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Abstract

We consider two-sided matching markets with couples. First, we extend a result by Klaus
and Klijn (2005, Theorem 3.3) and show that for any weakly responsive couples market
there always exists a “double stable” matching, i.e., a matching that is stable for the
couples market and for any associated singles market. Second, we show that for weakly
responsive couples markets the associated stable correspondence is (Maskin) monotonic
and Nash implementable. In contrast, the correspondence that assigns all double stable
matchings is neither monotonic nor Nash implementable.
JEL classification: C62, C78, D78, J41.
Keywords: Matching with Couples, (Maskin) Monotonicity, Nash Implementation, Sta-
bility, Weakly Responsive Preferences.

1 Introduction

We consider two-sided matching markets consisting of medical students (graduates, workers)
on one side and of residencies jobs, firms) on the other side. In the medical market as well
as in many other labor markets, the number of couples with the same professional interests
has been growing. Therefore we focus on labor markets in which both members of couples
seek positions. Examples of such labor markets with couples are medical markets where
each year many medical school graduates seek their first employment as residents or interns.
In the US the National Resident Matching Program (NRMP) administers the matching of
medical graduates with residencies and internships (see Roth, 1984a; Roth and Sotomayor,
1990). One of the reasons for centralizing this market, and later for reorganizing it (Roth
and Peranson, 1999) was that market outcomes did not seem to be “stable” as indicated by
unraveling (pre NRMP) or a significant reduction of voluntary participation in the NRMP (pre
reorganized NRMP). In particular, couples searching for residencies together were dropping
out of the NRMP before it was reorganized – in its current version couples can file joint
NRMP applications. For simplicity, we continue to refer to one side of the market as students
and to the other side of the market as hospitals, even though we do not exclusively restrict
our attention to centralized markets such as the NRMP.
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Loosely speaking, an outcome or matching is stable if there are no students/couples and
hospitals that are not matched with each other, but in fact would prefer to be. Thus, it is easy
to see that whenever contracts are not enforceable, stability is a minimal requirement for the
persistence of an outcome for any market (centralized or decentralized). Gale and Shapley
(1962) provided an algorithm, the famous deferred acceptance (DA) algorithm, that always
finds a stable matching in markets with only single students. Thus, as long as we restrict
attention to singles markets, in these markets – centralized or not – stability is possible.
Unfortunately, once couples emerge on one side of the market, stability is in danger: stable
matchings may not exist (Roth, 1984a) and it may be very difficult (in fact NP-hard) to
decide if stable matchings exist for a given couples market (Ronn, 1990).

It is well-known that for matching markets with sufficient substitutability instabilities can
be ruled out: for one-to-one and many-to-one matching markets without money see Gale and
Shapley (1962) and Roth (1985), for many-to-one matching markets with money see Kelso
and Crawford (1982), for many-to-many schedule matching see Alkan and Gale (2003), and
for matching with contracts see Roth (1984b) and Hatfield and Milgrom (2005). For couples
markets a similar result holds: Klaus and Klijn (2005) (Klaus et al., 2008) show that if
couples have “(weakly) responsive” preferences (i.e., couples’ preferences show some degree
of substitutability), then stable matchings always exist. In other words, if couples’ preferences
are weakly responsive, then the stable correspondence that assigns to each couples market its
set of stable matchings is well-defined.

To achieve stable matchings in a couples market information on preferences is necessary.
Generally, a centralized clearinghouse would not have this information and so a solution
may be vulnerable to strategic manipulation of preferences. An appealing property for solu-
tions that requires that no agent can ever benefit from misrepresenting his/her preferences
is strategy-proofness, i.e., truth-telling is a weakly dominant strategy for all agents. Unfor-
tunately, there exists no stable (single-valued) solution for which stating the true preferences
is a dominant strategy for every couple (see Klaus and Klijn, 2005, Theorem 4.5). A weaker
requirement than obtaining stable matchings through “dominant truth telling” equilibria in
the direct revelation game is to obtain them through Nash equilibria in an associated game
(see Jackson, 2001; Maskin and Sjöström, 2002, for comprehensive surveys on implementation
theory). Then, to Nash implement the stable correspondence means that the set of match-
ings induced by all Nash equilibria of the underlying game coincides with the set of stable
matchings.

Maskin (1977, 1999) provided a key condition for Nash implementation: (Maskin) mono-
tonicity is a necessary (but not sufficient) condition for Nash implementability. To find an
equivalent condition for Nash implementability one can either strengthen the monotonicity
property or pair it with additional requirements. Both tasks have been successfully accom-
plished. Yamato (1992) shows that the essential monotonicity property is equivalent to Nash
implementability and Moore and Repullo (1990) package Maskin’s monotonicity and two
further (weak) conditions into one property, called condition µ.

Several positive Nash implementation results for matching markets have been derived
in the past decade. Kara and Sönmez (1996, 1997) show that the stable correspondence
in marriage and college admission markets is Nash implementable. Sönmez (1996) obtains
a corresponding Nash implementability result for so-called generalized matching markets; a
class of one-sided matching markets that include marriage and roommate markets (Gale and
Shapley, 1962), as well as housing markets (Shapley and Scarf, 1974). Another generalization
of the classical marriage and college admission markets are the matching with contracts
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markets of Roth (1984b) and Hatfield and Milgrom (2005) – in difference to previous models
a match between two agents also can specify a variety of contract terms. In a recent paper
Haake and Klaus (2008) demonstrate that the previously mentioned Nash implementability
of the stable correspondence also extends to matching markets with contracts.

In this paper, we focus on stability and Nash implementability in matching markets with
couples. Interestingly, even if it is possible to associate a matching market without couples
(an associated singles market) to any given couples market in a reasonable way (e.g., if
couples have (weakly) responsive preferences), we cannot make use of the implementation
results mentioned above (see discussion in Section 4). Hence, as already observed by Klaus
and Klijn (2005), many results for matching markets without couples can be extended to
matching markets with couples, but they are not simple extensions and require different
proof techniques.

We introduce matching markets with couples, stability, and weakly responsive preferences
in Section 2. We extend a result by Klaus and Klijn (2005, Theorem 3.3) and show that for
any weakly responsive couples market there always exists a “double stable” matching, i.e., a
matching that is stable for the couples market and for any associated singles market (Proposi-
tion 1). Section 3 is devoted to monotonicity and Nash implementability. First, we show that
the stable correspondence is monotonic whenever it is well-defined (Theorem 2). Our main
result in Section 3 is the Nash implementability of the stable correspondence for matching
markets with couples (Theorem 3). To obtain this result, we verify Moore and Repullo’s
(1990) condition and thereby apply an alternative approach to Sönmez (1996) and Kara and
Sönmez (1996, 1997) who rely on Yamato’s (1992) characterization of Nash implementabil-
ity. Finally, for couples markets with weakly responsive preferences, the correspondence of
stable matchings is Nash implementable (Corollary 1), but the subcorrespondence of double
stable matchings is not (Corollary 2). In the last section (Section 4) we discuss the difference
and difficulties that occur when trying to extend results from matching markets without to
matching markets with couples.

