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1 Introduction

The debate on the “convergence controversy” does not seem to be resolved in the em-

pirical literature. Some economists claim that the distribution of income per capita has

become more unequal in the world while others claim the opposite. There is little doubt

that the operation of and the transactions in any markets today are global. This being

a commonly accepted fact, both sides claim a reinforcement of their own arguments. In

other words, for one group globalization is responsible for the global inequality while for

the other one it induces convergence of income per capita in the world.

Quah (1993, 1996a, 1997) was the first who revealed a robust tendency towards an

endogenous formation of convergence clubs and polarization of distribution of income

across countries. However, this literature uses countries as their unit of analysis. Jones

(1997) showed that the emergence of the so called “twin peaked” distribution disappears

once each country data point is weighted by population. More recently Sala-i-Martin

(2006) merged survey data about the income distribution within individual countries

with national account data to estimate the world income distribution. He concludes that

there has been a reduction in global inequality during the 1980s and 1990s. This result

is not surprising given the high growth trend of populous countries such as China and

India during that period. However, poor countries still comprise a large part of the world

population while rich countries represent only a small fraction (see Milanovic 2002).

These observations of course do not imply immediately that the global financial market

is to be blamed for the unequal distribution of income across nations. In fact, to the

author’s knowledge there are no theoretical studies of how the world income distribution

is influenced by the interaction among countries with different population sizes in a

global financial market.

If countries are equipped with identical technologies and there are no operation costs in

international financial market, the standard neoclassical theory would predict that per

capita incomes are immediately equalized. This is because the international financial

market would allocate the savings of the integrated economies to where it yields the

highest return inducing conditional convergence of per capita income across countries

even without international mobility of labor forces. The solution the literature offers

for this paradoxical results of the integrated economies is to incorporate some kind of

imperfections in financial markets.1 In a one sector overlapping generations model mod-

1Lucas (1990) discusses why capital does not flow from rich to poor countries to the extent that a
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ified to incorporate capital market imperfections, Boyd & Smith (1997) and Matsuyama

(2004) show that the interaction between competitive international financial trade can

amplify the inequality of income across nations. In the two country model of Boyd &

Smith (1997) capital investment in both countries is subject to a costly state verification

(CSV) problem. The country with higher capital stock provides more internal financing

mitigating the CSV problem. Higher internal financing in the rich country counteracts

the higher marginal product in the poor country. As a consequence an initially poorer

country may remain poorer in the long rung by the operation of international financial

markets. In Matsuyama (2004) domestic investment requires borrowing in the financial

market, which is constrained by domestic wealth. Poorer countries with higher marginal

productivity face borrowing constraints, which preclude countries from immediate global

convergence. This endogenous borrowing constraint generates multiple steady states for

the small open economy. In a world consisting of a continuum of small open economies,

symmetry breaking occurs in the presence of an international financial market. That is,

the symmetric steady state loses its stability and stable asymmetric steady states come

to exist.

One aim of this paper is to identify the feedback effects of interacting economies inte-

grated in international financial markets on world income distribution. These feedback

effects are absent in the model by Matsuyama (2004) since the atomless economies do

not influence the world interest rate. In their two country model by Boyd & Smith

(1997) dot not analyze these feedback effects in the international financial market ex-

plicitly and consider only two homogeneous countries. The present paper explores the

Matsuyama model under the alternative assumption that the world economy consists

of two countries which are possibly different in population size, instead of a continuum

of homogeneous small open economies. This confines the state space of the dynamical

system to two dimensions. As each country has a positive measure, the capital stock in

each country has an impact on the world interest rate and vice versa. It is shown that

new stable steady states emerge in the presence of the spillover effects of capital stock

via an endogenous determination of the world interest rate. Thus the present paper

identifies additional forces of international financial markets and characterizes all sets

of steady states of the two country model.

The present paper also analyzes the dynamics of the model when two countries have

heterogeneous population sizes. This may be justified on the ground that the relative

standard neoclassical model would predict.
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population size might be one of the most persistent attributes in the world economy

considering the immobile nature of population and the long time span needed for ad-

justment. It is shown that the heterogeneity in population sizes breaks the symmetric

structure of the model. The model implies that, if the initial capital stocks of the

two countries are sufficiently unequal, greater inequality in population size also induces

greater inequality in income distribution. This result may be consistent with the situa-

tion in today’s world, which consists for the large part of the world population of poor

countries while rich countries represent only a small fraction. The model predicts that if

two countries have sufficiently unequal initial capital stocks, the unequal population size

of countries induces an unequalizing force through the international financial market.

Boyd & Smith (1997) motivate their paper by referring to cyclicality of credit alloca-

tion between developing and developed economies in empirical data (see United Nations

(1992)). However, their theoretical findings are confined to a dynamical equilibrium

paths displaying damped oscillation. The asymmetric steady state generated by hetero-

geneous population sizes of the two countries in the present paper induces endogenous

cycles. This implies cycles in capital stock as well as international capital flows in the

long run in contrast to the transitory feature in Boyd & Smith (1997). As opposed to

the real business cycles models where fluctuation is viewed as a propagation mechanism

of exogenous shocks, the model implies that endogenous fluctuation is inherent in the

international financial market.

The remainder of the paper is organized as follows. Section 2 introduces the basic

structure of the model. Section 3 and 4 reviews the autarky case and the small open

economy case by Matsuyama (2004). Section 5 generalizes the model to a two country

case. Section 6 then investigates the effect of a change in relative population size on the

distribution of incomes between the two countries. Section 7 concludes.

2 The Model with Financial Market Imperfections

There are domestic markets for output, labor, capital, and an international credit mar-

ket. It is assumed that production factors are nontradable and agents cannot start an

investment project abroad. In other words we rule out foreign direct investment. This

is to focus on the effects of financial market globalization not on factor market glob-

alization. All markets operate under perfect competition implying that the respective

agents are price takers.
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2.1 The Production Sector

There exists a single firm that lives infinitely long in each country, which produces

aggregate consumption goods Yt in each period t using the total amount of labor Lt

and physical capital Kt by use of a linear homogeneous production function F (Lt, Kt).

Then output per capita is given by

yt = f(kt),

where yt = Yt

Lt
, kt = Kt

Lt
and f(kt) := F (1, kt). We assume that factor markets are

competitive meaning that the firm pays wages and returns on capital according to the

marginal product rule, i.e., W (kt) := f(kt) − ktf
′(kt) and r(kt) := f ′(kt) respectively.

We also assume that the capital stock depreciates fully after one period and there is no

population growth.

Assumption 1 The production function in intensive form f : R+ → R+ is C2, and

satisfies f(0) = 0, f ′′(k) < 0 < f ′(k), and the Inada conditions limk→∞ f ′(k) = 0 and

limk→0 f ′(k) = ∞.

To avoid multiple steady states that are not related to credit market imperfection we

impose the following assumption.

Assumption 2 limk→0 W ′(k) = ∞ and W ′′(k) < 0.

Many standard production functions satisfy Assumption 2. Especially, if we use the

Cobb-Douglas production function f(k) = Akα, W (k) = (1 − α)Akα which satisfies

Assumption 2.

2.2 The Consumption Sector

There are overlapping generations of two-period lived consumers, who supply one unit

of labor inelastically in the first period and consume only in the second period. There

are a continuum of young consumers indexed by j ∈ [0, 1] with income W (kt) at the

beginning of period t. They have two options to transfer their income to the next

period. Firstly they may lend their income in the competitive credit market and receive

rt+1W (kt) in the next period. Secondly they may start an investment project which
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comes in discrete, nondivisible units. The project the investor can start is restricted to

one which requires one unit of consumption goods. There exists a homogeneous linear

technology to transform one unit of consumption goods into R units of physical capital.

