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Abstract

Although both betweenness and closeness centrality are claimed to be important for
the effectiveness of someone’s network position, it has not been explicitly studied
which networks emerge if actors follow incentives for these two positional advan-
tages. We propose such a model and observe that network dynamics differ consid-
erably in a scenario with either betweenness or closeness incentives compared to a
scenario in which closeness and betweenness incentives are combined. Considering
social consequences, we find low clustering when actors strive for either type of
centrality. Surprisingly, actors striving for closeness are likely to reach networks
with relatively low closeness and high betweenness, while this is the other way
round for actors striving for betweenness. This shows that in both situations the
network formation process implies a social dilemma in which the social optimum is
not reached by individual optimizing.
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1 Introduction

The importance of social networks has meanwhile been acknowledged far be-
yond the field of sociology. Many people are aware that social network positions
are important for applicants getting a job (Granovetter, 1995), facilitating
companies’ cooperation (Powell et al., 1996) and success (Uzzi, 1996), and also
to “Find emergent leaders in fast growing companies [...] Determine influential
journalists and analysts [...] Reveal key players [...] Reveal opinion leaders”
(Krebs, 2008), and so on. This awareness may affect the way individuals take
decisions about social relationships. A German news magazine recently asked
in the lead article whether goal-oriented choice of contacts may undermine
typical friendship relations (Dillig, 2008).

Models of dynamic networks have long not considered aspects of agency.
Random graph models (starting from Erdös and Renyi, 1960, until Watts,
1999, Barabàsi and Albert, 1999) define probabilistic processes that are able
to reconstruct different patterns of empirically observed social networks. Re-
cently, there has been much more focus on analyzing network dynamics theo-
retically as well as empirically in a more incentive oriented manner by relating
changes back to individual propensities to form and sever ties (see Goyal, 2007,
Snijders, 1996, Snijders, 2001).

1.1 Modeling Centrality-Oriented Network Dynamics

If the goal of studying network dynamics is to identify the “underlying mech-
anisms that induce network change” (Doreian and Stokman, 2003), then the
goal for this paper is to uncover two such mechanisms that are both related
to centrality in social networks. Three motivations justify such a model. First,
it complements the theory of centrality that originally measures the effect of
network positions on individual opportunities, but not the effect of individual
behavior on network structure (see, e.g., Wasserman and Faust, 1994). If
network dynamics show that advantageous network positions are likely not
to be stable, effects of advantageous network positions on individual oppor-
tunities might be smaller than expected. The reason is that the advantages
of the network positions can only be exploited for a short time. Second, the
centrality indices are based on network statistics that are relevant in many
different applications - from ancient marriages (Padgett and Ansell, 1993) to
R&D collaborations (Walker et al., 1997). Third, there is empirical support
for centrality being beneficial, e.g., Song et al. (2007) find that the centrality
of a work unit has a positive impact on its creativity. Moreover, the claim
that centrality is beneficial becomes more and more popular in the practice
of business consulting, e.g., Leader Values (2008) invite to “study ways that
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Leaders can make better use of networks” (other examples can be found in
Krebs, 2008, or Weidner, 2008).

To cover the third aspect it is worthwhile to incorporate a centrality index that
is well known. We chose two indices based on Freeman (1979): closeness cen-
trality and betweenness centrality. In addition, we consider degree centrality
because this measures the number of relations an actors maintains, which is
one of the main sources of costs in establishing one’s network. By considering
these three centrality indices, we cover the three most studied types of central-
ity measures according the typology of Borgatti and Everett (2006). Thirty
years after Freeman made this classification of centrality measures, it seems a
timely contribution, to integrate them in a model of network dynamics.

Choosing benefits for closeness and betweenness and costs for establishing
own relations implies that our focus is not on the benefits that are derived
from network closure and dense neighborhoods. Thus, we neglect these net-
work features that are known to be beneficial, for example, for trust (e.g.,
Coleman, 1988, Buskens, 2002), cooperation (e.g., Raub and Weesie, 1990),
and fine-grained information transfer (e.g., Krackhardt, 1992). Rather we take
Granovetter’s weak tie argument as a starting point: it is the non-redundant
ties that provide access to new sources of information. Burt (1992) further
elaborates and strengthens the argument. Two alters that are themselves not
linked not only provide access to diverse information, but also create control
benefits for ego. Both closeness and betweenness increase more by connecting
to distant others than to others who are already relatively close.

Together with Burt (1992), Hummon (2000), and Doreian (2006), we assume
that actors evaluate the consequences of network ties and take decision accord-
ing to their goals. Or as Burt (1992, p. 39) puts it: “The task for a strategic
player building an efficient-effective network is to focus resources on the main-
tenance of bridge ties.” Accordingly, benefits of the network structure are
compared to the costs of link maintenance. However, the statement suggests
that the network structure is at an actor’s discretion, which is clearly not true.
An actor’s network position not only depends on his linking decisions, but also
on the decisions of the other actors. So rather than choosing the best network,
actors interact strategically - an aspect that is best covered by game theory.
Jackson and Wolinsky (1996) introduce an appropriate framework for strategic
network formation. Different models build on this framework (Jackson, 2004
and Goyal, 2007 provide lists of examples), but sociological ideas were only
introduced to a limited extent. Buskens and Van de Rijt (2008) study the
dynamics of “structural holes.” Hummon (2000) and Doreian (2006) study
the dynamics of the “connections model,” originally introduced by Jackson
and Wolinsky (1996). Covering incentives for short paths, the connections
model induces similar networks as when actors strive for closeness (as shown
in Buechel, 2008).
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What has not been done in the literature is to contrast and combine the dy-
namics of “closeness-type” incentives to the dynamics of “betweenness-type”
incentives. There is hardly any research on the interplay between different
types of incentives to predict network formation processes, although it is
likely that multiple incentives are important simultaneously. For example, the
Medici’s position in the marriage network was important for their trading
abilities (see Padgett and Ansell, 1993). Here betweenness plays a major role,
but for actors with low betweenness, it was important to be at least close to
the actors with high betweenness.

1.2 Outline

Based on these considerations we introduce a model to examine the follow-
ing research questions: What is the influence of centrality incentives on the
structure of social networks? How do the dynamics of closeness differ from
the dynamics of betweenness and what happens if both centrality incentives
matter?

By formal derivations and computer simulation we derive properties of stable
networks for pure closeness incentives, pure betweenness incentives as well
as for differently weighted mixed incentives. We observe and explain why
the dynamics of the mixed cases are quite distinct from the cases with pure
closeness or betweenness incentives. Finally, we examine social consequences
of centrality-oriented linking behavior. As expected clustering is low under
all incentives we consider here. Moreover, it is not likely that actors striving
for pure closeness or pure betweenness benefits reach a social optimum. In the
case of closeness dynamics this leads to underconnectedness because individual
actors do not want to bear the costs of bringing others close to each other.
Under betweenness dynamics, individual actors also want to reap betweenness
benefits that others have, but sharing these benefits over more ties is less
efficient and leads to overconnectedness.

The next two sections introduce the model and some first results. Section 4
contrasts the closeness dynamics with betweenness dynamics and shows the
added value of combining the two. Section 5 addresses the social consequences
of individual behavior. Section 6 concludes and discusses some implications of
the findings.
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2 Model

2.1 Actors and Networks

We consider a finite set of actors N with typical elements i or j and size n ≥ 3.
The bilateral relationships among these actors are modeled as an undirected
(and dichotomous) network. Let G be the set of all those networks and g a
typical element. With ij ∈ g we denote the presence of the tie between actors
i and j in g.

The distance dij(g) of two actors i and j is defined as the number of links that
is minimally needed to go from actor i to j in g. Neighbors have distance 1;
neighbors of neighbors that are not directly connected are at distance 2; and
pairs that cannot reach each other via any number of other actors are defined
to have distance M , a number larger than any possible actual distance in a
network (when in need of a specific value we use M = n).

