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1 Introduction

In the past decades, the amount of worldwide equity transactions that were pro-
cessed by electronic trading platforms increased significantly. In Germany, over
90% of equity transactions are executed by the Xetra System operated by German
stock exchange, cf. Gruppe Deutsche Börse (2003). Other well-established Euro-
pean equity trading platforms are the Pan European stock exchange, Euronext,
which connects the stock exchanges of Amsterdam, Brussels, and Paris, the Por-
tuguese stock exchange BVLP (Bolsa de Valores de Lisboa e Porto), and the
London International Financial Futures and Options Exchange (LIFFE). Many
countries including China are currently in the process of establishing their own
domestic electronic equity trading platforms.

There are at least three advantages of using electronic equity trading platforms
instead of trading on conventional floor markets. First, electronic platforms pro-
vide more real time information during the trading process. Second, electronic
trading platforms are more transparent than conventional markets. Equity prices
are stipulated according to well-specified market models while market makers
in conventional markets have considerable influence on the price determination.
This ‘black-box’ argument applies in particular for prices which are negotiated
among a small number of dealers. Third, transaction costs of electronic equity
trading platforms are on average lower than those of conventional floor markets.

Despite the popularity of electronic trading systems, little is known about a mi-
croeconomic foundation of the market models and the investment strategies that
are adapted to these markets, e.g., see Harris (1990) and Huang & Stoll (1991).
Electronic equity markets have attracted only relatively little attention in the
theory of financial markets. The classical closed-form analysis in the literature
derives asset market prices from intertemporal equilibrium conditions assuming
that asset markets clear and expectations are always rational, e.g., see Ingersoll
(1987), Pliska (1997), or LeRoy & Werner (2001). Böhm, Deutscher & Wen-
zelburger (2000) pointed out that this classical approach involves two implicit
conditions: One for the assumption of market clearing in each trading period
and the other for the rational-expectations hypothesis. The latter condition may
be replaced by introducing the notion of a forecasting rule along with the concept
of a perfect forecasting rule as an operational concept for rational expectations.
The market-clearing condition, however, still remains an unresolved conceptional
problem as it is easy to construct an asset market for which market-clearing prices
do not exist generically, e.g., see Böhm (2002). This theoretical insight provides
the motivation to study the market mechanisms of ‘real’ financial markets which
handle a great diversity of traders every day. A prominent example of such mar-
kets is an electronic equity trading platform in which buyers and sellers trade
with each other through a computer system.

One of the well-established electronic equity trading systems is organized by
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the German stock exchange (Deutsche Börse) in Frankfurt, Germany. Deutsche
Börse operates an electronic equity trading platform called Xetra which is an
order-driven system in which agents can trade equities by submitting certain
types of order specifications through a computer interface. A description of this
interface along with the market models is found in a brochure distributed by
Gruppe Deutsche Börse (2003). Despite the clarity of the Xetra market models,
literature in financial markets so far has provided only little understanding of
the nature of the formation of auction prices and final transactions in electronic
equity markets and its implication for possible investment strategies. The price
mechanism of electronic equity markets has intuitively been described in Sharpe,
Alexander & Bailey (1999), however, without formal rigor.

Xetra market models consist essentially of two trading forms, continuous trading
and (Xetra) auctions. This paper focuses on the Xetra auction which is composed
of three phases: a call phase, a price determination phase, and an order book
balancing phase. During the call phase, traders may submit order specifications.
Orders will be tagged with a time-priority index and collected in an order book
for each equity. The call phase has a random end after a fixed minimum time
span and is followed by the price determination phase in which the auction price
is determined in light of the Xetra market model. As soon as the auction price
has been stipulated, orders are matched and transactions are carried out. For
equities without market imbalance information, the surplus is offered again to
traders in the order book balancing phase when not all orders in the order book
can be fully executed. At the end of the auction process, all orders which were
not or only partially executed are transferred to the next possible trading form
or deleted according to their trading restrictions.

