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Abstract

This paper studies the impact of variations of a pay-as-you-go pension system
on welfare in a stochastic overlapping generations model where compulsory public
retirement savings coexist with private savings in assets and bonds. It is shown
that, for a stationary population, any reduction of contribution rates once and for
all leads to a long-run welfare improvement of consumers. Moreover, a gradual
reduction of contribution rates induces a smooth transition towards a purely pri-
vately generated retirement system keeping the welfare losses of current retirees
sufficiently small. An unfavorable demographic change, modelled as a transitory
phenomenon toward increased ageing of the population, is shown to induce sig-
nificant welfare losses. The paper discusses several possible adjustment policies.
It is shown that in general an adjustment of contribution rates cannot alleviate
but may even amplify the welfare loss. The most promising political measure is
shown to be a temporary increase in the retirement age.
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Introduction

Demographic scenarios for the next fifty years predict significant structural changes
in the populations of almost all industrialized countries. These demographic changes
put increasing pressure on existing pension systems as they increase the number of
beneficiaries relative to the number of contributors to the systems. While the magnitude
of change varies depending on the underlying population scenario, it is generally accepted
that without substantial reforms the existing pay-as-you-go pension systems will be
unable to provide the standard of living they offered in the past.

Against this background, there has been an intensive debate about the design and ef-
ficiency of pension systems and numerous reform proposals have been discussed. For
Germany this has resulted in a fundamental pension reform at the beginning of this
century. The essential idea of this reform is to supplement the existing public pension
system by an increased share of private savings for retirement. While this measure
potentially fosters the accumulation of capital and may thus attenuate the loss in work-
force induced by the demographic change, opponents of the reform have argued that
savings are exposed to capital market risk. As a consequence, the larger share of pri-
vate savings would necessarily increase the risk to which pension incomes are subjected
due to the unpredictability of asset markets, in particular of stock markets. The latter
argument suggests that any theoretical study of pension systems should pay adequate
respect to the role of risk and uncertainty. Conceptually, this calls for a macroeconomic
model which incorporates the issue of demographic change and the random influence
of a stochastic asset market. If, in addition, the goal is a comparison of alternative
pension reforms in terms of their optimality, normative concepts for stochastic models
are required to measure the impact on consumer welfare.

The literature on pension systems mostly confines itself to a deterministic framework.
Examples may be found in Breyer (1989), Breyer & Straub (1993), Brunner (1994) or
Homburg (1990). Here the traditional concept of Pareto optimality offers a widely-
accepted tool to assess and compare the welfare effects of alternative pension reforms.
Extensions of this concept to a stochastic setting may be found, e.g., in Demange &
Laroque (1999), Demange (2002), Gottardi & Kibler (2006) and Kriiger & Kiibler
(2006). These include the notions of interim Pareto efficiency and ez-ante optimality
which may be used to analyze and compare the efficiency of pension systems in a random
environment. Despite their appeal the formulation and application of these concepts is
closely tied to the particular stochastic setting adopted in these models, where the
underlying probability space is discrete and the randomness can be represented by a so-
called date-event tree. While this permits the study of welfare issues within the setting
of incomplete markets (see Magill & Quinzii (1998)), the framework is essentially static
and does not allow comparisons of alternative outcomes of the model on a time series
level.

Welfare comparisons in deterministic models of economic growth are sometimes con-
fined to stationary states, leading to the so-called golden rule criterion, see, e.g., Phelps




(1961). It provides a possibility to evaluate the long-run outcome of the model depending
on parameters of interest. This concept has been generalized and applied to a stochas-
tic version of the Solow growth model (see Schenk-Hoppé 1999), showing existence of
an optimal savings propensity inducing maximal mean consumption under stationarity
capital accumulation. It seems that such an approach provides tools and methods from
random dynamical systems theory which allows a comparison of alternative stationary
solutions under different settings as well as an evaluation of empirically observed time
series. The welfare criteria used in this paper are based on these methods.

The present paper provides an explicit dynamic framework to analyze the interaction
between the pension system, the population structure, and real and financial markets
in the presence of arbitrary random shocks to the system. Given its form as a random
dynamical system allows a comparative analysis of stationary solutions of alternative
pension scenarios under arbitrary random perturbations. The framework also permits
the study of transition phases under demographic change of the population and of ad-
justments of the pension parameters, allowing to quantify utility gains and losses of
generations implied by alternative adjustment policies and demographic scenarios.

The paper is organized as follows. Section 1 reviews the underlying theoretical model
and its basic assumptions. Section 2 presents the dynamic structure of the model within
the theory of random dynamical system. Sections 3 and 4 formulate a long-run welfare
criterion and study the role of a pension system for the case with a stationary population.
Section 5 studies the welfare effects of a transition from a pay-as-you-go towards a fully
private system with an asset market. The impact of demographic change on consumer
welfare is studied in Section 6, followed by a discussion of various adjustments of the
pension systems in Sections 7 and 8. Section 9 draws some conclusions. The appendix
collects basic concepts from random dynamical systems theory and mathematical proofs.

1 The model

Consider an economy with overlapping generations of homogeneous consumers who live
for J+1 > 2 time periods implying that in every period t € Ny there are J + 1 different
generations in the market. Each generation is identified by the index j € {0,1,...,J}
describing the remaining lifetime of each consumer in this generation. Let Nt(j) > 0
denote the number of consumers in generation j at time ¢ and define the population
vector N; = (Nt(j))jzo. Each consumer in generation j € {jz,...,J} supplies L) > 0
units of labor inelastically to the labor market where the threshold j;, > 0 denotes the
number of retired generations. Aggregate labor supply at time ¢ is thus given by

J
L7 =Y LYNY. (1)
J=ic
There is a single consumption good in the economy which serves as numeraire. Let
wy > 0 denote the gross real wage per unit of labor at time ¢ out of which a fraction




€ [0,1] has to be contributed to the public pension system. Then each working
consumer earns net labor income

e = (1), L9 >0,  j=ju,....J (2)

at time ¢. The pension system is a pure pay-as-you-go system where total contributions
are divided up equally among current retirees in each period. The non-capital income
of each retired consumer at time ¢ is thus

S
(@) _ R._ wi Ly ; o
€ =6 = TtZ;Loth(]) > Oa J _Oa"':JL L. (3)

To transfer income between different time periods there are two savings possibilities
available to each consumer. The first one is a one-period bond which is traded at a price
of unity at time ¢ and pays a non-random return R; > 0 in the following period ¢ + 1.
Since R; is determined at time ¢, the bond provides a riskless investment possibility
between any two consecutive periods. The second investment possibility are stocks of
a firm (or shares) which are traded at price p, > 0 in each period ¢ and which pay a
random-dividend d; > 0 prior to trading. Dividends are generated endogenously from
the production activities of the firm. The total number of shares in the market is
constant and denoted as £ > 0. Bonds may be sold short without bound while short
selling of shares is not possible. Thus, the bond provides a possibility for consumers to
obtain also credit.

A typical consumer belonging to generation j € {0,1,...,J} solves an expected utility
maximization problem to determine his current consumption and investment in bonds
and stocks. His wealth position at time ¢ consists of his capital income corresponding
to the return on his previous asset investment and his non-capital income determined
by equations (2) and (3), respectively. Let (yt ,xt ) € R x R; denote the portfolio
held by a consumer belonging to generation j € {1,...,J} after trading in period ¢
consisting of bond investment yt(j ) and share holdings a:ﬁj). Since the capital income of
young consumers is zero, the wealth of a consumer in generation j at time % is

W = ] b o = ()
e + Ry + e oo+ d) j=0,1,...,0 1.

At time ¢ the consumer holds subjective expectations égj) = (egjt)%)fl:l € RZF for his
future non-capital income with eg t)+n > 0 denoting the forecast for his non-capital
income in period ¢ + n. Likewise he holds expectations RY) := (Rysn)lZ) € RIZ for
future bond returns where Rt,t+n is the point forecast for the bond return R;,, between
future periods n and n + 1, n € {1,...,j — 1}. Future asset prices and dividends are
treated as random variables in the decision. The consumer’s expectations for future
asset prices and dividends within his planning horizon take the form of a subjective
joint probability distribution 2 of the random variables (pyin, ditn)?_,. The consumer’s
decision problem at time ¢ involves the choice of a consumption-investment strategy that
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specifies a consumption and investment decision for period ¢ and mutually consistent
plans for all future periods t+1,...,¢+ 7 within his remaining lifetime. His preferences
over alternative consumption streams are represented by the logarithmic utility function

j
(Cty Caty ey Crij) — Zﬂn In(cihn), B>0. (5)
n=0
The consumer’s objective is to maximize the expected utility of consumption within
his remaining lifetime. Let ¢;11 := pir1 + di1 denote next period’s cum-dividend price
with induced distribution v, derived form ;. It is well known that the logarithmic
specification (5) induces myopic investment behavior such that the demand at time ¢
is completely determined by the measure v;. In the sequel we assume that v, is taken
from a fixed class of elliptically symmetric distributions parameterized in (y, 0;) € R%
with compact support Q; = Q(u, 0¢). This class is generated by some random variable
¢ with symmetric distribution v, supported on [—£, Z] where & > 0 is a given constant' .
The perceived distribution v, = v, ,, of the random variable ¢;;; is given as the image
measure of v, under the affine map ¢ — p;+0se. The pair (u4, 0;) defines the mean and
dispersion of the distribution and will be called the consumers’ beliefs about ¢;.1. To
ensure that Q(u;, 0¢) C Ry we restrict attention to the set B = {(u,0) € R2_ |u > o0&}
of feasible beliefs.
Let égj ) = ég%l + ég:)w JRip1+ ...+ égt)Jrj /(Risi1---Rysypj1) denote the discounted
non-capital income stream derived from the expectations égj ) and jo ). Given the current
bond return R > 0, the buying price p > 0, and wealth w > —é,gj ) determined by (4) it
can be shown that optimal consumption and investment in stocks and bonds at time ¢
are determined by the following demand functions

909) (Rapa w; it O, égj)a jo)) = E(J) (’LU + gi(ij)/R)
O (R, p, w00, 6, RY) = (1= D) (w + & /R) O(Rp; iy, 0v) (6)
o (R, p,w; 00,67 RY) = (1= éD)(w+&” /R)(1 = pO(Rp; w, 01)) — &/ R.

