discrete time periods. The set of investors in each period is composed of
J +1 different cohorts or generations.1 In each trading period t ∈ N, a new young cohort
enters the market and trades for J + 1 consecutive periods before its members exit the
market to consume terminal wealth in period t + J . Each cohort will be identified by
the index j = 0, 1, . . . , J describing the number of periods they remain in the market
until their members exit. In particular, j = J refers to the young and j = 0 to the old
cohort. Each cohort j consists of I types of investors characterized by risk preferences
and subjective beliefs regarding the future evolution of the market. More precisely, a
single investor in an arbitrary period is identified by the pair (i, j) describing his type
i ∈ {1, . . . , I} and his cohort j ∈ {0, 1, . . . , J}. Excluding the old cohort j = 0, the set
of investors trading in the market in each period is given by I := {1, . . . , I}×{1, . . . , J}.
The population structure in an arbitrary trading period t ∈ N is depicted in Figure 1.
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Figure 1: The investors in an arbitrary trading period t.

There is a single consumption good in the economy which serves as numeraire for all
prices and payments. At the beginning of each period, any young investor (i, J) ∈ I of
type i receives an initial endowment of e(i) > 0 units of the consumption good. These
endowments may depend on the type i but are constant over time. Investors (i, j)
with j < J do not receive endowments. Assuming that the consumption good cannot be

1 One may think of a multiperiod OLG model, but in the context of this model this is not necessary.
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stored by consumers directly, each investor faces the problem of transferring wealth from
the first to the last period of life in which he consumes the proceeds of his investments.
There exist K + 1 retradeable assets in the economy, indexed by k = 0, 1, . . . , K. The
first asset k = 0 is a risk-less bond which pays a constant return R > 0 per unit invested
in the previous period. The assets k = 1, . . . , K correspond to risky shares of firms
which are traded at prices pt = (p(1)

t , . . . , p
(K)
t )> ∈ RK of period t. For simplicity, we

abstract from dividend payments. In each trading period t, another group of so-called
noise-traders who purchase or sell a random quantity ξt ∈ RK is present in the market.2

Assumption 1
The portfolios of noise traders are given by an RK-valued stationary ergodic stochastic

process {ξt}t∈N on a the probability space (Ω,F ,P), which is adapted to the filtration

{Ft}t∈N such that each ξt is Ft measurable.

2.2 Decision problem

Consider first the portfolio choice problem faced by an investor (i, j) ∈ I in an arbitrary
period t with planning horizon t + j. At the beginning of period t any investor forms
beliefs regarding future prices pt+1, . . . , pt+j which are relevant for her portfolio choices.
These beliefs are given by a subjective joint probability distribution for the random
variables pt+1, . . . , pt+j . Given her beliefs, the investor’s portfolio decision will depend
on current prices as well on her wealth position in period t. We assume that the portfolio
problem in period t is solved prior to trading, that is, before the actual price pt has
been observed and before the noise traders’ transaction ξt has been realized. Current
prices will therefore enter the decision problem as a parameter p ∈ RK . To determine
the investors initial wealth position at time t we need to distinguish between young and
non-young investors. Each young investor’s wealth is equal to his initial endowment
e(i). The wealth of any non-young investor (i, j) ∈ I, j < J at time t corresponds to
the value of his portfolio (x(i,j+1)

t−1 , y
(i,j+1)
t−1 ) from the previous period at prices of period

t. We therefore set

w
(ij)
t =

{
e(i) j = J

Ry
(i,j+1)
t−1 + p>t x

(i,j+1)
t−1 j = 1, . . . , J − 1

(1)

for initial wealth in period t. Note that the wealth of a non-young investor (i, j), j < J

depends on prices.

In order to obtain explicit demand schedules, we make specific assumptions regarding
investors’ preferences and beliefs. Investors beliefs in any period t are assumed to be
given by multivariate a normal distribution for future prices pt+1, . . . , pt+j ∈ RK . Let
MKj , denote the set of all symmetric, positive definite (Kj) × (Kj) matrices. Recall
that a (multivariate) normal distribution with parameters (µ,Σ) ∈ RKj ×MKj is given

2 Noise traders will be thought of as traders whose portfolio decisions are not captured by a standard

microeconomic decision model. Alternative interpretations as those of De Long, Shleifer, Summers

& Waldmann (1990, p. 709) apply as well.
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by the density function

fKj(q; µ,Σ) := (2π)−
N
2 [detΣ]−

1
2 exp

{
−1

2
(q − µ)>Σ−1(q − µ)

}
, q ∈ RKj , (2)

cf. Tong (1990). As a further technical restriction, let M?
Kj ⊂MKj denote the class of

all symmetric, positive definite Kj × Kj matrices which satisfy a certain invertibility
condition which will be made explicit in Assumption 4, Appendix A. We are now ready
to specify the assumptions on investors who maximize utility of terminal wealth.

Assumption 2
Preferences and beliefs of investor (i, j) ∈ I are characterized by the following:

1. Preferences of an investors of type i are described by an exponential utility function

u(w; a(i)) := − exp
{
−a(i)w

}
, w ∈ R, (3)

where a(i) > 0 denotes risk-aversion.

2. The subjective beliefs of investor (i, j) ∈ I at time t regarding prices pt+1, . . . , pt+j

are given by a normal distribution on RKj with density function of the form (2)

described by the first two moments

µ
(ij)
t :=




µ
(i)
t,t+1
...

µ
(i)
t,t+j


 ∈ RKj , Σ(ij)

t :=




Σ(i)
t,11 . . . Σ(i)

t,1j
...

. . .
...

Σ(i)
t,j1 . . . Σ(i)

t,jj


 ∈M?

Kj . (4)

Here, µ
(ij)
t,t+s := E(ij)

t [pt+s] denotes investor (i, j)’s subjective mean value for prices

pt+s, s = 1, . . . , j conditional on information available at time t corresponding to

the density fKj(·, µ(ij)
t , Σ(ij)

t ). The matrix

Σ(ij)
t,ss′ := E(ij)

t

[(
pt+s − E(ij)

t [pt+s]
)(

pt+s′ − E(ij)
t [pt+s′ ]

)>]

denotes investor (i, j)’s subjective conditional variance-covariance matrix between

the prices pt+s, pt+s′ , s, s′ = 1, . . . , j corresponding to fKj(·, µ(ij)
t , Σ(ij)

t ).

Assumption 2 states that all investors of the same type are characterized by the same
risk aversion. The subjective beliefs of investor (i, j) ∈ I at time t are parameterized by
subjective means µ

(ij)
t ∈ RKj and subjective variance-covariance-matrices Σ(ij)

t ∈ M?
Kj

for future prices. Assumption 4, Appendix A shows that the restriction to M?
Kj is

trivially satisfied if Σ(i)
ss′ = 0 for s 6= s′ and hence if correlations between prices of different

periods are sufficiently small. For simplicity, we presume in Assumption 2 that any non-
young investor (i, j) ∈ I with a planning horizon j < J holds the same expectations
for prices pt+1, . . . , pt+j as the young investor (i, J). Formally, this means that her
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beliefs are given by the marginal distributions3 of the respective young investor (i, J).
Economically, this assumption can be justified by presuming that all investors of type i

employ the same financial mediator. As a consequence, expectations of all investors at
time t are completely described by the moments of the respective young cohort. Notice
that all subjective moments (µ(ij)

t , Σ(ij)
t ) are by assumption Ft−1 measurable.

Consider the portfolio choice problem faced by an arbitrary investor (i, j) ∈ I in an
arbitrary but fixed period, say t = 0. For simplicity of notation, we write his beliefs (4)
as

µ :=




µ1
...

µj


 ∈ RKj Σ :=




Σ11 . . . Σ1j
...

. . .
...

Σj1 . . . Σjj


 ∈M?

