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Abstract
We study a communication game of common interest in which the

sender observes one of infinite types and sends one of finite messages
which is interpreted by the receiver. In equilibrium there is no full
separation but types are clustered into convex categories. We give
a full characterization of the strict Nash equilibria of this game by
representing these categories by Voronoi languages. As the strategy
set is infinite static stability concepts for finite games such as ESS are
no longer sufficient for Lyapunov stability in the replicator dynamics.
We give examples of unstable strict Nash equilibria and stable ineffi-
cient Voronoi Languages. We derive efficient Voronoi languages with
a large number of categories and numerically illustrate stability of
some Voronoi languages with large message spaces and non-uniformly
distributed types.
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1 Introduction

In many situations where one person signals information to another, the
complexity of the sender’s information is much higher than the variety of
possible signals. This is so in the basic act of speaking when an agent tries
to transmit the information of a sensation to a hearer. The sensation is a
high–dimensional object containing shape, size, color, temperature etc., but
the hearer understands only finitely many words. The speaker thus has to
aggregate a lot of possible types under one name. Another simple example is
the way a baseball cap is worn (which serves as a social signal among certain
sub-cultures). There are only finitely many easily distinguishable ways how
to wear a baseball cap: the brim facing forward, backward, to the left or to
the right. These signals may convey certain information about the type of
the wearer of the cap, like age, group membership, musical taste etc. So the
space of possible types is virtually unbounded, while the space of signals is
small. In the famous job market signaling game of Spence (1973), skills –
albeit frequently modeled as 0 − 1 or one–dimensional — can be naturally
thought of as multidimensional — from verbal ability over mathematical
skills to social competence a wide array of properties describe a worker. On
the other hand, workers have usually only finitely many different education
levels (high school, college, university) to choose from. In finance, rating
agencies use a discrete grid to signal information about the credit quality of
firms while the underlying information is certainly much more complex.

In all these situations, we have a signaling game in which perfect separa-
tion is impossible as there are too few signals. In fact, the type space is much
bigger than the signal set. One way to model such a situation formally is to
assume that types come from a continuum, a convex subset of n–dimensional
Euclidean space, e.g., whereas signals come from a finite alphabet. We study
these games here and perform static as well as dynamic evolutionary analysis
of its equilibria. To keep things simple, we assume that the interests of sender
and receiver are identical. So payoff would be maximal if the receiver would
always correctly guess the sender’s type. However, such perfectly separating
equilibria are clearly not possible.

We show that strict Nash equilibria of our game are given by what we
call Voronoi languages1. The sender partitions the type set into convex sets;

1We use a language that is inspired by linguistics throughout. Nevertheless, our
”Voronoi languages” have natural interpretations in the job market or other contexts.
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to each signal, there corresponds one such set, or cell. We show that the
cells form a so–called Voronoi tesselation of the type space: for every signal,
there is a certain prototype. One can think of that prototype as the ”typical”
representative of the class, as the ”typical” shade of blue, or the ”typical”
professor of economics, the ”typical” politician and so on. Upon seeing her
type, the speaker chooses the prototype that is closest to that point in the
type space and transmits the corresponding signal to the receiver. The pro-
totypes induce then a partition of the type space into convex polyhedra; such
partitions are called Voronoi tesselations.2 There are of course a plethora of
possible Voronoi tesselations, but only few of them form part of Nash equi-
libria. For such an equilibrium, the prototype must also be the best possible
interpretation for the receiver. The receiver — knowing that the signal used
corresponds to a certain subset of types — chooses the interpretation that
leads to the minimal expected loss. In statistical terms, he chooses the best
conditional estimate for that type set. A Voronoi language thus consists of
a Voronoi tesselation where the prototypes are also the best Bayesian esti-
mates.

As we show by example, this usually leaves very few equilibria (up to
the obvious inessential multiplicities). On the unit interval, when types are
uniformly distributed and similarity is measured by the usual distance, there
is only one Voronoi language. In the unit square, again with uniform types
and Euclidean distance, there are two Voronoi languages when there are two
words. The first (and better) one, separates the square into left and right.
The second one uses the diagonal to partition the square. This example
also shows that not all Voronoi languages (and strict Nash equilibria) are
efficient. When we use the Euclidean distance, an efficient language has to
minimize the sum of conditional variances of the errors. Partitioning the
square into two rectangles leads to a smaller variance than partitioning into
two triangles.

We then go on and study the evolution of such signaling structures. As is
by now well known in such games with a continuum of strategies, strict Nash
equilibria need not be dynamically stable.3 Indeed, in our above example,

2Voronoi tesselations appear naturally in other disciplines such as geography (basins of
drainage), data compression (where they are used in vector quantization) or climatology
(where they are referred to as Thiessen polygons).

3Oechssler and Riedel (2002) show that this is not an artefact of the continuum model.
When a strict Nash equilibrium is unstable in the continuum, this means that the basin of
attraction of a strict Nash equilibrium vanishes as the grid size becomes arbitrary small.
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the diagonal language is not stable under replicator and similar dynamics,
and evolution thus converges to the efficient language.

This begs the question if evolution always leads to efficient languages. On
the one hand, we show that efficient languages are stable: once an optimal
language has been found, no mutants can invade. This is an easy conse-
quence of the fact that the payoff function in this common interest game is
a Lyapunov function.

On the other hand, evolution can also lead to inefficient languages. To this
end, we consider a rectangle in dimension 2 with two different side lengthes;
with two words and uniformly distributed types, there are two natural stable
Voronoi languages. The first one partitions the rectangle into ”up” and
”down”, and the second language into ”left” and ”right”. Both languages
are local minima of the Lyapunov function (average payoff), and thus stable.
Only one of them is efficient, though. This suggests that evolution does not
necessarily find optimal languages4.

Finally, we develop a numerical algorithm that allows to find Voronoi
languages. This is important when the number of words is large or the
type distribution is not uniform because it is then usually impossible to
find the equilibria in explicit form. We use this algorithm to show that
partitioning the square into squares is a stable Voronoi language for small
alphabets whereas it is not stable as the number of words grows. In this case,
evolution tends to Voronoi tesselations that look like bee hives, consisting of
regular hexagons. We also provide illuminating examples for non–uniform
distributions. In these cases, languages tend to distinguish very sharply
types that have high frequency whereas big regions are used for one word
when the types are not very frequent.

It would lead us too far to review the vast literature on signaling games.
The seminal paper on cheap talk games as we study them here is Crawford
and Sobel (1982). These authors focus on strategic issues created by slightly
misaligned interests. Many papers5 investigate issues concerning efficiency
and cooperation in cheap talk games. These papers assume that there are
at least as many signals as types or that the utility is either 1 (success) or 0

4It might well be possible that stronger concepts like Schlag’s evolutionarily absorbing
set or Matsui’s cyclycally stable set yield stronger conclusions. As these concepts have
not yet been extended to games with a continuum of strategies, we leave this question for
further research.

5Robson (1990), Matsui (1991), Schlag (1993), Sobel (1993), Blume, Kim, and Sobel
(1993), Wärneryd (1993), or Trapa and Nowak (2000) are prominent examples.
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(failure). To the best of our knowledge, our game with a multidimensional
type space and payoffs depending on the distance of types and interpretations
has not been studied before6.

Azrieli and Lehrer (2007) axiomatically derive convex categories for mod-
els with at least two dimensional type spaces. For their approach, extended
prototypes as justified by Gardenfors (2000) are necessary. They capture the
‘size’ of a category, which is captured by an explicit measure on the type
space in our model. Although our model is described in language terms, it
can be well applied to alternative settings. For example, Azrieli (2009) ap-
plies convex categories to a model of political election. In a model similar
to ours Fryer and Jackson (2008) also address the question of efficient cate-
gorization. Considering uniformly distributed continuous types, the authors
focus on binary realizations and do not further investigate stability issues. A
recent experiment on announcement games by Agranov and Schotter (2008)
indicates that coordination on a certain language seems more achievable if
few words are available.

The paper is set up as follows. Section 2 develops the game we consider.
Section 3 studies efficient languages. We characterize strict Nash equilibria in
Section 4. Section 5 contains our dynamic evolutionary analysis, and Section
6 provides the numerical algorithm and examples. Section 7 concludes.

2 Model and Notation

The sender has a type t ∈ T, where T is a convex and compact subset of
RL for some L ≥ 1 that has nonempty interior. He chooses a word (signal)
w ∈ W := {w1, . . . , wN} from a finite language and sends it to the receiver.
The receiver interprets w as some point i ∈ T . Both players want type t
and interpretation i to be as similar as possible. We assume that l (‖t− i‖)
measures the loss of the players where the function l : R+ → R is convex and
strictly increasing.7 A natural choice that we consider frequently below is the
square Euclidean distance ‖i− t‖2. The probability of types is described by

6A setting similar to ours was proposed in Jäger and van Rooij (2007) and worked
out in some detail in Jäger (2007). We generalize the model to continuous type spaces
and provide the full game–theoretic analysis. The evolutionary analysis uses the tools
developed in Oechssler and Riedel (2001), Oechssler and Riedel (2002), and Cressman,
Hofbauer, and Riedel (2006).

7For one dimensional type space we require l(·) to be strictly convex.
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an atomless distribution F on T with strictly positive and continuous density
f : T → R+.

A (pure) strategy for the sender is a measurable function w : T → W .
We denote by Σ the set of all sender strategies. A (pure) strategy for the
receiver is a vector i = (i1, . . . , iN) ∈ TN where ij denotes the interpretation
of the word wj. The expected loss of players is then

L(w, i) =

∫
T

l
(
‖t− iw(t)‖

)
F (dt) .

Note that null sets play no role for the expected loss. Hence, we ignore them
in the sequel when we characterize strategies.