This paper aims at a formal description of the price and allocation mechanism
of Xetra auctions. Section 2 depicts a formal representation of the demand and
supply schedules. Section 3 formalizes the Xetra auction price mechanism as well
as an investigation of the properties of this price mechanism. Section 4 describes
the Xetra auction allocation mechanism along with a discussion of its properties.
Section 5 concludes this paper with an outline of future research.
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2 Demand and Supply Schedule

We describe the Xetra auction of a single equity. Xetra auctions handle several
types of orders: limit orders, market orders, market-to-limit orders, iceberg or-
ders, stop orders and quotes. Xetra auctions consider Market-to-limit orders as
market orders, iceberg orders as limit orders, and stop orders as either market
orders or limit orders depending on the imposed trading restrictions. Quotes are
handled as two orders (a limit bid and another limit ask simultaneously) in the
order book. Hence, in essence, Xetra auctions handle two types of orders: limit
orders and market orders. An order specification with a claim to sell is called
an ask (limit/market) order and an order with a claim to buy is called a bid
(limit/market) order.

During the call phase, Xetra collects all asks and bids quoted by traders in an
order book, labeled with a time-priority index. Assume that there are I + 1 > 2
bids, indexed by i ∈ {0, 1, . . . , I} and J +1 > 2 asks indexed by j ∈ {0, 1, . . . , J}.
In particular, assume that bid 0 and ask 0 are market orders while the rest are
limit orders. Therefore, {1, . . . , I} is the index set of limit bids and {1, . . . , J}
the index set of limit asks.

All these orders constitute the demand and the supply side of the market. To
formulate the price and the allocation mechanism of Xetra auctions, we first focus
on a convenient presentation of individual bids and asks or, in other words, of
individual demand and supply schedules.

2.1 Demand-to-buy schedule

For bid 0, which is a market order with a non-negative quantity d0, the individual
demand function is:

L
D
0 :

{

R+ −→ R+

p 7−→ d0

.

Each bid i ∈ {1, . . . , I} consists of a price-quantity pair (ai, di), which states the
intention to buy di shares when the auction price is no higher than ai. Bid i can
be represented as an individual demand function as follows.

If 1AD
i
(p) denotes a characteristic function of the compact interval AD

i = [0, ai]
such that

1AD
i
(p) :=

{

1 when p ∈ AD
i ,

0 when p ∈ R+ \ AD
i ,

we define the individual demand function that represents bid i by the step func-
tion

L
D
i :

{

R+ −→ R+

p 7−→ di1AD
i
(p)

. (1)
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Figure 1: The Individual demand function.
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Figure 2: The Aggregate demand function.

The aggregate demand function is defined as the sum of the individual demand
functions:

ΦD :

{

R+ −→ R+

p 7−→
∑I

i=0 L
D
i (p).

(2)

Without loss of generality, assume aI > . . . > a2 > a1 > 0. Then we obtain the
following lemma:

Lemma 1. Let aI > . . . > a2 > a1 > 0. The aggregate demand function ΦD(p)
is non-increasing and takes the form:

ΦD(p) =
I

∑

i=0

αi1Ai
(p), p ∈ R+, (3)
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where αi := d0 +
∑I

k=i+1 dk, i = 0, 1, . . . , I − 1, αI := d0 and A0 := [0, a1],
Ai := (ai, ai+1], i = 1, . . . , I − 1, AI := (aI , +∞).

Proof. Notice that bid 0, which is the market order, is executable for any
p ∈ R+. {A0, . . . , AI} is by construction a partition of R+. Let i∗ ∈ {0, . . . , I−1}
be arbitrary but fixed. Then p ∈ Ai∗ implies that all bids i = 0, i∗ + 1, . . . I are
executable. The corresponding aggregate volume is αi∗ = d0+

∑I

k=i∗+1 dk. p ∈ AI

implies that only bid 0 is executable because p > aI . The corresponding aggregate
volume is αI = d0. This establishes the specific presentation of the aggregate
demand function. And ΦD is non-increasing since α0 > α1 > . . . > αI .

2.2 Supply-to-sell schedule (asks)

For ask 0, which is a market order with a non-negative quantity s0, the individual
supply function is:

L
S
0 :

{

R+ −→ R+

p 7−→ s0

.

Each ask j ∈ {1, . . . , J} consists of a price-quantity pair (bj , sj), which states the
intention to sell sj shares when the auction price is no lower than bj . Analogous
to the bids, ask j can be represented as an individual supply function as follows.
If 1BS

j
(p) denotes a characteristic function of the interval BS

j = [bj , +∞), the

individual supply function that represents ask j is given by the step function:

L
S
j :

{

R+ −→ R+

p 7−→ sj1BS
j
(p)

. (4)

Price

Quantity

s0
L

S
0 (p)

(a) the market order: ask 0

Price

Quantity

bj

sj

L
S
j (p)

(b) the limit order: ask j

Figure 3: The Individual supply function.
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Figure 4: The Aggregate supply function.

