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1 Introduction and literature review

Scheduling jobs on parallel machines against their due dates is a very common setting
from a practical perspective. It can be found, for example, in the beverage industry,
where jobs need to be scheduled on parallel bottling machines. Jobs are, for example,
beer orders from restaurants, pubs, and wholesalers. Meeting the due dates is impor-
tant, because you do not want your wholesaler, retailer or local pub run out of beer. The
groceries industry is facing a similar situation. Another example is the capital-intensive
printing industry, where print jobs (like books) are scheduled on parallel presses and
finishing lines. Meeting due dates for orders placed by the different book publishers
is extremely important, too, as a publisher will loose revenues if a special title (in the
worst case the actual bestseller) is not available on the shelves of the bookstores. The
pharmaceutical industry usually runs parallel machines to produce drugs. And they
definitely want their blockbusters being available in the drugstores. In this case the
customers might be the national sales organization that bundle and forward the orders
of their customers. Pretty much every OEM company has parallel lines to assemble the
jobs that are placed with him. Even auditors can be seen as parallel machines that work
on the auditing jobs acquired by their partners. This are only a very few examples for
processing jobs on parallel machines against due dates. Note that in all setting men-
tioned the jobs are (typically) not split between the parallel machines.

Generally speaking parallel machine problems seem to be harder than single machine
problems, since in addition to the sequencing task the jobs need to be assigned to ma-
chines. As the total tardiness problem (TTP) is NP-hard for the single machine case
(Du and Leung, 1990), its version for parallel machines must be NP-hard, too. This
means that finding a polynomially bounded optimization algorithm is very unlikely.
Consequently large instances of the problem should be attacked by means of heuristic
approaches obtaining near optimal solutions. Some powerful heuristics have been devel-
oped for the single machine problem, see Baker and Bertrand (1982), Holsenback and
Russell (1992), Panwalkar et al. (1993) and Panneerselvam (2006). For a literature
review on the single machine TTP, see Koulamas (1994).

However, the literature on the parallel machine version of the TTP is relatively lim-
ited, for an overview see Shim and Kim (2007). We will refer to the parallel TTP as
TTP/m in the following. To the best of our knowledge, for the TTP/m only the follow-
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ing heuristics are available. Wilkerson and Irwin (1971), see also Baker (1973), order
the jobs according to the earliest due date (EDD) rule and assign them to the machines
afterwards. If a job can be finished on time it is assigned to the machine such that it
is completed as closely to its due date as possible. If the job will be late, it is assigned
to the machine with the lowest workload. Dogramaci and Surkis (1979) apply three dif-
ferent priority rules, namely EDD, shortest processing time (SPT) and minimum slack.
For each of these initial sequences they proceed as follows: Among the jobs that have
not yet been assigned to a machine take the first job, assign it to the machine with the
smallest actual workload and remove it from the list of unscheduled jobs. This step is
repeated until all jobs have been assigned to a machine. In a last step, the machines
are considered individually and m single machine total tardiness problems are solved.
However, as the single machine problem is – as already stated – NP-hard, this procedure
is only good for relatively small instances. For the single machine version of the TTP
it is well known that the SPT sequence gives relatively good results if the due dates
are tight and that the EDD sequence gives relatively good results if the due dates are
not that tight. Ho and Chang (1991) make use of this coherence by developing a traffic
priority index (TPI) that takes into consideration the congestion of the job shop, i.e.
the overall tightness of the due dates. After sequencing the job according to the TPI
they assign the jobs to the machines according to the lowest workload rule and apply a
greedy-like neighbourhood search afterwards. As mentioned above, the TTP/m consists
of a scheduling and a job assignment task, which are interrelated. The three heuristics
presented above separate these tasks and thus ignore the parallel nature of the problem.
Koulamas (1997) tackles the TTP/m by means of a meta-heuristically approach, namely
a hybrid version of simulated annealing. And Bilge et al. (2004) apply a tabu search
algorithm to the TTP/m.

