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1 Introduction

The class of convex games was introduced by Shapley (1971) and has at-

tracted a lot of attention because the games in this class have many useful

applications. Moreover, solution concepts on this class of games have very

appealing properties; we mention here that the core of a convex game is the

unique stable set and its extreme points can be easily described, the Shapley

value of a convex game is in the barycenter of the core in the sense that

it is the average of the marginal vectors. Convex games are in fact totally

convex since each subgame of a convex game is also convex. Many equiva-

lent characterizations of this class of games can be found in the cooperative

game theory literature. For example, the supermodularity of the characteris-

tic function, the increasing marginal return properties for individual players

and for groups of players, and characterizations that deal with the relation

between the core and the Weber set (cf. Shapley (1971), Ichiishi (1981),

Curiel and Tijs (1991), Curiel (1997)); a characterization of a convex game

using the exactness of its subgames can be found in the work of Biswas et

al. (1999) and Azrieli and Lehrer (2005).

The class of clan games was introduced by Potters et al. (1989) to model

social interaction between a �powerful�group of players (the clan) and �pow-

erless�players (non-clan members). Economic applications of such games in-

clude bankruptcy problems, production economies, information acquisition

and holding situations (cf. Muto et al. (1988), Potters et al. (1989), Branzei

et al. (2001), Tijs et al. (2005)). In the work of Voorneveld et al. (2002)

total clan games were introduced as monotonic clan games whose subgames

inherit the structure of the original (clan) game.

It is worth mentioning that both convex games and total clan games
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are totally balanced and possess monotonic allocation schemes; speci�cally,

convex games have population monotonic allocation schemes (cf. Spru-

mont (1990)) and total clan games have bi-monotonic allocation schemes

(cf. Branzei et al. (2001) and Voorneveld et al. (2002)). For other proper-

ties of (solution concepts on) these two classes of games the reader is referred

to Branzei et al. (2005).

In this paper we identify other common features of these classes of games.

We start in Section 3 with the characterization of each game in the corre-

sponding class by means of certain properties of appropriately de�ned mar-

ginal games. Further, recent work by Branzei et al. (2006b) on auction games

and ring games arising from one-object auction situations has inspired us to

study the duality between general convex games and total clan games; this

duality relation is presented in Section 4. Speci�cally, starting with a total

clan game with zero worth for the clan we make use of its dual game and

restrict it to the non-clan members in order to induce a monotonic convex

game. Conversely, we can start with a monotonic convex game, use its dual

game and assign zero worth to each coalition not containing a certain group

of players as to reach a total clan game with zero worth for the clan. Fi-

nally, as we show in Section 5, the way in which the corresponding games

are constructed (�dualize and restrict�versus �dualize and extend�) is also

useful for providing relations between core elements and elements of the We-

ber set of the corresponding games. Here we show that a speci�c subset of

the Weber set of a total clan game with zero worth for the clan coincides,

when restricted to the non-clan members, with the core of the monotonic con-

vex game generated by the �dualize and restrict�procedure. On the other

hand, we can reach this speci�c subset of the Weber set of a total clan game

with zero worth for the clan by taking all marginal contribution vectors of
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a monotonic convex game and extending them in an appropriate way. We

conclude in Section 6 with some �nal remarks.

2 Preliminaries

A cooperative game with transferable utility (a TU-game) is a pair (N; v),

where N = f1; : : : ; ng is a set of players and v : 2N ! R is a characteristic

function satisfying v(;) = 0. For any coalition S � N , v(S) is the worth

of coalition S, i.e., the members of S can obtain a total payo¤ of v(S) by

agreeing to cooperate. The subgame
�
S; vjS

�
is obtained from (N; v) by

restricting attention to S, i.e., vjS (T ) = v(T ) for all T 2 2S. For each

coalition S 2 2N n f;g and each player i 2 S, de�ne

Mi(S; v) := v (S)� v (S n fig)

to be the marginal contribution of player i to coalition S.