The aggregate supply function is defined as the sum of the individual supply
functions

ΦS :

{

R+ −→ R+

p 7−→
∑J

j=0 L
S
j (p)

. (5)

Without loss of generality, let bJ > . . . > b2 > b1 > 0. Then we obtain the
following lemma:

Lemma 2. Let bJ > . . . > b2 > b1 > 0. The aggregate supply function ΦS(p) is
non-decreasing and takes the form:

ΦS(p) =

J
∑

j=0

βj1Bj
(p), p ∈ R+, (6)

where β0 := s0, βj := s0 +
∑j

k=1 sk, for j = 1, . . . , J ;

and B0 := [0, b1), Bj := [bj , bj+1), for j = 1, . . . , J − 1, BJ := [bJ , +∞).

Proof. Notice that ask 0, which is the market order, is executable for any
p ∈ R+. {B0, . . . , BJ} is by construction a partition of R+. p ∈ B0 implies
that only ask 0 is executable. The corresponding aggregate volume is β0 = s0.
Let j∗ ∈ {1, . . . , J} be arbitrary but fixed. Then p ∈ Bj∗ implies that all asks
j = 0, 1, . . . , j∗ are executable. The corresponding aggregate volume is βj∗ =
s0 +

∑j∗
k=1 sk. This establishes the specific presentation of the aggregate supply

function. And ΦS is non-decreasing since βJ > . . . > β1 > β0.
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3 Xetra Auction Price Mechanism

The call phase stops with a random end after a fixed minimum time span and
is followed by the price determination phase during which the auction price is
determined and all feasible transactions are executed. In price determination
phase the order book is closed and no new orders will be accepted. The Xetra
auction price is determined by Xetra according to a set of well-specified pricing
rules described in the brochure published by Gruppe Deutsche Börse (2003):

A limit price with the highest executable order volume and the lowest surplus
is called a candidate price.

Rule 1. The auction price is the candidate price if there is only one candidate
price.

Rule 2. If there is more than one candidate price, then there are four cases:

Rule 2.1. If the surplus for all the candidate prices is on the demand
side, then the auction price is stipulated as the highest candidate price.

Rule 2.2. If the surplus for all the candidate prices is on the supply side,
then the auction price is stipulated as the lowest candidate price.

Rule 2.3. If there is no surplus for all the candidate prices, a reference
price Pref designated by Xetra is included as an additional criterion. The
auction price is determined as follows:

Rule 2.3.1. The auction price is the highest candidate price if the
reference price is higher than the highest candidate price.

Rule 2.3.2. The auction price is the lowest candidate price if the
reference price is lower than the lowest candidate price.

Rule 2.3.3. The auction price is the reference price if the reference
price lies between the highest candidate price and the lowest candi-
date price.

Rule 2.4. If there are some candidate prices with a surplus on the supply
side and others with a surplus on the demand side, then the upper bound
price is chosen as the lowest candidate price with a surplus on the supply
side and the lower bound price is chosen as the highest candidate price
with a surplus on the demand side, which is always less than the upper
bound price as we will show later. Xetra determines the auction price
with these two prices and the reference price Pref :

Rule 2.4.1. The auction price is the upper bound price if the reference
price is higher than the upper bound price.

Rule 2.4.2. The auction price is the lower bound price if the reference
price is lower than the lower bound price.
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Rule 2.4.3. The auction price is equal to the reference price if the
reference price lies between the upper bound price and the lower
bound price.

Rule 3. If there are only market orders on both sides of the order book, i.e.
there is no limit price, then the auction price is the reference price Pref .

Rule 4. If Rule 1 to Rule 3 fail, there exists no auction price.

Rule 4 implies that there could be no executable order volume in Xetra such that
no Xetra auction price exists. In order to describe how the Xetra auction price
is determined formally, it is useful to represent the concepts of executable order
volume and surplus in Xetra.

3.1 Executable order volume and surplus

Let p ∈ R+ be some arbitrary price such that the aggregate demand ΦD(p) may
be unequal to the aggregate supply ΦS(p), then only the minimum of ΦD(p) and
ΦS(p) could possibly be traded. The quantity which is feasible to trade will
henceforth be called executable order volume and is defined by

ΦV :

{

R+ −→ R+

p 7−→ min{ΦD(p), ΦS(p)}
. (7)

The function (7) is also referred as the trading volume function. The excess
demand function is as usual given by

ΦZ :

{

R+ −→ R

p 7−→ ΦD(p) − ΦS(p)
. (8)

Xetra refers to the absolute value of the excess demand |ΦZ(p)| as the surplus.