3 Efficient Languages

To start with, we study what the two players can achieve in cooperation.
Ideally, we might think of super–rational players who have a meta–language
to communicate with each other; before playing, they meet in an ideal place
to discuss their efficient strategy. Formally, we call a language (w, i) efficient
if it minimizes the loss L(w, i) =

∫
T

l
(
‖t− iw(t)‖

)
F (dt).

Before coming to the proofs, let us give a short synopsis of the results.
If there were as many words as types, the players would clearly choose a
language that distinguishes perfectly all private information (a fully separat-
ing equilibrium in the language of game theory). In our situation, this is
not feasible as the type space is a continuum and the set of words is finite.
Nevertheless, efficient languages are “as separating as possible”, i.e. they use
all available words and attach different meanings to them. Suppose word wn

were unused in an efficient language. The sender could then split up the set
of types which lead to word w1 into two convex sets, one of which serving for
w1 and the other serving for wn. By choosing appropriate interpretations, the
resulting language has lower expected loss. Hence a language with unused
words cannot be efficient. The sender will thus choose a partition (Ck)k=1,...,n

of the space T and say word wk whenever his type t is in the cell or category
Ck.

Given that the receiver uses prototypes ik ∈ T , we can ask what the
optimal partition is. The sender wants the prototype to be as close to his
type as possible. Hence, he will say wk whenever the prototype ik is closest
to his type t among all prototypes. Such a partition of the type space is
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called a Voronoi tessellation of the space. At first glance, it might seem that
we cannot say much more. This is not true, however. Given such a partition,
the receiver in turn has to choose a “prototype” ik ∈ T for each word wk

that describes the average type in Ck optimally (given the environment or
prior F ). An optimal interpretation consists thus of Bayesian estimators for
each cell Ck.

Summing up, efficient languages consist of what we call Voronoi languages
with full vocabulary—a Voronoi tessellation of the space T that is induced
by points ik which are at the same time Bayesian estimators for the average
type in each cell. Depending on the reader’s intuition, you might expect
to find a plethora or very few of such efficient languages. We illustrate by
examples that there are usually very few Voronoi languages (up to the obvious
symmetries, of course).8

Let us come to the formal analysis.

Definition 1 A language (w, i) consists of a measurable mapping w : T →
W (the signaling strategy) and points i ∈ TN (the interpretation). A language
(w, i) has full vocabulary if range w = W .

We show now that our problem is well–posed, i.e. that efficient languages
(w, i) which minimize L(w, i) exist. A slight technical problem comes from
the fact that the payoff l

(
‖t− iw(t)‖

)
is not continuous in t, in general. We

proceed as follows. We first show that one can restrict attention to strategies
w that are induced by Voronoi tessellations. As Voronoi tessellations can be
described by their center points ik ∈ T , we can study now an auxiliary payoff
function which only depends on N points in T . As T is compact, it is enough
to show continuity of this function. This is done by noting that l

(
‖t− iw(t)‖

)
jumps only at the boundaries of Voronoi cells which form a Lebesgue null set.
Hence, the auxiliary payoff function is continuous by Lebesgue’s theorem. As
a consequence,

Lemma 1 Efficient languages exist.

The proof of this and all other results can be found in the appendix.

We turn now to an analysis of efficient languages. Let us begin with
a detour. So far, we have not even discussed the possibility of mixing, or

8Crawford and Sobel (1982) call a class of such symmetric equilibria “essentially equiv-
alent”.
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randomized strategies (and we will not do so later on). For one paragraph,
we will allow for this possibility — just to show that mixing is not efficient.
This is quite plausible: the players have no reason to introduce randomness
in their communication when they cooperate.9 A mixed strategy for the
sender is a measurable mapping ω : T → ∆W where ∆W denotes the set
of probability vectors over W . We denote by ωk(t) the probability that the
sender chooses word wk if in type t. A mixed strategy for the receiver consists
of probability measures (µk)k=1,...,N over T .10 The generalized loss function
for such strategies is then

L(ω, µ) =

∫
T

N∑
k=1

∫
T

l (‖t− i‖) µk(di)ωk(t)F (dt) .

Lemma 2 For every language (ω, µ) in non-degenerate randomized strate-
gies, there is a pure strategy language (w, i) which is strictly better.

From now on, we thus return to pure strategies (w, i).
Our next rather obvious point is that players should use all available

words given that there is no cost in using them. The proof uses the fact
that F is atomless. When a language does not use one word wN , say, one
can split a used word, w1, say, in two words, and obtain a better language.
It is also clear that the receiver should interpret different words differently
(as they represent different convex areas of the type space T with pairwise
disjoint interiors).

Lemma 3 Efficient languages (w∗, i∗) have full vocabulary and interpreta-
tions i∗k are pairwise distinct.

We can thus focus on languages in which all interpretations are pairwise
distinct. Given that the receiver uses the pairwise distinct points (ik), what
words should the sender choose if in type t? Clearly the word that leads to
the interpretation ik which is closest to t among all interpretations.

9There are, of course, mixed, or partially mixed Nash equilibria, and mixing can be a
best reply. The convexity of the loss function induces risk aversion for the players. Their
payoff is thus not increased by mixing.

10Whenever we speak of measurability, probability etc. we think of T as endowed with
the Borel σ–field.
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Lemma 4 In efficient languages (w∗, i∗), the sender uses a Voronoi tessel-
lation corresponding to i∗, i.e. F–almost everywhere

(1) w∗(t) = argminj=1,...,N ‖t− i∗j‖ .

Note that the above strategy is not uniquely defined at points t that have
equal distance to two or more interpretations. As these points form a null
set, we can ignore this ambiguity; without loss of generality, we always take
the word with smallest index in this case.

It is quite easy to see (cf. for instance Okabe, Boots, and Sugihara (1992)
for a proof) that in Euclidean spaces, the interior of each cell of a Voronoi
tessellation is a convex set. (To see why, please observe that for each pair of
prototypes x and y, the set of points that is closer to x than to y forms an
L-dimensional half-space that is bounded by the hyperplane of points that
are equidistant to x and y. A half-space is evidently a convex set. A Voronoi
cell is an intersection of finitely many half-spaces, and the intersection of
convex sets must be convex again.) So we have the

Corollary 1 In efficient languages (w∗, i∗), the sender uses convex cate-
gories, i.e. for each i∗j , w∗−1(i∗j) is (up to a null set) a convex set, the inter-
section of a convex polyhedron with the type space T .

Let us now come to the receiver. Given that the sender uses a Voronoi
tessellation of which each cell has positive measure, the receiver has to deter-
mine an optimal interpretation. By Bayes’ rule, she has to choose an optimal
estimator given that she knows the type to be in that cell.

Definition 2 Let C ⊂ T be a convex set with positive measure. Call

b(C) = argmini∈C

∫
C

l (‖t− i‖) F (dt)

the Bayesian estimator conditional on C.

Remark 1 Note that the Bayesian estimator is uniquely determined. This
follows from Jensen’s inequality. We get the strict inequality because the
integrand l (‖t− i‖) is convex, increasing, and not linear in i.

Let us state the best estimators for the quadratic and linear loss function.
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Example 1 1. For l(d) = d2, the best estimate is the conditional expec-
tation,

b(C) = E[t|t ∈ C] :=
1

F (C)

∫
C

t F (dt) .

2. For l(d) = d and L ≥ 2, the best estimator is the (generalized) condi-
tional median type given the cell C.

Lemma 5 In efficient languages (w∗, i∗), the receiver uses the best interpre-
tation of the partition induced by w∗, i.e.

ik = b(C∗
k)

for
C∗

k = {t ∈ T : w∗(t) = wk} .

We summarize our findings in a definition.

Definition 3 (Voronoi Language) A Voronoi language (w, i) consists of
a Voronoi tessellation for the sender and an Bayesian estimator interpreta-
tion for the receiver. i.e. we have both

w∗(t) = argminj=1,...,N ‖t− i∗j‖ F − a.s.(2)

ik = b(C∗
k) ( for C∗

k = {t ∈ T : w∗(t) = wk}) .(3)

Any language with an optimal sender strategy induces a Voronoi tesse-
lation. We additionally assume that a Voronoi language satisfies receiver
optimality. The new concept allows us to describe efficient languages suc-
cinctly.

Theorem 1 Efficient languages are Voronoi languages with full vocabulary.

To get a better intuition, we start with two (highly idealized and simple)
examples where there are only two words and types are uniformly distributed.
On the unit interval [0, 1], there is only one Voronoi language with full vo-
cabulary (which is also the unique efficient language). On the unit square,
there are two Voronoi languages with full vocabulary (up to symmetries).
Only one of them is efficient. The converse of the above theorem is thus not
valid.
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Example 2 Consider the unit interval T = [0, 1] with the uniform distri-
bution F (x) = x, quadratic loss l(d) = d2, and two words W = {w1, w2}.
The two words have the obvious everyday meaning of “left” and “right”. The
efficient Voronoi language has w∗(t) = w1 for t ≤ 1/2 and w(t) = w2 else.
The best interpretation is i∗1 = 1/4, i∗2 = 3/4. Let us quickly show that this is
the only Voronoi language11 with full vocabulary here. If we denote by K the
threshold that separates the two Voronoi cells, we must have

i1 = K/2

i2 = (1 + K)/2

as Bayesian estimators and

K = (i1 + i2)/2

because K must correspond to the Voronoi tessellation induced by i1 and
i2. Substituting i1, i2 in the third equation, we get K = 1/2(1/2 + K), or
K = 1/2, and then i1 = 1/4 and i2 = 3/4 as desired.

In the previous example, efficient and Voronoi languages coincide. This
need not be the case, as we now illustrate.

