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LINEAR HYPERFINITE LÉVY INTEGRALS

Abstract. This article shows that the nonstandard approach to stochastic
integration with respect to (C2 functions of) Lévy processes is consistent with
the classical theory of pathwise stochastic integration with respect to (C2 func-
tions of) jump-di�usions with �nite-variation jump part.

It is proven that internal stochastic integrals with respect to hyper�nite
Lévy processes possess right standard parts, and that these standard parts co-
incide with the classical pathwise stochastic integrals, provided the integrator's
jump part is of �nite variation. If the integrator's Lévy measure is bounded
from below, one can obtain a similar result for stochastic integrals with respect
to C2 functions of Lévy processes.

As a by-product, this yields a short, direct nonstandard proof of the gen-
eralized Itô formula for stochastic di�erentials of smooth functions of Lévy
processes.

1. Introduction
Stochastic analysis with Lévy-process integrators has received much attention in

the past decade, for at least two independent reasons. First, there is the remark-
able elegance and methodological richness of the theory of Lévy processes, due to
celebrated representation results via in�nitesimal generators of space-translation in-
variant semigroups or Fourier transforms of in�nitely divisible distributions (Lévy-
Khintchine formulae). The second reason lies in the demand of mathematical �-
nance for an analytic framework to employ jump di�usions in �nancial modelling
(cf. e.g. Barndor�-Nielsen, Mikosch and Resnick [9], Cont and Tankov [12] or
Schoutens [28]). There are now numerous expository works on Lévy processes in
general (e.g. Bertoin [11] or Sato [27]) and on its relationship with stochastic anal-
ysis in particular (cf. Applebaum [7]). See also Applebaum [6] for a survey article.

Recently, some authors have studied Lévy processes by means of Robinsonian
nonstandard analysis. Most notable therein is Lindstrøm's theory of hyper�nite
Lévy processes [21] which has inspired some other papers in this area (e.g. Lindstrøm
[22], Albeverio and Herzberg [3], as well as Albeverio, Fan and Herzberg [1]; di�erent
approaches to Lévy processes from the vantage point of nonstandard analysis are
Albeverio and Herzberg [4] as well as Ng [26]). This approach provides a rigorous
framework to treat Lévy processes as if they were random walks; in particular,
it entails a canonical de�nition of the (internal) stochastic integral with a Lévy
process as integrator, viz. as a hyper�nite�i.e. formally �nite�Riemann-Stieltjes
sum.

The classical route to a pathwise de�nition of the stochastic integral with respect
to a Lévy process with �nite-variation jump part addresses the di�usion part and
the jump part separately with di�erent methods. Whilst the Itô theory is employed
for the integral with respect to the di�usion part, an ordinary pathwise Riemann-
Stieltjes integral (or, equivalently, integration with respect to a signed measure)
consitutes the integral with respect to the jump part (cf. Millar [25]).

The present paper establishes a link between this classical pathwise approach to
Lévy stochastic integrals and the aforementioned nonstandard methodology.
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2 LINEAR HYPERFINITE LÉVY INTEGRALS

First, we will show that internal stochastic integrals with respect to Lipschitz
functions of hyper�nite Lévy processes Z admit a right standard part (Lemma 3.1).
Then, given a generating triplet of a real-valued Lévy process with �nite-variation
jump part (i.e. a triple consisting of the drift coe�cient, the di�usion coe�cient,
and the Lévy measure ν, which is assumed to satisfy

∫ 1

−1
|x| ν(dx) < +∞), we shall

construct its Lindstrøm lifting Z as a slight re�nement of Lindstrøm's representation
theorem [21]. This Z is a particularly simple hyper�nite Lévy process which admits
an internal jump-di�usion decomposition, where the internal jump part J can be
written as a di�erence of two increasing hyper�nite Lévy processes. This entails an
explicit jump-di�usion decomposition for the standard part ◦Z of Z as well.

The standard part of the internal stochastic integral with respect to J will be
shown to coincide pathwise with the jump part of the classical pathwise stochastic
integral with respect to ◦J (a consequence of Theorem 5.1). The di�usion part
of the internal stochastic integral equals, as was shown as early as Anderson's [5]
seminal paper, a path-continuous modi�cation of the Itô integral with respect to
the standard di�usion part. Combining the results for the drift and di�usion part,
we obtain the right standard part of the internal stochastic integral of Z to be the
the classical pathwise stochastic integral with respect to ◦Z.

Furthermore, under the assumption that the Lévy measure ν is concentrated
on a set that is bounded from below, we will consider the internal integral with
respect to twice continuously di�erentiable functions of Lindstrøm liftings Z. We
will prove (in Theorem 6.1) that its standard part equals the stochastic integral
with respect to the function of ◦Z, when de�ned via the generalized Itô formula
for Lévy integrals (cf. Applebaum [7]). As a by-product of this result, we obtain a
short nonstandard proof of this generalized Itô formula (Theorem 6.2).

Hence, the use of Lindstrøm li�ngs of Lévy processes allows for an intuitive
pathwise de�nition of the stochastic integral for Lévy processes as integrators.

A di�erent route to the characterization of internal stochastic integrals, even
with respect to general hyper�nite Lévy processes (rather than reduced liftings),
based on SL2-martingales, has been proposed by Lindstrøm [21, 22]. He proved
�rst that hyper�nite Lévy processes with �nite increments can be decomposed into
an internal drift part and a hyper�nite martingale part [21, Corollary 2.5] and
that hyper�nite Lévy processes have �nite increment except for a set of arbitrarily
small positive probability. Later, Lindstrøm [22] applies the SL2-martingale theory
of stochastic integration (cf. Lindstrøm [18, 19, 20], Hoover and Perkins [15, 16]
and Albeverio et al. [2]) to the martingale part. This re�ects the methodological
choice of important expositions on Lévy stochastic calculus, such as Applebaum's
[7], which also base their de�nition of Lévy stochastic integrals on L2-martingale
theory, since this does not require further restrictions on the Lévy measure. Our
approach is on the one hand more restrictive, but on the other hand much more
intuitive than SL2-martingale analysis. Our proofs do not utilize the internal drift-
martingale decomposition [22, Corollary 1.7], but they depend on a certain lifting
theorem (Theorem 4.5) which assumes that

∫ 1

−1
|x| ν(dx) < +∞. Of course, the

connection between nonstandard and classical pathwise stochastic integrals is an
interesting question in its own right.

The use of nonstandard methods is often dubbed �non-constructive�, because it
relies on the ultra�lter existence theorem (which is a consequence of the Axiom of
Choice, albeit not equivalent to it, cf. Banaschewski [8]). Notwithstanding this,
recent research has shown that there do exist de�nable nonstandard models of the
reals and even de�nable fully-�edged nonstandard universes, cf. Kanovei and Shelah
[17] as well as Herzberg [14]. (Herein, �de�nable� means de�nable over ZFC, i.e.
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Zermelo-Fraenkel set theory with the Axiom of Choice.) The nonstandard world is
hence much more accessible than popular opinion assumed only �ve years ago.

The present paper is organized as follows. Section 2 reviews hyper�nite Lévy
processes. In Section 3, we de�ne internal stochastic integrals with respect to
Lipschitz continuous functions of hyper�nite Lévy processes and prove that these
internal integrals (when viewed as internal stochastic processes) admit a right stan-
dard part. Section 4 reviews the Lévy-Khintchine formula and proves the existence
of Lindstrøm liftings whenever

∫ 1

−1
|x| ν(dx) < +∞. In Section 5, we show that the

standard part of stochastic integrals whose integrator is a Lindstrøm lifting coin-
cides with a pathwise de�nition of the stochastic integral for Lévy processes with a
�nite-variation jump part. Finally, Section 6 is devoted to stochastic integrals with
respect to smooth functions of hyper�nite Lévy processes and to the generalized
Itô formula for Lévy processes with �nite-variation jump part.

For all of this paper, we �x some hyper�nite probability space (Ω, P ). We de�ne
a time line by T := {n∆t : n ≤ N !}, wherein N ∈ ∗N \ N and ∆t := T

N ! for some
T ∈ Q>0. It follows that [0, T ] ∩Q ⊂ T.

This induces a standard probability space L(Ω) :=
(
Ω, σ

(
2Ω

)
, L (P )

)
, wherein 2Ω

denotes the internal algebra of internal subsets of Ω, σ
(
2Ω

)
denotes the smallest σ-

algebra containing 2Ω, and L(P ), the Loeb probability measure associated with P , is
the Carathéodory measure completion of the �nitely-additive measure A 7→ ◦P (A)
(cf. Loeb [23]).

2. Review of hyperfinite Lévy processes
Let d ∈ N. Consider an ∗Rd-valued internal map X : Ω× T. For any such map

X, we de�ne the in�nitesimal increment operator ∆ by
∀t ∈ T \ {T} ∆Xt := Xt+∆t −Xt.

