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Abstract

In this paper we study hedonic coalition formation games in which players�
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1 Introduction

In this paper we address the question which players in a monotonic simple game with

veto control �should�form a winning coalition. Inspired by the work of Shenoy (1979),

we �x a semi-value (i.e., a symmetric probabilistic value (cf. Weber (1988), Monderer

and Samet (2002)) for the simple game and use it to extract players�preferences over

coalitions in a hedonic coalition formation game (cf. Bogomolnaia and Jackson (2002)

and Banerjee et al. (2001)). A solution of this (and each) hedonic game is a partition

of the set of players into coalitions. In this way, we have a suitable environment in

which the question of stability can be approached. As it can be easily seen, it is not

possible a coalition structure to be stable (to be de�ned later) if it does not contain a

winning coalition. Hence, the answer to the question which partitions are stable is at

the same time an answer to the question which winning coalitions should form with

respect to stability concerns.

We have chosen the strict core as our stability concept for hedonic games, being

the strongest stability notion based on coalitional deviations. As it turns out, if the

winning coalition in a coalition structure contains the union of all minimal winning

coalitions, then the coalition structure belongs to the strict core of the hedonic game.

In order to fully characterize the strict core, we consider symmetric simple games

with veto control and show that the winning coalition in each strictly core stable

partition contains the union of all minimal winning coalitions. Further, provided

that the veto player set is not a winning coalition in a symmetric simple game, the

partition containing the grand coalition turns out to be the unique strictly core stable

coalition structure.

The way of modelling we follow in this paper is a stylized one since, by using

a semi-value to induce preferences over coalitions, we assume players to be purely

o¢ ce seeking. This line of study has a long tradition since Riker�s (1962) classical

monograph (see Laver and Scho�eld (1990) for an extensive survey). Peleg (1981) and

Einy (1985) develop a theory of coalition formation in simple games with dominant

players, whereas Carreras (1996) studies, among others, the formation of partnerships
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(cf. Kalai and Samet (1987)) in simple games. In contrast to these papers, we do not

presuppose any (additional) internal structure on the winning coalition that forms; its

internal structure is rather determined by the notion of strict core stability applied to

the induced hedonic game. More precisely, we bring together a power index (applied

to a monotonic simple game with veto control) with the notion of (strict) core stability,

arriving at the �most stable�winning coalition containing the union of all minimal

winning coalitions. The methodology can of course be applied to a broader class

of problems, which leads us to a property of the simple game that appears to be

crucial. Shenoy (1979, Theorem 7.4) provides a su¢ cient condition for nonemptiness

of the core of an abstract game appropriately induced by the Shapley value (which

is the unique e¢ cient semi-value) of a proper monotonic simple game. The condition

says that the simple game should not exhibit the paradox of smaller coalitions (to be

de�ned later) with respect to the Shapley value. However, as we show in Section 3, a

monotonic simple game with veto control (being proper) satis�es Shenoy�s condition

with respect to the corresponding semi-value if and only if the veto player set is a

winning coalition. Thus, the classes of simple games considered by Shenoy (1979)

and in the present paper are rather complementary.

Surprisingly, up to our knowledge, situations of coalition formation involving veto

players have never been considered in the literature. One particular reason is that in a

simple game every coalition of parties which can constitute the necessary majority to

form a government is deemed as a winning coalition. However, this way of modeling

neglects many aspects a political party may consider as important when forming its

preferences over the possible governments it may be a member of � for instance,

the political views of the other members. And if these considerations are taken into

account while incorporating a government formation situation into the framework

of simple games, the resulting simple game will have a high probability to be veto-

controlled. That�s why our study provides an alternative point of view for the analysis

and explanation of government formation situations. Moreover, our results are valid

for both of two classical power indices, the Shapley-Shubik index (cf. Shapley (1953),
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Shapley and Shubik (1954)) and the Banzhaf index (cf. Bhanzaf (1965)), and also for

the whole class of semi-values which are considered by Carreras et al. (2003) as very

consistent alternatives to the mentioned classical power indices.

