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Abstract

The paper develops a large-scale overlapping generations model with produc-
tion and a stochastic asset market. The role of a pension system and the impact
of demographic change on real and financial markets are analyzed. In the absence
of demographic change a reduction in contribution rates increases the long-run
levels of capital and asset prices while reducing interest rates. In addition a lower
contribution rate may stabilize financial markets by reducing the volatility and
avoiding crashes in asset prices. Demographic change due to a shrinking popu-
lation induces a meltdown of capital and asset prices confirming results in the
literature.
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Introduction

One of the biggest challenges faced by virtually all industrialized countries is the acceler-
ating demographic change within their populations. These structural changes are mainly
due to low birth rates accompanied by a constant increase in people’s life expectancy.
Both effects put enormous pressure on the existing pay-as-you-go pension systems as
they simultaneously increase the number of beneficiaries and decrease the number of
contributors to the systems. Against this background the past years have seen a vivid
political debate about the efficiency and sustainability of pension systems and numerous
reform proposals have been suggested. However, any pay-as-you-go structure implies a
fundamental trade-off between maintaining a sufficiently high level of pension incomes
and keeping contributions at a reasonably low level. As a consequence a mere adjust-
ment of contribution rates and/or pension payments can shift the demographic burden
between contributors and beneficiaries but cannot solve the demographic problem.

To ameliorate this dilemma, many economists have suggested to supplement or even re-
place the public pension system by an increased share of private savings for retirement.
The economic reasoning behind this measure to attenuate the demographic problem is
that an increase in private savings potentially fosters the accumulation of capital, cf.
Feldstein (1974). This in turn would enhance the production possibilities of the econ-
omy providing a potential way to overcome the loss in aggregated workforce induced
by the demographic change. Opponents of such a reform have argued, however, that
private savings are exposed to capital market risk. Hence, the proposed change towards
a funded retirement system would necessarily increase the risk to which pension incomes
are exposed due to the volatility and unpredictability of capital markets in general and
stock markets in particular. This argument has to some extent been supported by the
drastic decline in stock prices at the beginning of this century.

The latter argument apparently suggests a trade-off between the efficiency of a pen-
sion system and the risk to which pension incomes are subjected. It also stresses the
importance to pay adequate respect to the role of uncertainty and financial risk when
studying pension reforms. In this regard, it seems natural to assume that adjustments
in the pension system affect consumers’ savings behavior which in turn affect prices
on financial markets. A comprehensive theoretical analysis therefore requires a frame-
work which incorporates not only the issue of demographic change but also the mutual
interactions between the pension system and asset/stock markets. Conceptually, this
calls for a macroeconomic model which incorporates the following three building blocks:
Firstly, a population model to study the impact of demographic changes in the popula-
tion structure. Secondly, a description of the production side of the economy to analyze
the consequences of pension reforms on real variables such as capital stock, real wages,
etc. Thirdly, a stochastic asset market in order to study the role of financial risk and
the impact of pension parameters on financial variables such as stock prices, interest
rates, etc. The conception and study of such a model forms the core of this paper.
The literature on pension systems mostly confines itself to a deterministic framework.
In this regard, the multi-period overlapping generations (OLG) model developed by




Auerbach & Kotlikoff (1987) has been employed by numerous authors to study pension
reforms and the role of demographic changes in a deterministic world. Examples may be
found in Altig, Auerbach, Kotlikoff, Smetters & Walliser (2001), Bérsch-Supan, Heiss,
Ludwig & Winter (2003, 2006) or Imrohoroglu, Imrohoroglu & Joines (1995). Models
which incorporate randomness and stochastic asset markets typically treat asset returns
and/or consumers’ income as given stochastic processes which follow an exogenously
determined probability law (cf. Demange & Laroque (1999), Demange (2002) and also
Barbie, Hagedorn & Kaul (2007), or Farhi & Panageas (2007)). While this permits a
study of risk to which pension incomes and savings for retirement are exposed, it does
not incorporate the interactions between asset/stock markets and the pension system
described above. Models which partly overcome this problem can be found, for instance,
in Chattopadhyay & Gottardi (1999), Gottardi & Kiibler (2006), and Kriiger & Kiibler
(2006). Common to all these approaches is a particular stochastic setting where the
underlying probability space is finite such that the theoretical framework of incomplete
markets (see, e.g., Magill & Quinzii 1998) becomes applicable. While this permits the
derivation of valuable analytical results on the efficiency of pension system and inter-
generational risk-sharing, the proposed structure makes it difficult to characterize the
evolution of the model on a time series level using tools and methods from (random)
dynamical systems theory and time series analysis. As a consequence, a comparison of
the long-run dynamic behavior of real and financial variables such as aggregate output
or asset prices and their statistical properties depending on the population structure
and/or the parameters of the pension system is not possible. In addition these models
typically adopt an OLG structure with only two generations implying a relatively coarse
time scale. Further studies which focus on the interactions between real capital markets
(interpreted as stock markets) and the evolution of the population can be found in Abel
(2001, 2003) and Geanakopolos, Magill & Quinzii (2004). Again these models employ
a deterministic or simplified stochastic setting.

The intention of this paper is twofold. The first objective is to complement the exist-
ing approaches by developing a dynamic macroeconomic model which incorporates the
three building blocks described above. In this regard, the explicit modeling strategy
successfully applied in the asset market models by B6hm & Chiarella (2005) and Hille-
brand & Wenzelburger (2006) is adopted. These models provide an explicit description
of the formation of expectations and the dynamic evolution of prices and allocations
on financial markets. The conceptual challenge is to join these financial models with a
real sector describing the production and investment activities of firms and the income
streams of consumers generated through the production process. In addition the OLG
structure is extended by a population model and consumers with multi-period lives as
in Hillebrand & Wenzelburger (2006). Compared to an OLG setting with only two gen-
erations this not only enhances the possibilities to study demographic changes in the
population structure. It also permits a more detailed analysis of how a pension system
affects the distribution of wealth and consumption and the savings behavior over the
life cycle. Using this framework, the second goal of the paper is to study the macroeco-
nomic consequences of pension reforms and demographic changes as motivated above.




The paper is organized as follows. Section 1 introduces the OLG model followed by a
derivation of the demand behavior of consumers and the firm in Sections 2 and 3. The
formation of prices and the sequential structure of the model is introduced in Section 4,
followed by a description of the demographic model and the formation of expectations
in Section 5. Sections 6 and 7 study the role of pension systems with a stationary pop-
ulation, while Section 8 considers the case with demographic change. Section 9 draws
some conclusions, mathematical proofs are placed in the appendix.

1 The OLG model

Consider an economy with discrete time and a population consisting of overlapping gen-
erations (OLG) of homogeneous consumers who live for J 4 1 consecutive time periods.
In each period ¢ € Ny, each generation is identified by the index j € {0,1,...,J} de-
scribing the remaining lifetime of the consumers in this generation. In particular, j = J
refers to the young generation of consumers born at the beginning of period ¢t and j =0
identifies the old generation whose members die at the end of the current period. Let
Nt(j ) > 0 denote the number of consumers in generation j at time ¢ and define for each
t the population vector NV, := (Nt(j ))]'7:0. Since all generations live identically for J + 1
periods one has Nt(j) = Nt(f{l) for each 7 =0,1,...,J — 1. Assuming that the number
Nt(‘]) > 0 of consumers born at the beginning of period ¢ is determined from the previous
population vector N;_; by some continuous mapping N : R_{frl — Ry, the population
evolves according to the population law

ND = N(Ny). (1)

{ N9 = NUtY o i=01,...,J-1
Each consumer in generation j € {jy, ..., J} supplies LY > 0 units of labor inelastically
to the labor market where the threshold j;, > 0 defines the retirement age. The total
amount of labor supplied at time ¢ is given by

J
Ly =Y LUND. (2)

J=iL

There is a single consumption good in the economy which serves as numeraire such that
all prices and payments are denominated in terms of the consumption good. Let w; > 0
denote the gross real wage per unit of labor at time ¢ out of which a fraction 7 € [0, 1]
has to be contributed to the public pension system. Then each working consumer in
generation j € {jr,...,J} earns net labor income

e = (1=1)w, LV > 0 (3)

at time t. Assuming that contributions to the pension system are divided up equally
Jjr—1

between current retirees and letting Nf := ylh Nt(j ) denote the number of pensioners,
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the non-capital income of each consumer in generation j € {0,...,j, — 1} at time ¢ is

S
G) _ rR.__Yt Lt

> 0. (4)

To transfer income between different periods there exist two investment possibilities
available to each consumer. The first one is a one-period lived bond which is traded at
a price of unity at time ¢ and pays a non-random return R; > 0 in the following period
t+1. Since R; is determined at time ¢, the bond provides a riskless investment possibility
between any two consecutive periods. The second investment opportunity is given by
retradeable shares of a firm which are traded at stock price p; > 0 and pay a random
dividend d; > 0 (per share, prior to trading) in each period ¢. Dividend payments are
generated endogenously from the production activities of the firm. The total number of
shares in the market is constant and denoted as £ > 0. While consumers may short-sell
bonds without bound short-selling of shares is not possible. The bond thus provides the
sole possibility for consumers (and the firm) to obtain credit. The space Z := R x R,
defines the set of feasible portfolios of bonds and stocks for each consumer.

Denote by zt(j )= (yt(J ),:cgj )) € 7Z the portfolio purchased by a consumer in generation

j€{1,...,J} at time t consisting of a bond investment yt( and a non-negative number

) defining the number of shares in the portfolio. The wealth of a consumer belonging
to generation j at time ¢ consists of his current non-capital income defined by (3) and
(4), respectively, and his capital income corresponding to the return on his previous

investment 27t = (yU1 2U*U)  The latter is given by the return R,_; on the bond

U1 and the return on the stock portfolio 21" consisting of dividend

earnings and the selling revenue at time ¢. Since the capital income of young consumers

investment y,”

is zero, we define the wealth of a consumer in generation j at time ¢ as

g]) .= ei(ij)? ) ) ]:J (5)
+Rt7 ytj+)+xgj_;)(pt+dt) .7:0’1,,‘]_1

2 Demand behavior of consumers

To derive the consumption and investment behavior of consumers we consider a typical
consumer belonging to generation j > 0 in an arbitrary period ¢t who dies at the end of
period ¢t 4+ j. A more detailed treatment may be found in Hillebrand & Wenzelburger
(2007). To alleviate the time script notation we set ¢t = 0 for the current period and use
the index n = 0,1,...,j to refer to periods within the consumer’s remaining lifetime.
The index j identifying the consumer’s generation will be suppressed for convenience.