Next we reproduce Lindstrøm's de�nition of a hyper�nite Lévy process [21, Def-
initions 1.1, 1.3]:

2.1. De�nition Let d ∈ N and let (Ω, P ) be a hyper�nite probability space. An
internal map X : Ω × T → ∗Rd is called a hyper�nite random walk if and only if
there exists a hyper�nite set A ⊂ ∗Rd and a hyper�nite set {pa}a∈A ⊂ ∗R≥0 such
that

∑
a∈A pa = 1 and X satis�es all of the following properties:
• X0 = 0.
• The internal random variables ∆X0, . . . ,∆XT−∆t are ∗-independent under
P .

• For all t ∈ T \ {T}, P {∆Xt = a} = pa.
A a hyper�nite random walk X is called hyper�nite Lévy process if
L(P )

[⋂
t∈T {Xt �nite}

]
= 1.

The two most well-known examples of hyper�nite Lévy processes are Anderson's
[5] random walk and Loeb's internal Poisson process [23]. The reduced lifting of any
given Lévy process, constructed by Albeverio and Herzberg [3], is a particularly
simple hyper�nite Lévy process.

Through its right standard part, every hyper�nite Lévy processX gives rise to an
ordinary Rd-valued stochastic process on the probability space

(
Ω, σ

(
2Ω

)
, L (P )

)
(cf. Lindstrøm [21, Theorem 6.6]). Let us brie�y recall how right standard parts
are de�ned (cf. Albeverio et al. [2, De�nitions 4.2.9, 4.2.11], Lindstrøm [21, De�-
nitions 6.1, 6.2]):

2.2. De�nition Consider an internal function F : T → ∗R. Let r ∈ [0, T ] and
α ∈ R. α is the S-right limit (the S-left limit, respectively) of F at r if and only if
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for all ε ∈ R>0 there exists some δ ∈ R>0 such that for all u ∈ ∗(r, r + δ) ∩ T with
u 6' r (for all u ∈ ∗(r − δ, r) ∩ T with u 6' r, respectively), one has |F (u)− α| < ε.
In this case, we denote α by S- lims↓r F (s) (by S- lims↑r F (s), respectively).
F is said to have S-one-sided limits if and only if it has an S-right limit and an

S-left limit at all r ∈ [0, T ].
If F has S-one-sided limits, then the function ◦F : t 7→ S- lims↓t F (s) will be

called the right standard part of F .
Finally, let W : Ω × T → ∗R be an internal stochastic process on an internal

probability space (Ω, P ) and assume that for L(P )-almost all ω, the path W (ω) :
t 7→ Wt(ω) has S-one-sided limits. Then the stochastic process ◦W : (ω, t) 7→
S- lims↓tWs(ω) (which is well-de�ned for L(P )-almost all ω) will be called the right
standard part of W .
2.3. Remark Suppose F has S-one-sided limits. For all r ∈ [0, T ), there exists
some t ∈ ∗(r, T ] ∩ T such that F (t) ' ◦F (r).
Proof. Let r ∈ [0, T ). The remark is a consequence of �overspill�: For all n ∈ N,
the internal formula

∃m ≥ n ∃t ∈ ∗
(
r, r +

1
m

)
|F (t)− F (r)| < 1

n

is true. Therefore, it must be true also for some n ∈ ∗N \ N. ¤
Since T was chosen such that [0, T ] ∩ Q ⊂ T, the de�nition of a right standard

part and the density of Q in R immediately yield:
2.4. Remark Suppose F has S-one-sided limits. The limit limQ3s↓t ◦ (F (s)) exists
and equals ◦F (t) for all t ∈ [0, T ) ∩Q.

As noted above, Lindstrøm [21, Theorem 6.6] showed that for L(P )-almost all
ω, the path X(ω) : t 7→ Xt(ω) has S-one-sided limits. Hence, the right standard
part ◦X exists. Moreover, due to Lindstrøm [21, Theorem 6.6], it is an Rd-valued
Lévy process on the Loeb probability space

(
Ω, σ

(
2Ω

)
, L (P )

)
:

2.5. De�nition A stochastic process x : Γ× [0, T ] → Rd on some probability space
(Γ, C, Q) is called Lévy process if and only if it has all of the following properties:

• x0 = 0
• For n ∈ N and 0 ≤ t0 ≤ · · · ≤ tn ≤ T , the random variables xt1 −
xt0 , . . . , xtn − xtn−1 are independent under Q.

• For all s ≤ t ≤ T , xt − xs has the same distribution as xt−s
• For Q-almost all ω ∈ Γ, the sample path x(ω) : t 7→ xt(ω) is right-
continuous with left limits (càdlàg).

In other words, a Lévy process is a stochastic process, starting in zero, with sta-
tionary and independent increments, almost all of whose paths are right-continuous
with left limits.

3. Stochastic integration with respect to hyperfinite Lévy processes
Let m ∈ N. For every pair of internal processes W,Y : Ω × T → ∗Rm, one can

de�ne the hyper�nite stochastic integral as an internal Riemann-Stieltjes sum via

(1) ∀ω ∈ Ω ∀t ∈ T \ {T}
∫ t

0

Y (ω) dW (ω) :=
∑
u<t

Yu(ω)∆Wu(ω).

In this section, we will assume that X is a ∗Rd-valued hyper�nite Lévy process,
and that W depends on X through W = f(X). We will impose more assumptions
on f and Y , and therefore we review some terminology here.

First, we call f : ∗Rd → ∗Rm S-continuous if and only if
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• f is internal,
• for all �nite x, y ∈ ∗Rd with x ' y, one has f(x) ' f(y), and
• f(x) is �nite for all �nite x ∈ ∗Rd.

(Some authors drop the last requirement; we use the de�nition employed by Lind-
strøm [22, discussion preceding De�nition 3.1] here.) For instance, the ∗-image of
a standard continuous function f : Rd → Rm is S-continuous.

If f : ∗Rd → ∗Rm is S-continuous, then for all �nite a ∈ ∗Rd overspill yields
(2) ∀ε ∈ R>0 ∃δ ∈ R>0 ∀x ∈ ∗Rd (|x− a| < δ ⇒ |f(x)− f(a)| < ε) .

Later on, we will require f to be even S-Lipschitz continuous.
This de�nition can be generalized by replacing ∗Rd by some S-dense subset of a

∗-interval, for instance by T. Hence, an internal map F : T→ ∗Rm is S-continuous
if and only if F (t) ' F (u) for all u ' t ∈ T, and F (t) is �nite for all t ∈ T.

We shall assume that the internal stochastic process Y (the integrand) is S-
continuous in the sense that for almost all ω ∈ Ω, the path Y (ω) : T → Ω is
S-continuous . Hence, almost all paths of Y are bounded by a positive real.

The �rst result gives a criterion for
∫
Y df(X) to have a standard part and hence

to be meaningful as a stochastic process in the standard sense.
3.1. Lemma Consider an S-continuous ∗Rm-valued internal process Y and an S-
continuous f : ∗Rd → ∗Rm. The internal process

(∫ t
0
Y df(X)

)
t∈T

has S-one sided

limits. Thus, it has a right standard part, denoted
◦∫
Y df(X).

Proof. Consider any r ∈ [0, T ]. Choose some ω such that the internal path X(ω)
has S-one sided limits (the set of such ω has probability 1 by Lindstrøm [21, Propo-
sition 6.3]). By the de�nition of an S-right limit (cf. Lindstrøm [21, De�nitions 6.1-
6.2]), there exists for all ε′ ∈ R>0 some δ ∈ R>0 such that for all u, v ∈ T with
u, v 6' r and u, v ∈ (r, r + δ), one has |Xu(ω)−Xv(ω)| < ε′. Let us now consider
some ε ∈ R>0. If ε′ ∈ R>0 has been chosen small enough, the S-continuity of f
(see Formula (2)) yields that |f (Xu(ω))− f (Xv(ω))| < ε and hence

(3)
∣∣∣∣
∫ u

0

Y df(X)−
∫ v

0

Y df(X)
∣∣∣∣ < εmax

t∈T
|Yt(ω)|

for all u, v ∈ T with u, v 6' r and u, v ∈ (r, r + δ). However, maxt∈T |Yt(ω)|
is �nite. (For, the path Y (ω) : T → ∗Rm is S-continuous and therefore S-
bounded on T.) Therefore, Estimate (3) already shows that the internal path
t 7→ ∫ t

0
Y (ω) df (X(ω)) has an S-right limit for L(P )-a.e. ω ∈ Ω. Analogously,

one can prove that the internal path t 7→ ∫ t
0
Y (ω) df (X(ω)) has an S-left limit for

L(P )-a.e. ω ∈ Ω. ¤
For the following Lemma, we shall impose additional assumptions:
• m = 1.
• The integrand Y is S-bounded, i.e. there exists some MY ∈ R>0 (referred

to as the S-bound of Y ) such that L(P )
[⋂

t∈T {|Yt(ω)| ≤MY }
]

= 1.
• f : ∗Rm≥0 → ∗R is S-Lipschitz continuous, i.e. f is internal and there exists

some Cf ∈ R>0 (referred to as Lipschitz constant of f), such that for all
�nite x, y ∈ ∗Rd, one has |f(x)− f(y)| ≤ Cf |x− y|.