The degree li(g) of an actor i is the number of links he maintains in network
g. Degree can be considered as a measure of centrality (Freeman, 1979).
But besides the beneficial aspects of many ties, there are also costs (time,
effort, etc.) involved. We assume that the costs of maintaining relationships
exceed those benefits that are restricted to direct contacts. 1 This means that
maintaining links is costly. 2

2.2 Closeness and Betweenness

The idea of closeness reaches back to the origins of social network analysis.
An actor is considered as “central” in a social network, if his distance to other
actors is small (Sabidussi, 1966). Dekker et al. (2003) argue that closeness in-
creases accuracy of information. Song et al. (2007) provide empirical evidence
for the importance of closeness for the knowledge processing of organizational
units. Moreover, in the study of Powell et al. (1996) experienced firms are
likely to occupy positions with high closeness. Closeness was formalized by
Linton Freeman (Freeman, 1979). Freeman uses the inverse average distance
of an actor to all actors in the network to measure closeness ( n−1

∑

j∈N
dij(g)

). As

argued in Buechel (2008), it is equally reasonable to operationalize closeness

1 Without this assumption every actor wants to be directly linked to every other
actor, independently of any other benefits.
2 We only consider costs for tie maintenance and do not take into account specific
costs for creating or deleting ties.
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as the reverse average distance (−

∑

j∈N
dij(g)

n−1
). The advantage of the latter

definition is that any change in closeness is proportional to a change in average
distances (as also argued in Valente and Foreman, 1998). Usually closeness is
not defined for actors that are not connected via any number of others. We
extend closeness to all undirected networks by defining the distance for these
pairs of actors to be M . In this paper, we use the normalized version of the
reverse average distance. Closeness of an actor i in network g is then equal to

CLOSEi(g) =
M

M − 1
−

∑

j∈N dij(g)

(M − 1)(n − 1)
. (1)

CLOSEi = 0 for isolates, while CLOSEi = 1 for an actor who is directly
connected to all others in the network. As examined in Buechel (2008), this
choice of operationalization (as opposed to Freeman-Closeness) is not crucial:
in the models we study here, the two operationalizations lead to very similar
results.

Some actors exhibit a mediating role between other actors, which can be
beneficial for them. Burt (1992) emphasizes this idea by the term “tertius
gaudens.” To measure the brokerage role of a certain actor he not only proposes
some new measures, but also employs betweenness centrality (see Burt, 2002).
Betweenness was introduced by Freeman (1979) and was shown to be beneficial
in many studies thereafter (e.g., Song et al., 2007).

The betweenness of an actor i is proportional to the number of pairs j and
k for whom i lays on the shortest path (also called “geodesic”). If j and k
have more than one geodesics, the fraction of shortest paths going through i
is used. Formally,

BETWEENi(g) =
2

(n − 1)(n − 2)

∑

j<k(j 6=i,k 6=i)

τ i
jk(g)

τjk(g)
, (2)

where τjk(g) is the number of geodesics between j and k, and τ i
jk(g) indicates

the number of shortest paths between j and k that go through i; the fraction
τ i
jk

(g)

τjk(g)
is replaced by zero, when τjk(g) = 0. The constant before the fraction

normalizes betweenness to be between zero (an actor is on no shortest path
between two other actors) and one (the center in a star network).

2.3 Utility Function and Actor Behavior

We assume that closeness and betweenness are the benefits derived from the
network structure, while direct links are costly. Let c > 0 be the costs of
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one link and λ ∈ [0, 1] is the relative importance (weight) of closeness versus
betweenness benefits. In this “centrality model” we can represent the behavior
for any actor i by the following utility function

ui(g) = (1 − λ)CLOSEi(g) + λBETWEENi(g) − cDEGREEi(g). (3)

We analyze the model for all possible parameter combinations, as they rep-
resent different contexts including high costs and low costs c for maintaining
ties as well as pure closeness incentives (λ = 0), pure betweenness (λ = 1),
and both closeness and betweenness being important (0.1 < λ < 0.9).

Four behavioral assumptions are the basis of the centrality model:

A0 The actors take linking decisions based on their centrality only, where close-
ness and betweenness are beneficial while degree is costly.

A1 The utility of an actor is linear in closeness, betweenness, and degree. This
assumption implies that the effect of a change in one centrality measure are
independent of the level of other centrality measures. For example, the costs
of a link are independent of the number of links an actor already has and
independent of his closeness and betweenness. This assumption is standard,
but clearly restrictive. 3

A2 Actors are homogeneous in respect to preferences. It is an interesting ques-
tion to ask, how networks evolve when actors differ in their preferences
(see, e.g., Galeotti et al., 1992). But since applications of our model are
very different in nature, we put emphasis on the different contexts that
influence everybody’s choice, not on the difference between actors (as also
argued in Burger and Buskens, 2006).

A3 The actors take linking decisions in a myopic way. This means that actors
consider the consequences of their actions on the current network structure,
but do not anticipate the potential reactions of others.

3 Basic Results

To study which networks are likely to emerge for different incentives under
the assumptions specified above, we employ three complementary methods:
analytic analysis, enumeration, and simulation. In the following we introduce
each method and show the results for our model.

3 Goyal and Joshi (2006), Kamphorst (2007) and Buechel (2008) study models
where the assumption is partially relaxed (by allowing for increasing and decreasing
marginal returns).
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3.1 Analytic Analysis

In order to find the networks that are likely to emerge, the first step is to
exclude all those networks in which individual actors have incentives and
possibilities to change the network (“stability”). Jackson and Wolinsky (1996)
proposed such a condition that takes into account that, typically for social
networks, the establishment of a relationship needs the agreement of both
actors involved, while the dissolution can be done unilaterally. Accordingly,
we will not consider a network as stable if (i) there is an actor who wants to
cut a link or (ii) there are two actors who want to form a link. Formally, let
g ∪ ij (respectively g \ ij) be the network obtained when the link between
actor i and actor j is added (respectively, removed) to (from) the network g.

A network g is (pairwise) stable (PS) if

(i) ∀ij ∈ g, ui(g) ≥ ui(g\ij) and uj(g) ≥ uj(g\ij) and
(ii) ∀ij /∈ g, ui(g ∪ ij) > ui(g) ⇒ uj(g ∪ ij) < uj(g).

The stability analysis is used to characterize the stable networks by properties
they must or must not satisfy. Moreover, it is straightforward to analyze for
which parameter settings a network is stable and not stable.

Let us illustrate this for the following prominent examples: The complete
network in which every possible link is present, the empty network (or null
network) in which no link is present, the circle network (sometimes called
“ring” or “cycle”), and two examples of complete bipartite networks. A com-
plete bipartite network consists of two groups of actors, where all the links
across groups are present and there are no links within the groups.

• In the empty network, adding a link only increases closeness for the actors
involved, while their betweenness remains zero. Therefore, the empty net-
work is stable if and only if the linking costs are larger than the benefit of
getting close to this one other actor.

• Similarly, in the he complete network, removing a link decreases the close-
ness of the actors involved, while their betweenness remains zero. Therefore,
the complete network is stable if and only if the linking costs are smaller
than the loss related to getting further away from this one other actor.

• In the circle network, each additional link provides a significant amount of
both closeness and betweenness benefits. Removing a tie also reduces both
betweenness as well as closeness for both actors involved. So rather than
dissolving a tie, two actors are willing to form an additional one, across the
circle even if linking costs are relatively high. So the circle network can be
expected to be stable only for relatively high linking costs.

• In the balanced (both groups have the same size, see Buskens and Van
de Rijt, 2008) complete bipartite network, all actors have a considerable
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amount of betweenness as well as high closeness, because distance is at
most 2 and each pair that is at distance 2 is mediated by all the actors in
the other group. Adding a tie is not very beneficial in terms of closeness and
betweenness, while the loss of removing a tie is a bit larger. Consequently,
if ties are rather cheap, but not too cheap these networks can be stable.

• In the star network (complete bipartite network with only one actor in one
group) the center k has maximal closeness, maximal betweenness (CLOSEk(g) =
BETWEENk(g) = 1), but also maximal costs. Once this network is reached,
it will hardly be left, because the creation of a tie hardly increases closeness
and betweenness for the peripheral actors, while a dissolution can be very
harmful.