Let �(N) be the set of all permutations � : N ! N of N , and P � (i) =

fq 2 N : ��1 (q) < ��1 (i)g be the set of all predecessors of i with respect to
the permutation �. The marginal contribution vector m� (N; v) 2 RN with
respect to � and (N; v) has the i-th coordinate

m�
i (N; v) = v (P

� (i) [ fig)� v (P � (i))

for each i 2 N .
A player i 2 N is a veto player in the game (N; v) if v(S) = 0 whenever

i =2 S. A game (N; v) is monotonic if for each S1; S2 2 2N with S1 � S2 we
have v(S1) � v (S2). A game (N; v) is called

� superadditive if v(S[T ) � v(S)+v(T ) for all S; T � N with S\T = ;;
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� convex if v(S [ T ) + v(S \ T ) � v(S) + v(T ) for all S; T � N .

A game (N; v) is subadditive (concave) if (N;�v) is superadditive (con-
vex). Clearly, each convex (concave) game is also superadditive (subaddi-

tive). In what follows we will also use the following alternative characteriza-

tion of concavity (cf. Curiel (1997)). A game (N; v) is concave if for every

pair of coalitions S1; S2 2 2N and every i 2 N we have that

i 2 S1 � S2 implies Mi(S1; v) �Mi(S2; v):

The dual game (N; v�) of a game (N; v) is de�ned by v� (S) = v(N) �
v(N n S) for all S � N .
An allocation in a game (N; v) is a payo¤vector x 2 Rn. For each S � N ,

we write x(S) to denote
P

i2S xi. An allocation of v(N) such that this amount

is cleared is called e¢ cient, and an allocation x such that xi � v (fig) for
each i 2 N is called individually rational. The imputation set of a game

(N; v) is the set of all e¢ cient and individually rational allocations, i.e.,

I(N; v) = fx 2 Rn j x(N) = v(N) and xi � v(fig) for each i 2 Ng :

Further, an allocation is called stable if any coalition S � N receives at

least its worth v(S). The core of a game (N; v) is the set of all e¢ cient and

stable allocations (cf. Gillies (1953)), i.e., the set

Core(N; v) =
�
x 2 I(v) j x(S) � v(S) for each S 2 2N

	
:

Finally, theWeber set W (N; v) of a game (N; v) is the convex hull of the

n! marginal vectors m� (N; v), i.e.,

W (N; v) = co fm� (N; v) j � 2 �(N)g :
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3 Characterizations via marginal games

Given a game (N; v) and a coalition T � N , the T -marginal game vT :

2NnT ! R is de�ned by

vT (S) := v(S [ T )� v(T )

for each S � N n T .
We focus on characterizations of convex games and of total clan games

based on suitably de�ned marginal games. Marginal games of a convex game

have turned out to be useful for proving the fact that the core of a game is

a subset of the Weber set (cf. Weber (1988)); they have also played a key

role for generating the constrained egalitarian solution for convex games (cf.

Dutta and Ray (1989)) and the equal split-o¤ set for arbitrary TU-games

(cf. Branzei et al. (2006a)).

It is known that if a game is convex then all its marginal games are

also convex (cf. Dutta and Ray (1989)). The next example shows that the

superadditivity of a game is not necessarily inherited by its marginal games.

Example 1 Let N = f1; 2; 3g and v (f1g) = 10, v (f1; 2g) = 12, v (f1; 3g) =
11, v (f1; 2; 3g) = 121

2
, and v(S) = 0 for all other S � N . Clearly, the

game (N; v) is superadditive. Its f1g-marginal game is given by vf1g(f2g) =
v (f1; 2g) � v (f1g) = 2, vf1g(f3g) = 11 � 10 = 1, and vf1g(f2; 3g) = 21

2
.

Since vf1g(f2; 3g) = 21
2
< 3 = vf1g(f2g) + vf1g(f3g), the marginal game�

f2; 3g ; vf1g
�
is not superadditive.

As it turns out, the superadditivity of all marginal games of a game (N; v)

assures a stronger property than the superadditivity of (N; v), namely the

convexity of (N; v). This result has been independently obtained by Branzei

et al. (2004) and Martinez-Legaz (2006), and for its proof we refer the reader
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to these papers.

Proposition 1 A game (N; v) is convex if and only if for each T 2 2N the
T -marginal game

�
N n T; vT

�
is superadditive.