Kj (5)

and suppress type indices and the time index referring to the decision period t = 0 for
a moment. Given parametric prices p and initial wealth w defined by (1) assume that
the investor chooses a self-financing trading strategy

H = (x0, y0, . . . , xj−1, yj−1)

consisting of a list of portfolios (x0, y0) ∈ RK × R and planned portfolios

xs = xs(p1, . . . , ps) ∈ RK , ys = ys(p1, . . . , ps) ∈ R, s = 1, . . . , j − 1,

such that for each possible realization of prices p1, . . . , ps, the following budget conditions
hold:

y0 + p>x0 = w,

ys + p>s xs = Rys−1 + p>s xs−1, s = 1, . . . , j − 1,

Wj = Ryj−1 + p>j xj−1.

(6)

Observe that for each s = 1, · · · , j − 1, planned portfolios (xs, ys) are mappings that
depend on prices p1, . . . , ps.4

Let H (p, w) denote the set of all self-financing strategies satisfying (6) with parametric
prices p and initial wealth w at time t = 0. Setting ps

1 := (p1, . . . , ps), the choice of a
particular strategy H ∈ H (p, w) induces a random variable Wj(H, pj

1) := Ryj−1(p
j−1
1 )+

p>j xj−1(p
j−1
1 ) which describes terminal wealth attained at the end of period j. Assuming

that given his beliefs (µ,Σ) ∈ RKj ×M?
Kj , parametric prices p ∈ RK and wealth w ∈ R

the investor maximizes the expected utility of terminal wealth his optimization problem
at t = 0 reads

max
{∫

RKj

u
(
Wj(H, pj

1); a(i)
)
fKj(p

j
1, µ, Σ) dpj

1

∣∣∣∣ H ∈ H (p, w)
}

. (7)

3 Mathematically, the subjective probability distribution of a non-young investor (i, j) is the projection

of the probability distribution of the corresponding young investor (i, J). By the properties of

the multivariate normal distribution (e.g., see Tong 1990) this distribution is again normal with

corresponding projected moments.
4 This definition of a self-financing trading strategy is consistent with Pliska (1997) who defines a

trading strategy as an adapted stochastic process.
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Note that the investor is allowed to update beliefs and reoptimize planned portfolio
decisions in any subsequent period. A solution to the optimization problem (7) will
determine the investors’ individual asset demand functions at time t = 0 as a function
of prices, wealth and beliefs. Using a dynamic programming approach we show in
Appendix A that the restriction of the subjective covariance-variance matrices Σ to the
set M?

Kj ⊂MKj suffices to obtain well-defined asset demand functions. These demand
functions are given in the following Theorem.

Theorem 1
Let Assumption 2 be satisfied. Then for each planning horizon j = 1, . . . , J the investor’s

asset demand function derived from (7) given her beliefs (µ,Σ) ∈ RKj ×M?
Kj and risk

aversion a(i) takes the form:

ϕ(ij)(p, µ,Σ) := 1
Rj−1a(i) Π>j Σ−1 [µ−ΠjRp] , p ∈ RK . (8)

where Πj :=
[
IK , . . . , Rj−1IK

]> ∈ RKj×K , j = 1, . . . , J .

The proof of Theorem 1 is given in Appendix A. Observe that the demand for risky
assets (8) is independent of the investor’s initial wealth. For a one-period planning
horizon j = 1 and (µ1, Σ11) ∈ RK ×M?

K Theorem 1 gives

ϕ(i1)(p, µ1, Σ11) = 1
a(i) Σ−1

11 [µ1 −Rp] , (9)

recovering the classical demand function of an investor with linear mean-variance pref-
erences (e.g., see Böhm & Chiarella 2000). For a two-period planning horizon j = 2
(µ,Σ) ∈ R2K ×M?

2K , the demand function (8) reads

ϕ(i2)(p, µ,Σ) = 1
Ra(i) [IK , RIK ]

[
Σ11 Σ12

Σ21 Σ22

]−1 (
µ1 −Rp

µ2 −R2p

)
. (10)

On the other hand, if investors assume future prices to be uncorrelated over time, i.e.
Σss′ = Σ>s′s = 0 for all s 6= s′, then the demand function (10) takes the form

ϕ(ij)(p, µ,Σ) = 1
a(i)Rj−1

j∑

s=1

(
1

R2(s−1) Σss

)−1 [
1

Rs−1 µs −Rp
]
.

In this case the asset demand function is the sum of j asset demand functions of the form
(9) with adjusted risk aversion a(i)Rj−1 and discounted moments

(
1

Rs−1 µs,
1

R2(s−1) Σss

)
.

In the sequel we assume that in each period t ∈ N each investor (i, j) ∈ I, j > 0, solves
an optimization problem of the form (7) given her beliefs (µ(ij)

t ,Σ(ij)
t ) ∈ R(Kj) ×M?

Kj ,
her initial wealth (1) of period t and risk aversion a(i) > 0. By Theorem 1 investor
(i, j)’s demand function at time t is

ϕ(ij)(p, µ
(ij)
t , Σ(ij)

t ) =
1

Rj−1a(i)
Π>j Σ(ij)−1

t [µ(ij)
t −ΠjRp], p ∈ RK . (11)

Setting for each j > 0

B
(ij)
t =

[
B

(ij)
t,1 , . . . , B

(ij)
t,j

]
:= Π>j Σ(ij)−1

t ∈ RK×Kj (12)
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with B
(ij)
t,s ∈ RK×K and

C
(ij)
t := Π>j Σ(ij)−1

t Πj ∈ RK×K , (13)

the asset demand function (11) takes the form

ϕ(ij)(p, µ
(ij)
t ,Σ(ij)

t ) =
1

a(i)Rj−1

( j∑

s=1

B
(ij)
t,s µ

(i)
t,t+s − C

(ij)
t Rp

)
, p ∈ RK . (14)

The consequences of Theorem 1 seem quite remarkable. It establishes a structural equiv-
alence between the demand functions of investors with a one period planning horizon
and investors with a multiperiod planning horizon of arbitrary finite length. In prin-
ciple, subjective expectations of an investor with a multiperiod planning horizon can
always be transformed in such a way that his demand behavior is indistinguishable from
the behavior of an investor with a one-period planning horizon. Despite this fact, it
turns out that many interesting implications arise due to the intrinsic heterogeneity of
different planning horizons some of which are addressed in the present paper.

2.3 Price formation

In order to determine market clearing prices, let x̄ ∈ RK
+ denote the total stock of risky

assets. Market clearing in period t requires the existence of a price vector pt ∈ RK such
that aggregate demand including noise traders equals the total stock of risky assets.
Given the individual demand functions (11) for risky assets and the quantity of noise
traders ξt, the market-clearing condition of period t reads

∑

(i,j)∈I

1
Rj−1a(i)

(
Π>j Σ(ij)−1

t µ
(ij)
t − (Π>j Σ(ij)−1

t Πj) Rp
)

+ ξt
!= x̄. (15)

Solving for pt, given any list of subjective beliefs
(
µ

(ij)
t , Σ(ij)

t

)
(i,j)∈I

and ξt, the market

clearing prices are defined by a map

pt = S

((
µ

(ij)
t , Σ(ij)

t

)
(i,j)∈I

, ξt

)
:=

∑

(i,j)∈I
A

(ij)
t µ

(ij)
t −At[x̄− ξt], (16)

where5

At := 1
R

[ ∑

(i,j)∈I

1
a(i)Rj−1 Π>j Σ(ij)−1

t Πj

]−1

= 1
R

[ ∑

(i,j)∈I

1
a(i)Rj−1 C

(ij)
t

]−1

,

A
(ij)
t := 1

a(i)Rj−1 At Π>j Σ(ij)−1
t = 1

a(i)Rj−1 AtB
(ij)
t

(17)

Portfolio holdings of investors (i, j) ∈ I after trading in period t are given by

x
(ij)
t = ϕ(ij)(pt, µ

(ij)
t , Σ(ij)

t ),

y
(ij)
t =

{
e(i) − p>t x

(ij)
t , if j = J,

Ry
(i,j+1)
t−1 + p>t [x(i,j+1)

t−1 − x
(ij)
t ], if j = 1, · · · , J − 1.