Assumption 3 W (R) < 1.

Assumption 3 ensures that W (kt) < 1 as we will see later. This assumption is crucial for

the results later since it means that young consumers always have to borrow an amount

1−W (kt) to start an investment project. The R units of physical capital are used as an

input for production. Then, the investor’s return in the next period will be the rate of

return on the capital investment minus the debt repayment, Rf ′(kt+1)−rt+1(1−W (kt)).

2.3 The Financial Market

There are two major assumptions which characterize the financial market. Firstly, the

investor has to be willing to start a project. We call this condition the profitability

constraint meaning the return from starting a project hast to be at least equal to the

return from saving. This requires

Rf ′(kt+1) ≥ rt+1. (1)

Secondly, the borrower in the financial market cannot credibly commit to repay more

than a fraction of the revenue of the investment project. Thus the borrowing constraint

is written as

λRf ′(kt+1) ≥ rt+1(1 − W (kt)), (2)

where λ ∈ (0, 1) can be interpreted as a measure of imperfection in the financial market.

Note if the financial market were perfect, i.e. λ = 1, this constraint would never be

binding. These two constraints have to always hold in the financial market. In other

words, agents must be willing and able to to start an investment project. The two

constraints can be summarized as

rt+1 ≤ Rt :=







λRf ′(kt+1)

1 − W (kt)
if kt < K(λ)

Rf ′(kt+1) if kt ≥ K(λ),

(3)

where Rt may be interpreted as the project productivity required in order for the project

to be undertaken in period t, and K(λ) is defined implicitly by W (K(λ)) = 1 − λ. If
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kt < K(λ), the borrowing constraint is the relevant constraint since the profitability

constraint is always satisfied. If kt ≥ K(λ), the profitability constraint is the relevant

constraint since the borrowing constraint is always satisfied. Therefore it depends en-

tirely on kt as to which constraint has to be considered in the financial markets. The

young consumers are price takers in the competitive financial markets and make invest-

ment decision to maximize their next period consumption. If kt ≥ K(λ), the agents

prefer starting the investment project to lending until the profitability constraint is

binding. In other words at the market equilibrium where the profitability constraint is

binding, young agents are indifferent between borrowing and lending. If kt < K(λ), the

agents always prefer starting the investment project to lending. This implies that at the

market equilibrium where the borrowing constraint is binding, some of young consumers

will be denied to take credit. If j̄t denotes the measure of investors among young agents

at time t, the aggregate capital investment is given by

kt+1 =

∫ j̄t

0

Rdj.

Obviously, the proportion of young agents credit who are rationed in equilibrium will

be (j̄t, 1]. In order to analyze the equilibrium we have to know how the interest rate is

determined.

3 The Autarky Case

Without international lending and borrowing, saving must be equal to investment in

the economy in equilibrium. From equation (3), investment is equal to zero if rt+1 > Rt,

and to one if rt+1 > Rt, and may take any value between zero and one if rt+1 = Rt.

Since the young agents receive wage income W (kt) and consume only when they are old,

the aggregate saving is equal to W (kt), which is less than one from Assumption 3. The

equilibrium interest rate is determined so that the aggregate investment is made equal

to the aggregate saving. This requires rt+1 = Rt in equilibrium.

Since the investment project requires one unit of consumption goods and the aggregate

saving is less than one, the fraction of young agents who become borrowers and start

the project, j̄t is equal to W (kt) while the rest become lenders.2 If kt ≥ K(λ), young

2This follows from “fraction of young agents × one unit of consumption goods = own endowment

+ borrowing = investment”=W (kt) × 1 = W (kt) × W (kt) + (1 − W (kt)) × W (kt) = W (kt)”.
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agents are indifferent between borrowing and lending. When kt < K(λ), on the other

hand, they strictly prefer borrowing to lending. Therefore, the equilibrium allocation

necessarily involves credit rationing, where the fraction 1 − W (kt) of young agents are

denied credit when the borrowing constraint is binding. Since the measure of the young

agents who start the project is equal to W (kt) and every one of them supplies R units

of physical capital,

kt+1 = RW (kt). (4)

Equation (4) completely describes the dynamics of capital formation in autarky. Note

that, if kt < R, kt+1 = RW (kt) < RW (R) < R from Assumption 3. Therefore, k0 < R

implies kt < R and W (kt) < 1 for t > 0, as has been assumed. From equations (3), (4),

and rt+1 = Rt, the equilibrium interest rate is given by

rt+1 =







λRf ′(RW (kt))

1 − W (kt)
if kt < K(λ)

Rf ′(RW (kt)) if kt ≥ K(λ).

(5)

Assumptions 2 and 3 ensure that equation (4) has a unique steady state k = K∗(R) ∈

(0, R) defined implicitly by k = RW (k), and for k0 ∈ (0, R), kt converges monotonically

to k = K∗(R). The function K∗(R) is increasing and satisfies K∗(0) = 0 and K∗(R+) =

R+ where R+ is defined by W (R+) = 1. It is worth mentioning that the dynamics of

capital formation in autarky is unaffected by the degree of credit market imperfection λ.

This is because domestic investment is made equal to domestic saving by the adjustment

of the interest rate. Hence, the credit market imperfection has only an influence on

whether the borrowing constraint will be binding or not in equilibrium.

4 The Small Open Economy

The world interest rate r is constant in the small open economy. This means that the

small open economy does not have any influence on the world economy and the influence

of the world economy on the small open economy is constant throughout time. From

Section 2 we know that both constraints are binding in equilibrium. Then we obtain

from equation (3) the following proposition.
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Proposition 1 There exists a temporary equilibrium of the small open economy defined

by

r =







λRf ′(kt+1)
1−W (kt)

if kt < K(λ)

Rf ′(kt+1) if kt ≥ K(λ).

(6)

if and only if Rf ′(R) ≤ r where kt+1 = j̄tR.

Proof: Note that j ∈ [0, 1] implies kt+1 ∈ [0, R]. Then Rf ′(kt+1) ∈ [Rf ′(R),∞). There-

fore Rf ′(R) ≤ r guarantees the existence for kt ≥ K(λ). Rf ′(R) ≤ r also guarantees

the existence for kt < K(λ) as 1 − W (kt) > λ. This proves the proposition. �

Figure 1 visualizes the idea of the temporary equilibrium. Recall that there exists a

continuum of young consumers with altogether, unit mass. If all young consumers start

an investment project, kt+1 = R. Given a fixed level of technology R, the lowest possible

revenue from the investment project is Rf ′(R). If the interest rate in the credit market

is lower than the lowest possible revenue, i.e., r < Rf ′(R), the profitability constraint

is always violated. If r ≥ Rf ′(R), there will be more and more young consumers who

start the investment project until r = Rf ′(kt+1). The proportion of young consumers

who start the investment project is denoted by j̄ ∈ [0, 1] in equilibrium.

PSfrag replacements

Rf ′(R)

r

j̄tR R

jR

Rf ′(jR)

Figure 1: Temporary equilibrium in the international financial market
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Solving equation (6) for kt+1, the physical capital investment of any country subject to

the two constraints is given by

kt+1 = Ψ(kt, r) :=







Φ

[
r(1 − W (kt))

λR

]

if kt < K(λ)

Φ
(

r
R

)
if kt ≥ K(λ)

(7)

where Φ := (f ′)−1. The following lemma characterizes the steady states of the small

open economy.

