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Abstract

We investigate a situation in which gains from cooperation are represented by a

cooperative TU-game and a solution proposes a division of coalitional worths. In

addition, asymmetries among players outside the game are captured by a vector of

exogenous weights. If a solution measures players’ payoffs inherent in the game, and

a coalition has formed, then the question is how to measure players’ overall payoffs in

that coalition. For this we introduce the notion of a composite solution. We provide an

axiomatic characterization of a specific composite solution, in which exogenous weights

enter in a proportional fashion.

JEL Classification: C71

Keywords: composite solution, external weights

1 Introduction

A cooperative game with transferable utility describes the possibilities for any coalition of

players to obtain a payoff. A solution concept for TU games is based on this information

and proposes a (set of) distribution(s) of coalitional worth. As a solution only uses the data

of the game itself, it has to ignore exogenous asymmetries among the players that are not

captured by the characteristic function. However, it is undoubted that such external weights

also have an influence on the final distribution of payoffs.

A common example for this fact is power measurement in a parliament. There a (sim-

ple) game describes the possibilities to form majorities and application of power indices
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determines a distribution of power within the parliament. A frequent criticism towards this

approach is that parties’ external strengths, such as distribution of seats, are faded out.

In particular, power indices do not conform with ideas of proportionality with respect to

exogenous asymmetries (see, e.g., Snyder et al. (2005) for a debate on power indices).

In this paper we tackle the question how to bring together a solution concept, which

reflects players’ weights inherent in the game, and their external weights. This leads to a

notion of an overall payoff, that takes both sources into account. We adopt a normative

point of view and ask for plausible requirements for merging internal and external weights.

To answer the question we introduce the concept of a composite solution. More precisely,

a composite solution F takes each collection (α, S, v, ϕ) of an exogenous weights vector

α, a coalition S, a cooperative TU-game v and a solution concept ϕ to a distribution of

coalitional worth with the interpretation that Fi (α, S, v, ϕ) reflects player i’s overall payoff

within coalition S, when v describes the gains from cooperation. We present four axioms for

composite solutions and show that they uniquely characterize a specific composite solution,

in which exogenous weights enter in a proportional fashion.

The idea to express differences in players’ external characteristics via (strictly posi-

tive) weights goes back to Shapley (1953a), where it was used to characterize a particu-

lar parametrized solution (the weighted Shapley value (cf. Shapley (1953b), Owen (1968),

Kalai and Samet (1987), Haeringer (2006)). A parametrized solution assigns a payoff for

each player to each pair (α, v). In contrast to the above papers, we take solution concepts

ϕ defined on the set of all games rather than on the collection of all pairs (α, v). Hence,

we let the players play the game as if there were no external asymmetries among them and,

after that, we view external weights as having a redistributive power in a composite solution.

This will be important when discussing the axioms we use for the characterization of our

specific composite solution. Clearly, if we fix the solution concept ϕ and take only the grand

coalition into account, then a parametrized solution can be seen as a composite solution as

well.

The paper is organized as follows. Section 2 contains basic notions and definitions such as

the one for composite solutions. Moreover, we present and discuss four axioms for composite

solutions. In Section 3 we show that these four axioms, being independent, characterize a

specific composite solution. Section 4 closes with some final remarks.

2 Composite solutions and axioms

A cooperative game with transferable utility - or simply a (TU-)game - is a pair (N, v), where

N = {1, . . . , n} is a finite set of players and v : 2N −→ R is a characteristic function on
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N satisfying v (∅) = 0. For any coalition S ∈ 2N , v(S) is the worth of coalition S, i.e., the

members of S can obtain a total amount of v (S) by agreeing to cooperate. In what follows

we keep N fixed and identify a game (N, v) with its characteristic function v. For S ∈ 2N

define the subgame with respect to S, (N, vS), by vS (T ) = v (S ∩ T ) for all T ∈ 2N . Note

that vS is also an n-player game (possibly with vS(N) = v(S) = 0). The set of all games on

the player set N will be denoted by G. Clearly, if a game v is in the set G, then so is any

of its subgames. A game v ∈ G is monotonic if v (S) ≥ v(T ) for all S, T ∈ 2N with S ⊇ T .