(18)

5 Note that since all Πj have rank K, all Π>j Σ
(ij)−1
t Πj are positive-definite and hence invertible. Since

the sum of positive definite matrices is again positive definite, At and all A
(ij)
t are well-defined.
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The temporary equilibrium map (16) defines the economic law S for our multiperiod
version of the CAPM which determines market-clearing prices in each trading period
as a function of agents’ expectations for future prices. The map S is of the Cobweb-
type since it contains essentially price forecasts as arguments. Since these expectations
refer to future periods t + 1, . . . , t + J , the law contains an expectational lead of length
J . Notice that all coefficient matrices A

(ij)
t and At are Ft−1 measurable such that the

uncertainty of the price pt rests solely on the noise trader demand ξt. This generalizes the
case with heterogeneous investors with a one-period planning horizon in Wenzelburger
(2004). In the present setup, heterogeneity enters through possibly diverse beliefs as
well as through different planning horizons of investors belonging to different cohorts.

3 Homogeneous expectations

In the following section we will show that the heterogeneous structure of the price
law (16) is maintained even if expectations of investors are homogeneous. The latter
assumption allows us to isolate the impact of different planning horizons on portfolios
and prices. Consider therefore the case with homogeneous expectations where the beliefs
of investor (i, j) ∈ I are independent of his type i and may depend only on the length j

of his planning horizon. This implies in particular that all investors within one cohort
hold identical expectations. In the sequel we will therefore write (µ(j)

t , Σ(j)
t ) ∈ RKj ×

M?
Kj , for the beliefs of cohort j, j = 1, . . . , J in period t instead of (µ(ij)

t , Σ(ij)
t ). It is

straightforward to see that the demand functions of any two investors (i, j), (i′, j) ∈ I
with homogeneous expectations satisfy the relation

ϕ(ij)(p, µ
(j)
t , Σ(j)

t ) = 1
a(i)Rj−1 Π>j Σ(j)−1

t [µ(j)
t −ΠjRp] =

a(i′)

a(i)Rj−1
ϕ(i′j)(p, µ

(j)
t , Σ(j)

t )

for all p ∈ RK
+ . The demand functions for risky shares of investors belonging to the same

cohort are thus collinear by a factor determined by the possibly different risk aversions
a(i) and a(i′). This implies that the proportions of shares held by investors of the same
cohort are identical.

Let α :=
(

1
a(1) + · · ·+ 1

a(I)

)
> 0 denote the aggregate risk tolerance, pt be the market-

clearing price in period t, and

x
(j)
t :=

I∑

i=1

ϕ(ij)(pt, µ
(j)
t , Σ(j)

t ) = α
Rj−1 Π>j Σ(j)−1

t [µ(j)
t −ΠjRpt] (19)

denote the aggregate generational portfolio held by cohort j after trading in period t.
This proves the following result.

Theorem 2
Under homogeneous expectations, the risky portfolio x

(ij)
t held by an investor (i, j) ∈ I

after trading in period t ∈ N is given by a constant share of the aggregate generational

portfolio (19) of cohort j, such that

x
(ij)
t =

1
a(i)

α
x

(j)
t .
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This share is determined by the individual risk tolerance 1
a(i) relative to the aggregate

risk tolerance α.

Theorem 2 is a generalization of the famous capital market line result from classical
CAPM theory to the case with multiperiod planning horizons. Under homogeneous
expectations, investors will hold a multiple of a generational portfolio rather than the
market portfolio x̄. As a consequence of Theorem 1 the generational portfolios corre-
sponding to different planning horizons will, in general, not be collinear. Therefore,
even under homogeneous expectations, planning horizons of distinct lengths will lead to
structurally distinct portfolio holdings.

4 Unbiased forecasting rules

The price law (16) determines market clearing prices in each period given the beliefs
of all investors and the demand of noise traders. To obtain a complete description of
the dynamic evolution of prices and portfolios we need to specify how investors form
their expectations based on the available information. In this regard, the existence of
forecasting rules generating expectations which are rational in some sense is of partic-
ular importance which will be studied in this section. Since by virtue of Assumption 2
subjective beliefs are characterized by the corresponding first two moments, the notion
of rational expectations employed here is that the first two moments of the price process
induced by (16) are correctly predicted for all times t conditional on the available in-
formation. To this end, the following two sections will develop forecasting rules which
provide correct predictions of first and second moments of the price process.

Following Wenzelburger (2001, 2004), we develop unbiased forecasting rules that gen-
erate rational expectations for investors of type I. The notion of rational expectations
used here requires that forecast must be unbiased in the sense that in each trading
period the subjective expected values and variance-covariance matrix for future prices
coincide with the respective true conditional moments.

4.1 Unbiased first moments

Assume that investors of type I use a no-updating forecasting rule of the following form.
The idea of such a forecasting rule is that in any period t, the first J − 1 forecasts will
not be updated such that

µ
(I)
t,t+j = µ

(I)
t−1,t+j , j = 1, . . . , J − 1. (20)

Let Et−t [·] denote the expectations operator taken with respect to the σ-field Ft−1.
Since the coefficient matrices A

(ij)
t and At in the price law (16) are Ft−1 measurable,

the idea is to choose µ
(I)
t,t+J such that

Et−1[pt] =
∑

(i,j)∈I
A

(ij)
t µ

(ij)
t −At

[
x̄− Et−1[ξt]

] != µ
(I)
t−1,t. (21)
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Suppose for a moment that the forecasts µ
(I)
t,t+J can be chosen such that (21) holds.

Then Et−1[pt − µ
(I)
t−1,t] = 0 and the no-updating condition implies that the conditional

forecast errors of all forecasts µ
(I)
t−j,t, j = 1, . . . , J for pt vanish, that is,

Et−1[pt − µ
(I)
t−j,t] = 0, j = 1, . . . , J.

Moreover, by the law of iterated expectations

Et−j [pt − µ
(I)
t−j,t] = Et−j

[
Et−1[pt − µ

(I)
t−j,t]

]
= 0, j = 1, . . . , J.

The problem of obtaining unbiased forecasts is therefore reduced to solving (21). This
can be achieved as follows. Taking conditional expectations of the market-clearing con-
dition (15), we have

∑

(i,j)∈I
ϕ(ij)

(
Et−1[pt], µ

(ij)
t , Σ(ij)

t

)
+ Et−1[ξt]− x̄ = 0.

Inserting into (21), it follows that condition (21) is equivalent to
∑

(i,j)∈I
ϕ(ij)

(
µ

(I)
t−1,t, µ

(ij)
t , Σ(ij)

t

)
+ Et−1[ξt]− x̄ = 0. (22)

Let

ζt :=
I∑

i=1

J−1∑

j=1

ϕ(ij)
(
µ

(I)
t−1,t, µ

(ij)
t , Σ(ij)

t

)
+ Et−1[ξt] (23)

denote the expected aggregate portfolio of all investors (i, j) ∈ I except investor (I, J).
Replacing (23) in condition (22), we see that the condition

ϕ(IJ)(µ(I)
t−1,t, µ

(I)
t , Σ(I)

t ) + ζt − x̄ = 0 (24)

is equivalent to the original condition (21). Inserting (14) and assuming that the matrix
B

(IJ)
t,J defined in (12) is non-singular, we may solve (24) for µ

(I)
t,t+J to get

µ
(I)
t,t+J = B

(IJ)−1
t,J

[
a(I)RJ−1(x̄− ζt)−

J−1∑

s=1

B
(IJ)
t,s µ

(I)
t,t+s + C

(IJ)
t Rµ

(I)
t−1,t

]
.

An unbiased forecasting rule for investors of type I is thus given by




µ
(I)
t,t+j = µ

(I)
t−1,t+j , j = 1, . . . , J − 1.

µ
(I)
t,t+J = ψ

(I)
?

(
µ

(I)
t−1, Σ

(IJ)
t , ζt

)

:= B
(IJ)−1
t,J

[
a(I)RJ−1(x̄− ζt)−

J−1∑

s=1

B
(IJ)
t,s µ

(I)
t−1,t+s + C

(IJ)
t Rµ

(I)
t−1,t

]
.

