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1 Introduction

A growing number of works have been concerned with the formal analysis of

the value of freedom of choice, especially during the last two decades (see,

among many others, Arlegi et al. (2005), Bossert (1997, 2000), Bossert et

al. (1994), Jones and Sugden (1982), Pattanaik and Xu (1990, 1998, 2000),

Puppe (1995, 1996), Sen (1991, 1993), and Sugden (1998))1. In most of

those works the central object of analysis is the opportunity set enjoyed by

the agent, which is taken as the reference to evaluate the freedom of choice

he/she enjoys. An opportunity set is interpreted as the set of mutually

exclusive options from which the decision maker has the power to choose

one. In general, those works follow an axiomatic methodology: starting from

conditions that �t well with the possible motivations for the preference for

freedom of choice, they characterize rules to compare and rank sets in terms

of freedom.

An implicit assumption in the mentioned models is that the decision

maker has complete information about all alternatives in the opportunity

sets. However, there are many real life situations where agents choose among

some alternatives that they know well, while having also the possibility to

choose options that are not completely well-known.

Actually, one �nds easily a wide range of economic decisions made in such

an environment. For example, choices in supermarkets are usually made

among di¤erent brands of the same product, some of which have already

been experienced by the consumer while others are unknown. A �rm could

have the possibility to choose among di¤erent production plans, for some of

1 For a complete survey, including a discussion about the reasons for which freedom of

choice could be valuable, see Barberà et al. (2004).
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which the expected �ow of pro�ts they generate can be fairly determined,

while for others a market research would be necessary. An employer may

have di¤erent candidates for a job, having detailed reports of some while

lacking enough references for others. And the same could apply for many

examples in everyday choices made by consumers, such as buying a new car

or choosing a dish from a menu in a restaurant.

In choice situations like those there are reasons to think that the decision

maker might be averse to have such kind of not completely known or badly

determined options, and we observe a preference for easy choice situations,

in which such disturbing options are not present. This means that very often

there is a trade-o¤ between the desire of freedom of choice and a certain

aversion to the presence of badly de�ned options. Bare introspection suggests

that, though wanting to enjoy freedom of choice, the presence of too many

brands at the shelf of the supermarket, or too many meals in the menu might

be annoying. Some classical authors in the �led of Organization Theory argue

that it is precisely the human necessity of being coherent in his decisions and

following clear goals which motivates his preference for simpler problems (see

for example Friedman (1954) or Krulee (1955)). Thus, the presence of such

options is an obstacle for feeling as making accurate decisions, unless certain

costs for gathering additional information are paid.

Taking into account such a circumstance leads to a deviation from the

kind of rules characterized in the freedom of choice literature: all such rules

share a �monotonicity� property, according to which any enlargement of

an opportunity set always leads to an improvement in terms of freedom,

either strict of weak. In our case, however, the availability of more options

could make a choice situation worse under some circumstances. Thus, what

is meant by e¤ective freedom of choice is bounded by the aversion to the
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presence of such perturbing alternatives that make choices more complicate.

Obviously, the e¤ects of these opposite forces can translate into di¤erent

trade-o¤ possibilities. In the following sections we provide axiomatic char-

acterizations of several possible rankings each displaying reasonable ways to

trade with both e¤ects. In Section 2 we introduce some notation and def-

initions. In Section 3 we characterize axiomatically a rule for ranking sets

that takes into account only the number of the options that are known to the

decision maker. Changing one of the axioms results in a family of rankings

that is uniquely based on the number of known options and the number of

unknown options, weighting positively the former and negatively the later;

this family is introduced in Section 4. We present the axiomatic characteri-

zations of three particular rules of this family in Section 5, and conclude in

Section 6 with some �nal remarks. All proofs are collected in the Appendix.

2 Basic setup

Let X be a non-empty set of alternatives (�nite or in�nite) with jXj � 2,

and X be the set of all �nite subsets of X. We will denote the elements of X
by A;B : : :. The interpretation of each element of X is that of an opportunity
set : the set of (mutually exclusive) options enjoyed by the decision maker.

We will distinguish two categories of alternatives: those, whose relevant

aspects are su¢ ciently well determined, and those, for which there is lack

of information about their relevant characteristics that is large enough. For

�uency reasons we will use a �known-unknown�terminology in order to la-

bel the options. We will de�ne as �known� options those, whose relevant

characteristics in order to be evaluated and compared with other options are

known by the agent. We will de�ne as �unknown� the remaining options.
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Note that, according to this terminology, an option could be labelled as �un-

known� even if the decision maker has big pieces of information about it,

but not su¢ ciently relevant: an employer may have a very detailed infor-

mation about certain aspects of a candidate, such as information about his

private life, but we will label the candidate as unknown if the employer has

not the necessary information about what is relevant for her choice, namely,

the information about the candidate�s labor skills.