The set of all monotonic games on the player set N is denoted by Gm, Gm ⊂ G.

A solution (for a TU-game) is a mapping ϕ : G → R
N taking each v ∈ G to a single vector

in R
N , i.e., it assigns a real number ϕi (v) to each player i ∈ N . The set of all solutions on G

will be denoted by S. A solution ϕ ∈ S is positive if ϕi (v) ≥ 0 (i ∈ N) holds for all v ∈ Gm.

The set of all positive solutions on G will be denoted by S+, S+ ⊂ S.

Composite solutions, as defined next, are designed to incorporate exogenous weights as

well as endogenous distributions of coalitional worth. For this we combine a vector of weights

with a solution. Thus, a composite solution does not only reflect players’ opportunities within

a cooperative game, but also respects asymmetries among the players outside the game.

Let D := R
N
++×2N×G×S and D0 ⊆ D. Formally, a composite solution F : D0 −→ R

N on

D0 assigns a vector of players’ payoffs to each tuple (α, S, v, ϕ) consisting of a strictly positive

weight vector, a coalition, a cooperative game, and a solution. We interpret a composite

solution as follows: Suppose that the game v represents the possibilities for obtaining payoffs

from cooperation. The vector α represents asymmetries outside v, and ϕ is the solution that

measures players’ payoffs inherent in v. Provided that a coalition S ∈ 2N has formed, we

view the real number Fi(α, S, v, ϕ) as “player i’s overall payoff” in S. Put in another way,

taking external weights into account, a player’s internal payoff is transformed to an overall

one.

Next we ask for a “correct way” to combine players’ internal and external weights within

a composite solution. We propose the following four axioms:

Ignorance of Outsiders (IO): For all (α, S, v, ϕ) ∈ D0 and all i ∈ N \ S,

Fi (α, S, v, ϕ) = 0.

Sign Inheritance (SI): For all (α, S, v, ϕ) ∈ D0 and all i ∈ S,

ϕi (vS) > 0 ⇒ Fi (α, S, v, ϕ) > 0 and ϕi (vS) = 0 ⇒ Fi (α, S, v, ϕ) = 0.

Payoff Redistribution (PR): For all (α, S, v, ϕ) ∈ D0,
∑

k∈S

Fk (α, S, v, ϕ) =
∑

k∈S

ϕk (vS) .
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Constant Transformation rates per Weight (CTW): For all (α, S, v, ϕ) ∈ D0 and all

i, j ∈ S with ϕi (vS) > 0 and ϕj (vS) > 0,

Fi (α, S, v, ϕ)

ϕi (vS)

αi

=

Fj (α, S, v, ϕ)

ϕj (vS)

αj

.

All axioms rely on the following situation: Suppose coalition S has formed and an overall

payoff distribution (among all players in N) shall be determined by a composite solution.

First of all, it is natural that all “outsiders”, i.e., players i 6∈ S shall not obtain a payoff.

That is the content of the IO axiom.

The remaining axioms concentrate on the distribution of payoffs within coalition S. In the

same spirit that solutions are based on the data of the (unrestricted) game, the distribution

in S should be based on that part of the game that S is concerned with, i.e., on the restricted

game vS.

Now, SI requires that the incorporation of external weights can neither create positive

overall payoff, when the internal payoff was zero, nor can it destroy a positive internal

payoff. In particular, this axiom rules out extreme cases in which only players’ external

characteristics (captured by α) determine their overall payoffs in a coalition. Note that the

assumption of positive players’ weights correctly supports the idea behind the SI axiom.

The PR axiom requires that total overall payoff in the coalition S is the same as total

internal payoff (determined by ϕ applied to vS). Put in other words, external weights do

not enter the game itself and, hence, they are neither productive nor destructive: What was

distributed among the players in a coalition according to ϕ should exactly be redistributed

among them when external weights enter the scene.

CTW is the key axiom that specifies the role of external weights compared to internal

payoffs. For example, suppose on the one hand that within coalition S players i, j obtain

the same (internal) payoff ϕi(vS) = ϕj(vS). But on the other hand, if player i’s weight is

twice as high as player j’s weight, then i’s overall payoff Fi should also be twice as high as

j’s overall payoff Fj. Hence, if internal payoffs are equal, the ratio of overall payoffs matches

the ratio of players’ weights.

