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Abstract

We consider a pure exchange economy with finitely many indivisible commodi-

ties that are available only in integer quantities. We prove that in such an economy

with a sufficiently large number of agents, but finitely many agents, the strong core

coincides with the set of cost-minimized Walras allocations. Because of the indi-

visibility, the preference maximization does not imply the cost minimization. A

cost-minimized Walras equilibrium is a state where, under some price vector, all

agents satisfy both the preference maximization and the cost minimization.

Keywords: Indivisible commodities, Strong core, Cost-minimized Walras equilib-

rium, Core equivalence.

JEL Classification: C71, D51.
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1 Introduction

The core is an institution-free concept, but it is known that in an economy with perfectly

divisible commodities, the core contains all Walras allocations and any core allocation

can be approximately decentralized by prices, as the number of agents becomes large.

The purpose of this paper is to prove that, if every commodity is indivisible, then the

core coincides with the set of Walras allocations with a certain property, even though the

number of economic agents is finite. In particular, any core allocation in a large finite

economy can be exactly decentralized by prices.

The perfect divisibility of commodities is usually assumed in economic theory for the

convenience of the analysis. In this paper, we assume that every commodity can be

consumed only in integer quantities. Agents can consume multiple types of commodities

and can consume multiple units of each commodity. Thus, the commodity space is given

by the products of the set of integers. Our argument shows that the inherent properties

of the set of integers such as countability, discreteness, and additivity are helpful, rather

than obstructive, to prove the core equivalence.

In our economy, because of the discreteness of the commodity space, agents’ preference

relations are necessarily locally satiated. Thus, the preference maximization does not

imply the cost minimization. On the other hand, since any consumption vector cannot

have local cheaper consumption vector under any prices, the cost minimization does not

imply the preference maximization. Thus, approximate equilibrium in an economy with

perfectly divisible commodities such as pseudo-equilibrium or quasi-equilibrium is not an

approximate concept in our economy. Therefore, a cost-minimized Walras equilibrium

which satisfies not only the preference maximization but also the cost minimization is a

stronger concept than a Walras equilibrium. In our economy, the set of cost-minimized

Walras allocations coincides with the core.

In the literature, several notions of improvement by a coalition are used to define

cores. In an economy with indivisible commodities, the size of the core depends heavily

on which notion of improvement is adopted. Accordingly, a clear distinction among the

several competing notions of cores should be made. The core we focus on is defined by the

weak improvement. The weak improvement requires that some members in a coalition to
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be better off and other members not be worse off by redistribution of their endowments.

This is the same core that Debreu and Scarf [5] analyzed. We refer to this notion of the

core as the strong core.

Debreu and Scarf [5] considered a sequence of replica economies with convex consump-

tion sets. Two agents who have the same preference relation and the same endowment

vector are said to be of the same type. An economy where in each type there are n times as

many agents as the original economy is called the n-fold replica economy. If agents’ pref-

erence relations are strongly convex, then agents of the same type are allocated the same

consumption bundle by a strong core allocation or by a Walras allocation in any replica

economy. (We refer to this property of strong core allocations as the strong equal treat-

ment property.) Thus, by choosing a representative agent from each type, we can regard

strong core allocations and Walras allocations for any replica economy as having the same

dimensions as allocations for the original economy. Therefore, we can compare the size of

strong cores or the size of Walras allocations of economies with a different number of repli-

cations. Although the size of Walras allocations is constant, the sequence of strong cores

is shrinking as the number of replications increases, because possible coalitions increase.

Under the assumptions of strong convexity and local nonsatiation of preference relations,

Debreu and Scarf [5] proved that the limit of the decreasing sequence of strong cores coin-

cides with the set of Walras allocations. By the local nonsatiation, Walras equilibria are

cost-minimized Walras equilibria and, therefore, Debreu and Scarf’s result implies that

the limit of the sequence of strong cores coincides with the set of cost-minimized Walras

allocations. Our main theorem gives the same core equivalence in a finite economy with

indivisible commodities.

Anderson [1] used the notion of a core defined by strong improvement that requires

all members in a coalition to be better off by redistribution of their endowments. We

refer to this as the weak core. Without any assumptions, Walras allocations are always

in the weak core. Anderson [1] considered a more general sequence of economies than the

sequence of replica economies. In Anderson’s model, all agents may belong to different

types, and agents’ preference relations need not be convex. Anderson [1] proved that under

the assumption of monotonicity of preference relations (a stronger assumption than local

nonsatiation), if the number of agents whose endowment vectors are in a given bounded
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set increases, then some measure of the non-Walras degree of weak core allocations tends

to zero. Therefore, in a large finite economy, weak core allocations can be approximately

decentralized by prices.

Both in Debreu and Scarf’s [5] theorem and in Anderson’s [1] theorem, the assump-

tions of the local nonsatiation of preference relations and the convexity of consumption

sets play essential roles. Strictly speaking, Anderson’s [1] measure of the non-Walras

degree represents the distance between weak core allocation and quasi-equilibrium. In

an economy with convex consumption sets, if agents’ endowment vectors lie in the inte-

rior of their consumption sets, then so-called “minimum wealth condition” is met and,

hence, quasi-equilibrium is Walras equilibrium. In our economy, in contrast, as mentioned

earlier, quasi-equilibrium is not necessarily close to Walras equilibrium; therefore, even

if we can show that Anderson’s measure tends to zero, we cannot say that the strong

core is close to the set of Walras allocations. Accordingly, we consider a more restrictive

economy than that investigated by Anderson [1], but our economy is still more general

than replica economy investigated by Debreu and Scarf [5]. We can prove that, if the

number of agents’ types is finite and if each type has many agents, then the strong core

coincides with the set of cost-minimized Walras allocations. It should be noted that our

economy does not have properties essential in theorems by Debreu and Scarf [5] and by

Anderson [1] and, in contrast to Debreu and Scarf’s [5] theorem, our theorem is not a

“limit theorem.”

In our economy, because of indivisibility, the strong core and the set of cost-minimized

Walras allocations can be empty. Thus, the equivalence may be vacuous. To guarantee the

nonemptiness of the strong core or the existence of a cost-minimized Walras equilibrium,

some combinatorial conditions are needed. First, the type set is important. There exists

an economy which does not have a cost-minimized Walras equilibrium regardless of the

number of agents of each type. Example 3 illustrates this fact. Second, the relative ratio

of the number of agents of each type to the size of economy is important. In Example 2,

we give an economy with two types s and t. If the number of agents of type s is smaller

than the number of agents of type t, a cost-minimized Walras equilibrium always exists.

On the other hand, if the number of agents of type s is larger than the number of agents of

type t, then a cost-minimized Walras equilibrium does not exist unless these two numbers
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are in a certain ratio.

In the process of the proof of our core equivalence theorem, the weak equal treatment

property of strong core allocations is shown. That is, consumption bundles allocated

by a strong core allocation to agents of the same type have the same utility level with

respect to the common preference relation. As discussed earlier, in an economy with

convex consumption sets and strongly convex preference relations, strong core allocations

have the strong equal treatment property: all members of the same type receive the

same consumption bundle. This property depends heavily on the strong convexity of

preference relations. In addition, as Green [7] pointed out, this property is inherent to

replica economies. Green [7] proved that for almost all economies where the greatest

common divisor of the numbers of agents of each type is one, there exists a strong core

allocation that does not even have the weak equal treatment property. It should be

emphasized that the method of proof of our equal treatment property is very different

from that provided by Debreu and Scarf [5]. Moreover, our equal treatment property

holds even if the greatest common divisor of the numbers of agents of each type is one.

In other work, Inoue [11] obtained the same core equivalence in an atomless economy

under weaker assumptions on agents’ preference relations. In our theorem, we assume

that any two commodities are substitutable, whereas in Inoue’s [11] theorem, lexico-

graphic preference relations are permitted. In our theorem, we give a bound of the size

of economies above which the core equivalence holds. To clarify such bound, we need

stronger assumptions and lengthier argument than Inoue’s [11] proof in which Lyapunov’s

convexity theorem can be applied.

Inoue [9] obtained another type of core equivalence in an atomless economy. He

introduced a core defined by improvement as an intermediate notion between the weak

and the strong improvement. Accordingly, such a core is also an intermediate concept

between the strong and the weak core. We denote this as the core. Inoue [9] proved

that the core coincides with the set of exactly feasible Walras allocations. Our theorem

and Inoue’s [11] theorem imply that large finite economy and atomless economy produce

the same equivalence on the strong core. On the core, in contrast, the equivalence holds

only in atomless economies. Actually, Inoue [12] gave examples of the sequence of replica

economies such that every economy has a core allocation which is not a Walras allocation;
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therefore, the set of exactly feasible Walras allocations is strictly smaller than the core in

any replica economy and only in the limit, both sets coincide.

Shapley and Scarf [15] analyzed yet another type of indivisible commodity market.