2 Matching with Couples, Stability, and Responsive Prefer-
ences

For convenience and without loss of generality, we describe a couples market where the
labor market modeled consists of a supply side of hospitals and a demand side of cou-
ples composed of medical students; H = {h1, h2, . . . , hm} and C = {c1, c2, . . . , cn} =
{(s1, s2), (s3, s4), . . . , (s2n−1, s2n)} are the sets of hospitals and couples. We denote the set of
students by S = {s1, s2, . . . , s2n}. Each hospital has exactly one position to be filled. Our
results can easily be adapted to more general situations that could include mutual externali-
ties between more than two individuals (for instance between members of a family or among
friends), single students, or hospitals with multiple positions.1 Next, we describe preferences
of hospitals and couples.

1Our results would remain the same if the setting would be extended to triples or any other constellation of
ordered tuples of students. However, the couples incidence is frequently observed in real-life matching markets
and by restricting the analysis to couples we can keep notation, without loss of generality, simple. Furthermore,
our model already can include single students if we model them as a couple where the student is married to
a “fictitious partner” that does not want to work at all (see Klaus and Klijn, 2007, Remark 3.6). Finally, in
order to straightforwardly derive all results for the case of hospitals with multiple positions, we would require
that hospitals’ preferences are “responsive over sets of students” (cf. Kara and Sönmez, 1997).
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Hospitals’ preferences: Each hospital h ∈ H has a strict, transitive, and complete prefer-
ence relation Rh over the set of students S and the prospect of having its position unfilled, de-
noted by ∅. The asymmetric part of Rh is referred to as Ph. Given s, s′ ∈ S∪{∅}, sPhs

′ means
that hospital h strictly prefers student s to student s′; sRh s

′ implies sPh s
′ or s = s′. We de-

note the set of all possible preferences for hospital h by Rh. Let RH = {Rh}h∈H ∈
∏

h∈H Rh.
Couples’ preferences: Each couple c = (sk, sl) ∈ C has a strict, transitive, and complete

preference relation Rc over all possible combinations of ordered pairs of (different) hospitals
and the prospect of being unemployed H := [(H ∪ {u}) × (H ∪ {u})] \ {(h, h) : h ∈ H}.
To simplify notation, we denote a generic element of H by (hp, hq), where hp and hq indi-
cate a hospital or being unemployed. Again, Pc denotes the asymmetric part of Rc. Given
(hp, hq) ,

(
h′p, h

′
q

)
∈ H, (hp, hq)Pc

(
h′p, h

′
q

)
means that couple c strictly prefers sk to be matched

to hp and sl to be matched to hq to sk being matched to h′p and sl being matched to h′q;
(hp, hq)Rc

(
h′p, h

′
q

)
implies (hp, hq) Pc

(
h′p, h

′
q

)
or (hp, hq) =

(
h′p, h

′
q

)
. We denote the set of all

possible preferences for couple c by Rc. Let RC = {Rc}c∈C ∈
∏

c∈C Rc.
Since the set of agents (hospitals and couples) remains fixed throughout this study, a

matching market with couples can completely be described by the agents’ preferences.
Couples markets: A one-to-one matching market with couples, or a couples market for

short, is denoted by a preference profile (RH , RC). We denote the set of all matching markets
(i.e., the set of all preference profiles) by R ≡

∏
h∈H Rh ×

∏
c∈C Rc.

A matching µ for a couples market (RH , RC) is an assignment of students and hospitals
such that each student is assigned to at most one hospital in H or to u (which can be
assigned to multiple students), each hospital in H is assigned to at most one student or
to ∅ (which can be assigned to multiple hospitals), and a student is assigned to a hospital
if and only if the hospital is assigned to the student. Formally, a matching is a mapping
µ : H ∪ S −→ (S ∪ {∅}) ∪ (H ∪ {u}) such that for all h ∈ H and s ∈ S, µ(h) ∈ S ∪ {∅},
µ(s) ∈ H ∪ {u}, and [µ(s) = h if and only if µ(h) = s].

A matching µ is completely described by the list (µ(s1), µ(s2), . . . , µ(s2n)) of hospitals or
u assigned to students s1, s2, . . . , s2n. Equivalently, a matching µ can be completely described
by the list (µ(h1), µ(h2), . . . , µ(hm)) of students or ∅ assigned to hospitals h1, h2, . . . , hm. For
any couple c = (sk, sl) we also use the notation µ(c) = (µ(sk), µ(sl)).

We denote the set of matchings by M. Clearly, all preference relations Ri (i ∈ H ∪ C)
induce weak preferences over matchings in a natural way. Using the same notation, for all
agents i ∈ H ∪ C and matchings µ, µ′ ∈M, we let µ Ri µ

′ if and only if µ(i)Ri µ
′(i).

Let R0 ⊆ R be a class of couples markets. A solution ϕ (on R0) is a correspondence
ϕ : R0 ⇒ M that assigns to each couples market (RH , RC) ∈ R0 a non-empty set of
matchings ϕ(RH , RC). Next we discuss two basic properties for solutions: Pareto efficiency
and individual rationality.

Pareto Efficiency: A matching µ ∈M is Pareto efficient for couples market (RH , RC) ∈ R
if there is no other matching µ′ ∈M such that for all i ∈ H∪C, µ′Riµ and for some j ∈ H∪C,
µ′ Pj µ. A solution ϕ is Pareto efficient if it only assigns sets of Pareto efficient matchings.

Individual Rationality: Since matches are based on voluntary participation, it should
always be better for students (one or both members in a couple) to accept the position(s)
offered by the matching instead of voluntarily choosing unemployment and for hospitals it
should always be better to accept the student assigned by the matching instead of leaving the
position unfilled. A matching µ is individually rational for couples market (RH , RC) ∈ R if
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(i1) for all c = (sk, sl),
(µ(sk), µ(sl))Rc (µ(sk), u), (µ(sk), µ(sl))Rc (u, µ(sl)), and (µ(sk), µ(sl))Rc (u, u);

(i2) for all h ∈ H, µ(h)Rh ∅.
As described in the Introduction, an important criterion for a matching to be accepted

as final outcome in a two-sided matching market (with couples) is stability. First, since
the matching markets we consider here are based on voluntary participation of students
(couples) and hospitals, a necessary condition for a matching µ to be stable is individual
rationality. Second, if one partner in a couple can improve the given matching for the couple
by switching to another hospital such that this hospital is better off as well, then we would
expect this mutually beneficial trade to be carried out, rendering the given matching unstable.
A similar statement holds if both students in the couple can improve. For a given matching
µ, (c, (hp, hq)) = ((sk, sl), (hp, hq)) is a blocking coalition, if
(b1) (hp, hq) Pc (µ(sk), µ(sl));
(b2) [hp ∈ H implies sk Rhp µ(hp)] and [hq ∈ H implies sl Rhq µ(hq)].