Reading the CTW axiom in another way, suppose player i’s internal payoff were three times

as much as player j’s payoff. However, to arrive at the same overall payoff, this can exactly

be “compensated” by external weights, namely by αj being three times higher than αi.

In general, the CTW axiom describes, how overall payoffs should result from the internal

payoff distribution. It is based only on exogenous weights, since all asymmetries among the

players outside the game are captured by the weights vector α. Now, the ratio Fi/ϕi describes

the rate with which player i’s internal payoff is transformed. Then CTW requires that the
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ratio of two players’ transformation rate is given by the ratio of their external weights. Put

in other words, the vector of transformation rates (Fi/ϕi)i∈S,ϕi(vS)>0 is proportional to the

(corresponding) vector of external weights. Thus, the rate of transformation per unit of

external weight is constant across players in a coalition. To sum, with CTW in place, αi

represents the rate with which player i’s internal payoff transforms to the final (overall) one.

3 A characterization result

The concept of external weights is frequently associated with ideas of proportionality. For

example, the distribution of seats in a parliament is supposed to have a direct effect on

how responsibilities in a government are shared. Consequently, the proportional version of

a composite solution, denoted Φ should read as follows:

As domain for Φ we take D̄ := R
N
++ × 2N × Gm × S+ ⊂ D, that restricts attention to

monotonic games and positive solutions. As an example, D̄ covers monotonic simple games

and power indices as solutions. Then define the composite solution Φ : D̄ −→ R
N by1

(1) Φi (α, S, v, ϕ) =











αiϕi (vS)
∑

k∈S αkϕk (vS)
·
∑

k∈S

ϕk (vS) , i ∈ S,

0, i 6∈ S

(i ∈ N).

Thus, within a coalition S exactly the worth σ :=
∑

k∈S ϕk(vS) is redistributed among the

agents in S. Without external weights, player i’s (i ∈ S) share of σ was ϕi(vS)/
∑

k∈S ϕk(vS).

This share is now multiplied with his external weight αi. Normalization, i.e., the sum of

shares equals 1, yields the form in (1). Note also that Φ is homogeneous of degree zero

w.r.t. the weights vector, which means that only relative weights among agents matter.

Before we proceed with a characterization result for Φ on D̄ using the four axioms from

the previous section, consider the following example:

Example: Let v be a monotonic simple game, and let ϕ be an efficient, symmetric solution

that satisfies the null player property. Furthermore, let S be a minimal winning coalition

in v. Then it is readily seen that ϕ allocates the payoff vS(S) = 1 equally among the

members in S and assigns zero to all players not in S. Now, with external weights2 the

composite solution proposes a share of αi/α(S) to player i, where α(S) is the sum of weights

in S. Thus Φ allocates vS(S) within S proportional to players’ external weights. Using the

interpretation of a parliament, such an allocation is widely observed in problems of sharing

responsibilities within a government. �

1We use the convention that 0

0
= 0 (for example, for the case that vS is the zero game).

2Here, we can think of seats in the parliament or number of voters that voted for a party.
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Theorem: A composite solution F : D̄ −→ R
N satisfies IO, SI, PR, and CTW if and only

if F = Φ. Moreover, all four axioms are logically independent.

Proof. The proof proceeds in three steps:

Step 1: Φ satisfies the four axioms on D̄

By construction, Φ clearly satisfies IO. On the domain D̄, Φ always assigns non-negative

payoffs, since any considered game v is monotonic and ϕ is positive. From the construction

and recalling that weights are strictly positive, is is readily seen that, Φi(α, S, v, ϕ) > 0 holds

if and only if ϕi(vS) > 0 is true. Hence, SI is satisfied.

Next, for all (α, S, v, ϕ) ∈ D̄ we have

∑

i∈S

Φi (α, S, v, ϕ) =

∑

i∈S αiϕi (vS)
∑

k∈S αkϕk (vS)

∑

k∈S

ϕk (vS) =
∑

k∈S

ϕk (vS) ,

which shows that the PR axiom is also fulfilled.

Finally, we establish CTW. Take (α, S, v, ϕ) ∈ D̄, i, j ∈ S with ϕi (vS) > 0 and ϕj (v) > 0.