3.2 The Xetra Auction Price Model

Only limit prices are taken into account by the pricing rules of Xetra auctions.
Let Ω0 := {a1, . . . , aI , b1, . . . , bJ} denote the set of all limit prices associated to
a given order book. The highest executable order volume Vmax is the maximum
value of the trading volume function in the domain Ω0 and given by

Vmax := max {ΦV (p) | p ∈ Ω0}.
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Notice that Vmax exists and is finite: the image of the trading-volume function
ΦV is bounded and Ω0 is finite. The set of volume maximizing prices is defined
by

ΩV := {p ∈ Ω0 | ΦV (p) = Vmax}

which is non-empty and finite. When Vmax = 0, the executable order volume is
zero and no transaction will be carried out in Xetra. Hence no Xetra auction
price exists.1

Suppose that a non-zero executable order volume exists so that Vmax > 0 for a
non-empty set ΩV . In the next step Xetra looks for the lowest surplus Zmin which
is defined by

Zmin := min
{

|ΦZ(p)|
∣

∣ p ∈ ΩV

}

.

The prices corresponding to the highest executable order volume and the lowest
surplus, referred to as candidate prices by the Xetra pricing rules, are given by

ΩZ :=
{

p ∈ ΩV

∣

∣ |ΦZ(p)| = Zmin

}

.

Since ΩV is well defined and finite, Zmin exists and ΩZ is also well defined and
non-empty. Denote by

PZ := max ΩZ and PZ := min ΩZ

the highest candidate price and the lowest candidate price in ΩZ , respectively.
When there is only one candidate price, the unique candidate price PZ = PZ is
chosen as the uniquely determined Xetra auction price.

Obviously, there could be more than one candidate price, i.e., #ΩZ > 1. Accord-
ing to Rule 2.1, when all the candidate prices are with a surplus on the demand
side, ΦZ(p) > 0 for all p ∈ ΩZ , the highest candidate price PZ is chosen as the
Xetra auction price.

According to Rule 2.2, when all the candidate prices are with a surplus on the
supply side, ΦZ(p) < 0 for all p ∈ ΩZ , the lowest candidate price PZ is chosen as
the Xetra auction price.

Otherwise, there could be no surplus for all candidate prices or there could be a
surplus on the demand side for some candidate prices while others with a surplus
on the supply side. In these two cases, a reference price Pref designated by Xetra
is included to determine the Xetra auction price.

In the first case, which corresponds to Rule 2.3, Xetra compares the reference
price Pref with the highest candidate price PZ and the lowest candidate price PZ

and chooses one of these three prices as the Xetra auction price using the pricing
rules described in Rule 2.3.1, Rule 2.3.2, and Rule 2.3.3.

1Note that ΩV = Ω0 when Vmax = 0.
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In the second case, which corresponds to Rule 2.4, Xetra chooses the upper bound
price Pmax which is the lowest candidate price with a surplus on the supply side
and the lower bound price Pmin which is the highest candidate price with a surplus
on the demand side. Formally, the upper bound price and the lower bound price
are defined as:

Pmax := min{p ∈ ΩZ | ΦZ(p) = −Zmin},

Pmin := max{p ∈ ΩZ | ΦZ(p) = Zmin}.

The upper bound price Pmax and the lower bound price Pmin are well defined in
this case, and Pmax > Pmin since ΦZ(p) is non-increasing so that any price with
a surplus on the supply side is always greater than any price with a surplus on
the demand side. Xetra compares the reference price Pref with the upper bound
price Pmax and the lower bound price Pmin and chooses one of these three prices
as the Xetra auction price according the pricing rules stated in Rule 2.4.1, Rule
2.4.2, and Rule 2.4.3

We are now in a position to formalize the pricing rules determining the Xetra
auction price PXetra in the following theorem.

Theorem 1. If Ω0 6= ∅ and Vmax > 0, then a unique auction price PXetra exists
and is determined by the following equations:

(i) If #ΩZ = 1, then PXetra = PZ = PZ .