Here ¢¥) := [1+ 8 +...+ §] ~" and the share of (lifetime) income invested in shares is
determined by the map 6 : R, . x B — [0, 1],

O(m; py, 0¢) == arg max {/[_ , In(m + 9 (g + oy — 7)) ve(de) | 9 € [0,1] } . (7N

Since ¢(® = 1 the functions (6) also describe the demand behavior of the old generation
j = 0 whose members consume only and do not invest.

There is a single firm which produces the consumption good in period ¢ using its capital
stock K; > 0 and labor L; > 0. In addition production at time ¢ is subject to a random
shock term 7, taking values in the compact interval [0, 7mqz]- The firm’s production
technology is described by the production function F': Ri X [0, Nmaz] — Ry

F(Kt7 Ltﬂ?t) = I{Ktl_aL? + Uz (8)

1 Tn the simulations we take v. to be a standard normal distribution truncated to the interval [—£, ].
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In each period t, the capital stock K; > 0 is given and the firm decides about labor
demand L; > 0 and investment I; > 0. The latter determines the next capital stock as

Kt—|—1 == It + (1 - 5)Kt (9)

where ¢ €]0,1] denotes the constant rate of depreciation. To extend its capital stock
the firm can transform the consumption good into capital. As in Abel (2003), suppose
that given the current capital stock K; > 0, the amount of consumption goods needed
to produce I; > 0 units of new capital is determined by the adjustment cost function
G: R xRy — Ry, G(I,K) := Kg(I/K). The properties of the function G are
mainly determined by the function g which depends on the investment ratio i := I /K.
The function g is assumed to be of the form

0 7=20 1
) = 70> 0,71 > - 10
9(7) { Yo exp {1 i} 1>0 o m ) (10)

The firm’s investment I; at time ¢ is exclusively financed by issuing one period bonds
B, > 0 inducing the obligation to pay R;B; units of output/consumption good at time
t + 1. Recalling that the bond price is normalized to unity, one finds that investment
and bond supply at time t are related by

B, = G, K,) = K, g(I,/K,). (11)

After paying for labor and the bond debt incurred in the previous period, the firm

distributes all excess output as a dividend payment to its shareholders. Letting as

before £ > 0 denote the total number of shares in the market, the dividend payment

(per share) at time ¢ is given by

F(Ly, Kyyny) — wily — Ry 1By
- .

The firm seeks to act in favor of its shareholders by choosing labor input L; to maxi-
mize current dividends and investment I; to maximize next period’s expected dividend
payment. Assume that the firm holds expectations @w; ;1 for next period’s real wage.
Given the objective, let

L(w; K,) = (%)_ K, (13)

denote the firm’s cost minimizing labor demand. Similarly, given expectations w41 > 0
optimal investment is determined by the function

1 (1-a)x ( aK )ﬁ 50
I(R;@ppp1, Ky) i= ¢ In ('ﬂmR e ) Ky 0<R<R(@4) (14)

0 otherwise

where R(@y44) = Uo0s (_on_ " In the sequel we will restrict attention to interior
Ly €70 71 Wt t+1

investment solutions by assuming that R; < R(d}t,t+1) for all times t. In this case, it
follows from (11) that the firm’s bond-supply is determined by the function
(1—-a)k

ak 1@
B(R; &g, ;) = - K. 15
(R i) = = (2) (1)
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The demand behavior by consumers and by the firm determines market clearing prices
on real and financial markets in every period t € Ny endogenously. Given the population
vector Ny, let labor supply Ly > 0 be defined as in (1). Given the capital stock K; > 0,
labor demand is given by equation (13). Assuming full employment the real wage w;
is determined such that L(w;; K;) = L7. Utilizing (13) this implies the existence of a
non-random map W : R%, — R, which determines the real wage as

wi = W(Ky, L) = ar (K, /L)' ™. (16)

For a given contribution rate 7; the equilibrium real wage (16) implies a non-capital
income distribution e; = (e,gj ))3]:0 defined by equations (2) and (3). Likewise, given the
production shock 7, at time ¢, the dividend payment d; is determined by equation (12).
Based on these observations consumers in each generation j € {1,...,J} form their
expectations égj ) = (égf)Jrn)fl:l and jo ) = (Ry44n)’ _, for future non-capital income and
future bond returns and determine their beliefs (p, 0;) for asset prices. Likewise the

firm determines its point forecast w41 for next period’s real wage. Given the lists of

expectations é; := (¥ ))jj L and R, := (RY)/ -5 as well as the values e; and d; together
with the previous asset allocation z;_; := (y,fj)l,x?)l) ;=1 among consumers, the bond

return I; and the share price p; are determined simultaneously such that market clearing
on the bond market and the stock market obtains. Given the particular functional forms
of the asset demand functions (6) and (15) it is shown in Hillebrand (2007) that, letting
my = %[Zj:l B(1; @441, Kt) + Nt(j)égj)} there exists a mapping 7 : B xR, — R,

(g, 0, M) 10 / i + 018
, O, My) - - where (g, oy, My) = — v (de
('ut ' t) 1- ﬂ(“taatamt) ('ut ! t) [—&,8 Mt + o + My ( )
such that equilibrium prices are determined as
R, = R(NtaKt;et;dtaﬂtaataétaRt:(Dt,t+lazt—1,Rt—1) (17)
J _ ' -1 '
B(L; 041, Ki) + Z Nt(])é(j)égj) + (e, o, 10t) Z Nt(])é(”xg]—jil)
_ j=1 j=0
o J1
ZN el ZNf’)(l )[R 9t 4 dt:c(””]
j=1
e = P(Ny, Ki, e, diy s, 0, €4, Ry Oriiny 215 Ry 1) (18)

ﬂ—(ﬂt, O, mt)
R(Nt: Ky, e, dy, 21, Ry—1, e, 0, €4, Ry, wt,t+1)

Utilizing (4) and (6) the equilibrium prices (17) and (18) determine a new asset allocation
2=y, ) 7/_1 and define the consumption ¢; := (¥ ))‘j’:0 of the consumers in each
generation. The firm uses the consumption goods collected from its bond sales to form

I; > 0 units of new capital which determines the capital stock Ky, according to (9).




2 Dynamics

To complete the description of the model the evolution of the population as well as
the expectations formation is made explicit. Since life expectancy is deterministic and
constant one has for each t € N

NP =NI, j=01,.0 -1 (19)

The number Nt(J) of young consumers born at time ¢ is determined from the previous
population N;_; according to the map N : RT™ — R,

J J
N(Nt—l) = ZNt(Z)ln(]) (1 + exp{_nQZNt(?l})’ n(]) 2 07 .7 = Oa o Ja ng > 0.
j=0 =0

(20)
To describe the forecasting behavior of consumers and the firm, recall that the infor-
mation set upon which expectations at time ¢ are based contains the current real wage
wy and the non-capital income distribution e; but not the current price p; and the bond
return R;. Suppose that the firm’s real wage prediction satisfies

Qi1 = Wy (21)

for all times t € Ny. Consumers in generation j € {1,...,J} derive their non-capital
income expectation éifth for period ¢ 4+ n from the current income of generation j — n

(corresponding to their age at ¢ + n) such that for each t € Ny

e =ed ™ =14, 5=1,...,J (22)
The prediction for future bond returns is assumed to be uniformly equal to the last
observed bond return such that for each t € Ny

Rt,t—i—n :Rt—17 n = 1,...,J— 1. (23)

Consumers’ second moment beliefs about asset prices are constant (o = o) while first
moments j; are updated according to an adaptive error-correction principle such that

pr = M2, qi—1) = 2 + 0(q—1 — t—2), 0< o<1 (24)

Note that (24) includes the cases of naive expectations (9 = 1 = p; = ¢;—1) and of static
expectations (¢ = 0 = p; = py_o). The following assumption specifies the stochastic
nature of the noise process in (8).