These considerations are the basis for the formal results that are illustrated
in figure 1 (see also proposition 1 and its proof is in the appendix). Figure 1
depicts the parameter space with λ on the horizontal axis (on the left bound-
ary only closeness matter, on the right boundary only betweenness benefits
matter) and linking costs c on the vertical axis.

Closeness Betweenness0.5

c c

empty network unique

circle network

complete bipartite networks

star network and trees

complete network unique

Fig. 1. “Parameter map” with stability for some prominent networks.

It is intuitive that the empty network is the uniquely stable network for
very high costs, because no link justifies its costs. The complete network is
uniquely stable for sufficiently low costs as long as there are some incentives
for closeness, because in the complete network betweenness is also zero for
everyone (see also proposition 2 in the appendix). Above the upper bound
for the stability of the complete network there is (possibly) a multitude of
stable networks. Among them is the star network, which is stable for quite a
range of the parameter space, but not for λ = 0. Figure 1 indicates that the
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balanced complete bipartite network and the circle networks, can be stable
for any value of λ. 4 Independent of the choice of λ, the circle networks are
generally stable for higher cost levels, while the complete bipartite networks
are stable for lower cost levels.

Of course, figure 1 does not give the complete overview of stable networks.
What is not illustrated is that for most parameter settings there is a multitude
of stable networks and, as Proposition 3 in the appendix shows, that there
always exists at least one stable network. In particular, if the complete and
the empty network are not stable, the star network has to be stable. In the
next section, we identify for small network size, other networks that are stable
for various settings of the parameters.

3.2 Enumeration

A computer can enumerate all possible networks for small n (say n ≤ 10)
and check whether they are stable. To provide an overview of the number of
stable networks that exist, we checked in which range of costs c each network
is pairwise stable for a fixed λ and using M = n. We call networks “stable for
a given λ,” if there exists a positive cost range in which the network is pairwise
stable. By excluding those networks that are only stable for an infinitely small
cost range, we do not expect to lose reasonable candidates for the emerging
networks, because the networks would lose their stability due to the smallest
perturbations in the cost c.

Table 1 shows the number of all different stable networks found with this
procedure. 5

Table 1
Number of stable networks in dependence of size.

Network size n 5 6 7 8

Non-isomorphic networks 34 156 1,044 12,346

Fraction of stable networks for λ = 0.5 26% 13% 4.3% 0.95%

For Closeness 6 12 21 45

For λ = 0.5 9 20 45 117

For Betweenness 4 9 18 37

4 Results might look slightly different for very small network size and networks
with an odd number of actors.
5 We applied the enumeration to all networks of size n = 3, ..., 8 and for eleven
values of λ = 0, 0.1, 0.2, ..., 0.9, 1. With this procedure, we find all stable networks,
except those that are stable for some not used λ (say λ = 0.724) and not stable for
all the used λ’s. This number of networks is likely to be small because most of the
stable networks we find are stable for multiple values of λ.
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While the number of possible networks explodes with the size n, the number
of stable networks increases much more gradually. So our notion of stability
– despite being a minimal requirement – can already exclude many networks
from being part of a prediction. Beyond the sheer number, the enumeration
can identify the stable networks. For instance, figure 2 shows the nine networks
with five actors that are stable for λ = 0.5 as well as the six networks that are
stable for λ = 0 and the four networks that are stable for λ = 1.

Also stable for =0 and =1 Also stable for =0 Not stable for =1 or =0 Stable for =1, but not =0.5

Fig. 2. All stable networks for λ = 0.5 with indication of stability for λ = 0 and
λ = 1.

The enumeration provides a first indication why it is important not to con-
centrate on betweenness or closeness alone. The set of networks that is stable
for an intermediate value of λ is larger than for the extreme values of λ. In
addition, there are stable networks that are only stable for intermediate values
of λ. This illustrates that studying stability based on one utility aspect in
isolation can provide limited predictive power when multiple utility arguments
are relevant simultaneously. We come back to this point below.

While the enumeration provides a full picture of the candidates for emerging
networks, it does not reveal which networks are most likely the endpoint of the
dynamic process. We use simulation to elaborate on the expected structural
features of emerging networks for different parameter values.

3.3 Simulation

The simulation method follows a sequence of actions towards some stable
network (cf. Doreian, 2006, Willer, 2007). To run a simulation we fix the
parameter λ and costs c. Then, the simulation takes the following steps:
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(1) Start with some network.
(2) Pick a pair of actors {i, j} at random (every pair with equal probability).
(3) If ij does not exist, form the link ij if both i and j improve their utility

(at least one strictly); if the link ij exists, sever the link if either i or j
improves strictly by severing it; keep the current status of the link in all
other cases.

(4) Go back to step 1 and repeat the steps for the actual new situation until
no pair of actors wants to change anymore.

We ran the simulation for 20 combinations of five levels of λ and four cost
levels. 6 As starting networks we took all non-isomorphic networks for network
size 3 to 8 and a sample stratified by density of around 2, 500 networks for
network sizes 14 and 20. Each starting network was used at least twice for
each parameter combination.

A more extensive description of how such a simulation works can be found
in Hummon (2000) or Buskens and Van de Rijt (2008). Its purpose is two-
fold. First, for small network size, where we know all stable networks from
enumeration, we use it to attach probabilities of emergence. For instance,
for n = 8 there are around 10 to 20 stable networks for each parameter
combination. Figure 3 shows the most frequently emerging networks and their
probabilities of occurrence, when starting with every non-isomorphic network
three times.

Closeness

empty network
Betweenness

netid104
0.5

high costs (epsilon costs)medium costslow costs

49% (not high costs, 
but epsilon costs!)

20% 12%24%

38%22%

99.9%62%

21%

Fig. 3. Most frequently emerging networks for n = 8.

Several observations can be made. The most frequently emerging network
becomes sparser with increasing costs. For betweenness incentives, the empty
network emerges with high probability already at medium cost levels. At

6 The details can be requested from the authors. Costs were chosen according to
analytical considerations and fit best for n = 8. For any simulation, we set M = n.

12



costs smaller than any positive benefit (“epsilon costs”) the complete balanced
bipartite network emerges, while the complete network is unique for λ = 0.
There are isolates when betweenness is important, but larger components do
not remain disconnected, because connecting larger components increases also
betweenness for the connecting actors.

The second purpose of the simulation is to run computational experiments.
Starting with the same network structures, but using different utility pa-
rameters provides important insight, how changes in the utility of actors
affect the emerging network structure. In the following we employ all three
methods presented here (analytic analysis, enumeration, and simulation) to
answer specific questions about the consequences of closeness and betweenness
incentives on the network structure.

4 Closeness versus Betweenness Incentives

This section first contrasts the closeness dynamics with betweenness dynamics
and then turns to the combination of both.

4.1 Dynamics of Closeness

For pure closeness incentives (λ = 0), actors compare the costs of linking
to benefits that are derived from short paths. This can be expected to be
very similar to the connections model, introduced in Jackson and Wolinsky
(1996). 7 The most prominent result of the connections model is the stability
of the star network. We have shown in section 3.1 that the star is stable for
pure closeness incentives in a certain cost range. Since there are also other
stable networks (see also Hummon, 2000), we use the simulation to check
whether the star is a likely outcome of closeness dynamics. Table 2 shows
the frequency that the star emerged when starting with every non-isomorphic
network of size 8 three times. This is rarely the case. Therefore, we also want
to check for “star-like” networks.

The star belongs to the family of trees. These networks are characterized by
being connected, but with the minimal number of links (n − 1). To have a
reference point, only 253 of the 12, 346 non-isomorphic networks are trees

7 Consistently, Borgatti and Everett (2006) list the benefits of the connections
model among the “closeness-like” centrality indices. In Buechel (2008) it is shown
that, indeed, the analytical results of the (symmetric) connections model correspond
one-to-one to the pure closeness model. Moreover, an enumeration yielded that the
set of stable networks for both models are almost coinciding.
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(that is 0.2%). The enumeration for pure closeness reveals that in the set of
stable networks in fact 42% are trees, while for larger weights on betweenness
(λ = 0.1, 0.2, ..., 1), this is not above 22%. This indicates that trees are the
dominant outcome for the dynamics of closeness although the star, their
prominent representative, is not. The second row of table 2 confirms this
conjecture for high costs. For lower costs, long branches are closed to become
cycles. When costs are even lower, cycles are cross-connected leading to even
shorter distances (see figure 3).