Remark 1 In view of Proposition 1, a game (N; v) is concave if and only if

for each T 2 2N the marginal game
�
N n T; vT

�
is subadditive.

In the sequel we focus on total clan games and their characterization using

suitably de�ned marginal games. The class of clan games was introduced in

Potters et al. (1989) to model social interaction between �powerful�players

(clan members) and �powerless�players (non-clan members). In a clan game

there is a group of �powerful�players with veto power and �powerless�play-

ers who operate more pro�tably in unions than on their own. More precisely,

a game (N; v) is a clan game with clan C 2 2N n f;; Ng if it satis�es the
following four conditions:

(a) v(S) � 0 for all S � N ;
(b) Mi(N; v) � 0 for each i 2 N ;
(c) Clan property: every player i 2 C is a veto player, i.e., v(S) = 0 for

each coalition S with C * S;

(d) Union property: v(N)� v(S) �
P

i2NnSMi(N; v) if C � S.
For notational convenience, de�ne PC := fS � N j C � Sg as the collec-

tion of all coalitions containing C.

A game (N; v) is a total clan game with clan C 2 2N n f;; Ng if it is
monotonic and

�
S; vjS

�
is a clan game (with clan C) for every S 2 PC .

Notice that in the de�nition of a total clan game attention is restricted to

coalitions that contain the clan C, since the clan property of (N; v) implies

that in the other subgames the characteristic function is simply the zero

function. Note further that monotonicity implies (a) and (b). As shown by
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Voorneveld et al. (2002), a game (N; v) is a total clan game with clan C if

and only if (N; v) is monotonic, every player i 2 C is a veto player, and for
all coalitions S1; S2 2 PC the following C-concavity property holds:

S1 � S2 and i 2 S1 n C imply Mi(S1; v) �Mi(S2; v):

Let N = f1; : : : ; ng and C 2 2N n f;; Ng. In what follows we denote
by MV N;C the set of all monotonic games on N satisfying the veto player

property with respect to each player i 2 C.

Proposition 2 Let (N; v) 2MV N;C. Then (N; v) is a total clan game with
clan C if and only if the marginal game

�
N n C; vC

�
is a concave game.

Proof. Let (N; v) 2 MV N;C be a total clan game with clan C. Then for
i 2 S � T � N we have

vC (S)� vC (S n fig) = v (C [ S)� v ((C [ S) n fig)

� v (C [ T )� v ((C [ T ) n fig)

= vC (T )� vC (T n fig) ;

where the inequality follows from the C-concavity of (N; v). Hence, (N; v) is

a concave game.

Suppose now that
�
N n C; vC

�
is a concave game. Let S1; S2 2 PC ,

S1 � S2, and i 2 S1 n C. Then

Mi(S1; v) = v (S1)� v (S1 n fig)

= vC (S1 n C)� vC ((S1 n C) n fig)

� vC (S2 n C)� vC ((S2 n C) n fig)

= Mi(S2; v);

where the inequality follows from the concavity of
�
N n C; vC

�
. Thus, (N; v)

is a total clan game with clan C.
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Given a game (N; v) 2 MV N;C and a coalition T 2 2NnC , the C-based
T -marginal game

�
vC
�T
: 2NnT ! R is de�ned by�

vC
�T
(S) := v(S [ T [ C)� v(T [ C)

for each S � N n T .
We have then the following result.

Proposition 3 Let (N; v) 2 MV N;C. Then the following assertions are

equivalent:

(a) (N; v) is a total clan game with clan C;

(b)
�
N n C; vC

�
is a concave game;

(c)
�
N n (C [ T ) ;

�
vC
�T�

is a subadditive game for each T � N n C;
(d)

�
N n (C [ T ) ; vC[T

�
is a subadditive game for each T � N n C.

Proof. Notice that (a)() (b) follows from Proposition 2, and (b)() (c)

holds by Remark 1. Finally, (c) () (d) follows easily from the de�nition of

a C-based T -marginal game.