Lemma 1 (Lemma Matsuyama (2004))

(a) Equation (7) has at least one steady state.

(b) Equation (7) has at most one steady state above K(λ). If it exists, it is stable and

equal to Φ(r/R).

(c) Equation (7) has at most two steady states below K(λ). If there is only one, kL,

either it satisfies 0 < kL < λR/r and is stable, or kL = λR/r at which Φ is tangent

to the 45◦ line. If there are two, kL and kM , they satisfy 0 < kL < λR/r < kM <

K(λ), and kL is stable and kM is unstable.

For the exact condition for each of the three cases see Matsuyama (2004), Proposition 2.

Figure 2 shows the case where there exist three steady states of the small open economy.

Notice that there are two steady states below and one steady state above the critical

value K(λ). We denote these steady states by kL < kM < kH . The steady states kL and

kH are stable while the steady state kM is unstable. In contrast to the autarky case, the

credit market imperfection in the small open economy generates multiple steady states

due to the borrowing constraint. This is because domestic saving is not necessarily equal

to domestic investment in the small open economy. The world interest rate does not

adjust to equate domestic saving to domestic investment in the small open economy.

Instead, the fraction of young agents who start investment project changes so that either

the borrowing constraint or the profitability constraint is binding in equilibrium.

Section 2 introduced the model by Matsuyama (2004) with financial market imper-

fection. Section 3 showed that if saving is equal to investment, the financial market

imperfection has no influence on the dynamics of capital formation in autarky. Section
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kL

kt+1

Φ
(

r(1−W (kt))
λR

)

kt
kHkM K(λ)

Φ
(

r

R

)

Figure 2: Time one map of the small open economy

4 showed that the result in the autarky case no longer holds in the small open econ-

omy since the interest rate does not adjust to equalize the investment and the saving

in the domestic economy. Instead, the fraction of people who become lenders in the

international credit market is adjusted so that either the profitability constraint or the

borrowing constraint is binding in equilibrium. This has consequences on the dynamics

of the economy. While the autarky has a unique steady state, which is globally stable,

the small open economy may have multiple steady state, which are locally stable. The

small open economy model shows that access to international financial markets may be

detrimental to economies with low initial capital stock. This result can be interpreted

as a poverty trap where the small open economy, caught in a vicious cycle, suffers from

persistent underdevelopment. Section 5 generalizes the small open economy to a two

country case. Allowing for interactions between two identical economies enables us to

draw implications for inequality between countries.
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5 Two Homogeneous Countries

In Section 4 the world interest rate was assumed to be constant. In this section the world

interest rate will be determined endogenously by the excess demand of both countries.

Since we ruled out international factor movements, one country influences the other only

through the world interest rate. From equation (7) the capital investment in country i

is described by

ki
t+1 = Ψ(ki

t, rt+1). (8)

In the present model the world economy consist of two countries i = 1, 2 with arbitrary

initial conditions. Equating total credit demand and total credit supply, the equilibrium

interest rate rt+1 = R(k1
t , k

2
t ) in the international financial market is implicitly defined

by a solution of

LΨ(k1
t , rt+1) + (1 − L)Ψ(k2

t , rt+1) = R(LW (k1
t ) + (1 − L)W (k2

t )), (9)

where L ∈ (0, 1) is defined to be the relative population size of country 1.3 For a

Cobb-Douglas production function of the form f(k) := Akα, the equilibrium interest

rate can be obtained explicitly (see the appendix). Equation (9) defines the temporary

equilibrium of the two country model. By dropping the time index in (9) we obtain

LΨ(k1, r) + (1 − L)Ψ(k2, r) = R
[
LW (k1) + (1 − L)W (k2)

]
.

For any k1, k2 > 0 the right hand side of the above equation is a positive constant. The

left hand side is monotonically decreasing in r since Ψ(k, r) is monotonically decreasing

in r. Since limr→0 Ψ(k, r) = ∞ and limr→∞ Ψ(k, r) = 0, there exists a unique solution

r = R(k1, k2). Substituting the solution rt+1 = R(k1
t , k

2
t ) into equation (8) we can

explicitly solve the two dimensional dynamical system

ki
t+1 = Ψ(ki

t,R(k1
t , k

2
t )), i = 1, 2. (10)

In general, the spillover effect ∂R(k1
t , k

2
t )/∂ki,∀i = 1, 2 is non-zero.4

3In the Matsuyama model, there is a continuum of small open homogeneous economies, hence the

world interest rate is determined by the condition

∫ 1

0

Ψ(ki
t, rt+1)di = R

∫ 1

0

W (ki
t)di.

This equation with equation (8) defines the dynamical system which is infinite-dimensional.
4The spillover effect is zero when there is a continuum of small open economies as no country has a

positive measure.
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This section analyzes the dynamic behavior of the world economy with two homogeneous

countries as the benchmark case. By homogeneous we mean that all characteristics of

two economies are identical and they differ only in the stock of capital. In particular we

set the relative population size L to one half. In Section 6 we relax this assumption and

see how heterogeneous population sizes affect the existence and stability of the steady

states.

5.1 Multiple Steady States

The symmetric steady state is identical to the steady state of autarky. It can be easily

confirmed that setting L = 1 in equation (9) induces the same interest rate as setting

k1 = k2 in steady state when L = 1/2. In other words, the world interest rate is

identical to that of the autarky at the symmetric steady state. This implies that there

is no transfer of capital across two countries. Note also that the symmetric steady state

always exists.

Definition 1 From equations (8) and (9), the steady state in the two country model is

defined by a pair (k1, k2) satisfying for i = 1, 2

r = R(k1, k2) =







f ′(ki)λR

1 − W (ki)
if ki < K(λ)

f ′(ki)R if ki ≥ K(λ),

(11)

and

G(k1, k2) := L(k1 − RW (k1)) + (1 − L)(k2 − RW (k2)) = 0. (12)

Proposition 2 Suppose that Assumption 1 and 2 hold.

1. There exists a unique positive symmetric steady state value K∗(R) which coincides

with the steady state value of autarky defined implicitly by k = RW (k).

2. The function K∗ : [0, R+) → R++, R 7→ K∗(R) is increasing in R and satisfies

K∗(0) = 0.

Proof: The proof follows directly from equations (8) and (9). �

In the present model each country has a size of positive measure. This means that we

have to take the spillover effects through the endogenously determined world interest
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rate into account in order to analyze the stability properties of steady states. We

cannot assume that in any stable steady state of the world economy each country must

be at a stable steady state of the small open economy model as in Matsuyama (2004).

However, we can still make a somewhat weaker statement that at any steady state of the

two country model, each country must be at a steady state of the small open economy.

Let us consider only asymmetric steady states. Since both countries face the same world

interest rate, equation (11) for k1 6= k2 can be rewritten as

H(k1) = H(k2) if k1, k2 < K(λ) (13)

H(k1) = f ′(k2) if k1 < K(λ) < k2 (14)

H(k2) = f ′(k1) if k2 < K(λ) < k1, (15)

where H(k) := λf ′(k)
1−W (k)

,∀k ∈ [0, R+). If k1, k2 > K(λ), the steady state is a symmetric

steady state. It can be seen from equation (6) that each country must be at a steady

state of the small open economy to satisfy equation (13), (14) or (15). This implies that

(k1, k2) ∈ {(kL, kM ), (kM , kL), (kL, kH), (kH , kL), (kM , kH), (kH , kM)} at any asymmetric

steady state. Due to the symmetric structure of the model, these asymmetric steady

states emerge pairwise along the diagonal in the (k1, k2) space. Before analyzing the

exact condition for each asymmetric steady state to exist let us redefine the zero contour

G(k1, k2) = 0 in (k1, k2) space to help the technical exposition later on.