(ii) If #ΩZ > 1, then

PXetra =































PZ , if ΦZ(PZ) > 0,

PZ , if ΦZ(PZ) < 0,

max{PZ , min{Pref , PZ}}, if ΦZ(PZ) = ΦZ(PZ) = 0,

max{Pmin, min{Pref , Pmax}}, if ΦZ(PZ) > 0

and ΦZ(PZ) < 0.

(9)

If only market orders exists so that Ω0 = ∅ with d0 > 0 and s0 > 0, then the
auction price is PXetra = Pref .

Otherwise, the auction price PXetra remains unspecified.

Proof. Ω0 6= ∅ implies that there exists at least one limit order, and Vmax > 0
implies that ΩZ 6= ∅. Thus, Rule 1 and Rule 2 are considered when Vmax > 0 and
Ω0 6= ∅.

Rule 1 states that PXetra = PZ = PZ when #ΩZ = 1, and Rule 2 describes four
cases when #ΩZ > 1, which corresponds to equation (9).
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Rule 2.1 corresponds to the case of all the prices in ΩZ having the same surplus
on the demand side ΦZ(p) > 0. This implies PXetra = PZ when ΦZ(PZ) > 0.
Analogously, Rule 2.2 corresponds to all the prices in ΩZ having the same surplus
on the supply side ΦZ(p) < 0. This implies PXetra = PZ when ΦZ(PZ) < 0.

According to Rule 2.3, the Xetra auction price PXetra = max
{

PZ , min{Pref , PZ}
}

when there is no surplus for all p ∈ ΩZ , which is ΦZ(PZ) = ΦZ(PZ) = 0.

Rule 2.4 states the case that ΦZ(PZ) < 0 and ΦZ(PZ) > 0. Derived from Rule
2.4.1, Rule 2.4.2, and Rule 2.4.3, the Xetra auction price is transformed as:
PXetra = max{Pmin, min{Pref , Pmax}}.

Rule 3 is applied when there exists market orders on both market sides, d0 > 0
and s0 > 0, and no limit orders, Ω0 = ∅. In this case PXetra = Pref .

Rule 4 is applied when all the rules above fail. In this case there is no Xetra
auction price PXetra.

Theorem 1 is a comprehensive characterization of the pricing rules of Xetra auc-
tions. Given any order book situation, a unique Xetra auction price PXetra, if it
exists, is determined by Theorem 1. Figure 5 illustrates the formulation of PXetra

in the case of surplus on the supply side.
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Figure 5: Surplus on the supply side: ΦZ(pz) < 0, PXetra = pz.
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3.3 Properties of Xetra Auction Price Mechanism

In this section, we compare the Xetra auction pricing rules with the classical
benchmark of market clearing prices of the Walrasian type and investigate its
properties.

Non-market-clearing auction price. In the traditional microeconomic lit-
erature, e.g., see Pindyck & Rubinfeld (2001), the aggregate demand and the
aggregate supply schedule are represented by continuous curves in price-quantity
space such that the market price and allocation are determined by the intersec-
tion point of the demand curve and the supply curve. The continuity of these
two curves ensures that the market price, if it exists, is with the property of the
highest trading volume and with zero surplus simultaneously. The market price
of this type is market clearing in the sense that the quantity supplied is equal to
the quantity demanded, i.e., zero surplus.

The fact that the aggregate demand function and the aggregate supply function
in Xetra auctions are step functions which are not continuous makes the Xe-
tra auction price mechanism different from the price mechanism in conventional
market mechanism. Xetra auctions follow two principles:

1. The auction price is with the highest executable order volume;

2. The auction price is with the lowest surplus.

They are constructed in such a way that the Xetra auction price can be deter-
mined even when market clearing is impossible.

Market welfare. To design a market mechanism, one has to predefine a set of
design objectives which serve as measurement of evaluating a market mechanism,
e.g., see Phelps, McBurney, Parsons & Sklar (2002). Considering market welfare,
which is the social welfare of a market, is one of the traditional measurements of
evaluating market mechanisms. It is therefore interesting to see how well Xetra
auction price mechanism fits for this measurement.

Derived from the traditional concept of market welfare, the market welfare of
a multi-unit double auction market is measured by the total surplus which is
composed of the sum over each bid of the demand surplus which is the bid
quantity times the positive difference between the bid price and the actual auction
price and the sum over each ask of the supply surplus which is the ask quantity
times the positive difference between the actual auction price and the ask price,
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see Domowitz (1990) or O’Hara (1995).2 In the case of Xetra auction, the total
surplus is the shadowed area in Figure 5.