Then we obtain

Φi (α, S, v, ϕ)

ϕi (vS)

αi

=
αiϕi (vS)

∑

k∈S ϕk (vS)

αiϕi (vS)
∑

k∈S αkϕk (vS)
=

∑

k∈S ϕk (vS)
∑

k∈S αkϕk (vS)

=
αjϕj (vS)

∑

k∈S ϕk (vS)

αjϕj (vS)
∑

k∈S αkϕk (vS)
=

Φj (α, S, v, ϕ)

ϕj (vS)

αj

,

which is the condition in CTW.

Step 2: Uniqueness

Let F : D̄ −→ R
N satisfy the above four axioms. Take i ∈ N and (α, S, v, ϕ) ∈ D̄, and

consider the following four cases:

Case 1 (i ∈ N \ S): Then, by IO, Fi (α, S, v, ϕ) = 0 = Φi (α, S, v, ϕ).

Case 2 (S = {i}): By PR, Fi (α, S, v, ϕ) = ϕi (vS), which is, by definition, equal to

Φi (α, S, v, ϕ).

Case 3 (i ∈ S, |S| ≥ 2 and ϕi (vS) = 0): By SI, Fi (α, S, v, ϕ) = 0, which, again by

definition, is equal to Φi (α, S, v, ϕ).

Case 4 (i ∈ S, |S| ≥ 2 and ϕi (vS) > 0): We consider the following two subcases.

Subcase 4.1 (ϕk (vS) = 0 for all k ∈ S \ {i}): We have

Fi (α, S, v, ϕ) =
∑

k∈S

ϕk (vS) −
∑

k∈S\{i}

Fk (α, S, v, ϕ) = ϕi (vS) = Φi (α, S, v, ϕ) ,
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where the first equation follows from PR and the second by SI.

Subcase 4.2 (ϕk (vS) > 0 for some k ∈ S \ {i}): Let S ′ = {l ∈ S \ {i} : ϕl (vS) > 0}. Then,

Fi (α, S, v, ϕ) =
∑

k∈S

ϕk (vS) −
∑

k∈S\{i}

Fk (α, S, v, ϕ)

=
∑

k∈S

ϕk (vS) −
∑

k∈S′

Fk (α, S, v, ϕ) −
∑

k∈(S\{i})\S′

Fk (α, S, v, ϕ)

=
∑

k∈S

ϕk (vS) −
∑

k∈S′

Fk (α, S, v, ϕ)

=
∑

k∈S

ϕk (vS) −
∑

k∈S′

Fi (α, S, v, ϕ)αkϕk (vS)

αiϕi (vS)

=
∑

k∈S

ϕk (vS) −
Fi (α, S, v, ϕ)

αiϕi (vS)

∑

k∈S′

αkϕk (vS)

=
∑

k∈S

ϕk (vS) −
Fi (α, S, v, ϕ)

αiϕi (vS)

∑

k∈S\{i}

αkϕk (vS) ,(2)

where the first equation follows from PR, the third one from ϕ ∈ S+ and SI, the fourth one

by CTW, and the last one by ϕk (vS) = 0 for each k ∈ (S \ {i}) \ S ′. Rearranging (2) leads

to

Fi (α, S, v, ϕ) =

∑

k∈S ϕk (vS)
(

1 +
P

k∈S\{i} αkϕk(vS)

αiϕi(vS)

)

=
αiϕi (vS)

∑

k∈S αkϕk (vS)

∑

k∈S

ϕk (vS) = Φi (α, S, v, ϕ) .

The four cases together establish F = Φ.

Step 3: Logical independence of axioms

Finally, in order to show independence of the axioms used for the characterization of Φ,

we present four composite solutions that satisfy exactly three of the four axioms and are

different from Φ.

Example 1 Define the composite solution F 1 : D̄ −→ R
N by

F 1
i (α, S, v, ϕ) =































∑

k∈S ϕk (vS) ,
if S = {i, j} , j 6= i, and

ϕj (vS) > ϕi (vS) = 0,

0,
if S = {i, j} , j 6= i, and

ϕi (vS) > ϕj (vS) = 0,

Φi (α, S, v, ϕ) , otherwise

(i ∈ N).