The number of optimization approaches seems to be limited as well: Lawler (1964) and
Root (1965) present optimization algorithms for some special cases, namely when all
jobs have the same processing times and due dates, respectively. Gupta and Maykut
(1973) develop a dynamic programming based algorithm for the TTP/m that is able to
solve problems with up to 10 jobs. Azizoglu and Kirca (1998) are able to solve problems
with up to 15 jobs with a branch & bound algorithm. Obviously, limiting enumeration in
a branch & bound algorithm by applying different dominance properties is the decisive
sleight of this approach. Yalaoui and Chu (2002) are able to solve problems with up
to 20 jobs by a very sophisticated branch & bound algorithm. And very recently Shim
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and Kim (2007) present an even more sophisticated branch & bound algorithm that is
capable of solving problems with up to 30 jobs within an hour. However, this means
optimal solutions are not available even for mid-sized problems.

The remainder of the paper is organized as follows. In the next section we will introduce
the notation needed and present the new heuristic for the TTP/m. The third section will
present a problem generator, a mixed-integer programming formulation for the TTP/m
and extensive computational results. The last section contains some concluding remarks.

2 A new heuristic for the TTP/m

Notation and Problem Formulation
There are n jobs available at time zero. Each job needs exactly one operation on one of
the m identical parallel machines, pre-emption is not allowed. For each job i = 1, ..., n

the deterministic and integer processing time pi and a due date di are given. The tardi-
ness Ti(S) of a job i in a schedule S can be calculated by Ti(S) = max{0, Ci(S) − di},
where Ci(S) denotes the completion time of the job i in the schedule S. Further, let Sj

be the sequence of jobs scheduled on machine j = 1, ...,m. The objective of the TTP/m
is to schedule the jobs on the m machines to minimize the total tardiness T =

∑n
i=1 Ti(S).

Motivation of the Heuristic
The heuristic we propose is motivated by the parallel nature of the problem, and we try
to give consideration to the interdependencies of the scheduling and assignment tasks,
respectively. To do so we make use of the so-called NEH heuristic of Nawaz, Enscore
and Ham (1983) used for permutation scheduling.1 See Kalczynski and Kamburowski
(2007) for a good analysis of the high quality of the NEH heuristic.

We can limit our search to active schedules as for the TTP/m an optimal schedule with-
out idle times exists. This means that the processing of the m jobs, which are assigned
to the first position on each machine, start at the time zero and that the processing of
a job immediately starts after its preceding job has been finished.

Our heuristic for the TTP/m consists of two steps: First the m jobs with the smallest

1The idea of the NEH heuristic is originally due to Karg and Thompson (1964), who used the same
procedure to construct a starting solution for the travelling salesman problem.
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due dates are simultaneously assigned to the machines. Generally speaking we use each
combination among the m jobs with the smallest due dates as a first assignment. For
m = 2 we use the starting assignments

• S1 = (1), S2 = (2) and

• S1 = (1,2), S2 = ().

For m = 3 we use

• S1 = (1), S2 = (2), S3 = (3),

• S1 = (1,2), S2 = (3), S3 = ( ),

• S1 = (1,3), S2 = (2), S3 = ( ),

• S1 = (2,3), S2 = (1), S3 = ( ) and

• S1 = (1,2,3), S2 = ( ), S3 = ( ).

And so on. The number of starting assignments, A(·), obviously depends on m:

A(m) = 2 +
m∑

j=2

max{0,m−j−1}∑
i=0

(
m− i

j

)

For each of the A(m) starting assignments the following second step is performed, dur-
ing which the remaining jobs are assigned to the machines one by one. The job with
the smallest due date is picked and assigned to the position at which the lowest total
tardiness up to this point is incurred, while the predecessor relation of the jobs already
scheduled is not altered. For example, if on one of the machines job a is scheduled prior
to job b, for a new job i the sequences (a, b, i), (i, a, b) and (a, i, b) are considered.

Heuristic for the TTP/m
Without loss of generality we assume that the jobs are indexed according to the EDD
rule, i.e. di ≤ di+1 for i = 1, ..., n− 1. If di = di+1 then pi ≥ pi+1.