In each period n =0, ...,  the consumer can consume part of his wealth and use the
investment possibilities described in the previous section to transfer wealth into future
periods. Let C := R, denote the consumption set describing feasible consumption
plans in each period. It is assumed that the decision in ¢ = 0 is made after the dividend
payment dg > 0 and the current non-capital income ey > 0 have been observed but prior




to trading, i.e., before the bond return R, and asset prices p, have been determined.
Hence the consumer treats these variables as parameters R > 0 and p > 0. Likewise his
current wealth defined by (5) is treated as parameter w € R in the decision. Note that
wealth may be negative if the consumer has taken credit in the previous period.

At time ¢ = 0 the consumer holds expectations é := (é;,...,é;) € Rﬂr for his future non-
capital income and R := (Rl, e ]A%j,l) € Ri;l for future bond returns. Here é, > 0
denotes the non-capital income expected to be received in period n € {1,...,;} while
R, > 01is the expected bond return between future periods n and n+1, n € {1,...,j—-1}.
For each n € Ny let s, := (pn,d,) €S := R, xR, denote the asset price and dividend
payment in period n. At time £ = 0 there is uncertainty about all future s,, n > 0.
These are treated as an S-valued stochastic process {s; },~o of random variables defined
on a probability space (€2, F,P) which is adapted to a suitable filtration {F,},>: of
sub-o-algebras of F. The consumer’s expectations for prices and dividends within his
remaining lifetime are characterized in the following assumption. In what follows B(A)
denotes the Borel o- algebra on a given topological space A.

Assumption 1

Given the planning horizon j > 0 the consumer’s subjective expectations for future
asset prices and dividends are given by a probability measure v on (S7, B(S?)) defining
a joint distribution of the random variables si, ..., s;. The measure v is supported on
some compact set S =S, x ... x S; € B(S?) with each S,,, n=1,..., 3, being compact.

The behavior implied by Assumption 1 suggests that the consumer perceives future
asset prices and dividends to be the primary source of uncertainty while his non-capital
income and future bond returns can be relatively precisely predicted. It will be shown
later that this assumption is actually consistent with the behavior of the model.
To derive the consumer’s decision problem the following notion of a strategy is adopted.
For ease of notation we define Ry := R and write ST = (81,...,8,) €S™",n>1.

Definition 1
(i) A strategy (C, Z) consists of a decision (cy, z0) € Cx Z and a list of B(S™) —B(Cx Z)
measurable functions (¢, z,) : S" — C X Z, 2z, = (Yn, Tn), n=1,..., 7.
(ii) Given the current bond return R > 0, prices p > 0 and initial wealth w defined by
(5) as well as expectations é and R at time t = 0, a strategy (C, Z) is called feasible if
(a) co+yo+aop=uw
(b) for eachn =1,...,j and all st € S™

en(87) 4 Yn (™) + 2 (87) Pr = €n + Ryt Yn_1(s"™Y) + 21 (s77Y) (pn + dn).
(iii) The set of feasible strategies is denoted by B(R, p, w;é, R)

A strategy thus specifies current consumption ¢o and investment zy = (yo, o) and
mutually consistent plans for consumption and investment in future periodsn =1,...,j




within the consumer’s remaining lifetime. These plans are made conditional on the

random variables si,...,s, observed up to time n.! Since the consumer’s planning

horizon ends in period j, no portfolio is carried over to period j + 1 such that z; = 0.

It can be shown (cf. Hillebrand & Wenzelburger (2007, Lemma 1)) that B(R, p, w; é, ]%)

is non-empty, if and only if w > —€;/R where
R, R ---R;_,

denotes the discounted non-capital income stream derived from expectations é and R.2
Next the consumer’s preferences over alternative consumption strategies are specified.

Assumption 2
Given the planning horizon j > 0, the consumer’s preferences over consumption within
his remaining lifetime can be represented by the utility function

(CosC1y---5¢5) —> In(co) + 327 *In(e,), B> 0.

For each (C,Z) € B(R, p,w,é, R) define expected utility over the remaining lifetime as

E, [Uy(C, )] = In(cp) + /S‘j Zﬂ" In(c, (s7)) v(ds?). (7)

n=1

The consumer’s objective is to choose a strategy (C*, Z*) € %(R,p,w;é,f%) which
maximizes the expected utility (7). His decision problem at time ¢ = 0 reads

max{ B, [0(C,]|(C.2) € (R, B . ®)
The existence of a solution (C*,Z*) € ZB(R,p, w;é, R) to (8) for general expectations
and preferences is studied in Hillebrand & Wenzelburger (2007). Associated with such a
solution is an optimal decision (¢}, 25) € CxZ for t = 0 which determines the consumer’s
demand behavior in the decision period. Proposition 1 below establishes the existence
and functional form of demand functions which determine the optimal consumption-
investment decision for alternative asset prices (R, p) and wealth w determined by (5).
In this regard, note that the distribution v from Assumption 1 induces a distribution v, of
the random variable ¢ := p; +d; defining the cum-dividend price of the following period.
Proposition 1 below shows that the derived distribution v, is sufficient to characterize
the consumer’s demand behavior in the decision period. By virtue of Assumption 1

1 The literature often defines a strategy as an adapted stochastic process defined on a probability
space representing uncertain future states of the world. While the definition given here is equivalent
from a mathematical point of view, the uncertainty here rests on future asset prices and dividends
rather than states of the world. This formulation appears more suitable from an economic point of
view since prices and dividends are the relevant quantities which are directly observable.

It is argued in Hillebrand & Wenzelburger (2007) that if expectations for future non-capital income
and bond returns are sufficiently precise this requirement is automatically satisfied in each period
of the life cycle due to the consumer’s credit taking behavior as derived in Proposition 1 below.
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the support of v, will be a compact subset Q C R,,. The next assumption restricts
expectations to be from the class of elliptical distributions which play a major role in
portfolio theory (cf. Chamberlain (1983)). Here the equivalence relation £ indicates
that two random variables have the same distribution.

Assumption 3

The subjective distribution v, of the random variable q is taken from a fixed class of
elliptical distributions parameterized in (u,o0) € R% . The class is generated by a ran-

dom variable ¢ with non-degenerate (E,_ [¢%] > 0) and symmetric (& L —¢) distribution
ve supported on the interval [—&, &] such that q has the stochastic representation

qgu—l—as

B L e—py s o
and v, = v, , = v.(*>*) is given by the corresponding image measure.

In the sequel we identify v, with the parameters (u, o) which define the mean and the
dispersion of the distribution and which we call the consumer’s beliefs about q. Note that
the assumption p > o € is sufficient to ensure that v, has strictly positive support. Beliefs
satisfying this requirement will be called feasible such that B := {(u,0) € R% | |u > o &}
defines the set of feasible beliefs. The following proposition is a version of the results
obtained by Hakansson (1969). A proof for the present case may be found in Hillebrand
& Wenzelburger (2007).

Proposition 1

Let j > 0 and expectations é = (é1,...,€;) € R{L and R = (Rl,...,f%j_l) € Rﬂ:& be
given and beliefs (u,0) € B be feasible. Moreover, let Assumptions 1 — 3 be satisfied
and define €y > 0 as in (6). Then for all (R,p) > 0 and w > —é /R the consumer’s
consumption and investment in stocks and bonds can be described by the functions

o (R,p,w;p,0,6,R) = 2D (w+é/R)
O (R, pw; p,0,8,R) = (1—29)(w+é&/R)O(Rp;p,0)/p )
o (R, p,w; 0,8, R) = (1—29)(w+&/R)(1 - 0(Rp; p, 0)) — &/ R.

Here %) :=[1 + B+ ...+ 3] ! and the share of (lifetime) income invested in shares is
determined by the map 6 : R, x B — [0, 1]

O(m; p,0) == arg max {/[__] In(m +9 (p+o0e—m)) ve(de) |9 €[0,1] } : (10)

Since ¢{® = 1 the demand functions (9) also describe the behavior of the old generation
7 = 0 whose members only consume and do not invest.

3 Demand behavior of the firm

Next consider the production and investment behavior of the firm. In each period
t € Ny the firm employs labor L; > 0 and uses its capital stock K; > 0 to produce
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the consumption good. In addition, the production process at time ¢ is subjected to
a random shock 7;. More specifically, suppose that the production technology can be
described by the production function® F : Ry x Ry X [0, Hmaee] — Ry

F(Ly, Ky,m) = 6 LEK ™ +my, k>0, «€]0,1]. (11)
The following assumption specifies the stochastic nature of the production shock in (11).

Assumption 4
The process {n; }; consists of i.i.d. random variables. Each n; has symmetric distribution
v, supported on [0, Tes). The expected value i :=T,, [nt] = Mz js known to the firm.

The assumption of independent production shocks is made mainly for convenience and
could be modified easily. Symmetry of the distribution v, will be required in Section 6
for consistency with Assumption 3.

At time ¢ the firm takes its current capital stock K; > 0 as given and decides about labor
input L; > 0 and investment I; > 0. Assuming that capital depreciates at constant rate
d €]0, 1], any investment I; made at time ¢ determines next period’s capital stock as

Kt—l—l = -lt + (]. - 6)Kt (12)

To extend its capital stock the firm can transform consumption goods into capital goods.
As in Abel (2003), suppose that given K; > 0, the amount of consumption goods needed
to produce I; > 0 units of new capital is determined by the adjustment cost function
G:Ry xRy — Ry,

G(I,K):=Kg(I/K). (13)

The function G may be viewed as an input requirement function for a capital adjustment
technology. Its properties are mainly determined by the function g which depends on
the investment ratio i := I /K. The sequel assumes that g is of the form

' ’ =Y 0,7, > & 14
g(z)— ,Yoexp{,yli} i>0 ) 70> 771>g' ( )

The function g has a discontinuity at zero implying that there are some fixed costs to
investment which have to be incurred whenever the investment is positive as argued by
Rotschild (1971). The restriction 7, > 5 will be explained below.

Assume that the firm’s investment decision I; at time ¢ is exclusively financed by issuing
bonds B; > 0 inducing the obligation to pay R;B; units of output/consumption good at
time ¢ + 1. Recalling that the bond price is normalized to unity, one immediately finds
that investment decision and bond supply at time ¢ are related as

B, = G(I, K,) = K, g(I,/ K). (15)

3 The choice of a Cobb-Douglas production function with additive noise is made mainly for simplicity.
While this structure will be convenient for the subsequent derivations, it is straightforward to replace
the Cobb-Douglas form by more general, e.g., CES technologies. Likewise it should be possible to
relax the specification with additive noise.




After paying for labor and the bond debt incurred in the previous period, the firm
distributes all excess output to its shareholders. Letting as before w; > 0 denote the
real wage in period ¢ and ¥ > 0 the constant number of shares in the market, the
dividend (per share) at time t is given by

F(Ly, Ki,me) — wi Ly — Ri—1Byy
- .

dt:

(16)

To derive the firm’s labor demand and investment behavior, consider an arbitrary period
t = 0. Let the current capital stock K, > 0, the production shock 7y € [0, Dmaz] as
well as the bond debt R ;B ; > 0 resulting from the previous investment decision be
given. The current real wage and the current bond return enter the decision problem as
parameters w > 0 and R > 0, respectively. Suppose that the firm seeks to act in favor of
its shareholders by maximizing dividend payments (a related setting has been adopted
in Magill & Quinzii 2003). Given this objective, labor demand and investment may be
determined separately. Suppose first that the firm chooses labor input at time ¢ = 0 to
maximize the current dividend payment. This implies that current labor demand is a
solution to the optimization problem

{ F(L, Ko,mo) —wL — R_1B_, }
max — .

