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Abstract

The top coalition property of Banerjee et al. (2001) and the common rank-
ing property of Farrell and Scotchmer (1988) are su¢ cient conditions for core
stability in hedonic games. We introduce the semistrict core as a stronger
stability concept than the core, and show that the top coalition property guar-
antees the existence of semistrictly core stable coalition structures. Moreover,
for each game satisfying the common ranking property, the core and the semi-
strict core coincide.
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1 Introduction

The dependence of a player�s utility on the composition of members of her coalition

can be examined in the context of hedonic coalition formation games (cf. Dréze and

Greenberg (1980)). The formal model of a hedonic game was introduced by Banerjee

et al. (2001) and Bogomolnaia and Jackson (2002). In their work, the focus on the

identity of the members of a coalition determines the structure of the game: the

latter consists of a preference ranking, for each player, over the coalitions that player

may belong to. Given a hedonic game, one is usually interested in the existence of
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stable outcomes, i.e., partitions of the set of players into coalitions. For instance,

Banerjee et al. (2001) introduce a top coalition property and show that it guarantees

the existence of core stable partitions, that is, partitions for which there is no group

of individuals who can all be strictly better o¤ by forming a new deviating coalition.

This condition is a weaker version of the common ranking property of Farrell and

Scotchmer (1988), and it is satis�ed in many interesting economic applications, e.g.,

in the context of cost sharing problems.

However, neither the top coalition property nor the common ranking property

guarantees that the strict core of the corresponding game is nonempty, i.e., it may

exist a group of players in which everyone is weakly better o¤ and at least one player

is strictly better o¤ in comparison to the corresponding coalitions in the partition

under study. In this note we introduce the semistrict core as a stability notion for

hedonic games that is stronger than the core but weaker than the strict core, and

show that the top coalition property guarantees the existence of semistrictly core

stable partitions in hedonic games. Moreover, for each game satisfying the common

ranking property, the core and the semistrict core coincide.

Basic de�nitions are provided in Section 2, and Section 3 contains an example

illustrating the discriminative power of the semistrict core. Our results are presented

in Section 4.

2 De�nitions

Consider a �nite set of players N = f1; 2; : : : ; ng. A coalition is a non-empty subset

of N . For each player i 2 N , we denote by Ni = fX � N j i 2 Xg the collection of

all coalitions containing i. A collection � of coalitions is called a coalition structure

if � is a partition of N . For each collection of coalitions � and each i 2 N , by �(i)

we denote the coalition in � containing i. Each player i 2 N has a preference �i

over Ni, i.e., a binary relation over Ni which is re�exive, complete, and transitive.

We denote by �= (�1; : : : ;�n) a pro�le of preferences �i for all i 2 N . Moreover,

we assume that the preference of each player i 2 N over coalition structures is purely

hedonic, i.e., it is completely characterized by �i in such a way that, for each � and
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�0, each player i weakly prefers � to �0 if and only if �(i) �i �
0(i). The pair (N;�)

is called a hedonic game.

A coalition structure � is strictly core stable for (N;�) if there does not exist a

nonempty coalition X such that X �i �(i) holds for all i 2 X and X �j �(j) is true

for some player j 2 X. We say that � is core stable for (N;�) if there does not exist

a nonempty coalition X such that X �i �(i) holds for each i 2 X.

The following two properties have been shown to su¢ ce for nonemptiness of the

core (but not of the strict core) of a hedonic game. Let (N;�) be a hedonic game.

Given a player set V � N , a coalition S � V is a top coalition of V if for any i 2 S

and any T � V with i 2 T , we have S �i T . We say that (N;�) satis�es the top

coalition property if every player set has a top coalition. A game (N;�) satis�es

the common ranking property if there exists an ordering D over 2N n f;g such that

for any i 2 N and any S; T 2 Ni we have S �i T if and only if S D T . Clearly,

the common ranking property implies the top coalition property; the fact that the

converse relation does not hold is illustrated by means of Game 4 in the work of

Banerjee et al. (2001).

3 Example

Let us consider a hedonic game with player setN = f1; : : : ; 5g and players�preferences

as displayed in the following table1:

Player 1 Player 2

12; 123; 124; 125; 1345 12; 123; 124; 125; 2345

134; 135; 145; 1234; 1235; 1245 234; 235; 245; 1234; 1235; 1245

12345 12345

1; : : : 2; : : :

1 Each player is indi¤erent between any two coalitions on the same row and strictly prefers a

coalition on a higher row over a coalition on a lower row; in particular, each player is indi¤erent

between being single and any coalition (she is a member of) not displayed in the corresponding

column. We simplify notation for coalitions by using, e.g., �134�instead of f1; 3; 4g.