7



It is easy to check that, by its construction, F 1 satisfies PR and IO. It also satisfies CTW

since this axiom only states a requirement for coalitions S, in which there are i, j ∈ S with

ϕi (vS) > 0 and ϕj (vS) > 0, and we have F 1 = Φ in such cases. However, F 1 violates SI

since for S = {i, j}, j 6= i, with ϕj (vS) > ϕi (vS) = 0 we have F 1
i (α, S, v, ϕ) = ϕj (vS) > 0.

Example 2 Next, consider F 2 : D̄ → R
N defined by

F 2
i (α, S, v, ϕ) =

{

αiϕi(vS)
α(N)

·
∑

k∈S ϕk (vS) , if i ∈ S,

0, otherwise
(i ∈ N),

where α(N) :=
∑

i∈N αi denotes the total sum of external weights. Clearly, this solution

satisfies SI and IO, and it is easy to check that it also satisfies CTW. However, F 2 violates

PR, since
∑

i∈S

F 2
i (α, S, v, ϕ) =

∑

i∈S αiϕi (vS)

α (N)
·
∑

k∈S

ϕk (vS) 6=
∑

i∈S

ϕk (vS) .

Example 3 Let F 3 : D̄ → R
N be defined by

F 3
i (α, S, v, ϕ) =



















αiϕi (vS)
∑

k∈S αkϕk (vS)
·
∑

k∈S

ϕk (vS) , if i ∈ S,

αiϕi (vS)
∑

k∈N\S αkϕk (vS)
·

∑

k∈N\S

ϕk (vS) , otherwise
(i ∈ N).

As F 3 coincides with Φ for all members in S, inspection of Step 1 reveals that this solution

satisfies all axioms but IO.

Example 4 Define F 4 : D̄ → R
N by

F 4
i (α, S, v, ϕ) =











(ϕi (vS))αi

∑

k∈S(ϕk (vS))αk
·
∑

k∈S

ϕk (vS) , if i ∈ S,

0, otherwise

(i ∈ N),

and notice that it does not satisfy CTW since, for i, j ∈ S with ϕi (vS) > 0 and ϕj (vS) > 0,

F 4

i (α,S,v,ϕ)

ϕi(vS)

αi

=
(ϕi (vS))αi

αiϕi (vS)
·

∑

k∈S ϕk (vS)
∑

k∈S(ϕk (vS))αk

6=
(ϕj (vS))αj

αjϕj (vS)
·

∑

k∈S ϕk (vS)
∑

k∈S(ϕk (vS))αk
=

F 4

j (α,S,v,ϕ)

ϕj(vS)

αj

.

It is easy to check that F 4 satisfies SI, PR, and IO. �
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4 Concluding remarks

The concept of a composite solution measures players’ overall payoff in a coalition when their

internal payoff in a game is given by a cooperative solution concept, and a vector of positive

weights describes asymmetries among the players outside the game. As an example, one may

consider simple games which describe possibilities to form winning coalitions. Traditionally,

power indices, such as the Shapley value, propose a distribution of power among the players.

However, a frequent criticism towards power indices is that they ignore characteristics besides

the data of the game (e.g., distribution of seats in a parliament). Composite solutions now

provide a tool to incorporate both, external weights and the data of the game to arrive at an

overall power distribution within a winning coalition, i.e., how to distribute responsibilities

within a government (cf. Dimitrov and Haake (2006)).

In addition to the properties used for the characterization of Φ, this composite solution

also satisfies other desirable properties we would like to mention. For example, Φ inherits

standard properties from the solution ϕ such as efficiency or the null player property. More-

over, if ϕ is symmetric, then the ratio of overall payoffs of any two players who are symmetric

in v is exactly the ratio of their external weights.

Finally, the reader may easily verify that if, on the one hand, external asymmetries

among the players are faded out (i.e., if we assume equal weights) then, roughly spoken, the

composite solution Φ coincides with the solution ϕ.3 If, on the other hand, internal differences

among the players in the game are ignored by the solution concept (e.g., if ϕi (vS) = vS(S)
|S|

for each i ∈ S ⊆ N) then, since all players are symmetric, the ratio of overall payoffs of any

two players is the ratio of external weights. Hence Φ is in essence determined by the weights

vector α.
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