Lemma 2 Let k ∈ [0, K∗(R)], R > 0 and L = 1/2.

1. There exists an implicit function

g : [0, K∗(R)] × R+ → R++, (k; R) 7−→ g(k; R)

satisfying G(k, g(k; R)) = 0.

2. Due to the symmetry of G, G(g(k; R), k) = 0 holds. The zero contour of G(k1, k2)

is defined by the union of the graphs g(k1; R) and g(k2; R) in (k1, k2) space.

3. The map k 7→ g(k; R) is increasing if and only if k ∈ [0, (W ′)−1( 1
R
)]. By the

implicit function theorem dg(K∗(R);R)
dk

= −1.

Proof: The function k − RW (k) is decreasing for k ∈ [0, (W ′)−1( 1
R
)] and increasing

afterwards. Also 0 − RW (0) = 0 and K∗(R) − RW (K∗(R)) = 0. The zero contour
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G(k1, k2) = 0 can be written as {(k1, k2) ∈ R
2
+ : k1−RW (k1) = −(k2−RW (k2))}. The

property of function g follows directly. �

Figure 3 shows that the zero contour of G(k1, k2) is the union of graphs g(ki) for i = 1, 2

defined on [0, K∗(R)]. More formally,

G(R) := {(k1, k2) ∈ R
2
+|G(k1, k2) = 0}

= {(k, g(k; R))|k ∈ [0, K∗(R)]} ∪ {(g(k; R), k)|k ∈ [0, K∗(R)]}.

w

w
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Figure 3: The graph of g(k)

To prove the existence of asymmetric steady states we have to show that the zero

contour of G(k1, k2) has an intersection with the set defined by equations (13), (14) or

(15). Lemma 3 characterizes the property of equation (13).

Lemma 3

1. There exists an implicit function

h : [0, f−1(1)] → [f−1(1),W−1(1)), k 7→ h(k)

such that H(k) − H(h(k)) = 0.

2. The function h is decreasing in k and satisfies h(f−1(1)) = f−1(1).

See the appendix for a proof. �
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Given Lemma 3 we obtain the set

H := {(k1, k2) ∈ R
2
+|H(k1) − H(k2) = 0, k1, k2 < K(λ)}

= {(k, h(k))|k ∈ [0, f−1(1)]} ∪ {(h(k), k)|k ∈ [0, f−1(1)]}

Figure 4 shows the graph of h(k).
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Figure 4: The graph of h(k)

In the following we consider only the asymmetric steady states which lie above the

diagonal in the (k1, k2) space. In other words, we only consider points in the set U :=

{(k1, k2) ∈ R
2
+

∣
∣k1 ≥ k2}. Due to the symmetric structure of the system, the asymmetric

steady states in the set R
2
+ \ U can be obtained analogously.

Proposition 3 shows the existence of the steady state where k1, k2 < K(λ), i.e. (k1, k2) =

(kM , kL) =∈ U ∩ G(R) ∩ H by the intersection of the graphs h(k2) and g(k2; R). For

the following analysis we will use the Cobb-Douglas production function specified in the

following assumption.

Assumption 4 The production function is of the Cobb-Douglas form f(k) := Akα.

Proposition 3 Suppose that Assumption 4 and L = 1/2 are satisfied. Let Rc be defined

by f(K∗(Rc)) = 1. There exists the asymmetric steady state (k1, k2) = (kM , kL) if

R > Rc.

15



Proof: The asymmetric steady state (k1, k2) = (kM , kL) is defined by following equa-

tions

k1 = h(k2) (16)

k1 = g(k2) (17)

k2 < k1 < K(λ). (18)

The graph of g(k2; R) defined on [0, f−1(1)] has a unique intersection with the graph of

h(k2) if and only if K∗(R) > f−1(1) (see Figure 5). Due to the symmetric structure,

the asymmetric steady state (k1, k2) = (kL, kM) can be obtained analogously. �

PSfrag replacements
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K∗(Rc)

K∗(R′)

W−1(1)

K∗(R′′)

Figure 5: Existence of the asymmetric steady state (k1, k2) = (kM , kL)

To prove the existence of the steady state where k2 < K(λ) < k1, i.e., (k1, k2) =

(kH , kL), we have to show that the graph g(k2; R) has an intersection with the set

defined by equation (15). Equation (15) defines k1 as a function of k2. This function

φ : k2 7→ φ(k2) := (f ′)−1
(

λf ′(k2)
1−W (k)

)

is increasing if and only if k2 < f−1(1) and satisfies

φ(0) = 0 and φ(K(λ)) = K(λ). More formally,

F := {(k1, k2) ∈ R
2
+|H(k1) − f ′(k2) = 0, k2 < K(λ) < k1}

= {(k, φ(k))|k ∈ [0, K(λ)]}.

Hence, (k1, k2) = (kH , kL) ∈ G(R) ∩ F . Figure 6 shows the graph of φ(k).

Let RLM = {R ∈ [0, R+)|∃k ∈ (0, K∗(R)) : graph g(k2) ∩ graph φ(k2) ∩ graph K(λ) 6=

∅, k2 6= K(λ)}.
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Figure 6: The graph of φ(k)

Proposition 4 Suppose that Assumption 4 and L = 1/2 are satisfied.

1. There exists no asymmetric steady state where k1, k2 > K(λ) if φ′(K(λ)) > 0,

which is equivalent to λ > α.

2. RLM = RLM

3. For −1 < φ′(K(λ)) < 0, the asymmetric steady state (k1, k2) ∈ (kH , kL) exists if

and only if R ∈ [RLM , (K∗)−1(K(λ))).

4. The transition from (k1, k2) = (kM , kL) to (k1, k2) = (kH , kL) is continuous in R.

See the appendix for a proof. �

Let RLH = {R ∈ [0, R+)|∃k ∈ (0, K∗(R)) : g′(k; R) = φ′(k), g(k; R) = φ(k)}.

Proposition 5 Suppose that Assumption 4 and L = 1/2 are satisfied.

1. RLH = RLH

2. For φ′(K(λ)) < −1, the asymmetric steady state (k1, k2) = (kH , kL)

(a) exists if R ∈ [RLM , RLH)

(b) coexists with (k1, k2) = (kH , kM) if and only if R ∈ [(K∗)−1(K(λ)), RLH).
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See the appendix for a proof. �

Figure 7 visualizes the results in Proposition 3, 4, and 5 where intersections of zero

contours of the functions ∆k1(k1, k2):=k1 −Ψ1(k1, k2) and ∆k2(k1, k2):=k2 −Ψ2(k1, k2)

for different values of R yield the set of steady states.5 In what follows we will use the

standard parameter set in Table 1 as a benchmark case unless it is otherwise indicated.

A α λ L k1
0 k2

0 K(λ) Rc

1 0.5 0.15 0.5 5 2 2.89 2

Table 1: Standard parameter set
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Figure 7: Existence of steady states: K(λ) = 2.89

One finds that the system has one fixed point for 0 < R ≤ 2 as in (a), three fixed points

for 2 < R ≤ 3.4 as in (b) and (c) and five fixed points for R > 3.4 as in (d). Figure 7

(b),(c) and (d) corresponds to Proposition 3, 4, and 5 respectively.

5.2 Stability and Spillover Effects

First, we analyze the stability properties of symmetric steady states in Proposition

6. Note that the stability properties of the symmetric case are independent of the

population size. Second, we analyze the stability properties of asymmetric steady states

with the help of numerical methods.