Assumption 1

The process {m;}; consists of i.i.d. random variables defined on some probability space
(Q, F,P). The process is adapted to some filtration {F;};. Each n has a symmetric
distribution v, supported on the set [0, Nmqez] such that K, [1:] = 7 = Nimaa/2-




To formalize the dynamic evolution of the model, assume that the contribution rate

to the pension system is constant such that 7, = 7. As before let y, = (yt(])) ;-1 and

Ty (x§ )) for each t and define the state vector

T
ft = (NtTaKtay’tflalu'taRtaQtaytT’x;r) : (25)

We seek to obtain the model’s evolution as a random difference equation of the form
& = ¢,(&-1,m;) for some suitable map ¢,. In what follows the dynamics may be
separated into the following three building blocks:

(i) The dynamics of the population. Combining (19) and (20) these are determined by
the map N : Rt — RIY', N,y — N(N,_1) = N, defined by the conditions

{Nt(j’ = NP, =011 (26)

N = N(N).

(ii)) The dynamics of capital. Combining the law of motion (27) with the investment
function (14), the wage law (16) and the forecasting rule (21) the capital stock evolves
as

K, = ’& Nt 1, K1, Ry 1) = I(Rt—l;W(Kt 17L ) K, 1) ( —5)Kt—1

- [ () e

(iii) Financial dynamics. These comprise the processes of mean beliefs, asset prices
and asset allocations. Each of these may be treated separately such that the financial
dynamics may be split into the following three blocks.

(a) The process of mean forecasts. Using (24) and taking proper account of the lag-

structure the updating of mean forecasts are given by the linear map

(Nt—Za,Ut—I:Qt—l) — M(Mt—%ﬂlt—l;(h—l) = (Mt—l,M(Mt—z,Qt—l))- (28)

(b) Dynamics of asset prices. Given the fixed contribution rate 7 the forecasting rule
(22) together with equations (2), (3), and the wage law (16) imply that the non-capital
income distribution e; as well as consumers’ expectations é; for future non-capital income
may be written as functions of N; and K;. By virtue of equations (1), (16) and (21) the
same is true for the firm’s real wage prediction. This together with (23) implies that
the price laws (17) and (18) are of the following functional form

Rt - RT(Nta Kt, dt: Mty Zt—1, Rtfl)

29
by = PT(Nt:Ktadtay'taztflaRtfl)‘ ( )

Using (12) and (15) together with the wage law (16) the firm’s dividend payment at
time ¢ takes the form

F(LfaKtant) —W(Kt,Lf)Lf (1 W(Kt 1, L ) K, 1)

X

dt:

(1-a)k ala 1 ol a n
= B apyenr - g ri] + 2, (30)
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Using (26) and (27) in (30) it is straightforward to express the dividend payment as
d; = D(N,_1,K;_1,R,_1) + 1,/%. Exploiting this together with (26), (27) and (28)
in (29) and writing the parameter 7, used in (17) as 7y = m(N;_1, Ky_1, Ry_1) the
evolution of bond returns and cum-dividend prices may be expressed as

R, = ﬁf(ft—lant) =R; (N(Nt—l)a’C(Nt—laKt—laRt—l)aﬁ(Nt—laKt—laRt—l) +m/Z,
M(Nt—QaQt—l)azt—laRt—l)
T(M(pi-2,q-1), 0, M(Ni1, K1, Ri 1))

R 7?4(61571,7775)
+D(Ny—1, K1, Ri—y) + 2.

T

9 = QT(gt—lant) =

(31)
(c) Dynamics of portfolios. Combining (31) with (4) the wealth of each generation may
be expressed as wl) = w¥(&,_;,n,). Substituting this result together with (31) in the
asset demand functions (6) the evolution of consumers’ portfolios may be written as

‘rgj) = (lb(mjéz'(gt—la nt)) .7 = ]-a I J (32)
yéj) = @Z(,/{’)f'(gt—hnt)v .7 = 17"':J'
O

Combining (26), (27), (28), (31) and (32) with the equivalent canonical representation
{n o9}, of the process {n;}; (cf. Appendix A.1) the evolution of the economy may for
each fixed 7 € [0, 1] and initial state & be written as

&= ¢ (&1,m(0'(@)), @eQ, t>0. (33)

Equation (33) defines the time one-map of a random dynamical system in the sense of
Arnold (1998) which provides the basis for the subsequent study. In particular, based on
the random difference equation (33) we seek to study the long-run influence of changes
in 7 on consumer welfare.

In the sequel it will frequently be convenient to assume that the population is constant,
ie., Nt(j )= N > 0. The justification for this is provided by the following lemma.

Lemma 1
Suppose that the parameters of the population law (20) satisfy n) >0, j =0,1,...,J,
ny > 0 and % <n <1 wheren := Zj:o n). Then the following holds true:

(i) The population dynamics (26) possess a unique positive steady state N* = (N)i_,

where N = In 2

1
(J4+1) na 1-n"

(ii) The parameters n¥), j = 0,...,.J can be chosen such that N* is asymptotically
stable for each value of ny > 0.

The assertion from Lemma 1 implies that any value N > 0 can be induced as a stable
steady state of (26) by suitably choosing the parameter no. This property will allow us
to vary the population size N parametrically when studying the long-run properties of
pension systems in the sequel.




3 Golden rules and long-run welfare

In this section we consider a simple parametrization of the model where J =1, j;, =0
such that there is one working and one retired generation. Let the population be constant
with each generation consisting of N > 0 consumers. The amount of labor supplied by
young consumers is normalized to unity such that L) = 1 and, therefore, LY = N in
(1). In addition, setting o = 0 in (24) we assume that first moment beliefs are constant
such that y; = p. Defining

)\0 =

akN® [1—a«
T

1 1 1-—
- +T:|>0 and )\ := +5 [ e
a1

g l1—7[am

it is shown in Hillebrand (2007) that the state dynamics of the model reduce to the
evolution of capital and the bond return which take the form

+ r} (34)

P - 1 (1—a)k ( LS )a) ]
K, = K(Ki—1,Ri—1; N = |—In +1-90| K
t (Ko, Baii V) [71 (’)/0’)/1Rt—1 K -t
5 - M 7(f, 3, Mo K(K_ 1, Ry_1; N) @ T
R, = R (Ki1,Rii;N, i) = = G — G = ) )+)\1—
)\0 K:(Kt_l, Rt—l; N)l—a 1—71

(35)
Equation (35) is a two-dimensional deterministic dynamical system whose properties
with respect to 7 and N are studied extensively in Hillebrand (2007). In particular, the
existence of steady states along which consumers have rational expectations is investi-
gated. Such steady states will be referred to as rational expectations equilibria (REE)
to be introduced next. Here 7, := n; — 7, t > 0 denotes the centered noise process from
Assumption 1 with symmetric distribution v; supported on [—7, 7].

Definition 1
Let J =1, j, = 0 and the size N > 0 of each generation and T € [0,1] be fixed. A
stationary rational expectations equilibrium is a triple (K*, R*, i*) such that

(i) The pair (K*, R*) is a steady state of (35) which is asymptotically stable.

(ii) The corresponding cum-dividend price process {q:}+>o defined by (31) converges
point-wise to a stationary process {q;}+>o where

q = W+ oty (36)

The property in (ii) ensures that the (constant) mean forecast can be chosen to coincide
with the mean of the cum-dividend price process along the steady state. Hence, set-
ting ¢ = 7! and v, = v; it follows from (36) that the perceived distribution coincides
with the objective distribution of cum-dividend prices along the steady state of (35).
Moreover, the forecasting rules (21) and (22) imply correct forecasts for real wages and
non-capital income along the steady state such that the hypothesized forecasting be-

havior indeed generates asymptotically rational expectations. Also note that by market
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clearing of the stock and bond market young consumers’ portfolios will be constant in
the long run and given by 2" = /N and y{") = B/N. Here B, = B(R*; W(N, K*), K*)
is the firm’s constant bond supply along the steady state.

The following result links the definition of a REE to the concept of a stable random
fixed point which provides the basis for the subsequent welfare concept.

Lemma 2

Suppose J = 1, j; = 0 and let 7 € [0,1] be fixed. Suppose N* = (N,N) is the
unique positive steady state of the population law (26) defined in Lemma 1 which is
asymptotically stable. Let (K*, R*, i*) be a REE in the sense of Definition 1 and define
B as above. Then the random variable

& (@) == (N*, K*, u*, u*, R*, p* + 57j(@0), Z/N, B/N), & € Q (37)
is a stable random fixed point of the random dynamical system (33).

Observe that the only random component of the random variable £* is the cum-dividend
price which follows an i.i.d. process due to Assumption 1. Finding a stable random
fixed point of the random dynamical system (33) therefore reduces to finding a REE.
The following lemma states conditions under which a REE exists. The proof may be
found in Hillebrand (2007).