Example 3 (Not all Voronoi languages are efficient) Consider the
unit square [0, 1]2, with the uniform distribution, quadratic loss l(d) = d2,
and two words W = {w1, w2}. A typical Voronoi tessellation consists here
of two points that lead to two trapezoids as illustrated in Figure 1. The two
border cases are the horizontal and diagonal tessellation of Figure 2. One
might guess that trapezoid tessellations that are symmetric around the center
point (0.5, 0.5) are Voronoi languages. This is not true, however because the
center of gravity (the Bayesian estimator) of a trapezoid does not coincide
with a point that generates the cell (see Figure 3). See the appendix for the
geometric construction of centers of gravity. Solving a polynomial shows that
the diagonal and the vertical language are the two unique Voronoi languages
with full vocabulary. The diagonal is not efficient, however, because it leads
to a loss

2 ·
∫ 1

0

∫ 1−y

0

(x− 1/3)2 + (y − 1/3)2dxdy = 1/9 ' 0.111,

11up to the obvious symmetry, of course
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Figure 1: A Voronoi tesselation

Figure 2: horizontal and diagonal Voronoi tesselation



Voronoi Languages 12

Figure 3: Centers of gravity do not always generate their Voronoi tesselation.

whereas the horizontal language has loss

2 ·
∫ 1

0

∫ 1/2

0

(x− 1/4)2 + (y − 1/2)2dxdy = 5/48 ' 0.104 .

To give some intuition, the sum of conditional variances is lower in the
horizontal language than in the diagonal language.

4 Pure Strategy Nash Equilibria

Although cooperative solutions can be achieved in ideal situations where the
players have the possibility to use a meta–language for before–play commu-
nication, the everyday situation is different. Here, we rather have to guess
what our partner might mean with his words—not an easy task. This situa-
tion is better modeled as a noncooperative signaling game between the two
players. Let us assume rationality of the players for the moment (we turn to
the more realistic case of bounded rationality later on).

As in all signaling games, there is a plethora of Nash equilibria. We focus
here on strict equilibria where the best replies of both players are unique.12

12Strictly speaking, we require only that the sender’s best reply is F−almost surely
unique (changes on a null subset of T do not influence the payoff). As the expected
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In this case, we can make use of our optimality analysis of the preceding
section.

First, let us note that strict Nash equilibria share with efficient languages
the feature that all words are being used. The argument is different from
the one we used for efficient languages, though. For efficiency, we use the
fact that the average loss can be reduced by using more words. Such a
cooperative argument does not work in the game–theoretic setting. Instead,
we rely on F− a.s. strict Nash equilibrium to exclude such a phenomenon. If
the sender never uses a word, say wN , then the receiver is indifferent between
all interpretations for wN , and the best reply is not unique.

As for efficient languages, the sender’s best reply to a given interpretation
is the corresponding Voronoi tessellation. Similarly, the receiver’s best reply
to a partition consists of the Bayesian estimator—here, the arguments are
identical to those in Lemmata 4 and 5.

Conversely, every Voronoi language with full vocabulary consists of a pair
of mutually best replies, and is thus a Nash equilibrium. The sender’s Voronoi
tessellation is the (almost sure) unique best reply (there is indifference at the
points that are equidistant to two or more interpretations, a null set). The
receiver’s best reply is unique because of the strict convexity of the loss
function i 7→ l(‖t− i‖), compare Remark 1.

Theorem 2 Every Voronoi language with full vocabulary is a strict Nash
equilibrium and vice versa.

We thus have a full characterization of strict Nash equilibria. In particu-
lar, we see that inefficient languages can arise even if we impose the relatively
strong condition of strictness on the set of Nash equilibria, compare Exam-
ple 3 above. Rational communication does not necessarily result in efficient
signaling systems.

losses are invariant with respect to null subsets (as for example the border between two
categories), all strategies are optimal for these sets. Hence the notions of weak perfect
Bayesian equilibrium and Nash equilibrium do coincide here. Note that there are sequential
equilibria (Kreps and Wilson (1982)) that have alternative best replies as for example the
one word language, the pooling equilibrium in which the sender always sends the same
word and the receiver’s interpretation is E[t] for any word.
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5 Evolution of Voronoi Languages

Our current language is not a fixed system, rather a fluent and flexible body
of words and rules that is constantly evolving. As such, it is shaped by the
typical forces of selection and mutation that govern evolution. We are thus
led to study dynamical systems that describe possible evolutionary dynamics.

On the technical side, we face here a rather complicated dynamical sys-
tem because a population is described by a probability measure over all
strategies—and strategies are pairs of signaling systems, i.e. simple measur-
able functions on T with values in W and interpretations, points in TN . For
several dynamics, the technical foundations for the study of the replicator
(Oechssler and Riedel (2001), Oechssler and Riedel (2002), Cressman, Hof-
bauer, and Riedel (2006)), payoff–monotone (Heifetz, Shannon, and Spiegel
(2007)), and Brown–von–Neumann–Nash dynamics (Hofbauer, Oechssler,
and Riedel (2009)) have been worked out. Although our strategy space is
slightly more general than in some of the cited papers, the general results of
these papers hold true in our setting.

For our dynamical considerations, we consider the symmetrized version of
the game. Let us suppose that agents are equally often in the role of receiver
and sender, and every agent thus chooses both a sender strategy v or w ∈ Σ
as well as a receiver strategy i resp. j ∈ TN . Then the expected loss of an
agent using language (v, i) and meeting an agent using language (w, j) is

Λ((v, i), (w, j)) = 1/2(L(v, j) + L(w, i)) .

A population of agents is described by a probability distribution P (dw, di)
over the strategy set Γ := Σ × TN of the symmetrized game. For two such
distributions P and Q, we can extend the symmetrized loss function in the
usual way by setting

Λ(P, Q) =

∫
Γ

∫
Γ

Λ((v, i), (w, j)P (dv, di)Q(dw, dj) .

The dynamic analysis is greatly simplified by the fact that average loss is
decreasing along the paths of typical selection and innovative dynamics, as
usual in common interest games.

Lemma 6 (Fundamental Law of Natural Selection) The symmetrized
payoff function is a Lyapunov function for the replicator (more generally,
regular, payoff–monotone) and the Brown–von Neumann–Nash dynamics.
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Technically, it is important to show that the loss function is continuous
with respect to the weak topology for probability measures because we can
only expect convergence in the weak topology, in general13.

Lemma 7 The payoff function is continuous with respect to the weak topol-
ogy.

To prepare the dynamic analysis, we describe the relation of some static
stability concepts to dynamic stability.

Let us have a brief look at games with finite strategy sets. In those
games asymptotic stability with respect to payoff monotonic evolutionary
dynamics implies ESS, evolutionary stability, see for example Ritzberger
and Weibull (1995). On the other hand, asymptotic stability is implied
only for two player games (here: sender, receiver) in the replicator
dynamics. According to Maynard Smith (1974), a strategy (a say), is
evolutionary stable (ESS) if there is an invasion barrier ε such that if
a subgroup of the population with size η ≤ ε does not fare better using
any strategy (b say) in the sense that Λ(a, (1−η)a+ηb) < Λ(b, (1−η)a+ηb).

The invasion barrier ε has a twofold implication:
i) on the one hand it allows for mutant strategies b that are arbitrary

different from a if the subgroup of deviating agents is small, while
ii) on the other hand, a being ESS implies that an arbitrary large

subgroup of agents using strategy a has lower expected losses against
ãε = (1 − ε)a + εb as long as the induced strategy ãε is close enough to a.
It is exactly the combination of these two properties that requires a careful
consideration in games with a continuum of strategies. In such games a
mixed strategy is a density function on a continuum. Now the meaning of
‘strategy α is close to strategy β’ crucially depends on the choice of topology
because meanings i) and ii) do not generally coincide. The strong topology
(or variational- or supremum norm) considers closeness in the sense of i),
which is the property that Vickers and Cannings (1987) and Bomze and
Pötscher (1989) (when defining uninvadability) consider to be the relevant
property. By contrast Eshel (1983) (when defining continuously stable
strategies, CSS) and Apaloo (1997) (when defining neighborhood invader

13See Oechssler and Riedel (2002) and Hofbauer, Oechssler, and Riedel (2009) for an
extended discussion of this point.
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strategy, NIS) consider requirement ii) . If one considers a strategy α to be
close to β in the sense of i) or ii), the right topology to apply is the topology
of weak convergence (or Prohorov metric). Oechssler and Riedel (2002)
show that neither ESS, CSS nor NIS is sufficient for Lyapunov stability
in the weak topology with respect to the replicator dynamics. For doubly
symmetric games (including the language game of the present paper) they
show that evolutionary robust (ER) strategies imply Lyapunov stability in
the weak topology with respect to the replicator dynamic.

Definition 4 (E R, Oechssler and Riedel (2002)) A (mixed) strategy α
is evolutionary robust if Λ(α, β) < Λ(β, β) for all β 6= α that are at least ε-
close to α in the weak topology.

Cressman, Hofbauer, and Riedel (2006) give a useful criterion for instability
in the replicator equation that can easily be checked for in the present set-
ting. Example 5 demonstrates that a Voronoi language does not need to be
Lyapunov stable by checking for this criterion.

Lemma 8 Evolutionarily robust languages are strict local optima.

While ER is a sufficient condition for stability in the weak topology, it is
often too strict. As for ESS in the finite case, ER do not need to exist (see
our Example 4 below). We thus look at dynamically stable equilibria next.
As the symmetrized sender-receiver game is a game of common interest, the
payoff function serves as a Lyapunov function. We thus have

Theorem 3 Locally optimal languages are Lyapunov stable with respect to
replicator (more generally, payoff–monotone) and Brown–von Neumann–
Nash dynamics.

Example 4 below illustrates that an ER does not need to exist.