Their economic model has finitely many agents, and each agent has only one indivisible

commodity (e.g., a house). Commodities are also differentiated; therefore, the number of

agents is equal to the number of commodities. In their model, it is assumed that every

agent prefers his commodity to nothing. Hence, any individually rational feasible alloca-

tion can be represented by a permutation of the initial allocation. By using David Gale’s

top-trading-cycle method, Shapley and Scarf proved that Walras equilibria always exist,

even though the strong core can be empty. Subsequently, Roth and Postlewaite [14] proved

that, if agents’ preference relations do not admit indifference among consumptions of one

unit of one commodity, then the strong core coincides with the set of Walras allocations

(which are also cost-minimized Walras allocations by the no-indifference assumption) and

these sets consist of only one allocation; therefore, the same core equivalence holds as ours

and also it is not a vacuous equivalence. Wako [17] proved that, even if agents’ prefer-

ence relations have indifference, the strong core coincides with the set of cost-minimized

Walras allocations, although these sets are possibly empty. This is an improvement of his

previous work (Wako [16]), where he proved that any strong core allocation is a Walras

allocation. These results in the Shapley-Scarf model can be easily extended to replica

economies so that our assumption that the number of agents of each type is large can

be satisfied. Roth and Postlewaite’s [14] and Wako’s [17] proofs depend heavily on the

model specification, so theirs are very different from the proof in this paper. In addition,

their core equivalence holds in any replica economy, whereas our core equivalence holds

only in a sufficiently large economy which is not necessarily a replica economy.

The paper itself is organized as follows. In Section 2, we present our model and the

main theorem. Section 3 provides an outline of the proof of the theorem. Section 4 gives a

formal proof. Purely technical results used in the proof of the main theorem are relegated

to the Appendix.
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2 Model and Main Theorem

We begin with some notation. Let R, Q, and Z be the sets of real numbers, rational

numbers, and integers, respectively. For x = (x(1), . . . , x(m)) and y = (y(1), . . . , y(m)) in

Rm (m ≥ 2), we write x ≥ y if x(j) ≥ y(j) for all j ∈ {1, . . . ,m}; x > y if x ≥ y and

x 6= y; x� y if x(j) > y(j) for all j ∈ {1, . . . ,m}. The symbol 0 denotes the origin in Rm,

as well as the real number zero. Let χi be the ith unit vector, i.e., χ
(i)
i = 1 and χ

(j)
i = 0

if j 6= i. Rm
+ = {x ∈ Rm |x ≥ 0}; Rm

++ = {x ∈ Rm |x � 0}. Qm
+ and Zm

+ are defined in a

similar way. Z++ is the set of natural numbers. The inner product
∑m

j=1 x
(j)y(j) of x and

y in Rm is denoted by x · y. The cardinality of a finite set A is denoted by #A.

We consider a pure exchange economy with L indivisible commodities, where L is a

natural number with L ≥ 2.1 Every commodity in our economy is available in integer

quantities; therefore, the commodity space is given by ZL. For simplicity, we assume that

all agents have the same consumption set ZL
+. An agent a is characterized by his preference

relation -a on ZL
+ and his endowment vector e(a) ∈ ZL

+. Any preference relation - is a

binary relation on ZL
+ which is required to be reflexive, transitive, complete, and weakly

monotone.2 Let P be the set of all preference relations on ZL
+. Given a preference relation

-, we define binary relations � and ∼ as follows: x � y if and only if not (x - y); x ∼ y

if and only if x - y and y - x. We sometimes write x % y for y - x and write x ≺ y for

y � x.

The space of agents’ characteristics is then P × ZL
+. A mapping E of a finite set A

of agents into P × ZL
+, E(a) = (-a, e(a)) for all a ∈ A, is an economy if

∑
a∈A e(a) � 0.

Given an economy E : A → P × ZL
+, an allocation for E is a mapping of A into ZL

+. An

allocation f : A → ZL
+ for E is exactly feasible if the equality

∑
a∈A f(a) =

∑
a∈A e(a)

holds. A coalition is a nonempty subset of A.

The core we focus on is the strong core defined by the weak improvement. The precise

definition is as follows:

1For an economy with only one commodity, we can easily show that, if every agent’s preference relation

is strongly monotone, then the strong core coincides with the set of cost-minimized Walras allocations,

and these sets contain only endowment allocation.
2A preference relation - is weakly monotone if, for all x and y in ZL

+, x ≤ y implies that x - y.
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Definition 1. Let f : A → ZL
+ be an allocation for an economy E : A → P × ZL

+. A

coalition S can weakly improve upon f if there exists a mapping g : S → ZL
+ such that∑

a∈S

g(a) =
∑
a∈S

e(a),

g(a) �a f(a) for some a ∈ S, and

g(a) %a f(a) for all a ∈ S.

The set of all exactly feasible allocations for E that cannot be weakly improved upon by

any coalition is called the strong core of E and is denoted by CS(E).

Obviously, every strong core allocation is then Pareto-efficient. If there exist only

two agents in an economy, strong core allocation is equal to individually rational Pareto-

efficient allocation; therefore, there always exists a strong core allocation. If the size of

an economy is larger than two agents, then, in contrast, the strong core can be empty. In

Example 3 below, we give an economy with the empty strong core.

In our economy, the strong core is completely characterized by cost-minimized Walras

equilibria whose definition is as follows:

Definition 2. Let E : A → P × ZL
+ be an economy. A pair (p, f) of a price vector

p ∈ QL
+ and an exactly feasible allocation f : A → ZL

+ is called a cost-minimized Walras

equilibrium for E if

(i) for all a ∈ A, p · f(a) ≤ p · e(a);

(ii) for all a ∈ A, if x ∈ ZL
+ and x �a f(a), then p · x > p · e(a); and

(iii) for all a ∈ A, if x ∈ ZL
+ and x %a f(a), then p · x ≥ p · e(a).

An exactly feasible allocation f : A → ZL
+ is called a cost-minimized Walras allocation

for E if there exists a price vector p ∈ QL
+ such that (p, f) is a cost-minimized Walras

equilibrium for E . The set of all cost-minimized Walras allocations for E is denoted by

WCM(E).

From the exact feasibility of f and condition (i), it follows that p ·f(a) = p ·e(a) for all

a ∈ A.3 Putting together this with condition (ii), we obtain the preference maximization:

3This follows also from the exact feasibility of f and condition (iii), or from conditions (i) and (iii).
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for all a ∈ A, f(a) %a x holds for all x ∈ {y ∈ ZL
+ | p · y ≤ p · f(a)}. Also, putting together

with condition (iii), we obtain the cost minimization: for all a ∈ A, p · f(a) ≤ p · x holds

for all x ∈ {y ∈ ZL
+ | y %a f(a)}.

When a pair (p, f) of a price vector p ∈ QL
+ and an exactly feasible allocation f satisfies

conditions (i) and (ii), it is called a Walras equilibrium. We denote the set of all Walras

allocations for E by W (E). Note that, because of indivisibility, even a Walras equilibrium

may not exist.4

In an economy with perfectly divisible commodities, if agents’ preference relations

are locally nonsatiated, then the preference maximization implies the cost minimization;

therefore, Walras equilibrium is cost-minimized Walras equilibrium. On the other hand,

if agents’ consumption sets are convex, preference relations are continuous, and the min-

imum wealth condition is met, then the cost minimization implies the preference maxi-

mization (see Debreu [4, Theorem (1), Section 9, Chapter 4]); therefore, if (p, f) satisfies

conditions (i) and (iii), then it also satisfies condition (ii). In our economy, in contrast,

since the commodity space is discrete, one of the preference maximization and the cost

minimization does not imply the other. Thus, there can exists a Walras equilibrium that

is not a cost-minimized Walras equilibrium. Actually, in Examples 1 and 3 below, we give

an economy with a Walras equilibrium that is not a cost-minimized Walras equilibrium.

If (p, f) is a cost-minimized Walras equilibrium, then for all α ∈ Q++, (α p, f) is also

a cost-minimized Walras equilibrium. Thus, for every cost-minimized Walras allocation,

there exists an associated integral equilibrium price vector. It should be noted that we

can restrict the space of price vectors to QL
+ without loss of generality. In fact, if a pair

of a vector p ∈ RL
+ \QL

+ and an exactly feasible allocation f satisfies conditions (i)-(iii) of

Definition 2, then there exists a price vector p∗ ∈ QL
+ such that (p∗, f) is a cost-minimized

Walras equilibrium.5

By an argument similar to the proof of the first welfare theorem, we can show that,

for all economy E , cost-minimized Walras allocations for E are strong core allocations for

4Henry [8] gave an example of an economy with one indivisible commodity and two divisible commodi-

ties such that a Walras equilibrium does not exist. For economies where every commodity is indivisible,

Shapley and Scarf [15, Section 8] gave an example of the nonexistence of a Walras equilibrium.
5This fact is clear from the last part of the proof of our main theorem.
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E , i.e., WCM(E) ⊆ CS(E).

In our main theorem, we place restrictions on preference relations. For all k ∈ Z with

k ≥ 2,6 we define a subset Pk of P as follows: -∈ Pk if and only if (i) -∈ P and (ii) for

all h, i ∈ {1, . . . , L} with h 6= i and all x ∈ ZL
+, if x(i) ≥ 1, then x+ k χh − χi � x.7 From

(i) and (ii), it follows that, for all h ∈ {1, . . . , L} and all x ∈ ZL
+, x + k χh � x holds.8

Condition (ii) means that agents whose preference relations are in Pk are willing to give

up one unit of a commodity in exchange for k units of another commodity. Therefore,

preference relations in Pk have uniformly positive marginal rates of substitution. In

particular, the lexicographic ordering is excluded.