Lemma 3

Let J =1, j;, = 0 and the size N > 0 of each generation be constant. Set ¢ = 7~
and v, = v; for consumers’ expectations and suppose that the production parameter
in (8) satisfies > %. Then there exist differentiable mappings (K*, R*, pui*) : [0, 1[—
Ry 4 x]1,00[x]7/Z, 00|, 7 — (KF, R, ir) which define the unique REE of (35) for each
7 € [0, 1[. Moreover, K* and p* are strictly decreasing while R* is strictly increasing.

1

For the following derivations we assume that the hypotheses of Lemma 3 are satisfied.
In this case the triple (K7, R}, u¥) defines a REE of the dynamic equation (35) for each
7 € [0,1]. Hence, defining for each 7 the random variable £ as in (37) one obtains
a unique stable random fixed point of (33). Given this result we are interested in the
properties of the consumption processes along the random fixed point depending on
7. Utilizing the consumption function in (6), the definitions of non-capital income (2)
and (3) and wealth (4), together with the wage law (16) and the forecasting rule (22)
youthful consumption is deterministic and given by
a k NYK*1-@

T

R*

T

},weg. (38)

Likewise, using (4) and (6) and the canonical representation of the noise process old age
consumption along the random fixed point follows a stationary process {ci(o) o ¥"}i>0
corresponding to the random variable

1 — 1-—
c:(o)((:)) — ﬁ [HNaK;cl—a (on‘—l— . a) -l—f,u’; +'f]((:)):| , w € Q. (39)
1
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It follows from (5) that for each 7 the lifetime utility process along the random fixed
point takes the form of an ergodic stationary process {U* o ¥'};>; where

Us(@) :=IncM(@) + Bln O (@), @ € Q.
The expected lifetime utility of consumers along the steady state will therefore be con-
stant and identical for all generations taking the form

[CM I{NQK*I_O‘

n ﬁinﬁ (1 -7+ 5] (40)

+ﬂ/ ln mN‘”K*l’“(aTJr

E[U] =

« _ ~ -
) + T s+ U)}Vﬁ(dn)-
N
The following result characterizes the expected lifetime utility depending on the contri-
bution rate. The proof may be found in Appendix A.3.

Theorem 1

Let the hypotheses of Lemma 3 be satisfied. Then the map 7 — E[U?| defined in (40)
is strictly decreasing. Hence, any reduction in the contribution rate leads to a long-run
welfare improvement of consumers.

Theorem 1 strongly suggests an inefficiency of a pure pay-as-you-go system in the pres-
ence of an active asset and bond market. It implies that in the long run any reduction in
7 is favorable and leads to higher welfare of generations. It will be demonstrated in the
following section that this result continues to hold even for a more general parametriza-
tion of the model.

While the previous result required that a > %, a more general argument proceeds as
follows. Since the following derivations are valid also in the multi-period case we let for
the moment J > 1 be arbitrary. Let C} := Z}-]:o Nt(j )cgj ) denote aggregate consumption
and S; := Z}]:o Nt(j )ygj ) = B, aggregate savings corresponding to consumers’ net bond
demand at time t. Then the definition of wealth (4) together with (6) and (12) and

asset market clearing imply for each ¢ the aggregate identity
F(LY, Kyym) = Cr + Sh. (41)

Now suppose that the population is constant implying that LY = L¥ and assume that
the capital dynamics are at some steady state K > 0. In this case, investment I, will
necessarily be constant and equal to I, = I = §K. Hence, using the adjustment cost
function (10) savings will be constant as well and satisfy S; = S := Kg(§). Using this
in (41) shows that aggregate consumption at time ¢ is given by

Ct = C(K’Lsﬁnt) = F(E,K:nt) - g(&)K (42)
= KLS“K'™™ 41, — exp{*yl (5}1_(.

Observe that the map K — C (K, L®,n,) is strictly concave and that the maximizer

_ 1— [Se %
K = argmaX{C(K, L%, n)| K > 0} = [% exp{—716} (43)
0
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does not depend on 7,. The value K will be referred to as the golden rule capital
stock. It defines the capital stock at which aggregate consumption is maximal. For
the case with no adjustment costs where g(6) = 0 one recovers the classical result
aiKF(ES, K n,) =n+ § = 0 noting that the population growth rate is n = 0.

Now suppose that the capital dynamics defined by (27) are at some steady state K > 0.
Note from (27) that this requires that bond returns are constant and equal to R > 0.
By a slight abuse of terminology the pair (K, R) will be referred to as a steady state of
the capital dynamics (27). The following lemma relates this steady state to the golden
rule value defined in (43).

Lemma 4

Let the pair (K, R) be a steady state of the capital dynamics (27). Then one has

K % K°* if and only if R

VIIA

1

o'

Since -~ < 4, this implies that the critical value in Lemma 4 satisfies .- < 1. Hence,
whenever R > 1, the steady state will suffer from under-accumulation of capital.
Consider now the deterministic two-period case where J = 1 and j;, = 0 studied at the
beginning of this section. While it can be shown that if o < % a REE may well fail to
exist, it is shown in Hillebrand (2007) that once it does exist it will have R* > 1. Hence,
we obtain as a consequence of Lemma 4 the following result.

Theorem 2
Let J =1, j, =0 and let N > 0 and 7 € [0, 1] be fixed. Suppose there exists a REE
(K*, R*, u*) in the sense of Definition 1. Then K* < K.

If a > % the capital stock at the unique REE is determined by the map 7 — KZ
defined in Lemma 3. Since this map is strictly decreasing this result shows that any
reduction of 7 brings the steady state capital stock K* closer to the golden rule value
K°Pt, This explains why a reduction in 7 is welfare improving as asserted by Theorem 1.
Nevertheless, even for 7 = 0 this value fails to coincide with the optimal size according
to the golden rule. In the opposite case where a < % one can show that Theorem 1
continues to hold whenever a REE exists and a marginal reduction in 7 leads to an

increase of the capital stock.

4 Stationary welfare under the pension system

We are now in a position to extend the welfare concept motivated in the previous section
to the general case where J > 1 and possibly p # 0. For this purpose, let & € = denote
the initial state of the system taken from some suitable set = C Rif X Ry x Ryy x
Ryy x Ry xRy x R/ x R. As before, let the contribution rate be constant such
that 7, = 7 € [0, 1[. Using the dynamic equation (33) Appendix A.1 shows that for each
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@ € () defining the path of the noise and initial state £, € = the dynamic evolution can
be written as a measurable flow &, : Ny x Q x 2 — =

&o t=20
b (N(I'D)) 0.0 6, (N(BZ)) € > 0.

To simplify our notation we write the components of the process {®.(t,-,&)}i>0 as
{Ku(T,-, &) b0, {@i(7,+,&) >0, etc. The process {®,(¢,-, &)} >0 defines an induced
consumption process {ci(7, -, &) }i=0 Where (7, -, &) = (cgj) (T, ',fo));-]:() :Q — ¢/
describes individual consumption in generations j € {0,...,J} at time ¢. Combining
the consumption function in (6) with the definition of wealth (4) and the forecasting

&= 0,.(t,0,&) = { (44)

rules (22) and (23) yields the components of the random variable ¢;(7, -, &) as?

cgj)(T,d),&)) = gl )( (J)(T @, &) + Ri_1(1,0,&) ytjtl)(ﬂ@;fo) (45)
J (J m ~
. & .
T T B

m:l
foreach ¢t >0 and j =0,...,J. Here for each @ € Q2
K (1,& L) L7
TWENT G, &), L) Ly G=0,...5,—1

e (1,3, &) = S NG (46)
(]_—T)W(Kt(Tw &)),Lts)[_/(]) j:jL:---:J

denotes the induced non-capital income process with L7 being defined as in (1) and
the map W as in (16). Associated with the consumption process {c(T, -, &) }i>o is the
induced lifetime utility process {Uy(T, -, &) }+>s where for each ¢ > J the random variable
U(7,+,&) :  — R is defined as

J
Ui(1,0,&) == ZﬁJ inc?. i(T,0,8), ©eQ. (47)

3=0

For each ¢t > J the quantity in (47) describes the lifetime utility attained by the con-
sumers who were born in period ¢ — J.