(25)
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Inserting the unbiased forecasting rule into the price law (16), we obtain the system of
equations





pt = µ
(I)
t−1,t + At

[
ξt − Et−1[ξt]

]

ζt =
I∑

i=1

J−1∑

j=1

ϕ(ij)
(
µ

(I)
t−1,t, µ

(ij)
t , Σ(ij)

t

)
+ Et−1[ξt]

µ
(I)
t,t+j = µ

(I)
t−1,t+j , j = 1, . . . , J − 1

µ
(I)
t,t+J = B

(IJ)−1
t,J

[
a(I)RJ−1(x̄− ζt)−

J−1∑

s=1

B
(IJ)
t,s µ

(I)
t−1,t+s + C

(IJ)
t Rµ

(I)
t−1,t

]

(26)

that determine the asset prices of period t under rational expectations for investors
of type I, given the beliefs of all investors (i, j) 6= (I, J). The unbiased forecasting
rule (25) is a linear function of the previous forecast µ

(I)
t−1,t as well as of the conditional

expectation Et−1 [ξt] and is independent of previous realizations of prices. Condition (21)
is therefore satisfied for all times t if young agents determine their forecast according to
(25). Observe that applying the unbiased forecasting rule (25) requires knowledge not
only of the previous forecast µ

(I)
t−1,t but also of the true conditional expectation Et−1 [ξt]

of the random variable ξt. In addition to that, knowledge of the expected excess demand
of all other investors as well as of the market fundamentals is required to apply (25).

4.2 Perfect second moments

Building upon the result of the previous section, the following section seeks to develop
a forecasting rule which provides correct second moment beliefs of the price process for
all times t. Extending the ideas from Wenzelburger (2004) to the present multiperiod
context, we will derive such a forecasting rule for young investors of type I. The projec-
tion property of beliefs then implies that all investors of type I will hold correct second
moment beliefs.

In the sequel we denote by Vt [·] and Covt [·] the (objective) variance and covariance
operator conditional on the σ-algebra Ft. The correctness of second moment beliefs
requires that for all times t the subjective (block matrix) entries of the matrix Σ(IJ)

t

defined in (4) coincide with the corresponding objective moments, that is

Σ(IJ)
t,j k

!= Covt [pt+j , pt+k] j, k = 1, . . . , J, (27)

for all times t. While perfect forecasting rules for first moments exist generically, more
restrictions are required to ensure the existence of a perfect predictor for second mo-
ments. To this end, we make the following simplifying assumptions:

Assumption 3
The following hypotheses are satisfied for all t:

(i) All investors hold constant second moment beliefs such that Σ(ij)
t ≡ Σ(ij) for all

(i, j) ∈ I.

12



(ii) Young investors of type I employ the unbiased no-updating forecasting rule ψ
(I)
?

defined in (25) to predict the first moments of the price process.

(iii) The stochastic process {ξt}t∈N is of the AR(1)-form

ξt = h(0) + H(1)ξt−1 + H(2)εt

where h(0) ∈ RK and H(n) ∈ RK×K , n = 1, 2, are both non-singular and the

innovation process {εt}t∈N is a sequence of iid random variables.

Let ηt := ξt − Et−1 [ξt] = H(2)εt. Then the innovation process {εt}t∈N in Assumption 3
(iii) implies that for all times t and all j, k > 0

Covt [ηt+j , ηt+k] =

{
H(2)H(2)> for j = k,

0 for j 6= k.
(28)

Since H(2) is non-singular, Vη := H(2)H(2)> is positive definite and symmetric.

As a consequence of Assumption 3 (i), the matrices defined in (17) will be constant over
time. In particular

At ≡ A :=
1
R




I∑

i=1

J∑

j=1

R1−j

a(i)
Π>j Σ(ij)−1Πj



−1

(29)

By Assumption 3 (ii), prices at time t are then determined by

pt = µ
(I)
t−1,t + Aηt. (30)

Recall from (20) that each forecast µ
(I)
t−1,t = µ

(I)
t−J,t is Ft−J -measurable. This together

with equations (30) shows that the objective second moments of the price process take
the form

Covt [pt+j , pt+k] = ACovt [ηt+j , ηt+k] A, j, k = 1, . . . , J. (31)

It follows from (28) that for all j, k = 1, . . . , J ,

Covt [pt+j , pt+k] =

{
AVηA for j = k,

0 for j 6= k.
(32)

It is readily seen from equation (32) that correlations between prices of distinct periods
are zero while the variance-covariance matrix of prices in any period remains constant
over time. This implies that the correct variance-covariance matrix for investors of type
I must be of the form

Σ(IJ) =




Σ̄(I) · · · 0
...

. . .
...

0 · · · Σ̄(I)


 , (33)
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where Σ̄(I) is some K ×K matrix. It follows from (27) and (32) that Σ̄(I) must satisfy
the equation

A−1Σ̄(I)A−1 != Vη (34)

The existence of a variance covariance matrix which provides correct second moment
beliefs for investors of type I is thus reduced to finding a symmetric and positive definite
solution to (34). Setting

C := R
I−1∑

i=1

J∑

j=1

1
a(i)Rj−1

Π>j Σ(ij)−1Πj (35)

ρ :=
J∑

j=1

j∑

s=1

R2s−j (36)

the matrix A−1 from (29) may be decomposed into

A−1 = C +
ρ

a(I)
Σ̄(I)−1. (37)

Inserting (37), condition (34) takes the form

C Σ̄(I) C + 2 ρ
a(I) C +

(
ρ

a(I)

)2
Σ̄(I)−1 = Vη. (38)

This shows that the unknown K × K matrix Σ̄(I) is determined by the zeros of the
polynomial matrix equation (38). In other words, the solutions to (38) provide the
block matrix entries of the correct variance-covariance matrix (33).

Proposition 1
Let Assumption 3 be satisfied. Assume, in addition, that the following holds true.

(i) The matrix H(2) from Assumption 3 (iii) is of the form H(2) = σηIK , such that

Vη = H(2)H(2)> = σ2
ηIK .

(ii) Let λ1, . . . , λK denote the eigenvalues of the positive definite matrix C−1 defined

in (35) such that

C−1 = O>diag(λ1, . . . , λK)O,

and assume that these are sufficiently large such that λk > 4ρ
a(I)σ2

η
, where v̄(I) is

defined in (36).

Then any K ×K matrix

Σ̄(I) := O>diag(λΣ
1 , . . . , λΣ

K)O,

with eigenvalues of the form

λΣ
k = ρλk

a(I)




(
a(I)λkσ2

η

2ρ − 1
)
±

√(
a(I)λkσ2

η

2ρ − 1
)2

− 1


 , k = 1, . . . , K (39)

is a solution to (38). As a consequence, any variance-covariance matrix Σ(IJ) ∈ MKJ

as given in (33) with block matrix entries Σ̄(I) provides correct second moment beliefs

for young investors of type I for all times t.
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Proof of Proposition 1. Set

B := a(I)

ρ VηC
−1 − 2IK and D := a(I)

ρ C Σ̄(I).

The condition (38) becomes a matrix equation of the form

D + D−1 != B. (40)

Since B is symmetric and positive definite, it is diagonalizable such that

B = O>diag(λB
1 , . . . , λB

K)O,

with some orthogonal matrix O and eigenvalues

λB
k =

a(I)λk

ρ
σ2

η − 2 > 0, k = 1, . . . , K.

To solve (40), choose a symmetric matrix of the form

D = O>diag(κ1, . . . , κK)O. (41)

Recall that O>O = IK . Inserting (41), the matrix equation (40) is transformed into K

scalar equations for eigenvalues of D which take the form

κk +
1
κk

= λB
k , k = 1, . . . , K. (42)

Replacing the λB
k , the solutions to (42) are

κk =
(

a(I)λkσ2
η

2ρ − 1
)
±

√(
a(I)λkσ2

η

2ρ − 1
)2

− 1 , k = 1, . . . ,K.

Hence the solutions Σ̄(I) of (38) must be of the form

Σ̄(I) = ρ
a(I) D C−1 = O>diag(λΣ

1 , . . . , λΣ
K)O

with eigenvalues given in (39). ¥

A special case arises if all young investors have identical (unbiased) second moment
beliefs of the form (33). In this case we have from (29)

A = 1
αρ Σ̄(I), where α =

I∑

i=1

1
a(i) . (43)

Substituting (43) into (34) yields the following.