3



Player 3 Player 4 Player 5

134; 135; 234; 235 134; 145; 234; 245 135; 145; 235; 245

1234; 1235; 1345; 2345 1234; 1245; 1345; 2345 1235; 1245; 1345; 2345

12345 12345 12345

3; : : : 4; : : : 5; : : :

One can easily check that the strict core of this game is empty (cf. Dimitrov and

Haake (2005)). Let us examine in more detail the core stable partitions �0 = f12; 345g

and �00 = f123; 45g. Consider the coalition X = 1345 and the following partitions

of it - X�
0

= f1; 345g and X�
00

= f13; 45g. Clearly, each player in X weakly prefers

to be in X instead to be in her corresponding coalition either according to �0 or

according to �00. Notice however the following di¤erence between �0 and �00 in terms

of X�
0

and X�
00

: in each element of X�
00

there is at least one player who strictly

bene�ts from being in X, while for X�
0

this is not the case (we have X �1 �
0 (1) and

X�
0

(1) = f1g). One can easily check that there is no coalition that is a deviation

from �0 in the described sense. In what follows we qualify �0 as being semistrictly

core stable.

4 Semistrict core stability

Let (N;�) be a hedonic game. For any coalition X � N and for any coalition

structure � of N , let X� := fX \ P j P 2 �g. We say that � is semistrictly core

stable if there does not exist a nonempty coalition X � N such that

for all i 2 X : X �i �(i); (1)

and

for all X 0 2 X� : X �j �(j) for some j 2 X
0: (2)

Put in other words, in the de�nition of the semistrict core a more precise structure

of the set of players who are strictly better o¤ in a deviation is added; this addition is

made by requiring that at least one player from each original coalition (according to
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�) strictly prefers to be in the corresponding deviating coalition.2 Observe that strict

core stability implies semistrict core stability that, in turn, implies core stability. In

what follows, we denote by C (N;�) and SSC (N;�) the core and the semistrict

core, respectively, of a hedonic game (N;�).

Proposition 1 If (N;�) satis�es the top coalition property, then SSC (N;�) 6= ;.

Proof. Let V0 = N and S1 � V0 be a top coalition of V0. Next, de�ne V1 = V0 n S1

and let S2 be a top coalition of V1. Continue in this way till the set N is exhausted,

i.e., till VK = ; and VK�1 6= ; for some positive integer K. Let � = fS1; : : : ; SKg.

We show that � is semistrictly core stable.

Suppose to the contrary that there is a deviation from �, i.e., there exists a

nonempty coalition X � N satisfying (1) and (2). If S1 \ X 6= ;, then, by the top

coalition property, S1 �i X for all i 2 S1 \X. Thus, by noticing that S1 \X 2 X�,

we have a contradiction to (2), i.e., it is not possible X to contain members from S1.

If S2 \ X 6= ;, then, again by the top coalition property, S2 �i X n S1 = X for all

i 2 S2 \X. Since S2 \X 2 X�, we have again a contradiction to (2). Thus, X does

not include any members from S2 either. By the same argument repeatedly applied,

we conclude that no deviation (satisfying (1) and (2)) from � is possible. Hence,

� 2 SSC (N;�).

Since the common ranking property implies the top coalition property, the follow-

ing result follows immediately.

Corollary 1 If (N;�) satis�es the common ranking property, then SSC (N;�) 6= ;.

Finally, we show that the common ranking property is strong enough to guarantee

that all core stable partitions in a hedonic game are semistrictly core stable as well.

Proposition 2 If (N;�) satis�es the common ranking property, then SSC (N;�) =

C (N;�).

Proof. Suppose to the contrary that C (N;�) n SSC (N;�) 6= ; and let � 2

C (N;�)nSSC (N;�). Then, there is a deviation from�, i.e., there exists a nonempty

2 The idea of semistrict core stability can already be found in the work of Kirchsteiger and Puppe

(1997).
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coalition X � N satisfying (1) and (2). Since � 2 C (N;�), there is a player i� 2 X

such that �(i�) �i� X which, in combination with (1), implies �(i�) �i� X. Thus,

by the common ranking property, �(i�) and X are commonly indi¤erent. Hence,

again by the common ranking property, we have �(i�) �j X for all j 2 �(i�) \X in

contradiction to (2).
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