Example 4 ((ER do not need to exist)) For instance, reconsider exam-
ple 2 (where we have two words and the unit interval as the type space T , plus
a uniform probability F distribution over T and a quadratic loss function).
The efficient language here is (w∗, i∗) (disregarding null sets and symmetries
up to permutation of words) where w∗(t) = w1 if t ∈ [0, 1/2] and w(t) = w2
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else, and where i∗1 = 1/4 and i∗2 = 3/4. Now consider a mutant language
(ŵ, î) with ŵ−1(w1) = [0, 1/2 + ε], ŵ−1(w1) = (1/2 + ε, 1], î(w1) = 1/4 + ε,
and î(w2) = 3/4 + ε (for some ε ∈ (0, 1/4)). We have

L(w, i) =

∫ 1/2

0

(1/4− x)2dx +

∫ 1

1/2

(3/4− x)2dx

= 1/48

L(w, î) =

∫ 1/2

0

(1/4 + ε− x)2dx +

∫ 1

1/2

(3/4 + ε− x)2dx

= 1/48 + ε2

L(ŵ, i) =

∫ 1/2+ε

0

(1/4− x)2dx +

∫ 1

1/2+ε

(3/4− x)2dx

= 1/48 + ε2/2

L(ŵ, î) =

∫ 1/2+ε

0

(1/4 + ε− x)2dx +

∫ 1

1/2+ε

(3/4 + ε− x)2dx

= 1/48 + ε2/2

Λ((w, i), (ŵ, î)) = 1/2(L(w, î) + L(ŵ, i))

= 1/48 + 3ε2/4

Λ((ŵ, î), (ŵ, î)) = L(ŵ, î)

= 1/48 + ε2/2 < Λ((w, i), (ŵ, î))

As (w, i) is efficient, a homogenous population of (w, i)-players cannot be
invaded by a small fraction of mutants of any sort. However, in the weak
topology a homogenous population (ŵ, î) is also within the ε-environment of
(w, i). The calculation above shows that a homogenous population of (ŵ, î)-
players cannot be invaded by a small fraction of (w, i)-players either. Con-
sidering only these two pure strategies, we are dealing with a 2×2 game with
the utility matrix

(w, i) (ŵ, î)
(w, i) − 1

48
− 1

48
− 3

4
ε2

(ŵ, î) − 1
48
− 3

4
ε2 − 1

48
− 1

2
ε2

In this reduced game both (w, i) and (ŵ, î) are strict equilibria and thus evo-
lutionarily stable. According to a result of Eshel and Sansone (2003), we see
that the efficient language is not asymptotically stable, although it is stable.
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As the above example indicates, Evolutionary Robustness might be too
strong a condition for some type spaces. From Lemma 1 we know that effi-
cient languages exist and from Theorem 1 we know that those languages are
Voronoi Languages. As Voronoi Languages are F-a.s. strict Nash equilibria
they might seem as candidates for stable states. We prove this wrong by the
next example.

Example 5 (A Voronoi language can be unstable)
This example demonstrates that a Voronoi language with full vocabulary does
not need to be Lyapunov stable. This might seem surprising as each such
language is a strict Nash equilibrium which implies evolutionary stability.
As was pointed out earlier, evolutionary stability does not imply stability in
games with a continuum of strategies. Consider again example 3 in which the
unit square is equipped with the uniform distribution and the loss function is
l(d) = d2. There are two Voronoi languages and therefore two strict Nash
equilibria: the horizontal and the diagonal Voronoi tesselation of figure 2. As
example 3 points out, the horizontal language is efficient.

Now we show that the diagonal language is unstable. To specify a mutant
strategy we parameterize the equilibrium strategy by the nonnegative small
real number a. The sender mutant strategy is

wa(t) =

{
w1 if t2 ≥ a + (1− 2a) · t1
w2 if t2 < a + (1− 2a) · t1

Defining deviating interpretations as functions of a, we consider best inter-
pretations given wa: Bayesian estimators ia(ŵ) = E[t|w−1

a (ŵ)].

ia(w1) =

(
1

3
(1 + a),

1

3
(2 + a− a2)

)
= i(w1) +

a

3
(1, a(1− a))

ia(w2) =

(
1

3
(2− a),

1

3
(1− a + a2)

)
= i(w2)−

a

3
(1, a(1− a))

We depict this mutant strategy in figure 4. Of course, such a parametrization
does not capture all possible deviations. Still, it defines a subset of deviations
that can invade a population of agents with the equilibrium strategy in the
sense of Apaloo (1997). Further, this parametrization allows us to directly
apply Cressman, Hofbauer, and Riedel (2006).
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Figure 4: A mutant language

The expected loss of an agent that uses a-deviation (wa, ia) and meets an
agent that uses b-deviation (wb, ib) is then

Λ(a, b) =
∑

ŵ∈{w1,w2}

1

2
E
[
||t− ia(ŵ)||2|t ∈ w−1

b (ŵ)
]
+

1

2
E
[
||t− ib(ŵ)||2|t ∈ w−1

a (ŵ)
]

= Λ(0, 0)−
1

18

(
2a(1− a)b(1− b)− 2 (b− a)2 − (b(1− b)− a(1− a))2)

with gradient

∇Λ(a, b) = − 1

18

[
4(b− a) + 2(2b(1− b)− a(1− a))(1− 2a)
4(a− b) + 2(2a(1− a)− b(1− b))(1− 2b)

]
and second derivatives

∂2Λ(a, b)

(∂a)2
=

1

9

(
(1− 2a)2 + 2(1− 2b(1− b)− a(1− a))

)∣∣∣∣
0

=
1

3

∂2Λ(a, b)

∂a∂b
= −1

9
(2 + 2(1− 2a)(1− 2b))

∣∣∣∣
0

= −4

9

∂2Λ(a, b)

(∂b)2
=

1

9

(
2 + (1− 2b)2 + 2(2a(1− a)− b(1− b))

)∣∣∣∣
0

=
1

3
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At equilibrium (a, b) = 0 the gradient is zero and ∂2Λ(a,b)
(∂a)2

is positive, which
is the analytical implication of that the diagonal language is a strict Nash
equilibrium.

According to Eshel (1983) Theorem 1, a necessary condition for the di-

agonal language to be continuously stable is that ∂2Λ(a,b)
(∂a)2

+ ∂2Λ(a,b)
∂a∂b

≥ 0 at

(a, b) = 0. As 1
3
− 4

9
< 0, the diagonal language is not CSS.

Applying Theorem 4 of Cressman, Hofbauer, and Riedel (2006) to our

setting, ∂2Λ(a,b)
(∂a)2

+ ∂2Λ(a,b)
∂a∂b

< 0 at the diagonal equilibrium (a, b) = 0 implies

that the state in which each agent of the population chooses (w0, i0) is unstable
with respect to the replicator equation restricted to normal distributions.

One can check that Λ(0, a) > Λ(a, a), hence the diagonal language is
neither NIS (Apaloo (1997)) nor ER (Oechssler and Riedel (2002)).

Note that Λ(·, ·) denotes losses, hence we need to consider reverse inequal-
ities of the cited literature.

In the example above, we showed instability by parameterizing appro-
priate mutation strategies that can invade the diagonal language. The next
example in turn shows (Lyapunov) stability of languages on a rectangle type
space by deriving the property of local optimality. We can of course show by
the same means that the diagonal language is not a local optimum and will
do so at the end of the next example.

Example 6 (A stable Voronoi language can be inefficient)
This example demonstrates that not every stable equilibrium is optimal. Con-
sider a rectangle A where the sides have length a and b respectively. We
consider a type space where each point in the interior of A has a uniform
probability density 1, and all other points have probability density 0. Also,
we assume a quadratic loss function as in the other examples. There are two
words, w1 and w2.

Both bipartitions of the rectangle that split A into two identical rectangles
along a boundary that runs parallel to one pair of sides (together with the
centers of the partition cells as prototypes) represent stable languages (see
Figure 5). However, only the partition that is parallel to the short sides is
optimal.

To prove that the other partition is stable but not optimal, we first show
that both partitions are local minima. According to Theorem 3, they are thus
both stable. Finally, we show that the loss of the second partition (right hand
side of Figure 5) is strictly larger than the loss of the first partition.
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Figure 5: Stable partitions of a rectangle

We start with the proof that both partitions are local minima. To do
so, we embed A into a Cartesian coordinate system, with the four corners
located at (0, 0), (a, 0), (0, b), and (a, b). This is depicted in Figure 6. For
the time being, we make no assumptions whether a < b or a > b. Consider
the language (w∗, i∗), where w∗((x, y)) = w1 iff x ∈ (0, a) and y ∈ (0, 1

2
b),

w∗((x, y)) = w2 iff x ∈ (0, a) and y ∈ [1
2
b, b), i∗1 = (1

2
a, 1

4
b) and i∗2 = (1

2
a, 3

4
b).

We will prove now that this language is a local minimum.
Suppose it is not a local minimum. Then there is a sequence of lan-

guages (wk, ik) that converges toward (w∗, i∗) such that for some k∗, for all
k′ > k∗ : L(wk′ , ik′) ≤ L(w∗, i∗). The best response BR(ik′) is the sender
strategy that is the best response to the receiver strategy ik′.

14 It is the
Voronoi partition that is induced by ik′. Because the best response function
is continuous, the sequence (BR(ik′), ik′) also converges towards (w∗, i∗). If
L(wk′ , ik′) ≤ L(w∗, i∗), it also holds that L(BR(ik′), ik′) ≤ L(w∗, i∗). To show
that this is impossible, it is sufficient to show that L(w∗, i∗) > L(BR(i), i)
for all i 6= i∗ in some ε-environment of i∗.