In our main theorem, we consider an economy where there exist many agents who

have the same preference relation and the same endowment vector. To make this more

precise, we introduce some notation. Let k ∈ Z with k ≥ 2 and let T ⊆ Pk × ZL
+ be a

nonempty finite set. The set T is a type set of agents. For all t ∈ T , we write t = (-t, et).

Given an economy E : A→ T and a type t ∈ T , denote the set of agents of type t by At,

i.e., At = E−1({t}) = {a ∈ A | (-a, e(a)) = t}.

We first give r ∈ R with r ≥ 1, k ∈ Z with k ≥ 2, and T ⊆ Pk×ZL
+. Then, we consider

an economy E : A→ T such that (1) #A is sufficiently large and (2) #At/#A ≥ 1/r for all

t ∈ T . Thus, the number 1/r represents a lower bound of the ratio of agents of each type

t to the whole economy. Conditions (1) and (2) guarantee that there exist many agents

whose types are t, i.e., #At is large enough. If number r and economy E : A→ T satisfy

that r = #T and #At/#A ≥ 1/r for all t ∈ T , this economy is the #A/r-fold replica

economy. Hence, our theorem covers more general economies than replica economies.

We can now state our main result.

6The reason why k is assumed to be greater than 1 is that P1, which is defined similar to Pk with

k ≥ 2, is empty. Indeed, if -∈ P1, then χ1 = χ2+χ1−χ2 � χ2 and χ2 = χ1+χ2−χ1 � χ1, contradicting

the irreflexivity of �. This fact was pointed out by Akiyoshi Shioura.
7Condition (ii) is related to the equi-monotonicity of preference relations in an economy with perfectly

divisible commodities. Let Q be the space of continuous and strongly monotone preference relations on

the consumption set RL
+. It can be shown that for every finite subset Q′ of Q and every compact subset

K of RL
++, there exists a positive number δ such that, for all -∈ Q′, all h, i ∈ {1, . . . , L}, and all x ∈ K,

x + χh − δ χi � x holds.
8This fact can be shown as follows. Let i 6= h. Then, x + k χh = (x + χi) + k χh − χi � x + χi % x.
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Theorem. For all r ∈ R with r ≥ 1, all k ∈ Z with k ≥ 2, and all T ⊆ Pk × ZL
+ with

#T ≤ r and
∑

t∈T et � 0, there exists an N ∈ Z++ such that if E : A → T, #A ≥ N ,

and #At/#A ≥ 1/r for all t ∈ T , then

(1) all strong core allocations for E have the weak equal treatment property, i.e., for all

f ∈ CS(E), all t ∈ T , and all a, b ∈ At, f(a) ∼a f(b) holds; and

(2) the strong core of E coincides with the set of cost-minimized Walras allocations for

E, i.e., CS(E) = WCM(E).

The number N depends on r, k, L, and M = max{‖e‖∞ | (-, e) ∈ T}.9 The proof of

the theorem is given in Section 4. From the proof, it is clear that the size of economies

which satisfy the weak equal treatment property of strong core allocations is smaller than

the size of economies which also satisfy the equivalence between the strong core and the

set of cost-minimized Walras allocations.

Since the inclusion WCM(E) ⊆ CS(E) holds for any economy E , our theorem says the

converse holds if the size of economy is sufficiently large. A small economy E1 can have

a strong core allocation f1 that is not a cost-minimized Walras allocation. In any replica

economy En of E1, the replica allocation of f1 is not a cost-minimized Walras allocation

for En. From our theorem, if the number n of replications is sufficiently large, then the

replica allocation of f1 is not a strong core allocation for replica economy En. The next

example illustrates this fact.

Example 1. Let L = 2 and T = {s, t}. Each type’s endowment vector is given by

es = (3, 1) and et = (2, 2). Each type’s preference relation is represented by the following

utility functions (see Figures 1 and 2):

us(x
(1), x(2)) =

 2x(1) + x(2) if x(1) ≤ 1,

1
2
(x(1) + 2x(2) + 3) if x(1) ≥ 2, and

ut(x
(1), x(2)) = x(1) + x(2).

Clearly, both -s and -t are in P3.

For all n ≥ 1, let An,s = {(s, 1), . . . , (s, n)}, An,t = {(t, 1), . . . , (t, n)}, and An =

An,s ∪An,t. For all n ≥ 1, define economy En : An → T by En(s, i) = s and En(t, i) = t for

9For x ∈ RL, ‖x‖∞ = max{|x(j)| | j = 1, . . . , L}.
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commodity 1

commodity 2

0

es

Figure 1: Endowment vector and indifference curves of agents of type s

commodity 1

commodity 2

0

et

Figure 2: Endowment vector and indifference curves of agents of type t
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all i ∈ {1, . . . , n}. Thus, economy En is the n-fold replica economy of E1, and economy

En consists of n agents of type s and n agents of type t. An allocation f1 : A1 → Z2
+ for

E1 is defined by f1(s, 1) = (1, 2) and f1(t, 1) = (4, 1). One could check that f1 ∈ CS(E1)

and f1 6∈ WCM(E1).

For all n ≥ 2, let fn : An → Z2
+ be a replica allocation of f1; that is, fn(s, i) = f1(s, 1)

and fn(t, i) = f1(t, 1) for all i ∈ {1, . . . , n}. For all n ≥ 2, fn is not a cost-minimized

Walras allocation for En for the same reason that f1 6∈ WCM(E1). Although f1 is a strong

core allocation for E1, for all n ≥ 2, fn is not a strong core allocation for En as we show

in the following.

Let n ≥ 2. Consider S = {(s, 1), (s, 2), (t, 1)}. Define g : S → Z2
+ by

g(s, i) = f1(s, 1) = (1, 2) for i = 1, 2, and

g(t, 1) = (6, 0).

Then, ∑
(r,i)∈S

g(r, i) =
∑

(r,i)∈S

en(r, i) and g(t, 1) �t f1(t, 1),

where en : An → Z2
+ is the endowment allocation for En. Therefore, fn 6∈ CS(En) for all

n ≥ 2.

From our theorem, it follows that there exists an n0 ∈ Z++ such that, for all n ≥ n0,

CS(En) = WCM(En) holds. In this example, we can choose n0 = 2. It can be shown that,

for all n ≥ 2,

CS(En) =

f : An → Z2
+

∣∣∣∣∣∣ f(s, i) = (1, 3) and f(t, i) = (4, 0)

for all i ∈ {1, . . . , n}

 .

Thus, for all n ≥ 2, every allocation in CS(En) is a cost-minimized Walras allocation under

the price vector (1, 1). Hence, for all n ≥ 2, ∅ 6= CS(En) = WCM(En).

Note that, for all n ≥ 1, endowment allocation en is a Walras allocation under the

price vector p = (1, p(2)) with 1 < p(2) < 3/2, but en is not a cost-minimized Walras

allocation. Summing up these facts, for all n ≥ 2, ∅ 6= CS(En) = WCM(En) ( W (En)

holds.

The next example illustrates that combinatorial condition on the relative ratios #At/#A

(t ∈ T ) is needed for the existence of cost-minimized Walras equilibrium.
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Example 2. Consider the type set T form Example 1. In Example 1, we considered

economies where the number of agents of type s is equal to the number of agents of

type t. Here, we consider economies where these two numbers are different. By an

argument similar to Example 1, we can show that, if economy E : A → T satisfies that

0 < #As/#A ≤ #At/#A, then any feasible allocation f : A→ Z2
+ such that

f(a) = (1, 3) for all a ∈ As, and

‖f(a)‖1 = 4 for all a ∈ At

is a cost-minimized Walras allocation for E .10

We consider economy E : A → T with #As/#A > #At/#A > 0. If #As/#A = 2/3

and #At/#A = 1/3, then allocation f : A→ Z2
+ defined by

f(a) =

 (1, 2) if a ∈ As,

(6, 0) if a ∈ At,

is exactly feasible. In addition, f is a cost-minimized Walras allocation under p = (1, 2).

If economy E : A → T satisfies that #As/#A > #At/#A > 0 and #As/#A 6= 2/3,

then E does not have a cost-minimized Walras equilibrium as shown in the following.

• Under price vector p = (1, p(2)) with p(2) < 1, commodity 2 is in excess demand.

• Under price vector p = (1, p(2)) with p(2) > 2, commodity 1 is in excess demand.

• Under price vector p = (1, p(2)) with 1 < p(2) < 2, agents of type s do not have

consumption vectors that satisfy both the preference maximization and the cost

minimization.

• Under price vector p = (1, p(2)) with p(2) = 1 or p(2) = 2, preference-maximized

allocations are not feasible.

Summing up these results, we have

• If economy E : A→ T satisfies that 0 < #As/#A ≤ #At/#A, then WCM(E) 6= ∅.

10For x ∈ RL, ‖x‖1 =
∑L

i=1 |x(i)|.
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• If economy E : A → T satisfies that #As/#A = 2/3 and #At/#A = 1/3, then

WCM(E) 6= ∅.

• If economy E : A→ T satisfies that #As/#A > #At/#A > 0 and #As/#A 6= 2/3,

then WCM(E) = ∅.