4 From clan games to convex games and the

way back

In this section we present a useful relation between total clan games with

zero worth for the clan and monotonic convex games, being interested in

transformations that work across these two classes of games. As it turns out,

we can always construct monotonic convex games from total clan games with

zero worth for the clan, and total clan games with zero worth for the clan

from monotonic convex games. We call the corresponding transformation

procedures �dualize and restrict�and �dualize and extend�, respectively.
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Let N = f1; : : : ; ng and C 2 2N n f;; Ng be �xed. We denote by GN the
set of all games on N and by CLANN;C

0 the set of all total clan games on N

with clan C for which v (C) = 0 is valid. The set of all games on N n C will
be denoted by GNnC and the set of all monotonic convex games on N nC by
MCONV NnC .

The �dualize and restrict� operator Dr : CLANN;C
0 ! GNnC is de�ned

by

Dr (N; v) = (N n C;w) for each (N; v) 2 CLANN;C
0 ;

where w (S) := v� (S) for all S � N n C.

Proposition 3 Let (N; v) 2 CLANN;C
0 . Then Dr (N; v) 2MCONV NnC.

Proof. Let (N n C;w) := Dr (N; v). To show that (N n C;w) is convex, let
i 2 N n C and S1 � S2 � (N n C) n fig. Then

w (S2 [ fig)� w (S2)

= v (N)� v (N n (S2 [ fig))� v(N) + v (N n S2)

= v (N n S2)� v (N n (S2 [ fig))

� v (N n S1)� v (N n (S1 [ fig))

= v (N)� v (N n (S1 [ fig))� v(N) + v (N n S1)

= w (S1 [ fig)� w (S1) ;

where the inequality follows from the C-concavity of (N; v).

By the monotonicity property of (N; v) we have that w(S1) = v (N) �
v (N n S1) � v(N)� v (N n S2) = w(S2) for S1 � S2 � N n C, i.e., the game
(N n C;w) is monotonic as well.

The �dualize and extend� operator De : MCONV NnC ! GN is de�ned

by

De (N n C;w) = (N; v) for each (N n C;w) 2MCONV NnC ;
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where

v(S) =

8<: 0 if C * S;

w(N n C)� w ((N n C) n (S \ (N n C))) otherwise,

for all S � N .

Proposition 4 Let (N n C;w) 2 MCONV NnC. Then De (N n C;w) 2
CLANN;C

0 .

Proof. Notice that, by the de�nition of v, each player i 2 C is a veto player
in the game (N; v) := De (N n C;w). To prove that (N; v) is monotonic, let
S � N and i 2 N n S.
If C * S and either i =2 C, or i 2 C is such that C * S [ fig, then

v(S) = 0 = v(S [ fig) follows by the de�nition of v.
If C * S and i 2 C is such that C � S [ fig, then we have

v (S [ fig)

= w (N n C)� w ((N n C) n ((S [ fig) \ (N n C)))

= w (N n C)� w ((N n C) n (S \ (N n C)))

= v(S):

If C � S, then

v (S [ fig)

= w (N n C)� w ((N n C) n ((S [ fig) \ (N n C)))

� w (N n C)� w ((N n C) n (S \ (N n C)))

= v(S);

where the inequality follows by the monotonicity of (N n C;w).
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It remains to show that (N; v) is C-concave. For this, let S1 � S2 � N
and i 2 S1 n C. Then

v (S1)� v (S1 n fig)

= w ((N n C) n ((S1 n fig) \ (N n C)))� w ((N n C) n (S1 \ (N n C)))

� w ((N n C) n ((S2 n fig) \ (N n C)))� w ((N n C) n (S2 \ (N n C))))

= v (S2)� v (S2 n fig) ;

where the inequality follows by the convexity of (N n C;w).

Notice �nally that it is straightforward to prove the following result.

Proposition 5 Let Dr and De be the �dualize and restrict�and the �dualize

and extend�operators, respectively, as introduced above. Then,

(a) De �Dr is the identity map on CLANN;C
0 , and

(b) Dr �De is the identity map on MCONV NnC.

5 Core versus Weber set

In this section we use the �dualize and restrict� and the �dualize and ex-

tend�procedures to relate core elements and elements of the Weber set of

corresponding (total clan and monotonic convex) games.