For a competitive market mechanism, the maximum market welfare is automati-
cally ensured when the market price is in equilibrium, i.e., with zero surplus. This
is the case simply because the property of the highest executable trading quan-
tity, which guarantees the maximum market welfare, coincides with the property
of zero surplus in competitive market where demand and supply functions are
continuous.

Comparing with competitive markets, Xetra auction price achieves the maximum
market welfare when the auction price is with the property of the highest exe-
cutable order volume, which is any price p ∈ ΩV . Thus, the Xetra auction price
PXetra is also with the property of the maximum market welfare since PXetra ∈ ΩV .
Notice that the auction price with the maximum market welfare in Xetra auction
market mechanism is not always unique which is ascribed to the step functional
forms of demand and supply in Xetra. This is responsible for the non-uniqueness
of the price associated with the highest executable order volume.

The result above can be generalized to the case of any multi-unit double auction
market in which the demand function and the supply function are step functions,
stating that the property of the maximum market welfare is ensured when the
price is with the property of the highest executable order volume, even though
many auction prices guaranteeing maximum market welfare might exist due to
the step functional forms of demand and supply.

Limitation of limit prices. Apart from a preset reference price, Xetra auc-
tions consider only limit prices for possible auction prices. This seems to be
attributed to the operationality of auction price computation. However, the fol-
lowing example will show that this restriction discards prices which would lead to
a market clearing situation. It corresponds to Example 4 on page 36 in Gruppe
Deutsche Börse (2003).

Example: Consider one equity with one market order for buying 100 shares,
another market order for selling 100 shares, one bid with price-quantity (199, 100),
and one ask with price-quantity (202, 100). The order book situation is shown in
Figure 6.

In this example, Ω0 = {199, 202}, Vmax = 100 and the set of the corresponding
volume-maximizing prices is ΩV = {199, 202}. Zmin = 100 and the set of the
candidate prices is ΩZ = {199, 202}. Since there is surplus on the demand side as

2As stated in Pindyck & Rubinfeld (2001), the traditional concept of market welfare is
defined as the sum of the consumer surplus and the producer surplus. In a multi-unit double
auction market, the notion of the consumer surplus is translated into the notion of the demand
surplus and the notion of the producer surplus is replaced by the notion of the supply surplus.
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Price

Quantity

ΦD(p) ΦS(p)

100

200

198 199 200 201 202 203

Figure 6: Possibility of Market Clearing Price

well as on the supply side, Xetra applies Rule 2.4 leading to PXetra = 200 when
Pref = 200, PXetra = 202 when Pref = 203, and PXetra = 199 when Pref = 199.

As readily seen from Figure 6, any price p ∈ (199, 202) is market clearing but
not a limit price. Only when the reference price satisfies Pref ∈ (199, 202) could
the Xetra auction price be market clearing, since then PXetra = Pref . In this case,
market clearing could be obtained, for example, by taking the midpoint of the
interval (199, 202) and setting PXetra = 201.5. The Xetra auction pricing rules
thus exclude the possibility of market clearing by not taking into account prices
other than limit prices.

Li (2005) investigates a modified auction price mechanism which is also imple-
mentable on a computer system. It is shown that this modified auction price is
with the highest executable order volume and the lowest surplus and hence obeys
the principles of Xetra.

4 Xetra Auction Allocation Mechanism

Xetra computes the auction market allocation given the Xetra auction price
PXetra. Final transaction for each order specification is determined by Xetra
auction allocation mechanism for a given PXetra.
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4.1 The Xetra Auction Allocation Model

When an order is submitted to the order book, it is labeled with a time tag which
determines the time priority with which it is executed. The time tag attached
to each order determines the ranking of the execution in the order book. Given
a Xetra auction Price PXetra, executable orders are executed by time priority.
There are two execution sequences corresponding to the demand side (bids) and
the supply side (asks).

Denote the execution priority of bid i by ιd(i) and the execution priority of ask
j by ιs(j) respectively, where ιd(i) ∈ {0, 1, . . . , I} and ιs(j) ∈ {0, 1, . . . , J}. The
position in the execution sequence of bid i then is ιd(i), which implies that there
are ιd(i) bids which will be executed before bid i. Analogously, there are ιs(j)
asks which will be executed before ask j.

Market orders always have higher priority than limit orders, thus bid 0 and ask
0 are with the ranking of ιd(0) = 0 and ιs(0) = 0.