Proposition 6 Suppose that Assumption 4 and L = 1/2 are satisfied. Two homoge-

neous countries converge to the symmetric steady state (K∗(R), K∗(R))

5Varying λ or α induces similar effects on steady states of the system through their influence on the

productivity of the economy.
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1. for all k1
0, k

2
0 > 0 if R < Rc

2. if k1
0 = k2

0 > 0 or k1
0, k

2
0 ≥ K(λ) for all R ∈ R+

See the appendix for a proof. �

Proposition 6 says that if the initial capital stocks of the two countries are high enough

so that they do not face the borrowing constraint, they will converge to a symmetric

steady state. This will happen even if the symmetric steady state is unstable, i.e.

K∗(R) ≤ K(λ). This is because if k1
0, k

2
0 ≥ K(λ), the capital stocks in both countries

adjust to the same level in the following period. Once the capital stocks in both countries

are the same, there is no trade between countries and both countries follow a convergence

path of the autarky economy.

To analyze the stability of the steady states globally, basins of attraction are derived

and shown by different colors in Figure 8 for different values of R. Figure 8 (b), (c) and

(d) show that the asymmetric steady states which emerge for R > 2 are stable. The

additional asymmetric steady states which emerge for R > 3.4 are unstable (Compare

Figure 7 (d) and Figure 8 (d)). The small open economy predicts that the stability of

steady states depends on whether the initial condition lies below or above K(λ). This

is no longer true in the two country model. The change in the stability property can

be observed through the following two examples. Firstly, Figure 8 (b) corresponds to

Proposition 3. If the world consisted of two small open economies, at this asymmetric

steady state one small open economy would be at an unstable steady state while the other

at a stable steady state. Nevertheless, this asymmetric steady state is stable. Secondly,

Figure 8 (c) and (d) show that both initial conditions of two countries need not to be

above K(λ) for two countries to converge to the symmetric steady state (kH , kH). Two

countries also converge to the symmetric steady state (kH , kH) if the capital stock of

one country is above K(λ) and the other sufficiently close to K(λ). These two examples

reveal the spillover effects in the two country model which change the stability property

of the world with small open economies. In other words, the endogenous world interest

rate generates stable steady states which do not emerge in the world with small open

economies.

The analysis above shows that the spillover effects can induce converging as well as

diverging forces on the world income distribution. This result is robust since there exist

open parameter sets in which either the symmetric steady states or the asymmetric

steady states are the only asymptotically stable steady states. The spillover effects exert
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Figure 8: Stability of steady states

a converging force when the borrowing constraint is not binding. When the borrowing

constraint is binding, global financial flows may not bring about convergence of income

across countries. If both countries have identical initial conditions there is no transfer

of physical capital between countries and they converge to the symmetric steady state.

The rich country is always better off at an asymmetric steady state than at a symmetric

steady state and the poor country worse off. Suppose k1 > k2 at the asymmetric steady

state. Then,

k1 − RW (k1) > 0 (19)

k2 − RW (k2) < 0. (20)

This implies that at the asymmetric steady state the country with the higher capital

stock has an excess demand of physical capital and the country with lower capital stock

an excess supply. Therefore, at the asymmetric steady state capital flows from the poor

country to the rich country.

6 Population Size Effects

The analysis of the world economy with two homogeneous countries showed that the

spillover effects change the stability property of the small open economy. This section

introduces heterogeneity into the two country model by allowing for different population

sizes. We investigate how robust the results for two homogeneous countries are with

respect to a change in the relative population size of two countries. This means that

we treat the relative population size as an exogenous parameter and investigate the
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sensitivity of the dynamical system with respect to the parameter. The size effect of the

population of one country is transmitted only through the world interest rate.

6.1 Multiple Steady States

It is obvious from equation (9) that the population size does not play any role if two

countries have the same capital stock. Thus, the symmetric steady state always exists

as in the case with two homogenous countries. Section 5.1 showed that the level of the

technology that transforms consumption goods into physical capital is decisive for the

existence of multiple steady states. This section considers the impact of the relative

population size on the existence of multiple steady states. We only consider the case,

L < 1/2, since the case, L > 1/2, can be analyzed analogously given the symmetric

structure of the model.

Proposition 7 Suppose that Assumption 4 is satisfied. There exists a critical value of

relative population size Lc below which two asymmetric steady states emerge for R < Rc.

Each of these asymmetric steady states is of the type (k1, k2) = (kM , kL) and the country

with the smaller population is richer at these steady states.

See the appendix for a proof. �

Proposition 3 showed that there exists a unique steady state which is symmetric if two

countries have the same population sizes and R < Rc. Proposition 7 says that if we

change the relative population size of the two countries, two asymmetric steady states

emerge even for R < Rc. The reason behind the emergence of the two coexisting asym-

metric steady states of the type (k1, k2) = (kM , kL) is the broken symmetric structure

of the economy. Figure 9 shows the effect of the broken symmetry. This is shown that

the zero contour of G(k1, k2) loses its symmetric in (k1, k2) space in response to the

change in the relative population size. Two asymmetric steady states emerge even for

R > Rc = 2 (Compare with Figure 5 ).

Notice that the population size only shifts the market clearing condition (9) while the

graph of h is unaffected. To show the full set of asymmetric steady states for L < 1/2, we

have to proceed analogously to the case for L = 1/2. To avoid a taxonomic presentation

of each case and further complications we proceed here instead to analyze the stability

properties of those asymmetric steady states by means of numerical simulation.
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Figure 9: Broken symmetric structure: R = 1.8.

6.2 Inequality of Nations

Figure 10 (a) shows the zero contours of the functions ∆k1(k1, k2) and ∆k2(k1, k2) for

L = 0.19 indicating that the zero contours are no longer symmetric along the diagonal.

Note also that there are two asymmetric steady states of the type (k1, k2) = (kM , kL)

as stated in Proposition 7. This can be confirmed by noting that at both steady states

k1, k2 < K(λ) = 2.89. The sensitivity of the behavior of the system on initial conditions

is shown in Figure 10 (b). It shows that the asymmetric steady state which lies closer

to the diagonal is unstable.
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Figure 10: Broken symmetric structure and inequality: L = 0.19, R = 1.8.
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Let us consider the following scenario. From Proposition 7 we know that the world

economy with two homogeneous economies has a globally stable steady state when

R < Rc. Two economies with arbitrary initial conditions would converge to this steady

state in which no international financial transaction takes place. As we move from

L = 1/2, to below Lc two asymmetric steady states emerge. Now it is crucial as far

as the distribution of incomes is concerned, which of these asymmetric steady states is

stable. The poor country who faces the borrowing constraint can only invest a fraction of

its income into investment projects and is therefore forced to become a lender to the rich

country in the international credit market. Figure 11 shows the population size effect

on inequality of nations. From Figure 10 we know that the asymmetric steady state,

which lies closer to the diagonal is unstable. For sufficiently unequal initial conditions,

this causes the world economy to converge to the asymmetric steady state where the

richer country remains richer while the poorer country remains poorer as the relative

population of the rich country declines. It is the world interest rate that forces both

countries to move together to adjust to the new situation.
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Figure 11: Population size effects on inequality: R = 1.8, K(λ) = 2.89.

If the relative population size of the rich country declines, the fraction of people who

are denied credit in the poor country increases since the borrowing constraint remains

the same. As a consequence, the supply in the international credit market increases

while the demand decreases. The rich country becomes a bigger borrower and the poor

country a bigger lender at a lower world interest rate.