Step 0: Generate all A(m) possible starting assignments: sa1, sa2, ...,
saA(m). Set k = 1.
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Step 1: Let U := {m + 1, ..., n} be the set of unscheduled jobs. Let sak

be the actual schedule. If one or more machines exist with having
no job assigned so far, take the jobs with the smallest index of the
set U and assign them to the machines with no job assignments.
Remove these jobs from the set U . Now all machines have at least
one job assigned to them.

Step 2: Take the job with the smallest index of the set U and insert it
optimally into the actual schedule without altering the predecessor
and successor relations of the given sequences. The job is first
inserted at the last position of machine 1 and then at the first,
second, ..., penultimate position of machine 1. The same insertion
strategy is applied for machine 2, 3, ...,m afterwards. In case of
a tie, the algorithm chooses the sequences with the lowest total
tardiness which was calculated first. Remove the job from the set
U . Repeat Step 2 until U is empty.

Step 3: Store solution (schedule and tardiness) of sak. k := k + 1. If
k ≤ A(m) go to Step 1.

Step 4: Choose the best of the A(m) solutions.

Let nj be the number of jobs actually scheduled on machine j. Note that at step 2
each job has to be assigned to (n1 + 1) + (n2 + 1) + ... + (nm + 1) = m +

∑m
j=1 nj

positions. Obviously, this step of the heuristic is polynomially bounded, as altogether
(n−m)(m +

∑m
j=1 nj) schedules have to be evaluated. With nj < n for j = 1, ...,m, the

worst case run time of step 2 is bounded by O(mn2).

The crucial question now is how many starting assignments A(m) exist. Determining
the number of starting assignments is similar to allocating identical balls to identical
urns. Note that for example S1 = (1,2), S2 = ( ) and S1 = ( ), S2 = (1,2) are identical
allocations from our perspective as the urns (=machines) are identical.

Proposition 1. The number of starting assignments A(m) is bounded by (2m)m/m!.

Proof: If the urns are not identical the number of allocations is given by
(
2m−1
m−1

)
. Hence

A(m) ≤
(

2m− 1

m− 1

)
=

(2m− 1) · (2m− 2) · ... · (2m−m)

m!
≤ (2m)m

m!
.
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Obviously the upper bound on A(m) is not dependent on the number of jobs. It thus
follows that for a given number of machines the heuristic is polynomially bounded by
the number of jobs. In fact the growth of A(m) is rather slow: A(2) = 2, A(3) = 5, A(4)
= 15, A(5) = 40, ..., A(10) = 1974. Within our computational experiments the number
of starting assignments never had a severe impact on the run times.

Example for the TTP/m-Heuristic
Let m = 2 and n = 5 with

i 1 2 3 4 5

pi 2 2 9 4 8

di 6 8 10 10 13

Step 0: A(2) = 2: sa1: S1 = (1) and S2 = (2); sa2: S1 = (1,2) and S2 = ( ).
k = 1.

Step 1: U = {3, 4, 5}, sa1 is the actual schedule.

Step 2: Take the job 3 and assign it to the first and second position of each
machine. Note that it does not matter whether job 3 is assigned to
machine one or two - in both cases its completion time is 11. Job
3 could have even been assigned to the first position of both ma-
chines without causing any tardiness. However, the last mentioned
sequences are eliminated by the insertion strategy of step 2: Hence,
the new actual schedule is S1 = (1,3), S2 = (2) with T = 1. As
U = {4, 5} 6= {}, repeat step 2:

Take job 4 and assign it to the first, second, and third position of
machine one and to the first and second position of machine two.
Schedule S1 = (1,3), S2 = (2,4) has (unambiguously) the lowest
total tardiness with T = 1. As U = {5} 6= {}, repeat step 2:

Take job 5 and assign it to the first, second, and third position
of both machines. The lowest total tardiness is (unambiguously)
obtained by schedule S1 = (1,3), S2 = (2,4,5) with T = 2. As
U = {}, go to Step 3.
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Step 3: Store S1 = (1,3), S2 = (2,4,5) with T = 2. As k = 2 ≤ 2 = A(2)

go to Step 1.