Table 2
Fraction of trees emerging for closeness incentives (simulation for n=8).

low cost medium cost high cost

Stable Networks 12 10 20

Trees emerging 1.0% 11.4% 90.7%

Star emerging 1.0% 0.6% 0.1%

4.2 Dynamics of Betweenness

For pure betweenness (λ = 0), every actor is striving for brokerage oppor-
tunities. A similar model was studied by Buskens and Van de Rijt (2008)
operationalizing Burt’s idea of structural holes. In their model, complete bi-
partite networks are the most likely outcome of network dynamics.

In our model, it can be shown that any complete bipartite network can only be
stable for the low cost part of the parameter space (as depicted in figure 1; see
also proposition 4 in the appendix). Nonetheless, as the enumeration shows
there are not many stable networks above this range: only 9 out of 37 stable
networks for n = 8. Of the other 28 stable networks, many resemble complete
bipartite networks. Some of them do not belong to this class in a strict
sense, for example, a network with two isolates and a (4:2)-complete-bipartite
component.

We ran a simulation for three cost levels where complete bipartite networks
are stable. As table 3 shows, the family of complete bipartite networks are
the dominant architecture for pure betweenness. For epsilon costs rather the
connected ones emerge; for slightly higher costs rather the balanced ones. The
balanced complete bipartite network, belonging to both subclasses, is the most
frequently emerging network. It is notable that the empty network emerges in
99.9 percent of the simulation runs for medium and high costs, while also the
circle is stable.

Summarizing, we find that the results of our model correspond with the
literature on similar models. The results suggest as a rule of thumb that
incentives for short paths (here closeness) lead to tree networks and incentives
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Table 3
Fraction of complete bipartite networks (CB) emerging (simulation for n=8).

epsilon costs very low costs low cost

Stable Networks 19 9 4

All CBs with or without isolates 40.4% 78.3% 61.1%

CBs (2:6, 3:5, 4:4) without isolates 29.0% 38.7% 0.9%

Balanced CBs (4:4, 3:3, 2:2) with or without isolates 13.4% 37.6% 61.1%

Balanced CB (4:4) without isolates 12.5% 25.4% 0.9%

for brokerage (here betweenness) lead to complete bipartite networks at least
for specific levels of tie costs.

Having characterized the emerging networks for pure closeness incentives and
for pure betweenness incentives, the next question is how those results carry
over to a scenario with “mixed” incentives.

4.3 Interaction of Closeness and Betweenness

Running simulations reveals that trees and complete bipartite networks might
also emerge quite frequently for mixed incentives. For example, in a simulation
with n = 8, λ = 0.5, and very low costs, complete bipartite networks emerge
in 37.8% of the runs; at high costs, trees emerge in 78% of the runs. This,
however, is not the complete story.

By enumeration we can compare all stable networks for different incentives.
Figure 4 depicts the number of stable networks for different λ’s. The networks
are colored by the range of λ for which they are stable. Strikingly, there are
more stable networks for each level of mixed incentives than for pure incentives.
All networks that are stable for closeness incentives (λ = 0) are also stable
for some other λ. Eight of them can be stable for any λ; fifteen are stable for
any, but pure betweenness. For pure betweenness (λ = 1), there are 37 stable
networks. Fifteen of them would never occur for any other λ (we used). This is
remarkable, as only three networks of the other categories are found stable for
only one λ. The other stable networks for betweenness are typically also stable
for any other λ > 0. Thus, there is strong indication that the stable networks
across certain λ’s do not differ heavily, except for the case of pure incentives.
Since most of the stable networks are neither stable for pure closeness nor
for pure betweenness but for mixed incentives, many candidates of emerging
networks are not covered by pure incentives. Measuring certain properties
of the set of stable networks confirms that pure incentives are special cases.
For example, most of the stable networks for mixed incentives are connected.
For pure incentives (i.e. betweenness) this is not necessarily true: Among the
stable networks for λ = 1, eighteen are unconnected; for λ = 0.9, this reduces
to three (enumeration for n = 8).
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Fig. 4. Number of stable networks by λ (enumeration n = 8).

So we observe that, although the weighting of benefits in our model is smooth
(the benefits are a linear combination of closeness and betweenness), the
results exhibit jumps. Thus, introducing a bit of betweenness (closeness) in-
centives into a pure closeness (betweenness) model heavily affects the results,
changing and increasing the number of the candidates for emerging networks.
To understand why this happens, we analyze the interaction of closeness and
betweenness incentives focusing on one structural feature: the integration of
isolates.

Example 1 Consider a network g with an isolated actor i and an actor j who
is already part of a larger group. Then, when closeness only matters (λ = 0),
actor i has a strong interest in the link ij, as this link is his first connection
to the network (without ij, CLOSEi(g) = 0). Actor j’s interest is restricted:
creating ij means being directly connected to i, but does not have an impact
on any other distance. So for high enough linking costs, i is willing to link
with j, but j rejects this offer. When betweenness only matters (λ = 1),
actor j has a high interest in the link ij, because it provides a substantial
amount of betweenness. On the other hand, i is not interested in this link
as his betweenness is zero with or without ij. So the link will not be formed.
Finally, when both incentives matter (λ ∈ [ε, 1 − ε]), the link can be formed
because both actors do have a rather high interest in this link, but for different
reasons: i wants to have access to the community (closeness incentives); j
enjoys mediating i with all his connections (betweenness incentives).

The example explains why for pure incentives many networks fail to be stable.
Especially for pure betweenness, many networks consist of actors that do not
have any incentive to keep a link. Introducing a bit of closeness benefits can
justify keeping these relationships. This example finds its formal expression
in lemma 1 in the appendix. Networks that consist of pendants (actors with
degree one) are “more” stable for mixed incentives than for pure incentives.
This is illustrated in figure 1 where the upper bound for the stability of
the star network marks the upper bound for the emergence of any network
with pendants (as shown in proposition 5). This area has a “wedge”-like
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shape, being highest for a combination of closeness and betweenness incentives.
Moreover, the example shows how different incentives can be at work, although
all actors do have the same preferences.

5 Social Consequences

Individual goal-oriented behavior might have (possibly negative) consequences
on outcomes at the collective level. We analyze two of such aspects. First, we
analyze how centrality incentives determine patterns of clustering. Second, we
assess the extent to which actors actually are able to establish closeness and
betweenness given that they all strive for these forms of centrality.

5.1 Lack of Clustering

The work of Watts and Strogatz (1998) has drawn attention to clustering, a
structural feature of many social networks. Small groups of actors are heavily
linked among themselves such that “a friend of a friend is very likely to be also
my friend”. Formally, the clustering coefficient of an actor i is defined as the
number of links among his neighbors Ni(g) as a fraction of all possible links

among them, Clusti(g) := 2ζi(g)
(li(g)−1)li(g)

, with ζi(g) := {jk ∈ g|j, k ∈ Ni(g)}

(see Watts and Strogatz, 1998 or Watts, 1999).

The question arises whether such patterns persist when actors start to optimize
their centrality. It is the argument by Granovetter (1973) and Burt (1992) that
it is not those complete triads that are the source of the many network benefits,
but the open triads leading into different areas of the network. Betweenness
incorporates that idea by measuring the brokerage of a given node; but also
closeness favors actors at distance two rather than one if ties are sufficiently
costly. So we would expect that actors optimizing their centrality will replace
links in complete triads by links that bridge higher distances.

Proposition 6 in the appendix excludes the emergence of networks with high
clustering among some actors. The first part shows that networks with cliques
(fully connected groups of actors) cannot be stable for pure closeness. The
second part shows that if an agent has a clustering coefficient of one, then
the network can only be stable for very low costs and sufficient weight on
closeness incentives. The reason is that full clustering implies that an agent has
zero betweenness. As a consequence there is only a small cost range between
the costs where the complete network is uniquely stable and the costs where
no full clustering can occur. Although those results provide strong evidence
against full clustering, centrality incentives might still be consistent with some
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clustering. This is also ruled out by the enumeration and simulation.