Now assume that for each 7 € [0,7] the system (44) possesses a stable random fixed
point (cf. Appendix A.1). In this case, the long-run behavior of the system is described
by the ergodic process {&* o ¥'};>o. The idea of the following efficiency concept is to
compare the lifetime utilities attained along the path of the random fixed point induced
by different contribution rates 7. To formalize this idea, recall that along the random
fixed point one has N = N and, using (1), L: = L5. Write the map & : Q@ — Z in
component form &7 () = (N*(-), K7 (-), iz 0 971 (), 12(), R(), (), 7 (-), 27 (-)) where

) T

N*(-) = (N)]g, y5(-) = ( X)), and 2x(-) = (@Y*(-))_,. Then each choice of

7j=1 7j=1

m)
2 We define y(]+ )(T,-,EO) =0 and :1:(’+ )(T, &) =0 for j = J and Zm 1 W(Zo)ff)l = 0 for

j = 0. Similar conventions apply in (48).
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7 € [0, 7] gives rise to an induced process {ck o ¥'},5¢ describing consumption of gener-
ations along the random fixed point {£¥ 0 ¥'};>¢. Utilizing the same procedure as in the

derivation of (45) the components of ¢* = (¢ )*)JJZO : ) — C/*! take the form

@) = & (69)*(@)+R¢(v9‘1@)y$j+”*(ﬁ‘1@)+QI(@) AR (")

1~ )
) 2 ) ‘)

where for each & € Q, letting L% := 7. LUIN

J=JL

W(K*(&), LS) LS
TW(K (), L7) N j=0,....5,—1

=0
(1= )W(KH@), LD j=ju,..., ]

The consumption process {cX o9} is again ergodic and gives rise to an induced utility
process {U* o 9}, ; describing lifetime utility attained by consumers along the path of
the random fixed point. The random variable U’ : {2 — R is defined as

J

Ur(@) =Y _ B/ Inc*(977%). (49)

=0

The process {U* o ¥} inherits the properties of ergodicity from the consumption
process {cX o ¥}~y and is hence stationary. This implies that the expected value

E[U 0] := / U* 0 9"(&)P(d2) is independent of ¢ such that E[U¥] = E[U* o 9

for all t. For ea(:(}ll 7 € [0, 7] the real number E[U*] describes the expected lifetime util-
ity attained by consumers along the random fixed point. The efficiency criterion which
will be used in the sequel will be to choose 7 € [0, 7] such that E[U*] becomes maximal.
For this purpose, the following proposition shows that stability of the random fixed
point implies that the paths of the consumption and utility processes converge to the
corresponding paths of consumption and utility along the random fixed point.

Lemma 5

Let T € [0, 7] be arbitrary and suppose that the random dynamical system (44) possesses
a stable random fixed point. Then both the consumption process {ctov¥'};~o defined by
(48) and the lifetime utility process {U* o ¥'} s defined by (49) are stable in the sense
that for each j =0,...,J

(1) Jim [|lc*(9') — ¢ (7,0,&)[| = 0 and (id) lim |UF(9') — Uy(r, &, &) =0
—0Q —> 00
for all & € U(®) P-a.s.

Exploiting ergodicity of the process {U* o 9'},~; and the stability result from Lemma
5, the expected utility along the random fixed point may again be obtained from time

15



averages such that

1 ¢ .
E[U?] :qlggoﬁ Z U(r,0,&) P—a.s.

t=J+1

In the sequel the expected value E[U?] will again be approximated by the sample mean

N s )

E[U] = T—_Jt:;l Uy(1,@, &)
The remainder of this paper presents results from numerical simulations using a cal-
ibrated parametrization of the model which is justified on the grounds of empirical
studies. We first study the long-run welfare properties of pension systems by employing
the concept developed in this section. In this part we assume that the population is con-
stant, i.e., Nt(j ) = N. The second part considers the case with demographic transition
periods. The employed parameter values are listed in Table 1.

| Parameter || Value || Description || Parameter || Value || Description

J 14 Life expectancy K 2.5 Production parameter
JiL 6 Retired generations Yo 0.02 || Adjustment cost parameter
N 1000 || Consumers per gen. T 7.5 Adjustment cost parameter
LW 1 Individual labor supply ) 0.28 || Rate of depreciation
B8 0.96 | Discount factor z 5000 || Total number of shares
g 0.92 || Expectations parameter Nmaz 2000 || Upper bound for real noise
0 0.5 Expectations parameter Ky 4,500 || Initial capital stock
o 0.96 || Dispersion parameter ) 9.5 Initial cum-dividend price
« 0.66 | Production parameter Ry 1.12 || Initial bond return

Table 1: Standard parameter set for the numerical simulations

The application of the welfare concept developed in this section requires the existence
of a stable random fixed point. While Lemma 3 provides an existence result for the
two-period case with constant beliefs for asset prices, a generalization to the stochastic
multi-period case seems difficult. In Appendix A.7 we therefore establish the existence
of a stable random fixed point numerically for the given parametrization and 7 € [0, 0.2]
such that our efficiency concept becomes applicable. In particular, the long-run behavior
of the model is independent of the initial state £ € = and convergence to the path of
the random fixed point obtains within the first fifty periods as the initial state is varied.

To alleviate the following notation we shall frequently suppress the dependence of ran-
dom variables on arguments writing e.g. U, as a shorthand for the realization U;(7, @, &).
Figure 1 depicts the lifetime utility process and its expected value depending on con-
tribution rates 7 € [0,0.2]. The left figure shows the utility process defined by (47)
together with the recursive mean for the intermediate case 7 = 0.1. The right hand side
presents a bifurcation plot showing the corresponding sample mean E [U#] for alterna-
tive values 7 € [0,0.2]. Figure 1 suggests a strictly negative relationship between the
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U, U, E[U;]

34 0.8
1.75 0.55 4

0.3

-0.75 4 0.05

-2 T T T T t -02 T T T T
65 174 283 391 500 0 0.05 0.1 0.15 0.2

(a) Lifetime utility process, 7 = 0.1 (b) E(U*) depending on 7

Figure 1: Impact of contribution rates on consumer welfare

contribution rate 7 and the sample mean 1) [U?]. By ergodicity of the utility process
this suggests that long-run expected utility E[U*] will be higher as the contribution
rate 7 is reduced. Hence, any reduction of the public pension system will lead to a
long-run welfare improvement of consumers. Conversely, in the present scenario of a
stationary population, any persistent increase in 7 will reduce the long-run welfare of
all generations. This result confirms the assertion from Theorem 1 for the general case.

Next consider how a change in 7 affects the distribution of consumption over the life
cycle. Figure 2 compares the average consumption of consumers during their life-cycle
for three cases where 7 € {0,0.1,0.2}. For each period j € {0,1,...,J} of the life cycle
the values are calculated as averages of the sample {cgj )};?2050. By ergodicity, these values

approximate the expected value of the consumption process {cgj )(7', - &0) }eso-

ET=0 MNT=0.1 T=0.2

0.5 4

j=14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| Average consumption in || Working age || Retirement age ||
Contrib. rate 7=0]|7=01|7=02|7=0|7=01|7=0.2
Mean consumption 8.27 7.83 7.33 9.56 9.90 10.25

Figure 2: Average consumption over the life-cycle; 7 € {0,0.1,0.2}

17



In all three cases expected consumption strictly increases with age and is thus least
when young and largest when old. While this result is qualitatively independent of the
contribution rate, a reduction in 7 changes the distribution by shifting more consump-
tion towards the earlier periods of the life cycle. This implies that a reduction in 7
fosters consumption in working age and reduces consumption when retired. Comparing
expected consumption during the working years and the retirement age the table below
shows that even for a contribution rate 7 = 0 retired consumers have higher consump-
tion than consumers in working age. An increase in contributions broadens this gap
by increasing consumption when retired while reducing it during the working years. In
this regard, recall that the retirement period corresponds to six periods of the life-cycle
while the working period is nine periods long. A reduction in 7 thus leads to a more
uniform distribution of consumption over the life cycle which, as shown before, has a
positive impact on expected lifetime utility and increases the welfare of consumers.

It is demonstrated in Hillebrand (2006) that all of the previous results are robust against
parameter changes. They unequivocally suggest that the installation of a pension sys-
tem is not desirable and should be avoided. Conversely, if the pension system is already
installed, any reduction of contributions will lead to a welfare improvement of gener-
ations in the long run. Hence, from a long-run perspective, any social authority that
controls the contribution rate should seek to abandon the pension system by ultimately
reducing contributions to zero. Note, however, that any reduction in contributions leads
to a loss of welfare on the part of current retirees. Hence, from a political point of view,
the important issue is how a transition towards a lower contribution rate should be
organized such that these losses remain sufficiently small. This issue will be discussed
in the following section.

5 Reducing contributions

Consider the case where initially a public pension system exists which is characterized
by a constant contribution rate 7, = 0.2. Assume that the long-run goal of the social
authority which controls the pension system is to reach a contribution rate 7, = 0.
To achieve this goal, the present section discusses two different scenarios. In the first
one, the pension system is immediately abandoned while it is gradually reduced in the
second one.? More specifically, assume that the adjustment starts in period ¢ = 51 such
that » = 0.2 for £ < 50. In the first scenario, where the system is instantaneously
abandoned we have 7, = 0 for ¢ > 51. This type of adjustment is denoted symbolically
as ; = 0.2 | 0. In the second scenario, we assume that from ¢ = 51 onwards the
contribution rate is gradually lowered by 0.5% points in every period. This implies that
the target value of 7, = 0 is reached in period ¢ = 90. The gradual adjustment policy is
denoted as 7 = 0.2 \( 0. Figure 3 visualizes the adjustment policies for either scenario.