• f(X) is increasing, i.e. P {f (Xu) ≤ f (Xt)} = 1 for all u ≤ t ∈ T.
For example, f(X) will be increasing if d = 1 and f : ∗R → ∗R is increasing and
P {∆X0 ≥ 0} = 1 (or A ⊆ ∗R≥0).
3.2. Lemma Suppose Y is an S-bounded S-continuous ∗R-valued internal stochas-
tic process. Suppose that f : ∗Rd → ∗R is S-Lipschitz continuous and that f(X) is
increasing. Then
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(1) For all ε ∈ R>0 there exists some δ ∈ R>0 such that for all u, v ∈ T with
|u− v| < δ one has

P

{∣∣∣∣
∫ v

0

Y df(X)−
∫ u

0

Y df(X)
∣∣∣∣ ≥ ε

}
≤ ε.

(2) For all t ∈ T, one has ◦
(∫ t

0
Y df(X)

)
=

◦∫ ◦t
0
Y df(X) with L(P )-probability

1.
(3) One has

L(P )
{
∀t ∈ [0, T ] ∩Q ∀s ∈ T

(
s ' t⇒

∫ s

0

Y df(X) '
◦
∫ t

0

Y df(X)
)}

= 1.

This Lemma generalizes a �nding by Lindstrøm [21, Lemma 6.4] who proved a
similar result for the special case where

∫
Y df(X) is a hyper�nite Lévy process

(i.e. for m = d, f = id and Y = 1).

Proof of Lemma 3.2. In order to prove the �rst assertion, let ε ∈ R>0 be given.
Note that

P

{∣∣∣∣
∫ v

0

Y df(X)−
∫ u

0

Y df(X)
∣∣∣∣ ≥ ε

}

= P

{∣∣∣∣
∫ v

u

((Y ∨ 0) + (Y ∧ 0)) df(X)
∣∣∣∣ ≥ ε

}

= P

{∣∣∣∣
∫ v

u

(Y ∨ 0) df(X)
∣∣∣∣ +

∣∣∣∣
∫ v

u

(Y ∧ 0) df(X)
∣∣∣∣ ≥ ε

}

≤ P

{∣∣∣∣
∫ v

u

(Y ∨ 0) df(X)
∣∣∣∣ ≥

ε

2

}
+ P

{∣∣∣∣
∫ v

u

(Y ∧ 0) df(X)
∣∣∣∣ ≥

ε

2

}
.

Therefore, we only need to prove the �rst assertion for nonnegative Y .
Furthermore, we may assume that X has �nite increments, since there

exists some hyper�nite Lévy process X̄ with �nite increments such that
P

[⋃
t∈T

{
Xt 6= X̄t

}] ≤ ε
2 (cf. Lindstrøm [21, Proposition 3.4]). But for hy-

per�nite Lévy processes with �nite increments, both µX := 1
∆tE [∆X0] and

σX := 1
∆tE

[
|∆X0|2

]
are �nite (cf. Lindstrøm [21, Corollary 2.4]). Furthermore,

(4) ∀t ∈ T E
[
|Xt|2

]
= σ2

Xt+ |µX |2 t (t−∆t)

(cf. Lindstrøm [21, Lemma 1.2]). On the other hand, when we apply Chebyshev's
inequality and exploit that Y is nonnegative and that ∆f(X)u ≥ 0 for all u ∈ T
with probability 1, we obtain

P

{∣∣∣∣
∫ v

0

Y df(X)−
∫ u

0

Y df(X)
∣∣∣∣ ≥ ε

}
= P





∣∣∣∣∣∣
∑

u≤t<v
Yt∆f(X)t

∣∣∣∣∣∣
≥ ε





≤ ε−2E




∣∣∣∣∣∣
∑

u≤t<v
Yt∆f(X)t

∣∣∣∣∣∣

2

 ≤ ε−2E




∣∣∣∣∣∣
MY

∑

u≤t<v
∆f(X)t

∣∣∣∣∣∣

2



≤ ε−2M2
Y E

[
|f (Xv)− f (Xu)|2

]
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(assuming without loss of generality u < v), wherein MY denotes the S-bound of
Y . Denoting the Lipschitz constant of f by Cf , we get

P

{∣∣∣∣
∫ v

0

Y df(X)−
∫ u

0

Y df(X)
∣∣∣∣ ≥ ε

}

≤ ε−2M2
Y C

2
fE

[
|Xv −Xu|2

]
= ε−2M2

Y C
2
fE

[
|Xv−u|2

]
.

By Equation (4), we arrive at

P

{∣∣∣∣
∫ v

0

Y df(X)−
∫ u

0

Y df(X)
∣∣∣∣ ≥ ε

}

≤ ε−2M2
Y C

2
f

(
σ2
X(v − u) + |µX |2 (v − u) (v − u−∆t)

)

≤ ε−2M2
Y C

2
f

(
σ2
Xδ + |µX |2 δ2

)
−→ 0 as δ ↓ 0

Therefore, by choosing δ su�ciently small, we can ensure that
P

{∣∣∫ u
0
Y df(X)− ∫ v

0
Y df(X)

∣∣ ≥ ε
} ≤ ε

2 .
The second assertion follows from the uniqueness of limits in probability and the

de�nition of S-right limits: If t ∈ T and {un}n∈N ⊆ T is such that t < un for all
n ∈ N and ◦un ↓ ◦t as n→∞, then ◦ (∫ un

0
Y df(X)

)
converges to ◦

(∫ t
0
Y df(X)

)

in L(P )-probability by the �rst assertion of the Lemma. On the other hand,
◦∫
Y df(X) being an S-right limit pathwise and hence pathwise right-continuous,

one has ◦
(∫ un

0
Y df(X)

) −→
◦∫ t

0
Y df(X) as n→∞ L(P )-almost surely and hence

also in L(P )-probability. Therefore,
◦∫ t

0
Y df(X) = ◦

(∫ t
0
Y df(X)

)
with L(P )-

probability 1.
The last statement in the Lemma is an immediate consequence of the second

assertion. ¤

In particular, when we put m = d and f = id in Lemmas 3.1 and 3.2, we obtain
the following results:

3.3. Lemma Consider an S-continuous ∗Rd-valued internal process Y . The in-
ternal process

(∫ t
0
Y dX

)
t∈T

has S-one sided limits. Thus, it has a right standard

part, denoted
◦∫
Y dX.

3.4. Lemma Let Y be an S-bounded S-continuous ∗R-valued internal process, and
assume that X is an ∗R-valued increasing hyper�nite Lévy process (i.e. A ⊆ ∗R≥0).

(1) Let ε ∈ R>0. There exists some δ ∈ R>0 such that for all u, v ∈ T satisfying
|u− v| < δ one has

P

{∣∣∣∣
∫ v

0

Y dX −
∫ u

0

Y dX
∣∣∣∣ ≥ ε

}
≤ ε.

(2) For all t ∈ T, one has ◦
(∫ t

0
Y dX

)
=

◦∫ ◦t
0
Y dX with L(P )-probability 1.

(3) One has

L(P )
{
∀t ∈ [0, T ] ∩Q ∀s ∈ T

(
s ' t⇒

∫ s

0

Y dX =
◦
∫ t

0

Y dX
)}

= 1.

In Section 4, increasing hyper�nite Lévy processes will play an important role.
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4. The Lévy-Khintchine formula and Lindstrøm liftings
The Lévy-Khintchine formula says that for all one-dimensional Lévy processes

z there exist two real numbers σ > 0 and γ as well as some Borel measure ν on R
with ν{0} = 0 and

∫ (
1 ∧ x2

)
ν(dx) < +∞ such that the Fourier transform of z1 is

given by
(5)
∀u ∈ R E [exp (iuz1)] = exp

(
iγu− σ2u2

2
+

∫ (
exp (iux)− 1− iuxχ(−1,1)

)
ν(dx)

)
.

Given ν, the parameters γ, σ, ν are uniquely determined. Any Borel measure ν on
R with ν{0} = 0 and

∫ (
1 ∧ x2

)
ν(dx) < +∞ is called Lévy measure.

Conversely, given such γ, σ, ν, there exists a Lévy process z satisfying Equation
(5), and if some Lévy process z′ also satis�es (5), then z and z′ have the same
�nite-dimensional distributions.

Thus, the Lévy-Khintchine formula yields a one-to-one correspondence, which
motivates the following de�nition:

4.1. De�nition A triple (γ, σ, ν), consisting of a real γ, a positive real σ and a
Lévy measure ν is called the generating triplet of some real-valued Lévy process z
if and only if the Lévy-Khintchine formula (5) holds. In this case, we also say that
the process z corresponds to the generating triplet (γ, σ, ν).

Given a generating triplet (γ, σ, ν), let z be a corresponding Lévy process. Let
us assume that

∫ +1

−1
|x| ν(dx) < +∞. In this case, after a change of γ, the Lévy-

Khintchine formula can be simpli�ed to

∀u ∈ R E [exp (iuz1)] = exp
(

iγu− σ2u2

2
+

∫
(exp (iux)− 1) ν(dx)

)
.