The paper is organized as follows. Section 2 includes basic notions and solution

concepts from the theory of simple games and hedonic games. The main results are

presented in Section 3. We conclude in Section 4 with some �nal remarks.

2 Preliminaries

2.1 Simple games

Let N be a �nite set of players, which we will keep �xed throughout the paper. A

transferable utility game (TU-game) with player set N is a function v : 2N ! R with

v(;) = 0. Each subset of N is a called a coalition. We denote the set of TU-games

with player set N by GN .
A game v 2 GN is monotonic if v(S) � v(T ) for every S; T 2 2N with T � S. A

player i 2 N is a null player in v if v(S [ fig) = v(S) for every S � N n fig. Players
i; j 2 N are symmetric in v, if v (S [ fig) = v (S [ fjg) for all S � N n fi; jg. Given
v 2 GN and S 2 2N , the restriction of v to S (a subgame of v) is denoted by vS and
is de�ned by vS(T ) = v(T ) for every T � S.
A game v 2 GN is called simple if v is monotonic, v(S) 2 f0; 1g for every S 2 2N

and v(N) = 1. We refer to a coalition S � N with v(S) = 1 as a winning coalition. A

winning coalition S is calledminimal winning if there does not exist a coalition T � S
which is winning. We denote by Wv the set of winning coalitions and byMWv the

set of minimal winning coalitions in the simple game v (cf. Shapley (1962)). Notice

that every simple game v is characterized by the set MWv of its minimal winning

coalitions.

A simple game v is proper if v(S) = 1 implies v(N n S) = 0. A player i 2 N is

a veto player in a simple game v if for all S � N , S 2 Wv implies i 2 S; the set of
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all veto players in v is denoted by veto (v). Notice that (veto (v) \ S) � veto (vS) is
valid for each S � N . The set of all monotonic simple games with veto control on

the player set N will be denoted by SN . Observe that v 2 SN implies the properness
of v.

A solution (of a TU-game) is a mapping ': GN ! RN taking each v 2 GN to

a single vector in RN , i.e., it assigns a real number 'i (v) to each player i 2 N . A
solution ' is e¢ cient if

P
i2N 'i(v) = v(N) and it is symmetric if 'i (v) = 'j (v) for

all i; j 2 N who are symmetric in v. A solution ' satis�es the null player property if

'i(v) = 0 for all i 2 N who are null players in v.

An e¢ cient, symmetric solution satisfying the null player property is the Shapley

value (cf. Shapley (1953), Shapley and Shubik (1954)) Sh : GN �! RN de�ned by

Shi(v) :=
X

S�Nnfig

jSj!(jN j � jSj � 1)!
jN j! (v(S [ fig)� v(S)) (i 2 N):

A probabilistic value also assigns to each player an average of his marginal con-

tributions and hence, it keeps an essential feature of the Shapley value. However, it

might fail to satisfy either e¢ ciency or symmetry. To be more precise, let P iN denote

the set of probability distributions on 2Nnfig, the family of coalitions not containing

i. A solution F : GN �! RN is called a probabilistic value (cf. Weber (1988)) if for

every v 2 GN and i 2 N ,

Fi(v) =
X

T�Nnfig

pi(T ) (v(T [ fig)� v(T )) ;

where pi 2 P iN can be interpreted as player i�s subjective evaluation of the probability
of joining di¤erent coalitions. For instance, the probabilistic value which is de�ned

by pi(T ) = 1
jN j
�jN j�1
jT j
��1
, i 2 N , is the Shapley value and the one which is de�ned

by pi(T ) = 1
2jNj�1

, i 2 N , is the Banzhaf value (cf. Banzhaf (1965)). A symmetric
probabilistic value is called a semi-value (cf. Monderer and Samet (2002)). The set

of all semi-values on GN is denoted by F .
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2.2 Hedonic games

For each player i 2 N we denote by Ni = fX � N j i 2 Xg the collection of all
coalitions containing i. A partition � of N is called a coalition structure. For each

coalition structure � and each player i 2 N , we denote by �(i) the coalition in �
containing player i, i.e., �(i) 2 � and i 2 �(i). The set of all coalition structures of
N will be denoted by CN .