In our context the choice problem can be determined by two aspects: the

opportunity set the agent enjoys (which is an element of X ), and the set
of alternatives in X that are known to the decision maker, which is also an

element of X . In order to avoid some trivialities, we assume further that
there is at least one option in X that is known to the agent. Formally, we

are interested in the elements of X �X;, where X; := X n f;g. We call each
(A;C) 2 X � X; an extended opportunity set and attach to it the following
interpretation: the decision maker has the opportunity to choose from A

having only enough information about the options collected in C. Compar-

isons of extended opportunity sets will be represented by a binary relation

% de�ned on X � X;. For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D)

should be read as �having the possibility to choose from A when knowing

the options in C is weakly preferred to having the possibility to choose from

B when knowing the options in D�. The asymmetric and symmetric parts of

% will be denoted by � and �, respectively. We want for % to capture both
the preference for freedom of choice and the possible aversion to the presence

of unknown options. We denote by P the set of all re�exive, transitive and

complete binary relations on X � X;.
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3 The known-options-based rule

We start our analysis by introducing the following four axioms a preference

relation %2 P may satisfy:

Empty choice (EC): For all C;D 2 X;,
(;; C) � (;; D);

Simple monotonicity (SM): For all x 2 X and all y 2 C 2 X;,
(fx; yg ; C) � (fxg ; C);

Simple neutrality (SN): For all x 2 X and all y =2 C 2 X;,
(fx; yg ; C) � (fxg ; C);

Independence (IND): For all (A;C) ; (B;D) 2 X �X;, and all x 2 X nA; y 2
X nB with x 2 C , y 2 D,
(A;C) % (B;D), (A [ fxg ; C) % (B [ fyg ; D).

According to EC the decision maker is indi¤erent between any two situ-

ations in which he has no options to choose from, regardless the amount of

information he might have about the (unavailable) alternatives.

SM considers the adition of a new known option in a situation where the

decision maker has no freedom of choice as a strict improvement. This con-

dition is a translation to our context of a well-known axiom in the literature

on freedom of choice, initially introduced by Pattanaik and Xu (1990), in

which any additional alternative improves the situation.

According to SN the adition of a new option to a situation in which

the decision maker already enjoys one alternative does not a¤ect his or her

freedom if the added option is unknown. It could be interpreted as if, in the

situation described, the aditional availability of the unknown option would

not annoy the decision maker, but either increase e¤ectively his freedom of
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choice.

IND displays the in�uence that adding (or dropping out) options of the

same type (either known or unknown) has on the ranking over two extended

opportunity sets, namely, that the ranking is preserved. This axiom adapts

to our context similar axioms that can often be found in the axiomatic char-

acterizations of rankings of opportunity sets in terms of freedom of choice.

In particular, compared with such axioms, IND restricts the requirement of

coherence of the preference to those cases in which what is added (dropped

out) to (from) both sets is �similar� in the sense that it is either a known

option in both sets or an unknown one.

As we will see in our �rst theorem, combining the four axioms introduced

so far provides a characterization of the known-options-based rule %12 P
de�ned as follows:

For all (A;C) ; (B;D) 2 X � X;,

(A;C) %1 (B;D) i¤ jA \ Cj � jB \Dj :

Theorem 1 %2 P satis�es EC, IND, SM, and SN if and only if %=%1.

In order to show the independence of the axioms used for the character-

ization of %1, consider the following four examples. The reader can easily
check that each example satis�es all axioms except one:

(:EC): For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤ (1) jCj < jDj,
or (2) jCj = jDj and jA \ Cj � jB \Dj.

(:IND): Let jXj � 3. For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤
(1) if jAj � 3 and jBj � 3, then (A;C) � (B;D), (2) if jAj � 3 and jBj < 3,
then (A;C) � (B;D), (3) if jAj < 3 and jBj < 3, then %=%1.

(:SM): For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤ jA \ Cj �
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jB \Dj.

(:SN): For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤ (1) jA \ Cj >
jB \Dj, or (2) jA \ Cj = jB \Dj and jA n Cj � jB nDj.

4 A family of rules

The axiom of simple neutrality represents one possible way to take into ac-

count the e¤ect of adding an unknown option to the decision maker�s oppor-

tunity set consisting of a single element. The next axiom displays another

possibility.

Simple aversion (SA): For all x 2 X and all y =2 C 2 X;,
(fx; yg ; C) � (fxg ; C).

SA represents a very elementary way to express the idea of preference

for an easier choice. This axiom says that having an additional unknown

option to choose from �bothers�the decision maker, rather than leaving him

indi¤erent.

It turns out that replacing SN by SA in the characterization displayed by

Theorem 1 does not result in a well de�ned rule for ranking extended oppor-

tunity sets; it rather generates a family of rules that are based on two unique

numbers: the number of known options and the number of unknown options

in the corresponding sets, weighting possitively the former and negatively

the later.