Let us turn to empirical evidence. Milanovic (2002) found that the richest 25 percent

of the world’s population receives 75 percent of the world’s income even when adjusting
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for Purchasing Power Parity. The poorest 75 percent of the world’s population share

just 25 percent. This occurs because a large proportion of the world’s population lives

in the poorest countries, and within the poorest regions of those countries, particularly

in the rural areas of China, rural and urban India and Africa. It is beyond the scope

of this thesis, however, to conduct numerical calibration. Nevertheless, it is instructive

to show a simple numerical example to think about the implications of the model. The

results by Milanovic (2002) imply that the income per capita of the richest 25 percent of

the world’s population is approximately 9.1 times more than the the poorest 75 percent.

Figure 12 shows time series of the present model where two countries with very close

initial conditions diverge in the long run.
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Figure 12: Divergence of identical economies: L = 0.25, k1
0 = 2.1, k2

0 = 2, α = 0.504, λ =

0.1, R = 3.5.

The income per capita of country 1 converges to 1,118 while that of country 2 converges

to 0.123. This means that the income per capita of country 1, which composes 25 percent

of the world’s population, is approximately 9.1 time more than that of country 2, which

composes 75 percent of the world’s population. Thus, the model replicates the findings

of Milanovic (2002). Of course, we have to be cautious to interpret the implications

of the model. First of all, we separated the world into two units. This is, if at all, a

very rough approximation Secondly, we assumed that the two countries have identical

structural characteristics. We would typically expect the production elasticity α, the

technology to produce physical capital R, and the degree of imperfection in financial
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markets λ to be different across countries. However, the identical structure of the model

rather strengthens the implications of the model. That is, even if identical technology

were available to all the countries, the model predicts that a rich country would diverge

from a populous poor country.

6.3 Endogenous Fluctuations

Figure 13 shows a bifurcation diagram with respect to L for k1
t and k2

t where k1
0 > k2

0.

Firstly, it can be confirmed that the greater inequality in population sizes is associated

with greater inequality in income. This means that if the initial conditions of both

countries are sufficiently different, both countries converge to the asymmetric steady

state that is associated with increasing inequality as the relative population size of the

rich country declines.
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Figure 13: Bifurcation diagram: R = 1.8, K(λ) = 2.89.

We observe that the asymmetric steady state (k1, k2) = (kM , kL) loses its stability for

sufficiently low L, undergoing a bifurcation. This means that if both countries are

unequal initially and if population of the rich country is sufficiently small, fluctuations

are an inherent feature of the international credit market. The asymmetric steady state

loses its stability and a closed invariant curve appears (see Kuznetsov (1998) for details).

This can be confirmed by looking at Figure 14.

The following proposition summarizes the observations.
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Figure 14: Endogenous cycles: L = 0.175, R = 1.8.

Proposition 8 Suppose that Assumption 4 is satisfied. Consider the dynamics of the

world economy by changing the bifurcation parameter L. There exists an open parameter

set with coexisting asymmetric steady states (k1, k2) = (kH , kL) and (k1, k2) = (kM , kL).

The asymmetric steady state (k1, k2) = (kM , kL) undergoes a supercritical Neimark-

Sacker bifurcation.

See the appendix for a proof. �

Note that bifurcations occur at two points. At the bifurcation point with lower L the

steady state value of k1 reaches K(λ) = 2.89. At this point the dynamical system is

not differentiable, as it switches from the case in which one country faces the borrowing

constraint to the case in which both countries face the borrowing constraint. As shown

in the proof of Proposition 8, the asymmetric steady state (k1, k2) = (kH , kM ) is stable

while (k1, k2) = (kM , kL) is unstable after this bifurcation point. This implies that

there are two forces which pull the world economy in opposite directions. One pulls

the economy close to k2 < K(λ) < k1 and the other pulls the economy away from

k2 < K(λ) < k1. These forces generate non-stationary orbits of k1
t around K(λ). This

can be confirmed by looking at Figure 15. The observed bifurcation phenomenons imply

that the spillover effects generated by two countries with different population size are

the source of endogenous fluctuations of capital stocks in both countries.

7 Concluding Remarks

We have examined how the income distribution between the two countries is influenced

by the spillover effects on capital stocks in both countries via an endogenous determi-
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Figure 15: Endogenous cycles: L = 0.15, R = 1.8.

nation of the world interest rate. We singled out the spillover effects by comparing the

results of the world economy model with small open economies to a two country model.

The two country model allowed us to find a closed form of the dynamical system and rely

on numerical simulations when analytical results could not be obtained. The symmetry

breaking results in Boyd & Smith (1997) and Matsuyama (2004) hold in the present pa-

per. There are some additional common features in Boyd & Smith (1997), Matsuyama

(2004) and in the present paper. Firstly, an initially poorer country remain relatively

poorer if it does not converge to a symmetric steady state. Secondly, the poor country

is better off in a symmetric steady state than in an asymmetric steady state while the

rich country is worse off. Thirdly, the aggregate wealth of the world economy is higher

in a symmetric steady states than in an asymmetric steady state given homogeneous

population sizes.

In addition, the present paper offers new insights into the nature of integrated economies.

The spillover effects change the stability properties of steady states by inducing an equal-

izing as well as an unequalizing force depending on initial conditions of the two countries.

While the spillover effect may prevent the two economies with different capital stocks

from converging, it may also induce an equalizing force when the two countries are suffi-

ciently rich. Heterogeneous population sizes are also identified as factors which preclude

two countries from converging to each other. The smaller the relative population of the

rich country, the more unequal is the income distribution between the two countries at

the induced steady state. These theoretical findings have important policy implications

as they formalize the “unfair” size effects, which are often propagated by globalization

opponents and are subject to interpretation. The spillover effects, which are generated

by the two countries with heterogeneous populations in the international financial mar-
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ket have a striking influence on the world income distribution. However, the present

paper does not necessarily try to argue against the financial market globalization as

the spillover effects also exsert an equalizing force. Endogenous fluctuations occur if

the relative population size of the rich country is sufficiently small. This implies that

fluctuations of capital stocks of two countries as well as international capital flows are

inherent in the international financial market. The observation, that international fi-

nancial markets can lead to enhanced economic volatility seems to have wide empirical

support.

Appendix

The Equilibrium Interest Rate: The Cobb-Douglas Production

Function Case

Let the production function be of the Cobb-Douglas form, f(k) = Akα. Then, the

equilibrium interest rate, which is defined by equation (9), is given by

rt+1 = R(k1
t , k

2
t ) :=







αAλR

[

L(1−W (k1
t ))

1
α−1 +(1−L)(1−W (k2

t ))
1

α−1

]1−α

[R[LW (k1
t )+(1−L)W (k2

t )]]
1−α if k1

t , k
2
t < K(λ)

αAλR

[

L[1−W (k1
t )]

1
α−1 +(1−L)λ

1
α−1

]1−α

[[LW (k1
t )+(1−L)W (k2

t )]R]1−α if k1
t < K(λ) ≤ k2

t

αAλR

[

Lλ
1

α−1 +(1−L)[1−W (k2
t )]

1
α−1

]1−α

[[LW (k1
t )+(1−L)W (k2

t )]R]1−α if k2
t < K(λ) ≤ k1

t

αAR
[[LW (k1

t )+(1−L)W (k2
t )]R]1−α if k1

t , k
2
t ≥ K(λ).