Further, we assume that each player i 2 N is endowed with a preference �i over
Ni, i.e., a binary relation over Ni which is re�exive, complete, and transitive. Denote

by �i and �i the strict and indi¤erence relation associated with �i and by �:= (�1
; : : : ;�n) a pro�le of preferences �i for all i 2 N . A player�s preference relation over
coalitions canonically induces a preference relation over coalition structures in the

following way: For any two coalition structures � and �0, player i weakly prefers

� to �0 if and only if he weakly prefers �his� coalition in � to the one in �0, i.e.,

� �i �0 if and only if �(i) �i �0(i). Hence, we assume that players�preferences over
coalition structures are purely hedonic, i.e., they are completely characterized by their

preferences over coalitions. Finally, a hedonic game (N;�) is a pair consisting of the
set of players and a preference pro�le.

Unlike solution concepts for (simple) cooperative games do, there is no worth to

distribute in hedonic games. The relevant question is rather, which coalition structure

should form, taking players�preferences into account. The basic property that we

require is strict core stability.

Given a hedonic game (N;�), a partition � of N is strictly core stable for (N;�),
if there does not exist a nonempty coalition X such that X �i �(i) holds for all i 2 X
and X �j �(j) is true for some player j 2 X. � is core stable if there does not exist a
nonempty coalition X such that X �i �(i) holds for each i 2 X. Put in other words,
a coalition structure � is strictly core stable if no group of players are willing to form

a coalition, so that each player is at least as well o¤ with this new coalition and

some player is better o¤ compared to the corresponding coalitions in �. Clearly, a

weaker notion of coalitional deviation is incorporated in the de�nition of core stability
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- everyone in the deviating coalition should be better o¤. Observe that strict core

stability implies core stability. In what follows, we denote by SC (N;�) the set of all
strictly core stable coalition structures of a hedonic game (N;�). Alternatively, we
call SC (N;�) the strict core of (N;�).

3 Coalition formation

Given a game v 2 SN and a semi-value F 2 F , we de�ne a hedonic game (N;�) by
inducing players�preferences over coalitions in the following way (cf. Shenoy (1979),

Dimitrov and Haake (2005)). For each i 2 N and for all S; T 2 Ni,

S �i T if and only if Fi (vS) � Fi (vT ) : (1)

According to (1), player i�s preferences over any two coalitions S and T he may

be a member of are induced by i�s semi-value in the simple game restricted to S

and T , respectively. Notice that paying attention to the corresponding coalitions is

compatible with the very de�nition of a hedonic game - each player in such a game

evaluates any two coalition structures based only on his preferences over the coalitions

in the two partitions he belongs to (cf. Aumann and Dréze (1974), Shenoy (1979)).

3.1 Strict core existence

We now turn to the question whether there exist strictly core stable coalition struc-

tures for hedonic games induced as in (1). For v 2 SN , let

Pv := fS � N j S � ([S02MWvS 0)g

and

CPvN :=
�
� 2 CN j � \Pv 6= ;

	
:

In other words, the set CPvN consists of all coalition structures containing a winning

coalition which includes all minimal winning coalitions. Our main result in this
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paper states that all coalition structures from CPvN are strictly core stable. In order

to present this result, we need the characterization of semi-values de�ned on games

with �nite support provided by Dubey et al. (1981).

Theorem (Dubey et al. (1981), Theorem 1(a)) Let U be an in�nite set of players and

� denote the space of all TU-games on U with a �nite carrier. Then F is a semi-value

on � if and only if there exists a Borel probability measure P on [0; 1] such that for

every �nite coalition N and for every v 2 � with carrier N , F (v) = FP(v), where

FP;i(v) =
X

S�Nnfig

�jN j(jSj) (v(T [ fig)� v(T )) ; i 2 N (2)

with

�jN j(jSj) =
Z 1

0

tjSj(1� t)(jN j�jSj�1)dP(t): (3)

Moreover, the correspondence P ! FP is one-to-one.