Theorem 2 Let %2 P satisfy EC, IND, SM, and SA. Then, for all (A;C) ; (B;D) 2
X � X;,
(1) jA \ Cj > jB \Dj and jA n Cj < jB nDj imply (A;C) � (B;D),
(2) jA \ Cj � jB \Dj and jA n Cj � jB nDj imply (A;C) % (B;D).
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5 Possible trade-o¤s

Our aim in this section is to characterize three particular rules for ranking

extended opportunity sets that are contained in the family of rankings de-

scribed above, each of them solving in a particular way the trade-o¤ between

the preference for known alternatives and the aversion to the unknown ones.

The �rst two rules combine those aspects lexicographically, while the third

rule is of an additive nature.

5.1 The known-options-priority rule

Let us consider a situation in which (A;C) � (B;D) for some (A;C) ; (B;D) 2
X �X; and in which the opportunity set B is included in A\C, i.e. B con-
tains only options that would be known in the situation (A;C). The idea of

robustness of the strict preference displayed by the next axiom requires in

this case that adding a new option to A does not change the original ranking.

Robustness 1 (ROB1): For all (A;C) ; (B;D) 2 X � X; with B � (A \ C)
and for all x 2 X,
(A;C) � (B;D)) (A [ fxg ; C) � (B;D).

In other words, ROB1 says that, if all what the decision maker knows

in situation (B;D) is already known in situation (A;C), but also all that is

unknown in (B;D) is known in (A;C), then a preference for (A;C) (which

is rather plausible) should be robust enough as to support the incorporation

of a new option in A even if such an additional option is unknown.

We have shown in Section 4 that EC, IND, SM, and SA generate a family

of rules to rank extended opportunity sets. Adding ROB1 to these axioms

results in the characterization of the known-options-priority rule %22 P de-
�ned as follows:
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For all (A;C) ; (B;D) 2 X � X;,

(A;C) %2 (B;D) i¤

8>><>>:
jA \ Cj > jB \Dj ,
or

jA \ Cj = jB \Dj and jA n Cj � jB nDj :

Theorem 3 %2 P satisfy EC, IND, SM, SA, and ROB1 if and only if

%=%2.

The independence of the axioms used for the characterization of %2 can
be checked by means of the following �ve examples:

(:EC): For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤ (1) jCj < jDj,
or (2) jCj = jDj and (A;C) %2 (B;D).

(:IND): Let jXj � 3. For all (A;C) ; (B;D) 2 X � X;, (1) if jAj � 3

and jBj � 3, then (A;C) � (B;D), (2) if jAj � 3 and jBj < 3, then

(A;C) � (B;D), (3) if jAj < 3 and jBj < 3, then %=%2.

(:SM): For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤ jA n Cj �
jB nDj.

(:SA): For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤ jAj � jBj.

(:ROB1): For all (A;C) ; (B;D) 2 X �X;, (A;C) % (B;D) i¤ (1) jA n Cj <
jB nDj, or (2) jA n Cj = jB nDj and jA \ Cj � jB \Dj.

5.2 The unknown-options-priority rule

Let us consider now another notion of robustness, as shown by the following

axiom.

Robustness 2 (ROB2): For all (A;C) ; (B;D) 2 X � X; with A � (B nD)
and for all x 2 X,
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(A;C) � (B;D)) (A;C) � (B [ fxg ; D).

According to this axiom, in a situation in which the opportunity set A

consist only of options that would be unknown in the situation (B;D) and

(A;C) is strictly better than (B;D), then the ranking is preserved when a

new option is added to B. In other words, if all that is unknown in situation

(A;C) is also unknown in (B;D), but also all that is known in (A;C) is

unknown in (B;D), then a preference of (A;C) over (B;D) should be robust

enough as to support the incorporation to B of a new option, even if it is

known.

As shown in our next theorem, adding ROB2 to EC, IND, SM, and SA

results in the characterization of the unknown-options-priority rule %32 P
de�ned as follows:

For all (A;C) ; (B;D) 2 X � X;,

(A;C) %3 (B;D) i¤

8>><>>:
jA n Cj < jB nDj ,
or

jA n Cj = jB nDj and jA \ Cj � jB \Dj :

Theorem 4 %2 P satisfy EC, IND, SM, AV, and ROB2 if and only if

%=%3.

In order to show the independence of the axioms used for the characteri-

zation of %3, consider the following examples:

(:EC): For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤ (1) jCj < jDj,
or (2) jCj = jDj and (A;C) %3 (B;D).

(:IND): Let jXj � 3. For all (A;C) ; (B;D) 2 X � X;, (1) if jAj � 3

and jBj � 3, then (A;C) � (B;D), (2) if jAj � 3 and jBj < 3, then

(A;C) � (B;D), (3) if jAj < 3 and jBj < 3, then %=%3.
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(:SM): For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤ jA n Cj �
jB nDj.

(:SA): For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤ jAj � jBj.

(:ROB2): Take %=%2.

5.3 The dichotomy rule

Let us consider now the following axiom (see also Dimitrov et al. (2004)).