Proposition 2
Let Assumption 3 be satisfied. In addition, assume that all young investors have homo-

geneous second moment beliefs of the form (33). Then the matrix Σ(IJ) defined in (33)

with block matrix entries

Σ̄(I) = (αρ)2V −1
η (44)

and ρ given by (36) provides correct second moment beliefs of the price process for all

times t. In the case of a 2-period planning horizon (J = 2) (44) reads

Σ̄(I) = α2
(
1 + R + R2

)2
V −1

η .
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5 Evolution of Asset Prices

5.1 Chartists and Fundamentalists

In this section we shall set up the dynamics of prices and expectations within a particular
scenario in which only two types of investors trade on the market, i.e., I = 2. Investors
of type i = 1 will henceforth be called chartists while investors of type i = 2 will be
referred to as fundamentalists. The main difference between these two types of investors
lies in their formation of expectations. Chartists base their forecasts for future prices
on a weighted average of the L previous observations of prices such that their forecast
at time t for the price vector pt+j takes the form

µ
(1)
t,t+j =

L∑

l=1

D(lj)pt−l, j = 1, . . . , J, (45)

where D(lj) ∈ RK×K . Fundamentalists are assumed to use the unbiased forecasting rule
(25) developed in section 4.1.

We maintain Assumption 3 and, in addition, assume for simplicity that investors of
either type with planning horizon j > 0 use a constant variance-covariance matrix of
the diagonal form

Σ(ij)
t ≡ Σ(ij) :=




Σ̄(i) · · · 0
...

. . .
...

0 · · · Σ̄(i)


 ∈MKj , j = 1, . . . , J, i = 1, 2 (46)

for all times t. The matrix Σ̄(2) is chosen according to Proposition 1 such that funda-
mentalists hold correct second moment beliefs of the price process.
Given the particular structure (46) of second moment beliefs the structure of the unbi-
ased forecasting rule (25) greatly simplifies. Using (46) the parameter matrices of the
corresponding asset demand functions defined in (12) and (13) take for each i = 1, 2 the
simple form

B
(ij)
t,s := Rs−1Σ̄(i)−1, s = 1, . . . , j, j = 1, . . . , J (47)

and

C
(ij)
t :=

(
j∑

s=1

R2(s−1)

)
Σ̄(i)−1 (48)

for all times t. Consequently,

At ≡ A = 1
ρ

[
1

a(1) Σ̄
(1)−1 + 1

a(2) Σ̄
(2)−1

]−1

for all times t. In view of the unbiased forecasting rule (25), the expected aggregate
demand is

ζt = 1
a(1) Σ̄

(1)−1




J∑

j=1

j∑

s=1

Rs−jµ
(1)
t,t+s − ρµ

(2)
t−1,t


 + Et−1[ξt] (49)
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Using (47) and (48) together with (49) the unbiased period-J ahead forecast of the
fundamentalists at time t becomes

µ
(2)
t,t+J = a(2)Σ̄(2)

(
x̄− Et−1[ξt]

)
+

[(
J∑

s=1

R2s−J

)
IK + ρa(2)

a(1) Σ̄
(2)Σ̄(1)−1

]
µ

(2)
t−1,t

−
J−1∑

s=1

Rs−Jµ
(2)
t−1,t+s − a(2)

a(1) Σ̄
(2)Σ̄(1)−1

J∑

j=1

j∑

s=1

Rs−jµ
(1)
t,t+s. (50)

Inserting the chartists’ forecasting rule (45), the unbiased forecasting rule (50) becomes
a linear function of past forecasts and prices given by





µ
(2)
t,t+j = µ

(2)
t−1,t+j , j = 1, . . . , J − 1,

µ
(2)
t,t+J =

J−1∑

j=0

Ej µ
(2)
t−1,t+j +

L∑

l=1

Dl pt−l + a(2)Σ̄(2)
(
x̄− Et−1[ξt]

)
,

(51)

where

E0 :=

(
J∑

s=1

R2s−J

)
IK + ρa(2)

a(1) Σ̄
(2)Σ̄(1)−1,

Ej := Rj−JIK , j = 1, . . . , J − 1, (52)

Dl := −a(2)

a(1) Σ̄
(2)Σ̄(1)−1

J∑

j=1

j∑

s=1

Rs−jD(ls), l = 1, . . . , L.

Thus we see again that the dynamics of the model are driven by the interaction of
fundamentalists’ forecasts and actual realizations of prices. Given the structure (46) of
second moment beliefs, prices at time t are determined by

pt = µ
(2)
t−1,t + 1

ρ

[
1

a(1) Σ̄
(1)−1 + 1

a(2) Σ̄
(2)−1

]−1(
ξt − Et−1[ξt]

)
. (53)

Equations (51) and (53) constitute the key elements of the dynamics of the model.
Both possess a linear structure with additive noise-terms. As a consequence of this, the
evolution of the system is governed by an (affine-)linear stochastic difference equation
with additive perturbations.

Setting for each t the state vector zt :=
(
µ

(2)>
t,t+J , . . . , µ

(2)>
t,t+1, p

>
t , . . . , p>t−L+1

)>
∈ RK(J+L)

and the vector of perturbations εt :=
(
ε
(1)>
t , 0>, . . . , 0>, ε

(2)>
t , 0>, . . . , 0>

)>
∈ RK(J+L)

with ε
(1)
t := a(2)Σ̄(2)

(
x̄ − Et−1[ξt]

)
and ε

(2)
t := A

(
ξt − Et−1[ξt]

)
, the dynamics of the

system is driven by

zt = Mzt−1 + εt, (54)
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where the K(J + L)×K(J + L) matrix M takes the form

M :=




EJ−1 · · · E0 D1 · · · DL

IK 0 · · · · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 · · · · · · 0 IK 0




(55)

Equation (54) constitutes a random dynamical system in the sense of Arnold (1998).
In the stable case, the long-run behavior of prices and expectations is governed by a
stationary stochastic process, random fixed point. In the present case, existence and
stability of such a fixed point are determined by the matrix M and hence depends
crucially on the risk-free rate of return R as well as on agents’ attitude towards risk and
chartists’ forecasting behavior described by (45).

6 Conclusions

We developed a fully explicit and dynamic model of a financial market in which investors
with different planning horizons of arbitrary finite length interact. An innovative fea-
ture of the models is that investors are allowed to reoptimize their portfolios through
the course of time until they leave the market. In addition to possibly diverse beliefs,
this model allows to investigate the impact of different planning horizons on asset prices,
returns, and portfolios. Introducing the notion of a generational portfolio, we extended
the notion of a market portfolio and showed that traders with different planning hori-
zons will generally hold different portfolios even if expectations are homogeneous. To
additional issue are on our research agenda. First, the dynamics of asset prices and
portfolios thereby allowing investors to switch between different strategies as in Brock
& Hommes (1997, 1998) or Chiarella & He (2002). Second, it would be interesting to
know what mean-variance efficient portfolios look alike in the presence of heterogeneous
multiperiod planning horizons and whether the results on their performance Böhm &
Wenzelburger (2002) can be generalized.
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A Appendix

A.1 Proof of Theorem 1

In this section we solve the decision problem (7) of an arbitrary investor (i, j) ∈ I in
period t = 0. All technical prerequisites are collected in the technical Appendix A.2.
Since the case with a one-period planning horizon (j = 1) is found in the literature (e.g.,
see Ingersoll 1987) resulting in the demand function (9), we let j > 1. For notational
convenience, the index (i, j) as well as the time index t = 0 will be omitted in the sequel.
Expectations at time t = 0 for prices p1, . . . , pj are given by a joint multivariate normal
distribution characterized by the first two moments given in (5). Recall to this end
that a Gaussian function in z ∈ RN with parameters (c, µ,Σ) ∈ R++ × RN ×MN is a
real-valued function

gN (z; c, µ, Σ) := c exp
{
−1

2
(z − µ)>Σ−1(z − µ)

}
, z ∈ RN . (56)

Setting, cN (Σ) := (2π)−
N
2 [detΣ]−

1
2 , we have the relation

fN (z;µ,Σ) = gN (z; cN (Σ), µ,Σ). (57)

When using Gaussian functions, we shall frequently suppress the dimension index N

and omit the parameter c as an argument if c = 1, writing g(z;µ,Σ) ≡ g(z; 1, µ, Σ) to
simplify notation.