Let us assume that i1 = (x1, y1) and i2 = (x2, y2) (as indicated in Figure
6). The line that separates w−1(w1) from w−1(w2) (with w = BR(i) is given

14The best response to a receiver strategy ik′ is unique—up to the images of null sets—if
ik′,1 6= ik′,2. Since we are considering strategies in the environment of i∗, we can safely
assume that this is the case.
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Figure 6:

by the function g(x), where

g(x) = mx + n,

m =
x1 − x2

y2 − y1

,

n =
x2

2 + y2
2 − x2

1 − y2
1

2(y2 − y1)
.

(We assume here that y1 6= y2, which obviously holds in the environment of
i∗. We also assume that g(x) intersects with both the y-axis and the line
y = a in the interval [0, b], which is also true in the environment of i∗.) So
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the loss L(BR(i), i) is given by

L(BR(i), i) =

∫ a

0

∫ g(x)

0

(x− x1)
2 + (y − y1)

2dydx

+

∫ a

0

∫ b

g(x)

(x− x2)
2 + (y − y2)

2dydx.

The gradient of this function in the four-dimensional parameter space defined
by x1, y1, x2 and y2 is

∂L(BR(i), i)

∂x1

∣∣∣∣
i=i∗

= 0

∂L(BR(i), i)

∂y1

∣∣∣∣
i=i∗

= 0

∂L(BR(i), i)

∂x2

∣∣∣∣
i=i∗

= 0

∂L(BR(i), i)

∂y2

∣∣∣∣
i=i∗

= 0,

so i∗ is a critical point.
The Hessian of the loss function at i∗ is

ab− a3

3b
a3

3b
0 0

a3

3b
ab− a3

3b
0 0

0 0 3
4
ab −1

4
ab

0 0 −1
4
ab 3

4
ab

 .

The eigenvalues of this matrix are 3ab2−2a3

3b
, ab, and ab

2
. So if a < b

√
3
2
,

the matrix is positive definite, and i∗ is in fact a local minimum of the loss
function. Therefore i∗ is stable. We express the gradient and the Hessian as
functions of i(w1) and i(w2) explicitly in the appendix.

Now assume b
√

2
3

< a < b. It holds that

L(w∗, i∗) =
1

48
(ab3 + 4a3b).

Let (w∗∗, i∗∗) be the equilibrium with i∗∗1 = (1
4
a, 1

2
b) and i∗∗2 = (1

4
a, 1

2
b), and

w∗∗ the Voronoi tesselation induced by i∗∗. By the argument given above, it
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is also stable. (You only have to exchange a and b, and x and y in the proof
above.) Here we have

L(w∗∗, i∗∗) =
1

48
(a3b + 4ab3).

Some elementary calculations reveal that L(w∗, i∗) < L(w∗∗, i∗∗) iff a < b. So

if b
√

2
3

< a < b, L(w∗∗, i∗∗) is stable, but it is not optimal.

Let us now briefly reconsider the diagonal language from the previous ex-
ample. The diagonal language solves the first order conditions L′(BR(i), i) =
0 only if a = b, in other words if the rectangle is a square. Plugging in the
diagonal language into the Hessian of the loss function reveals that the di-
agonal language is a saddle point and not a local optimum. Again, see the
appendix for explicit details.

6 An Algorithm for Computing Voronoi Lan-

guages and Further Examples

In this section we examine languages with more than two words. As the
computational problem of solving for three Voronoi tiles is demanding the
problem becomes ambitious for more than three words. Even more challeng-
ing is to analyze stability properties. In the unit square example, a language
with three words can be parametrized by a six-dimensional vector (two ‘co-
ordinates’ for each of the three interpretations). For stability analysis, one
needs to calculate the 6×6 Hessian matrix of the loss function. At least
for more complex languages we expect to loose tractability when following a
strictly analytical approach. For this reason we provide a section that relies
on simulations. Although not stringent from a mathematical viewpoint, such
simulations can well indicate whether a particular Voronoi tessellation is sta-
ble or not. Further, one can extend the algorithm described here easily to
settings with a finite–dimensional state space T or to a setting with arbitrary
distribution functions.

6.1 The Algorithm

We describe the algorithm step by step. The source code can be found in
the appendix.
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• Initialization t = 0: i1(0), i2(0), . . . , iN(0)
To start the algorithm, the interpretations receive initial values. These

can be chosen sophistically as a particular Voronoi tessellation to test for
its robustness in the presence of randomness. Alternatively, they can be
randomly assigned to check for path dependence.

Hereafter, the algorithm finitely often iterates the following two steps:

• Random Types
Each iteration begins with randomly drawing finitely many types from

T . Each sensation is assigned to its closest interpretation.

• Tile Adaption
The new value of the interpretation that represents a tile is the arithmetic

mean of the types that are contained in that tile.

Initialization Random Types Tile Adaption

This surprisingly simple algorithm robustly selects some particular languages
from a variety of Voronoi languages. On the other hand it is easy to show that
some candidate languages render unstable in the presence of small deviations.
We give some examples:

6.2 Three Words

If the language comprises three words, up to symmetry there are two types of
Voronoi tessellations which each have a ‘horizontal’ and a ‘diagonal’ version:
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Ia Ib IIa IIb

The algorithm selects language ‘IIa’ which also has the property of minimiz-
ing the expected loss. This has been tested for arbitrary initial conditions.
The appendix derives the tessellations analytically, nevertheless we need to
rely on the simulations for the finding of stability.

The figures below show four snapshots of a simulation that starts at the
equilibrium ‘Ib’. The process quickly leaves ‘Ib’. The lines separating the
three categories of the equilibrium have merged at time t = 50 and from
t = 100 on the process freezes for some time in equilibrium ‘IIb’. But as the
initial state, this Voronoi Language does not render stable either. In the long
run (from t = 1000), the process reaches equilibrium ‘IIa’ which is persistent.

t = 1 t = 50 t = 100 t = 1000

6.3 Triangles, Squares and Hexagons

As indicated above, characterizing the set of Voronoi tessellations becomes
more complex a problem, the more words the language has at disposal. Still,
some tessellations are straightforward to describe. For any n ∈ N, there is a
Voronoi language with n2 cells, as is illustrated below.

. . . . . .



Voronoi Languages 27

For small n, these languages are stable while for large n they are not; indeed
evolution leads to a hexagonal structure. We depict the tessellations after
1000 iterations.

. . . . . .

All examples that have been presented up to now have in common that
the borders of the type space have an impact on equilibrium tesselations.
One way to prevent this is considering type distributions with mass close
to zero near the boundary. We follow this path in the next subsection. In
this subsection we circumvent boundary effects by considering unbounded or
boundaryless type spaces. Imagine a square whose opposite edges are stuck
together. If an interpretation that is located at the south east corner moves
further in direction south east, it will appear in the north western corner
of the square.15 We conjecture that an efficient tesselation for this square
without boundaries does consist of regular polygons, that is any two adjacent
sides do have the same interior angle and have the same length.16 For any

Figure 7: The interior angle of a rectangular polygon equals π − α, where α
equals 2π divided by the number of vertices.

15More precisely one should consider a torus (which is compact) and its projection onto
the plane. To keep things transparent we leave these concerns aside.

16We are aware of ‘stripe languages’ for which the interpretations lie on equidistant
points on a straight line, which do not belong to the polygon languages. These languages
can easily be shown to be unstable.
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convex polygon with v vertices, the interior angle of a regular polygon equals
π − 2π

v
, as can be seen from figure 7 with α = 2π

v
. Within a tesselation,

the number of edges that a vertex can have is then 2π
π− 2π

v

= 2v
v−2

which is an

integer only for v = 3, 4 and 6. We conclude that there are only three regular
polygons that can cover the boundary-less square entirely: triangles, squares
and hexagons. If we compare the expected losses of a triangle-, a square-
and a hexagon-language with n words, the hexagon-language has the lowest
expected loss.
For uniformly distributed types, each of the n regular cells has mass 1

n
. The

length of an edge of a regular triangle is then 2√
n
√

3
, see figure 8. The

Figure 8: A regular triangle of mass 1
n

expected loss of such a triangular language with n words is

Λ(4) = 2n

∫ 1√√
3n

0

∫ √
3t1

0

(
t1 −

1√
n
√

3

)2

+

t2 −
1

3

√√
3

n

2

dt2dt1 =
1

3
√

3n

For the square-language with n words, each having categories of area 1
n

(and
side-length 1√

n
) we have

Λ(�) = n · 4
∫ 1

2
√

n

0

∫ 1
2
√

n

0

(
t1 −

1

2
√

n

)2

+

(
t2 −

1

2
√

n

)2

dt2dt1 =
1

6

1

n

We depict a regular hexagon with mass 1
n

in figure 9 below. The expected
loss of a hexagon-language with n words is

Λ( ) = n·12

∫ 1√
6n
√

3

0

∫ t1
√

3

0

(
t1 −

1√
6n
√

3

)2

+

(
t2 −

1√
2n
√

3

)2

dt2dt1 =
5

18

1

n
√

3
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Figure 9: A regular hexagon of mass 1
n

Summing up, a language with a large number of words has lower expected
loss, if the shape of the categories is hexagonal: Λ(4) > Λ(�) > Λ( ).

Still the efficient language (and by same arguments any Voronoi language)
fails Evolutionary Robustness. Consider a homogenous population of agents
that use the hexagonal language and small group of invading mutants who
use the hexagonal language shifted slightly as depicted in the figures below.
Denote the original hexagonal language by 0 and the mutants by a. Clearly

Figure 10: The hexagonal language invaded by shifted mutants

we have Λ(0, 0) = Λ(a, a). However, when an agent with the original language
meets a mutant, there will be misunderstanding for types in the shaded area.
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Hence Λ(0, a) > Λ(0, 0) and hereby also Λ(0, a) > Λ(a, a). Therefore, the
requirement for Evolutionary Robustness is not met.