There are different ways to combine the individual clustering coefficients into
one. We chose a common transitivity index (see, e.g., Frank and Harary, 1982),
namely, the proportion of complete triads among the triads with two or three
links. 8 We have already shown in section 4 that many stable networks for
extreme weights are complete bipartite networks or trees. These networks
do not have any complete triad and, therefore, their (aggregate) clustering
coefficient equals 0. Tables 4 and 5 show the results for all stable networks of
size 8 and the emerging networks in a simulation with size 14.

Table 4
Stable Networks without any
Complete Triad (n=8).

fraction

All non-isomorphic networks 3.3%

Closeness 93%

λ = 0.5 60%

Betweenness 54%

Table 5
Clustering Coefficient of Emerging Networks
(simulation for n=14).

very low costs low costs medium cost

Closeness 0.19% 0.19% 0

λ = 0.5 4.86% 0.02% 0

Betweenness 0.49% 0 0

Table 4 shows that in most of the stable networks, there are no complete
triads and, therefore, the clustering coefficient is zero, while in most existing
networks there are complete triads. Table 5 shows the simulation result for
n = 14 where the starting networks have on average a clustering coefficient
(transitivity index) of 66 percent. We observe that these networks with consid-
erable clustering are transformed into networks with (almost) zero clustering
by the dynamics of centrality incentives.

Summarizing we find that both closeness and betweenness incentives, destroy
clustering patterns of a given network. This is consistent with the results of
Holm and Ghoshal (2008) who address similar questions within a different
framework. Therefore, it is likely that in most empirical settings additional
phenomena are at work than that the dynamics are driven by centrality alone.
First, the opportunity to meet somebody increases the likelihood to become
a friend of a friend. Second, there are differences among actors, not captured
by network statistics only. Geographically close actors might face lower costs
maintaining relationships or other characteristics can lead to attractiveness
(like homophily). Third, even if networks are determined by optimizing actors
who are all the same, our benefit function does not incorporate the utility
actors derive from having closed triads (i.e., strong ties, see Krackhardt, 1992).
Also Burger and Buskens (2006) argue that there are cooperative contexts

8 This is essentially the same measure as used as a clustering coefficient by Newman
et al. (2002). An alternative is averaging the clustering coefficient of all individuals.
However, by taking this average the weight of an actor with few ties is the same as
the weight of an actor with many ties.

18



where closure is more valuable and there are competitive contexts where open
networks are more beneficial.

Although it might not be that surprising result that actors striving for cen-
trality destroy the clustering patterns of a network, the next section shows
that it is also not so evident that if actors strive for centrality they actually
obtain high levels of centrality.

5.2 Inefficiency of Stable Networks

In the economics literature on network formation considerable interest is given
to the “tension” between stability and efficiency (in the sense of maximal
sum of utility; see Jackson and Wolinsky, 1996 and Jackson, 2004). We also
find such a tension in our model, as the individual optimizing behavior does
typically not lead to a collective optimum. 9

5.2.1 A Paradoxical Observation

In turns out that actors do not reach optimal levels of betweenness or close-
ness in our model when striving for closeness and betweenness, respectively.
Figures 5 and 6 illustrate this by depicting the distribution of the average
closeness and betweenness for all stable networks of size 8 for the eleven values
of λ used before.

Fig. 5. Average closeness of all sta-
ble networks (enum. n = 8).

Fig. 6. Average betweenness of all
stable networks (enum. n = 8).

Paradoxically, average closeness is not highest for pure closeness incentives and
average betweenness is not highest for pure betweenness incentives. Rather the

9 The assessment of the tension in our model requires an elaboration of the
connectedness, density, and distances of the emerging networks. This can be
obtained from the authors. Within these pages we only present the main intuition
and give a proof for the case λ = 1 (see appendix proposition 7).
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stable networks for closeness incentives exhibit higher average betweenness and
the stable networks for betweenness incentives exhibit higher average close-
ness, if they are connected (the dashed lines depict the results for the subset
of connected stable networks). 10 Moreover, by randomly picking a network
from the set of all networks one finds higher average closeness (betweenness)
than for the stable networks for closeness (betweenness) incentives.

To shed some light on this puzzle we derive the determinants of average
closeness and average betweenness.

5.2.2 The Role of Distances

When computing the average closeness (of all actors) in a network, one has
to consider for each actor the distance to any other actor. Denote by SD :=
∑

j<k djk the sum of all distances in a network. Then average closeness can be
written as AV ′CLOSE = M

M−1
− 2SD

(n−1)(M−1)n
, a linearly decreasing function

in SD - going from 1 for the complete network to 0 for the empty network. So
average closeness of a network is fully determined by the sum of distances.

Although this is not so easy to see, average betweenness of the actors is also
a function of the sum of distances. In the appendix proposition 8 shows that
AV ′BETWEEN = α

∑

j<k:connected(djk − 1), a linearly increasing function
of the distances among all connected agents (where α > 0 is a constant).
Average betweenness is zero for the empty and the complete network, and
is maximal for the network with maximal distances - the line network. The
maximal average betweenness is 1

3
, not 1, as there is no network with every

pair of actors at the maximum distance. Arguably, the brokerage benefits that
a pair offers are rather constant than increasing in their distances such that
being on a long shortest path, is not as beneficial as being on a short one (see,
e.g., Goyal and Vega-Redondo, 2008). But this is not true for the standard
definition of betweenness (see, e.g., Wasserman and Faust, 1994) used here.

This implies for connected networks that both, average closeness and average
betweenness are fully determined by the sum of all distances. Since the former
is linearly decreasing and the latter is linearly increasing in sum of distances,
this implies that for connected networks average closeness and average be-
tweenness are perfectly negatively correlated. 11 So networks with high average
closeness are those that contain short distances and networks with high average

10 Not to misinterpret: this observation does not imply that if an actor wants to
maximize his betweenness, he should strive for closeness or the other way around.
11 In this paper we work with closeness as the reverse distance, not the inverse
distance as usual. Using Freeman’s definition of closeness, the negative correlation
between average (Freeman) closeness and average betweenness is also almost perfect,
namely, -0.978.
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Fig. 7. Very frequently emerg-
ing network for closeness incentives
(simulation n = 8).

Fig. 8. Very frequently emerging
network for betweenness incentives
(enumeration n = 8).

betweenness have long distances but are connected. This insight transforms the
efficiency puzzle into the puzzle why distances are relatively large under pure
closeness incentives and why they are relatively long under pure betweenness
incentives. Indeed, when searching for stable networks that have a smaller
average distance than the average of all non-isomorphic networks (not counting
M for unconnected actors), then we find 3 out of 45 for pure closeness and 26
out of 37 for pure betweenness (enumeration for n = 8).

5.2.3 The External Effects

Some part of the puzzle is due to cost effects. As for low costs, networks are
denser and have shorter distances than for high costs, it happens that low
costs lead to networks with high average closeness, while high costs lead to
high average betweenness under the condition that the resulting network is
connected. However, when controlling for costs some inefficiency remains. This
can be illustrated in two examples, one for pure betweenness and one for pure
closeness.

Example 2 Figure 7 depicts a network that is frequently emerging for pure
closeness (found in the simulation). This network is stable if lb ≈ 0.12245 <
c ≤ ub ≈ 0.14268. The additional costs are maximally 2ub (once for each
holder). Socially, it is beneficial to take these costs if the total closeness benefits
increase sufficiently. That is 2ub > 4CLOSE ⇔ 4SD > 7. In this network
there are multiple possibilities to shorten the sum of distances by more than
7, e.g., a link between actors “5” and “7” would reduce the sum of distances
by 9. However, the network is stable. As this problem occurs even at the upper
bound of the costs, this network is “underconnected” whenever it emerges, in
the sense that the addition of links would socially be an improvement.