A matching is stable for couples market (RH , RC) ∈ R if it is individually rational and if
there are no blocking coalitions. By S(RH , RC) we denote the set of stable matchings for cou-
ples market (RH , RC). We denote the solution (onR0) that assigns the set of stable matchings
to any couples market (RH , RC) ∈ R0 by S and refer to it as the stable correspondence.

Roth (1984a, Theorem 10) showed that stable matchings may not exist in the presence of
couples. Even worse, Ronn (1990) showed that determining if a couples market has a stable
matching is an NP complete problem.

Next, we discuss a preference domain for couples that guarantees the existence of stable
matchings: the domain of weakly responsive preferences (Klaus and Klijn, 2005; Klaus et al.,
2008). This restriction of preferences is based on the intuition that if there exists no negative
externality from one partner’s job for the other partner or for the couple, then we can treat
the market as if only singles participate, which in turn guarantees the existence of a stable
matching (Gale and Shapley, 1962). This would be the case if couples only apply for jobs
in one city or metropolitan area so that different regional preferences or travel distance are
no longer part of couples’ preferences and therefore the preferences are responsive. Klaus
and Klijn (2005) (Klaus et al., 2008) demonstrated that for the existence of stable matchings
one can easily extend the domain of responsive preferences. The idea of this extension is
that the exact associated preferences that deal with the comparison of unacceptable positions
are irrelevant with respect to stability since an agent can always replace any unacceptable
position with unemployment. Because the class of weakly responsive preferences ensures the
presence of stable matchings, it is a natural starting point for the study of decentralized
decision making in couples markets.

Couple c = (sk, sl) has weakly responsive preferences if there exist strict, transitive, and
complete preference relations Rsk

and Rsl
over H × {u}, i.e., the set of hospitals and the

prospect of being unemployed u such that
(a) for all h ∈ H,

(u, h) Pc (u, u) if and only if h Psl
u,

(h, u) Pc (u, u) if and only if h Psk
u;

(b) for all hp, hq, hr ∈ H ∪ {u},
[hp Rsk

u, hq Rsl
u, and hp Psk

hr imply (hp, hq) Pc (hr, hq)],
[hp Rsl

u, hq Rsk
u, and hp Psl

hr imply (hq, hp) Pc (hq, hr)];
(c) for all h′, h′′ ∈ H, h′ 6= h′′, u Rsk

h′ and u Rsl
h′′ imply (u, u) Pc (h′, h′′).
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We denote the set of all possible weakly responsive preferences for couple c by RRc. A
couples market (RH , RC) is weakly responsive if all couples have weakly responsive preferences.
We denote the set of all weakly responsive couples markets by RR ≡

∏
h∈H Rh×

∏
c∈C RR

c.
Let (RH , RC) ∈ RR. Then, for all c = (sk, sl) the associated individual preferences

Rsk
and Rsl

are only uniquely determined for acceptable positions. In other words, if both
[Rsk

and Rsl
] and [R′sk

and R′sl
] satisfy the three weak responsiveness conditions, then for all

hp, hq ∈ H∪{u}, hpPsk
hqRsk

u implies hpP
′
sk
hqR

′
sk
u, and hpPsl

hqRsl
u implies hpP

′
sl
hqR

′
sl
u.

Given associated individual preferences for all students that are members of a couple, we
obtain an associated singles market (RH , RS(RC)) by replacing couples and their preferences
in (RH , RC) by individual students and their (possibly not uniquely determined) associated
individual preferences RS(RC). In what follows we further explore the relation between
stability in a couples market and stability in associated singles markets.

Remark 1. Associated singles markets and stability
Consider a weakly responsive couples market. Then, for each associate singles market the
set of acceptable hospitals is the same for each student. Moreover, students’ preferences over
acceptable hospitals are the same in each associated singles market. Hence, all associated
singles markets have the same set of stable matchings.

With a slight abuse of notation and in view of Remark 1, we use (RH , RS(RC)) to denote
some singles market associated with the couples market (RH , RC), although preferences in
RS(RC) may differ for unacceptable hospitals. The following existence theorem is due to
Klaus and Klijn (2005, Theorem 3.3) and Klaus et al. (2008).

Theorem 1. Stability for weakly responsive preferences
Let (RH , RC) ∈ RR. Then, any matching that is stable for an associated singles market
(RH , RS(RC)) induces2 a stable matching for the original couples market (RH , RC). In par-
ticular, there exists a stable matching for (RH , RC).

Apart from the stable correspondence S, we are interested in the following solutions on
RR. Let S̄ be the correspondence that assigns to each couples market (RH , RC) ∈ RR the set
of matchings that are stable for each associated singles market. By S∗ we denote the solution
that assigns to each couples market (RH , RC) ∈ RR the set of double stable matchings, i.e.,
the set of matchings that are stable for couples market (RH , RC) and that are stable for all
associated single markets (RH , RS(RC)) – we prove in Proposition 1 that S∗ is well-defined.
Hence, S∗ = S ∩ S̄ and, in particular, S∗ ⊆ S and S∗ ⊆ S̄.3

Two examples demonstrate that the two correspondences S and S̄ are logically unrelated,
i.e., neither correspondence includes the other. Klaus et al. (2008, Example 1.2) show that not
every matching that is stable for an associated singles market (PH , PS(PC)) is also stable for
the original couples market (RH , RC) ∈ RR. Hence S̄ 6⊆ S. Vice versa, Klaus and Klijn (2005,
Example 3.4) show that not every matching that is stable for a couples market (RH , RC) ∈ RR
is also stable for any of the associated singles market (RH , RS(RC)). The intuition is that
some matching that would be unstable in a singles market is now stable because a student
may not want to block it by taking the position of his/her partner. Therefore, S 6⊆ S̄.

2That is, any matching µ that is stable for (PH , PS(PC)) either is also stable for (PH , PC) or the only block-
ing coalitions are of the form ((sk, sl), (µ(sl), µ(sk))). However, then we can easily obtain a stable matching
µ′ from µ by satisfying all these blocking coalitions (see Klaus et al., 2008, for details).