In order to solve the decision problem, additional restrictions on variance-covariance
matrices (5) are required. Setting Σ(j)

1 := Σ, for each s = 2, . . . , j we partition the

matrix Σ(s)
1 into Σ(s)

1 =

[
Σ(s−1)

1 ∆>
s

∆s Σss

]
with ∆s := [Σs,1 . . .Σs,s−1] ∈ RK×K(s−1) and

define the following parameters

Σs := Σss −∆s Σ(s−1)−1
1 ∆>

s ∈MK (58)

Λs =
[
Λ(s−1)

s . . . Λ(1)
s

]
:= ∆s Σ(s−1)−1

1 ∈ RK×K(s−1),

where Λ(h)
s ∈ RK×K , h = 1, . . . , s − 1. Note that each Σs in (58) is well defined,

symmetric, and positive definite, cf. Ouellette (1981, Corollary 3.1, p. 208). With the
above definitions the following Lemma describes a factorization of the joint probability
distribution into marginal and conditional distributions.

Lemma 1
Let the joint distribution of the random variables p1, · · · , pj be a normal distribution

with moments (µ,Σ) ∈ RKj ×MKj given in (5). Then the following holds:

(1) For each s = 2, . . . , j the conditional distribution of the random variable ps given

previous observations p1, . . . , ps−1 is given by a non-singular normal distribution

on RK with moments (µs|s−1, Σs), where

µs|s−1 := µs + Λ(1)
s (ps−1 − µs−1) + . . . + Λ(s−1)

s (p1 − µ1). (59)

and Λs, Σs are defined in (58).
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(2) The marginal distribution of the random variable p1 is given by a non-singular

normal distribution on RK with moments (µ1,Σ11) ∈ RK ×MK given in (5).

Proof. The assertion follows from a repeated application of Theorems 2.4.3 and 2.5.1
given in Anderson (1984), p. 37, see also Tong (1990), Theorem 3.3.4, p. 35. ¥

It will be convenient to introduce some additional notation. For each s = 2, . . . , j set

µs|s−k := µs −
k−1∑

n=1

Λ(n)
s µs−n +

s−1∑

n=k

Λ(n)
s (ps−n − µs−n), k = 1, . . . , s. (60)

Observe that µs|s−k is obtained by replacing all prices ps−1, . . . , ps−k+1 in the conditional
expectation µs|s−1 with zero vectors. From (58) define for each n = 1, . . . , j the matrices

Γ(m)
n :=

{
IK m = 0
RmIK −Rm−1Λ(1)

n − . . .−RΛ(m−1)
n − Λ(m)

n m = 1, · · · , n− 1
(61)

To obtain a well-defined asset demand function we impose some restrictions on the
variance-covariance matrix Σ which are given by the following assumption.

Assumption 4
All variance-covariance matrices (5) satisfy the following condition. Given the parame-

ters (58) for each n = 2, · · · , j the matrices Γ(1)
n := RIK − Λ(1)

n ∈ RK×K defined in (61)

are non-singular and hence invertible. For each j = 1, . . . , J , the subset of all variance

covariance matrices satisfying (61) is denoted by M?
Kj ⊂MKj .

Observe that each set M?
Kj contains all covariance matrices (5) with Σss′ = 0 for s 6= s′.

Hence the set is non-empty for each j. In particular, M?
K = MK for j = 1.

Consider now the investor’s decision problem (7). To derive a solution, we will employ
a dynamic programming approach. This amounts to solving a sequence of j one-stage
problems. For each stage s = 0, 1, . . . , j − 1 a one-stage problem is solved given wealth6

ws = Rys−1 + x>s−1ps

and realizations of prices p1, . . . , ps up to time s. For the following derivations write
ps
1 := (p1, . . . , ps). For each s = 1, . . . , j − 1 the conditional distribution of prices ps+1

given previous observations p1, . . . , ps is given by a normal distribution with moments
(µs+1|s,Σs+1) given in Lemma 1 (1). Setting Vj(wj , p

j
1) ≡ u(wj ; a), the value functions

Vs, s = 1, . . . , j−1 are recursively defined by Bellmann’s equation (e.g., see Pliska 1997)

Vs(ws, p
s
1) = max

y+x>ps=ws

{∫

RK

Vs+1(Ry + x>p, ps
1, p) f(p;µs+1|s, Σs+1)dp

}
, (62)

6 Since the investor is assumed to choose a self-financing strategy, wealth accumulated at stage s is

equal to the return on the investment made in the previous period.
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whereas the principle of optimality reads

V0(w, p) := max
H∈H (p,w)

{∫

RKj

u(Wj(H, pj
1); a) fKj(p

j
1; µ,Σ) dpj

1

}

= max
y+x>p=w

{∫

RK

V1(Ry + x>p, p) f(p;µ1,Σ11)dp

}
(63)

We will show below in Proposition 3, Appendix A.2, that the value functions (62) are
well defined by computing each Vs explicitly. With (63) the portfolio choice problem is
reduced to a standard one-stage problem. By Proposition 3, the value function V1 takes
the form

V1(w1, p1) = u
(
w1; aRj−1

)
g (p1; c1, ϑ1, Ω1) , (64)

where

Ω1 :=

(
j∑

n=2

Γ(n−1)>
n Σ−1

n Γ(n−1)
n

)−1

ϑ1 := Ω1

j∑

n=2

Γ(n−1)>
n Σ−1

n µn|0

(65)

and c1 > 0 is a strictly positive constant defined in Proposition 3. By Lemma 2,
Appendix A.2 and (57),

g(p, c1, ϑ1,Ω1) fK(p, µ1, Σ11) = g(p, ĉ1, θ1,Θ1) (66)

with

Θ1 :=
[
Σ−1

11 + Ω−1
1

]−1 ∈MK

θ1 := Θ1

[
Σ−1

11 µ1 + Ω−1
1 ϑ1

] ∈ RK

and a suitable constant ĉ1 > 0. Inserting (64) and (66) into (63), we apply Lemma 3
and Lemma 4 (1) of Appendix A.2 to obtain the solution to (63) as





x?
0 =

1
aRj−1

Θ−1
1 (θ1 −Rp)

y?
0 = w − p>x?

0.
(67)

We are left to bring (67) into the form stated in the theorem. Using (61) and (65) the
matrix Θ−1

1 appearing in (67) can be expanded as

Θ−1
1 = Σ−1

11 +
j∑

n=2

Γ(n−1)>
n Σ−1

n Γ(n−1)
n . (68)

Using Πn =
[
IK , RIK , . . . , Rn−1IK

]> ∈ RKn×K as previously defined, we can write

Γ(n−1)
n = −

[
Λ(n−1)

n , . . . , Λ(1)
n ,−IK

]
Πn = − [Λn,−IK ] Πn for each n = 2, . . . , j to obtain

Γ(n−1)>
n Σ−1

n Γ(n−1)
n = Π>n

[
Λ>n
−IK

]
Σ−1

n [Λn,−IK ] Πn, n = 2, . . . , j.
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By Ouellette (1981, Theorem 2.7, p.201) the regression parameters Σn and Λn given in
(58) take the form

[
Λ>n
−IK

]
Σ−1

n [Λn,−IK ] = Σ(n)−1
1 −

[
Σ(n−1)−1

1 0
0 0

]
, n = 2, . . . , j. (69)

Hence for each n = 2, . . . , j,

Γ(n−1)>
n Σ−1

n Γ(n−1)
n = Π>n Σ(n)−1

1 Πn −Π>n−1Σ
(n−1)−1
1 Πn−1. (70)

Substituting (70) into (68) and noting that trivially Π>1 Σ(1)
1 Π1 = Σ11 and Σ(j)