Hence, in order to guarantee the existence of cost-minimized Walras equilibrium, the

relative ratio of the number of agents of each type to the size of economy is essential.

From our theorem, this relative ratio is essential also for the nonemptiness of the strong

core.

Not only the relative ratios #At/#A (t ∈ T ) but also the type set T is essential for

the existence of a cost-minimized Walras equilibrium. The next example illustrates this

fact.

Example 3. Let L = 2 and T = {t}. Type t’s endowment vector et is given by (1, 2). The

preference relation -t of agents of type t is represented by a utility function ut : Z2
+ → R

defined by

ut(x
(1), x(2)) =

 3.5 if (x(1), x(2)) = (3, 0),

x(1) + x(2) otherwise.

(See Figure 3.) Then, -t∈ P2. Although the indifference curves drawn in the figure are

not convex, this preference relation is discretely convex in the sense that, for all x ∈ Z2
+,

we have co
(
{y ∈ Z2

+ | y %t x}
)
∩Z2 = {y ∈ Z2

+ | y %t x}, where co(C) denotes the convex

hull of set C.11 For all n ≥ 1, let An = {(t, 1), . . . , (t, n)}. Define En : An → T by

En(t, i) = t for all i ∈ {1, . . . , n}. Let en : An → Z2
+ be the endowment allocation for En.

In every economy En with n ≥ 1, if price vector p = (1, p(2)) satisfies that p(2) ≤ 1/2,

then commodity 2 is in excess demand; if p = (1, p(2)) satisfies that p(2) ≥ 1, then

commodity 1 is in excess demand. Under price vector p = (1, p(2)) with 1/2 < p(2) < 1,

a pair (p, en) is a Walras equilibrium, but is not a cost-minimized Walras equilibrium.

Since any other allocation than en cannot be a Walras allocation under p = (1, p(2)) with

1/2 < p(2) < 1, we have ∅ = WCM(En) ( W (En) = {en} for all n ≥ 1.

11The discrete convexity of preference relation is related to the nonemptiness of the weak core. See

Inoue [10].
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commodity 1

commodity 2

0

et

Figure 3: Endowment vector and indifference curves of agents of type t

From our theorem, it follows that CS(En) = ∅ = WCM(En) for n large enough. Indeed,

this equivalence is met for all n ≥ 4; one can show that CS(En) = ∅ for all n ≥ 4. On the

other hand, if 2 ≤ n ≤ 3, there exists a strong core allocation that is not a cost-minimized

Walras allocation. Actually, endowment allocation e2 for E2 is a strong core allocation,

but as mentioned above, e2 is not a cost-minimized Walras allocation. Also, an allocation

g : {(t, 1), (t, 2), (t, 3)} → Z2
+ for E3 defined by

g(t, 1) = (3, 0), and

g(t, i) = (0, 3) for all i ∈ {2, 3}

is a strong core allocation but is not a Walras allocation for E3.

3 Outline of the Proof

We give an outline of the proof here and give a formal proof in the next section. Let

r ∈ R with r ≥ 1, k ∈ Z with k ≥ 2, and T ⊆ Pk × ZL
+ with #T ≤ r and

∑
t∈T et � 0.

Let E : A → T be an economy with #At/#A ≥ 1/r for all t ∈ T . Later we assume that

#A is sufficiently large, but at this point A may be an arbitrary finite set of agents.
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In Lemma 1, we prove that strong core allocations are uniformly bounded; there

exists a ξ ∈ Z+ such that ‖f(a)‖∞ ≤ ξ for all f ∈ CS(E) and all a ∈ A. It should be

emphasized that the upper bound ξ depends only on exogenous variables r, k, L, and

M = max{‖e‖∞ | (-, e) ∈ T}, and it does not depend on the size #A of economy. Since

T is a finite set, agents’ net trade vectors are also uniformly bounded; ‖f(a)−e(a)‖∞ ≤ ξ

for all f ∈ CS(E) and all a ∈ A. (From the definition of ξ which is made precise in the

formal proof, we can take the same upper bound as the one of strong core allocations.)

Let XL,ξ = {x ∈ ZL | ‖x‖∞ ≤ ξ}. Then, for all f ∈ CS(E) and all a ∈ A, f(a) −

e(a) ∈ XL,ξ. Since XL,ξ is a finite set and every strong core allocation f is exactly

feasible, i.e.,
∑

a∈A(f(a) − e(a)) = 0, we can expect that, if #A is sufficiently large, then

there exists a nonempty subset B of A such that f is exactly feasible within B, i.e.,∑
a∈B(f(a)− e(a)) = 0. This expectation is true as proved in Lemma 3 in the Appendix.

We can take a subset B whose cardinality is bounded by µ(L, ξ). Literally, this upper

bound depends only on dimension L and the upper bound ξ of vectors f(a)−e(a) (a ∈ A).

After these preparations, we can show that all strong core allocations have the weak

equal treatment property; if #A > rµ(L, ξ), then, for all f ∈ CS(E), all t ∈ T , and all

a, b ∈ At, f(a) ∼t f(b) holds (Lemma 2). This is proved by a contradiction argument.

• Strong core allocation f is exactly feasible withinB and withinA\B, i.e.,
∑

a∈B(f(a)−

e(a)) = 0 and
∑

a∈A\B(f(a) − e(a)) = 0.

• If B ∩ At 6= ∅ for some t ∈ T , then (A \ B) ∩ At 6= ∅. (This follows from the

assumption #A > rµ(L, ξ).)

These facts play essential roles to construct a coalition which can weakly improve upon

f .

Assume that #A is sufficiently large. (The required size of economy is made precise

in the formal proof.) Let f ∈ CS(E). For every t ∈ T , let

ψt = {x ∈ ZL
+ | x %t f(a)} − {et},

where a ∈ At. By the weak equal treatment property, ψt is well-defined. A cost-minimized

Walras equilibrium price vector can be obtained in two steps. First, we find a price vector

p0 under which strong core allocation f satisfies the cost minimization. Second, we move
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p0 slightly and find a price vector p̄ under which f satisfies both the cost minimization

and the preference maximization. In both steps, we use a well-known separation theorem

for convex sets. To obtain price vector p0, it suffices to prove that

0 6∈ int

(
co

(⋃
t∈T

ψt

))
,

where int(C) denotes the interior of set C. This is proved by a contradiction argument.

Thus, we suppose that 0 ∈ int
(
co
(⋃

t∈t ψt

))
and we find a coalition which can weakly

improve upon f . From 0 ∈ int
(
co
(⋃

t∈t ψt

))
, 0 can be represented as a convex combi-

nation of elements of
⋃

t∈T ψt. Roughly speaking, the denomination of coefficients of the

convex combination represents the size of improving coalition. Thus, we have to find a

convex combination whose coefficients are rational and their denominators are bounded.

To obtain such convex combination, we need a mathematical lemma (Lemma 6 in the

Appendix). The size #A of economy E must be larger than these denominators.

Assume that we could prove that 0 6∈ int
(
co
(⋃

t∈t ψt

))
. Then, by the separation

theorem for convex sets, there exists a p0 ∈ RL\{0} such that p0 ·z ≥ 0 for all z ∈
⋃

t∈T ψt.

Under price vector p0, f satisfies the cost minimization, but there may exist an x ∈ ZL
+

such that x �a f(a) and p0 · (x − e(a)) = 0 for some a ∈ A. In such a case, we

put H0 = {z ∈ RL | p0 · z = 0} and, by the same argument as above, we prove that

0 6∈ ri
(
co
(⋃

t∈T ψt ∩H0

))
, where ri(C) denotes the relative interior of set C. Again, by

the separation theorem for convex sets, there exists a p1 ∈ span
(⋃

t∈T ψt ∩H0

)
\{0} such

that p1 · z ≥ 0 for all z ∈
⋃

t∈T ψt ∩ H0. If we take sufficiently small ε1 > 0, then, for

all z ∈
⋃

t∈T ψt with p0 · z > 0, (p0 + ε1 p1) · z > 0 holds and, for all z ∈
⋃

t∈T ψt ∩ H0,

(p0 + ε1 p1) · z ≥ 0 holds. Namely, if x ∈ ZL
+ is outside the budget set under p0, then

x is still outside the new budget set under p0 + ε1 p1. This is possible because agents’

consumption set ZL
+ is discrete. When there exists an x ∈ ZL

+ such that x �a f(a) and

(p0 + ε1 p1) · (x − e(a)) = 0 for some a ∈ A, by repeating the same argument, we can

obtain a price vector p̄ such that, for all a ∈ A,

• if x ∈ ZL
+ and x �a f(a), then p̄ · (x− e(a)) > 0, and

• if x ∈ ZL
+ and x %a f(a), then p̄ · (x− e(a)) ≥ 0.
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(Note that the dimension of span
(⋃

t∈T ψt ∩H0

)
is one less than the dimension of span

(⋃
t∈T ψt

)
.

Since the dimension decreases by one at each step, we can obtain p̄ in finite steps.) The pair

(p̄, f) satisfies the conditions of cost-minimized Walras equilibrium except that p̄ ∈ QL
+.

Finally, by applying Inoue’s [9] separation theorem (Lemma 7 in the Appendix), we obtain

an integral price vector p∗ under which f is a cost-minimized Walras allocation.