Step 1: U = {3, 4, 5}, sa2 is the actual schedule. The second machine has
no job assignments. Take job 3 and assign it to the first position of
machine 2. U = {4, 5}.

Step 2: Take the job 4 and assign it to the first, second and third position
of machine one and to the first and second position of machine two.
The lowest total tardiness is obtained by schedule S1 = (1,2,4),
S2 = (3) with T = 0. As U = {5} 6= {}, repeat step 2:

Take job 5 and assign it to the first, second, third, and fourth posi-
tion of machine one and to the first and second position of machine
two. Schedule S1 = (1,2,4,5), S2 = (3) has (unambiguously) the
lowest total tardiness with T = 3. As U = {}, go to Step 3.

Step 3: Store S1 = (1,2,4,5), S2 = (3) with T = 3. As k = 3 > 2 = A(2)

go to Step 4.

Step 4: The better of the two solutions is S1 = (1,3), S2 = (2,4,5) with
T = 2.

The solution found by the heuristic happens to be optimal.

3 Computational Results

To the best of our knowledge the strongest heuristic for the TTP/m is that of Ho and
Chang (1991). To test the quality of our heuristic we decided to compare it to optimal
schedules as well as to schedules generates by the Ho and Chang heuristic. For the
computational experiments we generated benchmark problems, developed a new integer
programming formulation and re-programmed the heuristic of Ho and Chang (1991).
This section will describe these steps in detail.

Generation of instances
We will make use of a problem generator to obtain benchmark instances for our com-
putational experiments that are easily reproducible.2 The problem generator is called

2We are gladly willing to distribute the problem generator via e-mail
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TTPmGEN. TTPmGEN makes use of the well-known linear congruential random num-
ber generator introduced by Lehmer (1951), see Biskup and Feldmann (2001) for a
detailed description. Furthermore, TTPmGEN uses two general seeds, one for the gen-
eration of the processing times (3,794,612) and one for the due dates (1,794,612). The
seeds are altered for each instances: For example the second benchmark problem with
fifty jobs uses the seeds 3,794,612 + 2 + 50, and 1,794,612 + 2 + 50, respectively; thus
the processing times and due dates are assumed to be stochastically independent. Note
that the seeds are not machine dependent. The processing times produced by the gen-
erator are of the interval [1, pmax], in the following we will use pmax = 10. The due dates
are given by:

di = pi + RD ∼

[
1,

⌈
δ

m
·

n∑
i=1

pi

⌉]
(1)

where dxe denotes the largest integer greater than or equal to x and the RD ∼ [1, x]

means that all integers of the interval [1, x] are equally probable. Obviously, the smaller
δ is, the tighter the due dates are. We will use values of 1/2, 1/3 and 1/4 for δ. The
first benchmark problem with 5 jobs, 2 machines, a processing time range of 10 and a δ

of 1/2 is the one that has been used in the example above.

This procedure is generally in line with the due date selection-rules presented by Fisher
(1976), Baker and Bertrand (1981) and Baker (1984). However, we decided to avoid
generating due dates that are smaller than the processing time of the particular job.
Due dates that cannot be met for sure seem to be hard to justify from a practical point
of view: Usually due dates are agreed upon by the sales team and a sales person will
hardly promise a customer a due date that is smaller than the processing time of the
job, especially not if the customer knows what time it would take to process the job.
However, a company usually employs a sales team with multiple sales persons. These
sales people usually act (at least to a certain degree) independently and negotiate jobs
with their particular customers. Especially if customers are pressing for shorter and
shorter lead times this can easily lead to a situation where each job has a reasonable
large due date but it turns out to be hard or impossible to complete all jobs in time.
We feel that this situation is best described by equation (1).
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Optimization model for TTP/m
To gain an understanding of the quality of the heuristic, we decided to solve some in-
stances to optimality to compare the optimal and heuristical objective function values.
We make use of the following mixed integer programming formulation. Note that the
binary variables used do not have a machine index. This is different to the classical
formulations of Manne (1960) or Wagner (1959). The following notation is used:

Cj := Completion time of job j (j = 1, .., n)

Tj := Tardiness of job j (j = 1, .., n)

yj := Binary variable that takes the value one if job j is the first job on
one of the m machines j (j = 1, .., n)

xij := Binary variable that takes the value one if job i is scheduled directly
before job j on the same machine (i, j = 1, ..., n, i 6= j)

xi,n+1 := Binary variable that takes the value one if job i is the last job on a
machine (i = 1, ..., n)

R := Sufficiently large number

min Z =
n∑

j=1

Tj (2)

s.t.

n∑
j=1

yj ≤ m (3)

At most m jobs may be the first job on a machine.

yj +
n∑

i=1,i6=j

xij = 1 ∀j = 1, ..., n (4)

Each of the jobs must either start on one of the machines or precede some other job.

n+1∑
i=1,i6=j

xji = 1 ∀j = 1, ..., n (5)
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Each of the jobs must either succeed another job or be the last job on one of the machine.

Cj ≥ pj · yj ∀j = 1, ..., n (6)

The completion time for the first job of each machine must be equal to or greater than
its processing time.

Cj ≥ Ci + pj −R(1− xij) ∀i, j = 1, ..., n, i 6= j (7)

For all of the remaining jobs j the completion time Cj must be equal to or greater than
its processing time pj plus the completion time of it direct predecessor Ci. If i is not the
direct predecessor of j the subtraction of R makes (7) non-restrictive.

Tj ≥ Cj − dj ∀j = 1, .., n (8)

The tardiness is calculated as the difference between completion time and due date.

xij ∈ {0, 1} ∀i = 1, ..., n, j = 1, ..., n + 1, i 6= j

yj ∈ {0, 1} ∀j = 1, ..., n (9)

Tj, Cj ≥ 0 ∀j = 1, ..., n

This model formulation needs n(n + 1) binary variables which is significantly less then
using either position-related or sequence-related binary variables. However, for the sake
of comparison, we made use of a different model formulation with position-dependent
binary variables. Even though this formulation needed significantly more binary vari-
ables (mn(n−m + 1) vs. n(n + 1) ), it turned out to be much faster. For example, the
number of iterations needed for n = 8 jobs was between 4 million and 40 million with
the given model formulation and less than 1 million iterations with position-dependend
binary variables. Obviously the inherent structure of a model formulation and the degree
of freedom for the binary variables has a higher impact on the solution speed than the
pure number of binary variables. Consequently we decided to add more restrictions to
our model formulation:

xij + xji ≤ 1 ∀i, j = 1, ..., n, i 6= j (10)
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If i is the predecessor of j then j cannot preceed i.

n∑
i=1

xin+1 ≤ m (11)

At most m jobs can be the last.

yi +
n+1∑

j=1,i6=j

xij ≤ 2 ∀i = 1, ..., n (12)

The first job on a machine may have only one successor.

The formulation (2) to (12) turned out to be approximately as efficient as the formula-
tion with position-related binary variables.3

Numerical experiments
To evaluate the performance of the proposed heuristic, we generated test problems for
m ∈ {2, 3}, n ∈ {5, 8, 10, 50, 100, 250, 500, 1000}, and δ ∈ {0.5, 0.33, 0.25}. For each
combination we generated 10 instances, i.e. 480 benchmark problems in total. We were
able to solve problems with up to 10 jobs to optimality within a reasonable amount of
time. We applied our heuristic as well as the heuristic of Ho and Chang (1991) to all
480 test problems. Thus we have data from 1,160 runs in total (180 optimal solution,
and 480 runs of our heuristic and that of Ho and Chang, respectively).