Moreover, if
∫ +1

−1
|x| ν(dx) < +∞, the Lévy-Itô decomposition (cf. e.g. Apple-

baum [7, Theorem 2.4.16]) yields the existence of a Lévy process j, as well as a
normalized Wiener process b such that
(6) ∀t ∈ [0, T ] zt = σbt + γt+ jt almost surely
and

(7) ∀u ∈ R E [exp (iuj1)] = exp
(∫

(exp (iux)− 1) ν(dx)
)
.

Furthermore, this j, called the jump part of z, has then �nite variation (cf. Bertoin
[11, p. 15] or Sato [27, Theorem 21.9(i)]). Conversely, if

∫ +1

−1
|x| ν(dx) = +∞, then

z does not have �nite variation (cf. Sato [27, Theorem 21.9(ii)])
In general, we shall refer to any Lévy process j satisfying Equation (7) for some

Lévy measure with
∫ +1

−1
|x| ν(dx) < +∞ as a pure-jump �nite-variation Lévy process

with Lévy measure ν.
Lindstrøm has shown that for any given generating triplet (γ, σ, ν), there exists

some hyper�nite Lévy process whose standard part corresponds to that triplet.
We shall now slightly re�ne this result. Herein, we need a couple of de�nitions.

4.2. De�nition By an Andersonian random walk on the internal probability space
(Ω, P ), we mean a hyper�nite random walk B with increment set

{
−√∆t,

√
∆t

}

and transition probabilities p√∆t = p−√∆t = 1
2 .

As Anderson [5] showed, any such Andersonian random walk is a normalized
Wiener process.
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4.3. De�nition A hyper�nite random walk is called increasing if and only if its
increment set A is a subset of ∗R≥0.

4.4. De�nition Consider a generating triplet (γ, σ, ν). An ∗R-valued hyper�nite
Lévy process is called a Lindstrøm lifting based on (γ, σ, ν) if and only if

• ◦Z corresponds to that triplet and
• there are two increasing hyper�nite Lévy processes J+ and J− and an An-
dersonian random walk B such that

(8) ∀t ∈ T Zt = γt+ σBt + J+
t − J−t

A Lindstrøm lifting is called pure if and only if ◦J+ and ◦J− are pure-jump
�nite-variation Lévy processes.

In the de�nition of a Lindstrøm lifting, J+ and J− are increasing and �nite for
almost all paths (as they are hyper�nite Lévy processes). Therefore, their standard
parts are always �nite-variation Lévy processes.

4.5. Theorem Consider a generating triplet (γ, σ, ν) and assume
∫ +1

−1
|x| ν(dx) <

+∞. Then there exists a pure Lindstrøm lifting based on (γ, σ, ν).

Proof of Theorem 4.5. Lindstrøm [21, Theorem 9.1] has established the existence
of some hyper�nite Lévy processes Z and J as well as an Andersonian random walk
B such that

∀t ∈ T Zt = γt+ σBt + Jt,

and such that ◦Z corresponds to (γ, σ, ν) and j := ◦J has Lévy measure ν.
We next de�ne

∀t ∈ T J+
t :=

∑
s<t

∆Js≥0

∆Js

and
∀t ∈ T J−t := −

∑
s<t

∆Js≤0

∆Js.

Then, J+ and J− are hyper�nite random walks, and obviously they are increasing.
We shall now prove that J+ and J− are hyper�nite Lévy proceses, too. Herein,

we shall utilize Lindstrøm's characterization of hyper�nite Lévy processes [21, The-
orem 4.3]. Let us, for this sake, denote the set of increments of J by A and its set of
transition probabilities by {pa}a∈A. Let us put A+ := A∩∗R≥0 and A− := A∩∗R≤0

as the sets of increments for J+ and J−, respectively. The corresponding sets of
transition probabilities for J+ and J− are given by

∀a ∈ A+ \ {0} p+
a := pa, p+

0 := 1−
∑

a′∈A+\{0}
p+
a′

and
∀a ∈ A− \ {0} p−a := pa, p−0 := 1−

∑

a′∈A+\{0}
p−a′ ,

respectively. Conditions (ii) and (iii) are obviously satis�ed by the pairs
A+, {p+

a }a∈A+ and A−, {p−a }a∈A− since they are satis�ed by the pair A, {pa}a∈A
(as J is a hyper�nite Lévy process). In order to check Condition (i) of Lindstrøm's
characterization of hyper�nite Lévy processes [21, Theorem 4.3], it is enough to
prove that 1

∆t

∑
|a|≤k |a| pa is �nite for all �nite k. This can be seen as follows.

First, recall from the proof of Lindstrøm's representation result [21, Proof of
Theorem 9.1] how A and {pa}a∈A were constructed. Partition the set BN :={
x ∈ ∗R : 1

N ≤ |x| ≤ N
}
by means of a lattice of in�nitesimal spacing, and choose
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simultaneously and internally one element from each partition class. We may as-
sume that this element has been chosen minimally in norm. The resulting set is A.
Denote for any a ∈ A its partition class by [a] and de�ne pa = ∗ν ([a])∆t.

Since ν is by assumption a Lévy measure satisfying
∫ +1

−1
|x| ν(dx) < +∞, we

have
∫ k
−k |x| ν(dx) < +∞ and therefore the �niteness of

∫ k
−k |x| ∗ν(dx) for all �nite

k. This implies that
1

∆t

∑
a∈A
|a|≤k

|a| pa =
∑
a∈A
|a|≤k

|a| ∗ν ([a]) ≤
∫ k

−k
|x|∗ν(dx)

(where we exploit that a is minimal in norm in [a]), wherein the right-hand side
is �nite. Hence, 1

∆t

∑
a∈A
|a|≤k

|a| pa is �nite for all �nite k, and therefore, Condition
(i) follows even for the pairs A+, {p+

a }a∈A+ and A−, {p−a }a∈A− of increments and
transition probabilities for J+ and J−. Thus, J+ and J− are indeed hyper�nite
Lévy processes.

Finally, we have to prove that j+ := ◦J+ and j− := ◦J− are pure-jump �nite-
variation processes.

From the hyper�nite Lévy-Khintchine formula (cf. Lindstrøm [21, Theorem 8.1]),
we can derive the following approximate identity for E

[
exp

(
iyJ+

1

)]
for all �nite

y ∈ ∗R:

E
[
exp

(
iyJ+

1

)]
= exp

(
i
∫

{a : |a|>η}

(
eiya − 1

)
ν̂+(da)

)

wherein
ν̂+(B) :=

1
∆t

∑
a∈B
a>0

pa

for all internal B ⊆ ∗R. Using basic Loeb measure theory, this leads to

(9) ∀u ∈ R E
[
exp

(
iuj+1

)]
= exp

(
i
∫ (

eiux − 1
)
νj+(dx)

)
,

wherein
νj+(C) := lim

ε↓0
L

(
ν̂+

) (
st−1 {x ∈ C : |x| ≥ ε})

for all Borel-measurable C ⊆ R. Now, if we de�ne ν̂ : B 7→ 1
∆t

∑
a∈B pa, we have

ν̂+(B) ≤ ν̂(B) for all internal B ⊆ ∗R and therefore,
(10) νj+(C) ≤ νj(C) := lim

ε↓0
L (ν̂)

(
st−1 {x ∈ C : |x| ≥ ε})

for all Borel-measurable C ⊆ R. However, a comparison between the hyper�nite
Lévy-Khintchine formula (cf. Lindstrøm [21, Theorem 8.1]) and the standard Lévy-
Khintchine formula shows (using basic Loeb measure theory) that νj must be the
Lévy measure of ◦J , which is just ν. Thus, we have proven that νj+(C) ≤ ν(C) for
all Borel-measurable C ⊆ R and conclude that

∫ +1

−1
|x|νj+(dx) < +∞. In light of

Equation (9), we obtain that j+ is indeed a pure-jump �nite-variation process.
Symmetrically, one can prove that j− is a pure-jump �nite-variation process,

too. ¤

Any pure Lindstrøm lifting entails an explicit decomposition of z := ◦Z as
(11) ∀t ∈ [0, T ] zt = γt+ σbt + j+t − j−t ,

wherein b := ◦B, j+ := ◦J− and j− := ◦J−. This is in accordance with Equation
(6), since the j therein is a �nite-variation process and hence can be written as the
di�erence of two increasing processes. These increasing processes can be chosen as
Lévy processes: Just compare Equations (11) and (6), and note that j+ := ◦J−
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and j− := ◦J− are Lévy processes. It follows that they are bounded. Furthermore,
all their paths are right-continuous with left limits�see our de�nition of a Lévy
process. (In fact, the existence of a càdlàg modi�cation follows already from the
continuity of the semigroup of �nite-dimensional distributions and hence it is a
property exhibited by all Feller processes, cf. e.g. Sato [27].)
4.6. Remark A di�erent Lindstrøm lifting based on (γ, σ, ν) and hence an alter-
native proof of Theorem 4.5 (which then leads to a decomposition in the form of
Equation (11)) can be obtained as follows. For su�ciently small ∆t, Albeverio
and Herzberg [3] (building on previous work by Lindstrøm [21]) proved the existence
of a hyper�nite Lévy process Z whose right standard part corresponds to (γ, σ, ν)
and which can be written the sum of two ∗-independent hyper�nite Lévy processes,
one being a multiple σB of an Andersonian random walk with some hyperreal drift
γ, and the other one being a superposition J of hyper�nitely many Loeb Poisson
processes.