4 Proof of Theorem

Let r ∈ R with r ≥ 1, k ∈ Z with k ≥ 2, and T ⊆ Pk×ZL
+ with #T ≤ r and

∑
t∈T et � 0.

Let

M = max{‖e‖∞ | (-, e) ∈ T} and

ξ = max{rM2L2(ML+ 1), (kL+ 1)ML}.

Note that the number ξ depends only on exogenous variables. We will prove that

strong core allocations are uniformly bounded regardless of the size of economy. In the

case of perfectly divisible commodities, Bewley [3, Theorem 1] first proved that strong

core allocations are uniformly bounded. His proof uses a contradiction argument, so the

bound of strong core allocations is not clear. On the other hand, Mas-Colell’s [13, Lemma

7.4.10] proof clarifies the bound. Our proof is based on Mas-Colell’s proof.

Lemma 1. For every finite set A of agents, if economy E : A → T satisfies that

#At/#A ≥ 1/r for all t ∈ T , then ‖f(a)‖∞ ≤ ξ for all f ∈ CS(E) and all a ∈ A.

Proof. Let A be the set of agents and E : A→ T be an economy such that #At/#A ≥ 1/r

for all t ∈ T . Let f ∈ CS(E). By a simple calculation, it follows that, if #A ≤ rML2(ML+

1), then ‖f(a)‖∞ ≤ ξ for all a ∈ A. Therefore, in the remainder of the proof, we assume

that #A > rML2(ML+ 1). Let J = {j ∈ {1, . . . , L} | f (j)(a) ≥ML+ 1 for some a ∈ A}

and J ′ = {j ∈ {1, . . . , L} | f (j)(a) ≥ (kL+1)ML for some a ∈ A}. Then, J ′ ⊆ J . If J = ∅,

the proof has been completed. Thus, the set J is supposed to be nonempty. For j ∈ J , we

choose aj ∈ argmax{f (j)(a) | a ∈ A}. Note that ai = aj may hold for some distinct indices

i and j. Let B = {aj | j ∈ J}. Then, #B ≤ #J ≤ L. The excess demand of the coalition

B is denoted by y =
∑

a∈B(f(a)− e(a)) ∈ ZL. Let J ′′ = {j ∈ {1, . . . , L} | y(j) ≤ −1}. By

a simple calculation, y(j) ≥ 1 for all j ∈ J . Thus, J ∩ J ′′ = ∅. We also have:
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(1) y(j) ≥ kML2 for all j ∈ J ′.

In addition, if J ′ = ∅, then ‖f(a)‖∞ ≤ ξ for all a ∈ A. Therefore, the proof is

completed if we can prove that J ′ = ∅.

Claim 1. J ′ = ∅.

Proof. Suppose, to the contrary, that J ′ 6= ∅. Let C = A \ B. Then, #C = #A− #B ≥

#A− L. Since #A > rML2(ML+ 1) > L, we have C 6= ∅. Define ỹ ∈ ZL by

ỹ = y −
∑
j∈J ′′

y(j)χj.

Clearly, ỹ ≥ 0. Moreover, from (1), it follows that, for all j ∈ J ′, ỹ(j) = y(j) ≥ kML2.

Subclaim 1.1. J ′′ 6= ∅.

Proof. Suppose, to the contrary, that J ′′ = ∅. We have

kML2
∑

j∈J ′ χj ≤ ỹ = y

=
∑

a∈B(f(a) − e(a))

= −
∑

a∈C(f(a) − e(a))

=
∑

a∈C(e(a) − f(a)).

The third equality follows from the exact feasibility of strong core allocation f . Since

C 6= ∅, we can choose an agent a∗ of C. Define a mapping g : C → ZL
+ by

g(a) =

 f(a∗) +
∑

c∈C(e(c) − f(c)) if a = a∗,

f(a) if a ∈ C \ {a∗}.

Because g(a∗) ≥ f(a∗) + kχj for all j ∈ J ′ and -a∗∈ Pk, we have g(a∗) �a∗ f(a∗). We

also have ∑
a∈C

g(a) =
∑
a∈C

f(a) +
∑
c∈C

(e(c) − f(c)) =
∑
a∈C

e(a).

This contradicts that f ∈ CS(E). Thus, we have established the proof of Subclaim 1.1.

For all j ∈ J ′′, let Cj = {a ∈ C | f (j)(a) ≥ 1}.

Subclaim 1.2. #Cj > ML2 for all j ∈ J ′′.

21



Proof. Let j ∈ J ′′. Since J ∩ J ′′ = ∅, it follows that j 6∈ J . Thus, f (j)(a) ≤ ML for all

a ∈ A. Since C \ Cj = {a ∈ C | f (j)(a) < 1} = {a ∈ C | f (j)(a) = 0}, we have∑
a∈A

f (j)(a) ≤ {#A− (#C − #Cj)}ML

= (#Cj)ML+ (#A− #C)ML

≤ (#Cj)ML+ML2.

On the other hand, since
∑

t∈T et � 0, there exists a type tj ∈ T such that e
(j)
tj ≥ 1.

Thus,

#A

r
≤ #Atj ≤

∑
a∈Atj

e(j)(a) ≤
∑
a∈A

e(j)(a).

Because strong core allocation f is exactly feasible, we have

#A

r
≤
∑
a∈A

e(j)(a) =
∑
a∈A

f (j)(a) ≤ (#Cj)ML+ML2.

Thus,

#Cj ≥
#A

rML
− L >

rML2(ML+ 1)

rML
− L = ML2.

This completes the proof of Subclaim 1.2.

For all j ∈ J ′′, we have

−1 ≥ y(j) =
∑

a∈B(f (j)(a) − e(j)(a))

≥ −
∑

a∈B e
(j)(a)

≥ −M(#B)

≥ −ML.

Therefore, by Subclaim 1.2, there exists {Gj | j ∈ J ′′} such that

Gj ⊆ Cj for all j ∈ J ′′,

#Gj = −y(j) for all j ∈ J ′′, and

Gj ∩G` = ∅ if j 6= `.
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Since J ′ 6= ∅, by (1), there exists an h ∈ {1, . . . , L} such that ỹ(h) = y(h) ≥ kML2. Define

a mapping ĝ : C → ZL by

ĝ(a) =

 f(a) + kχh − χj if a ∈ Gj (j ∈ J ′′),

f(a) if a ∈ C \
⋃

j∈J ′′ Gj.

For all a ∈ Gj, f
(j)(a) ≥ 1 holds since Gj ⊆ Cj. Thus, ĝ(a) ∈ ZL

+ for all a ∈ C. Because

-a ∈ Pk for all a ∈ C, we have ĝ(a) �a f(a) for all a ∈
⋃

j∈J ′′ Gj. We also have∑
a∈C

ĝ(a) =
∑
a∈C

f(a) + k
∑
j∈J ′′

(#Gj)χh −
∑
j∈J ′′

(#Gj)χj

=
∑
a∈C

f(a) − k

(∑
j∈J ′′

y(j)

)
χh +

∑
j∈J ′′

y(j)χj

≤
∑
a∈C

f(a) + kML2χh +
∑
j∈J ′′

y(j)χj

≤
∑
a∈C

f(a) + ỹ +
∑
j∈J ′′

y(j)χj

=
∑
a∈C

f(a) + y

=
∑
a∈C

f(a) +
∑
a∈B

(f(a) − e(a))

=
∑
a∈A

f(a) −
∑
a∈B

e(a)

=
∑
a∈A

e(a) −
∑
a∈B

e(a)

=
∑
a∈C

e(a).

Although ĝ may not be exactly feasible within coalition C, coalition C can weakly improve

upon f because agents’ preference relations are weakly monotone. This contradicts that

f ∈ CS(E). This completes the proof of Claim 1.

Thus, we have established the proof of Lemma 1.

Next, we prove that in an economy with a large number of agents, every strong core

allocation has the weak equal treatment property. Before giving the precise statement,

we introduce some notation. Let XL,ξ = {x ∈ ZL | ‖x‖∞ ≤ ξ}. A set XL,ξ is defined
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as follows. A mapping α : XL,ξ → Z+ belongs to XL,ξ if and only if
∑

x∈XL,ξ
α(x) ≥ 1,∑

x∈XL,ξ
α(x)x = 0, and there exists no mapping β : XL,ξ → Z+ such that∑

x∈XL,ξ

β(x) ≥ 1,
∑

x∈XL,ξ

β(x)x = 0,

β(x) ≤ α(x) for all x ∈ XL,ξ, and

β(y) < α(y) for some y ∈ XL,ξ.

Let

µ(L, ξ) = sup

 ∑
x∈XL,ξ

α(x)

∣∣∣∣∣∣ α ∈ XL,ξ

 .

The important fact is that µ(L, ξ) is finite and, therefore, it is a natural number. This

fact is shown in Lemma 3 in the Appendix.

The first statement of the theorem follows from the following lemma.

Lemma 2. Let A be the set of agents such that #A > rµ(L, ξ). If economy E : A → T

satisfies that #At/#A ≥ 1/r for all t ∈ T , then all strong core allocations for E have the

weak equal treatment property, i.e., for all f ∈ CS(E), all t ∈ T , and all a, b ∈ At, we

have f(a) ∼t f(b).