L>0 T

(17)

Second, suppose that investment at time ¢ = 0 is chosen to maximize the expected
dividend payment of the following period subject to the constraint that this payment
is non-negative for any possible realization of next period’s production shock. For this
purpose, the firm holds expectations @w; > 0 for the real wage prevailing in the following
period ¢ = 1. The decision involves an investment decision I made at time ¢ = 0 and
planned labor demand L, for the following period. Using equations (12), (13), (15), and
(16) the corresponding maximization problem reads

max {F(Lh I+ (1-96)Ky),n) — w1l — RKog(I/Ko)

I>0,L1>0 x

(18)

The following proposition characterizes the firm’s demand behavior derived from (17)
and (18). The proof may be found in the appendix.

Proposition 2

Let the firm’s technologies be given by equations (11), (13) and (14) and let Assumption
4 be satisfied. Then given the values R 1B 1 > 0, 19 € [0, M| and Ky > 0 the firm’s
demand behavior is as follows:

(i) For each w > 0 labor demand is determined by the function

L(w; Kp) := (%) K. (19)




[e]

(ii) Given &, > 0, positive investment requires that R < R(J,) := L= (%) I

evom \ Wi
this case, an optimal investment decision is determined by the function

I(R:6n, K,y) = l1n(M (%>ﬁ>1<0. (20)

T Yo B\ @1

Proposition 2 (ii) restricts attention to interior investment solutions by imposing an

upper bound R(&;) on the current bond return. Note that this does not imply that the
firm necessarily increases its capital stock. In fact, we have in (20)

1 1— = 1
lim —In ﬂ(%> =<
R R(@n) V1 YR \ "

due to our restriction y; > %. Hence, for R sufficiently close to the boundary 1:%(@1), the
firm will disinvest in the sense that the investment will not be sufficient to compensate
depreciation and the capital stock will be smaller in the next period. Combining (15)
and (20) the firm’s bond supply may be written as a function

<

. (1-a)k fark\Te
B(R; w1, Ky) i= ———— K. 21
(R @1, Ko) "R o 0 (21)

The bond supply function satisfies B(R; &, Ky) = R 'B(1; 1, Ky). This homogeneity
property will become crucial in the following section to determine the equilibrium bond
return. Its validity is exclusively due to the specification of the adjustment cost function
(14) which is therefore indispensable to obtain the subsequent results.

4 Price formation and sequential structure

Based on the demand behavior of consumers and the firm the following part describes
their interactions on real and financial markets and the sequential structure of the model
in each period. It is shown that market-clearing prices are well-defined and can even
be determined explicitly. For the following derivations let ¢ € Ny be arbitrary and the
population vector N;_1, the capital stock K;_; as well as the firm’s investment decision
I, 1 from the previous period be given. Furthermore, let the initial distribution of shares

§’31,yt@1)<’ and B;_; which is

and bonds be defined by the asset allocation z;_1 := (x i1

given together with the previous bond return R;_; > 0. Suppose that initially all shares
are distributed among (non-young) consumers such that 25:1 Nt(i )lxgj_) = Z and that
the previous bond allocation satisfies Z'j]:l Nt(f )lyéf )1 — B, ;1 = 0. Given these quantities,
the following five steps describe the sequential structure of the model in period t.

Step 1: Population and labor force, capital stock. Given N;_y the population vector

N, = (Nt(] ))37:0 is determined at the beginning of the period according to the population

law (1). Given the labor supply LY of each consumer in generation j € {jz,...,J}
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this determines aggregate labor supply Ly > 0 according to (2). Moreover, the previous
investment I; | together with K, ; determines the capital stock K; according to (12).

Step 2: Real wage, non-capital income, dividend payment. Utilizing the labor demand
function (19) of the firm, suppose that the real wage w; at time t is determined such
that market clearing on the labor market obtains, i.e. L(wy; K;) = LY. Exploiting the
functional form (19) this condition may be solved explicitly for w; to obtain

s Kt l1-a
we = W(L, Ky) = ko <L5> . (22)
Given some contribution rate 7; € [0, 1] determined by the public pension system the
equilibrium real wage w, defines the non-capital income distribution e, = (egj )) _o among
consumers according to (3) and (4). After the realization of the production shock
Mt € [0, Mmae) the dividend payment d; of the firm is determined by (16).

Step 3: Expectations formation. Based on the values determined in the previous steps
(and observations from previous periods ¢t — 1, — 2,...) each consumer in generation
j€{1,...,J} forms expectations e(J) (e?2+n)j —; and jo ) = (Ry14n)’ _, for his future
non—capltal income stream and future bond returns. Here égﬁn > 0 denotes the point
forecast made by a member of generation j at time ¢ for her non-capital income at time
t + n and ]A%t t+n > 0 denotes the homogeneous forecast made by all generations for the

bond return Ry,. To obtain a compact notation let &, := (67))7_, and R, := (R?)7

j=1 j=1-
Likewise consumers determine their subjective beliefs (u, 0;) € B about the distribution
of next period’s cum-dividend price ¢;11 := piy1 + diy1 and the firm makes a forecast
Weer1 > 0 for next period’s real wage. Based on these expectations consumers determine

their asset demand (9) and the firm determines its bond supply (21).

Step 4: Asset market clearing, wealth, asset holdings. Next the bond return R; and
asset, prices p; are determined simultaneously from the demand behavior of consumers
and the firm such that the aggregated excess demand function for stocks and bonds is
equal to zero. Using that Z lxt 1 = ZJ ; N xtﬁl) = T the market clearing
conditions for the stock market and the bond market read

J

ZN]) (7) (Rt ptawig )7:utio-t’6t :R ) =z (23)
T

ZNt(])QO?(/]) ( 7pt7w§ )hu‘tao-t;eg )’ RO)) - B(Rt;a)t,t'f‘l’Kt) (24)

where wt(j ) is determined by (5) (and thus also depends on p;). Utilizing the demand
functions (9) and (21) together with the definition of wealth (5) and defining the values

4(7) ~(9)

) . é é
égj) = ég,]t)—kl 2 L4 s ;o J=1.J (25)
, Ateen Rygiq1-- 'Rt,H—j—l
R 1
my = %[Z;N(J) By )+B(1 W41, Ki) (26)
]:
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we show in Appendix A.2 that the conditions (23) and (24) possess a unique solution
(Ry, p;)- These values are determined by the temporary equilibrium mappings*

Rt = R(Nt, Kt, €, dt, Zp— 1, Rt 15 M, Oty ét, Rtadjt t+1) (27)
J—1
1010 K0+ SN () 3 N0
j=1 j=0

J J—-1
$ONO(1 - D)) + Z NO(1 — &) [R ARt dtm(]+1)]
Jj=1 J

pe = P(N, Ky e, dy, 201, R laNtaUtaetaRt;wtt+1) (28)

W(uta O¢, mt)
R(Nt, Ky, e, dyy 21, Ry—1, piy, 0, €4, Ry, wt,t+1)

Here 7 : BXxR,, — R, is a C' map which is defined in equation (54) in Appendix A.2.
The equilibrium asset prices determine the equilibrium wealth levels w,gj ), j=0,1,...,J
according to (5) and define a new asset allocation as

LEIEJ) = ()0:(15]) (Rtapta ng)a Hts Oty et ’ RU)) ’ .7 = 1’ ] J
yt(J) = QO:(y]) <Rtapta wt(j)’ Mty O, egj)a Rg”) s .7 = 1’ ] J
B, = B(Ry0i441, Ky).

Step 5: Consumption, capital formation. In the final step, consumers realize their
consumption decision and the firm uses the consumption goods collected from its bond
supply to adjust the capital stock. Given the consumption functions from (9) and the
investment function (20), the final step is described by the equations

ng) = 90 (Rtapt:wg )autaatae(]) ﬁgj)) ) .7 = 0511"'aJ
It = I(Rt, (Dt,t-l—la Kt)
The previous steps and (5), (9) and (16) imply Z;-]:O NP 4 B, = F(L?, K, my).

Hence, the model is indeed closed in the sense that the commodlty market also clears.

5 Population dynamics and expectations formation

The previous section has derived the temporary structure of the economy in an arbitrary
period t taking the population structure as given. To complete our demographic model

* Consistency between the solution R, defined by (27) and the investment function (20) requires that
Ry < R(&t441)- While it can be shown that this condition holds automatically at any rational
expectations equilibrium studied in Section 6 due to the restriction § > v, it seems difficult to
derive explicit conditions for the general multi-period case due to the complexity of the map R.
However, the numerical simulations presented in Sections 7 and 8 show that there exists a robust
set of parameters such that the condition R; < R(Q441) is indeed satisfied for all times t.
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we assume that the map N in (1) is of the following form

J

J
N(Ne) = o ND O (14 exp{—na ) N0 }) (29)
=0

§=0

where nt9) > 0,5 =0,...,.J and ny > 0. If ny, = 0, the population law (29) is linear with
constant fertilities of each generation j = 0,...,J. If ny > 0, fertility is a decreasing
function of the previous population size ZiJ:o Nt@l. If J = 0 (corresponding to the
degenerate case where consumers live for one period only), equation (29) reduces to
the well-known Ricker-type map which is widely-used in biological sciences to model
the evolution of (human and non-human) populations, see, e.g., Henson et al. (1999).
Apart from this justification the functional form (29) turns out to be convenient to
model demographic transitions of the population due to its dynamic properties. None
of the results derived in the sequel hinges on the particular functional form in (29).
Let N : R — RIF (N — N(ND)L_g) == (ND)L_ |, N((ND)7_y)) denote
the corresponding time-one map of the population dynamics defined by equations (1) and
(29), i.e., N; = N'(N,_1) for each t > 0. Some immediate properties of the population
dynamics are stated in the following lemma. The proof is straightforward.

Lemma 1
Suppose that the parameters in (29) satisfy ny > 0 and n) >0,j=0,...,J. Define
n:= Z}]:o nY) and assume, in addition, that % < n < 1. Then the following holds true:

(i) The population dynamics defined by equations (1) and (29) possess a unique pos-

itive steady state N* = (N)}-’ZO where N := m In 7 > 0.