6.4 Other Type Distributions

Let us have a brief view at non-uniform type distributions. Figure 11 shows

Figure 11: Tesselation of normally distributed types

normally distributed types. Having the variance small enough one can hereby
simulate a tesselation without ‘border effects’ as the border of the type space
receives mass close to zero. Hence the resulting tesselation is invariant to
the shape of the type space. Examples of such a distribution would be pa-
rameters that realize within natural boundaries such as weather conditions
(temperature, humidity) or traffic conditions (the speed of an approaching
vehicle or the crowdedness of a particular highway) or economic parameters
(like prices, profits or probabilities). One can observe that the tesselation
approximates the hexagonal structure around the mean of the normally dis-
tributed types.

Figure 12 represents a setting in which types realize more often close
to one boundary of the type space than the other. For example the color
specifier red (1.110 million Google hits) seems to have a drastically higher
intensity of usage than the word yellow (455 million Google hits). Note that
regions with lower mass have large categories and that smaller categories are
found where mass is concentrated.
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Figure 12: Tesselation of asymmetrically distributed types

6.5 Relation to k-means clustering

The algorithm described above can be seen as a stochastic generalization
of the k -means clustering algorithm that is widely used in multivariate sta-
tistical data analysis and machine learning (sometimes under the heading
of vector quantization; see for instance chapter 9.1 in Bishop (2006)). In
these applications, we have finitely many observations that are unevenly dis-
tributed in an L-dimensional Euclidean space. The goal is to find a partition
of the observations into k clusters (for some natural number k that is small in
comparison to the number of observations) that minimizes the within-cluster
loss (squared distance) and maximizes the between-cluster loss. The stan-
dard algorithm to find an optimal clustering of this kind is to start with an
arbitrary k-tuple of prototypes, calculate the corresponding Voronoi tessella-
tion, and to update each prototype to the arithmetic mean of the observations
within its Voronoi tile. This process is repeated until a fixed point is reached.
In the language of game theory, this amounts to an iterated best response
computation for a discrete probability distribution of the type space. Our
algorithm generalizes this idea to the continuous case.

7 Conclusion

We analyze common interest signaling games when the type space is much
more complex than the signal set. Efficient signaling systems (”languages”)
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use Voronoi tesselations of the type space to transmit information. These
Voronoi tesselations must also satisfy a best estimator property: the pro-
totypes that generate the Voronoi tesselations form a best estimator in the
Bayesian sense. We have seen that these ”Voronoi languages” are exactly the
strict Nash equilibria of the signaling game. While not all Voronoi languages
are dynamically stable under replicator or similar evolutionary dynamics, ef-
ficient languages are. Nevertheless, evolution can also converge to inefficient
Voronoi languages.

A Proofs

A.1 Existence of Efficient Languages (Lemma 1)

We can identify strategies w : T → W for the sender with the corresponding
partition (Cj)j=1,...,N given by

Cj = {t ∈ T |w(t) = wj} .

Let (ij)j=1,...,N be a pure strategy for the receiver. Given that strategy,
a type t optimally selects a word that leads to an interpretation that is as
close as possible to t, i.e. w(t) ∈ argminj=1,...,N ‖t− ij‖. Note that in general,
the interpretations ij need not be pairwise distinct. In this case, we choose
always the index with the smallest subscript, so we set

Ci
k =

{
t ∈ T |k is the smallest number in argminj=1,...,N ‖t− ij‖

}
.

We have thus reduced our optimization to a minimization problem over the
compact set TN , namely

min
(ij)j=1,...,N∈T N

∫
T

N∑
k=1

l (‖t− ik‖) 1Ci
k
(t)F (dt) .

For the existence of an efficient language, it is thus sufficient to prove the
continuity of the integral∫

T

N∑
k=1

l (‖t− ik‖) 1Ci
k
(t)F (dt)
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in (ik). By Lebesgue’s theorem of dominated convergence, it is enough to
show that the integrand

∑N
k=1 l (‖t− ik‖) 1Ci

k
(t) is F–almost everywhere con-

tinuous. We can ignore the boundaries of the sets Ci
k because these bound-

aries are intersections of hyperplanes with the set T and therefore Lebesgue,
hence F–nullsets. Take a type t ∈ T in the interior of some Ci

m for some
1 ≤ m ≤ N . Being in the interior of Ci

m, im is the unique interpretation
with minimal distance to t. Take a sequence

(
(inj )j=1,...,N

)
n∈N with inj → ij

as n → ∞ for all j = 1, . . . , N . For n sufficiently large, inm is the unique in-
terpretation among (inj ) with minimal distance to t and ink ∈ Ci

k. Therefore,
the continuity of l entails

N∑
k=1

l (‖t− ik‖) 1Ci
k
(t) = l (‖t− im‖) 1Ci

m
(t) = lim

n→∞
l (‖t− inm‖) 1Ci

m
(t) .

Thus, the integrand is F -a.e. continuous.

A.2 Mixed Strategies are Never Efficient (Lemma 2)

Fix any t ∈ T . Randomized strategies (ω, µ) lead to a probability distribution
γt(di) =

∑N
k=1 µk(di)ωk(t) over T . Suppose that this measure is not a Dirac

measure.
Now denote by γ̄ =

∑N
k=1

∫
T

i µk(di)ωk(t) the average outcome of com-
munication in T when (ω, µ) is played. The function i 7→ l (‖t− i‖) is strictly
convex; by Jensen’s inequality,

N∑
k=1

∫
T

l (‖t− ik‖) µk(dik) ≤ l (‖t− γ̄‖) ,

and the inequality is strict when γ is not a Dirac measure. This shows that
mixing is never efficient.

A.3 Structure of Efficient Languages (Lemma 3,
Lemma 4, Lemma 5) and Theorem 1

Let (w, i) be an efficient language. From our analysis in Section A.1, we
know that we can identify w without loss of generality with the partition

Ck =
{
t ∈ T |k is the smallest number in argminj=1,...,N ‖t− ij‖

}
.
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Note that these sets Ck are either intersections of convex polyhedra with the
type set T or empty, if some word is not used. Suppose that the word wN is
not used, i.e. CN = ∅. The idea of the proof is to take a word that is used
for a big set of types and to split that set into two smaller sets and to use
two words instead of one. This allows to decrease the average loss.

By definition, word w1 is used with positive probability , i.e. the convex
set C1 has positive mass with respect to F . As F is atomless, we can find
two disjoint, convex, nonnull sets A1, AN with A1 ∪AN = A. Now let j1 ∈ T
be a minimizer17 of ∫

A1

l (‖t− j‖) F (dt),

and similarly, jN ∈ T be a minimizer of∫
AN

l (‖t− j‖) F (dt).

By strict convexity of l, the minimizers are uniquely determined. Moreover,
we have j1 6= jN because the minimizer lies in the interior of A1 resp. AN .

Set jk = ik for k = 2, . . . , N − 1. Moreover, set v(t) = w1 for t ∈ A1 and
v(t) = wN for t ∈ AN , and v(t) = w(t) else. We claim that (v, j) is a better
language than (w, i):

L(v, j)− L(w, i) =

∫
A1

(l (‖t− j1‖)− l (‖t− i1‖))

+

∫
AN

(l (‖t− jN‖)− l (‖t− i1‖)) > 0

where the last inequality comes from the fact that j1 and jN minimize the
loss over the sets A1 and AN and either j1 6= i1 or jN 6= i1.

It remains to be shown that all interpretations (ik) are pairwise distinct.
Given that the signaling system is induced by a partition (Ck) of convex
sets with positive measure, the optimal interpretation for word wk is the
”prototype” ik that minimizes∫

Ck

l (‖t− j‖) F (dt)

17The minimum exists because T is compact and the expression is continuous in j, see
the proof of Lemma 1.
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for j ∈ T . As Ck is convex and F atomless, the minimizer lies in the interior
of the set Ck. In particular, all interpretations (ik) are pairwise distinct for an
efficient language. Moreover, we see that the receiver uses a best estimator
in the sense of Definition 2.

A.4 Evolution (Proof of Lemma 6, Theorem 3, Lemma
8)

The proof that average loss is decreasing along payoff–monotone dynam-
ics and BNN dynamics follows well–known lines, see Heifetz, Shannon, and
Spiegel (2007) and Hofbauer, Oechssler, and Riedel (2009). The loss function
Λ is continuous with respect to the weak topology if the direct loss function
for pure strategies L(w, i) is continuous (in the usual norm on TN and Σ
endowed with the supremum–norm) and bounded.

The maximal distance on T is bounded because T is compact, and l is
continuous, so L remains bounded.

To see continuity, choose a sequence (wn) of sender strategies that con-
verge uniformly to w and a sequence (in) of receiver strategies that con-
verges to i ∈ TN . Let ε > 0 and δ > 0 such that |l(d) − l(e)| < ε for all
0 ≤ d, e ≤ maxs,t∈T ‖s− t‖. (Note that l is uniformly continuous on bounded
intervals and that the maximum is finite because T is compact.) As sender
strategies can assume only finitely many values in W , there exists N0 ∈ N
such that wn(t) = w(t) uniformly in t ∈ T for n ≥ N0. It follows that

(4) ‖t− iwn(t)‖ = ‖t− iw(t)‖

uniformly in t ∈ T for n ≥ N0. Now choose N1 ≥ N0 such that for n ≥ N1

‖inj − ij‖ < δ

for all j ∈ {1, . . . , N}. Then

|L (wn, in)− L (w, i)| ≤
∫

T

∣∣l (‖t− inwn(t)‖
)
− l
(
‖t− inw(t)‖

)∣∣F (dt)

Eqn.(4) =

∫
T

∣∣l (‖t− inw(t)‖
)
− l
(
‖t− inw(t)‖

)∣∣F (dt)

(Def. of δ) < ε .