In other words,
(12) ∀t ∈ T Zt = σBt + γt+ Jt,

wherein B and J are independent and J is the internal superposition of hyper�nitely
many internal Poisson processes. (That is, the distribution of ∆J is the convolution
of M ∈ ∗N independent random variables In, wherein for each n < M , In is
distributed according to (1− λn) δ0 + λnδxn , where the xn are pairwise distinct
elements of ∗R \ {0} and {λn : n < M} ⊂ ∗R>0.) Such a hyper�nite Lévy process
Z is called a reduced lifting of its right standard part z := ◦Z.
J can be written as the di�erence of two independent hyper�nite Lévy processes

J = J+ − J−, such that both J+ and J− are increasing: In order to de�ne J+,
we let the internal distribution of ∆J+ under P be given by the convolution of
all internal random variables In such that xn > 0, and in order to de�ne J−,
we let the internal distribution of ∆J− under P be given by the convolution of
all internal random variables −In for which xn < 0. Since ∆Jt = ∆J+

t − ∆J−t
for all t ∈ T, one obviously has J = J+ − J−, and for each ω ∈ Ω, the paths
J+
· (ω) : t 7→ J+

t (ω) and J−· (ω) : t 7→ J−t (ω) are increasing. In order to verify
that J+ and J− are indeed hyper�nite Lévy processes (and not merely hyper�nite
random walks), we can proceed as in the proof of Theorem 4.5, by combining the
assumption

∫ +1

−1
|x| ν(dx) < +∞ with Lindstrøm's characterization of hyper�nite

Lévy processes [21, Theorem 4.3].

5. Stochastic integration with respect to Lindstrøm liftings
Consider a bounded adapted (path-)continuous real-valued process y and a stan-

dard real-valued Lévy process with decomposition as in Equation (11) for two in-
creasing càdlàg processes j+, j−. (In light of the Lévy-Itô decomposition, it su�ces
that the Lévy measure ν of z satis�es

∫ 1

−1
|x| ν(dx) < +∞, cf. Bertoin [11, p. 15].)

The classical pathwise de�nition of the stochastic integral (cf. e.g. Millar [25])
puts

(13) ∀t ∈ [0, T ]
∫ t

0

y dz := γt+ σ

∫ t

0

y db+
∫ t

0

y dj+ −
∫ t

0

y dj−,

wherein
∫
y db is the Itô integral of y with respect to b, and for the following, we

will always assume that
∫
y db has been chosen as a path-continuous modi�cation

thereof. The integrals
∫
y dj+ and

∫
y dj− can be de�ned pathwise, because

for L(P )-almost all ω ∈ Ω, the paths t 7→ j+t (ω) and t 7→ j−t (ω) are increasing,
bounded and right-continuous with left limits (see the discussion of Equation (11)
above) and thus may be viewed as measures. Alternatively, one can de�ne the
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Riemann-Stieltjes integral with respect to the paths of j+, j− or j, because all of
these paths have �nite variation almost surely.

To be more speci�c, consider any such path i (either = j+(ω) : t 7→ j+t (ω) or
= j−(ω) : t 7→ j−t (ω) for some ω ∈ Ω) and note that this i induces a Borel measure
on [0, T ] via

∀s ∈ (0, T ] i ([0, s]) := i(s), i ({s}) := i(s)− lim
u↑s

i(u), i ({0}) = 0.

Now, i being a �nite Borel measure on [0, T ], the integral
∫ ·di is well-de�ned for

all bounded y. In this way, the integral with respect to j+ and j− can be de�ned
pathwise almost surely as some Lebesgue integral. Of course, the integral di�erence∫
y dj+− ∫

y dj− then coincides with the pathwise Riemann-Stieltjes integral of y
with respect to the �nite-variation process j = j+ − j−.

So far, we have reviewed the de�nition of the classical pathwise stochastic integral
with respect to z. In light of Theorem 4.5, there is a process which has the same
�nite-dimensional distributions as z and furthermore is the standard part of a
Lindstrøm lifting Z. We will from now on assume that z := ◦Z, and that y
is an adapted, bounded, (path-)continuous process on L(Ω). Furthermore, the
decomposition of Z in Equation (8) will again be written as

∀t ∈ T Zt = γt+ σBt + J+
t − J−t ,

which also yields a decomposition of z (as in Equation (11)):

∀t ∈ [0, T ] zt = γt+ σbt + j+t − j−t ,

wherein b := ◦B, j+ := ◦J− and j− := ◦J−.
Now we introduce the following important convention:
The stochastic integral with respect to z will always be understood as in Equation

(13) with b := ◦B, j+ := ◦J− and j− := ◦J−.
The process y allows for an S-bounded, pathwise S-continuous lifting Y , thus

being also an SL2-lifting in the sense of Albeverio et al. [2] (cf. also Lindstrøm
[20], Hoover and Perkins [15, 16] or Stroyan and Bayod [29]). With this choice of
Y , the right standard part of

∫
Yt dZt exists due to Lemma 3.3. In view of the

decomposition of Z, we have

(14)
∫
Yu dZu = σ

∫
Yu dBu + γ

∫
Yu du+

∫
Yu dJ+

u −
∫
Yu dJ−u .

Recalling Anderson's [5] treatment of stochastic integrals with respect to B, we
know that the standard part of σ

∫
Yt dBt + γ

∫
Ytdt exists and equals σ

∫
yt dbt +

γ
∫
ytdt L(P )-almost surely, wherein ◦B is the (path-continuous) standard part

of the Andersonian random walk B. Therefore, in order to show that the right
standard part

◦∫
Y dZ of

∫
Y dZ equals the classical pathwise stochastic integral

of
∫
yt dzt, we need to show that the right standard parts of the internal stochastic

integrals of Y with respect to the hyper�nite Lévy processes J+ and J− (whose
existence also follows from Lemma 3.3) equal the classical stochastic integrals of y
with respect to j+ and j−.

The following theorem accomplishes just that.

5.1. Theorem Let J+ be an increasing hyper�nite Lévy process with right standard
part j+ = ◦J+, and let Y be an S-bounded S-continuous internal process with right
standard part y. For all t ∈ [0, T ],

∫ t

0

ys dj+s =
◦
∫ t

0

Ys dJ+
s L(P )-almost surely.
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Proof. Recall from Lemma 3.4 (for Y := 1) that for all t ∈ [0, T ] and all s ∈ T with
s ' t, one has J+

s = ◦J+
t with L(P )-probability 1. (For this special case, one can

also refer to Lindstrøm [21, Lemma 6.4].) Hence,

∀t ∈ [0, T ] ∩Q ∀s ∈ T
(
s ' t⇒ J+

s = ◦J+
t

)

holds with L(P )-probability 1. Let this event be denoted Ω0, and consider the event
Ω1 of all ω such that that the path j+(ω) is bounded and càdlàg. This also has
L(P )-probability 1. Finally, consider the event Ω2, consisting of all ω such that
the internal path t 7→ Yt(ω) has a right standard part. Again, by Lindstrøm [21,
Proposition 6.3], this event has L(P )-probability 1.

Hence L(P ) [Ω0 ∩ Ω1 ∩ Ω2] = 1. Let us �x some ω ∈ Ω0 ∩ Ω1 ∩ Ω2, and put
K = J+(ω) as well as k = j+(ω).
K and k can be interpreted as measures: We have already remarked that since

k is bounded, càdlàg and increasing, k induces a Borel measure, abusing notation
also called k, de�ned by

(15) ∀s ∈ (0, T ] k ([0, s]) = k(s), k ({s}) = k(s)− lim
u↑s

k(u), k ({0}) = 0.

Similarly, the internal, S-bounded and increasing path K = J+(ω) induces an
internal measure on the hyper�nite power-set 2T via

(16) ∀t ∈ T K (∗[0, t] ∩ T) = K (t)

(in particular, Equation (16) holds for t ∈ [0, T ]∩Q). Below, we will show that the
composition of the corresponding Loeb measure L(K) with the inverse standard-
part operator, equals the measure k de�ned in Equation (15): L(K)

(
st−1(·) ∩ T)

=
k.