(ii) The steady state in (i) is asymptotically stable if all eigenvalues of the Jacobian
matrix DN'(N*) lie inside the complex unit disc. This matrix is of the form

0 1 0 0
0 0 1 0 .
. . J 1—n n
DN(N*) = Do e e §0) = 1 .
N(N7) ’ n J+1n1—n
0 0 0 .. 1
50O s 5@ .0 5O

Observe that the parameter ny is crucial to determine the steady state value N in (i)
but does not affect its asymptotic stability in (ii). Hence, given suitable parameter
choices 9, j = 0,1,...,J, any value N > 0 can be induced as a stable steady state
of the population dynamics by appropriately choosing a value for n,. In the sequel this
property will allow us to study the case with a stationary population where Nt(j ) =N
and to consider the comparative-static effect of alternative values for N. In addition,
demographic transition phases may be modeled as shifts in the parameter n,.

To complete the description of the model we are left to specify the forecasting behavior
of consumers and the firm. Recall that the expectations formation at time ¢ involves

13



consumers’ point forecasts & = (éﬁ%n)ﬁml and jo) = (Ryyn)l5,j=1,...,J fornon-
capital income and bond returns, beliefs (u, 0y) € B about next period’s cum-dividend
price g;11 as well as the firm’s real wage prediction @w;;;;. In accordance with the
sequential structure introduced in the previous section, the information set upon which
expectations at time ¢ are based contains the current non-capital income distribution e;
and the dividend payment d; but not the current price p; and the bond return R;.
To obtain a first characterization of the dynamic behavior of the model the present
paper refrains from the assumption of fully rational expectations but instead assumes
that agents form expectations according to simple prediction rules. Integrating more
sophisticated rules into the model is straightforward. To this end, suppose that the
firm’s wage prediction satisfies

Wei1 = Wy (30)
for all times ¢t € Ny. Consumers in generation j € {1,...,J} derive their non-capital
income expectation égf)ﬂ for period ¢ 4+ n from the current income of generation j — n
(corresponding to their age at t + n) such that for each ¢t € Ny

e =e™, n=1,....5,j=1,...J (31)
The prediction for future bond returns is assumed to be uniformly equal to the last
observed bond return which gives for each t € Ny

Rt,H—n :Rtfl, n = 1,...,J— 1. (32)

As for consumers’ beliefs about cum-dividend prices assume that second moment beliefs
are constant such that o, = ¢ for all times ¢ and that first moment beliefs y; are updated
using a simple error-correction principle of the from

p = pp—2 + 0(q—1 — py—2), 0< o<1 (33)

Note that (33) includes the cases of naive (p = 1) and of static (9 = 0) expectations.
Despite their simplicity the prediction rules (30)-(33) can be shown to induce a form of
near-rational behavior with relatively small forecasting errors. In the two-period case
studied in the following section they provide fully rational expectations in the long run
as soon as the economy has converged to a steady state. In the general stochastic
case studied in Section 7 they yield unbiased, i.e., on average correct forecasts since the
respective variable follows a stationary stochastic process. Also note that point forecasts
are made for future bond returns and non-capital income while consumers treat next
period’s cum-dividend price as a random variable and attempt to predict the first two
moments of its hypothesized distribution. This kind of behavior suggests that, e.g.,
fluctuations in real wages are negligible compared to fluctuations in asset prices. The
following sections will reveal that this behavior is consistent with the model.

The framework developed so far offers a convenient possibility to study the influence
of a pension system (represented by different contribution rates 7;) on production and
financial markets as well as the impact of changes in the population structure. The
study of these two influences forms the core of the remaining sections of this paper.
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6 Rational expectations equilibria

Based on the model developed in the previous sections we seek to study the impact of
alternative contribution rates as well as of changes in the population size on the long-run
state of the economy. The present section studies the simplest possible case with one
working and one retired generation setting J = 1 and j; = 0. Proofs for all results are
given in the appendix. The amount of labor supplied by young consumers is normalized
to unity such that L) = 1 and, therefore, LS = N{” in (2). In addition, suppose that
consumers do not update their first moment beliefs about cum-dividend prices such
that o = 0 in (33) and p; = . Finally, let the contribution rate to the pension system
be constant over time such that 7 = 7. In this case, it can be shown that the state
dynamics of the model reduce to the following three building blocks:

(a) The exogenous population dynamics. Using (1) and (29) these take the form
N, = N(N, 1) == (NOLN (N, ). (34)

(b) The capital dynamics. Employing equations (12) and (20) together with (2), (22)
and (30) the evolution of capital may be written in the form

A

Ky = K(Ni—1, Ki—1, Ri—1) = I(Ry_q; W(Nt(i)l, Ki 1), K1)+ (1 —=0)K;q
_ N(l) @
=Ly (s (N +1-6| K, 1. (35)
" Yoyili—1 \ Ki—1

(c) The bond return dynamics. First note that equations (2), (4), (21), (22) and (31)
imply that in the present case the value m; defined in (26) may be written as

Dapl-a (1)
. . kN, T K, N, -«
my = e (Ny, Ky) = ——* aT t(o) + i (36)
z Ny "
Combining (36) with (2), (22) and (31) and abusing notation, (27) becomes
(N, K i, &, 1, (Ny, K N
Rt — RT(Nt; th/_jl) — m ( ty t) + W(u,a,m ( ts t)) T t (37)

ak(l —eM)(1 — )NOKi—e/z  1—7NO
Using (34) and (35) in (37) imply that the dynamics of bond returns take the form

A

R, = R;(Ny1, Ky, Ri1510) == RT(N(Ntfl)ak:(thlaRtfl,Ntfl);/_j')- (38)

Equations (34), (35) and (38) constitute a four-dimensional deterministic dynamical
system where the exogenous population dynamics completely decouple from the other
variables. Hence, in view of Lemma 1, to study the long-run dynamic behavior of the
model one may restrict attention to the two-dimensional dynamics defined by (35) and
(38) assuming that the population is constant, i.e., Nt(j) =N, j=0,1. Letting

akN® [1 -«

146 1 [1—-«
[ +T]>
a1

A 1=
0 6 1—7lamy

+7]>0 and n = (39)

T 1—7
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one has from (36) ., (N, K;) = AK; . Using this in (35) and (38), the dynamics may
- by a slight abuse of notation - be written as the following two-dimensional system

P - 1 (1—a)s; N \a
K, = K(K; 1, R ;N = |—1 1-6| K;_
t ( t—1, Lt—1; ) [’Yl n(’Yo’YlRt—1(Kt—1> )+ } t—1
R _ M (g, 0, Mo K(Kj—1, Ry_1; N) @
Ry = R (Ki-1,Ri_1;N,p) = Ly JA o KK — ) )+)\1— !
M K(Ky 1, Ry q; N)I—@ l—7

(40)
Now suppose that the dynamical system (40) converges to a steady state (K, R) > 0.
Let 7; := m — 1, t > 0 denote the centered noise process derived from Assumption 4
with induced distribution v;. Then equations (16) and (30) imply a stationary dividend
process {d;};>o along the steady state with

t = =

(41)

x x
where, using equations (11), (21) and (22) and recalling that E,, [n;] = 7
- N 1
D:=kN*K"*(1—a)(1——)+7>0. (42)
ga!

Letting as before ¢; := p; + d; for each t, one obtains the cum-dividend price process
{@ }+>0 along the steady state which, using the price law (28) and (41) takes the form

ﬂ—(ﬂ76_7m(K7 N)) D + ﬁt
= _ + —.
R T

gy :

(43)

Observe that in contrast to bond returns and the capital stock, dividends and cum-
dividend prices are random variables along the steady state. It is clear from (43) that
the process {q: };>o inherits the properties of the (centered) noise process {7 }+>o and is
thus given by an i.i.d. process with time-invariant distribution v; corresponding to the
image measure of v; under the affine map (43). Note further that due to Assumption 4
the measure v; defines a symmetric probability distribution supported on the compact
interval [—7j, 7]. On the other hand, Assumption 3 implies that the perceived distribution
v, of ¢ is constant over time and satisfies ¢ L it + d¢ for some random variable ¢ with
symmetric distribution v, supported on [—&,&]. This raises the question, under what
conditions the objective distribution vz along the steady state coincides with the perceived
distribution v,. In the present case, this can be achieved by setting v, = v; and 0 = %
and determining /i according to the implicit condition fi = E,_[¢]. As an immediate
implication, note that in this case & = 7/z. The following definition of a rational
expectations equilibrium is now straightforward.

Definition 2
Let N > 0 and 7 € [0, 1] be given and let Assumptions 3 and 4 be satisfied. In addition,

suppose v, = v; and ¢ = <. A rational expectations equilibrium (REE) of the system
(40) is a triple (K, R, i) > 0 such that
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(i) Given ji > 0 the pair (K, R) is a steady state of (40), i.e.,

oV TN
|

(ii) Beliefs (i, ) are feasible and satisfy the consistency condition

w(ﬂ,a,mf(f(, N)) N kNCK'™=(1 —qa)(1 — %)
R z

SRS

[1’ = ]Equ [Q] = +

(iii) The REE is said to be stable if the steady state in (i) is asymptotically stable.

Hence, if a stable REE exists, the economy will converge to a steady state at which
the capital stock and bond returns are constant while dividends and (cum-dividend)
asset prices follow stationary stochastic processes as determined by (41) and (43). As
a consequence of (ii) and the prediction behavior introduced in the previous section,
expectations are fully rational in the long run in the sense that all variables for which
point predictions are made are correctly anticipated while the subjective distribution for
the cum-dividend price coincides with the objective distribution. The following theorem
states a sufficient condition under which a unique stable REE exists.

Theorem 1

Let N >0 and 7 € [0, 1] be given. In addition, suppose that the production parameter
in (11) satisfies « > 1. Then there exists a unique stable REE (K, R, i) > 0 of the
dynamical system (40) which satisfies ji > 5& and R > 1.

Ifa< % it can be shown that a REE may well fail to exist or to be unique. In the sequel
we shall therefore assume that the requirement o > % is satisfied. In this case, Theorem
1 ensures the existence of mappings K : R, x [0,1[— R, ,, R: Ry, x [0, 1][—]1, 00|
and i : R, x [0,1[—]5¢, 0o[ which define the unique REE for alternative N and 7.
The next theorem describes how changes in the contribution rate and in the population
size affect the REE and, thus, the long-run properties of the economy.

Theorem 2
Under the hypotheses of Theorem 1 the following holds true:

(i) For each N > 0 the maps 7 — K(7,N) and 7 — [i(, N) are strictly decreasing
while the map T — R(r, N) is strictly increasing.

(ii) For each T € [0,1] the maps N — K(7,N) and N —— [i(r, N) are strictly
increasing while the map N — R(r, N) is strictly decreasing.