3 (learly, from a political point of view an instantaneous abandonment of the pension system seems
unrealistic since it implies that some generations do not receive any pension payments although they
have paid contributions. Nevertheless this scenario provides an interesting benchmark case.
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Figure 3: Instantaneous and gradual reduction of contribution rates

To display the consequences of either policy on consumer welfare we compare the ex-
pected utilities attained by the different generations during the transition phase. Since
the utility process is non-stationary during the transition phase we draw a sample
(@®)K | of K different realizations of the noise process. Exploiting the law of large
numbers one has for each ¢

K
1
. = lim — ~(k)
E[Ut(T: ’£0)] I;l—I)noo K kz_:lUt(Taw 160)‘
In the sequel we approximate the limit by taking averages over K = 450 realizations of
the noise process. The result is shown in Figure 4 which depicts the expected lifetime
utilities attained by consumers during the transition phase t € {45,...,110}.
E E [U}]

3] 34

[U4]
1.75 1.75
05 T e e 05 v——//_,./‘—\
TN
0

-0.75 - -0.75 -

\t‘z T T T \t

-2 T T
78 94 110 46 62 78 94 110

46

(a) Tt=02¢,0 (b) Tt=02\‘0

Figure 4: Impact of a reduction in contribution rates on expected lifetime utilities

For the instantaneous adjustment policy one observes a dramatic loss in utility during
the time window t € {51,...,56}. These are the generations which lose their pension
income but do not benefit from the reduction in contribution rates during their working
years. From ¢ = 57 utility starts to increase again. These are now the generations which
have increasingly benefitted from the reduced contribution rate during their working
years. In this regard, recall that the reduction in contributions causes a shift of utility
from the retirement age to the working age. After the initial decline we observe a large
overshooting in utility which reaches a maximum in ¢ = 66. After the peak utility
decreases again to reach its long-run level from ¢ = 85 onwards.

In contrast to this, the initial downturn as well as the following overshooting is almost
entirely avoided with a gradual reduction in contribution rates. One also observes that
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with the gradual adjustment policy all generations are better off from ¢ = 65 while with
an instantaneous adjustment this is the case from ¢t = 62 onwards. Nevertheless, from a
political point of view, the gradual reduction of contributions appears to be much more
favorable since it generates a much smoother transition and improves the welfare of all
generations in the long run.

6 Demographic transition

The following sections extend the previous simulation study to the case with demo-
graphic change and a shrinking population. Here, demographic change is modelled as
a transitory phenomenon due to a (permanent) shift in the steady state of the popula-
tion dynamics. Recall from Lemma 1 that the parameter n, is crucial to determine the
steady state value NV while it does not affect its dynamic stability. This property allows
us to vary the value N by varying n, without affecting its asymptotic stability.

For the following numerical investigation we assume the map j —— néj ) to be non-
decreasing. Assuming that a consumer’s life starts at the age of 20 (j = J) and ends at
the age of 80 (7 = 0) with each period corresponding to four years this property reflects
the plausible assumption that fertility is a decreasing function of age. The parameters
used in the subsequent simulations are summarized in the following table.?

| Parameter || Value || Description || Parameter || Value || Description |
J 14 Number of generations ngl) 0.1 Fertility (age 32-35)
D 0.275 | Fertility (age 20-23) 1% 0.05 | Fertility (age 36-39)
ni' 0.25 || Fertility (age 24-27) n? 0.01 || Fertility (age 40-43)
) 0.2 || Fertility (age 28-31) || n{’, <8 | 0 | Fertility (age > 44)

Table 2: Parameter values for the population dynamics.

The parameter choices in Table 2 induce an asymptotically stable steady of the popu-
lation dynamics (26) for each choice ny > 0. To model the demographic transition we
assume that initially (# < 50) the population is in a steady state such that N, = (N )j:o
where N ~ 2000 corresponding to a parameter choice ny = 0.000067. In period ¢t = 51
the parameter ny changes to ny = 0.00013 shifting the steady state to a lower value
N’ ~ 1000. The associated adjustment process of the population towards the new
steady state value then defines a demographic transition period during which the num-
ber of births decreases. Note that the steady state value N corresponds to the value
used in the simulations of the previous sections. Hence the previous results remain valid
in the long run as soon as the population has reached the new steady state. The evo-
lution of the population represented by the number of births as well as the associated

(economic) dependency ratio A; := Z;L: " Nt(j ) / Zj:jL Nt(j ) is depicted in Figure 5.

4 At this point neither the population model nor the parameter choices are justified on empirical
grounds. For our purpose the prescribed specifications offer a simple way to model demographic
transitions of the population and to study the implications for the pension system.
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Figure 5: Time profiles under demographic transition

Figure 5(a) shows that the level of births convergence to its new steady state value
within slightly less than 50 periods. As a consequence it can be shown that for ¢ > 110
the population will be constant again such that N, = (N’)jzo and the dynamic be-
havior is as described in the previous sections. In the sequel we will therefore mostly
restrict attention to the demographic transition period where ¢ € {51,...,110}. As is
seen from Figure 5(b) demographic transition is accompanied by a dramatic temporary
increase in the dependency ratio which reaches a maximum of ~ 90% in ¢t = 63, i.e.
after 12 periods (= 50 years) before it eventually returns to its initial value of 66%.
This range corresponds roughly to the predicted evolution for the German population
over the next 50 years as exhibited in Borsch-Supan, Heiss, Ludwig & Winter (2003).
Thus our demographic model mimics roughly the predicted demographic change of the
German population over the next 50 years.

Consider now the impact of demographic change on the welfare of consumers for the
case with a constant contribution rate 7, = 7. For simplicity, we restrict attention to
the boundary cases where 7 € {0,0.2}. The result is displayed in Figure 6 showing
the expected lifetime utilities of generations during the demographic transition for both
scenarios. One observes that demographic chAange causes a significant decline in con-

E[Ui] K [U4]
15 15
0.5 0.5
-0.5 -0.5
-15- -1.5-
-25 | T T T t -25 T T T T t
46 62 78 94 110 46 62 78 94 110
(a) 7=0 (b) 7=0.2

Figure 6: Profiles of expected lifetime utilities under demographic change

sumer welfare which mirrors - with a slight delay - the evolution in the dependency ratio
(cf. Figure 5(b)). This decline occurs independently of the prevailing contribution rate
and is only slightly attenuated if the contribution rate is lower (although expected util-
ity remains higher with a lower contribution rate throughout the entire time window).
After the demographic transition expected utility returns again to a stationary level.
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These observations suggest that without further adjustments of the pension system, de-
mographic change has a serious impact on consumers’ welfare resulting in large welfare
losses during the demographic transition period.

7 Adjusting contributions during transition

The previous result raises the natural question how the pension system should be ad-
justed to avoid or at least attenuate these effects. The most straightforward adjustment
is a change in the contribution rate during the transition which will be studied in this
section. In this regard, consider the case where pension payments and contributions at
time t are determined by the adjustment formula

er = or W BV (1402 (1- —A“))
! Tlwg s bW — 1y Ay o (50)

R ATR
e; Ny
Wy qu

Tt

where 0 < b < 1, 0 < b® < 1. The adjustment policy (50) determines the pension
income el at time ¢ essentially from three determinants while contributions 7; are ad-

Wt—1

justed accordingly. The first factor J=> accounts for the previous change in gross real

1 . o
wages. The second factor Z(U—% captures changes in the contribution rate over the last

two periods where the parameter b™") is assumed to be sufficiently close to unity such
that 8) > 7, for all times ¢. Note that a decrease in b)) will increase the sensitivity to
changes in previous contribution rates. Finally, the third factor 1 + b (1 — %) ac-
counts for demographic changes of the population measured by the previously observed
change in the dependency ratio. With this specification an increase in real wages has
a positive impact on current pensions while a previous increase in contribution rates

has a diminishing impact. Likewise an increase in the factor ﬁ

corresponding to an
accelerated aging of the population will decrease the pension income at time t.

Given the general form of the adjustment formula (50) the present section studies dif-
ferent pension policies corresponding to different parameter choices b and b® in (50).
A more detailed description of these policies and their application to the German pen-
sion system can be found in Riirup (2003, pp. 98) and Bérsch-Supan, Heiss, Ludwig &
Winter (2003) who conduct a study in the same spirit.

Case 1: Net Wage Adjustment (b() =1, b® = 0)

With these parameter choices one observes from (50) that the growth rate of pension
incomes is determined from the previous increase in net wages. Consequently, this
adjustment policy is referred to as net wage adjustment. Note that the demographic
change of the population does not enter the adjustment formula.

Case 2: Riester type adjustment (b(!) = 0.8, b® = 0)
With this specification the demographic change of the population continues to be ir-
relevant for the evolution of pension incomes and contributions. However, compared
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to the previous case the reduction in b(!) leads to an increased sensitivity to changes in
contribution rates such that this formula dampens the growth of pension payments. The
formula corresponds to the one which was introduced for the German pension system
as part of the so-called Riester reform in 2001.%

Case 3: Riirup type adjustment. (b)) = 0.8, b® =0.5)

This adjustment policy not only takes into account the previous increase in contribution
rates but also the demographic change of the population. The parameter 5*) may
be interpreted as a weight that shifts the demographic burden between retirees and
workers. A larger value of b® reduces the growth rate of pensions thus shifting more
of the burden to retired generations. In addition the increased sensitivity to changes
in previous contribution rates is maintained by choosing ) < 1. This corresponds to
the adjustment formula which has been suggested by the so-called Riirup Kommission
for the German pension system (see Riirup 2003). Both the reduction in (') and the
increase in b® thus have a diminishing impact on pension incomes and dampen the
growth in contribution rates.