Dichotomy (DI): For all (A;C) ; (B;C) 2 X � X;, all x 2 A \ C and all

y 2 X n (B [ C),
(A;C) � (B;C)) (A n fxg ; C) � (B [ fyg ; C).

DI says that if two situations (A;C) and (B;C) are indi¤erent, then, the

indi¤erence is preserved if we take out an option from A that is known to the

decision maker and, at the same time, we add to B an unknown option. This

axiom establishes a kind of prefect substitution between known and unknown

options in certain situations: loosing freedom by removing a known option is,

somehow, equivalent to losing ease in choice by adding an unknown option.

We are ready now to present the characterization of the dichotomy rule

%42 P de�ned as follows:
For all (A;C) ; (B;D) 2 X � X;,

(A;C) %4 (B;D) i¤ jA \ Cj � jA n Cj � jB \Dj � jB nDj :

Theorem 5 %2 P satisfy EC, IND, SM, and DI if and only if %=%4.

In order to check the independence of the axioms used for the character-

ization of %4, the reader can consider the following examples:

(:EC): For all (A;C) ; (B;D) 2 X � X;, (A;C) % (B;D) i¤ (1) jCj < jDj,
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or (2) jCj = jDj and(A;C) %4 (B;D).

(:IND): Let X = fx; yg, and let the the following ranking < on X � X;:
(fx; yg; fxg) � (fx; yg; fyg)� (fx; yg; fx; yg) � (fxg; fxg) �(fxg; fyg) �
(fxg; fx; yg) �(fyg; fxg) � (fyg; fyg) � (fyg; fx; yg)� (;; fxg) �(;; fyg) �
(;; fx; yg).
(:SM): For all (A;C) ; (B;D) 2 X � X;, (A;C) � (B;D).

(:DI): For all (A;C) ; (B;D) 2 X � X; : (A;C) % (B;D) i¤ jAj � jBj.

6 Concluding remarks

Our model assumes the preference for freedom of choice but also the possi-

bility of an aversion to alternatives whose characterisitics are unsu¢ ciently

known, that is, what we have called a preference for easy choices. Thus,

there are several ways how the decision maker may evaluate opportunity

sets containing what we have called �known�and �unknown�options. The

previous rules display plausible solutions to this problem springing up from

a common axiomatic basis, re�ected by the axioms of Empty Choice (EC),

Independence (IND), and Simple Monotonicity (SM). Adding Simple Neu-

trality (SN) to this basis de�nes the known-options-based rule, by which

it is the number of known options what determines the ranking. However,

when replacing SN by Simple Aversion (SA) a family of rules that takes

into account the ease to choose by weighting negatively the number of un-

known options arises. EC, IND, SM, and SA constitute the axiomatic core

for the following characterizations. Taking on either of the Robustness ax-

ioms (ROB1 and ROB2) to that core we obtain, respectively, the character-

ization of two lexicographic rules: the known-options-priority-rule and the

unknown-options-priority rule. If, instead of any of the robustness axioms
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we use dichotomy (DI), then an additive rule that maximizes the di¤erence

between the number of the known options and the number of the unknown

ones is obtained.

7 Appendix

This section collects the proofs of all theorems that appear in the text.

Theorem 1 %2 P satis�es EC, IND, SM, and SN if and only if %=%1.

We will prove �rst the following two lemmas.

Lemma 1 Let %2 P satisfy IND and SM. Then (A [ E;C) � (A;C) for all
(A;C) 2 X � X; and all E � (C n A) n f;g.

Proof of Lemma 1. Take %2 P as above and let E = fe1; : : : ; eng. We
will distinguish the following two cases:

(1) A 6= ;. Let A = fa1; : : : ; amg. By SM, (fa1; e1g ; C) � (fa1g ; C).
By IND applied (m� 1)-times, (A [ fe1g ; C) � (A;C). Again by SM,

(fa1; e2g ; C) � (fa1g ; C), and by IND applied m-times, (A [ fe1; e2g ; C) �
(A [ fe1g ; C). Repeating the same step (n� 2)-times and by transitivity,
(A [ E;C) � (A;C).
(2) A = ;. Take x 6= e1 2 E (note that such an element exists because

jXj � 2). By SM, (fx; e1g ; C) � (fxg ; C). By IND (fe1g; C) � (;; C),
i.e. (A [ fe1g ; C) � (A;C). Again by IND applied (n� 1)-times, and by
transitivity we reach (A [ E;C) � (A;C).

Lemma 2 Let %2 P satisfy IND and SN. Then (A [ E;C) � (A;C) for all
(A;C) 2 X � X; and all E � X n (A [ C).

Proof of Lemma 2. The proof is similar to the proof of Lemma 1 applying
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SN instead of SM.

Proof of Theorem 1. Clearly, %1 satis�es these axioms. Suppose now that
%2 P satis�es EC, IND, SM, and SN. We have to prove that
(1) jA \ Cj > jB \Dj implies (A;C) � (B;D), and
(2) jA \ Cj = jB \Dj implies (A;C) � (B;D).
(1) Let jA \ Cj > jB \Dj. By EC, (;; C) � (;; D). If jB \Dj = 0 (i.e.