The result in (i) asserts that any reduction in 7 increases the long-run level of the cap-
ital stock while it decreases the interest rate. Similar results have been obtained by
Conesa & Kriiger (1999). This confirms the fundamental insight by Feldstein (1974)
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that a reduction in the contribution rate fosters the accumulation of capital through an
increase of private savings. By (11) and (22) it follows that in the presence of a constant
population any decrease in 7 implies higher production output and a higher real wage
in the long run. In addition, since p defines the expected value of cum-dividend prices
along the steady state, a lower contribution rate leads on average to higher asset prices.
The result in (ii) claims that a shrinking population leads to lower levels of capital and
asset, prices. This emergence of a so-called asset market meltdown due to a shrinking
population has been predicted by various deterministic models in the literature (cf. Abel

(2003, 2001)). In addition, a smaller population leads to a higher interest rate and a

N
K(7,N)
which is shown in the appendix (cf. equation (88)) to be strictly decreasing. This im-

plies that the real wage function w(7, N) := W(N, K (7, N)) is strictly increasing in N.
Hence, the direct effect of a smaller population and an increased scarcity of labor is

smaller real wage. The later argument is due to the properties of the map N —

overcompensated by the adjustment of capital resulting in a negative net effect.

The following Sections 7 and 8 will demonstrate that qualitatively all results from The-
orem 2 carry over to the general stochastic case with multi-period lived consumers. One
also observes from (43) that neither N nor 7 affect the volatility of the cum-dividend
price process. The following section indicates that this may change in the general case.

7 Dynamics with a constant population

Returning to the general stochastic case with multi-period-lived consumers the re-
mainder of this paper presents results from numerical simulations using a calibrated
parametrization of the model.> The study itself is divided into two scenarios. The
present section studies the influence of alternative contribution rates under the assump-
tion of a stationary population where Nt(j ) = N. This allows to isolate those effects which
are entirely due to the presence of a pension system while abstracting from changes in
the population structure. Assuming that the requirements of Lemma 1 are satisfied, the
case of a stationary population may be viewed as a scenario to which the population
adjusts in the long run. From this perspective, the present section deals with the long-
run effects of a public pension system. The second scenario which is presented in the
next section studies the case with demographic change due to a shrinking population.

The OLG structure is specified as follows. The parameters defining consumers’ life ex-
pectancy and retirement age are set to J = 14 and j; = 6 such that in each period
there are fifteen generations nine of which work while six are retired. Assuming as in
Bérsch-Supan, Heiss, Ludwig & Winter (2003) that economic life starts at the age of
20 years and ends at the age of 80 years, each consumer lives for 60 years and one time
unit in our simulations corresponds to four years. While the choice of j;, = 6 may seem
quite large, it can be shown that qualitatively the subsequent results remain intact with

5 All simulations are carried out using the software package MACRODYN (see Bshm (2003) for a
detailed introduction to the software). Further information on the simulations may be obtained
from the web-site http://www.marten-hillebrand.de/research/560/paper 560 .htm.
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jr = b or even jr = 4. Each consumer in working age supplies one unit of labor such
that LU =1 for all j € {jz,...,J}. The choice of the discount factor 3 is based on an
empirical study by Hurd (1989) who reports a discount rate of 0.011 corresponding to
an annual discount factor of 1/1.011. Given a time unit of four years we therefore set
B = (1/1.011)* =~ 0.96. The perceived distribution v, of € from Assumption 3 is taken
to be a standard normal distribution which is truncated to the interval [—&, £]. Setting
£ = 0.92 implies a perceived variance V, [¢] = 6°V,_[¢] = 5°/4. Since it will be shown
that cum-dividend prices follow a stationary process with constant variance, we choose
0 to match this value for the intermediate case where 7 = 0.1.

The firm’s production and capital adjustment technologies defined in equations (11) and
(14) are specified as follows. The production parameter « is set to & = 0.66 which is
justified by most empirical studies suggesting a range « €]0.6,0.7[. The choice of the
depreciation rate & follows Imrohoroglu, Imrohoroglu & Joines (1995) who use an annual
value of 8%. With our four years time unit we therefore set § =1 — (1 — 0.08)* ~ 0.28.
The parameters of the adjustment cost function (14) are set to 7o = 0.02 and = 7.5.
While the theory of adjustment costs is widely used in the literature, there are many
authors who suggest that the function g is of the quadratic form g(i) = £ -4 (Abel
(2003)) or g(i) =i + £ -2 (Altig, Auerbach, Kotlikoff, Smetters & Walliser (2001)) for
some parameter ¢ > 0. To justify the functional form (14), recall that the argument
i represents the fraction of the capital stock that is replaced which will typically take
values within the unit interval and fluctuate around the depreciation rate 6 = 0.28.
Comparing the functional form (14) to the quadratic specifications with ¢ = 10 (as
used by Altig, Auerbach, Kotlikoff, Smetters & Walliser (2001)) and, alternatively, to
1 = 1.5 (corresponding to the value used by Borsch-Supan, Ludwig & Winter (2006))
shows that the functions exhibit only minor differences on the interval i €]0,0.5[. In
fact, as Gould (1968, p.49) states, the primary cause for using the quadratic adjustment
cost function is its technical simplicity and not its justification on empirical grounds.
Finally, each random variable 7, of the stochastic process {n;}; is uniformly distributed
on the interval [0, 7,,42] Where 7q,; = 2000. Table 1 summarizes all parameter values.

| Parameter || Value || Description || Parameter || Value || Description |

J 14 Life expectancy K 2.5 Production parameter
JiL 6 Retired generations Yo 0.02 || Adjustment cost parameter
N 1000 || Consumers per gen. T 7.5 Adjustment cost parameter
LG 1 Individual labor supply ) 0.28 || Rate of depreciation
B8 0.96 | Discount factor z 5000 || Total number of shares
€ 0.92 || Expectations parameter Nmaz 2000 || Upper bound for real noise
0 0.5 Expectations parameter Ky 4,500 || Initial capital stock
o 0.96 | Expectations parameter q0 9.5 Initial cum-dividend price
« 0.66 || Production parameter Ry 1.12 || Initial bond return

Table 1: Standard parameter set for the numerical simulations
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It can be shown that all of the following results are robust against parameter changes
and independent of initial choices® of state variables. The following figures study the
impact of alternative contribution rates on real and financial markets.

Figure 1 exhibits the impact of contribution rates on the stock market showing time-
windows of the cum-dividend price process {g; }:+>o with a high (7 = 0.2) and low (7 = 0)
contribution rate. In addition the sample mean E[g,] and the sample variance V(g de-
pending on 7 are displayed.” Both time series in Figure 1 fluctuate about stationary

4 q
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1254 9.5
115+ 854
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9.5 T T T T t 6.5 T T T T t
1 125 250 375 500 1 125 250 375 500
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0 0.0538 0.1075 0.1613 0.215 0 0.0538 0.1075 0.1613 0.215
(c) Level of cum-dividend prices (d) Volatility of cum-div. prices

i3

Contrib. rate || 7=0 [ 7=0.05 | 7=0.1 [ 7=0.15 [ 7=02 [ 7=0.215
Mean 11.675 [ 11.083 [ 10.502 | 9.919 9.266 8.739
Variance 0232 | 0.227 0.235 0.267 0.41 0.857

Figure 1: Impact of contribution rates on the stock market

levels which decrease as the contribution rate is increased (note the different scaling of
the vertical axes). This observation is confirmed by the corresponding sample means
and is in line with the assertion of Theorem 2 suggesting a strictly negative relationship
between the level of asset prices and contributions to the public pension system. In
addition, a comparison of Figures 1(a) and 1(b) reveals that the price process becomes
considerably more volatile as the contribution rate is increased to 7 = 0.2. More impor-
tantly, a 'crash’ is observable for ¢t € {250,300} showing a drastic decline in asset prices
during that time window. A comparison of the sample variances reveals that the vari-
ance in case 7 = 0.2 has almost doubled compared to the case where 7 = 0 or 7 = 0.1.

6 Mathematically this is due to the existence of a stable random fixed point corresponding to a
stationary stochastic process which governs the long run behavior of the model. This concept is
used in Bohm & Hillebrand (2007) to study the long-run welfare properties of the model.

7 To avoid possible dependence on initial conditions, only the realizations from ¢ = 51 until ¢ = 500
are used in the calculations of these quantities.
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In this regard, note that all time series are based on the same realization of the noise
process. Hence the additional volatility observed can fully be attributed to the public
pension system and the larger contribution rate. As 7 is further increased to 7 = 0.215,
the volatility effect becomes even more dramatic resulting in a sample variance of 0.86,
almost four times as large as with 7 = 0.1. Increasing 7 beyond this critical value leads
to bankruptcy problems on the part of consumers and is therefore not possible.

More insight into the structural cause for the additional volatility generated is provided
by Figure 2 showing the corresponding time series of ex-dividend prices and dividends.
A comparison of Figures 2(a) and 2(b) reveals that the additional volatility in cum-
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Pt dt
Contrib. rate || 7=0 [7=01]7=02]7=0215 | 7=0] 7=01[7=02]r=0215
Mean 10.391 | 9.225 | 7.999 7.478 1284 | 1.277 | 1.266 1.26
Variance 0.141 | 0.151 [ 0.333 0.783 0.013 | 0.013 | 0.013 0.013

Figure 2: Impact of contribution rates on asset prices and dividend

dividend prices as 7 is exclusively due to an increased volatility in ex-dividend prices
while no change in fluctuations of the dividend process can be observed. The model
generates strong excess volatility in the sense that the volatility of asset prices exceeds
the volatility of dividends by a factor of more than ten in the case 7 = 0 and by a factor
of more than fifty (!) in the case where 7 = 0.215. Also observe that throughout the
variance in cum-dividend prices exceeds the sum of variances in ex-dividend prices and
dividends indicating - as one would expect - a positive correlation between ex-dividend
prices and dividend payments. In addition, the levels of both series decrease as the
contribution rate is increased.

The impact of contribution rates on bond returns, wages and the capital stock are stud-
ied in Figure 3. The result suggests that any increase in 7 decreases the levels of capital
and the real wage while it increases the level of bond returns. Again these results con-
firm the insights obtained from Theorem 2 for the two-period case. Also observe that
in all cases the average bond return exceeds unity. If the bond is interpreted as a safe
asset with interest rate r, := R; — 1 one obtains on average an annual interest rate of
~ 3% in case 7 = 0 and of ~ 4% in case 7 = 0.2 which seems quite reasonable from an
empirical point of view. Apart from that, the time series of bond returns and capital
stocks exhibit the same volatility effect as before: As the contribution rate is increased,
this results in significantly higher variances of both series which even seem to increase
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Figure 3: Impact of contribution rates on bond returns, real wages and the capital stock

monotonically with 7. Furthermore, for large 7 the bond return series exhibits strong
volatility clustering, a phenomenon typically observed in empirical financial time series.
Surprisingly, fluctuations in the capital stock do not transmit to the real wage process
whose fluctuations are negligible throughout all cases.

A comparison of the sample variances in Figures 1 and 3 further reveals that fluctuations
in bond returns are still small compared to those of asset prices. This shows again that
the model’s dynamic behavior is consistent with the prediction behavior of consumers
and the firm who form point-predictions for bond returns, non-capital income and real
wages while treating asset prices as random variables (see Section 5).