Substituting the equilibrium interest rate into the capital accumulation law (8), we
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obtain the dynamical system of the two country model in a closed form given by

k1
t+1 = Ψ̃1(k1

t , k
2
t ) :=







R[LW (k1
t )+(1−L1)W (k2

t )]

L+(1−L)

[
1−W (k1

t )

1−W (k2
t )

] 1
1−α

if k1
t , k

2
t < K(λ)

R[LW (k1
t )+(1−L1)W (k2

t )]

L+(1−L)

[
1−W (k1

t )

λ

] 1
1−α

if k1
t < K(λ) ≤ k2

t

R[LW (k1
t )+(1−L1)W (k2

t )]

L+(1−L)

[

λ

1−W (k2
t )

] 1
1−α

if k2
t < K(λ) ≤ k1

t

R[LW (k1
t ) + (1 − L)W (k2

t )] if k1
t , k

2
t ≥ K(λ).

and

k2
t+1 = Ψ̃2(k1

t , k
2
t ) :=







R[LW (k1
t )+(1−L1)W (k2

t )]

L

[
1−W (k2

t )

1−W (k1
t )

] 1
1−α

+(1−L)

if k1
t , k

2
t < K(λ)

R[LW (k1
t )+(1−L)W (k2

t )]

L

[

λ

1−W (k1
t )

] 1
1−α

+(1−L)

if k1
t < K(λ) ≤ k2

t

R[LW (k1
t )+(1−L)W (k2

t )]

L

[
1−W (k2

t )

λ

] 1
1−α

+(1−L)

if k2
t < K(λ) ≤ k1

t

R[LW (k1
t ) + (1 − L)W (k2

t )] if k1
t , k

2
t ≥ K(λ).

Proof of Lemma 3

We first investigate the properties of the function H(k) by looking at the first and second

derivative. One has that

H ′(k) =
f ′′(k)(1 − f(k))

(1 − W (k))2
T 0 ⇔ f(k) T 1. (A.1)

The function H has its global minimum at f−1(1). In addition, H(0) = ∞ and

H(W−1(1)) = ∞. Moreover, for all k > 0

H ′′(k) =
f ′′′(k)(1 − f(k)) − f ′′(k)f ′(k)

(1 − W (k))2
+

2f ′′(k)(1 − f(k))W ′(k)

(1 − W (k))3
> 0. (A.2)

Hence, the function H is strictly convex and has a configuration as depicted in Figure

16.
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f−1(1) W−1(1)k1 k2
k

Figure 16: The graph of H(k)

It follows immediately that (k1, k2) = (f−1(1), f−1(1)) is the unique pair which solves

equation (13). Then for k2 < f−1(1), there exists a unique k1 > f−1(1) which solves

equation (13) (see Figure 16). Suppose that k ∈ [0, f−1(1)], then we obtain an implicit

function h : [0, f−1] → [f−1,W−1), k 7→ h(k) such that H(k) − H(h(k)) = 0. From the

implicit function theorem,

h′(k) =
H ′(k)

H ′(h(k))
< 0. (A.3)

Hence, the function h is decreasing and satisfies h(f−1(1)) = f−1(1).

Proof of Proposition 4

The asymmetric steady state (k1, k2) = (kH , kL) is defined by the following equations

k1 = g(k2) (A.4)

k1 = φ(k2) (A.5)

k2 < K(λ) < k1. (A.6)

Let us first introduce the expressions φ′(k), φ′′(k), and φ′(K(λ)) for the Cobb-Douglas

function, which will be used below. One obtains that

φ′(k) =
1

1 − α
C

1
1−α f ′′(k)

(
k

1 − W (k)
−

1

f ′(k)

)

(A.7)
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and

φ′′(k) =

(
1

1 − α

)2

C
1

1−α (f ′′(k))2

(
k

1 − W (k)
−

1

f ′(k)

)2

−
1

1 − α
C

1
1−α f ′′(k)

(2 − α)

k

(
k

1 − W (k)
−

1

f ′(k)

)

+
1

1 − α
C

1
1−α f ′′(k)

(
1 − (1 − α)W (k)

(1 − W (k))2
−

1 − α

αAkα

)

(A.8)

where C =
(

αA(1−W (k))
λf ′(k)

)

. We can show that φ′′(k) = 0 is equivalent to k =
(

1+α
A

)2
.

This implies that the function φ has a unique inflection point.

Moreover,

φ′(K(λ)) = −f ′(k)

(
k

λ
−

1

f ′(k)

)

. (A.9)

1) We show that there exists no asymmetric steady state for φ′(K(λ)) > 0. Using

equation (A.9) we can show that φ′(K(λ)) > 0 is equivalent to λ > α. This is also

equivalent to f−1(1) > K(λ). Hence, the graph of φ(k) lies below K(λ) for k ∈ [0, K(λ)).

This proves that there exists no asymmetric steady state where k1, k2 > K(λ).

2), 3) We show that φ′′(k) < 0,∀k ∈ [0, K(λ)] if φ′(K(λ)) > −1 by contradiction.

Suppose that φ′′(k) > 0. Then, the Cobb-Douglas production function implies that

k >

(
1 + α

A

) 1
α

. (A.10)

Equation (A.10) and k < K(λ) imply that

(
1 + α

A

) 1
α

< K(λ) :=

(
1 − λ

A(1 − α)

) 1
α

⇐⇒ λ < α2. (A.11)

This means that the inflection point of φ(k) lies below K(λ) if and only if λ < α2.

Our assumption was φ′(K(λ)) > −1, which equivalent to

λ >
α

2 − α
. (A.12)

However, equations (A.11) and (A.12) together imply

α −
1

2 − α
> 0, (A.13)

which is never satisfied for α ∈ (0, 1). Hence, φ′′(k) < 0,∀k ∈ [0, K(λ)] if φ′(K(λ)) > −1.

This means that φ(k) is concave for all k ∈ [0, K(λ)] if φ′(K(λ)) > −1.
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Now, suppose that −1 < φ′(K(λ)) < 0. Then, the graph of φ(k) has a unique intersec-

tion with the graph of g(k) for k < K(λ) < φ(k) if and only if R ∈ [RLM , (K∗)−1(K(λ))].

RLM is the value of R for which the graph of g(k) has a unique intersection point with

the graphs of φ(k) and K(λ) for k 6= K(λ). Note that if φ′(K(λ)) > 0, (K(λ), K(λ)) is

the only point which satisfies (K(λ), φ−1(K(λ)). Due to the symmetric structure, the

asymmetric steady state (k1, k2) = (kL, kH) can be obtained analogously.

4) To prove that the transition from (k1, k2) = (kM , kL) to (k1, k2) = (kH , kL) is con-

tinuous in R, observe that when k = K(λ), h(k) = φ(k). The claim follows since the

steady states (k1, k2) = (kM , kL) and (k1, k2) = (kH , kL) are continuous functions in R.

Proof of Proposition 5

Suppose that φ′(K(λ)) < −1. Then, the graph of g(k) has a unique intersection with

the graph of φ(k) if R ∈ [RLM , (K∗)−1(K(λ))) and two intersections if and only if

R ∈ [(K∗)−1(K(λ)), RLH). RLH is the value of R for which the graph of φ(k) is tangent

to the graph of g(k). For R > RLH there is no intersection of the graphs φ(k) and g(k)

(see Figure 17).

LH

PSfrag replacements

kk

φ(k)φ(k)

K(λ)

K(λ)

K(RLM )

K(RLM )

Figure 17: Existence of the asymmetric steady states (k1, k2) ∈ {(kH , kL), (kH , kM)}

For a third intersection to exist, the graph φ(k2) has to cut the graph g(k2) from inside

at the third intersection. This would imply that φ′′(k2) has to change its sign two times

in [0, K(λ)]. This is a contradiction because we know for the Cobb-Douglas function
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that there exist a unique inflection point, k = ( 1+α
A

)
1
α where φ′′(k) changes its sign.