Case 4: Gradual reduction. We compare the previous three adjustment policies
with the gradual reduction of contributions as studied already in Section 5 where the
initial contribution rate 7z = 0.2 is gradually lowered by 0.5% points in every period
from ¢ = 51 onwards such that 7, = 0 for ¢ > 90.
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Figure 7: Time profiles of contribution rates under different adjustment policies

5 In fact, in the actual Riester formula is slightly more complicated involving a gradual adjustment
of the parameter b(") over a time period of 10 years. Our specification corresponds to the long-run
Riester formula after the year 2011, see Riirup (2003), p. 98.
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The impact of either adjustment policy on the evolution of contribution rates is depicted
in Figure 7. The initial contribution rate at time ¢ = 0 has been set to 7 = 0.2 and is
represented by the black line in each of the figures. All parameters of the model as well
as the underlying demographic scenario are the same as before.

In all four cases contributions remain more or less constant for ¢ < 50, i.e., before the
demographic transition occurs. In the first three cases the accelerating demographic
change causes an increase in contribution rates from ¢t = 51 onwards which become
largest in Case 1 (up to = 25.5%) and which is slightly dampened in Case 3 (up to
~ 22.5%). After the demographic transition period contributions decrease again and
eventually return to their initial value of 20% in all three cases. From this observation
it is clear that all four policies under scrutiny may have an effect only during the de-
mographic transition whereas the long run outcome will be exactly the same as that
with a constant contribution rate studied in Section 2. Consequently we shall confine
the following analysis to the welfare effects of the four reforms during the demographic
transition period.

Figure 8 depicts the impact of either adjustment on consumer welfare. The black series
represents the case where 7, = 0.2 which serves as a reference case in all four scenarios.
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Figure 8: Welfare effects under different adjustment policies

One observes that both the NWA adjustment as well as the Riester case yield almost
identical results. The outcome in Figures 8(a) to 8(c) suggests that during the first
phase of the demographic transition period (¢ < 64), it is still possible to stabilize
pension incomes through an increase in contribution rates. Hence, these adjustment
policies yield slightly higher utility during this time window as compared to the reference
case where contributions remain at the initial 20% -level. However, this initial gain
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comes at a cost of a dramatic loss in the welfare of later generations. From ¢ = 65
onwards, the utility level in both scenarios is significantly lower than in the reference
case. More importantly, the increase in contribution rates leads to a much more dramatic
downturn of utility during the time window ¢ € {65,...,90} when the demographic
structure of the population is most unfavorable. Qualitatively Figure 8(c) conveys a
similar impression as the previous one. The increase in contribution rates can attenuate
the decrease in expected utilities only at the very beginning (¢ < 64). After this period,
expected utility is lower than in the reference case and suffers a dramatic downturn. The
dampened increase in contribution rates implied by the Riirup policy slightly attenuates
this loss. Summarizing we find that any adjustment policy leading to a temporarily
larger contribution rate fails to ameliorate and in fact even amplifies the welfare loss
during the demographic transition. In contrast to that, Figure 8(d) shows that the
gradual reduction in contribution rates slightly attenuates the downturn in expected
utilities which occurs for ¢t € {65,...,80}. Nevertheless, even a gradual reduction of
contributions can not avoid a serious welfare loss during the demographic transition
phase.

8 Increasing retirement age during transition

So far the analysis has focused on changes in contributions rates to adjust the pension
system during demographic transitions. In this section, we consider a temporary increase
in the retirement age as a another possible political measure to counteract the demo-
graphic problem. In this regard, recall that the retirement age is essentially determined
by the parameter j; which has been set to j;, = 6 during all the previous simulations. If
we regard this parameter as being chosen by government authorities (rather than being
determined e.g. by the physical capabilities of consumers) we can study the impact of a
temporary decrease in j; during the demographic transition phase. A huge advantage
of this measure is that it is the only reform option which directly affects and decreases
the dependency ratio by simultaneously increasing the number of workers and lowering
the number of pensioners.
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(a) Constant retirement age (b) Adjusted retirement age

Figure 9: Time profile of the dependency ratio

For the following experiments we shall assume the same demographic scenario as before
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and consider a temporary decrease to j;, = 5 during the time periods ¢t € {51,...,85}.
For ¢t < 51 and t > 85 we have j;, = 6 as before. The impact of this policy on the
structure of the population is depicted in Figure 9 showing the dependency ratio with
and without a temporary adjustment of the retirement age.

One observes that the reduction in j; leads to sudden fall in the dependency ratio
in ¢ = 51. In the subsequent periods, the series starts to increase again due to the
accelerating demographic change. However, even in period ¢ = 63 when the demographic
effect reaches its maximum the dependency ratio only slightly exceeds its initial level of
66%. After this, it starts to decrease again since the population now gradually adjusts
to its new long-run level. The increase in ¢ = 86 back to j;, = 6 then shifts the ratio
upwards to its initial (and new) long-run level.

Consider next the impact of the proposed adjustment on consumers’ welfare during
the demographic transition period. Assume first that contributions are not adjusted
such that the contribution rate remains at its initial level, i.e., » = 7 = 0.2. The
evolution of expected utilities with (red series) and without (black) a temporary increase

in retirement age is depicted in Figure 10(a). It shows that the increase in retirement
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Figure 10: Profiles of lifetime utilities with adjustments in retirement age

age leads to a jump in utility from ¢ = 56 onwards. These are the generations which
now have one additional period of labor income ’in exchange’ for one period of pension
income. At the same time the pension income increases because now there are fewer
retirees who receive benefits from the pension system. This explains the gradual increase
in utilities for ¢t € {51,...,55}. From ¢ = 63 onwards the demographic effect leads to a
decrease in utility which nevertheless is much less serious than without an adjustment
of the retirement age. In fact, compared to the reference case, the proposed adjustment
leads to higher expected utility throughout the entire time window.

Consider now the case where the increase in the retirement age is combined with a
gradual reduction of contribution rates as studied in the previous section such that the
initial contribution rate 7, = 20% is gradually lowered by 0.5% points from ¢t = 51 until
t = 85 such that 7, = 0 for ¢ > 85. In addition, the retirement age is adjusted during
periods t € {51,...,85} as before. Figure 10(b) compares the welfare effects of this
combined policy to the reference case with 7 = 0.2 and constant retirement age. The
result seems very convincing: the combination of the two measures is capable of entirely
eliminating the downturn induced by demographic change. Throughout the entire time
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window expected utility never falls below its initial level but is in fact much larger in
most periods. With these findings, it seems that a combination of a gradual decrease
in contributions accompanied by a temporary increase in the retirement age is the most
promising political measure to encounter the demographic problem.

Several remarks must be made at this point. Firstly, in our model, consumers do
not derive disutility from labor, hence the additional period they have to work as the
retirement age is increased does not have a diminishing impact on utility. Clearly, this
may be debatable. If one takes into account the utility-diminishing effect of an increase
in the retirement age, the result may change. A second point is that the utility levels
in Figure 10(b) are still far from being equally distributed across the time window.
This is to some extent due to our ’coarse’ time scale with one time unit corresponding
to four years. An adjustment of the retirement age on an annual basis could lead to
an even smoother adjustment of utilities. This could be accompanied by an improved
adjustment policy where contributions are not necessarily decreased in constant steps
but the decrease changes in each period. These two refinements should lead to an even
smoother distribution of utility over the respective generations.

9 Conclusions

This paper has studied the welfare implications of pension systems from two different
perspectives. The first view dealt with the long-run welfare effects corresponding to the
case with a stationary population. In this regard, the explicit modeling approach put
forward in this paper in conjunction with random dynamical systems theory was used
to develop a concept which measures the long-run welfare implications of alternative
pension systems by comparing the welfare along the corresponding stationary solution
of the system. The application of this concept strongly suggest the long-run inefficiency
of a public pension system where any reduction of contributions leads to a welfare
improvement.

The second perspective allows to study the performance of alternative pension policies
describing adjustments of the system during demographic transition. A demographic
scenario has been developed which roughly matches the predicted evolution of the Ger-
man population over the next fifty years. It has been shown that without substantial
reforms the predicted demographic change of the population will lead to large welfare
losses on the part of consumers. Among the reform scenarios discussed, a temporary
increase in the retirement age accompanied by a gradual reduction in contributions was
shown to be most promising to overcome the demographic losses.
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A Mathematical appendix

A.1 Concepts from random dynamical systems

To embed the dynamics of the model into the framework of random dynamical systems
theory, assume as in Section 2 that the contribution rate to the pension system is
constant such that » = 7. For each ¢ let & be defined as in (25) and let the map
¢-(;m:) be defined as in Section 2 with suitable domain = C R{F" x Ry; X Ryy X
Ryt xRyp xRy xR x RY.