We close this section by analyzing how changes in the contribution rate affect consumers’
investment behavior and the distribution of wealth and consumption over the life cycle.
The series depicted in Figure 4 pertain to the cases where 7 = 0 (red) and 7 = 0.2 (blue).
Since it can be shown that in each case the processes {yt(j)}tzo, {:vgj)}tzo, {ng)}tzo and
{cgj )}tZO are stationary, the sample averages displayed in Figure 4 approximate the ex-
pected value of the respective process which does not depend on ¢. Figure 4(a) shows
consumers’ average bond investment over the life cycle depending on 7 € {0,0.2}. In
both cases consumers take credit during their first periods of life by selling bonds. The
amount of credit taken decreases with age and the bond investment becomes positive
for j < 8 While this behavior is qualitatively the same in both cases, the absolute
bond investment is larger with 7 = 0 in each period of the life cycle. This suggests
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Figure 4: Portfolio holdings, wealth and consumption over the life cycle; 7 € {0,0.2}

that the number of bonds traded and, hence, the trading volume on the bond market
are negatively affected by a larger contribution rate and that the presence of a pension
system leads to a crowding out of private bond investment.

Figure 4(b) provides evidence that the investment in risky shares is larger during the
first periods of life and decreases sharply during the retirement age. This result is again
true for both scenarios and may be viewed as an indication that consumers are more
willing to take risks when young. One also observes that a lower 7 increases share hold-
ings during the working age and reduces them during the retirement age.

The average levels of wealth shown in Figure 4(c) are higher with 7 = 0 in almost all
periods of life and, notably, even in most periods of the retirement age. Comparing the
cases 7 = 0 and 7 = 0.2 this indicates that in the absence of a pension system consumers
are able to compensate for the loss of non-capital income during their retirement age
by a larger capital income. In both cases, wealth initially increases with age reaching
a maximum in the terminal period of the working age (j = 6) after which it decreases
again. In contrast to that, Figure 4(d) reveals that the level of consumption is a strictly
increasing function of age. While this is again true of both scenarios, the increase over
the life cycle is steeper with 7 = 0.2. This confirms the intuition that a lower contribu-
tion rate shifts consumption from the retirement to the working period. In the present
case, this leads to a more uniform distribution of consumption over the life cycle. Also
observe that with 7 = 0 consumption is larger in all periods of the working period while
it is smaller in most periods of the retirement age.
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8 Demographic change

Finally consider the case with demographic change which affects the age structure of the
population. These structural changes are captured by the economic dependency ratio

ZJL 1
J)
Z Ji=jL Nt

which relates the number of pensioners to the number of workers in each period and
thus plays a pivotal role to describe and assess the problem of demographic change.?
Population scenarios for Germany predict a significant increase in the dependency ratio
over the next fifty years from currently =~ 66% to a value between 75% and 130% (cf.
Bérsch-Supan, Heiss, Ludwig & Winter (2003)). Similar forecasts apply for the U.S.
and other European countries. To study the consequences of this development within
our OLG framework we model demographic change as a transitory phenomenon due to
downward shifts in the steady state value IV of the population dynamics. The adjustment
towards the new steady state defines a transition period during which the population
shrinks and the dependency ratio increases. The parameters of the population law (29)
used in the simulations are summarized in the following table.

| Parameter || Value || Description || Parameter || Value || Description |
J 14 || Number of generations n(1) 0.1 || Fertility (=~ age 32-35)
n(14) 0.275 || Fertility (~ age 20-23) n(10) 0.05 | Fertility (=~ age 36-39)
n(13) 0.25 || Fertility (~ age 24-27) n(®) 0.01 | Fertility (~ age 40-43)
n(12) 0.2 || Fertility (=~ age 28-31) || n(9), j <8 0 Fertility (= age > 44)

Table 2: Parameter values for the population dynamics.

The values in Table 2 satisfy the stability condition (ii) in Lemma 1. Recalling that a
consumer’s economic life starts at the age of 20 (7 = J) and ends at the age of 80 years
(j = 0) they reflect the plausible assumption that fertility is a decreasing function of
age. Nevertheless, it should be noted that neither the employed population model nor
the parameter choices are justified on empirical grounds. For our purpose the proposed
specification offers a convenient way to study the issue of demographic change and the
consequences for the pension system.

To model the demographic transition we assume in (29) an initial value ny, = 0.000067
for + < 50 implying a steady state value N =~ 2000. From ¢ = 51 onwards we set
no = 0.00013 shifting the steady state to a lower level N’ a2 1000. Since this corresponds
to the value used in Section 7 the previous results remain valid in the long run as soon
as the population has reached the new steady state. Figure 5 depicts the evolution of
births as well as the dependency ratio in our demographic scenario. Figure 5(a) shows

8 Borsch-Supan & Miegel (2001) distinguish between the demographic dependency ratio (retired per-
sons relative to persons in working age) and the economic dependency ratio (retired persons relative
to employed persons). Since there is no unemployment in our model, both definitions coincide here.
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Figure 5: Demographic transition of the population

that the level of births converges to its new steady state value within slightly less than
50 periods. As a consequence the population is constant again for ¢ > 115 and the
dynamic behavior is as described in Section 7. Figure 5(b) shows that the transition is
accompanied by a temporary increase in the dependency ratio which reaches a maximum
of ~# 90% in ¢t = 63, i.e., 12 periods (= 50 years) after the demographic shift before it
eventually returns to its initial value of 66%. This range corresponds roughly to the
predicted evolution of the German population over the next 50 years.

To study how this change affects real and financial markets we maintain the parameter
set from Table 1.° While the time series in Figure 6 pertain to the case where 7 = 0.1
it can be shown that qualitatively the result remains unchanged with a higher and a
lower contribution rate. The table in Figure 6 displays the long-run levels associated
with the initial (N ~ 2000) as well as with the shifted (N’ ~ 1000) steady state value
of the population. The most striking phenomenon in Figure 6 is the drastic decline
in the levels of asset prices and the capital stock. The table below reveals that the
change of the population triggers a decline in these variables of approximately 50%)!
Although the respective level depends on the contribution rate, the percentage loss is
roughly the same for all three scenarios and is approximately of the same magnitude as
the percentage change of the population size. A comparison of Figures 6(a) and 6(b)
reveals that the decline in cum-dividend prices is almost entirely due to a decrease in
ex-dividend prices. This supports the emergence of a so-called asset market meltdown
as predicted by Theorem 2 and by various models in the literature, see, e.g., Abel (2001,
2003). Due to the absence of technical progress the decline in birth rates translates
directly into a decline in aggregated labor supply. Figure 6(c) shows that the capital
stock mirrors this development with a slight delay resulting again in a loss of almost
50%. While the percentage loss is the same in all three scenarios, the initial as well
as the shifted long-run level is -as one would expect from our previous results - higher
with a lower contribution rate. In contrast to capital and asset prices Figure 6(d) shows
that the levels of real wages and bond returns are much less affected by the decline in

9 To improve the model’s behavior during the first simulation periods the initial values are adjusted
to Ko = 10,000 and go = 19.5, respectively. Since the model’s behavior (for ¢ > 50) does not depend
on initial conditions, this does not impact the following results.

25



gt pr dy

25 204
20— 15
15 10
10 5
%
5 T T T T t 0 T T T T t
1 38 75 113 150 1 38 75 113 150
S (a) Cum-dividend prices (b) Asset prices and dividends
Ly K, Ry w
t t t Wi
20000 — 1.8
15000 — 1.475
5000—M‘\_,__,_M 0.825 |
0 T T T T t 05 T T T T t
1 38 75 113 150 1 38 75 113 150
(c¢) Capital and labor force (d) Wages and bond returns
Level of qt Ky Ry wi

Contrate || 7=0[7=01[7=02] 7=0 [r=01]7=02] 7=0 [r=02[r=0]7=02
N ~2000 || 21.97 | 19.74 [ 17.50 || 8881.1 | 8712.7 | 8501.0 [[ 1.118 | 1.153 || 1.291 | 1.272
N’ ~ 1000 || 11.68 | 10.50 9.27 [ 45414 | 44519 | 4330.2 || 1.124 | 1.165 | 1.288 | 1.267
% Change || -46.8 | -46.8 | -47.0 || -48.86 | -48.9 | -49.1 [[ +054 | +1.04 || -0.23 | -0.39

Figure 6: Impact of demographic change on real and financial markets

the population. The levels of bond returns slightly increase while those of real wages
slightly decrease in all cases confirming again the insights from Theorem 2. In this
regard the absolute percentage change is almost twice as large with 7 = 0.2 compared
to 7 = 0. This indicates that a larger contribution rate increases the sensitivity of wages
and interest rates to demographic changes. One also observes a temporary increase in
both series during the transition period. For wages this is due to the increased scarcity
of labor resulting in higher wages before the capital stock is adjusted.

9 Conclusions and outlook

The model developed in this paper offers a rich potential to study the macroeconomic
consequences of pension reforms and the role of demographic change within a random
environment. A first attempt to analyze these consequences theoretically and with the
help of numerical simulations has been presented in this paper. The results indicate
that the parameters of the pension system entail significant consequences for real and
financial variables. On the real part, a reduction in contribution rates fosters the ac-
cumulation of capital and increases the long run levels of capital stock and production
output showing that the results obtained by Feldstein (1974) continue to hold in a
stochastic setting. This also confirms the fundamental mechanism described in the in-
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troduction which makes a funded pension system potentially superior to a pay-as-you-go
system. On the financial part a reduction in contributions increases the level of asset
prices while decreasing the interest rate. In addition the numerical insights obtained
for a calibrated parametrization of the model provide evidence that a lower contribu-
tion rate may stabilize asset markets by reducing the volatility and avoiding crashes in
asset prices. Although an intuitive argument for this phenomenon is not available yet,
it proved to be robust in the simulations. Referring to the discussion mentioned in the
introduction, this result indicates that the risk associated with an increased share of
private savings for retirement should not be considered independently of the parameters
of the pension system. In fact, a reduction of public pension payments may reduce the
capital market risk to which private savings are exposed. As for the role of demographic
change the results show that a shrinking population may induce a meltdown of asset
prices and capital confirming existing results in the literature.

Several issues remain for future research. The first one is to employ the model developed
in this paper and perform a comprehensive study of the welfare effects induced by demo-
graphic change and adjustments of the pension system. This task has been undertaken
in a related paper (B6hm & Hillebrand (2007)). Another interesting point concerns an
extension of the closed economy model to a multi-country setting as studied, e.g., in
Kriiger & Ludwig (2007). Such an extended setting would permit to study, e.g., the
capital flows between countries facing different demographic developments.