Next, observe that it the Theorem is established as soon as we have shown that∫ t
0
ys(ω) dk(s) =

◦∫ t
0
Ys(ω) dJ+

s (ω) holds at least for all rational t ∈ [0, T ]: Since the
path k : t 7→ j+t (ω) is càdlàg, so must be integrals of bounded continuous functions
with respect to the measure k de�ned in Equation (15). In particular, the function
t 7→ ∫ t

0
ys(ω) dks (which equals t 7→ ∫ t

0
ys(ω) dj+s (ω)) will be càdlàg. However, as

a pathwise right standard part, the function t 7→
◦∫ t

0
Y (ω) dJ+(ω) also is càdlàg

whereever it is de�ned (viz. L(P )-almost surely because of Lemma 3.3). Thus,
both sides of the equation

∫ t
0
ys(ω) dk(s) =

◦∫ t
0
Ys(ω) dJ+

s (ω) are càdlàg, whence it
is su�cient to prove it for all t ∈ [0, T ] ∩ Q. (The identity will then follow for all
t ∈ [0, T ].)

Next, note that

∀t ∈ [0, T ] ∩Q
◦
∫ t

0

Ys(ω) dJ+
s (ω) = ◦

(∫ t

0

Yu(ω) dJ+
u (ω)

)
for L(P )-a.e. ω ∈ Ω
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due to Lemma 3.4. On the other hand,
∫ t

0

Yu(ω) dJ+
u (ω) =

∑
u<t

Yu(ω)
(
J+
u+∆t(ω)− J+

u (ω)
)

=
∑
u<t

Yu(ω) K ({u+ ∆t})

=
∑

0<u≤t
Yu−∆t(ω) K ({u}) =

∫
∗(0,t]∩T

Yu−∆t(ω) K (du)

'
∫
∗(0,t]∩T

◦ (Yu−∆t(ω)) L(K) (du)

=
∫
∗(0,t]∩T

◦ (Yu(ω)) L(K) (du) =
∫
∗[0,t]∩T

◦ (Yu(ω)) L(K) (du)

=
∫

[0,t]

◦ (Y (ω))(s) L(K)
(
st−1(·) ∩ T)

(ds)

=
∫

[0,t]

ys(ω) L(K)
(
st−1(·) ∩ T)

(ds) ,(17)

wherein we have used the S-continuity of the internal path u 7→ Yu(ω) (which
ensures that its standard part is constant on each monad st−1{s}) as well as the
fact that K{0} = 0 and therefore L(K){0} = 0.

We must now prove that the right-hand side of this last Equation (17) equals∫ t
0
ys(ω)dk(s). In order to accomplish this, we will show that L(K)

(
st−1(·) ∩ T)

= k
(viewing K and k as measures).

Using the identity st−1 ([0, s])∩T =
⋂
Q3t>s

∗[0, t]∩T and the choice of ω ∈ Ω0,
we obtain

L(K)
(
st−1[0, s] ∩ T)

= L(K)


 ⋂

Q3t>s

∗[0, t] ∩ T

 = lim

Q3t↓s
L(K) (∗[0, t] ∩ T)

= lim
Q3t↓s

◦ (K(t)) = lim
Q3t↓s

k(t) = k(s) = k ([0, s]) .

for all s ∈ [0, T ] ∩ Q. In a similar fashion, the identity st−1{s} ∩ T =⋂
ε∈Q>0

∗(s− ε, s+ ε] ∩ T enables us to derive that

L(K)
(
st−1{s} ∩ T)

= L(K)


 ⋂

ε∈Q>0

∗(s− ε, s+ ε] ∩ T



= lim
Q3ε↓0

L(K) (∗(s− ε, s+ ε] ∩ T)

= lim
Q3ε↓0

◦ (K(s+ ε))− lim
Q3ε↓0

◦ (K(s− ε))

= lim
Q3ε↓0

k(s+ ε)− lim
Q3ε↓0

k(s− ε) = k(s)− lim
Q3t↑s

k(t) = k{s}

for all s ∈ Q ∩ (0, T ] and ω ∈ Ω0

Therefore, we obtain both L(K)
(
st−1[0, s] ∩ T)

= k ([0, s]) and
L(K)

(
st−1{s} ∩ T)

= k{s} for all s ∈ [0, T ]∩Q. However, both L(K)
(
st−1(·) ∩ T)

and k are �nite Borel measures on [0, T ] and therefore regular (both from the inside
and from the outside, cf. e.g. Bauer [10, Lemma 26.2]). So, L(K)

(
st−1(·) ∩ T)

= k.
This readily yields

(18)
∫

[0,t]

ys(ω) L(K)
(
st−1(·) ∩ T)

(ds) =
∫

[0,t]

ys(ω) k (ds) .

Therefore, by Equation (17) and the de�nition of k, we �nally obtain
∫ t

0

Yu(ω) dJ+
u (ω) '

∫

[0,t]

ys(ω) k (ds) =
∫

[0,t]

ys(ω) dj+s (ω) for L(P )-a.e. ω ∈ Ω.
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¤

Based on Theorem 5.1, we deduce the following:
5.2. Theorem Let Z be a Lindstrøm lifting with right standard part z, and let Y
be S-bounded and S-continuous with right standard part y. For all t ∈ [0, T ],

∫ t

0

ys dzs =
◦
∫ t

0

Ys dZs L(P )-almost surely.

Proof. Anderson [5] has proven that the standard part of
∫
Ys dBs exists and equals∫

ys dbs (recall that b := ◦B). Inserting this, together with Theorem 5.1 (applied
to both J+ and J− en lieu of J+), into Equation (1) yields

◦
∫ t

0

Ys dZs = γt+ σ
◦
∫ t

0

Ys dBs +
◦
∫ t

0

Ys dJ+
s −

◦
∫ t

0

Ys dJ−s

= γt+ σ

∫ t

0

ys dbs +
∫ t

0

ys dj+s −
∫ t

0

ys dj−s =
∫ t

0

ys dzs.

¤

For Rd-valued Lévy processes z as integrators and Rd-valued bounded adapted
and continuous integrands, we can now simply note that the components
z(1), . . . , z(d) of z are Lévy processes, too, and thus de�ne

∫
y dz =

d∑

i=1

∫
y(i) dz(i).

If Z(1), . . . , Z(d) are Lindstrøm liftings with standard parts z(1), . . . , z(d), respec-
tively, then

∀t ∈ [0, T ] ∀i ∈ {1, . . . , d}
∫ t

0

y(i)
s dz(i)

s =
◦
∫ t

0

Y (i)
s dZ(i)

s L(P )-almost surely

by our previous result about one-dimensional Lévy stochastic integrals (Theo-
rem 5.2, applied for each i ∈ {1, . . . , d}). De�ning

∫
Y dZ =

∑d
i=1

∫
Y (i) dZ(i), we

�nally obtain

∀t ∈ [0, T ]
∫ t

0

ys dzs =
◦
∫ t

0

Ys dZs L(P )-almost surely.

6. The Itô formula
In this section, we shall establish a link between the right standard parts of

internal Riemann-Stieltjes sums with respect to smooth functions of hyper�nite
Lévy processes (as in Equation (1)) and standard stochastic integrals with respect
to functions of (standard) Lévy processes, wherein the stochastic di�erential of
a smooth function of a (standard) Lévy process is given by the generalized Itô
formula for (standard) Lévy processes (cf. e.g. Applebaum [7, Theorem 4.4.10]).
En passant, we obtain a short, direct nonstandard proof of this generalized Itô
formula.

We use the abbreviation zt− = lims↑t zs for all t ∈ (0, T ], with the convention
z0− := z0. Also, we will call a subset B ⊂ R bounded from below if and only if there
exists some η ∈ R>0 such that B ⊆ R \ [−η, η].

For all d ∈ N, for all ∗Rd-valued hyper�nite Lévy processes Z and any η ∈ ∗R>0,
we shall denote by Z≤η the hyper�nite Lévy process given by

∀t ∈ T ∀ω ∈ Ω Z≤ηt (ω) =
∑
s<t

|∆Zs(ω)|≤η

∆Zs(ω),
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and by Z>η the hyper�nite Lévy process given by
∀t ∈ T ∀ω ∈ Ω Z>ηt (ω) =

∑
s<t

|∆Zs(ω)|>η

∆Zs(ω).

The results of this section continue to depend on the existence of Lindstrøm
liftings as established in Theorem 4.5. In addition, we shall impose an even
stronger assumptions on the generating triplet under consideration, by requiring
its Lévy measure ν to be concentrated on a bounded-below set. Since anyway∫

(1 ∧ |x|2)ν(dx) < +∞ (by virtue of the regularity properties of Lévy measures),
this already implies that

∫ 1

−1
|x| ν(dx) < +∞ whence Theorem 4.5 may be applied.