1 = Σ we
see that (68) is a telescope sum and finally obtain

Θ−1
1 = Π>j Σ−1Πj . (71)

Using (65) the vector θ1 appearing in (67) can be expanded as

θ1 = Θ1

[
Σ−1

11 µ1 +
j∑

n=2

Γ(n−1)>
n Σ−1

n µn|0
]
. (72)

For each n = 1, . . . , j, let µ
(n)
1 := (µ>1 , . . . , µ>n )> ∈ RKn permitting us to write µn|0 =

µn −Λ(1)
n µn−1 − . . .−Λ(n−1)

n µ1 = − [Λn,−IK ] µ(n)
1 . Writing Γ(n−1)

n = − [Λn,−IK ] Πn as
above and using (69) yields for each n = 2, . . . , j,

Γ(n−1)>
n Σ−1

n µn|0 = Π>n

[
Λ>n
−IK

]
Σ−1

n [Λn,−IK ]µ(n)
1

= Π>n

[
Σ(n)−1

1 −
[

Σ(n−1)−1
1 0

0 0

]]
µ

(n)
1

= Π>n Σ(n)−1
1 µ

(n)
1 −Π>n−1Σ

(n−1)−1
1 µ

(n−1)
1 . (73)

Note that trivially Π>1 Σ(1)−1
1 µ

(1)
1 = Σ−1

11 µ1. Substituting (73), we see that (72) is a
telescope sum such that writing Σ(j)

1 = Σ and µ
(j)
1 = µ, we get

θ1 = Θ1Π>j Σ−1µ. (74)

Inserting (71) and (74) into (67) gives

x?
0 =

1
aRj−1

Π>j Σ−1 [µ−ΠjRp] .

This proves Theorem 1. ¥

A.2 Technical appendix

In this section we establish the existence of the value functions in Proposition 3 below
and collect the required technical results for Gaussian functions.
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Lemma 2
Given the definition of a Gaussian function (56), the following properties hold:

(1) The product of m Gaussian functions with parameters (c(h), ϑ(h), Ω(h)) ∈ R++ ×
RK ×MK , h = 1, . . . , m is again a Gaussian function, that is,

m∏

h=1

g(x; c(h), ϑ(h), Ω(h)) = g(x; c, ϑ,Ω), (75)

where the parameters (c, ϑ, Ω) ∈ R++ × RK ×MK in (75) are given by

Ω =
[
Ω(1)−1 + . . . + Ω(m)−1

]−1
, ϑ = Ω

[
Ω(1)−1ϑ(1) + . . . + Ω(m)−1ϑ(m)

]
,

and c =
∏m

h=1 g(0; c(h), ϑ(h),Ω(h))
g(0; ϑ,Ω)

.

(2) The integral of a Gaussian function g(·; c, ϑ, Ω) over RK satisfies
∫

RK

g(x; c, ϑ,Ω) dx =
c

c(Ω)
> 0.

(3) For arbitrary κ ∈ RK and invertible matrices A ∈ RK×K , the following holds true:

(E1) g(x; c, ϑ + κ,Ω) = g(x− κ; c, ϑ,Ω),

(E2) g(x; c, ϑ,Ω) = g(−x; c,−ϑ,Ω),

(E3) g(Ax; c, ϑ,Ω) = g(x; c, A−1ϑ,A−1ΩA−>).

Proof. (1) follows by induction and straightforward calculations, (2) follows from the
relation (57) and the properties of multivariate density functions, (3) can be verified
from the definition given in (56) and direct calculations. ¥

Lemma 3
Let (θ, Θ) ∈ RK × MK , c > 0 and α > 0 be given and the functions u(·;α) and

g(·; c, θ,Θ) be as defined in (3) and (56). Then
∫

RK

u(Ry + x>p; α)g(p; c, θ, Θ) dp =
c

c(Θ)
u

(
Ry + x>θ − α

2
x>Θ x; α

)
.

Proof of Lemma 3. The integral kernel computes

u(Ry + x>p;α) g(p; c, θ, Θ) = −c exp
{
−α(Ry + x>p)− 1

2
(
p− θ

)>Θ−1 (p− θ)
}

and using symmetry of the matrix Θ−1 = Θ−>, the exponent can be rewritten as

−α
(
Ry + x>p

)
− 1

2
(
p− θ

)>Θ−1 (p− θ)

= −αRy − 1
2

[(
p− (θ − αΘx)

)>Θ−1
(
p− (θ − αΘx)

)
+ 2αx>θ − α2x>Θx

]

= −α(Ry + x>θ − α

2
x>Θx)− 1

2

[(
p− (θ − αΘx)

)>Θ−1
(
p− (θ − αΘx)

)]
.
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Rearranging, the integrand becomes

u(Ry + x>p; α)g(p; c, θ,Θ) = u
(
Ry + x>θ − α

2
x>Θx; α

)
g(p; c, θ − αΘx,Θ).

Since the first factor is independent of the integration variable p, the assertion follows
from Lemma 2 (2). ¥

Lemma 4
Let the parameters (θ, Θ) ∈ RK ×MK , c > 0, α > 0, prices p ∈ RK , and wealth w ∈ R
be given. Then the following holds true:

(1) The optimization problem

max
x,y

{
c u

(
Ry + θ>x− α

2
x>Θ x; α

) ∣∣∣ y + p>x = w

}

has a unique solution (x?, y?) ∈ RK × R of the form

x? =
1
α

Θ−1(θ −Rp), y? = w − p>x?. (76)

(2) The maximum value is given by

u? := c u
(
Ry? + x?>θ − α

2
x?>Θ x?; α

)
= u(w;αR) g(Rp; c, θ, Θ). (77)

Proof of Lemma 4. (1) Due to the strict monotonicity of the function cu(·; α) for
each fixed c > 0 and α > 0 maximizing the function

c u
(
Ry + x>θ − α

2
x>Θ x;α

)
= −c exp

{
−α

(
Ry + x>θ − α

2
x>Θ x

)}
.

is equivalent to maximizing the function (x, y) 7−→ Ry + x>θ − α
2 x>Θ x. From the

Lagrangian function

L(x, y; λ) := Ry + x>θ − α

2
x>Θ x + λ(w − x>p− y)

one obtains the first order conditions

DxL(x?, y?; λ) = θ − αΘx? − λp
!= 0 and DyL(x?, y?; λ) = R− λ

!= 0.

Combining this with the constraint y + x>p = w yields the solution (76).

(2) Substituting the solution (76) into the objective function in (77) and exploiting the
symmetry of the matrix Θ the maximum u? reads:

u? = c u
(
Rw + x?>(θ −Rp)− α

2
x?>Θ x?; α

)

= c u

(
Rw +

1
2α

(θ −Rp)>Θ−1(θ −Rp);α
)

= u(w;αR) g(Rp; c, θ, Θ)

which proves the second assertion. ¥

Equipped with this these prerequisites the following Proposition 3 establishes the desired
representation of the value functions.
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Proposition 3
Let Assumption 4 be satisfied. Then for each s = 1, · · · , j − 1 the value functions Vs

defined in (62) are well defined and take the form

Vs(ws, p
s
1) = u

(
ws; aRj−s

)
g (ps; cs, ϑs,Ωs) , (78)

with parameters7

Ωs :=

(
j∑

n=s+1

Γ(n−s)>
n Σ−1

n Γ(n−s)
n

)−1

ϑs := Ωs

j∑

n=s+1

Γ(n−s)>
n Σ−1

n µn|s−1

cs :=

∏j
n=s+1 g(0; γn, µn|s−1, Σn)

g(0; ϑs, Ωs)

(79)

where γj := 1 and

γn :=
(

detΣ−1
n

det(Σ−1
n + Ω−1

n )

) 1
2

, n = 1, . . . , j − 1.

Proof of Proposition 3. The proof consists of two steps. In the first one, we verify
the claim directly for s = j − 1. The second step uses an induction argument

Step 1. Let s = j − 1 and let wealth wj−1 and realizations of prices p1, . . . , pj−1 be
given. By (62) the value function Vj−1 is

Vj−1(wj−1, p
j−1
1 ) = max

x,y

{∫

RK

u(Ry + p>x; a) f(p; µj|j−1,Σj)
∣∣∣y + x>pj−1 = wj−1

}
.