B \ D = ;), (A \ C;C) � (;; C) follows from Lemma 1 with A \ C in the

role of E. By transitivity, (A \ C;C) � (B \D;D). If jB \Dj = s > 0,

applying IND s-times results in ((A \ C)s ; C) � (B \D;D), where (A \ C)s
is any subset of A\C with s elements. By Lemma 1 with (A \ C)n (A \ C)s
in the role of E, we have (A \ C;C) � ((A \ C)s ; C) that, by transitivity,
results in (A \ C;C) � (B \D;D). By Lemma 2 with A n (A \ C) in the
role of E, we obtain (A;C) � (A \ C;C). By the same argument, and with
B n (B \D) in the role of E, we have (B;D) � (B \D;D). By transitivity,
(A;C) � (B;D).
(2) Let jA \ Cj = jB \Dj. As before, by applying EC and IND, we get

either (;; C) � (;; D) (if jA \ Cj = jB \Dj = 0) or (A \ C;C) � (B \D;D)
(if jA \ Cj = jB \Dj > 0). By Lemma 2 with AnC in the role of E we have
(A;C) � (A \ C;C). By the same argument, and with B nD in the role of

E, we have (B;D) � (B \D;D). Thus, by transitivity, (A;C) � (B;D).

Theorem 2 Let %2 P satisfy EC, IND, SM, and SA. Then, for all (A;C) ; (B;D) 2
X � X;,
(1) jA \ Cj > jB \Dj and jA n Cj < jB nDj imply (A;C) � (B;D),
(2) jA \ Cj � jB \Dj and jA n Cj � jB nDj imply (A;C) % (B;D).

Note �rst that the following lemma holds true.

Lemma 3 Let %2 P satisfy IND and SA. Then (A [ E;C) � (A;C) for all

15



(A;C) 2 X � X; and all E � (X n (A [ C)) n f;g.

Proof of Lemma 3. The proof is similar to the proof of Lemma 1 by ap-

plying SA instead of SM.

Proof of Theorem 2. (1) Let jA \ Cj > jB \Dj and jA n Cj < jB nDj.
Like in the �rst part of the proof of Theorem 1 it can be proved, by us-

ing EC, IND and SM, that (A \ C;C) � (B \D;D). By Lemma 3 we

have (B \D;D) � (B;D). Let jA n Cj = u. Starting with (A \ C;C) �
(B \D;D) and applying u-times INDwe get (A;C) � ((B \D) [ (B nD)u ; D),
where (B nD)u is any subset of B nD with u elements. By Lemma 3 with

(B nD) n (B nD)u in the role of E, ((B \D) [ (B nD)u ; D) � (B;D). By
transitivity, (A;C) � (B;D).
(2) The case in which jA \ Cj > jB \Dj and jA n Cj < jB nDj was

proved in the previous paragraph. Thus, we will distinguish the three re-

maining possible cases:

(2.1) jA \ Cj > jB \Dj and jA n Cj = jB nDj,
(2.2) jA \ Cj = jB \Dj and jA n Cj < jB nDj, and
(2.3) jA \ Cj = jB \Dj and jA n Cj = jB nDj.
(2.1) Like in the �rst part of the proof of Theorem 1 it can be proved,

by using EC, IND and SM, that (A \ C;C) � (B \D;D). If jA n Cj =
jB nDj = 0, then (A;C) � (B;D) follows directly. If jA n Cj = jB nDj =
u > 0, by IND repeated u-times, (A;C) � (B;D).
(2.2) Let jA n Cj = u. From EC and applying u-times IND, (A n C;C) �

((B nD)u ; D), where (B nD)u is any subset of B n D with u elements.

By Lemma 3 with (B nD) n (B nD)u in the role of E, ((B nD)u ; D) �
(B nD;D). By transitivity, (A n C;C) � (B nD;D). Applying IND jA \ Cj =
jB \Dj-times, (A;C) � (B;D).
(2.3) From EC and applying IND jA \ Cj = jB \Dj-times, (A \ C;C) �
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(B \D;D). Again by IND jA n Cj = jB nDj-times, (A;C) � (B;D).

Theorem 3 %2 P satisfy EC, IND, SM, SA, and ROB1 if and only if

%=%2.