6.1. Theorem Consider a generating triplet (γ, σ, ν), and assume that ν is
concentrated on a set that is bounded from below. There exists a Lind-
strøm lifting Z =

(
γt+ σBt + J+

t − J−t
)
t∈T based on (γ, σ, ν) such that

P
[{

0 < ∆J+
0 < η

} ∪ {
0 < ∆J−0 < η

}]
= 0. For any such Z, for all twice contin-

uously di�erentiable f : R → R, for all S-continuous S-bounded adapted processes
Y with right standard part y and for all t ∈ [0, T ], we have

◦
∫ t

0

Yu df (Zu) =
∫ t

0

ysf
′ (zs−) dzs +

∫ t

0

ysf
′′ (zs−)

σ2

2
ds

−
∑

s∈[0,t]

ysf
′ (zs−) (zs − zs−) +

∑

s∈[0,t]

ys (f (zs)− f (zs−))

L(P )-almost surely.
Note that, in view of the (standard) generalized Itô formula, the right-hand side

of the equation in Theorem 6.1 is commonly de�ned as
∫ t
0
ys df (zs).

Proof. By assumption, there exists some η ∈ R>0 such that ν is concentrated on
R\[−η, η]. As we have remarked already, combining this concentration of ν with the
regularity properties of ν as a Lévy measure (in particular

∫
(1∧ |x|2)ν(dx) < +∞)

yields that ν has �nite mass. Therefore,
∫ 1

−1
|x| ν(dx) < +∞, and we are entitled

to apply Theorem 4.5.
By virtue of Theorem 4.5, we can �nd some Z (the Lindstrøm lifting) whose right

standard part corresponds to (γ, σ, ν) and such that Z =
(
γt+ σBt + J+

t − J−t
)
t∈T,

wherein J+ and J− are increasing hyper�nite Lévy processes with
∀u ∈ T ∆J+

u ,∆J
−
u ∈ ∗R≥η ∪ {0}

for all u ∈ T (since the increment set A of J is derived from ∗ν, which is concentrated
on ∗R \ ∗[−η, η]).

We de�ne an increasing ∗N0-sequence {τn}n∈∗N0
of internal stopping times τn :

Ω → T by means of the following recursion on ∗N0:
τ0 := 0

∀n ∈ ∗N τn := min
{
u ∈ T : u > τn−1, ∆J+

u−∆t ∨∆J−u−∆t ≥ η
} ∧ T

= min
{
u ∈ T : u > τn−1,

∣∣∆J+
u−∆t

∣∣ ∨ ∣∣∆J−u−∆t

∣∣ 6= 0
} ∧ T.

(Herein, we adopt the convention min ∅ = ∗∞.)
Let us choose some ω ∈ Ω such that Z, J+ and J− have a right standard part;

since Z, J+ and J− are hyper�nite Lévy processes, the set of such ω has L(P )-
probability 1 (cf. Lindstrøm [21, Proposition 6.3] and see Lemma 3.3). It follows
that already for some �nite N , one has τN (ω) = T . Since Zu = σBu+γu+J+

u −J−u
for all u ∈ T, we obtain that
(19) ∀u ∈ T \ {τ1(ω)−∆t, . . . , τN (ω)−∆t} ∆Zu(ω) = σ∆Bu(ω) + γ∆t,
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so
(20)
∀n ≤ N ∀u ∈ [τn(ω), τn+1(ω)) ∩ T Zu(ω) = σBu(ω) + γu+ J+

τn(ω) − J−τn(ω).

Since B(ω) : u 7→ Bu(ω) is S-continuous by choice of ω, we have that Z(ω)
is S-continuous on [τn(ω), τn+1(ω)) ∩ T for all n < N . Furthermore, since z(ω)
is the right standard part of Z(ω), we must have zt(ω) 6= zt−(ω) if and only if
there exists some u ∈ st−1{t} ∩ T such that ∆J+

u (ω) > 0 or ∆J−u (ω) > 0 (which
is equivalent to ∆J+

u (ω) ≥ η or ∆J−u (ω) ≥ η). Hence, zt(ω) 6= zt−(ω) if and
only if ◦τn(ω) = t for some n < N . However, due to the �niteness of N , the set
T(t) := st−1{t} ∩ {τn(ω)}n<N is �nite and hence internal for all t ∈ [0, T ], and
non-empty only for �nitely many t1, . . . , tm.

Let us now �x some t ∈ [0, T ] ∩Q. Using the notation

∀i ∈ {1, . . . ,m} u2i−1 := minT (ti) ∧ t, u2i := maxT (ti) ∧ t,

combined with u0 := t0 := 0 and u2m+1 := tm+1 := t, we �rst observe that Equation
(20) implies, from now on oppressing the argument ω,

(21) ∀i ∈ {0, . . . ,m} ∀u ∈ (u2i, u2i+1) Zu = σBu + γu+ J+
u2i

− J−u2i
.

Therefore, the nonstandard version of Itô's formula (cf. Albeverio et al. [2, Propo-
sition 4.4.13]) yields that for all i ∈ {0, . . . ,m},

∑

u∈(u2i,u2i+1)

Yu−∆t∆f (Zu−∆t)

'
∑

u∈(u2i,u2i+1)

Yu−∆tf
′ (Zu−∆t) (σ∆Bu−∆t + γ∆t)

+
∑

u∈(u2i,u2i+1)

Yu−∆tf
′′ (Zu−∆t)

σ2

2
∆t.

On the other hand, by the properties of a right standard part (see Remark 2.3),

(22) ∀i ∈ {1, . . . ,m} Zu2i ' zti , ∀u ∈ [u2i, u2i+1) Zu ' z◦u−.

Therefore, since Y and Z are S-continuous on (u2i, u2i+1), the nonstandard Itô
formula (in combination with lifting theorems about the stochastic integral, cf. e.g.
Albeverio et al. [2, Theorem 4.4.17]) actually yields

∑

u∈(u2i,u2i+1)

Yu−∆t∆f (Zu−∆t)

'
∫ ti+1

ti

ysf
′ (zs−) (σdbs + γ ds) +

∫ ti+1

ti

ysf
′′ (zs−)

σ2

2
ds

=
∫ ti+1

ti

ysf
′ (zs−) dzs +

∫ ti+1

ti

ysf
′′ (zs−)

σ2

2
ds−

∑

s∈(ti,ti+1]

ysf
′ (zs−) (zs − zs−)

Note that for i ∈ {1, . . . ,m}, the S-continuity of Y yields

(23)
∑

u∈[u2i−1,u2i]

Yu−∆t∆f (Zu−∆t) ' yti
(
f (Zu2i)− f

(
Zu2i−1−∆t

))
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(To see this, consider a hyper�nite U and φ, ψ : U → ∗R, wherein st ◦φ is constant.
Then

∑
u

φ(u)ψ(u) =
∑
u

ψ(u)>0

φ(u)ψ(u)

︸ ︷︷ ︸
minφ

P
φ(u)>0 ψ(u)≤·≤maxφ

P
φ(u)>0 ψ(u)

+
∑
u

ψ(u)<0

φ(u)ψ(u)

︸ ︷︷ ︸
maxφ

P
φ(u)<0 ψ(u)≤·≤minφ

P
φ(u)<0 ψ(u)

' st ◦ φ
∑
u

ψ(u)>0

ψ(u) + st ◦ φ
∑
u

ψ(u)<0

ψ(u) = st ◦ φ
∑
u

ψ(u).

Applying this result to U := [u2i−1, u2i], φ : u 7→ Yu−∆t and ψ : u 7→ ∆f (Zu−∆t)
leads, via

∑

u∈[u2i−1,u2i]

∆f (Zu−∆t) = f (Zu2i)− f
(
Zu2i−1−∆t

)
,

to Equation (23).)
However, by Equation (22), Zu2i−1−∆t ' zti− whilst Zu2i ' zti . Exploiting the

continuity of f , Equation (23) can therefore be written as
∑

u∈[u2i−1,u2i]

Yu−∆t∆f (Zu−∆t) ' yti (f (zti)− f (zti−)) .

We now calculate as follows: For every t ∈ [0, T ] ∩Q, one has
∫ t

0

Y df (Z) =
∑

0≤v<t
Yv∆f (Zv) =

∑

0<u≤t
Yu−∆t∆f (Zu−∆t)

=
m∑

i=0

∑

u∈(u2i,u2i+1)

Yu−∆t∆f (Zu−∆t) +
m∑

i=1

∑

u∈[u2i−1,u2i]

Yu−∆t∆f (Zu−∆t)

'
m∑

i=0

∫ ti+1

ti

ysf
′ (zs−) dzs +

∫ ti+1

ti

ysf
′′ (zs−)

σ2

2
ds

−
∑

s∈(ti,ti+1]

ysf
′ (zs−) (zs − zs−)

+
m∑

i=1

yti (f (zti)− f (zti−))

=
∫ t

0

ysf
′ (zs−) dzs +

∫ t

0

ysf
′′ (zs−)

σ2

2
ds−

∑

s∈[0,t]

ysf
′ (zs−) (zs − zs−)

+
∑

s∈[0,t]

ys (f (zs)− f (zs−))

Note that the right-hand side is right-continuous in t. This implies
◦
(∫ t

0
Y df (Z)

)
= limQ3s↓t ◦

(∫ s
0
Y df (Z)

)
for all t ∈ [0, T ) ∩ Q, and therefore

◦
(∫ t

0
Y df (Z)

)
=

◦∫ t
0
Y df (Z) for all t ∈ [0, T ) ∩Q by Remark 2.4.
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Thus, we have established that
◦
∫ t