A Mathematical Appendix

A.1 Proof of Proposition 2

Let w >0, & >0, Ko >0, ny € [0,0n4z)] and R 1 B 1 > 0 be arbitrary but fixed
and define R(&) as in the proposition. Given the production technology (11) it is
straightforward to show that (19) is the unique solution to (17). As for (18), note that the
additive term 77 and the scaling factor 1/z do not affect the solution and may be omitted.
Defining the map G : RS — R, G(Ly, ) := F(Ly, I+(1-0) Ky, 0)—&1 Li—RK, g(I/Ko)
the problem (18) may be written as

max {G(Ll,l) s.t. G(Ll,l)zo}. (44)

L1>0,1>0

Note that G(0,0) = 0, hence the constraint G(L1,I) > 0 can be dispensed with since it
will automatically be satisfied by any solution (I*, L¥) to (44). We claim that
ak\ T

G(L, 1) < V(I) := G(( ! )* (I+(1—0)K,) ,1) (45)

W1

_1
for any (Lq,I) € R% with strict inequality whenever L; # (2)™= (I + (1 —6)K,). To

w1

see this, note that for each fixed I > 0 the map L; — G(Lq,1I), Ly > 0 is strictly
concave. Solving the necessary and sufficient first order condition g—g(Ll, I) = 0 yields
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the unique maximizer of G(-,I) on R, as L} = (2) == (I + (1 — §)K,). This proves

w1

(45) and shows that any solution (L7, I*) to (44) has to satisfy the condition

Lt = (25 (1" 4+ (1 - 6) k) - (46)

A~

Wi

Define the map V' : R, — R as in (45) and consider the problem
mIaX{V(I) st. I> 0}. (47)

Suppose 0 < R < R(&;). Note that the map I — V(I), I > 0 is strictly concave.
Solving the necessary and sufficient condition %—‘I/(I ) = 0 yields the unique maximizer

I = h(w <%> )@ >0 (48)
Yoy R \wr gl
of V on R, . Since one easily shows that also V(I*) > V(0), I* is a maximizer of V'
on R,. Moreover, the latter inequality is strict whenever R < R(&) such that I* is
the unique solution to (47) whenever R < R(&:) while if R = R(&1), I = 0 is a second
solution to (47). If R > R(&;) it is straightforward to show that V(I) < V(0) for all
I > 0 such that I* = 0 is the unique solution to (47). Hence positive investment requires
R < R(&1). Since by (45) the pair (L*, I*) defined by (46) and (48) is a solution to (44)
this proves the claim in (ii) of Proposition 2. [

A.2 Derivation of temporary equilibrium maps

Let 7, := Rypy > 0 and 6 := 0(my; pig, o) € [0,1] with € being defined in (10). We seek
a pair (Ry, pt) > 0 which solves the market clearing conditions (23) and (24). Using (9)
and the homogeneity of the function (21) these conditions may be written as

thN +€t /Rt) = jpt (49)
(1-6,) ZN (1— e (w? +éD/R,) = "Zx (50)
t

with é7) and i, being defined as in (25) and (26). For given beliefs (1, 0;) € B and
fixed m > 0, define the map U(-;7) : [0,1] — R,

U@;n) = /[__ . In(m + 0 (1 + ove — 7)) ve(de).

Applying Lemma 16.2 in Bauer (1992, pp.102) shows that U(-; ) is C* with derivatives

oU Wi + o — T 0*U
90 a0'" = /[—s',s‘] T+ 0 (p + o1 — ) vlde), (09)* @y ™) <
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implying that U(-; 7) is strictly concave. Since the right-hand sides of equations (49) and
(50) are strictly positive, an immediate observation is that 0 < 6; < 1. The definition
(10) implies that the pair (6, 7;) has to satisfy the (necessary and sufficient) condition

oU / L
— (0 , ) =0 &
50 (0, 1) —eq Tt + 0p (e + 00 — )

ve(de) = 1. (51)

On the other hand, by eliminating the common term ijl N1 — D) (w + D/ R,)
from (49) and (50) one finds that 7; and 6; have to satisfy the condition

Ht mt
1—6,
Substituting (52) into (51) shows that 6; is determined by the map ¥ : Bx R, —]0, 1]

(52)

Tt =

. + 04€
0, = 9(pn, 00, y) 1= / M OE e, (53)

[z Mt T 01 + 1y
Using (53) in (52) shows that 7 is determined by the map 7 : B x R, , — Ry,

ﬂ(#t; Ot, mt) my

(54)

= T T ) T s )

Note from (52) that 6, = —= and, therefore, 59—7? = Im + Tmy. Hence, multiplying
(49) by R;/6; and using (26) one obtains
J ' .
RtZNt(J)(l — N = z7, + 210, — ZN — e,

j=1 j=1

Equation (26) implies Zri, — Y7 | N (1 50))*9) B(1;Gp1, Ko+ 37 NP eDe?,

Furthermore since & =1 and ZJ ' NI I = 7 one may write  — Z‘] "N, ])(
ezt ZJ ' N9t | Using this together with the definition (5) of v one
may solve (49) for R, to obtaln (27). This together with m; = R; p; gives (28). [

A.3 Proof of Theorem 1

Let N > 0 and 7 € [0, 1] be arbitrary but fixed and, in addition to (39) define

1- _ Ne
Ay = ﬂe_ﬂ‘sN‘x > 0, A3 = k(l—a)(1- ’Yfl)T > 0. (55)
Yo 1 z

Utilizing (i) and (ii) in Definition 2 we look for a triple (K, R, i) which solves

_ _T1 1— N\*
K = K[—h(ﬂ(T) >+1—5] (56)
M Yot \K
5 )\1 7T(la, 5’, )\0}'—(1—04) T
R = e (57)
0,0, N K1 _ 0
ﬂ — W(M,U, _0 )+/\3K1—a+ Q (58)
R T
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Solving the first equation (56) shows that the equilibrium R is determined as

_ )\2
R =
o' (59)
For each K > 0, let
N Ao |Xo+AsA - AL —
K)y=214+2 |2 2 gle_ - lmg 60
) =2+ 52 |2 - (60)

Solving (57) for m(fi, &, \gK'~®) and using the result together with (59) in (58) shows
that the equilibrium g is determined as

i = i(K). (61)

For K > 0 sufficiently small such that i(K) >

SISl

define the map

. )\2 T )\1 L AoKl_a
H(K) = 2+ 11— s where 1(K) _/[ SR A e 1)
(62)

Note from Bauer (1992, Lemma 16.1 & 16.2, pp. 102) that I and therefore H are both
C'! and differentiation and integration may be interchanged. Substituting (59) and (61)
back into (57) and using the definition of the map 7 given in (54) solving (56)-(58)
reduces to finding K > 0 which satisfies

H(K)=0 and A(K)>

SIS

(63)

The following lemma describes some properties of solutions to (63).

Lemma 2
Let the maps [ and H be defined by (60) and (62) and let K, == [’\72} > 0.

A—71/(1-7)
Then the following holds true:

Q=

(i) Any solution K > 0 to (63) satisfies K €]0, Kaz]

(ii) For all K €0, Koo we have y(K) > T and H(K) < H(K) < H(K) where
H(K) =2 + 1% = M — 285 and H(K) = 2 + 5 — A\ - 200070

(iii) Any solution K > 0 to (63) satisfies K < Xs.

Proof of Lemma 2.

(i) Equation (62) implies that all K > 0 for which a(K) > I satisfy I(K) < 1 and,
therefore, H(K) < % + 1= — A1. Hence a necessary condition for K to be a solution
to (63) is that % 7 — A1 > 0 which is equivalent to K < Koo

(ii) Let K €]0, Ko be arbitrary. Equation (60) implies 4(K) > I if and only if
K < [1 + )‘j\—;\z’] éKmM which is implied by the requirement K < K,,,;. Since & =
we have [i(K) + e > (K) — % > 0 for all € € [—£,£]. Using this in (62) implies

813

81
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11— 1-a . .
I(K) < A()K&Ii—mg On the other hand, noting that ¢ — /\OKlf?xﬁﬁ(K)+U€ is strictly

convex and that E,, [¢] = 0, by Jensen’s inequality I(K) > ,\01?%:;(1() Using both
inequalities in (62) proves (ii).

(iii) The map K — H(K), K > 0 has two zeros, say 0 < K; < K, in Ry,

see this, note that limg_,o H(K) = limg_,o H(K) = 0o and H(K,pz) = — A\ i‘* < 0
implying by continuity that there are at least two zeros in R, ;. On the other hand, the
functional form of H implies that its zeros are solutions to a quadratic equation showing
that there are precisely two zeros which satisfy 0 < K1 < Kppaw < K. In particular, for

all K €]0, K[ we have H(K) > 0 while H(K) < 0 if and only if K €]Ky, K,[. Since
H(K) > 0 requires K €]0, K, it sufﬁces to show that )\"‘ €]K1, Ko or, equivalently,
H ()\21 ) < 0. Direct calculations give H ()\ )= —)\1 < 0 completing the proof. O
Note that the properties derived so far do not require restrictions on « and thus hold
in general. In particular, by (59) and Lemma 2 (iii) R > 1 at any REE. Assuming from

now on o > % we successively establish existence and uniqueness of a solution to (63)
and prove dynamic stability of the corresponding REE of (40).

Ezistence. By (ii) of Lemma 2, H(Kaz) < H(Kpaz) = _/\1% < 0. By continuity it
suffices to show limg_,o H(K) = oo to prove existence of a solution K €]0, K,nqz[ to
(63). By (ii) of Lemma 2 , it suffices to show limg_,o H(K) = co. Since o > 3 one has

. . T )\0 + )\1)\3 1 Ang2a71 .
A HK) =17 o i e Jim (e = S ) — e

Ao

MoK+ ((K) + o
Furthermore, to alleviate our notation define for each K €]0, K4, from equation (62)

Uniqueness. Define h : [0, Kp45] X [—€,8] —]0,1] h(K,¢) =

B(K) = ﬁ /[6_76_] h(K, o) v(de) > 1> ﬁ /[E_ﬂ h(K, o) v.(de) = b(K)
(64)
where the inequalities are due to 0 < h?> < h < 1 and the well-known variance formula
which imply E,, [A]” < E,, [1?] <K, [h] < 1. Noting from (64) that B(K) = 374 it is
straightforward to show that any solution K > 0 to (63) satisfies

B(K) = b(f) [% + - T] . (65)

Since H is C' uniqueness may be proved by showing that any solution K to (63) satisfies

OxH(K) := 2Z(K) < 0 or, equivalently, —KdxH(K) > 0. For each K €]0, K[ the

derivative of (62) computes as

where OxI(K)K = I(K) [1 —a—b(K)(1-a+ %)] (67)
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and b(K) is defined by (64). By Lemma 2 (iii) the derivative of (60) at any K satisfies

8Ku£K)K _ [(1 _ O[))\O + /\3/\1 _ K j|
)\0K17a /\0 Ko

max

A (68)

where K, is defined as in Lemma 2. Using (68) in (67) gives, exploiting B(K) = %

Oxl(K)K A
e~ 0l
Using (69) in (66) yields

—OxH(K)K = [22& - L;{{?KQ} —-a)

maxr

At

Ntk Ky BUOR? )

— B(K)(\ —
()(1+ o Ko Ko

mazx max

)

maxr

] (70)
Recall that B(K) > 1 and by Lemma 2 (iii) £— = 2= T/(l DK < A\, — <. Using

Ko

max

—B(K) (M +

this in (70) together with % = 22 + 7= implied by (63) gives the 1nequahty

2 BUOKY] (g e pigoet o))

max

—xH(K)K > a (71)

< 1 the first bracketed term will always be larger than the second one. Since
B(K)K

Since Ka

a > 3 showing that ’\2 > will therefore be sufficient for the right hand side in
(71) to be positive. Usmg (64) (65) and the definition of K., give
K> _ T _ K~
B(K)o— = b(K) — [B(K) — b(K)——
K A2

mazx

| <b(K)<1 (72)

1—17

which implies the desired inequality due to Lemma 2 (iii). Using this result in (71)
shows that —0x H(K)K > 0 as claimed.