For the equation & = ¢, (& 1, m;) to define a random dynamical system we need to write
the noise process {n; }scz characterized in Assumption 1 as a so-called metric dynamical
system (2, F, P, (9*)4ez) which constitutes the first building block of a random dynamical
system. For this purpose, endow the product space € := [[,5[0, 7mas] With its Borel-o
algebra F := B(Q2) and the product measure P := ®;cz1;,. The left shift on 2 is defined
as the map ¥ : Q@ — Q, (&y)ez > HDp)wez = (D441)tez the inverse of which is
denoted as ¥~!. For each t € Z let ¥* denote the tth iterate of the map ¥ if ¢ > 0 and
of 971 if ¢ < 0, respectively. With the help of the evaluation map 7 : Q@ — [0, n4s),
1(@¢)tez = @o the original process {7}, can be written in the form {n(9")},.,, i.e.,
for each t € Z and @ € Q, n,(©) = n(¥9'@). Note that by construction the measure P is
invariant with respect to o, i.e. for all A € F one has P(JA) = P(A). In addition we shall
assume that P is ergodic with respect to ¥, i.e. for each A € F which is invariant under
the map 9 (i.e. A = A) one has P(A4) € {0,1}. The quadruple (22, F, P, (9%)scz) defines
an ergodic metric dynamical system in the sense of Arnold (1998) which constitutes the
first building block of a random dynamical system.

It follows that for each fixed @ € €2 and initial state & € = the evolution of the system can
be written as & = ¢, (&—1;n(9'®@)), t > 0. To alleviate the notation write ¢, (n(®)) :=
O (5n@)) 1 E— E, E— o, (n(@)) € := ¢, (§;n(@)) for each @ € Q and let T := Ny.
The iteration of the map ¢, (-) defines a measurable flow ®, : Tx Q x = — =

o t=20
¢ (n('@))o...0 ¢ (WD) & t>1

Equation (51) together with the metric dynamical system (Q,F, P, (9%);cz) defines a

B (15, 6) = { (51)

random dynamical system in the sense of Arnold (1998) with one-sided time. The value
., (t,0,&) € = determines the state of the system at time ¢t € T from the initial state
& € Z and the path @ € € of the perturbation.

The following definition introduces the concept of a random fixed point which is the
stochastic analogue to a fixed point of a deterministic dynamical system and which
plays a crucial role in what follows.

Definition 2
Let T € [0,7] be fixed. A random fixed point of the random dynamical system defined
by (51) is a random variable £ : Q0 — = with the property that for each © € Q

& (W00) = ¢ (n(V0), (@) = ¢+ (n(V0))€7(@). (52)
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A random fixed point & is said to be asymptotically stable if for each fixed w € €} there
exists a random set U (@) C E such that

lim [|€7(9'@) — @, (t,@,&)[| =0 (53)

t—o0

for all £ € U(w) P-a.s.

In the stable case the path ¢t — @, (¢, ©, &) will asymptotically move as the correspond-
ing path ¢ — &*(9'@) of the random fixed point (P-a.s.). Clearly, for those components
of the map ¢, which are deterministic (and thus independent of @ € ), the property
(52) coincides with that of a deterministic fixed point.

A.2 Proof of Lemma 2

For all deterministic components of £* the definition (52) coincides with that of a deter-
ministic fixed point and is therefore implied by Lemma 1 and by asymptotic stability as
required in Definition 1 (i). Stability of the cum-dividend price process is an immediate
consequence of Definition 1 (ii).

A.3 Proof of Theorem 1

As shown in Hillebrand (2007) for each 7 the values pf and R} are related to K* as

. . n Kk NYK*1 e [ af B _ 1
wo= 1B a0 - )
g©) KfY [ ar 1-« n
oz 1—a[1+6+ " }>5 (54)
., (Q=a)k (N\®
w - S (m) > )

Here ¢' denotes the first derivative of the map g defined in (10). Since each of the
mappings is differentiable, it follows that the derivatives of (54) and (55) take the form

. k NYK*1=a [ 1 0,K* ( af
Orpiy = — = [1+ﬂ(ﬂ+R7 ) —(1-0) e (m(l—ﬂ (56)
_ -y prlf & T —1
Hi—a)-o) - B (T ) )] <o
0. = —aR*;a%T > 0. (57)

Differentiability of the maps K*, R* and u* together with the properties of the distribu-
tion v; imply that the map 7 —— E[U*] in (40) is differentiable and differentiation and
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integration may be interchanged (cf. Bauer (1992)). Using (57) the derivative computes
RP—1 ar 0, K*
s l-—a+
Ta-nR " T+ (1—7)R:| K*
akN®K;'™ + 7 0,5 + 0: K3 (1 — a)eN Ky~ (ar + L.2)
+4 / : L~ a)eN Ko7 +
SNeE o+ S0) 7 47

OEUL] = (58)

di.

Let 7 € [0,1] be arbitrary but fixed. We want to show that 0,E[U*] < 0. Note that
the first two terms in (58) are always negative due to (55) and (57). In addition, the
denominator of the integrand in (58) is strictly positive for all 7 € [—7,7] due to (54)
implying that the integral in (58) satisfies

0</ _ di ) 1
=g £ NKE = (ar + 22) +$NT+77 K NOKx1=e(ar +1522) + T pk — 1)

.(59)

It follows from (59) that if the numerator in the integrand in (58) is non-positive, the
claim is automatically satisfied. If the numerator is positive, equation (59) implies that

B Ry — aT 0. K>
T+ (1- )R* r+(1—7)R]| K*
akNK: '™ + 20, p + 0, KX (1 — o)k N* KX~ (ot + 1;—“)

+ — L. = U.
p K NoEF1=o(ar + 52) + 7 px — 7] T

8. E[U*] < [1 —a+ (60)

It suffices to show that U’ < 0. Using (54), (55) and (56) in (60) gives:

_ x T+(1-a)(l—7)R:10.K?
Ur = T+(1—T)R*+[ T+ (1—7)R: } K*

9 KX — -1
5 (1- R 1) (-2 e 80 1 — a0 — R (25 + 71 )]

_ Rr—1

(61)

1
+0
ﬁ + 1+5(1 R+ (1 —a)l—v R
Rr—1 -1
— T *+ - T — — (62)
TR Ry (R - 1)+ 2 R - 1)
0. K+ (1—a)(l—1)R: RE(B+7)+ 521+ B)R; — 55 — &2
+ * _ * +(1—a) T 1—a 144 —1
Ky b=k R+ 5(R; 1) + S B8 (R — 47T

Since 0 <7+ (1 —7)Ry < Ry < Ry + 3(R; — 1) + %%(Rﬁ — ;1) the first line in
(62) is negative. We show that the term in brackets in the second line is positive. By
the previous observation it suffices to show

1
7+ (1—a)(l1—7)R: > —(1—a)(R¢(ﬂ+r)+ a(1+ﬁ)R¢— T +ﬂ)
11—« av

which is equivalent to

1+ l-«o

a+pr > 20y )R

am

and which follows immediately from R* > 1 > ;' completing the proof. |
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A.4 Proof of Lemma 4

Since any steady state (K, R) > 0 of the capital dynamics (27) has to satisfy

the claim is an immediate consequence of equation (43). |

A.5 Proof of Theorem 2

Exploiting (55) and the fact that Rf > 1 > 7% for each 7 together with the functional
form (10) of g and recalling that L% = N gives

k=[G R - <[] e

T

A.6 Proof of Lemma 5

Utilizing the definitions from (45) and (48) and exploiting the stability property (53) the
statement in (i) follows immediately from the continuity of the involved mappings and
the triangle inequality. The second statement is then a consequence of the continuity of
the logarithm and the triangle inequality. |

A.7 Stability of random fixed points

The welfare concept developed in Sections 3 and 4 requires existence of a stable a random
fixed point describing the long-run stationary evolution of the random dynamical system
(33). While Lemma 2 and 3 together ensure existence for the deterministic two-period
case, a general theoretical result for the stochastic multi-period case is not available
yet. For this reason this section provides numerical evidence that for the parameter set
listed in Table 1 a stable random fixed point exists. We show that the long-run behavior
of the model is stationary and does not depend on the initial state & € =. Figure 11
depicts time series of selected state variables for five different initial values. These are
the time series of cum-dividend prices ¢;, bond returns R;, capital stock K; and the
share portfolios :1:§7) of generation j = 7. Qualitatively, the result is the same for all
other components of the state vector & defined in (25). Note that the realization of the
noise process is the same in each case. The contribution rate is 7 = 0.1, however, the

qualitative result is the same for each 7 € [0, 0.2].

In either case the respective state variable converges to a unique stationary sample path,
independently of its initial value. Moreover, in either case, convergence occurs within
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Figure 11: Convergence of selected state variables for different initial values, 7 = 0.1

the first 50 periods and is in fact even much faster for the financial variables ¢; and R;.
It can be shown that the same result holds true for all other state variables contained in
the state vector & of the model. These results strongly support the existence of a unique
sample path governs the long-run behavior of the model in the sense that all sample
paths pertaining to different initial conditions eventually behave like the corresponding
path of the random fixed point.
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