3That is, for all (RH , RC) ∈ RR, S∗(RH , RC) = S(RH , RC) ∩ S̄(RH , RC), S∗(RH , RC) ⊆ S(RH , RC), and
S∗(RH , RC) ⊆ S̄(RH , RC).
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Proposition 1. “Double stability” for weakly responsive preferences
Let (RH , RC) ∈ RR. Then, there always exists a matching that is stable for the couples market
(RH , RC) ∈ RR and any associated singles market (RH , RS(RC)), i.e., S∗(RH , RC) 6= ∅.

Note that Proposition 1 implies Theorem 1 and is therefore a strengthening of Klaus and
Klijn (2005) (Klaus et al., 2008).

Proof: Let (RH , RC) ∈ RR and µ ∈ S(RH , RS(RC)) (note that S(RH , RS(RC)) 6= ∅). If
µ ∈ S(RH , RC), then S∗(RH , RC) 6= ∅. Thus, assume that µ 6∈ S(RH , RC).

First, we show that µ is individually rational for couples market (PH , PC). Let c =
(sk, sl) ∈ C. Since µ ∈ S(RH , RS(RC)), µ(sk)Rsk

u and µ(sl)Rsl
u. If (µ(sk), µ(sl)) = (u, u),

then individual rationality condition (i1) for (RH , RC) is trivially satisfied. If µ(sk) Psk
u

and µ(sl) = u, then by weak responsiveness condition (a), (µ(sk), u) Pc (u, u), which implies
individual rationality condition (i1) for (RH , RC). Similarly, µ(sk) = u and µ(sl)Psl

u implies
individual rationality condition (i1) for (RH , RC). Finally, assume µ(sk)Psk

u and µ(sl)Psl
u.

Then by weak responsiveness condition (b), (µ(sk), µ(sl)) Pc (µ(sk), u) Pc (u, u). Similarly,
(µ(sk), µ(sl))Pc (u, µ(sl))Pc (u, u). Since µ ∈ S(RH , RS(RC)), for all h ∈ H, µ(h)Rh ∅. Thus
individual rationality condition (i2) is also satisfied for (RH , RC).

Since µ is individually rational for couples market (PH , PC), µ 6∈ S(RH , RC) implies that
there exists a blocking coalition ((sk, sl), (hp, hq)) with (b1) (hp, hq)Pc (µ(sk), µ(sl)) and (b2)
[hp ∈ H implies sk Rhp µ(hp)] and [hq ∈ H implies sl Rhq µ(hq)].

Assume uPsk
hp and uPsl

hq. Then, by weak responsiveness condition (c), (u, u)Pc(hp, hq).
Using (b1) it follows that (u, u) Pc (µ(sk), µ(sl)), contradicting individual rationality of µ for
(PH , PC). Hence, hp Rsk

u or hq Rsl
u.

Assume that uPsk
hp and hq Rsl

u. Then by weak responsiveness condition (b), (u, hq)Pc

(hp, hq). Hence, ((sk, sl), (u, hq)) is a blocking coalition for µ. Similarly, if hp Rsk
u and

u Psl
hq, then (hp, u) Pc (hp, hq) and ((sk, sl), (hp, u)) is a blocking coalition for µ. Hence, it

is without loss of generality to assume that for blocking coalition ((sk, sl), (hp, hq)), hp Rsk
u

and hq Rsl
u. Suppose that hp Psk

µ(sk) or hq Psl
µ(sl). Then, according to (b2), (sk, hp) or

(sl, hq) can block µ in (PH , PS(PC)). Hence, µ(sk)Rsk
hp and µ(sl)Rsl

hq.
If hp 6= µ(sl), then weak responsiveness (b) implies (µ(sk), µ(sl))Rc (hp, µ(sl))Rc (hp, hq),

which contradicts (b1). If hq 6= µ(sk), then similarly we obtain a contradiction to (b2). In
both cases it follows that µ ∈ S(RH , RC); a contradiction. Note that the only case for which
the last argument does not apply is the case where hp = µ(sl) and hq = µ(sk). In other
words, all blocking coalitions are of the form ((sk, sl), (µ(sl), µ(sk))).

Then we can easily obtain a stable matching µ′ ∈ S(RH , RC) from µ by satisfying all these
blocking coalitions, i.e., for all couples (sk, sl) involved in a blocking coalition, µ′(sk) = µ(sl)
and µ′(sl) = µ(sk). (Note that up to this point we have proven Theorem 1.)

We complete the proof by showing that µ′ ∈ S(RH , RS(RC)). Assume that µ′ 6∈
S(RH , RS(RC)). Then there exists a blocking coalition (s, h) such that (b1) h Ps µ

′(s) and
(b2) s Ph µ

′(h).
Suppose that µ′(s) = µ(s) and observe that by construction of µ′, µ′(h)Rhµ(h) for all

h ∈ H. Then, hPs µ(s) and s Ph µ(h); contradicting µ ∈ S(RH , RS(RC)). Thus, assume that
s ∈ {sk, sl} where couple c = (sk, sl) was involved in a blocking coalition and µ′(sk) = µ(sl)
and µ′(sl) = µ(sk). Without loss of generality, assume that s = sk.

Then, µ ∈ S(RH , RS(RC)) implies (i) µ(sk) Psk
h and (ii) µ(sl) Psl

µ′(sl). By (b1) and
(i), µ(sk)Psk

h Psk
µ′(sk). This and individual rationality of µ implies h ∈ H \ {µ(sk), µ(sl)}.
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Recall that µ′(sk) = µ(sl) and µ′(sl) = µ(sk). Then, by weak responsiveness condition (b),
(µ(sk), µ(sl)) Pc (h, µ(sl)) Pc (h, µ(sk)) Pc (µ(sl), µ(sk)) = (µ′(sk), µ′(sl)); contradicting that
couple c = (sk, sl) was involved in a blocking coalition.

To summarize, for any weakly responsive couples market (RH , RC) either (i) there exists
µ ∈ S(RH , RS(RC)) such that µ ∈ S(RH , RC) or (ii) there exists µ′ ∈ S(RH , RC) such that
µ′ ∈ S(RH , RS(RC)). Hence, S∗(RH , RC) 6= ∅.

The proof of Proposition 1 in particular shows that the correspondence S∗ collects all
stable matchings in the couples market that are induced by some stable matching in an
associated singles market. As mentioned before, not any matching µ that is stable for a
singles market need to be stable for the couples market. In that case, blocking coalitions
consist of a couple and their employer(s), so that switching jobs within the couple makes
everyone better off. The matching µ′ that is obtained by such job switches is stable in the
couples market as well as in the singles markets.