Taking into account the above characterization, the following two lemmas will be

helpful.

Lemma 1 Let v 2 SN , F 2 F , T 2 Wv n fNg and j 2 N n T . Then, Fi
�
vT[fjg

�
�

Fi (vT ) for each i 2 veto(v).

Proof. For Q � N , let MW v
Q denote the set of all minimal winning coalitions in v

that are contained in Q. Observe that MW v
T[fjg � MW v

T and let i 2 veto(v). We
have by (2),

Fi(vT[fjg) =
P

fQ�(T[fjg)nfigjv(Q)=0;v(Q[fig)=1g �
jT j+1(jQj)

and

Fi(vT ) =
P

fQ�Tnfigjv(Q)=0;v(Q[fig)=1g �
jT j(jQj):

We establish the inequality Fi(vT[fjg) � Fi(vT ) by �rst showing that A � B [ C,
where the sets A, B, and C are de�ned as follows:

A := fQ � (T [ fjg) n fig j v(Q) = 0; v(Q [ fig) = 1g ;
B := fQ � T n fig j v(Q) = 0; v(Q [ fig) = 1g;
C := f(Q [ fjg) � (T [ fjg) n fig j Q 2 Bg:
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Let R 2 B[C. If R 2 B, then R is obviously a member ofA. Suppose now that R 2 C.
Then, there exists R0 2 B such that R = R0 [ fjg. Moreover, R is a losing coalition
since i 62 R is a veto player. We have also R [ fig 2 Wv by R0 [ fig 2 Wv and the

monotonicity of v. Hence, R 2 A which implies A � B[C. Furthermore, it can easily
be observed that the inclusion is strict, i.e., A � B[C, whenMW v

T[fjg �MW v
T , and

A = B [ C when MW v
T[fjg =MW

v
T .

Then,

Fi(vT[fjg) =
P

Q2A �
jT j+1(jQj)

�
P

Q2B[C �
jT j+1(jQj)

=
P

Q2B

h
�jT j+1(jQj) + �jT j+1(jQj+ 1)

i
=

P
Q2B[

R 1
0
tjQj(1� t)(jT j+1�jQj�1)dP(t)+R 1

0
tjQj+1(1� t)(jT j+1�(jQj+1)�1)dP(t)]

=
P

Q2B[
R 1
0
tjQj(1� t)(jT j�jQj�1)dP(t)]

=
P

Q2B �
jT j(jQj)

= Fi(vT )

where the third equality follows from (3) and hence, the assertion follows. Notice

that the inequality is strict when MW v
T[fjg � MW v

T and Fi(vT[fjg) = Fi(vT ) when

MW v
T[fjg =MW

v
T .

Lemma 2 Let v 2 SN , F 2 F and S = [S02MWvS 0. Then, for each T � N ,

Fi (vS) � Fi (vT ) for each i 2 veto(v).

Proof. Let T � N . If T is a losing coalition, by the monotonicity of v, we are done.
Obviously, MW v

T =MW
v
S for every T � S. Then, by Lemma 1,

Fi (vT ) = Fi (vS) for each i 2 S and each T � S: (4)

So, assume that T 2 Wv and T + S, and let j 2 N n T . In view of the proof

of Lemma 1, Fi
�
vT[fjg

�
= Fi (vT ) for each i 2 veto(v) if MW v

T[fjg = MW v
T , and

Fi
�
vT[fjg

�
> Fi (vT ) for each i 2 veto(v) if MW v

T[fjg � MW v
T . Consider a sequence

of players j1; : : : ; j` such that fj1; : : : ; j`g = S n T ; thus, T [ fj1; : : : ; j`g � S. Notice
that, by the de�nition of S, there is k 2 f0; : : : ; ` � 1g such that MW v

T[fj1;:::;jk+1g �
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MW v
T[fj1;:::;jkg (if k = 0, we set T [ fj1; : : : ; j0g = T ). Then, by (4) and the repeated

use of Lemma 1,

Fi(vS) = Fi(vT[fj1;:::;j`g) � Fi(vT[fj1;:::;j`�1g) � : : : � Fi
�
vT[fj1;:::;jk+1g

�
> Fi

�
vT[fj1;:::;jkg

�
� : : : � Fi(vT )

for each i 2 veto(v).