Hence, φ′(K(λ)) < −1 guarantees that there are no more than two intersection points

of the graphs φ(k) and g(k). Due to the symmetric structure, the asymmetric steady

state (k1, k2) ∈ {(kL, kH), (kM , kH)} can be obtained analogously. �

Proof of Proposition 6

Let us first prove that the asymmetric steady state is stable if R < Rc. For k1 <

K(λ), k2 < K(λ), we have

k1 = Ψ̃1(k1, k2) =
R [W (k1) + W (k2)]

1 +
[

1−W (k2)
1−W (k1)

] 1
α−1

k2 = Ψ̃2(k1, k2) =
R [W (k1) + W (k2)]

1 +
[

1−W (k1)
1−W (k2)

] 1
α−1

.

Let

J(k, k) =

(

a b

c d

)

=






∂Ψ̃1(k, k)

∂k1

∂Ψ̃1(k, k)

∂k2

∂Ψ̃2(k, k)

∂k1

∂Ψ̃2(k, k)

∂k2




 .

Observe that a = d, b = c. The characteristic polynomial reads p(µ) = µ2−2aµ+a2−b2.

The eigenvalues of the system are

µ1 = a + b = α

µ2 = a − b = α

(
Akα

1 − (1 − α)Akα

)

where k = K∗(R) :=
(

1
(1−α)AR

) 1
α−1

. It follows that 0 < µ1 < 1 and 0 < µ2 < 1 if and

only if

R < Rc =
1

(1 − α)A
1
α

.

Now, let us prove that countries converge to the symmetric steady state if k1
0 = k2

0 =:

k0 > 0 or k1
0, k

2
0 ≥ K(λ). Let Ψi(k1

t , k
2
t ) := Ψ(ki

t,R(k1
t , k

2
t )) for i = 1, 2. If k1

0 =

k2
0 =: k0 > 0, then Ψ1(k0, k0) = Ψ2(k0, k0) = RW (k0) = k1

1 = k2
1 =: k1. By induction,

(Ψ1)n(k0, k0) = (Ψ2)n(k0, k0) = RW ◦ RW · · · ◦RW
︸ ︷︷ ︸

n−times

(k0) = k1
n = k2

n =: kn,∀n ∈ N.

Given Assumption 1, the orbit lim
n→∞

RW ◦ RW · · · ◦RW
︸ ︷︷ ︸

n−times

(k0) converges to K∗(R) and
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hence (k1
n, k

2
n) converges to the symmetric steady states (K∗(R), K∗(R)). If k1

0, k
2
0 ≥

K(λ), Ψ1(k1
0, k

2
0) = Ψ2(k1

0, k
2
0) =⇒ k1

1 = k2
1 =: k1 > 0. Convergence to (K∗(R), K∗(R))

follows from the first part of this proof. �

Proof of Proposition 7

The asymmetric steady state (k1, k2) = (kM , kL) requires

k1 = h(k2) (A.14)

k1 = g(k2) (A.15)

Let us first investigate how the change in L affects k1 = g(k2), which is implicitly

defined by G(k1, k2) := L(k1 − RW (k1)) + (1 − L)(k2 − RW (k2)). Figure 18 depicts

how the function L(k − RW (k)) depends on L. The function L(k − RW (k)) implies

=1�2
<1�2

>1�2

PSfrag replacements

K∗(R)

k

L

L

L

1/2

Figure 18: The graph of L(k − RW (k))

that the graph g(k1) which satisfies G(k1, k2) = 0 shifts downwards for lower L. On the

other hand, g(k2) shifts upwards for lower L. Furthermore, dg(K∗(R);R,L)
dk1 = − L

1−L
by the

implicit function theorem. If R < Rc, there exists always a unique Lc < 1/2 defined

by ∂g(k2)
∂k2 = ∂h(k2)

∂k2 and g(k2) = h(k2). Analogously we can proof the existence of the

asymmetric steady state (k1, k2) = (kM , kL) for Lc > 1/2. �
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Proof of Proposition 8

We will prove that the asymmetric steady state (k1, k2) = (kM , kL) undergoes a super-

critical Neimark-Sacker bifurcation by calculating the determinant and trace numeri-

cally. The determinant and the trace of the Jacobian matrix of the system (10) when

k1, k2 < K(λ) can be written as

det =
W ′(k1)k1W ′(k2)k2

(LW (k1) + (1 − L)W (k2))2

1

R(1 − α)

(

k2L2 (1 − W (k1))
1

α−1

(1 − W (k2))
α

α−1

+k1(1 − L)2 (1 − W (k2))
1

α−1

(1 − W (k1))
α

α−1

+k2(1 − L)L
(1 − W (k1))

2−α
α−1

(1 − W (k2))
1

α−1

+ k1(1 − L)L
(1 − W (k2))

2−α
α−1

(1 − W (k1))
1

α−1

)

(A.16)

and

tr =
1

LW (k1) + (1 − L)W (k2)

(

W ′(k1)k1

(

L +
k1(1 − L)

R(1 − α)

(1 − W (k2))
1

α−1

(1 − W (k1))
α

α−1

)

+W ′(k2)k2

(

1 − L +
k2L

R(1 − α)

(1 − W (k1))
1

α−1

(1 − W (k2))
α

α−1

))

. (A.17)

The determinant and the trace when k2 < K(λ) < k1 can be written as

det =
W ′(k1)k1W ′(k2)k2

(LW (k1) + (1 − L)W (k2))2

1

R(1 − α)

(

k2L2 λ
1

α−1

(1 − W (k2))
α

α−1

+k1(1 − L)L
(1 − W (k2))

2−α
α−1

λ
1

α−1

)

(A.18)

and

tr =
W ′(k1)k1L + W ′(k2)k2

LW (k1) + (1 − L)W (k2)

(

1 − L +
k2L

R(1 − α)

λ
1

α−1

(1 − W (k2))
α

α−1

)

. (A.19)

If k1 = K(λ), equations (A.18) and (A.19) can be written as

det =
W ′(k1)k1W ′(k2)k2

(LW (k1) + (1 − L)W (k2))2

1

R(1 − α)

(

k2L2 (1 − W (k1))
1

α−1

(1 − W (k2))
α

α−1

+k1(1 − L)L
(1 − W (k2))

2−α
α−1

(1 − W (k1))
1

α−1

)

(A.20)
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and

tr =
W ′(k1)k1L + W ′(k2)k2

LW (k1) + (1 − L)W (k2)

(

1 − L +
k2L

R(1 − α)

λ
1

α−1

(1 − W (k2))
α

α−1

)

. (A.21)

Comparing equations (A.16) and (A.17) with equations (A.18) and (A.19), we can see

that the determinant and the trace are not equal respectively at k1 = K(λ). The dy-

namical system is not differentiable at this point. Figure 19 shows how the determinant

and the trace of the system moves as we change the bifurcation parameter L. The points

(a),(b),(c),(d),(e),(f) correspond to L = (0.117, 0.117, 0.13, 0.16, 0.177, 0.19). The points

(a) and (b) are defined by equations (A.16) and A.17, and equations (A.20) and (A.21)

respectively. We can observe that at L = 0.177 when k1 = K(λ) the determinant and

the trace jump from (a) to (b). As the value of L increases, the determinant crosses 1

at (e) which proves that the bifurcation is a Neimark-Sacker bifurcation.
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Figure 19: Stability triangle: L = (0.117, 0.117, 0.13, 0.16, 0.177, 0.19)
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