Finally, Klaus and Klijn (2005, Theorem 3.5) (Klaus et al., 2008) showed that under a
restricted unemployment aversion condition, the domain of weakly responsive preferences is
maximal for the existence of stable matchings. In view of this result, the class of weakly
responsive preferences is an important preference domain for the study of stability in couples
markets.

In what follows, we are interested in the Nash implementability of correspondences S, S̄,
and S∗ for weakly responsive couples markets. We use the concept of full implementation,
meaning that any stable matching is achievable (in Nash equilibrium) by letting agents act
strategically. Given weakly responsive preferences, one straightforward idea to approach the
problem is to first decompose any couples market into an associated singles market and
then to apply previously established implementation results for singles market (e.g., Kara
and Sönmez, 1996). However, as argued above, the stable correspondence of the associated
singles markets and the stable correspondence for couples markets are not logically related.
So implementing the stable correspondence for associated singles markets is not the same as
implementing the stable correspondence for couples markets.4 In the next section we prove
that the stable correspondence is Nash implementable, but that neither the correspondence
S∗ nor the correspondence S̄ are Nash implementable.

3 Monotonicity and Nash Implementation

So far we have described all ingredients for the implementation environment, which is given by
the set of agents H∪C, the set of alternatives (matchings)M, and the set of preference profiles
(couples markets) R. Before focusing on Nash implementability of the stable correspondence,
we consider a necessary condition for this endeavor (Maskin, 1999): (Maskin) monotonicity.

In order to introduce (Maskin) monotonicity, we need some standard terms and notation.
For any agent i ∈ H∪C, preference relation Ri ∈ Ri, and matching µ ∈M, the lower contour
set of Ri at µ is Li(Ri, µ) := {µ′ ∈M | µ Ri µ

′}.
4Also note that when considering associated singles markets the players of the underlying games are hospitals

and students while in the original problem of couples markets the players of the underlying games are hospitals
and couples.
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Next, we define (Maskin) monotonic transformations. Loosely speaking, for any preference
profile R and any matching µ, if at a preference profile R′ all agents i ∈ H ∪C consider their
match µ(i) to be (weakly) better, then R′ is a (Maskin) monotonic transformation of R at µ.
Formally, for preference profiles R,R′ ∈ R and matching µ ∈M, R′ is a (Maskin) monotonic
transformation of R at µ if for all i ∈ H ∪C, Li(Ri, µ) ⊆ Li(R′i, µ). By MT (R,µ) we denote
the set of all monotonic transformations of R at µ. For agent i ∈ H ∪ C, preference relation
R′i ∈ Ri, and preference profile R ∈ R, we obtain preference profile (R′i, R−i) by replacing Ri

at R by R′i.
A solution ϕ is (Maskin) monotonic if a matching µ that is chosen at preference profile

R is also chosen at a preference profile R′ where µ is considered (weakly) better by all
agents. Formally, a solution ϕ : R0 ⇒M is (Maskin) monotonic if for all preference profiles
R,R′ ∈ R0 ⊆ R, µ ∈ ϕ(R) and R′ ∈MT (R,µ) imply µ ∈ ϕ(R′).

Theorem 2. The stable correspondence S is monotonic on any preference domain R0 for
which S is well-defined, i.e., for all R ∈ R0, S(R) 6= ∅.

Proof: Assume that couples’ preferences are such that the stable correspondence is well-
defined (e.g., couples’ preferences are weakly responsive). Consider a couples market R ∈ R0

and a stable matching µ ∈ S(R). Let R′ ∈ R0 be a monotonic transformation of R at µ, i.e.,
R′ ∈ MT (R,µ). In order to show that the stable correspondence is monotonic, we need to
show that µ ∈ S(R′).
Individual Rationality: matching µ is individually rational at couples market R′.
Let c = (sk, sl) ∈ C [h ∈ H]. Since µ ∈ S(R), by individual rationality (i1)
[(i2)], (µ(sk), u), (u, µ(sl)), (u, u) ∈ Lc(Rc, µ) [∅ ∈ Lh(Rh, µ)]. Since R′ ∈ MT (R,µ),
(µ(sk), u), (u, µ(sl)), (u, u) ∈ Lc(R′c, µ) [∅ ∈ Lh(R′h, µ)]. Hence, µ being individually ratio-
nal at R implies that µ is individually rational at R′.
No Blocking: no blocking coalition exists for matching µ at couples market R′.
Suppose, by contradiction, that a blocking coalition (c, (hp, hq)) with c = (sk, sl) exists.
Hence, (b1) (hp, hq) P ′c (µ(sk), µ(sl)) and (b2) [hp ∈ H implies sk R

′
hp
µ(hp)] and [hq ∈ H

implies sl R
′
hq
µ(hq)].

Suppose (µ(sk), µ(sl))Rc (hp, hq). Then, R′ ∈MT (R,µ) implies (µ(sk), µ(sl))R′c (hp, hq),
a contradiction to (b1). Hence, (b1) (hp, hq) Pc (µ(sk), µ(sl)).

Since µ is individually rational at R′, (µ(sk), µ(sl)) R′c (u, u), and therefore hp ∈ H or
hq ∈ H. Suppose hp ∈ H. If µ(hp) Php sk, then R′ ∈ MT (R,µ) implies µ(hp) P ′hp

sk,
a contradiction to (b2). Hence, sk Rhp µ(hp). Similarly, it follows that hq ∈ H implies
sl Rhq µ(hq). Thus, (b2) is satisfied for couples market R.

Since (b1) and (b2) are satisfied for couples market R, (c, (hp, hq)) = ((sk, sl), (hp, hq)) is
a blocking coalition for matching µ at couples market R. This contradicts µ ∈ S(R).

We have shown that µ is individually rational at R′ and that no blocking coalition exists
for matching µ at couples market R′. Hence, µ ∈ S(R′).

Note that in particular Theorem 2 is valid for weakly responsive couples markets. One
may be tempted to think that Theorem 2 for the weakly responsive preferences domain can
be proved by considering an associated singles market, applying previous results on mono-
tonicity of the stable correspondence (e.g., Kara and Sönmez, 1996) in such markets, and
then transferring the result back to the original couples market. However, there are two main
problems with this “proof strategy”.
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First, as discussed earlier, the correspondence of matchings that are stable for the as-
sociated singles markets, S̄ is not related to the correspondence S of stable matchings for
couples markets. Second, a monotonic transformation of a couples’ preference relation does
not necessarily involve two monotonic transformations of the corresponding singles’ preference
relations in an associated singles market. Hence, the monotonic transformations used in the
proof of Theorem 2 may not have corresponding monotonic transformations in an associated
singles market.