Proof. Suppose, to the contrary, that there exists an allocation f ∈ CS(E), a type t ∈ T ,

and two agents a, b ∈ At such that f(a) �t f(b). Without loss of generality, we can assume

that f(a) %t f(c) %t f(b) for all c ∈ At. By Lemma 1, ‖f(c)‖∞ ≤ ξ for all c ∈ A. Since

both f(c) and e(c) are nonnegative vectors, we have ‖f(c) − e(c)‖∞ ≤ max{ξ, M} = ξ

for all c ∈ A. Thus, f(c) − e(c) ∈ XL,ξ for all c ∈ A. Define α : XL,ξ → Z+ by, for all

x ∈ XL,ξ,

α(x) = #{c ∈ A | f(c) − e(c) = x}.

Note that ∑
x∈XL,ξ

α(x)x =
∑
c∈A

(f(c) − e(c)) = 0 and

∑
x∈XL,ξ

α(x) = #A > rµ(L, ξ).
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Thus, by the definition of µ(L, ξ), there exists a natural number ` > r and βj ∈ XL,ξ

(j = 1, . . . , `) such that for all x ∈ XL,ξ, α(x) =
∑`

j=1 βj(x). Therefore, there exists a

partition {B1, . . . , B`} of A such that for all j ∈ {1, . . . , `} and all x ∈ XL,ξ,

βj(x) = #{c ∈ Bj | f(c) − e(c) = x}.

Without loss of generality, we can assume b ∈ B1. Since β1 ∈ XL,ξ, we have∑
c∈B1

(f(c) − e(c)) =
∑

x∈XL,ξ

β1(x)x = 0 and

#B1 =
∑

x∈XL,ξ

β1(x) ≤ µ(L, ξ).

Note that the set At \B1 is nonempty, because #At ≥ #A/r > µ(L, ξ) ≥ #B1.

Claim 2. f(c) ∼t f(b) for all c ∈ At \B1.

Proof. Suppose, to the contrary, that f(c∗) �t f(b) for some c∗ ∈ At \B1. We consider a

coalition C1 = (A \ (B1 ∪ {c∗})) ∪ {b}. Define g1 : C1 → ZL
+ by

g1(c) =

 f(c∗) if c = b,

f(c) if c ∈ C1 \ {b}.

Since
∑

c∈A\B1
(f(c) − e(c)) = 0 and agents b and c∗ have the same type, we have∑

c∈C1
(g1(c) − e(c)) = 0. In addition, we have g1(b) = f(c∗) �t f(b). This contradicts

that f ∈ CS(E). This completes the proof of Claim 2.

From Claim 2, it follows that a ∈ B1. SinceAt\B1 is nonempty, we can pick c′ ∈ At\B1.

We consider a coalition C2 = (B1 \ {a}) ∪ {c′}. Define g2 : C2 → ZL
+ by

g2(c) =

 f(a) if c = c′,

f(c) if c ∈ C2 \ {c′}.

Since
∑

c∈B1
(f(c)−e(c)) = 0 and agents a and c′ have the same type, we have

∑
c∈C2

(g2(c)−

e(c)) = 0. In addition, from Claim 2, it follows that g2(c
′) = f(a) �t f(b) ∼t f(c′). This

contradicts that f ∈ CS(E). This completes the proof of Lemma 2.
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We next prove the second statement of the theorem. Let

ρ = ξ + k(L− 1)ξ and

q = max{µ(L, ξ), 2L−1LL/2ρL+1(1 + ρ)}.

Note that both numbers ρ and q depend only on exogenous variables. Let A be the set

of agents such that #A > rq and let E : A→ T be an economy such that #At/#A ≥ 1/r

for all t ∈ T . We prove that CS(E) ⊆ WCM(E). (Recall that the opposite inclusion

WCM(E) ⊆ CS(E) is always satisfied.) Let f ∈ CS(E).

Claim 3. ρχi �a f(a) for all i ∈ {1, . . . , L} and all a ∈ A.

Proof. Let i ∈ {1, . . . , L} and a ∈ A. We consider two distinct cases.

Case 1. f (j)(a) = 0 for all j 6= i.

Since -a ∈ Pk, we have

f(a) ≺a f(a) + k χi =
(
f (i)(a) + k

)
χi.

By Lemma 1, we have

f (i)(a) + k ≤ ξ + k < ρ.

Since -a is weakly monotone, we have f(a) ≺a ρχi.

Case 2. f (j)(a) ≥ 1 for some j 6= i.

Since -a ∈ Pk, we have

f(a) ≺a f(a) −
∑
j 6=i

f (j)(a)χj + k
∑
j 6=i

f (j)(a)χi =

(
f (i)(a) + k

∑
j 6=i

f (j)(a)

)
χi.

By Lemma 1, we have

f (i)(a) + k
∑
j 6=i

f (j)(a) ≤ ξ + k(L− 1)ξ = ρ.

Since -a is weakly monotone, we have f(a) ≺a ρχi. This completes the proof of Claim

3.
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For every t ∈ T , let

ϕt = {z ∈ ZL | z + et ∈ ZL
+ and z + et �t f(a)} = {x ∈ ZL

+ | x �t f(a)} − {et}

and

ψt = {z ∈ ZL | z + et ∈ ZL
+ and z + et %t f(a)} = {x ∈ ZL

+ |x %t f(a)} − {et},

where a ∈ At. By Lemma 2, since #A > rµ(L, ξ), ϕt and ψt are both well-defined for all

t ∈ T . For all t ∈ T , define the set ϕ′
t of minimal elements of ϕt as follows: z ∈ ϕ′

t if and

only if z ∈ ϕt and there exists no y ∈ ϕt with y < z. The set ψ′
t of minimal elements of

ψt is defined similarly. Since every ϕt and every ψt is bounded from below, by Gordan’s

lemma (Lemma 4 in the Appendix), ϕ′
t and ψ′

t are nonempty and finite, and satisfies that

ϕt ⊆ ϕ′
t + ZL

+ and ψt ⊆ ψ′
t + ZL

+. Since agents’ preference relations are weakly monotone,

we have ϕt = ϕ′
t + ZL

+ and ψt = ψ′
t + ZL

+ for all t ∈ T .

Let XL,ρ = {x ∈ ZL | ‖x‖∞ ≤ ρ}.

Claim 4. ϕ′
t ⊆ XL,ρ and ψ′

t ⊆ XL,ρ for all t ∈ T .

Proof. We only prove that ϕ′
t ⊆ XL,ρ. The inclusion ψ′

t ⊆ XL,ρ can be proved similarly.

Suppose, to the contrary, that ϕ′
t 6⊆ XL,ρ for some t ∈ T . Since ϕ′

t ⊆ ZL
+ − {et} ⊆

ZL
+−{(M, . . . ,M)} and M < ρ, we have, for all z ∈ ϕ′

t and all h ∈ {1, . . . , L}, z(h) > −ρ.

Therefore, from ϕ′
t 6⊆ XL,ρ, there exists a z ∈ ϕ′

t and an h ∈ {1, . . . , L} such that z(h) > ρ.

Since ρχh �t f(a) for all a ∈ At by Claim 3, we have ρχh − et ∈ ϕt. For coordinate h,

we have

z(h) > ρ ≥ ρχ
(h)
h − e

(h)
t .

Since z ≥ −et, for coordinate i with i 6= h, we have

z(i) ≥ −e(i)t = ρχ
(i)
h − e

(i)
t .

Thus, z > ρχh − et and ρχh − et ∈ ϕt. This contradicts that z ∈ ϕ′
t. We have established

the proof of Claim 4.
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By Claim 4, for all t ∈ T , we have

ψt = ψ′
t + ZL

+

= (ψ′
t ∩XL,ρ) + ZL

+

⊆ (ψt ∩XL,ρ) + ZL
+

⊆ ψt + ZL
+

= ψt.

Thus, ψt = (ψt ∩XL,ρ) + ZL
+ for all t ∈ T . Therefore,

⋃
t∈T ψt =

(⋃
t∈T ψt ∩XL,ρ

)
+ ZL

+.

Claim 5. 0 6∈ int
(
co
(⋃

t∈T ψt

))
if and only if 0 6∈ int

(
co
(⋃

t∈T ψt ∩XL,ρ

))
, where int(C)

and co(C) denote the interior and the convex hull of set C, respectively.

Proof. It suffices to prove the sufficiency. Assume that 0 6∈ int
(
co
(⋃

t∈T ψt ∩XL,ρ

))
. By

the separation theorem for convex sets, there exists a p ∈ RL \ {0} such that, for all

z ∈ co
(⋃

t∈T ψt ∩XL,ρ

)
, p · z ≥ 0.

We prove that p ≥ 0. Suppose, to the contrary, that p(h) < 0 for some h ∈ {1, . . . , L}.

Since, by Claim 3, ρχh �t f(a) for all a ∈ At and all t ∈ T , and since et ≥ 0 and -t is

weakly monotone, we have

ρχh + et %t ρχh �t f(a).

Thus, ρχh ∈ ϕt ∩XL,ρ ⊆ ψt ∩XL,ρ. Then, by the consequence of the separation theorem

for convex sets,

0 ≤ p · (ρχh) = ρ p(h),

a contradiction. We have then p ≥ 0.