Using (57) and applying Lemma 3 and Lemma 4, Vj−1 becomes

Vj−1(wj−1, p
j−1
1 ) = u

(
wj−1; aR

)
g
(
Rpj−1; µj|j−1, Σj

)

Note that Rpj−1 − µj|j−1 = Γ(1)
j pj−1 − µj|j−2 and therefore, exploiting properties (E1)

and (E3) in Lemma 2,

g(Rpj−1; µj|j−1, Σj) = g(Γ(1)
j pj−1; µj|j−2, Σj) = g(pj−1, cj−1, ϑj−1, Ωj−1)

where cj−1 = 1, Ωj−1 = Γ(1)>
j Σ−1

j Γ(1)
j and ϑj−1 = Γ(1)−1

j µj|j−2. This proves the assertion
for s = j − 1. In particular, we have verified Proposition 3 for the case j = 2.

Step 2. Let s ∈ {1, . . . , j − 2} and assume that the claim holds for s + 1 ≤ j − 1.
We show by induction that the claim is true also for s. Let ws and p1, . . . , ps be given.
Under the induction hypothesis the value function Vs defined by (62) takes the form

Vs(ws, p
s
1) (80)

= max
y+p>s x=ws

{∫

RK

u(Ry+p>x; a
Rs+1−j ) g(p; cs+1, ϑs+1, Ωs+1)f(p;µs+1|s, Σs+1) dp

}

7 Observe that Ωs is symmetric and positive definite, since the first term appearing in the sum is

symmetric and positive definite due to (58) and Assumption 4 while the remaining terms are all

symmetric and positive semi-definite. Moreover, cj−1 = 1.
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Using (57) we obtain from Lemma 2(1)

g(p; cs+1, ϑs+1, Ωs+1)f(p; µs+1|s,Σs+1) = g(p; ĉs+1, θs+1, Θs+1) (81)

where

Θs+1 :=
[
Σ−1

s+1 + Ω−1
s+1

]−1

θs+1 := Θs+1

[
Σ−1

s+1µs+1|s + Ω−1
s+1ϑs+1

]
(82)

ĉs+1 :=
g(0; cs+1, ϑs+1, Ωs+1)g(0; c(Σs+1), µs+1|s,Σs+1)

g(0; θs+1, Θs+1)
.

Inserting (81) into (80) and applying Lemma 3 and 4 yields

Vs(ws, p
s
1) = u(ws; aRj−s) g(Rps;

ĉs+1

c(Θs+1)
, θs+1,Θs+1)

The assertion will follow, if we can show that

g(Rps;
ĉs+1

c(Θs+1)
, θs+1,Θs+1) = g(ps; cs, ϑs, Ωs). (83)

Noting from the definition (79) that g(0; cs+1, ϑs+1, Ωs+1) =
∏j

n=s+2 g(0; γn, µn|s, Σn)

and c(Σs+1)
c(Θs+1)

=
( detΣ−1

s+1

det(Σ−1
s+1+Ω−1

s+1)

) 1
2 = γs+1 we expand the l.h.s. of (83) using (81) to get

g(Rps;
ĉs+1

c(Θs+1)
, θs+1, Θs+1)

= g(Rps; cs+1, ϑs+1,Ωs+1) g(Rps; γs+1, µs+1|s, Σs+1)

= g(0; cs+1, ϑs+1, Ωs+1) · exp
{
−1

2Rp>s Ω−1
s+1Rps + Rp>s Ω−1

s+1ϑs+1

}

·g(0; γs+1, µs+1|s, Σs+1) · exp
{
−1

2Rp>s Σ−1
s+1Rps + Rp>s Σ−1

s+1µs+1|s
}

=

(
j∏

n=s+1

g(0; γn, µn|s, Σn)

)
· exp

{
−1

2Rp>s
(
Σ−1

s+1 + Ω−1
s+1

)
Rps

}

· exp
{

Rp>s
(
Σ−1

s+1µs+1|s + Ω−1
s+1ϑs+1

)}
. (84)

All three terms appearing on the r.h.s. of (84) will now be rewritten separately.

1. Term. For each n = s + 1, . . . , j, (60) reads µn|s = Λ(n−s)
n ps + µn|s−1 as above. Using

property (E1) of Gaussian functions

g(0; γn, µn|s, Σn) = g
(
−Λ(n−s)

n ps, γn, µn|s−1, Σn

)

= g
(
0, γn, µn|s−1,Σn

)· exp
{
−1

2p>s Λ(n−s)>
n Σ−1

n (Λ(n−s)
n ps + 2µn|s−1)

}
.

By (79) we have
∏j

n=s+1 g(0; γn, µn|s−1, Σn) = g(0; cs, ϑs, Ωs), such that the first term
on the r.h.s. of (84) takes the form

j∏

n=s+1

g(0; γn, µn|s, Σn) = g(0; cs, ϑs, Ωs) (85)

·
j∏

n=s+1

exp
{
−1

2p>s Λ(n−s)>
n Σ−1

n (Λ(n−s)
n ps + 2µn|s−1)

}
.
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2. Term. The definition (79) of Ωs+1 and (61) imply that

Σ−1
s+1 + Ω−1

s+1 =
j∑

n=s+1

Γ(n−s−1)>
n Σ−1

n Γ(n−s−1)
n ,

such that the second term on the r.h.s. of (84) takes the form

exp
{
−1

2Rp>s
(
Σ−1

s+1 + Ω−1
s+1

)
Rps

}
(86)

=
j∏

n=s+1

exp
{
−1

2Rp>s
(
Γ(n−s−1)>

n Σ−1
n Γ(n−s−1)

n

)
Rps

}
.

3. Term. We have from the definition (79) of Ωs+1 and ϑs+1

Σ−1
s+1µs+1|s + Ω−1

s+1ϑs+1 =
j∑

n=s+1

Γ(n−s−1)>
n Σ−1

n (Λ(n−s)
n ps + µn|s−1),

such that the third term on the r.h.s. of (84) takes the form

exp
{

Rp>s
(
Σ−1

s+1µs+1|s+ Ω−1
s+1ϑs+1

)}
(87)

=
j∏

n=s+1

exp
{

Rp>s Γ(n−s−1)>
n Σ−1

n (Λ(n−s)
n ps + µn|s−1)

}
.

Inserting (85), (86), and (87) and utilizing that (61) implies Γ(n−s)
n = RΓ(n−s−1)

n −Λ(n−s)
n

for each n = s + 1, . . . , j, we can rewrite (84) as

g(Rps;
ĉs+1

c(Θs+1)
, θs+1, Θs+1)

= g(0; cs, ϑs,Ωs)
j∏

n=s+1

exp
{

p>s
[
RΓ(n−s−1)

n − Λ(n−s)
n

]>
Σ−1

n µn|s−1)
}

·
j∏

n=s+1

exp
{
−1

2p>s
[
RΓ(n−s−1)

n − Λ(n−s)
n

]>
Σ−1

n

[
RΓ(n−s−1)

n − Λ(n−s)
n

]
ps

}

= g(0; cs, ϑs,Ωs)
j∏

n=s+1

exp
{

p>s Γ(n−s)>
n Σ−1

n µn|s−1

} j∏

n=s+1

exp
{
−1

2p>s Γ(n−s)>
n Σ−1

n Γ(n−s)
n ps

}

= g(0; cs, ϑs,Ωs) exp
{

p>s
j∑

n=s+1

Γ(n−s)>
n Σ−1

n µn|s−1

}
exp

{
−1

2p>s
j∑

n=s+1

Γ(n−s)>
n Σ−1

n Γ(n−s)
n ps

}

= g(0; cs, ϑs,Ωs) exp
{

p>s Ω−1
s ϑs

}
exp

{
−1

2p>s Ω−1
s ps

}

= g(ps; cs, ϑs, Ωs).

This proves (83) and completes the proof of Proposition 3. ¥
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