We are ready now to present our strict core existence result.

Proposition 1 Let v 2 SN , F 2 F and (N;�) be induced as in (1). Then, CPvN �
SC (N;�).

Proof. Let � be a partition of N containing S = [S02MWvS 0. Since CPvN �
SC (N;�) follows easily by Lemma 2 if � 2 SC (N;�), we proceed by showing the
strict core stability of �.

If MWv = fveto(v)g, then each player in N n veto(v) is a null player in v (and
thus, in each of its corresponding subgames). Hence, there is no coalition T 2 2N n�
that makes any of its members strictly better o¤ in comparison to the corresponding

coalitions in �.

Suppose now thatMWv 6= fveto(v)g and to the contrary, let there be a (winning)
coalition T � N such that

Fi (vT ) � Fi
�
v�(i)

�
for each i 2 T (5)

and

Fj (vT ) > Fj
�
v�(j)

�
for some j 2 T: (6)

Consider the following two possible cases:

Case 1 : S � T . By (4), Fi (vT ) = Fi (vS) for each i 2 S and each T � S. Hence,

Fi (vT ) = Fi
�
v�(i)

�
= Fi (vS) for each i 2 S\T , i.e., (6) should hold for some j 2 T nS.

Notice however that, by the monotonicity of v, (6) implies Fj (vT ) > 0 which is, since

j 2 N n S is a null player in v (and thus, in vT ), a contradiction to Fj (vT ) = 0.

10



Case 2 : S * T . In view of the proof of Lemma 2, we have Fi
�
v�(i)

�
= Fi(vS) > Fi(vT )

for each i 2 veto(v) � T , a contradiction to (5).

We would like �nally to mention that, given a simple game with veto control,

inducing a hedonic game by a semi-value (as in (1)) is crucial for the nonemptiness

of the strict core. Our �rst example illustrates this point.

Example 1 Let N = f1; 2; 3g and the game v 2 SN be given by its minimal winning
coalitionsMWv = f12; 13g. Let ' be a solution such that

'1 (vS) =

8<: 1
2
if S 2 f12; 13; 123g ;

0 otherwise.

'2 (vS) =

8>><>>:
1
2
if S = 12;

3
8
if S = 123;

0 otherwise.

'3 (vS) =

8>><>>:
1
2
if S = 13;

3
8
if S = 123;

0 otherwise.

Notice that ' is ine¢ cient since '1 (v) +'2 (v) +'3 (v) 6= 1. Let us �rst show that '
is not a semi-value. If the opposite were the case, then, by (2),

'i(v) =
X

S�Nnfig

�jN j(jSj) (v(T [ fig)� v(T )) ; i 2 N:

Since '2 (v) = �jN j(jf1gj) = 3
8
, �jN j(1) must be equal to 3

8
. But then '1 (v) =

�jN j(jf2gj) + �jN j(jf3gj) + �jN j(jf2; 3gj) � 6
8
contradicting with '1 (v) =

1
2
. Hence, '

is not a semi-value.

Taking the payo¤s according to ' to extract preferences over coalitions, the players

evaluate coalitions as follows:

12 �1 13 �1 123 �1 1:

12 �2 123 �2 2 �2 23:

13 �3 123 �3 3 �3 23:
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Collecting all preferences, we obtain a hedonic game (N;�) with preferences induced
by '. Inspecting (N;�), one �nds that SC (N;�) = ;.

