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Abstract

We characterize convex vNM-Stable Sets according to von
Neumann and Morgenstern for orthogonal linear production games
with a continuum of players.

The results of [6] are thereby substantially improved. Simul-
taneously, this is a corrigendum concerning the proof of a lemma
in our first paper.

*The authors are indebted to Evan Shellshear for having pointed out an error in the
previous paper.
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1 Introduction

Within this paper we prove a generalization of the main theorem in [6],
the Characterization Theorem for convex vNM-Stable Sets of non—atomic
orthogonal linear production games. While in [6] we show that every poly-
hedral vNM-Stable Set is standard, we are now in the position to omit the
quantifier “polyhedral”. Thus, we show that every convex vNM-Stable Set
is standard (i.e., the convex hull of finitely many imputations concentrated
on the carriers of the orthogonal measures defining the game). This is cer-
tainly good news as we provide a characterization given the weakest possible
conditions.

There is also less good news. Unfortunately, this paper also has to serve as a
corrigendum. The proof of the Orthogonality Theorem (Theorem 4.8. in [6])
contains an error and cannot be sustained. While the Theorem is true, the
approach chosen could not be repaired and a completely different method for
the proof of our result had to be supplied.

The proof we are presenting here is more general and yields the desired
Characterization Theorem directly. Therefore, we hope that this paper can
be regarded as to supply more than just a corrigendum.

We are indebted to EVAN SHELLSHEAR, IMW, The University of Bielefeld,
for having pointed out the error to us. (See also [4]).

2 Notations and Definitions

We shortly repeat some of the notations necessary for our presentation. The
motivations as well as orientation regarding the existing literature is found
in [6].

A game is a triple (I, F,v), such that I is some interval in the reals (the
players), F the o—field of (Borel) measurable sets (the coalitions) and
v : E — R, a function absolutely continuous w.r.t Lebesgue measure
A (the coalitional function). We call v the game as well as the basic data
will not change. We focus on linear production games generated by finitely
many orthogonal measures A',..., A" via

(2.1) v(S) = min{N(S) |p=1,...,r} (S€

1=

),

which is written
(2.2) v=/A\{\,... A}

We assume that the A? are absolutely continuous with respect to Lebesgue
measure (the reference measure), defined on disjoint intervals C*, (p =
1,...,r), the union of which is I.
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We use /\ to denote the min operation in the lattice of set functions on F;
equations (2.1) and (2.2) provide the standard usage. The carrier of a mea-
sure p is denoted by C(u), in the context of a game given by (2.2)accordingly
we use the abbreviation C” := C(A”). Recall the concept of a vNM-Stable
Set (VON NEUMANN-MORGENSTERN |7]).

Definition 2.1. Let (I,E,v) be a game. An imputation is a measure §
with €(I) = v(I). An imputation & dominates an imputationn w.r.t S € F
if € is effective for S, i.e.,

(2.3) A(S) >0 and &(S) < v(S)
and if
(2.4) ET)>n(T) (T'eFE, TCTS XT)>0)

holds true, that is, every subcoalition of S (almost every player in S ) strictly
improves its payoff at & versus . We write & domg n to indicate domination.

We allow domination also to take place between ’subimputations’, i.e., mea-
sures with total mass less than v(7).

Definition 2.2. Let v be a game. A set § of imputations is called a vINM—
Stable Set if

e there is no pair &, u € & such that € domg p w.r.t. some coalition
SeE,

o for every imputation n ¢ S there exists & € § such that, for some S € E
the relation € domg n is satisfied.

We restrict the discussion to vNM-Stable Sets containing measures only
which that are absolutely continuous w.r.t. the “reference measure”

(2.5) A=)
p=1

The assumption of an underlying reference measure and existing densities for
the members of a vNM-Stable Set is justified in |6].

A linear production game may be normalized to yield

(2.6) L=v(l)=X' (1)< X)) (p=1,...,7).

Definition 2.3. Letv = A {/\1, ceny )\T} be a normalized orthogonal linear
production game and let p', ..., u" be probabilities such that p? < X°, % <
1, p=1,...,7 holds true. Then the yNM-Stable Set§ = ConvH{u', ..., u"}

1s called a standard solution.
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3 The Main Theorem of Characterization

The first important result in [6] states that a standard solution is indeed a
vNM-Stable Set. The reverse result according to which every vNM-Stable
Set is standard is based on several lemmata (named the Density Lemma, the
Inheritance Lemma etc.) which we do not repeat here. As we have mentioned
above, the proof of the Orthogonality Theorem cannot be sustained in the
general case (it is actually correct for two extremals). The following proof
replaces the faulty version and extends its result, not assuming the polyhedral
shape of the solution. This condition was introduced in [6] in order to provide
extremals. As we see below, none of these assumptions is necessary. We just
need convexity.

Theorem 3.1. Let 8 be a convexr vNM-Stable Set. Then § is standard.

Proof: We fix some element n € §. Within the first 5 steps we show
essentially that n) is a convex combination of certain imputations in 8 that are
concentrated on the carriers of the generating measures A’ (p = 1,...,r).
The theorem then follows immediately from a result in [6] (the sixth step
below).