Example 3 Proposition 8 has shown that the networks with the highest be-
tweenness are sparse, exhibiting long distances. For instance, the network in
figure 7 exhibits very high average betweenness. However, it is not stable for
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pure betweenness. By the creation of a link (e.g., between actors “5” and “7”)
the focal actors can substantially increase their individual betweenness, while
this would do collective harm, in the sense that it lowers average betweenness.
And the evolution will not be finished after one change: more links will be
added, and also links will be cut (by actors that have no betweenness flow
from their ties). As the endpoint typically a network like in figure 8 emerges.
In this network there are no substantial brokerage benefits left: the average
betweenness is lower than in an arbitrary network, and much lower than in
the network of figure 8.

The two examples above illustrate two different types of inefficiency. In the
first example the network is sparse consisting of “too long” distances (figure 7);
while in the second example the network consists of a component that is “too
dense” (figure 8) with insufficient distances. This can be shown to be a genuine
difference between closeness incentives and betweenness incentives: Consider
two actors i and j (at some distance 1 < d < M) who decide to form a
tie. What does that agreement mean for the other actors? First of all, their
costs have not changed. Secondly, they might improve their closeness, because
distances might reduce, but cannot be increased. Finally, by proposition 8
average betweenness is certainly lowered. While the betweenness of i and j
can stay constant or increase by the formation of the tie, there must be other
actors who loose betweenness benefits. This is plausible, because the link ij
first of all takes away the brokering benefits for all actors that were on their
geodesics before. Moreover i, j can now be on shortest paths were others were
before.

The key point is that the costs of a new link are fully internalized by the focal
actors, while the benefits have spill-overs: positive externalities on closeness
and mainly negative externalities on betweenness. The actors of our model,
however, do not consider these effects when changing the network structure.
As a consequence emerging networks for closeness incentives are often “too”
sparse as in example 2, while emerging networks for betweenness incentives are
“too dense” in respect to average betweenness (proposition 7 in the appendix
shows that this problem always occurs for pure betweenness).

6 Concluding Remarks

The innovations of this paper are three-fold: (a) Although both betweenness
and closeness centrality are cornerstones of social network analysis, it has not
been explicitly studied which networks will emerge if agents follow incentives
for these two positional advantages. We can relate the dynamics of closeness
to existing models where actors strive for short paths and the dynamics of
betweenness to models of brokerage opportunities. By also including costs for
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the number of ties, we include degree centrality, the third centrality measure
from the classic article by Freeman in 1978. (b) There is hardly any theoretical
work that studies the interplay between different types of incentives to predict
network formation processes. When combining incentives for closeness and be-
tweenness, we find results that are not straightforward extension of considering
them separately. We explain this phenomenon based on the observation that
two agents, despite similar preferences, can have quite different motivations of
action, based on asymmetry in their network positions. (c) We draw attention
to the social consequences of individual optimizing behavior in social networks.
First, there is support for the claim that centrality driven decisions eliminate
structural patterns that are typical for friendship networks (i.e., clustering).
More surprisingly, it is not likely that actors striving for closeness or between-
ness benefits reach a social optimum as networks with, respectively, relatively
low average closeness and low average betweenness emerge. The discrepancy
between individual incentive and collective outcome is caused by two different
types of social dilemmas.

The first dilemma has the flavor of a n-person prisoners dilemma (also labeled
as public goods problem) and occurs when actors strive for short paths,
operationalized as closeness centrality. The creation of a tie exhibits posi-
tive externalities as not only the distances of the active actors changes, but
also some other agents benefit from this action. When facing costs of link
maintenance, actors refuse to be the ones who “produce this public good”.
Consequently, the emerging networks are often too sparse compared with what
would have been efficient. More specifically, we find especially for higher costs
of establishing relations that many tree networks emerge that typically have
rather large distances.

The second dilemma has the flavor of the “tragedy of the commons” and
occurs when actors strive for betweenness centrality. Two actors creating a tie
can often improve their betweenness position substantially. What they do not
consider is the effects this action has on other actors: this is typically a negative
effect (in the sense of reducing average utility). Consequently, the emerging are
too dense compared with what would have been efficient. Especially with low
tie costs, complete bipartite networks emerge in which betweenness is rather
low for all actors.

By also considering mixed closeness and betweenness incentives, this paper
extends earlier research in this field. Under mixed incentives, many networks
can emerge that do not emerge under pure closeness and betweenness incen-
tives. Moreover, networks in these mixed settings are rather efficient, since the
two problems of inefficiency balance one another.

Clearly, we also neglected various other aspects of network dynamics that
might be incorporated in future research. For example, we restrict the benefits
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of mating to “structural goals” (see Doreian, 2006). By ignoring actor spe-
cific and dyadic specific explanatory variables, we exclude effects such as ho-
mophily. Further effects are excluded by studying only non-directed networks,
i.e. effects of reciprocity, and by considering a competitive setting as opposed
to a cooperative setting, i.e. effects of closure (see Burger and Buskens, 2006
for a comparison of these two settings). These might be reasons for why we
find low clustering in emerging network in contrast with rather some empirical
observations of networks. Finally, we work with high information assumptions:
actors are fully informed about the network and able to optimize their utility
given this information. In further research it is worthwile to study whether less-
informed actors following simple behavioral rules induce different dynamics.

A APPENDIX

In the appendix we provide formal statements and proofs for the propositions
that we discussed throughout the main text. The results are based on the
centrality model we explained in section 2.3. Using the definition of closeness
and betweenness (equations 1 and 2), actor utility was defined by:

ui(g) = (1 − λ)CLOSEi(g) + λBETWEENi(g) − cDEGREEi(g). (A.1)

Analytical results on stability typically need the maximal incentive of any
actor to sever a link and the maximal incentive of any two actors to add a
link and compare them to linking costs c. Because benefits are based only
on closeness and betweenness, the crucial aspects for a focal actor i are the
change in distances

∑

j∈N dij(g) (=̂ non-normalized closeness) and the change

in the number of shortest paths he is on
∑

j<k(j 6=i,k 6=i)

τ i
jk

(g)

τjk(g)
(=̂ non-normalized

betweenness), what we call his “brokerage”. It is sometimes left to the reader
to plug in these changes into the utility function above. Specifically, if a new
link for some actor i in some network g means a decrease in distances of X
and an increase in brokerage of Y , then he is willing to form the link only if
c ≤ (1−λ)[X]

(M−1)(n−1)
+ λ2[Y ]

(n−1)(n−2)
.

Although deriving the changes in distances and brokerage for a given situation
might be tedious, it is mostly a straightforward task. The results are ordered
according to their appearance in the main text.

A.1 Proofs of section 3

Proposition 1 In the centrality model the following holds:
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(1) The complete network gN is stable if and only if c ≤ 1−λ
(n−1)(M−1)

.

(2) The empty network g∅ is stable if and only if c ≥ 1−λ
n−1

.

(3) A star shaped network g? is stable if and only if 1−λ
(n−1)(M−1)

≤ c ≤

min{ 1+λ
n−1

; (1−λ)[M(n−1)−2n+3]
(n−1)(M−1)

}.

(4) Let n be a multiple of 4. Then the circle network g◦ is stable if and only

if
(1−λ)[ 1

8
n2− 1

2
n+1]

(M−1)(n−1)
+

2λ[ 1
8
n2− 3

4
n+1]

(n−1)(n−2)
≤ c ≤

(1−λ)[ 1
4
n2− 1

2
n]

(M−1)(n−1)
+

2λ[ 1
8
n2− 1

2
n+ 1

2
]

(n−1)(n−2)
.

(5) A complete bipartite network gl:r with 2 ≤ r ≤ l (where l and r are the
sizes of the two groups) is pairwise stable if and only if 1−λ

(n−1)(M−1)
≤ c ≤

2(1−λ)
(n−1)(M−1)

+
2λ[ r−1

l
]

(n−1)(n−2)
.

Proof. The results of proposition 1 present lower and/or upper bounds of
costs where a network is claimed to be stable. For conciseness, we denote with
lb(g) the claimed lower bound of a network g and analogously the claimed
upper bound with ub(g).