Since
⋃

t∈T ψt =
(⋃

t∈T ψt ∩XL,ρ

)
+ ZL

+, we have p · z ≥ 0 for all z ∈ co
(⋃

t∈T ψt

)
.

Hence, 0 6∈ int
(
co
(⋃

t∈T ψt

))
. This completes the proof of Claim 5.

We next find a price vector p̄ under which strong core allocation f satisfies both the

cost minimization and the preference maximization. To obtain such price vector p̄, we
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first find a price vector p0 under which f satisfies the cost minimization. Then, we move

p0 in an appropriate direction slightly and make the resulting price vector satisfy the

desired properties. The following claim will be used not only when we find the first price

vector p0 but also when we move p0 in an appropriate direction.

Claim 6. Let H be a linear subspace of RL. If
⋃

t∈T ϕt ∩ XL,ρ ∩ H 6= ∅, then 0 6∈

ri
(
co
(⋃

t∈T ψt ∩XL,ρ ∩H
))

, where ri(C) denotes the relative interior of set C.

Proof. Suppose, to the contrary, that 0 ∈ ri
(
co
(⋃

t∈T ψt ∩XL,ρ ∩H
))

. Let z0 ∈
⋃

t∈T ϕt∩

XL,ρ ∩ H. Then, there exists a t0 ∈ T with z0 ∈ ϕt0 . Since every �t is irreflexive,

0 6∈
⋃

t∈T ϕt and, therefore, z0 6= 0. Let s̄ = min{s ∈ R | s z0 ∈ co
(⋃

t∈T ψt ∩XL,ρ ∩H
)
}.

Then, by Lemma 6, |s̄| ≤ ρ and there exist q0 ∈ Z++ with q0 ≤ 2L−1LL/2ρL+1, {xt,j | j =

1, . . . ,mt} ⊆ ψt ∩XL,ρ ∩H (t ∈ T ), and (α
(1)
t , . . . , α

(mt)
t ) ∈ Qmt

+ (t ∈ T ) such that

∑
t∈T

mt∑
j=1

α
(j)
t = 1,

q0 α
(j)
t ∈ Z+ for all j ∈ {1, . . . ,mt} and all t ∈ T ,

q0 s̄ ∈ −Z++, and∑
t∈T

mt∑
j=1

α
(j)
t xt,j = s̄ z0.

Since #A > rq = rmax{µ(L, ξ), 2L−1LL/2ρL+1(1 + ρ)}, we have, for all t ∈ T , #At ≥

#A/r > 2L−1LL/2ρL+1(1 + ρ). Thus, for all t ∈ T \ {t0}, there exists a mutually disjoint

family {Ct,j | j = 1, . . . ,mt} of subsets of At such that

#Ct,j = q0 α
(j)
t for all j ∈ {1, . . . ,mt}.

Since q0 + q0 s̄ ≤ 2L−1LL/2ρL+1(1 + ρ), there exists a mutually disjoint family {Ct0,j | j =

1, . . . ,mt0} ∪ {D} of subsets of At0 such that

#Ct0,j = q0 α
(j)
t0 for all j ∈ {1, . . . ,mt0}, and

#D = q0 |s̄|.

Let S =
⋃

t∈T

⋃mt

j=1Ct,j ∪D. Define g : S → ZL
+ by

g(a) =

 xt,j + et if a ∈ Ct,j (j = 1, . . . ,mt; t ∈ T ),

z0 + et0 if a ∈ D.
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Then,

∑
a∈S

g(a) =
∑
t∈T

mt∑
j=1

(#Ct,j) xt,j + (#D) z0 +
∑
a∈S

e(a)

= q0

(∑
t∈T

mt∑
j=1

α
(j)
t xt,j + |s̄| z0

)
+
∑
a∈S

e(a)

=
∑
a∈S

e(a).

Therefore, g is exactly feasible within coalition S. For a ∈ Ct,j (j = 1, . . . ,mt; t ∈

T ), since xt,j ∈ ψt, we have g(a) = xt,j + et %t f(a). For a ∈ D, since z0 ∈ ϕt0 ,

we have g(a) = zt0 + et0 �t0 f(a). This contradicts that f ∈ CS(E). Hence, 0 6∈

ri
(
co
(⋃

t∈T ψt ∩XL,ρ ∩H
))

. This completes the proof of Claim 6.

By Claim 4,
⋃

t∈T ϕt ∩XL,ρ 6= ∅ and then, by Claim 6, 0 6∈ int
(
co
(⋃

t∈T ψt ∩XL,ρ

))
.

Thus, by Claim 5, we have 0 6∈ int
(
co
(⋃

t∈T ψt

))
. By the separation theorem for convex

sets, there exists a p0 ∈ RL \ {0} such that p0 · z ≥ 0 for all z ∈ co
(⋃

t∈T ψt

)
. From the

weak monotonicity of preference relations, co
(⋃

t∈T ψt

)
= co

(⋃
t∈T ψt

)
+ RL

+. Hence, we

have p0 ≥ 0.

Claim 7. p0 · (f(a) − e(a)) = 0 for all a ∈ A.

Proof. Since f(a) − e(a) ∈
⋃

t∈T ψt for all a ∈ A, we have p0 · (f(a) − e(a)) ≥ 0. By the

exact feasibility of f , we have p0 · (f(a) − e(a)) = 0 for all a ∈ A.

Claim 8. p0 � 0.

Proof. Suppose, to the contrary, that there exists an h ∈ {1, . . . , L} with p
(h)
0 = 0.

Since p0 ∈ RL
+ \ {0}, there exists a j ∈ {1, . . . , L} with p

(j)
0 > 0. Since

∑
a∈A f

(j)(a) =∑
a∈A e

(j)(a) > 0, there exists an agent a ∈ A with f (j)(a) ≥ 1. From -a ∈ Pk, it follows

that f(a) ≺a f(a) − χj + k χh. Thus,

f(a) − χj + k χh − e(a) ∈
⋃
t∈T

ϕt ⊆
⋃
t∈T

ψt.
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By the consequence of the separation theorem and by Claim 7, we have

0 ≤ p0 · (f(a) − χj + k χh − e(a)) = −p(j)
0 + k p

(h)
0 = −p(j)

0 ,

which is a contradiction. Thus, p0 � 0.

Claim 9. There exists a p̄ ∈ RL
++ such that

(1) p̄ · z > 0 for all z ∈
⋃

t∈T ϕt, and

(2) p̄ · z ≥ 0 for all z ∈
⋃

t∈T ψt.

Proof. Let H0 = {z ∈ RL | p0 · z = 0}. If
⋃

t∈T ϕt ∩H0 = ∅, then p0 satisfies the desired

properties. Assume that
⋃

t∈T ϕt ∩H0 6= ∅.

Subclaim 9.1.
⋃

t∈T ψt ∩H0 ⊆ XL,ρ.

Proof. Let z ∈
⋃

t∈T ψt ∩H0. Then, p0 · z = 0. Since p0 � 0 by Claim 8 and p0 · y ≥ 0 for

all y ∈ co
(⋃

t∈T ψt

)
, we have, by Claim 4, z ∈

⋃
t∈T ψ

′
t ⊆ XL,ρ.

By Subclaim 9.1, we have

∅ 6=
⋃
t∈T

ϕt ∩H0 ⊆
⋃
t∈T

ψt ∩H0 ⊆ XL,ρ.

Thus,
⋃

t∈T ϕt ∩XL,ρ ∩H0 6= ∅ and, by Claim 6, we have

0 6∈ ri

(
co

(⋃
t∈T

ψt ∩XL,ρ ∩H0

))
= ri

(
co

(⋃
t∈T

ψt ∩H0

))
.

By the separation theorem for convex sets, there exists a p1 ∈ span
(⋃

t∈T ψt ∩H0

)
\ {0}

such that p1 · z ≥ 0 for all z ∈
⋃

t∈T ψt ∩H0. Let

E0 =
⋃
t∈T

ψt \H0 =

{
z ∈

⋃
t∈T

ψt

∣∣∣∣∣ p0 · z > 0

}
.

Let E ′
0 be the set of minimal elements of E0, i.e., x ∈ E ′

0 if and only if x ∈ E0 and there

exists no y ∈ E0 with y < x. Since E0 is nonempty and bounded from below, by Gordan’s
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lemma (Lemma 4 in the Appendix), E ′
0 is a nonempty finite subset of E0 and satisfies

that E0 ⊆ E ′
0 + ZL

+. Since p0 � 0, we have

0 < min{p0 · z | z ∈ E ′
0} = inf{p0 · z | z ∈ E0}.

Since the mapping p 7→ min{p·z | z ∈ E ′
0} is continuous, there exists an open neighborhood

U0 of p0 such that, for all p ∈ U0, min{p · z | z ∈ E ′
0} > 0. Since p0 � 0, by taking a

sufficiently small ε1 > 0, we have p0 + ε1 p1 � 0 and p0 + ε1 p1 ∈ U0. Then,

0 < min{(p0 + ε1 p1) · z | z ∈ E ′
0} = inf{(p0 + ε1 p1) · z | z ∈ E0}.

Summing up, we have obtained that

(a) p0 + ε1 p1 ∈ RL
++;

(b) (p0 + ε1 p1) · z > 0 for all z ∈
⋃

t∈T ψt \H0; and

(c) (p0 + ε1 p1) · z ≥ 0 for all z ∈
⋃

t∈T ψt ∩H0.