Hence, L is continuous.
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Let P ∗ be evolutionarily robust with invasion barrier ε > 0. Then we
have for populations Q 6= P ∗

Λ(P ∗, P ∗)− Λ(Q,Q) = Λ(P ∗, P ∗)− Λ(P ∗, Q) + Λ(P ∗, Q)− Λ(Q,Q)

< Λ(P ∗, P ∗)− Λ(P ∗, Q)

= Λ(P ∗, P ∗)− Λ(Q,P ∗) ≤ 0,

where we use the definition of ER, symmetry of Λ and the fact that (P ∗, P ∗)
is a Nash equilibrium. This shows that P ∗ is a strict local minimum of
Λ(Q, Q) and proves Lemma 8.

Let us come to stability questions (Theorem 3). With a Lyapunov func-
tion, dynamic stability of local optima follows as usual. We restate this result
from Bhatia and Szegő (1970):

Theorem 4 (Bhatia and Szegő (1970) Theorem 2.2) [Let X be lo-
cally compact.] A compact set M ⊂ X is asymptotically stable if and only if
there exists a continuous real-valued function Φ defined on a neighborhood
N of M such that

Φ(x) = 0 if x ∈ M and Φ(x) > 0 if x 6∈ M ;
Φ(xt) < Φ(x) for x 6∈ M, t > 0 and x[0, t] ⊂ N .

For our purposes X = TN × Σ and Φ(x) = γ − Λ(x), where γ is an appro-
priately chosen constant.

A.5 The line [0,1]

We consider now finite languages on real intervals. For simplicity, we look at
uniformly distributed types and quadratic loss.

The game has many symmetries. In particular, for every Voronoi lan-
guage, there exists an isomorphic language in which the words are permuted
arbitrarily. Without loss of generality, we thus look at Voronoi languages
that consist of points 0 ≤ i1 < i2 < . . . < iK ≤ 1 for the receiver and
corresponding Voronoi cells [b0, b1), [b1, b2], . . . , [bK−1, bK ] for the sender, with
b0 = 0 and bK = 1. K ≤ N is the richness of the language.

We claim that we must have

bi =
i

K
, ij =

2j − 1

2K
.
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In other words: Voronoi languages on [0, 1] consist of equidistant partitions
and their midpoints. Up to symmetries, there exists only one Voronoi lan-
guage of a given richness.
Proof : As the interpretation is the conditional expected types in a cell, we
must have ij =

bj−1+bj

2
, j = 1, . . . , K. On the other hand, the points b0, . . . , bK

describe the Voronoi tessellation corresponding to i1, . . . , iK . Hence, we must
have

(5) i1 =
b1

2
, i2 =

b2 + b1

2
, . . . , iK =

bK−1 + 1

2
.

The unique solution of this system of linear equations is

bi =
i

K
, ij =

2j − 1

2K
.

It is straightforward to see that this is a solution. Uniqueness may be unclear.
Note that the ij are uniquely determined by the bl. Replace ij by 1/2(bj−1 +
bj) in Eqn. (5). Rearrange these equations and you get sequentially

b2 = 2b1

b3 = 2b2 − b1 = 3b1

b4 = 4b1

...

and so on until bK = Kb1 = 1 and you are done. �

A.6 Rectangle Type Space

Considering a rectangle of width a > 0 and height b > 0, denote the inter-
pretations as i(w1) = (i1(w1), i2(w1)) and i(w2) = (i1(w2), i2(w2)). Assume
i2(w2) > i2(w1). Given a realized type t = (t1, t2), the senders best reply to
these interpretations is

BR(t|i) =

{
w1 if t2 ≤ g(t1)

w2 if t2 > g(t1)
, where

g(t1) =
i22(w1)− i21(w1) + i22(w2)− i21(w2)

2(i2(w2)− i2(w1))
− i2(w1)− i1(w1)

i2(w2)− i1(w2)
t1
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is an affine function in t1.
After solving the integrals, the loss function can be expressed as

L(i, wi) = −(i2(w2)− i2(w1))

∫ a

0

g2(t1)dt1

+

(
a2

3
− i1(w2)a + i21(w2) +

b2

3
− i2(w2)b + i22(w2)

)
ab

For the reader’s convenience we express the first derivatives of the separating
function g(·):

∂g(t1)

∂i1(w1)
=

t1 − i1(w1)

i2(w2)− i2(w1)

∂g(t1)

∂i1(w2)
=

i1(w2)− t1
i2(w2)− i2(w1)

∂g(t1)

∂i2(w1)
=

g(t1)− i2(w1)

i2(w2)− i2(w1)

∂g(t1)

∂i2(w2)
=

i2(w2)− g(t1)

i2(w2)− i2(w1)

The first derivatives of the loss function with respect to the interpretations:

∂Λ((BR(i), i), (BR(i), i))

∂i1(w1)
=

∫ a

0

g(t1)2(i1(w1)− t1)dt1

∂Λ((BR(i), i), (BR(i), i))

∂i1(w2)
=

∫ a

0

g(t1)2(t1 − i1(w2))dt1 + (2i1(w2)− a)ab

∂Λ((BR(i), i), (BR(i), i))

∂i2(w1)
=

∫ a

0

(2i2(w1)− g(t1))g(t1)dt1

∂Λ((BR(i), i), (BR(i), i))

∂i2(w2)
=

∫ a

0

g(t1)(g(t1)− 2i2(w2))dt1 + (2i2(w2)− b)ab
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The second derivatives of the loss function with respect to the interpretations:

∂2Λ((BR(i), i), (BR(i), i))

∂i1(w1)∂i1(w1)
= 2

∫ a

0

g(t1)−
(t1 − i1(w1))

2

i2(w2)− i2(w1)
dt1

∂2Λ((BR(i), i), (BR(i), i))

∂i1(w1)∂i1(w2)
= 2

∫ a

0

i1(w2)− t1
i2(w2)− i2(w1)

(i1(w1)− t1)dt1

∂2Λ((BR(i), i), (BR(i), i))

∂i1(w1)∂i2(w1)
= 2

∫ a

0

g(t1)− i2(w1)

i2(w2)− i2(w1)
(i1(w1)− t1)dt1

∂2Λ((BR(i), i), (BR(i), i))

∂i1(w1)∂i2(w2)
= 2

∫ a

0

i2(w2)− g(t1)

i2(w2)− i2(w1)
(i1(w1)− t1)dt1

∂2Λ((BR(i), i), (BR(i), i))

∂i1(w2)∂i1(w2)
= 2

∫ a

0

b− (i1(w2)− t1)
2

i2(w2)− i2(w1)
− g(t1)dt1

∂2Λ((BR(i), i), (BR(i), i))

∂i1(w2)∂i2(w1)
= 2

∫ a

0

g(t1)− i2(w1)

i2(w2)− i2(w1)
(t1 − i1(w2))dt1

∂2Λ((BR(i), i), (BR(i), i))

∂i1(w2)∂i2(w2)
= 2

∫ a

0

i2(w2)− g(t1)

i2(w2)− i2(w1)
(t1 − i1(w2))dt1

∂2Λ((BR(i), i), (BR(i), i))

∂i2(w1)∂i2(w1)
= 2

∫ a

0

g(t1)− i2(w1)

i2(w2)− i2(w1)
i2(w1) +

i2(w2)− g(t1)

i2(w2)− i2(w1)
g(t1)dt1

∂2Λ((BR(i), i), (BR(i), i))

∂i2(w1)∂i2(w2)
= 2

∫ a

0

(i2(w1)− g(t1))
i2(w2)− g(t1)

i2(w2)− i2(w1)
dt1

∂2Λ((BR(i), i), (BR(i), i))

∂i2(w2)∂i2(w2)
= 2

∫ a

0

b− (i2(w2)− g(t1))
2

i2(w2)− i2(w1)
− g(t1)dt1

Diagonal Language: (only if b = a)

i1(w1) = 2
a

3
, i2(w1) =

a

3
, i1(w2) =

a

3
, i2(w2) = 2

a

3
, g(t1) = t1

∇1 =


2
∫ a

0
t1(2

a
3
− t1)dt1

2
∫ a

0
t1(t1 − a

3
)dt1 + (2a

3
− a)a2∫ a

0
(2a

3
− t1)t1dt1∫ a

0
t1(t1 − 22

3
a)dt1 + (22

3
a− a)a2

 =


0
0
0
0
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∇2 =
a2

3


1 1 −1 2
1 1 2 −1
−1 2 1 1
2 −1 1 1


The Eigenvalues are −a2, 1

3
a2 a2, a2 which are not all positive.

Horizontal Language:

i1(w1) = i1(w2) =
a

2
, i2(w1) =

b

4
, i2(w2) = 3

b

4
, g(t1) =

b

2

∇1 =


∫ a

0
b(a

2
− t1)dt1∫ a

0
b(t1 − a

2
)dt1∫ a

0
(2 b

4
− b

2
)1

2
dt1∫ a

0
b
2
( b

2
− 2 · 3 b

4
)dt1 + (2 · 3 b

4
− b)ab

 =


0
0
0
0



∇2 =


3b2−a2

3b
a a3

3b
0 0

a3

3b
3b2−a2

3b
a 0 0

0 0 3
4
ab −1

4
ab

0 0 −1
4
ab 3

4
ab


The Eigenvalues are ab

2
, 3b2−2a2

3b
a, ba, ba, which are all positive if 3b2 > 2a2.