The final transaction for each order is highly affected by its position in the execu-
tion sequence since Xetra applies the rule of First Come First Serve (FCFS)
for the order execution.3 Given the fixed ranking of the execution sequence, bid
i will not be executed until all higher ranked bids are executed. The maximum
feasible quantity that bid i can get is therefore the quantity which higher ranked
bids have left over, that is, the positive difference between the highest executable
order volume ΦV (PXetra) = Vmax and the aggregate executed order volume before
bid i is handled. Thus, the maximum feasible quantity for bid i ∈ {0, 1, . . . , I}
is given by

L̄
D
i (PXetra) := max

{

0, ΦV (PXetra) −

ιd(i)−1
∑

m=0

L
D

ι−1

d
(m)

(PXetra)
}

, (10)

where ι−1
d (m) denotes the index of the bid which is in position m of the execu-

tion sequence of bids. If the individual demand L
D
i (PXetra) of bid i is less than

L̄
D
i (PXetra), then bid i is fully served and it receives

L
D
i (PXetra) =

{

di if PXetra ∈ [0, ai],

0 otherwise.

If L
D
i (PXetra) is greater than L̄

D
i (PXetra), bid i can only be partially executed.

The final transaction is L̄
D
i (PXetra) and bid i is rationed. Denoting the final

transaction of bid i by XD
i , we have

XD
i (PXetra) := min

{

L
D
i (PXetra), L̄

D
i (PXetra)

}

, i = 0, 1, . . . , I. (11)

3FCFS is equivalent to the rule First In First Out (FIFO).
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As regards the supply side, the maximum feasible quantity for ask j∈{0, 1,. . . , J}
is the positive difference between the highest executable order volume ΦV (PXetra)
= Vmax and the aggregate executed order volume before ask j is handled. The
maximum feasible quantity for ask j is given by

L̄
S
j (PXetra) := max

{

0, ΦV (PXetra) −

ιs(j)−1
∑

n=0

L
S

ι−1
s (n)

(PXetra)
}

, (12)

where ι−1
s (n) denotes the index of the ask which is in position n of the execution

sequence of asks. Denoting the final transaction for ask j by XS
j , similarly we

have
XS

j (PXetra) := min
{

L
S
j (PXetra), L̄

S
j (PXetra)

}

, j = 0, 1, . . . , J, (13)

where

L
S
j (PXetra) =

{

sj if PXetra ∈ [bj , +∞)

0 otherwise.

Summarizing, the Xetra auction allocation mechanism for any given Xetra auc-
tion price PXetra is given by







XD
i (PXetra) := min

{

L
D
i (PXetra), L̄

D
i (PXetra)

}

, i = 0, 1, . . . , I;

XS
j (PXetra) := min

{

L
S
j (PXetra), L̄

S
j (PXetra)

}

, j = 0, 1, . . . , J.
(14)

Notice that the aggregate final transaction of bids is equal to aggregate final
transaction of asks, that is,

I
∑

i=0

XD
i (PXetra) =

J
∑

j=0

XS
j (PXetra) = ΦV (PXetra) = Vmax.

Also notice that the market-clearing situation is included as a special case in
which all orders are fully executed:

{

L
D
i (PXetra) = XD

i (PXetra), i = 0, 1, . . . , I;

L
S
j (PXetra) = XS

j (PXetra), j = 0, 1, . . . , J.
(15)

4.2 Properties of Xetra Auction Allocation Mechanism

The Xetra auction allocation mechanism satisfies some well-known properties of
rationing mechanisms which are a allocation mechanisms under the assumption
of fixed market prices, see Benassy (1982) or Böhm (1989) for more details.
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Voluntary exchange. The property of voluntary exchange states that no
trader is forced to trade more than she claims. Intuitively, this property holds by
the very definition of Xetra orders. More formally, the Xetra auction allocation
mechanism (14) satisfies this property because for all i, j,

XD
i (PXetra) ≤ L

D
i (PXetra),

XS
j (PXetra) ≤ L

S
j (PXetra).

The short-side rule. According to Benassy (1982), the ‘short’ side of a market
is the market side where the aggregate transaction volume is smallest. It is thus
the demand side if there is excess supply, the supply side if excess demand exists.
The other side is called the ‘long’ side.

An allocation mechanism is called ‘efficient’, or frictionless, if no mutually ad-
vantageous trade can be carried out from the transaction attained. This implies
that traders on the short side of a market will realize their desired transactions.