In order to state our results, we will need some additional notation. Let

the player set N and C 2 2N n f;; Ng be �xed, and let �(C) and �(N n C)
denote the set of all permutations of C and N n C, respectively. For each
(� ; �) 2 �(C)��(N n C), we writem(�;�) (N; v) to denote the marginal con-

tribution vector with respect to (N; v) 2 CLANN;C
0 and to the permutation

(� ; �) of N according to which the set of all predecessors of each non-clan
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member includes the clan. We let

W 0 (N; v) := co
�
m(�;�) (N; v) j (� ; �) 2 �(C)� �(N n C)

	
:

Finally, let m(�;�) (N; v)jNnC denote the projection of m
(�;�) (N; v) on N n C

and

W 0 (N; v)jNnC := co
n
m(�;�) (N; v)jNnC j (� ; �) 2 �(C)� �(N n C)

o
:

We have the following result.

Proposition 6 Let (N; v) 2 CLANN;C
0 . Then Core (Dr (N; v)) = W 0 (N; v)jNnC.

Proof. Let (N n C;w) := Dr (N; v). By Proposition 3, (N n C;w) 2MCONV NnC

and, hence, Core (N n C;w) = W (N n C;w). Thus, it is su¢ cient to prove
that W (N n C;w) =W 0 (N; v)jNnC . For this, we show that m

� (N n C;w) =
m(�;�) (N; v)jNnC for each � 2 �(N n C) and any � 2 �(C), wherem� (N n C;w) 2
W (N n C;w), m(�;�) (N; v)jNnC 2 W 0 (N; v)jNnC , and � is the reverse order

of �.

For each i 2 N n C we have

m
(�;�)
i (N; v)jNnC = v

�
P (�;�) (i) [ fig

�
� v

�
P (�;�) (i)

�
= v

�
C [ P � (i) [ fig

�
� v

�
C [ P � (i)

�
= v (N n P � (i))� v (N n (P � (i) [ fig))

= v(N)� v (N n (P � (i) [ fig))� v(N) + v (N n P � (i))

= w (P � (i) [ fig)� w (P � (i))

= m�
i (N n C;w) :

Thus, the assertion follows.

Let m� (N n C;w) be the marginal contributions vector with respect to
(N n C;w) and � 2 �(N n C). In what follows, let xm�(NnC;w) 2 RN be
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de�ned by

x
m�(NnC;w)
i =

8<: 0 if i 2 C;
m�
i (N n C;w) if i 2 N n C,

and let

X(NnC;w) = co
�
xm

�(NnC;w) j � 2 �(N n C)
	
:

We are ready now to present our last result.

Proposition 7 Let (N n C;w) 2MCONV NnC. Then W 0 (De (N n C;w)) =
X(NnC;w).

Proof. Let (N; v) := De (N n C;w). Since, by Proposition 4, (N; v) 2
CLANN;C

0 , it is su¢ cient to show that xm
�(NnC;w) = m(�;�) (N; v) for each

� 2 �(N n C) and any � 2 �(C), where � is the reverse order of �. We
distinguish two cases:

(a) i 2 N nC. In view of Proposition 6,m(�;�)
i (N; v) =m

(�;�)
i (N; v)jNnC =

m�
i (N n C;w) = x

m�(NnC;w)
i .

(b) i 2 C. We have

m
(�;�)
i (N; v) = v

�
P (�;�) (i) [ fig

�
� v

�
P (�;�) (i)

�
= 0 = x

m�(NnC;w)
i ;

where the second equality follows from (N; v) 2 CLANN;C
0 and P (�;�) (i) [

fig � C.
Hence, the assertion follows.

6 Concluding remarks

In this paper we have studied properties of and relations between monotonic

convex games and total clan games with zero worth for the clan that, in

our opinion, are central for these two classes of games. The characteriza-

tions of these games in terms of their corresponding marginal games have
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disclosed a deeper duality relation between the corresponding games that

we handled by introducing the �dualize and restrict�and the �dualize and

extend�operators. Applications of this dualism can be found in the analysis

of one-object auction situations (cf. Branzei et al. (2006b)) that give rise

to auction games (total clan games with a single clan member) and to ring

games (special convex games).
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