Proof of Theorem 3. It can be easily checked that %2 satis�es the �ve
axioms. Suppose now that %2 P satis�es EC, IND, SM, SA, and ROB1. We
have to prove that

(1) jA \ Cj > jB \Dj implies (A;C) � (B;D),
(2) jA \ Cj = jB \Dj and jA n Cj < jB nDj imply (A;C) � (B;D), and
(3) jA \ Cj = jB \Dj and jA n Cj = jB nDj imply (A;C) � (B;D).
(1) Let jA \ Cj > jB \Dj. Like in the �rst part of the proof of Theorem

1, EC, IND, and SM imply (A \ C;C) � (B \D;D).
Let us consider now the following partitions of A \ C and B \D :

A \ C = (A \ C)1 [ (A \ C)2 [ (A \ C)3

B \D = (B \D)1 [ (B \D)2 ;

where

(A \ C)1 = fx 2 A \ C j x 2 B \Dg ;

(A \ C)2 = fx 2 A \ C j x 2 D n (B \D)g ;

(A \ C)3 = fx 2 A \ C j x 2 X nDg ;

(B \D)1 = fx 2 B \D j x 2 A \ Cg ;

(B \D)2 = fx 2 B \D j x 2 X n (A \ C)g :

By construction (A \ C)1 = (B \D)1. Hence, B \ D = (A \ C)1 [
(B \D)2. Let

��(B \D)2�� = s2. We will consider two cases:
(1.1)

��(A \ C)2�� > s2, and
(1.2)

��(A \ C)2�� � s2.
17



(1.1) By Theorem 2,�
(A \ C)1 [ (B \D)2 ; D

�
�
�
(A \ C)1 [ (A \ C)2s2 ; D

�
;

where (A \ C)2s2 is any subset of (A \ C)
2 with s2 elements. Hence, (B \D;D) ��

(A \ C)1 [ (A \ C)2s2 ; D
�
, and by transitivity,

(A \ C;C) �
�
(A \ C)1 [ (A \ C)2s2 ; D

�
:

By ROB1 repeatedly applied, (A;C) �
�
(A \ C)1 [ (A \ C)2s2 ; D

�
. By

transitivity, (A;C) � (B \D;D). If B n D = ;, we have that (A;C) �
(B;D). If B n D 6= 0, then, by Lemma 3 (B \D;D) � (B;D), and by

transitivity (A;C) � (B;D).
(1.2) By Theorem 2,�
(A \ C)1 [ (B \D)2 ; D

�
�
�
(A \ C)1 [ (A \ C)2 [ (B \D)2� ; D

�
;

where (B \D)2� is any subset of (B \D)
2 s.t.

��(B \D)2��� = ��(B \D)2�� ���(A \ C)2��. Again by Theorem 2,�
(A \ C)1 [ (A \ C)2 [ (B \D)2� ; D

�
�

�
(A \ C)1 [ (A \ C)2 [ (A \ C)3� ;

�
D [ (A \ C)3�

�
n (B \D)2�

�
;

where (A \ C)3� is any subset of (A \ C)
3 s.t.

��(A \ C)3��� = ��(B \D)2�� ���(A \ C)2�� (given that jA \ Cj > jB \Dj by hypothesis, such a subset always
exists by construction). By transitivity,�

(A \ C)1 [ (B \D)2 ; D
�

�
�
(A \ C)1 [ (A \ C)2 [ (A \ C)3� ;

�
D [ (A \ C)3�

�
n (B \D)2�

�
;

that is

(B \D;D)

�
�
(A \ C)1 [ (A \ C)2 [ (A \ C)3� ;

�
D [ (A \ C)3�

�
n (B \D)2�

�
:

18



By transitivity,

(A \ C;C)

�
�
(A \ C)1 [ (A \ C)2 [ (A \ C)3� ;

�
D [ (A \ C)3�

�
n (B \D)2�

�
:

By ROB1 repeatedly,

(A;C)

�
�
(A \ C)1 [ (A \ C)2 [ (A \ C)3� ;

�
D [ (A \ C)3�

�
n (B \D)2�

�
:

By transitivity, (A;C) � (B \D;D). If B n D 6= ;, then, by Lemma 3
(B \D;D) � (B;D). If B nD = ;, then B \D = B. Again by transitivity,
(A;C) � (B;D).
(2) Let jA \ Cj = jB \Dj and jA n Cj < jB nDj. By Theorem 2 (A \ C;C) �

(B \D;D). Let jA n Cj = u. By IND repeated u-times,

(A;C) � ((B \D) [ (B nD)u ; D) ;

where (B nD)u is any subset of B nD with u elements. By Lemma 3 with

Bn((B \D) [ (B nD)u) in the role ofE, ((B \D) [ (B nD)u ; D) � (B;D).
Thus, by transitivity, (A;C) � (B;D).
(3) Let jA \ Cj = jB \Dj and jA n Cj = jB nDj. By Theorem 2,

(A;C) � (B;D).

Theorem 4 %2 P satisfy INCS, IND, SM, AV, and ROB2 if and only if

%=%3.