Stability. The partial derivatives of the dynamical system (40) at any REE satisfy

oK . - o ) S K
M (K,R;N = 1- = X (K,R;N -
MR, - = < a MRy . — K
"(K,R;N,p) = (1-—)a "(K,R;N,i) = ———a
aK( 5R’ 7/’[’) ( ryl)a 8R( 7R’ ’/’1’) ’YIRCL

_ _1- _
where, using that H(K) = 0 together with (64) a : Koz [B(K)/\l - - )\2&} . The

eigenvalues ¢;, 7 = 1, 2 of the Jacobian

D(E.R:N, ) = (K_ BN) SR RN) L 1-5 g
S e (K, R;N, i) Z(K.R; N, o) (1-2)a —fga

can be calculated explicitly as t; = 0 and s = g_zk((l_(’ R;N) + %(I_{,R; N, ). Using

(56) and (59) the second one may be expanded as

20—1 (1—a)K*
g Y12

L2=1—

[B(K)A1 - i T] .
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Since a > % and B(K) > 1, the last equation implies 5 < 1. Using (65) gives

a 11—« _ l—aK®* 7 _
tp = 1——+ 1-b(K))+ — 1—-0b(K))>0.
R e (T3
This proves that [¢;| < 1 for 4 = 1,2 implying dynamic stability of (40). [

A.4 Proof of Theorem 2

In the sequel we will frequently highlight the dependence of the parameters defined in
(39) and (55) on 7 and N by writing Ao(7, N), A1 (7), A2(IV) and A3(N). In addition we
treat 7 and N as arguments of the maps fi, H and I defined in (60) and (62) by writing
a(K,7,N), H(K,7,N) and I(K, 7, N). By a similar reasoning as above the maps I and
therefore H are both C! on their extended domain and differentiation and integration
may be interchanged. To alleviate the notation the parameters (7, N) are suppressed as
arguments whenever convenient. Note that using (14), (39) and (55) the map j takes
the expanded form

(K, 7, N) = 1+

kN°K'=*TafB(1 - 1) 1 }_g’((i)K[l a T ]

z 115 Tama=20) v 1-al+p

(73)
The equilibrium value K is determined by the function K : [0, 1[xR,, — R, defined
implicitly by the condition H(K,7, N) = 0. Since H is differentiable, an application of
the implicit function theorem gives

_ 0,H(K,T,N)

0K (1, N) =~ o V) x (74)

(i) (a). We show that 0,K(r,N) < 0. As shown in (70), the denominator in (74)
satisfies Ox H(K, T, N) < 0 such that it suffices to show 0, H(K, 7, N) < 0. Using (62)
the partial derivative 0, H(K, 7, N) computes as
1 87)\1(7') )\1 6TI(K,7',N)
H(K,7,N) = - 75
CHETN) = e T ) T 1) 7
I(K,7,N N N n(K, 7, N
a’r ( Y T’ ) — aTAO (T’ ) _ b(K) (a’rAO (T’ ) + a’r/”’( ) 7;’ )
I(K) o o N K 1o

where

). (76)

By (39) one has 6T))‘\11(T) — af)“;\(OT’N) = ;= Using this with (76) and (65) in (75) gives

_ 1 A1 — O Ao(1,N)  0;a(K,T,N)
8,H(K,r,N) = _ A — B(K)\ (77
(¥, 7, N) (1-72 I(K)l—r1 (K) 1[ Yo NKL@ ] (77)
Using (55) the partial derivative of (73) may be written as
k N°K1=@ o K
(K, 7, N) = — 2207 ) <o. 78
O (K, 7, N) z 1+5(g+ A2)< (78)
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Note from equations A(39) and (78) that w = —6”‘?\(07’1\,)@@ + I;\(—:) implying
that A, [2240N 4 SAUCTLN] %L [1 — £%]. Using this with H(K, 7, N) = 0 in (77)
and applying Lemma 2 (iii) yields the desired result
_ 1 17X K*
O.H(K,7,N) = — —(_——1)( B ) 0. 79
(£.rN) = =5 (7 - 1) (94 B ) < (19)
i) (b). We show that 0,R(r,N) > 0. Defining from (59) R(7,N) := -’\2(N)a the
K(r,N)
previous result implies
— (0% )\2
0, R(T,N) = ~Feita ——=0,K(r,N) > 0.

(i) (c). We show that 0,fu(7, N) > 0. Defining from (61) p(r, N) := a(K (7, N),r,N)
the chain rule and (74) give

8Tﬂ(l_(,T,N)K(3KH(I_(,T, N) —K@Kﬂ(l_(,ﬂ N)@TH(I_(,T,N)

T N) = — —
Or (T, N) KoxH(K,r,N)

(80)

We show that the numerator in (80) is strictly positive. If g i(K, 7, N) > 0 this result
is immediate due to (71), (78) and (79). If Oxil(K,T,N) < 0 equations (68), (79) and
(80) together with 8 + B(K)E> < B(K)(8 + 4~) imply that the second term in (80)
satisfies

—Koxp(K,7,N)o,H(K,T,N)

PN .
o B e
- Tﬂ(K,T,N)[(l_a)A‘”;OA?’AI If%w}(%—l)B(K) (81)

Using (81) in (80) the claim that the numerator is positive will follow if we show that
Z = —-KoxH(K,r,N)+ [( ) detrady K2 ] ()‘—2 — l)B(I_() > 0. Using (70) gives

Ao K2 ox Ko
. )\2 AQ T — B(K))\Q A() + A3/\1 Ka
7 = g = (=a)|[ g+ 7o~ BUON] + = [0 -2 5ms - e
Ao K° A2 [Ao + Az
> aﬁ[l—B(K)KgM] +(1-0)2= [T—I] >0

where we have used the definition of Knez, B(K) > 1 and (72). This proves the claim.
(i) (a) We show that Oy K (7, N) > 0. Applying the implicit function theorem gives

=, 8NH(K T N)
K(r,N) = —%‘ 2
KT N) = =5 (7, M) i (62)
By (71) it suffices to show that Oy H (K, N,7) > 0. The derivative of (62) satisfies
= O[)\Q aNI(K,T,N)N
NOyH(K,N,T) = = A — 83
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where using (62), (64) and (60) resp. (73)

_ _ _ N oyp(K, 7, N)
NOyI(K,7,N) = I(K)|la—b(K)la+ — 84
WI(K, 7, N) = I(K)[a—b(K)( )] (84)
(R _ 2AoTret MM g
owi(K, 7 N) = ~ Al[ ¥ ]K > 0. (85)

Recall from (71) that —K0xH(K, N,7) > 0. The claim will follow if we show that
NOyH(K,N,7) > —KO0xH(K, N, 7). Using (70) and (83) gives
At

NOyH(K,N,7) + KoxH(K,N,T) = 1K) [NONI(K,7,N)+ KoxI(K,,N)]. (86)

From (68) and (85) we note that dyji(K, 7, N)N + 0k (K, 7, N)K = j(K,r,N) —7j/x.
Using this together with equations (67) and (84) yields, recalling that 7/z = ¢¢&

B B - _ _ NK'"*+ (K, 7,N)—7n/z
NowI(K,7,N) + KogI(K,7,N) = I(K)[1-b(K)> +/<L(K1,:: ) —71/%
0

_ b(K) ]

(87)

(K.e)
i < 1 for all

Note that the map e — h(K,¢) is strictly decreasing and therefore h}Z =5

¢ €] — ¢,¢]. Using this together with the definition (64) of b(K) gives

oK) L MEA o U R ) e =
hK, =€) B I(K) /[—s,g] h(K,—&) (de) < I(K) /[_6,5] [h(K’ )} e(de) = 1.

This proves that (87) is strictly positive which together with (86) gives the claim.
(i) (b). We show that OyR(7, N) < 0. Recalling that R(r,N) = M( )" it

g'(8) \K(r,N)
suffices to show that the map N —— % is decreasing. Using (82) the previous result
in (86) and equation (71) imply

n(weew) = T
Y\K(r,N)) ~ K?0xH(K,T,N)

NoyH(K,N,7)+ KoxH(K, N, T)] <0. (88)

(ii) (c). We show that dyfi(7, N) > 0. Recall that ji(t, N) = (K (r, N), 7, N). Using
(82) the derivative takes the form

Oni(K, 7, N)oxH(K,7,N) — Oxjs(K, T, N)ONH (K, T, N)

aNﬂ(T, N) - aKH(Ka T, N)

(89)

By (71) it suffices to show that the numerator in (89) is negative. It is clear from (71),
(85) and the result in (ii) (a) that if g (K, 7, N) > 0 the claim holds automatically.
Hence suppose Ok ji(K, T, N) < 0. Rearranging terms and exploiting (85) the numerator
in (89) is negative if and only if

K@K,&(K, T, N)
Noyp(K,r,N)

Y :=-KO0xH(K,7,N)+ NoyH(K,T,N) > 0. (90)
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Combining (68) and (85) we see that
Koxp(K,7,N) 1—a 1 K¢ Ao

= = - — . 91
Noyi(K,7,N) o a K&, Ao+ A3\ OV
Using (84) and (85) the derivative (83) may be written as
_ R _ X T Ao Az
NoyH(K,r,N) = a[ﬁ + (1 - b(K)) (ﬁ + T) - B(K)T] (92)
Using (70), (91) and (92) in (90) and exploiting (65) gives
A2 A() I_{a )\0 Ka )\2 T _
Y =—/—|1- — - — B(K)\{|.
Z| Yo 1 Aok Kgmj Do+ Aok Ko e T~ BEON]

Using the definition of K,,,, and B(K) > 1 yields finally the desired result

Ao T )} [ Ao K

v [22 (- _
>[ (M Mo+ Aah; Ko

> 0.
Ke 1—71 }
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