In detail we proceed as follows.
15*STEP :

Let m € 8§ be an arbitrary element of our solution.

c, = 'r’(Cp) pG{l,...,T}

and let
Ky = {plc,=0} C{1,...7}
K, = {o Cg>0"’7lca €8S} C{l,...7}
K = {rle>0,1C ¢g)c{1,. . .7}
Cr
such that
> -1
p€K+UK,

holds true.

For o € K, let
9 = e g

Co

Now, if it turns out that K_ = (), then we have

(3.1) Z Cpﬂ(p) = Z Niece = M

PEK 4 PEK 4
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that is,  is a convex combination of orthogonal elements of 8. The Theorem
then follows at once as will be explained in the 6"*STEP. Therefore, it is
our aim to prove the emptyness of K _.

2"ISTEP :

Consequently, we will now continue under the assumption that K _ # (). This
will lead to a contradiction.

Now, for 7 € K_ pick 97 € 8 and R(;y such that

97 domR(T) "7;707 ‘
That is, for 7 € K_, we have
(3.2) 97 > Nicr on R(T) and ﬂ(T)(R(T)) < ’U(R(T)) .

Cr

We introduce the notation
Ry =R yUR(,...UR[,

where R, = R;)NC’ for p=1,...,r as usual. Then we rewrite (3.2)

(3.3) 97 >0, o on Ry (teK.)
and
(3.4) 9 (Ri) < ¢;v(Rir) (1€ K)

There is no harm in assuming for 7 € K
v(Rm) = A(Ri) =X (Ry)
(3.5)

X' (Rr) = N (R() -
Moreover, by applying Lemma 4.5 (The Inheritance Lemma) in [6], we may
decrease some of the R(;) such that eventually v(R;)) = v(R) (1,7 €

K _) and hence the quantities in (3.5) coincide for varying 7 € K_. Also,
note that

(3.6) 97 is positive on R,y (1 € K_) .

3"4STEP :

Now we define
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Furthermore, we will define a measurable set S = S'U...US" which will
serve for domination of 1 eventually.

First of all, for 7 € K_ we put

(3.7) ST o= Ry

Next, for 0 € K| we choose S° C C7 such that n, ¢ > 0 and
(3.8) A(S7)=X7(SNC7) = v(Rpy) (Te K_).

The common value on the right hand side of (3.8) is the one defined in (3.5),
so that now all the quantities in (3.5) and (3.8) again coincide. As m is
positive on parts of C?, this can be achieved by Ljapounoffs Theorem and
the Inheritance Lemma in [6]. Note that the Density Lemma (Lemma 4.1 in
[6] ) ensures

(3.9) 9 (SP) =

forpe Ky, Te K_.

Finally, we choose some fixed 7 € K and put for p € K,

— P
S" = R{,.

This way we have now indeed defined a set

S = Stust..us
satisfying
(3.10) v(S) = min{A"(S”)} = v(Ry)) (1€ K_).
This holds true as the quantities in (3.5) and (3.8) are all equal.
4*"STEP :

Now we prove that 9 exceeds  on S.

First of all consider 7 € K . We have

(311) V- =19 | R, > 67197—| R7, >n | BT, = N, g
by (3.3).

Next, consider p € K. For 7 € K_ we have

(3.12) 9= ) 97 >0 +

ceK UK _

Recall that 97 € § is positive on R?T) C C” (see (3.6)). Also, n € 8 is
positive somewhere on C”. Hence, by the Support Theorem(4.6 of [6]) both
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have the same carrier inside of C” which necessarily includes S?. Therefore,
(3.12) may be continued on S” to imply

(3.13) 9>, +c;9 =n+c9 >n on S’

Finally, we have for p € K,

(3.14) 9| 50 :19|Rfﬂ 20%'197 Y >0=mns-

5'"STEP :
Combining (3.14), (3.13), and (3.11), we obtain

(3.15) 9>m onS.

Now observe that

v(S) = > cw(S))

= U:E;UCUU(R(T)) + ; ¢ v(Rr))

> UEKfn(s”H EK:TCTQW(R(T)) by (3.9), (3.4)
(3.16) > UEXK:+17(S”)+T€2K:_17(R(T)) by (3.3)

> UezK:+n(S”)+T€ZI;n(ST) by (3.7)

> n? +U S";E 7

> n(;G;QUK—

Hence, for sufficiently small € > 0 the imputation
9 = (l—e)np+eded
exceeds m on S and still satisfies 9°(S) < v(S), that is, yields
¥° domgn .

This proves that the assumption made at the beginning of the 2"¢STEP
leads to a contradiction, i.e., we have K_ = ().

6*"STEP : Now,
n= > 97

ceK |
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is a convex combination of elements of 8 that are concentrated on the carriers
C’ (p € K.). Necessarily, for every p = 1,...,r there is an element of
8 that is positive on C”. By the above procedure, we find for every p an
element of 8§ that is concentrated on C”. Hence, by Corollary 4.2. of 6], the
Theorem is verified.

q.e.d.

Remark 3.2. Theorem 6.1. of [6] can be improved upon accordingly. That
is, if 8% is a convex vNM-Stable Set for a linear production game constructed
by orthogonal uniform distributions on a finite player set, then 8° is standard.
For the proof, we do not have to assume that 8° is polyhedral. Of course, the
reverse statement asserting that any standard set is a vNM-—solution prevails
in the finite case with uniform distributions as previously.
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