3.2 Symmetric games

Notice that the inverse inclusion to the one in Proposition 1 can be proved only in

very special cases. For instance, it is easy to show that if either veto(v) 2 Wv or

jN j � 3, then CPvN = SC (N;�). However, in general and as exempli�ed next, the
strict core might be strictly larger than CPvN .

Example 2 Let N = f1; 2; 3; 4g and the game v 2 SN be given by its minimal

winning coalitionsMWv = f12; 134g. Players�payo¤s according to the Shapley value
are

Sh1 (vS) =

8>>>>><>>>>>:

7
12

if S = N;
1
2
if S 2 f12; 123; 124g ;

1
3
if S = 134;

0 otherwise.

Sh2 (vS) =

8>><>>:
1
2
if S 2 f12; 123; 124g ;

3
12

if S = N;

0 otherwise.

Sh3 (vS) =

8>><>>:
1
3
if S = 134;

1
12

if S = N;

0 otherwise.

Sh4 (vS) =

8>><>>:
1
3
if S = 134;

1
12

if S = N;

0 otherwise,

Taking this to extract preferences over coalitions, the players evaluate coalitions as

follows:

1234 �1 12 �1 123 �1 124 �1 134 �1 1 �1 13 �1 14:
12 �2 123 �2 124 �2 1234 �2 2 �2 23 �2 24 �2 234:
134 �3 1234 �3 3 �3 13 �3 23 �3 34 �3 123 �3 234:
134 �4 1234 �4 4 �4 14 �4 24 �4 34 �4 124 �4 234:

Collecting all preferences, we obtain a hedonic game (N;�). Inspecting (N;�), one
�nds that CPvN = ff1234gg � ff1234g ; f12; 34g ; f12; 3; 4gg = SC (N;�).

In order to provide a full characterization of the strict core of the induced hedonic

game, we will require the underlying simple game to be symmetric. Recall that v 2 SN

12



is symmetric, if S 2 Wv implies T 2 Wv for each coalition T with veto (v) � T and
jT j = jSj.

Proposition 2 Let v 2 SN be symmetric, F 2 F and (N;�) be induced as in (1).
Then, SC (N;�) = CPvN .

Proof. In view of Proposition 1 it is enough to show that if a partition � contains a

winning coalition T =2 Pv, then � =2 SC (N;�).
Notice �rst that by T =2 Pv, we have T 6= N . Let j 2 N n T and i 2 T n veto(v)

(such an i exists since, otherwise, T 2 Wv and T n veto(v) = ; would imply T 2 Pv).
Consider the coalition T 0 = (T n fig) [ fjg. By the symmetry of v, all non-veto
players in T are symmetric in vT and all non-veto players in T 0 are symmetric in

vT 0. Hence, by jT j = jT 0j, Fi (vT 0) = Fi (vT ) = Fi
�
v�(i)

�
for each i 2 T 0 n fjg, and

Fj (vT 0) > 0 = Fj
�
v�(j)

�
. It follows then that T 0 is a deviation (in the sense of the

strict core) from � and thus, � =2 SC (N;�).

The case in which the monotonic simple game v is proper and symmetric was

also analyzed by Shenoy (1979)1. In his Theorem 7.6, he shows that the core of

the hedonic game (induced as in (1) with F = Sh) consists in this case only of

partitions containing a minimal winning coalition with minimal cardinality. Consider

for instance the game (N; v) with N = f1; 2; 3g and MWv = f12; 13; 23g. If the
hedonic game is induced as in (1) with F = Sh, then the reader can easily check

that the core of the game consists of the following three partitions: f12; 3g, f13; 2g,
f23; 1g. Notice however that, in contrast to Proposition 1, neither of these partitions
is strictly core stable.

Finally, we show that the partition containing the grand coalition is the �most�

stable coalition structure if veto(v) =2 Wv.

Corollary 1 Let v 2 SN be symmetric, F 2 F and (N;�) be induced as in (1). If
veto(v) =2 Wv, then SC (N;�) = ffNgg.