The next proposition shows that neither of the solutions S̄ or S∗ are monotonic.

Proposition 2. For weakly responsive couples markets, the correspondences of double stable
matchings S∗ and of stable matchings in singles markets S̄ are not monotonic.

Proof: Consider the following example with two hospitals and one couple in the market. We
define weakly responsive preferences R and R̄ as follows.

RH RC RS(RC)
h1 h2 (s1, s2) s1 s2

s1 s1 h2, h1 h1 h1

s2 s2 h1, h2 h2 h2

∅ ∅ h1, u u u
h2, u
u, h1

u, h2

u, u

R̄H R̄C RS(R̄C)
h1 h2 (s1, s2) s1 s2
s1 s1 h2, h1 h2 h1

s2 s2 h1, h2 h1 h2

∅ ∅ h2, u u u
h1, u
u, h1

u, h2

u, u

Note that at both couples markets R and R̄ complete unemployment (u, u) is the worst option.
Hence, the associated singles preferences RS(RC) and RS(R̄C) listed above are unique. Thus,

S(R) = S(R̄) = {(h1, h2), (h2, h1)} , S̄(R) = S∗(R) = {(h1, h2)} , S̄(R̄) = S∗(R̄) = {(h2, h1)} .
Now, define the matching µ by µ(c) = (h1, h2). Observe that the couple’s preferences R̄C

are obtained from RC by rearranging the lower contour set at µ(c). Since the hospitals’
preferences remain unaltered, R̄ ∈ MT (R,µ). However, µ ∈ S∗(R) and µ 6∈ S∗(R̄) imply
that S∗ is not monotonic. Indeed, in the associated singles market (R̄H , RS(R̄C)), µ can
be blocked by the pair (h2, s1). Since S∗ and S̄ coincide on R and R̄, we get the same
contradiction for S̄. Observe that the monotonic transformation of the couple’s preferences at
µ triggered a non-monotonic transformation of the associated singles preferences, rendering
the matching µ unstable in the singles market.

Next, given that stable matchings exist, an important question to ask is if a stable match-
ing indeed will be reached through decentralized market interactions. It is well-observed that
strategic behavior of agents often leads to undesirable (e.g., inefficient) economic outcomes.
We now analyze if it is possible to achieve stability in matching markets with couples through
strategic interaction. We use the concept of full implementation, meaning that any stable
matching is achievable (in Nash equilibrium) by letting agents act strategically. Next, we
introduce the (implementation-)theoretical framework for this analysis.

A mechanism is a pair (M, g), where M :=
∏

i∈N Mi denotes a set of messages or strategy
profiles and a function g : M −→ A called outcome function. The outcome function assigns to
each strategy profile a matching in M. Since g contains all relevant information, we identify
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a mechanism with its outcome function. A mechanism g together with a preference profile
R ∈ R induces a non-cooperative game in strategic form, denoted by Γ(g,R), as follows:
Each strategy profile m ∈ M is mapped to a matching g(m) ∈ M. These outcomes of
the game are then evaluated using the agents’ preferences at R. Note that the fact that
preferences in our context are ordinal does not limit the game theoretical analysis: either
use ordinal preferences at R to compare outcomes or choose a representing utility function
uR :M−→ Rl (l = |H ∪C|) of agents’ preferences at R and define the payoffs for Γ(g,R) by
the composition uR ◦ g : M −→ Rl. Note that the player set in Γ(g,R) consists of hospitals
and couples. Students, who form a couple, therefore have to coordinate on their strategies in
the game.

Mechanism g Nash implements solution ϕ (on R0), if for all R ∈ R0 we obtain
g(NE(Γ(g,R))) = ϕ(R), where NE(·) denotes the Nash equilibrium correspondence. Hence,
for a given preference profile R and any matching µ ∈ ϕ(R) there is a Nash equilibrium of
the induced game Γ(g,R) with outcome µ. Conversely, the outcome of any Nash equilibrium
of Γ(g,R) belongs to ϕ(R). We say that a solution ϕ is Nash implementable, if there exists a
mechanism that Nash implements it.

Loosely speaking, a mechanism g describes a list of rules for a game in strategic form.
These rules are independent of the true preference profile. Then, for any possible set of agents,
represented by their preference profile R, any (desired) matching in ϕ(R) can be achieved by
strategic interaction in equilibrium, thus can be obtained in a non-cooperative fashion.

Maskin (1977, 1999) showed that a Nash implementable solution necessarily has to be
monotonic. However, monotonicity alone is not a sufficient condition for Nash implementabil-
ity, unless it is paired with some other condition(s), e.g., no veto power. Moore and Repullo
(1990) provide a necessary and sufficient condition (condition µ) for Nash implementability,
which is a combination of monotonicity and a weaker form of no veto power. The stable
correspondence does not satisfy no veto power but we show next that it does satisfy Moore
and Repullo’s (1990) condition µ and hence can be implemented by a version of Maskin’s
(1999) mechanism (see Moore and Repullo, 1990, Appendix).

For any agent i ∈ H ∪ C, couples market R ∈ R, and subset M′ ⊆ M of matchings let
Bi(R,M′) denote the set of “best matchings for agent i in M′ with respect to preference
relation Ri”, i.e., Bi(R,M′) := {µ ∈M′ | µ(i)Ri µ

′(i) for all µ′ ∈M′}. Note that if µ ∈
Bi(R,M′) and µ′ ∈ M′ is such that µ(i) = µ′(i) then µ′ ∈ Bi(R,M′). That means that all
best matchings in Bi(R,M′) specify the same match for agent i.

Definition 1. Condition µ in Moore and Repullo (1990)
Let R0 ⊆ R. A solution ϕ : R0 ⇒M satisfies condition µ, if there exists a set L ⊆ M and
for each i ∈ H ∪C, R ∈ R0 and µ ∈ ϕ(R) there is a set Ti(R,µ) ⊆ L with µ ∈ Bi(R, Ti(R,µ))
such that for each R̄ ∈ R0 and j ∈ H ∪ C the following three conditions are satisfied:

(µ1) µ ∈
⋂

i∈H∪C

Bi(R̄, Ti(R,µ)) implies µ ∈ ϕ(R̄);

(µ2) µ∗ ∈ Bj(R̄, Tj(R,µ)) ∩
⋂

i∈H∪C\{j}

Bi(R̄,L) implies µ∗ ∈ ϕ(R̄);

(µ3) µ∗ ∈
⋂

i∈H∪C

Bi(R̄,L) implies µ∗ ∈ ϕ(R̄).