(1) The complete network gN can only be altered by deletion of a link. Any
actor deleting any link increases his distances by 1 and does not change
his brokerage. Therefore, no actor will sever a link for c ≤ ub(gN) and
any actor wants to sever a tie for higher costs.

(2) The empty network g∅ can only be altered by the addition of links. Any
actor adding any link decreases his distances by M−1, while his brokerage
remains zero. Thus, no actor will do that for c ≥ lb(g∅) and any pair of
actors is willing to add a tie for c < lb(g∅).

(3) Only peripheral actors can add links. Any actor adding a link reduces
his distances by 1 and does not change his brokerage. This leads to the
lb(g?). The central actor severing a link increases his distances by M − 1
and decreases his brokerage by n − 2. A peripheral actor cutting a link
increases his distances by M −1+(n−2)(M−2) and does not change his
brokerage. Plugging into the utility function yields that no actor wants
to sever a link for c ≤ min{ub1(g?); ub2(g?)}, while some actor is willing
to sever a tie for higher costs.

(4) Any actor severing any link increases his distances from the circle to the
line network. For n even this is a change in distances of 1

4
n2 − 1

2
n and a

change in brokerage from 1
8
n2− 1

2
n+ 1

2
to zero, yielding the upper bound.

Two actors forming a link benefit the further away they are. For n a
multiple of four, two actors on opposite sides (with two shortest paths)
can form a link building a network with two cycles of odd length. Their
change in distances can be derived as 1

8
n2 − 1

2
n+1, while their brokerage

changes by 1
8
n2 − 3

4
n + 1. In the same way slightly different inequalities

can be derived for other network sizes.
(5) In complete bipartite networks, additional links are only possible within

a group. Since everybody is already indirectly linked, any actor adding
a link reduces his distances by 1 without changing his brokerage. This
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yields the lb(gl:r).
Since both groups consist of at least two actors, cutting one link only
affects the distance between the focal actors. Their distance changes
by 2. The brokerage for an actor in the group of size l changes by
1
l
(r − 1), because he is on one of l shortest paths between any pair

of actors in the other group. Because l ≥ r, the actors in the l-group
benefit less from their links. They are indifferent about cutting if c =

2(1−λ)
(n−1)(M−1)

+
2λ[ r−1

l
]

(n−1)(n−2)
= ub(gl:r). Therefore, for c < lb(gl:r), two actors of

the same group form a link; for c > ub(gl:r) an actor of the larger group
(of size l) will sever a link. And, no actor can improve by changing a link
for lb(gl:r) ≤ c ≤ ub(gl:r).
Plugging in l = r = n

2
yields that a balanced complete bipartite network

g
n
2
: n
2 (for even n) is pairwise stable if and only if 1−λ

(n−1)(M−1)
≤ c ≤

2(1−λ)
(n−1)(M−1)

+
2λ[1− 2

n
]

(n−1)(n−2)
. 2

Proposition 2 In the centrality model the complete network gN is uniquely
stable if and only if c < 1−λ

(n−1)(M−1)
.

Proof. The proof is analogue to proposition (6i) of Buechel (2008). The
complete network gN is stable because c ≤ 1−λ

(n−1)(M−1)
(see proposition 1). For

any network g ∈ {G \ gN}, ∃(i, j) : dij(g) > 1. By connecting the distances
of i and j decrease at least by 1. So for c < 1−λ

(n−1)(M−1)
they want to connect

and, therefore, the network is unstable. The complete network is not uniquely
stable for other values of c because if c ≥ 1−λ

(n−1)(M−1)
, the star or the empty

network is stable (see proposition 1). 2

Claim 1 In the centrality model the empty network g∅ typically is uniquely
stable for c > (1 − λ) n−1

4(M−1)
+ λ n2−4n+3

4(n−1)(n−2)
.

“Typically” indicates that this statement is valid for most settings, but not for
any combinations of n and M . For a justification note that this threshold for
uniqueness is just ub(g◦) for n odd (which is slightly higher than for n even).
We argue that among all networks that contain non-critical links, the circle
network has the highest marginal benefit for any of those (non-critical links).
This implies that for c > ub(g◦) in any network with cycles (cycles consist of
non-critical links) at least one actor is willing to cut a link. Thus ub(g◦) is the
maximal cost level, where any network with cycles can be stable. Then we use
that a network without cycles is either empty or does contain pendants (actors
of degree one). Therefore, to establish uniqueness of the empty network it
remains to show that networks with pendants are not stable. For costs around
ub(g◦) and higher this is typically, but not generally, true (see lemma 1).

Proposition 3 In the centrality model for any parameters (λ, c) ∈ [0, 1]×R+

there exists a stable network.
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Proof. This theorem follows almost directly from proposition 1. For λ = 1,
the empty network g∅ is trivially stable at any cost. For λ < 1, g∅ is stable
if c ≥ 1−λ

n−1
, gN is stable if c ≤ 1−λ

(n−1)(M−1)
and g? is stable if 1−λ

(n−1)(M−1)
≤ c ≤

min{ub1(g?) = 1+λ
n−1

, ub2(g?) = (1 − λ)[ M
M−1

− 2n−3
(M−1)(n−1)

]}.

It remains to be shown that if g∅ and gN are not stable, g? is stable. This follows
directly from lb(g?) = ub(gN), ub1(g?) ≥ lb(g∅) as 1+λ

n−1
≥ 1−λ

n−1
, and ub2(g?) ≥ g∅

(by definition n ≥ 3 and M ≥ n − 1, which implies M(n−1)−2n+3
M−1

≥ 1). 2

A.2 Proofs of section 4

Proposition 4 In the centrality model a complete bipartite networks gl:r can
only be stable if the balanced complete bipartite network g

n
2
: n
2 is stable, that is

if 1−λ
(n−1)(M−1)

≤ c ≤ 2(1−λ)
(n−1)(M−1)

+
2λ[1− 2

n
]

(n−1)(n−2)
.

Proof. This result follows from proposition 1, part (5): For c < lb(g
n
2
: n
2 ) =

lb(gl:r) two actors of the same group form a link (the complete network is
uniquely stable); for c > ub(g

n
2
: n
2 ) ≥ ub(gl:r) an actor of the larger group (of

size l) will sever a link. 2

The following lemma 1 is helpful:

Lemma 1 If c > min{ 1+λ
n−1

; (1−λ)[M(n−1)−2n+3]
(n−1)(M−1)

}, no network with pendants (ac-

tors of degree one) can be pairwise stable.

Proof. Take any network g with a pendant i and his neighbor j. We show
that the condition implies that one of the actors wants to sever this link.

(1) Actor i does not reduce brokerage by severing this link. Removing the
link increases his distances at least by M − 1 (when actor j is also a
pendant) and at most by M − 1 + (n − 2)(M − 2) (when actor j is
directly linked to all other actors). Therefore, actor i will not keep the

link if c > (1−λ)[M(n−1)−2n+3]
(n−1)(M−1)

.

(2) Similarly, for actor j: severing a link increases his distances by M −1 and
hence decrease his closeness by 1

n−1
. Moreover, he was on the shortest

path between i and any other actor in this component. The more actors in
this component, the higher the incentive to keep this link. The maximum
brokerage of n − 2 is attained for a connected network. Therefore, actor
j wants to sever the link for c > 1−λ

n−1
+ λ2(n−2)

(n−1)(n−2)
rendering the network

unstable. 2

Proposition 5 In the centrality model a tree can only be stable if the star is
stable that is if 1−λ

(n−1)(M−1)
≤ c ≤ min{ 1+λ

n−1
; (1−λ)[M(n−1)−2n+3]

(n−1)(M−1)
}.
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Proof. We have to justify the lower bound (lb) and the upper bounds (ub1,
ub2). By proposition 2 if c < lb, the complete network is uniquely stable. For
the upper bounds, we use that any tree has pendants. By the lemma 1, no
tree can be stable for c > min{ub1; ub2}. 2

A.3 Proofs of section 5

Proposition 6 In the centrality model the following holds:

(1) For λ = 0, a network with a clique of size q(≥ 3) or larger cannot be
stable if c > n

q(M−1)(n−1)
.