1 In this work, a monotonic simple game v is de�ned to be symmetric if S 2 Wv implies T 2 Wv

for each coalition T with jT j = jSj. Notice that, with this de�nition of symmetry, a player has veto
power in v if and only if Wv = fNg.
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Proof. It follows from veto(v) =2 Wv that there is a player i 2 N n veto(v) who
belongs to a minimal winning coalition. Hence, by the symmetry of v, each player

from N n veto(v) is member of a minimal winning coalition; thus, [S02MWvS 0 = N .

In view of the proof of Proposition 1, SC (N;�) = ffNgg.

3.3 Veto games and the paradox of smaller coalitions

As already mentioned, the strict core of a hedonic game is the strongest stability

notion based on coalitional deviations. Another possibility, pursued by Shenoy (1979),

is to consider the weaker notion of the core. In his Theorem 7.4, Shenoy (1979) shows

that if players�preferences over coalitions are induced as in (1) with F = Sh, and

the simple game does not exhibit the paradox of smaller coalitions with respect to

the Shapley value, then the core is nonempty. More precisely, a simple game v does

not exhibit the paradox of smaller coalitions w.r.t. a cooperative solution concept ',

if for all S; T 2 Wv, S � T implies 'i (vS) � 'i (vT ) for all i 2 S. The absence of
this paradox in simple games respects the fact that if players form a smaller winning

coalition, then their power (as measured by ') should not decrease since there are

fewer players to share the same amount of power. It is worth mentioning that Table

A.1 in Shenoy (1979) lists all monotonic and proper simple games with up to four

players and veri�es presence or absence of the paradox with respect to the Shapley

value. In what follows, we present the conditions under which the paradox of smaller

coalitions w.r.t. a semi-value F 2 F is not present in a monotonic simple game with

veto control.

Proposition 3 Let v 2 SN , F 2 F and (N;�) be induced as in (1). The game v does
not exhibit the paradox of smaller coalitions w.r.t. F if and only if MWv = fveto(v)g.

Proof. LetMWv = fveto(v)g and take R; T 2 Wv with T � R. Then, Fi (vR) �
Fi (vT ) for each i 2 R follows easily from Lemma 2 by noticing that all players in

T n veto(v) are null players in v.
Suppose next that v does not exhibit the paradox of smaller coalitions with respect

14



to F . We show that jMWvj � 2 leads to a contradiction.
Let S1; S2 2 MWv, S1 6= S2 and � be a partition containing S = [S02MWvS 0.

Since S1 � S and v does not exhibit the paradox w.r.t. F ,

Fi (vS1) � Fi (vS) for each i 2 S1: (7)

Since S2 2MWv with S2 6= S1, it follows from Lemma 2 that Fi(vS) > Fi(vS1) in
contradiction to (7).

4 Concluding Remarks

In this paper we focussed on the stability of coalition structures containing the union

of all minimal winning coalitions (or one of its supersets) in simple games with veto

control. An important question about any stable coalition structure is whether there

exists a natural coalition formation dynamics which ensures the formation of that

coalition structure. For instance, Çiftçi et al. (2006) considers bilateral agreements

as an important coalition formation procedure in voting/government formation situ-

ations. This work focuses on the Shapley value as an appropriate measure of voting

power and analyzes, inspired by Sprumont (1990), the existence of sequences of bi-

lateral agreements that are population monotonic in the sense that each player�s

voting power does not decrease as the coalition to which he belongs grows through

the agreements in the sequence. As a result, these authors show that starting from

any coalition structure which does not contain any winning coalition, there exists a

sequence of population monotonic bilateral agreements among the elements of the

starting coalition structure which results in the formation of the union of all minimal

winning coalitions (or one of its supersets) if and only if the set of veto players in the

simple game is nonempty. Moreover, if the set of veto players is a winning coalition

(SC (N;�) = CPvN), then every such sequence results in the formation of the set of
veto players (or one of its supersets).
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