Combining the property of voluntary exchange and market efficiency, we obtain
the so-called ‘short-side rule’ stating that traders on the short side will realize
all of their individual demand (supply). Formally, the Xetra auction allocation
mechanism (14) satisfies the short-side rule if

ΦD(PXetra) ≥ ΦS(PXetra) ⇒ XS
j (PXetra) = L

S
j (PXetra), ∀j; (16)

ΦD(PXetra) ≤ ΦS(PXetra) ⇒ XD
i (PXetra) = L

D
i (PXetra), ∀i. (17)

By analogy, we only verify condition (16). Clearly, ΦD(PXetra) ≥ ΦS(PXetra)
implies ΦV (PXetra) = ΦS(PXetra) and hence

ΦS(PXetra) −

ιs(j)−1
∑

n=0

L
S

ι−1
s (n)

(PXetra) ≥ L
S
j (PXetra), j = 0, 1, . . . , J,

which implies that (16) holds.

Anonymity. Trading in Xetra is anonymous in the sense that traders cannot
identify which trader enters an order specification before the final transaction is
determined, see Gruppe Deutsche Börse (2003). But traditional rationing theory
cares also about the property of anonymity of the allocation mechanisms.

Loosely speaking, an allocation mechanism is called anonymous, if any two traders
with the same characteristics attain the same final transaction. In the case of
Xetra auctions, any two bids i and i′ with the same time priority and the same
order specification attain the same final transaction XD

i (PXetra) = XD
i′ (PXetra).

The same holds true for asks. Hence, the Xetra allocation mechanism satisfies
the property of anonymity in that sense.
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Notice, however, that the concept of time priority in Xetra might be subject to
various influences which are beyond the control of the system in the sense of
queuing theory. In view of stochastic rationing mechanisms (Weinrich 1984), the
property of anonymity would hold only if the same orders attain the same final
transactions on average.

Manipulability. An allocation mechanism is called non-manipulable in quan-
tity if the final transaction of a trader, when she is rationed, faces a bound which
depends solely on the quoted quantities of the other traders that she can not
manipulate. It is called manipulable in quantity if the trader can, when she is
rationed, increase her final transaction by increasing her quoted quantity. In-
tuitively, non-manipulability implies that the individual quantity quoted by a
trader has no impact on her maximum feasible quantity and vice versa.

In Xetra, orders face upper bounds L̄
D
i (PXetra) and L̄

S
j (PXetra) for their final

transactions, should they be rationed. In the case of excess demand ΦD(PXetra) >

ΦS(PXetra), only bids will be rationed. The maximum feasible quantity of bid i is

L̄
D
i (PXetra) = max

{

0, ΦS(PXetra) −

ιd(i)−1
∑

m=0

L
D

ι−1

d
(m)

(PXetra)
}

, i = 0, 1, . . . , I

which is independent of its individual quantity L
D
i (PXetra).

Analogously, in the case of excess supply ΦS(PXetra) > ΦD(PXetra), only asks are
rationed. The maximum feasible quantity of ask j is

L̄
S
j (PXetra) = max

{

0, ΦD(PXetra) −

ιs(j)−1
∑

n=0

L
S

ι−1
s (n)

(PXetra)
}

, j = 0, 1, . . . , J

which is independent of its individual quantity L
S
j (PXetra).

At first sight, this observation seems to imply that the Xetra mechanism is non-
manipulable in the sense of classical rationing theory. However, traders do in-
fluence the Xetra auction price by revising their order specifications. Hence,
the situation in Xetra auctions are more complicated than traditionally assumed
in market with conventional rationing mechanisms in which prices are always
presumed to be fixed. To attain a profound understanding of the property of
manipulability in Xetra, one would have to further investigate the relationship
between individual order specifications and the Xetra auction price. This is left
for future research.

5 Concluding Remarks

This paper presented a formalization of the market mechanism of Xetra auctions
which belong to the class of multi-unit double auctions. It should be seen as a
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first step towards a better understanding of electronic equity trading systems such
as Xetra. Much work has to be done in order to obtain a more comprehensive
theory for such markets. One direction is to develop a microeconomic foundation
of portfolio selection. The traditional approach is to assume that investors are
price takers. Investors using electronic equity trading systems, however, have not
only full knowledge on how market prices and final transactions are determined
but also on the current order book situation. This raises the problem to what
extent this knowledge could be exploited for their trading strategies. Among
other issues, this problem will be treated in Li (2005).
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