Moore and Repullo (1990, Theorem 1) show that in the presence of three or more agents a
solution ϕ is Nash implementable if and only if it satisfies condition µ.
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Theorem 3. If |H ∪ C| ≥ 3, then the stable correspondence S is Nash implementable.

Before we prove Theorem 3, we pause for an observation. As Moore and Repullo (1990)
pointed out, the sets L and Ti(R,µ) have an intuitive interpretation. The set L describes all
outcomes (matchings) that at most result from strategic interaction. Take the implementing
mechanism g, a preference profile R ∈ R0 and a Nash equilibrium in Γ(g,R), with stable
matching µ as outcome. Then the set Ti(R,µ) contains all possible outcomes (matchings)
that agent i might enforce when deviating from his equilibrium strategy. Due to the voluntary
participation requirement (individual rationality) that is build into the stability concept, an
agent can always enforce to stay unmatched. Suppose a couple is matched to two hospitals,
then there are three possibilities for the couple to enforce their individual rationality con-
straints: either of the students may wish to resign from the job while the other keeps his or
her match, or both of them resign at the same time. We introduce some notation to model
“deviations to unemployment” as described above.

Consider a matching µ′ ∈ M and a couple c = (sk, sl) ∈ C. Define the matching µ′(c,1)

obtained from matching µ′ when the first student of the couple switches to unemployment by
• µ′(c,1)(c) = (u, µ′(sl)),
• if µ′(sk) ∈ H, then µ′(c,1)(µ′(sk)) = ∅, and
• for all i ∈ (H ∪ C) \ {c, µ′(sk)}, µ′(c,1)(i) = µ′(i).

Define the matching µ′(c,2) obtained from matching µ′ when the second student of the couple
switches to unemployment by
• µ′(c,2)(c) = (µ′(sk), u),
• if µ′(sl) ∈ H, then µ′(c,2)(µ′(sl)) = ∅, and
• for all i ∈ (H ∪ C) \ {c, µ′(sl)}, µ′(c,2)(i) = µ′(i).

Finally, define the matching µ′(c,12) obtained from matching µ′ when both students of the
couple switch to unemployment by
• µ′(c,12)(c) = (u, u),
• if µ′(sk) ∈ H, then µ′(c,12)(µ′(sk)) = ∅,
• if µ′(sl) ∈ H, then µ′(c,12)(µ′(sl)) = ∅, and
• for all i ∈ (H ∪ C) \ {c, µ′(sk), µ′(sl)}, µ′(c,12)(i) = µ′(i).

Now, let µ be a stable matching at couples market R ∈ R. Then, for i ∈ H ∪ C we define
sets Ti(R,µ) as follows:

if i = h ∈ H, then Th(R,µ) := Lh(Rh, µ) (1)

if i = c ∈ C, then Tc(R,µ) :=
{
µ′ ∈ Lc(Rc, µ) | µ′(c,1), µ′(c,2) ∈ Lc(Rc, µ)

}
(2)

Thus, for any couple c the set Tc(R,µ) is obtained from the couple’s lower contour set
Lc(Rc, µ) by removing all matchings that admit a better match than µ(c) for c when one of
the students in the couple resigns from his/her job at µ. For instance, if µ̃ ∈ Lc(Rc, µ) with
µ̃(c) = (hp, hq) is such that (hp, u)Pcµ(c)Pc (hp, hq), then µ̃(c,2) 6∈ Lc(Rc, µ) and µ̃ 6∈ Tc(R,µ).
Since µ is stable for couples market R, any matching that assigns (u, u) to couple c is in
the lower contour set Lc(Rc, µ) and belongs to Tc(R,µ). Note that µ′ ∈ Tc(R,µ) implies
µ′(c,1), µ′(c,2), µ′(c,12) ∈ Tc(R,µ). Furthermore, as µ ∈ Tc(R,µ) (µ is stable) and Tc(R,µ) ⊆
Lc(Rc, µ), we conclude µ ∈ Bc(R, Tc(R,µ)) as required in condition µ.

Since µ is stable, all matchings that do not assign any student to hospital h are contained
in the lower contour set Lh(Rh, µ). Hence, for any hospital the definition of Th(R,µ) as
the hospital’s lower contour set Lh(Rh, µ) can be interpreted to be in the same spirit as the
definition of Tc(R,µ) for couple c.
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Proof of Theorem 3: Let the stable correspondence S be well-defined on R0 ⊆ R. We
show that S (given R ∈ R0 and µ ∈ S(R)) satisfies condition µ (Definition 1) with L = M
and sets Ti(R,µ) as defined in (1) and (2).

Let R, R̄ ∈ R0, µ ∈ S(R), and j ∈ H ∪ C. Then, condition µ reads as follows:

(µ1) µ ∈
⋂

i∈H∪C

Bi(R̄, Ti(R,µ)) implies µ ∈ S(R̄);

(µ2) µ∗ ∈ Bj(R̄, Tj(R,µ)) ∩
⋂

i∈H∪C\{j}

Bi(R̄,M) implies µ∗ ∈ S(R̄);

(µ3) µ∗ ∈
⋂

i∈H∪C

Bi(R̄,M) implies µ∗ ∈ S(R̄).

Step 0: Individual rationality at R̄.
Let µ ∈ S(R), µ′ ∈M, i ∈ H ∪C, and µ′ ∈ Bi(R̄, Ti(R,µ)). We prove that µ′ is individually
rational for i at couples market R̄.

First, consider a hospital h ∈ H. It is easy to see that any matching µ′ ∈
Bh(R̄, Th(R,µ)) = Bh(R̄, Lh(Rh, µ)) satisfies µ′(h) R̄h ∅, i.e., µ′ is individually rational for h
at couples market R̄.

Second, consider a couple c = (sk, sl) ∈ C. Since µ′ ∈ Bc(R̄, Tc(R,µ)), in particular,
µ′ ∈ Tc(R,µ). Hence, by the construction of the set Tc(R,µ), µ′(c,1), µ′(c,2), µ′(c,12) ∈ Tc(R,µ).
But µ′ is the best matching in Tc(R,µ) for c according to R̄c, which means µ′(c)R̄cµ

′(c,1)(c) =
(u, µ′(sl)), µ′(c)R̄cµ

′(c,2)(c) = (µ′(sk), u), and µ′(c)R̄cµ
′(c,12(c) = (u, u), i.e., µ′ is individually

rational for c at couples market R̄.
Finally, if µ′ ∈

⋂
i∈H∪C Bi(R̄, Ti(R,µ)), then (i1) and (i2) are satisfied and µ′ is individu-

ally rational for couples market R̄.
Step 1: S satisfies condition (µ1).
Note that by definition of the sets Tc(R,µ) for couples c ∈ C, we cannot straightforwardly
apply monotonicity (Theorem 2) to prove condition (µ1).5 Even though Moore and Re-
pullo (1990, p. 1089) argue that condition (µ1) is equivalent to monotonicity, for the sake of
completeness we provide a direct proof of (µ1).