0

Y df (Z) =
∫ t

0

ysf
′ (zs−) dzs +

∫ t

0

ysf
′′ (zs−)

σ2

2
ds

−
∑

s∈[0,t]

ysf
′ (zs−) (zs − zs−) +

∑

s∈[0,t]

ys (f (zs)− f (zs−))

holds for all t ∈ [0, T ) ∩ Q. Since both sides of this equation are right-continuous
with left limits, the equation even holds for all t ∈ [0, T ]. ¤

6.2. Theorem Consider a generating triplet (γ, σ, ν), and assume that ν is con-
centrated on a set that is bounded from below. Let z be a Lévy processes that
corresponds to (γ, σ, ν). Then we have for all twice continuously di�erentiable f
and for all t ∈ [0, T ],

f (zt)− f (z0) =
∫ t

0

f ′ (zs−) dzs +
σ2

2

∫ t

0

f ′′ (zs−) ds(24)

+
∑
s<t

(f (zs)− f (zs−)− (zs − zs−) f ′ (zs−))

L(P )-almost surely.
Proof. There exists a Lindstrøm lifting Z =

(
γt+ σBt + J+

t − J−t
)
t∈T based on

(γ, σ, ν) such that P
[{

0 < ∆J+
0 < η

} ∪ {
0 < ∆J−0 < η

}]
= 0. Let z be its right

standard part (which corresponds to (γ, σ, ν)).
First, since f is continuous, the right standard part of f(Z) is f(z), and hence

the right standard part of f (Z) − f (Z0) is f (z) − f (z0). Since
∫ t
0

df (Zt) =
f (Zt)− f (Z0) for all t ∈ T, this implies that

∀t ∈ [0, T ]
◦
∫ t

0

df (Z) = f (zt)− f (z0) .

Now we can already apply Theorem 6.1 (with Y := 1) to deduce Equation (24).
However, in order to make the proof more self-contained, we shall give, in ad-

dition, a direct derivation of Equation (24) under the more restrictive assumption
of a thrice continuously di�erentiable f with compact support. Let t1, . . . , tm and
u0, . . . , u2m+1 as in the proof of Theorem 6.1. Oppressing the argument ω, we recall
from Equation (21) that

∀i ∈ {0, . . . ,m} ∀u ∈ (u2i, u2i+1) Zu = σBu + γu+ J+
u2i

− J−u2i
.

Therefore, for all i ∈ {0, . . . ,m},
∀u ∈ (u2i, u2i+1) ∆f (Zu−∆t) = f ′ (Zu−∆t) (σ∆Bu−∆t + γ∆t)

+f ′′ (Zu−∆t)
1
2
|σ∆Bu−∆t + γ∆t|2

+
1
6
f ′′′ (ξ) (σ∆Bu−∆t + γ∆t)3

for some ξ. Note that (σ∆Bu−∆t + γ∆t)3 is of order ∆t3/2 (since
|σ∆Bu−∆t + γ∆t| is of order

√
∆t), and that |σ∆Bu−∆t + γ∆t|2 = σ2∆t +

terms of order ∆t3/2. Since (u2i, u2i+1) ∩ T has cardinality ≤ T
∆t , we conclude

that ∑

u∈(u2i,u2i+1)

∆f (Zu−∆t) '
∑

u∈(u2i,u2i+1)

f ′ (Zu−∆t) (σ∆Bu−∆t + γ∆t)(25)

+
∑

u∈(u2i,u2i+1)

f ′′ (Zu−∆t)
σ2

2
∆t
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for all i ∈ {0, . . . ,m}.
Recall from Equation (22) that

∀i ∈ {1, . . . ,m} Zu2i ' zti , ∀u ∈ [u2i, u2i+1) Zu ' z◦u−.

Inserting this into Equation (25) yields, in combination with lifting theorems for
stochastic integrals (cf. Albeverio et al. [2, Theorem 4.4.17]):

∑

u∈(u2i,u2i+1)

∆f (Zu−∆t)

'
∫ ti+1

ti

f ′ (zs−) (σdbs + γ ds) +
∫ ti+1

ti

f ′′ (zs−)
σ2

2
ds

=
∫ ti+1

ti

f ′ (zs−) dzs +
∫ ti+1

ti

f ′′ (zs−)
σ2

2
ds−

∑

s∈(ti,ti+1]

f ′ (zs−) (zs − zs−) .

On the other hand, by Equation (22), Zu2i−1−∆t ' zti− and Zu2i ' zti , whence
the continuity of f ensures that

∑

u∈[u2i−1,u2i]

∆f (Zu−∆t) = f (Zu2i)− f
(
Zu2i−1−∆t

) ' f (zti)− f (zti−) .

Combining our equations for
∑
u∈(u2i,u2i+1)

∆f (Zu−∆t) and for∑
u∈[u2i−1,u2i]

∆f (Zu−∆t), we obtain

f (Zt)− f (Z0) =
∑

u≤t
∆f (Zu−∆t)

=
m∑

i=0

∑

u∈(u2i,u2i+1)

∆f (Zu−∆t) +
m∑

i=1

∑

u∈[u2i−1,u2i)

∆f (Zu−∆t)

'
m∑

i=0

∫ ti+1

ti

f ′ (zs−) dzs +
∫ ti+1

ti

f ′′ (zs−)
σ2

2
ds−

∑

s∈(ti,ti+1]

f ′ (zs−) (zs − zs−)

+
m∑

i=1

yti (f (zti)− f (zti−))

=
∫ t

0

f ′ (zs−) dzs +
∫ t

0

f ′′ (zs−)
σ2

2
ds−

∑

s∈[0,t]

f ′ (zs−) (zs − zs−)

+
∑

s∈[0,t]

ys (f (zs)− f (zs−))

for all t ∈ [0, T ]∩Q. On the other hand, Lemma 3.4 (applied to Y := 1) yields that
for all t ∈ [0, T ] ∩Q, one has ◦ (Zt) = zt with L(P )-probability 1. (For this special
case, one can also refer to Lindstrøm [21, Lemma 6.4].) Since f is continuous, we
may deduce
(26) ∀t ∈ [0, T ] ∩Q f (Zt)− f (Z0) ' f (zt)− f (z0) L(P )-almost surely.

Combining this Equation (26) with our previous calculations in this proof, one
arrives at Equation (24) for all t ∈ [0, T ] ∩ Q. As both sides of the equation are
right-continuous with left limits, the equation follows for arbitrary t ∈ [0, T ].

Finally, recall that hyper�nite adapted probability spaces are universal in the
model-theoretic sense, based on the language of adapted probability logic (cf. e.g.
Fajardo and Keisler [13]). Therefore, Equation (24) does not only hold when z is the
standard part of Z, but for every Lévy process z corresponding to the generating
triplet (γ, σ, ν). ¤
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6.3. Remark Nonstandard methods can be used to prove a generalization of the
Itô formula even for local L2-martingales (cf. Lindstrøm [20, pp. 327-330, in par-
ticular Theorem 15], which corresponds to a slightly earlier result by Métiviér [24]),
based on a corresponding formula for internal SL2-martingales (cf. Lindstrøm [19,
Theorem 22]). An alternative nonstandard proof of Theorem 6.2 could therefore be
based on the SL2-martingale theory and an internal drift-martingale decomposition
(cf. Lindstrøm [21, Corollary 2.5]). Our proof, however, makes no use whatsoever
of either of these results, but instead utilizes our re�nement (Theorem 4.5) of Lind-
strøm's representation theorem [21, Theorem 9.1] and is therefore technically more
accessible.

7. Conclusion
For any generating triplet of a Lévy process with �nite-variation jump part,

there is a particularly simple hyper�nite Lévy process, whose internal jump part
can be decomposed into two increasing hyper�nite Lévy processes (Theorem 4.5).
Hyper�nite stochastic integration with respect to this hyper�nite Lévy process is
consistent with classical pathwise stochastic integration with respect to its stan-
dard part (Theorem 5.2). If the Lévy measure is even concentrated on a set that
is bounded from below, we can show that stochastic integration with respect to
smooth functions of this hyper�nite Lévy process is consistent with classical path-
wise stochastic integration based on the generalized Itô formula (Theorem 6.1). In
particular, this reasoning leads to a short, direct nonstandard proof of the general-
ized Itô formula for Lévy processes with Lévy measures that are concentrated on
bounded-below sets (Theorem 6.2).

Hence, the theory of hyper�nite Lévy processes leads to a simple pathwise def-
inition of the stochastic integral with respect to functions of Lévy processes with
�nite-variation jump part. What is more, the càdlàg property of the paths of these
stochastic integrals follows without further argument from the existence of a right
standard part (Lemma 3.1).

By the model-theoretic universality and saturation of hyper�nite adapted prob-
ability spaces (cf. e.g. Fajardo and Keisler [13]), most probabilistic results about
the standard parts of hyper�nite Lévy processes can be generalized to arbitrary
Lévy processes.
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