A.7 Languages with three words

We derive four equilibria with three words for the unit square type space
with uniformly distributed types. The equilibrium conditions are that i)
each two interpretations are equidistant from the line that separates their
categories and that ii) each interpretation is the gravity point of its category.
When solving for an equilibrium, we directly assume the sender strategy
ω : [0, 1] → {ω1, ω2, ω3} to be the best response to the interpretations which
implies condition i). Condition ii) is then equivalent to the first derivative of
the loss function being equal to zero.
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A.7.1 The stable three word language

For i(wj) = (xj, yj) and w(t) the unique best reply to i(·). Then,
parametrized to {xj, yj}j=1,2,3, the expected loss can be expressed as

L(x1, x2, x3, y1, y2, y3)

=

∫ x̄

0

∫ g(x)

h(x)

(x1 − x)2 + (y1 − y)2dydx

+

∫ x̄

0

∫ 1

g(x)

(x2 − x)2 + (y2 − y)2dydx +

∫ 1

x̄

∫ 1

f(x)

(x2 − x)2 + (y2 − y)2dydx

+

∫ x̄

0

∫ h(x)

0

(x3 − x)2 + (y3 + y)2dydx +

∫ 1

x̄

∫ f(x)

0

(x3 − x)2 + (y3 − y)2dydx ,

where the separating functions g(·), f(·), and h(·) are defined by

f(x) =
x2

3 − x2
2 + y2

3 − y2
2

2(y3 − y2)
− x3 − x2

y3 − y2

· x

g(x) = min

{
x2

2 − x2
1 + y1

2 − y2
1

2(y2 − y1)
− x2 − x1

y2 − y1

· x, 1

}
h(x) = max

{
x2

1 − x2
3 + y1

1 − y2
3

2(y1 − y3)
− x1 − x3

y1 − y3

· x, 0

}
and x̄ is the value of x that solves g(x) = h(x) = f(x):

x̄ =
1

2

(x2
2 − x2

1 + y2
2 − y2

1)(y1 − y3)− (x2
1 − x2

3 + y2
1 − y2

3)(y2 − y1)

(x2 − x1)(y1 − y3)− (x1 − x3)(y2 − y1)
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The equilibrium point (solving ∇L(x∗1, x
∗
2, x

∗
3, y

∗
1, y

∗
2, y

∗
3) = 0) is

(x1, y1)
∗ = (0.1962024, 0.5)

(x2, y2)
∗ = (0.6827004, 0.7684006)

(x3, y3)
∗ = (0.6827004, 0.2315994)

This equilibrium point is a local minimum as the Hessian matrix is positive
definite:

H =


0.5928064 −0.1002008 −0.1002008 0 −0.0304094 0.0304094
−0.1002008 0.3718096 0.0456908 −0.1814553 0.0480322 0.0360234
−0.1002008 0.0456908 0.3718096 0.1814553 −0.0360234 −0.0480322

0 −0.1814553 0.1814553 0.4085451 0.0333674 0.0333674
−0.0304094 0.0480322 −0.0360234 0.0333674 0.4503365 −0.1305797
0.0304094 0.0360234 −0.0480322 0.0333674 −0.1305797 0.4503365


with Eigenvalues

0.0713266, 0.3380698, 0.3546698, 0.5639263, 0.6284244, 0.6892269

which are all positive.

A.7.2 An unstable three word language
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f(x) =
x2

1 − x2
2 + y2

1 − y2
2

2(y1 − y2)
− x1 − x2

y1 − y2

· x

g(x) =
x2

3 − x2
1 + y2

3 − y2
1

2(y3 − y1)
− x3 − x1

y3 − y1

· x

h(x) =
x2

3 − x2
2 + y2

3 − y2
2

2(y3 − y2)
− x3 − x2

y3 − y2

· x

The loss function is given by

L(i, wi)

=

∫ x̄

0

∫ f(x)

0

(x− x2)
2 + (y − y2)

2dydx +

∫ 1

x̄

∫ h(x)

0

(x− x2)
2 + (y − y2)

2dydx

+

∫ x̂

0

∫ 1

f(x)

(x− x1)
2 + (y − y1)

2dydx +

∫ x̄

x̂

∫ g(x)

f(x)

(x− x1)
2 + (y − y1)

2dydx

+

∫ x̄

x̂

∫ 1

g(x)

(x− x3)
2 + (y − y3)

2dydx +

∫ 1

x̄

∫ 1

h(x)

(x− x3)
2 + (y − y3)

2dydx

which can be simplified to

L(i, wi)

= (y2 − y1)

∫ x̄

0

f 2(x)dx + (y2 − y3)

∫ 1

x̄

h2(x)dx + (y1 − y3)

∫ x̄

x̂

g2(x)dx

+
1

3
+

∫ x̂

0

(x− x1)
2 − y1 + y2

1dx +

∫ 1

x̂

(x− x3)
2 − y3 + y2

3dx

We solve for i∗ by using symmetry and the fact that i∗(w2) is the gravity
point of w−1(i∗(w2)) and i∗(w3) is the gravity point of w−1(i∗(w3)):

(x2, y2) being the gravity point of the lower right area implies

(x2, y2) =
(2

3
x̄, 1

3
x̄, ) x̄2

2
+ (2

3
x̄ + 1

3
, 2

3
h(1) + 1

3
x̄) (x̄−h(1))(1−x̄)

2
+ (1+x̄

2
, h(1)

2
)(1− x̄)h(1)

x̄2

2
+ (x̄−h(1))(1−x̄)

2
+ (1− x̄)h(1)

and (x3, y3) being the gravity point of the upper right area implies

x3 =
(1

3
h(1) + 2

3
x̄) (x̄−h(1))(1−x̄)

2
+ 1+x̄

2
(1− x̄)2 + (2

3
+ 1

3
x̄) (x̄−h(1))(1−x̄)

2
(x̄−h(1))(1−x̄)

2
+ (1− x̄)2 + (x̄−h(1))(1−x̄)

2
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The solution to these conditions is given by

(x1, y1) = (0.2033, 0.5921) (x2, y2) = (0.5921, 0.2033) (x3, y3) = (0.7327, 0.7327)

A.7.3 The unstable horizontal three word language

L(x1, x2, x3, y1, y2, y3)

=

∫ 1

0

∫ g(x)

0

(x− x1)
2 + (y − y1)

2dydx

+

∫ 1

0

∫ f(x)

g(x)

(x− x2)
2 + (y − y2)

2dydx

+

∫ 1

0

∫ 1

f(x)

(x− x3)
2 + (y − y3)

2dydx

= (y1 − y2)

∫ 1

0

g2(x)dx + (y2 − y3)

∫ 1

0

f 2(x)dx +
1

3
− x3 + x2

3 +
1

3
− y3 + y2

3
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∂L(x1, x2, x3, y1, y2, y3)

∂x1

= 2

∫ 1

0

(x1 − x)g(x)dx

∂L(x1, x2, x3, y1, y2, y3)

∂x2

= 2

∫ 1

0

(x− x2)g(x)dx + 2

∫ 1

0

(x2 − x)f(x)dx

∂L(x1, x2, x3, y1, y2, y3)

∂x3

= 2

∫ 1

0

(x− x3)f(x)dx− 1 + 2x3

∂L(x1, x2, x3, y1, y2, y3)

∂y1

=

∫ 1

0

(2y1 − g(x))g(x)dx

∂L(x1, x2, x3, y1, y2, y3)

∂y2

=

∫ 1

0

g(x)(g(x)− 2y2)dx−
∫ 1

0

f(x)(f(x)− 2y2)dx

∂L(x1, x2, x3, y1, y2, y3)

∂y3

=

∫ 1

0

f(x)(f(x)− 2y3)dx− 1 + 2y3

For (x∗1, y
∗
1), (x

∗
2, y

∗
3), (x

∗
3, y

∗
3):

H(x∗,y∗) =
1

6


1 3 0 0 0 0
3 −2 3 0 0 0
0 3 1 0 0 0
0 0 0 3 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 3


With Eigenvalues −5

6
, 1

6
, 1

6
, 1

2
, 2

3
, 2

3

As the first Eigenvalue is negative, we conclude that the horizontal
language is an unstable saddle point.
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A.7.4 The diagonal language

L = .0964

H =
1

16


3 3 0 −3 6 0
3 2 3 6 −6 6
0 3 3 0 6 −3
−3 6 0 3 3 0
6 −6 6 3 2 3
0 6 −3 0 3 3


E = −0.9303, 0, 0.1651,

3

8
, 0.6803, 0.7099

Again, one Eigenvalue is negative, therefore the diagonal language is an un-
stable saddle point.

A.8 Source Code

The source code below runs with Matlab and implements the algorithm
described in section 6.2

N=100; %number of words

T=100; %total sample size -> approx T/N in each tile

x = rand(1,N); %initial words - x coordinate

y = rand(1,N); %initial words - y coordinate

lambda = 0.95; %inertia (next period = lambda of last period

+ (1-lambda) of current period)
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F=1000; %iterations

min = 2; %initial minimal distance

number = 0; %initial number of samples in each tile

xold = zeros(1,N);

yold = zeros(1,N);

for f = 1:F

v = rand(T,3); %first column x, second column y, third

column index of closest interpretation.

v(:,3) = 1;

for s=1:T

min = 2;

for t=1:N;

if ((v(s,1)-x(t))^2+(v(s,2)-y(t))^2 < min)

v(s,3) = t;

min = (v(s,1)-x(t))^2+(v(s,2)-y(t))^2;

end

end

end

%count vectors close to code

for n = 1:N

number = 0;

for t = 1:T

if (v(t,3) == n)

number = number +1;

end

end

%and construct new code

if number > 0

xold = x;

yold = y;

x(n) = 0;

y(n) = 0;

for t = 1:T

if (v(t,3) == n)

x(n) = x(n) + v(t,1);
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y(n) = y(n) + v(t,2);

end

end

x(n) = xold(n)*lambda + (1-lambda)*x(n) / number;

y(n) = yold(n)*lambda + (1-lambda)*y(n) / number;

end

end

%draw figure

if mod(f,50) == 0

[f,F ]
if N>2

voronoi(x,y)

box on

axis([0 1 0 1])

else

plot(x,y,’.’)

box on

axis([0 1 0 1])

end

pause(.01);

end

end
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