To compare the results of the heuristic proposed by us (pro) to the optimal solutions
(opt) and to the benchmark solutions of the heuristic of Ho and Chang (ben), we devel-
oped three types of relations. The first relation (13) compares the results of our heuristic
to the optimal objective function values. It averages its deviation to the optimum over
the ten different instances of each combination (m, n and δ). A similar relation is ap-
plied to compare the heuristic of Ho and Chang to the optimal objective function values,
see (14). The third relation (15) is to compare the two heuristics. The calculation of
the relations is as follows:

3We are gladly willing to distribute the LINGO codes for both formulations via email.
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h ∈ {opt,pro,ben}

TT h
m,n,δ,k := Total tardiness of the kth (k = 1, ..., K) instance with the tightness-

parameter δ, n jobs and m machines, calculated by the heuristics
(h ∈ {pro, ben}) or the mixed integer program (h ∈ opt).

r1 =
1

K

K∑
k=1

(
TT pro

m,n,δ,k

TT opt
m,n,δ,k

− 1

)
∀δ, n, m (13)

r2 =
1

K

K∑
k=1

(
TT ben

m,n,δ,k

TT opt
m,n,δ,k

− 1

)
∀δ, n, m (14)

r3 =
1

K

K∑
k=1

TT pro
m,n,δ,k

TT ben
m,n,δ,k

∀δ, n, m (15)

For example the results for m = 2, n = 10 and δ = 0.5 are summarized in table 3.

k 1 2 3 4 5 6 7 8 9 10
∑

TT opt
k,2,10,0.5 26 39 25 16 15 38 47 31 8 26 271

TT pro
k,2,10,0.5 26 39 29 17 16 38 49 32 8 27 281

TT ben
k,2,10,0.5 28 43 31 16 16 38 49 32 8 28 289

Table 3: Results for m = 2, n = 10 and δ = 0.5

These results lead to the following relations:

r1 =
1

10

(
26

26
+

39

39
+

29

25
+

17

16
+

16

16
+

38

38
+

49

47
+

32

31
+

8

8
+

27

26
− 10

)
= 0.0402

r2 =
1

10

(
28

26
+

43

39
+

31

25
+

16

16
+

16

16
+

38

38
+

49

47
+

32

31
+

8

8
+

28

26
− 10

)
= 0.0638

r3 =
1

10

(
26

28
+

39

43
+

29

31
+

17

16
+

16

16
+

38

38
+

49

49
+

32

32
+

8

8
+

27

28

)
= 0.9798

For m = 2, n = 10 and δ = 0.5 our heuristic delivers an average deviation from the
optimum of 4% while the heuristic of Ho and Chang delivers an average deviation from
the optimum of 6.4%. As r3 is smaller than one it becomes obvious that our heuristic
performs better for this parameter combination than that of Ho and Chang. Table 4
contains the computational results for all parameter combinations:
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m n δ r1 (%) r2 (%) r3 (%)
2 5 0.5 0.00 11.43 93.75

0.33 0.00 15.94 90.20
0.25 0.00 1.67 98.47

8 0.5 2.81 5.62 97.73
0.33 1.14 1.08 100.09
0.25 2.20 2.20 100.00

10 0.5 4.02 6.38 97.98
0.33 4.10 4.12 100.02
0.25 3.50 2.79 100.24

50 0.5 - - 96.06
0.33 - - 98.77
0.25 - - 99.78

100 0.5 - - 95.94
0.33 - - 98.23
0.25 - - 98.42

250 0.5 - - 97.32
0.33 - - 99.01
0.25 - - 99.07

500 0.5 - - 98.18
0.33 - - 99.42
0.25 - - 99.53

1000 0.5 - - 98.87
0.33 - - 99.44
0.25 - - 99.67

m n δ r1 (%) r2 (%) r3 (%)
3 5 0.5 0.00 30.00 88.89

0.33 2.50 12.50 95.00
0.25 0.00 10.00 95.00

8 0.5 18.21 34.56 91.19
0.33 2.31 5.49 97.18
0.25 0.00 1.42 98.69

10 0.5 4.03 7.55 97.11
0.33 3.46† 7.09† 97.84
0.25 1.18† 5.87† 98.47

50 0.5 - - 94.59
0.33 - - 98.67
0.25 - - 99.35

100 0.5 - - 94.57
0.33 - - 97.99
0.25 - - 98.85

250 0.5 - - 96.69
0.33 - - 98.72
0.25 - - 99.01

500 0.5 - - 97.60
0.33 - - 99.27
0.25 - - 99.31

1000 0.5 - - 98.45
0.33 - - 99.55
0.25 - - 99.58

Table 4: Results

On first sight our heuristic seems to be superior to that of Ho and Chang. We decided
to test this hypothesis by the following two methods:

The first analysis concentrates on the relations r1 and r2 by applying the well known
U -test from Mann and Whitney (1947) and Wilcoxon (1945) for m = 2. This test
examines at what level of significance two distributions are different. The first sample
A = a1, ..., anA

contains the deviations from the optimum of the proposed heuristic with
nA = 90 observations. The second sample B = b1, ..., bnB

comprises the deviations from
the benchmark heuristic to the optimum with again nB = 90 observations. The null
hypothesis assumes that the distributions are identical, i.e. A = B. Each value of A has
to be compared with each value of B. The one-tailed test examines if A < B. The test

†3 of the 10 instances with δ = 0.33 and 5 of the 10 instances with δ = 0.5 could not be solved to
optimality within a reasonable time.
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statistic UA and UB are calculated by

UA = nAnB +
nA(nA + 1)

2
− TA = 4586.5

UB = nBnA +
nB(nB + 1)

2
− TB = 3513.5

with TA and TB being the sum of the ranks. The sum of ranks is calculated by sorting
values from both samples in a single ascending order and assigning each value a rank.
In case of a tie the rank of the values is the average of the ranks with the same value.
The sum of the ranks of a sample is the total of its ranks.

Obviously in most of the comparisons the value of A is smaller than the value of B

(UA = 4586.5 versus UB = 3513.5). We decided to test the null hypothesis by a level of
significance of α = 0.1. Mann and Whitney show that the distribution of a sample with
a size greater of 20 is normal. So we use the following formula to test our hypothesis:

Ū =
nAnB

2
− U(α)︸ ︷︷ ︸

1.2815

·
√

nAnB(nA + nB + 1)

12
= 3602.07

U(α) is taken from the table of the standard normal distribution. As UB < Ū , the null
hypothesis must be reject and the contra hypothesis is to be accepted, i.e. A < B. This
denotes that the probability that the sample B obtains greater values than A is at least
90 percent. The results are similar for the benchmark problems with three machines.

The second analysis describes the deviation between the two heuristics by making use
of relation r3. Let

r4 =
1

3

∑
δ∈{0.5,0.33,0.25}

r3 ∀n, m.

For example, r4 = 0.9414 for n = 5 and m = 2 and thus the proposed heuristic domi-
nates that of Ho and Chang for this parameter combination. Figure 1 summarized this
second analysis:
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Figure 1: The relation r4 for m = 2 and m = 3

From figure 1 it can be easily seen that all values of r4 are below one, which again
supports the above hypothesis. From these two analysis we feel comfortable to claim
that our heuristic delivers better results than that of Ho and Chang.

4 Conclusion

In this paper we introduce a new heuristic for the total tardiness problem with parallel
machines that is able to deliver near optimal results and that is superior to the existing
heuristic approaches. Our goal was to develop a strong heuristic that is at the same
time relatively simple to implement. We feel that we achieved this goal.

Generally speaking three approaches to optimization problems exist: heuristics, meta-
heuristics and optimization procedures. The existing optimization procedures are limited
in their applicability to 30-40 jobs. And because of their interesting and sophisticated
dominance properties they are relatively hard to implement. Meta-heuristical approaches
are usually capable of delivering near optimal results even for larger problems. However,
they are usually not easy to implement, but easier to implement than optimization
procedures. And heuristics tend to be the approaches that are easiest to implement and
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that are fastest even for large problems, but on the flipside they usually deliver worse
results than optimization procedures and meta-heuristics. Obviously each approach has
its pros and cons. The applicability of the proposed heuristics is now twicefold: it can
either be used in practical settings if near optimal schedules are needed with minimum
effort. Furthermore the solution obtained by the proposed heuristic can be used as a
starting solution for meta-heuristically approaches.
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