Proof of Theorem 4. It is not di¢ cult to check that %3 satis�es the �ve
axioms. Suppose now that %2 P satis�es EC, IND, SM, SA, and ROB2. We
have to prove that

(1) jA n Cj < jB nDj implies (A;C) � (B;D),
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(2) jA n Cj = jB nDj and jA \ Cj > jB \Dj imply (A;C) � (B;D), and
(3) jA n Cj = jB nDj and jA \ Cj = jB \Dj imply (A;C) � (B;D).
(1) Let A n C =

�
a�1 ; : : : ; a

�
u

	
and B n D =

�
b�1 ; : : : ; b

�
v

	
, v > u. By

EC and IND applied u-times (A n C;C) � ((B nD)u ; D), where (B nD)u is
any subset of B nD with u elements. By Lemma 3 with (B nD) n (B nD)u
in the role of E, ((B nD)u ; D) � (B nD;D). By transitivity, (A n C;C) �
(B nD;D).
Now, let us consider the following partitions of A n C and B nD :

A n C = (A n C)1 [ (A n C)2 ;

B nD = (B nD)1 [ (B nD)2 [ (B nD)3 ;

where

(A n C)1 = fx 2 A n C j x 2 B nDg ;

(A n C)2 = fx 2 A n C j x 2 X n (B nD)g ;

(B nD)1 = fx 2 B nD j x 2 A n Cg = (A n C)1 ;

(B nD)2 = fx 2 B nD j x 2 X n (A [ C)g ;

(B nD)3 = fx 2 B nD j x 2 Cg :

Let (A n C)1 =
�
a�1 ; : : : ; a

�
u1

	
, (A n C)2 =

�
a�u1+1; : : : ; a

�
u

	
, (B nD)1 =�

b�1 ; : : : ; b
�
u1

	
, (B nD)2 =

�
b�u1+1; : : : ; b

�
v2

	
, (B nD)3 =

�
b�v2+1; : : : ; b

�
v

	
. Note

that, by hypothesis,
��(B nD)2�� + ��(B nD)3�� > ��(A n C)2��. We will consider

two cases:

(1.1)
��(A n C)2�� > ��(B nD)2��, and

(1.2)
��(A n C)2�� � ��(B nD)2��.

(1.1) Let
��(A n C)2�� > ��(B nD)2��. Consider �b�v2+1; : : : ; b�u 	 � (B nD)3

and let (A n C)2v2 =
�
a�u1+1; : : : ; a

�
v2

	
, (A n C)2v =

�
a�v2+1; : : : ; a

�
u

	
. By Theo-
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rem 2,
��
(A n C) [ (B nD)2

�
n (A n C)2v2 ; C

�
� (A n C;C). Let

B� =
�
(A n C) [ (B nD)2 [

�
b�v2+1; : : : ; b

�
u

	�
n
�
(A n C)2v2 [ (A n C)

2
v

�
:

Again by Theorem 2,
�
B�;

�
C [ (A n C)2v

�
n
�
b�v2+1; : : : ; b

�
u

	�
� (A n C;C).

By transitivity,
�
B�;

�
C [ (A n C)2v

�
n
�
b�v2+1; : : : ; b

�
u

	�
� (B nD;D). Note

that, by construction, B� � B n D. Thus, by ROB2 repeatedly applied,�
B�;

�
C [ (A n C)2v

�
n
�
b�v2+1; : : : ; b

�
u

	�
� ((B nD) [ (B \D) ; D). Given that

the �rst choice situation is indi¤erent to (A n C;C), by transitivity, (A n C;C) �
(B;D). By Lemma 1 (A;C) � (A n C;C). Again by transitivity, (A;C) �
(B;D).

(1.2) Let
��(A n C)2�� � ��(B nD)2��. Consider �b�u1+1; : : : ; b�u 	 � (B nD)2.

Then
��
(A n C)1 [

�
b�u1+1; : : : ; b

�
u

	�
n (A n C)2 ; C

�
� (A n C;C) by Theorem

2. By transitivity,
��
(A n C)1 [

�
b�u1+1; : : : ; b

�
u

	�
n (A n C)2 ; C

�
� (B nD;D).

By ROB2
��
(A n C)1 [

�
b�u1+1; : : : ; b

�
u

	�
n (A n C)2 ; C

�
� (B;D). Given

that
��
(A n C)1 [

�
b�u1+1; : : : ; b

�
u

	�
n (A n C)2 ; C

�
� (A n C;C), by transi-

tivity, (A n C;C) � (B nD;D).
By Lemma 1 (A;C) � (A n C;C), and again by transitivity, (A;C) �

(B;D).

(2) LetAnC =
�
a�1 ; : : : ; a

�
u

	
, BnD =

�
b�1 ; : : : ; b

�
u

	
, A\C =

�
a+1 ; : : : ; a

+
r

	
,

andB\D =
�
b+1 ; : : : ; b

+
s

	
, r > s. By Theorem 2,

�
(A n C) [

�
a+1 ; : : : ; a

+
s

	
; C
�
�

(B;D). By Lemma 1 we have that (A;C) �
�
(A n C) [

�
a+1 ; : : : ; a

+
s

	
; C
�
.

Again by transitivity, (A;C) � (B;D).
(3) By Theorem 2, (A;C) � (B;D).

Theorem 5 %2 P satisfy EC, IND, SM, and DI if and only if %=%4.