(2) For any network g, actor i with li(g) ≥ 2 and costs c > (1−λ) n−li(g)−1
li(g)(M−1)(n−1)

it holds that, if i has full clustering (Clusti(g) = 1), then the network
cannot be stable.

Proof. The two parts of the proposition are independent.

(1) Let H ⊂ N be a completely linked group of size q and h ∈ G its links.
We compare all networks that contain h in respect to the weakest link
among the subgroup. More precisely, denote by βij

i (g) := CLOSEi(g) −
CLOSEi(g \ ij); then we look for the

maxg:∃h∈gmin{i,j}∈Hβij
i (g). (A.2)

We claim that among the argmax is a core-periphery network with
the following configuration: H is the core and each of the actors in H
is a gatekeeper for a number of peripheral actors (in the sense that the
peripheral actors reach other core members only via their gatekeeper).
Moreover, the peripheral actors (N \ H) are equally distributed among
the core members (with differences of 1 if necessary).

If in such a network cutting a link ij ∈ h is improving for some actor
i ∈ H , no network that contains h can be stable. For n a multiple of
q the marginal benefit of each link among the core members is β̂(q) =

n
q(M−1)(n−1)

, because their distances change by n
q
. If n is not a multiple of

q, the marginal benefit of links to at least one group member is smaller.
So for marginal costs higher than this threshold, it is always worthwhile
to sever a link.

(2) Consider g ∈ G, i ∈ N with li(g) ≥ 2 and Clusti(g) = 1. We show
that i is willing to sever a link. First, we observe that there is no be-
tweenness incentive to keep the link. Formally, for all g′ and actors j
with lj(g

′) ≥ 2, it holds that Clustj(g
′) = 1 ⇔ Betweeni(g

′) = 0 (for a
proof see, e.g., Everett et al. (2004) or Gago Alvarez (2007)). It follows
that Betweeni(g) = 0 and cannot be improved by deletion of a link (as
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the clustering coefficient remains 1). So, for stability of g, there must be
sufficient closeness incentive for i to keep the links.

The maximal marginal closeness i can have for all of his links is realized
in a network as follows: all actors that are not linked with i are equally
“distributed” among his neighbors (in the sense that each is connected to
i only via one neighbor). This is the case because (a) the maximal worth
an actor k /∈ Ni(g) can have for i in respect to the link ij is 1 and (b) if
those actors are not equally distributed, then the link that leads to the
least actors is weaker than the others. 12 This maximal marginal benefit
can be computed as n−li(g)−1

(n−1)(M−1)li(g)
. For costs higher than this threshold,

i will cut one of his links, which makes g unstable. 2

Proposition 7 In the centrality model for λ = 1 the following holds: any
stable network that is non-empty is inefficient (in the sense that it does not
maximize the average utility).

Proof. By lemma 1 no stable network contains pendants for λ = 1 (since
c > 0). Therefore, all non-empty stable networks contain non-critical links.
Let g be such a network and ij be one of the non-critical links. Severing ij
increases the sum of actual distances

∑

j<k:connected djk(g). Proposition 8 implies
that deletion of ij increases average betweenness and decreases average costs.
So, g is not efficient. 2

Proposition 8 For any network g the following holds:

(1) average closeness can be written as
1
n

∑

i∈N CLOSEi(g) = M
(M−1)

−
2
∑

j<k
djk(g)

n(n−1)(M−1)
, and

(2) average betweenness can be written as
1
n

∑

i∈N BETWEENi(g) = 1
n

2
(n−1)(n−2)

∑

j<k:connected(djk(g) − 1).

Proof of proposition 8, part (1). By definition of closeness (eq. 1):
1
n

∑

i∈N CLOSEi(g) = 1
n

∑

i∈N

[

M
M−1

−

∑

j∈N
dij(g)

(M−1)(n−1)

]

=

1
n

∑

i∈N
M

M−1
− 1

n

∑

i∈N

∑

j∈N
dij (g)

(M−1)(n−1)
. By taking the sums we get the result:

nM

n(M − 1)
−

∑

i∈N

∑

j∈N dij(g)

n(n − 1)(M − 1)
=

M

M − 1
−

2
∑

j<k djk(g)

n(n − 1)(M − 1)
. (A.3)

To proof part (2) we first show the following lemma:

12 Note that cutting a link to a neighbor (j) cannot increase the distance to any
actor by more than 1, as i is connected to other actors, which are connected to j.
Hence the weakest link is the one that does not lead to a considerable number of
indirect connections.
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Lemma 2 ∀g ∈ G and ∀j 6= k(∈ N : connected under g), it holds that

∑

i∈N\j,k

τ i
jk(g)

τjk(g)
= djk(g) − 1. (A.4)

In words: fixing a connected pair of actors (j, k) and summing up all actors
that are on one or more of their geodesics (weighted by the fraction they are
on) results in counting the length of the shortest path between j and k.

Proof of Lemma 2. Take any g with a pair of connected actors j and k. Let
t( 6= 0) be the number of geodesics τjk(g) = t and let H be the set of actors
who are on some geodesics, that is H = {i ∈ N \ j, k | τ i

jk(g) > 0}. Denote by
hx the number of distinct actors who are on x geodesics (hx := #{i ∈ N \j, k |
τ i
jk(g) = x}). The definitions imply that (*) |H| = h1 +h2 + ...+ht. Note first

that if the t geodesics are independent (disjoint), then there are t(djk(g) − 1)
distinct actors in H . This number is reduced by any actor that is on more
than one geodesic:

|H| = t(djk(g) − 1) − h2 − 2h3 − 3h4 − ... − (t − 1)ht

⇐⇒ t(djk(g) − 1) = |H| + h2 + 2h3 + 3h4 + ... + (t − 1)ht (A.5)

On the other hand, recall that τ i
jk(g) = x means that actor i is on x geodesics

of j and k. By the definition of hx we can write

∑

i∈N\j,k

τ i
jk(g) = h1 + 2h2 + 3h3 + ... + tht (A.6)

We show that the left-hand side (LHS) of A.5 equals the LHS of A.6 by
subtracting the right-hand sides RHS (A.6)-(A.5):

∑

i∈N\j,k

τ i
jk(g) − t(djk(g) − 1) = h1 + h2 + ... + ht − |H| =∗ 0

=⇒

∑

i∈N τ i
jk(g)

t
= djk(g) − 1

where the “*” part follows from the definitions. 13

13 The same result was also found by Gago Alvarez (2007). To check the plausibility
of the lemma just let the t geodesics be fully independent. Then |H| = t(djk(g)−1).

Each actor i ∈ H derives a betweenness of 1
t
. Hence

∑

i∈N\j,k

τ i
jk

(g)

τjk(g) =
∑

i∈H

τ i
jk

(g)

τjk(g) =

t(djk(g) − 1) ∗ 1
t

= djk(g) − 1.
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Proof of proposition 8, part (2) As the division by n cancels out it suf-
fices to show that ∀g,

∑

i∈N

BETWEENi(g) =
2

(n − 1)(n − 2)

∑

j<k:djk(g)<M

(djk(g) − 1). (A.7)

By definition of betweenness (eq. 2)
∑

i∈N BETWEENi(g) =
∑

i∈N

[

2
(n−1)(n−2)

∑

j<k

(j 6=i,k 6=i)

τ i
jk

(g)

τjk(g)

]

.

By changing summation we get:

2

(n − 1)(n − 2)

∑

i∈N







∑

j<k

(j 6=i,k 6=i)

τ i
jk(g)

τjk(g)





 =
2

(n − 1)(n − 2)

∑

j<k





∑

i∈N\j,k

τ i
jk(g)

τjk(g)





The fraction in brackets was defined to be zero if the denominator is zero. Since
this is always true for unconnected pairs (i.e. dj,k(g) = M =⇒ τj,k(g) = 0),
only connected pairs count for the sum before the brackets. Therefore we can
apply lemma 2 which yields the result:

∑

i∈N

BETWEENi(g) =
2

(n − 1)(n − 2)

∑

j<k:connected

(djk(g) − 1).

2
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