The assumption µ ∈
⋂

i∈H∪C Bi(R̄, Ti(R,µ)) together with Step 0 implies individual ra-
tionality of µ at R̄. Assume that there exists a blocking coalition (c, (hp, hq)) with c = (sk, sl)
for µ at R̄ and denote by µB a matching that matches the blocking agents accordingly. Thus,
(b1) (hp, hq) P̄c (µ(sk), µ(sl)) and
(b2) [hp ∈ H implies sk R̄hp µ(hp)] and [hq ∈ H implies sl R̄hq µ(hq)].
Note that by individual rationality of µ at R̄, hp ∈ H or hq ∈ H.

Recall that for all h ∈ H, µ ∈ Bh(R̄, Lh(Rh, µ)). Thus, µ is among the best matchings in
Lh(Rh, µ) according to R̄h. Hence, Lh(Rh, µ) ⊆ Lh(R̄h, µ) and (b2) above implies
(b2)’ [hp ∈ H implies sk Rhp µ(hp)] and [hq ∈ H implies sl Rhq µ(hq)].

If (hp, hq) Pc (µ(sk), µ(sl)), then (c, (hp, hq)) is a blocking coalition for µ at R; a contra-
diction to µ ∈ S(R). Hence, (µ(sk), µ(sl)) Pc (hp, hq). Therefore, µB ∈ Lc(Rc, µ). Recall that
µ ∈ Bc(R̄, Tc(R,µ)) and (b1) (hp, hq) P̄c (µ(sk), µ(sl)). Thus, µB ∈ Lc(Rc, µ)\Tc(R,µ). Then,
by the definition of Tc(R,µ),
(b1)’ (hp, u) Pc (µ(sk), µ(sl)) or (u, hq) Pc (µ(sk), µ(sl)).

5Note that for all h ∈ H, Lh(Rh, µ) ⊆ Lh(R̄h, µ) (we explain this step in the proof of Step 1). Thus, if for
all c ∈ C, Lc(Rc, µ) ⊆ Lc(R̄c, µ), then R̄ ∈ MT (R,µ) and by Theorem 2, µ ∈ S(R̄). However, it is possible
that Tc(R,µ)  Lc(Rc, µ) and Lc(Rc, µ) * Lc(R̄c, µ), in which case R̄ 6∈MT (R,µ).
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Then, hp ∈ H or hq ∈ H in combination with (b1)’ and (b2)’ implies that (c, (hp, u)) or
(c, (u, hq)) is a blocking coalition for µ at R; a contradiction to µ ∈ S(R).
Step 2: S satisfies condition (µ2).
Since all agents, possibly except agent j, consider µ∗ as their best matching at R̄ there is no
blocking coalition. Using step 0, µ∗ is also individual rational, hence µ∗ ∈ S(R̄).
Step 3: S satisfies condition (µ3).
Since all hospitals and all couples obtain their best match in µ∗, there is no blocking coalition
and individual rationality at R̄ is trivially satisfied, hence µ∗ ∈ S(R̄).

Observe that we did not impose any restrictions on preferences in the proof of Theorem 3.
Therefore, the result is valid on any domain on which the existence of stable matchings is
guaranteed. In view of Theorem 1 we therefore immediately obtain the following corollary.

Corollary 1. Suppose |H ∪ C| ≥ 3. The stable correspondence S is Nash implementable for
weakly responsive couples markets.

Finally, by Proposition 2, neither of the solutions S̄ or S∗ are Nash implementable, as
neither of them is even monotonic.

Corollary 2. For weakly responsive couples markets, the correspondences of double stable
matchings S∗ and of stable matchings in singles markets S̄ are not Nash implementable.

4 Conclusion

We close our analysis with some remarks on why the Nash implementation of the stable
correspondence in couples markets is different from the Nash implementation of the stable
correspondence in singles markets.

We consider “full implementation”, which requires that any outcome in the solution,
i.e., any stable matching, is reachable via an equilibrium and any equilibrium yields a stable
matching.6 As discussed earlier, for each couples markets with (weakly) responsive preferences
there exists at least one associated singles markets. Any stable matching in an associated
singles market induces a stable matching in the couples market. However, some couples
markets have stable matchings that are not stable for any of the associated singles markets
(e.g., Klaus and Klijn, 2005, Example 3.4). Therefore, any implementation result for singles
markets could at best show that some stable matchings can be reached through strategic
behavior, but not all.

Therefore, one could think of using previous results for singles markets to weakly implement
the stable correspondence on the domain of couples markets. This means that any Nash
equilibrium outcome in the underlying games Γ(g,R) is a stable matching for the couples
market R, but that not all stable matchings have to be reached through Nash equilibria.7

However, as not all stable matchings in associated singles markets are also stable for the
couples market (e.g., Klaus et al., 2008, Example 1.2), we cannot guarantee that the outcome
of strategic interaction is stable.

6For a survey on different implementation concepts see Thomson (1996).
7Formally, the difference between full and weak implementation is to require g(NE(Γ(g,R)) ⊆ ϕ(R) instead

of g(NE(Γ(g,R)) = ϕ(R).
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The reason for this fundamental difference between couples and singles markets is that
multiple weak responsive preferences for a couple can be associated with the same pair of
students’ preferences. This causes a crucial difference in the formulations of monotonicity for
singles and for couples markets. For example, a monotonic transformation of a couple’s pref-
erence relation does not have to correspond to monotonic transformations of both students’
preferences. Consider for instance a couple c = (s1, s2) and preferences Rc and R′c such R′c
is a monotonic transformation of Rc at a matching µ. Thus, at R′c couple c finds its match
(µ(s1), µ(s2)) better than at Rc. This improvement can be caused by a transformation of
the students associates singles preferences where student s1 likes her match µ(s1) at R′c a lot
better than at Rc while her partner likes his match µ(s2) at R′c less than at Rc. Hence, R′c
can be a monotonic transformation of Rc at µ for c, while the associated singles preference
relation R′s2

is not a monotonic transformation of the associated singles preference relation
Rs2 at µ (see, e.g., the example in the proof of Proposition 2). So, on the one hand, requiring
that a stable matching is still stable after a monotonic transformation of preferences in a
couples market is a more demanding restriction than monotonicity for the associated singles
markets. On the other hand, there are possibly “more” stable matchings in a couples market,
which makes it “easier” for a matching to remain stable after a preference transformation.
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