We will prove �rst the following two lemmas.

Lemma 4 Let %2 P satisfy DI, and let (A;C) ; (B;C) 2 X � X; be such
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that B = A [ E with jE \ Cj = jE n Cj. Then (A;C) � (B;C).

Proof of Lemma 4. Take (A;C) and (B;C) as above. Then A[(E \ C) =
B n (E n C). Hence, by re�exivity, (A [ (E \ C) ; C) � (B n (E n C) ; C).
Applying jE \ Cj = jE n Cj-times DI results in (A;C) � (B;C).

Lemma 5 Let %2 P satisfy IND, SM, and DI. Then it also satis�es SA.

Proof of Lemma 5. We have to prove that (fxg ; C) � (fx; yg ; C) for
any x 2 X and any y 2 X n C. If C 6= fxg, then, there exists z 2 C,

z 6= x. By re�exivity, (fzg ; C) � (fzg ; C). Applying DI results in (;; C) �
(fz; yg ; C), and by SM we have (fz; yg ; C) � (fyg ; C). By transitivity,
(;; C) � (fyg ; C), and by IND, (fxg ; C) � (fx; yg ; C). If C = fxg, by SM,
(fx; yg; C) � (fyg; C). By IND, (fxg; C) � (;; C). On the other hand, by
re�exivity, (fxg; C) � (fxg; C), and by DI, (;; C) � (fx; yg; C). Thus, by
transitivity, (fxg; C) � (fx; yg; C).

Corollary 1 Let %2 P satisfy IND, SM, and DI. Then the statements in

Lemma 1 and Lemma 3 hold.

Proof of Theorem 52. It can be easily checked that %4 satis�es the four
axioms. Suppose now that %2 P satis�es EC, IND, SM, and DI. We have

to prove that

(1) jA \ Cj � jA n Cj > jB \Dj � jB nDj implies (A;C) � (B;D), and
(2) jA \ Cj � jA n Cj = jB \Dj � jB nDj implies (A;C) � (B;D).
Let jA \ Cj = r, jB \Dj = s, jA n Cj = u, jB nDj = v.
(1) Let r � u > s� v. We consider the following three possible cases:
(1.1) r > u and s > v,

(1.2) r > u and s � v,
2 In what follows in this proof, for all K � X and all k 2 f1; : : : ; jKjg, we denote by

(K)k any subset of K with k elements.
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(1.3) r � u and s < v.
(1.1) Let r > u and s > v. By EC, (;; C) � (;; D). By Lemma 4,

((A \ C)u [ (A n C) ; C) � (;; C). Also by Lemma 4, ((B \D)v [ (B nD) ; D) �
(;; D). Thus, by transitivity, ((A \ C)u [ (A n C) ; C) � ((B \D)v [ (B nD) ; D).
Given that r�u > s�v, by IND (s�v)-times,

�
(A \ C)u+s�v [ (A n C) ; C

�
��

(B \D)v+s�v [ (B nD) ; D
�
, that is

�
(A \ C)u+s�v [ (A n C) ; C

�
� (B;D).

By Lemma 1, (A;C) �
�
(A \ C)u+s�v [ (A n C) ; C

�
, and by transitivity,

(A;C) � (B;D).
(1.2) Let r > u and s � v. Like in case (1.1), by EC, Lemma 4 and

transitivity we get ((A \ C)u [ (A n C) ; C) � ((B \D) [ (B nD)s ; D). By
Lemma 1, (A;C) �

�
(A \ C)u+s�v [ (A n C) ; C

�
, and by Lemma 3,

((B \D) [ (B nD)s ; D) � (B;D) :

Thus, by transitivity, (A;C) � (B;D).
(1.3) Let r � u and s < v. As before, by EC, Lemma 4 and tran-

sitivity we get ((A \ C) [ (A n C)r ; C) � ((B \D) [ (B nD)s ; D). Since
r� u > s� v, then u� r < v� s. Then we can apply IND (u� r)-times ob-
taining

�
(A \ C) [ (A n C)r+u�r ; C

�
�
�
(B \D) [ (B nD)s+u�r ; D

�
. That

is, (A;C) �
�
(B \D) [ (B nD)s+u�r ; D

�
. By Lemma 3,�

(B \D) [ (B nD)s+u�r ; D
�
� (B;D) :

Then, by transitivity, (A;C) � (B;D).
(2) Let r � u = s� v. Assume, without loss of generality r � s (u � v).
If r � u (s � v), then, like in case (1), by EC, Lemma 4 and transitivity

we get

((A \ C)u [ (A n C) ; C) � ((B \D)v [ (B nD) ; D) ;

and by IND (r � u)(= s� v)-times, (A;C) � (B;D).
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If r < u (s < v), then, by EC, Lemma 4 and transitivity we get

((A \ C) [ (A n C)r ; C) � ((B \D) [ (B nD)s ; D) ;

and by IND (u� r)(= v � s)-times, (A;C) � (B;D).
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