Let H1 = {z ∈ RL | (p0 + ε1 p1) · z = 0}. If
⋃

t∈T ϕt ∩ H0 ∩ H1 = ∅, then p0 + ε1 p1

satisfies the desired properties. Assume that
⋃

t∈T ϕt ∩H0 ∩H1 6= ∅. Then, by the same

argument as above, there exists a p2 ∈ span
(⋃

t∈T ψt ∩H0 ∩H1

)
\{0} and an ε2 > 0 such

that

(a′) p0 + ε1 p1 + ε2 p2 ∈ RL
++;

(b′) (p0 + ε1 p1 + ε2 p2) · z > 0 for all z ∈
⋃

t∈T ψt \ (H0 ∪H1); and

(c′) (p0 + ε1 p1 + ε2 p2) · z ≥ 0 for all z ∈
⋃

t∈T ψt ∩H0 ∩H1.

Let H2 = {z ∈ RL | (p0 + ε1 p1 + ε2 p2) · z = 0}. If
⋃

t∈T ϕt ∩H0 ∩H1 ∩H2 = ∅, then

p0 + ε1 p1 + ε2 p2 satisfies the desired properties. If
⋃

t∈T ϕt ∩H0 ∩H1 ∩H2 6= ∅, then, by

repeating the same argument, say, m times (m ≤ L), we could obtain that⋃
t∈T

ϕt ∩H0 ∩H1 ∩ · · · ∩Hm−1 = ∅,

because 0 6∈
⋃

t∈T ϕt and

dim (H0 ∩H1 ∩H2) < dim (H0 ∩H1) < dimH0 = L− 1.

The vector p0 +
∑m−1

i=1 εi pi satisfies the desired properties. This completes the proof of

Claim 9.
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Let p̄ be the vector obtained in Claim 9. Let

F =

{
z ∈

⋃
t∈T

ψt

∣∣∣∣∣ p̄ · z > 0

}
and V =

{
z ∈

⋃
t∈T

ψt

∣∣∣∣∣ p̄ · z = 0

}
.

Since f(a) − e(a) ∈
⋃

t∈T ψt for all a ∈ A, we have, by Claim 9, p̄ · (f(a) − e(a)) ≥ 0 for

all a ∈ A. By the exact feasibility of f , we have

p̄ · (f(a) − e(a)) = 0 for all a ∈ A

and, therefore, f(a) − e(a) ∈ V for all a ∈ A. Thus, by Claim 9, the pair (p̄, f) satisfies

conditions (i)-(iii) of the definition of cost-minimized Walras equilibrium, but p̄ may not

be a rational vector. Finally, we find an integral price vector p∗ under which f is a

cost-minimized Walras allocation. Note that co(F ) ∩ V = ∅. Since p̄ � 0, we have

co(F + ZL
+)∩ V = ∅ and, then, co(F )∩ (V −RL

+) = ∅. By Inoue’s [9] separation theorem

(Lemma 6 in the Appendix), there exists a p∗ ∈ V ⊥∩ZL
+ and an ε > 0 such that p∗ ·z ≥ ε

for all z ∈ F . We prove that (p∗, f) is a cost-minimized Walras equilibrium. Since p∗ ∈ V ⊥

and f(a) − e(a) ∈ V for all a ∈ A, we have

p∗ · (f(a) − e(a)) = 0 for all a ∈ A.

Let a ∈ A and x ∈ ZL
+ with x �a f(a). Then, x − e(a) ∈

⋃
t∈T ϕt ⊆ F . Thus,

p∗ · (x− e(a)) ≥ ε > 0.

Let a ∈ A and x ∈ ZL
+ with x %a f(a). Then, x − e(a) ∈

⋃
t∈T ψt ⊆ F ∪ V . Thus,

p∗ · (x − e(a)) ≥ 0. Therefore, (p∗, f) is a cost-minimized Walras equilibrium. We have

established that CS(E) ⊆ WCM(E).

Appendix

The following results are used in the proof of the theorem.

Lemma 3. Let L and N be natural numbers. Let XL,N = {x ∈ ZL | ‖x‖∞ ≤ N}. De-

fine a set XL,N as follows: A mapping α : XL,N → Z+ belongs to XL,N if and only if∑
x∈XL,N

α(x) ≥ 1,
∑

x∈XL,N
α(x)x = 0, and there exists no mapping β : XL,N → Z+ such
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that
∑

x∈XL,N
β(x) ≥ 1,

∑
x∈XL,N

β(x)x = 0, β(x) ≤ α(x) for all x ∈ XL,N , and β(y) <

α(y) for some y ∈ XL,N . Then, the number

µ(L,N) := sup

 ∑
x∈XL,N

α(x)

∣∣∣∣∣∣ α ∈ XL,N


is finite. Hence, µ(L,N) can be achieved by some α ∈ XL,N . In particular,

µ(1, 1) = 2,

µ(1, N) ≤ N2(N + 1)/2 for all N ≥ 2, and

µ(L+ 1, N) ≤ µ(L,N)µ(1, N(N + 1)µ(L,N)) for all L,N ∈ Z++.

Proof. We prove the lemma by induction on L. Let L = 1. Clearly, µ(1, 1) = 2. We

consider the case where N ≥ 2.

Claim 10. µ(1, N) ≤ N2(N + 1)/2 for all N ≥ 2.

Proof. Suppose, to the contrary, that there exists a mapping α ∈ X1,N such that
∑

x∈X1,N
α(x) >

N2(N + 1)/2. Because
∑

x∈X1,N
α(x) > 2, by the definition of X1,L, α(0) = 0 and there

exists no ` ∈ X1,N \ {0} such that α(`) ≥ 1 and α(−`) ≥ 1. Thus, #{x ∈ X1,N |α(x) ≥

1} ≤ N . Since
∑

x∈X1,N
α(x) > N2(N + 1)/2, there exists an integer m ∈ X1,N \ {0} such

that

α(m) > N(N + 1)/2.

We may assume that m ≥ 1.

Subclaim 10.1. If ` ∈ Z and 1 ≤ ` ≤ N , then α(−`) < m.

Proof. Suppose, to the contrary, that there exists an ` ∈ Z such that 1 ≤ ` ≤ N and

α(−`) ≥ m. Note that α(m) > N(N+1)/2 > N ≥ `. We define a mapping β : X1,N → Z+

by

β(x) =


m if x = −`,

` if x = m,

0 otherwise.

34



Clearly, ∑
x∈X1,N

β(x) ≥ 1,

β(x) ≤ α(x) for all x ∈ X1,N , and

β(m) < α(m).

Moreover, we have
∑

x∈X1,N
β(x)x = m(−`) + `m = 0. This contradicts that α ∈ X1,N .

Therefore, we have established the proof of Subclaim 10.1.

Since

0 =
∑

x∈X1,N

α(x)x =
N∑

`=1

α(`)`+
N∑

`=1

α(−`)(−`),

we have
∑N

`=1 α(−`)` =
∑N

`=1 α(`)`. On the other hand, from Subclaim 10.1, it follows

that

N∑
`=1

α(−`)` < m
N∑

`=1

`

= mN(N + 1)/2

< α(m)m

≤
N∑

`=1

α(`)`,

which is a contradiction. This completes the proof of Claim 10.

Let K ∈ Z++. Assume that for all N ∈ Z++ and all L ∈ Z++ with L ≤ K, µ(L,N) is

finite. We now prove that µ(K + 1, N) is finite for all N ∈ Z++.

Claim 11. µ(K + 1, N) ≤ µ(K,N)µ(1, N(N + 1)µ(K,N)) for all N ∈ Z++.

Proof. Suppose, to the contrary, that µ(K + 1, N) > µ(K,N)µ(1, N(N + 1)µ(K,N)) for

some N ∈ Z++. Then, there exists a mapping α ∈ XK+1,N such that∑
x∈XK+1,N

α(x) > µ(K,N)µ(1, N(N + 1)µ(K,N)).
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We define a mapping β : XK,N → Z+ by β(y) =
∑

`∈X1,N
α(`, y) for all y ∈ XK,N . From

α ∈ XK+1,N , it follows that∑
y∈XK,N

β(y)y =
∑

y∈XK,N

∑
`∈X1,N

α(`, y)y = 0.

We also have ∑
y∈XK,N

β(y) =
∑

y∈XK,N

∑
`∈X1,N

α(`, y)

=
∑

x∈XK+1,N

α(x)

> µ(K,N)µ(1, N(N + 1)µ(K,N)).

Thus, there exists a natural number k > µ(1, N(N + 1)µ(K,N)) and mappings γ̃j ∈

XK,N (j = 1, . . . , k) such that, for all y ∈ XK,N ,
∑k

j=1 γ̃j(y) = β(y). Since
∑k

j=1 γ̃j(y) =∑
`∈X1,N

α(`, y) for all y ∈ XK,N , there exist mappings γj : XK+1,N → Z+ (j = 1, . . . , k)

such that ∑
`∈X1,N

γj(`, y) = γ̃j(y) for all y ∈ XK,N and all j ∈ {1, . . . , k} and

k∑
j=1

γj(`, y) = α(`, y) for all (`, y) ∈ XK+1,N .

For every j ∈ {1, . . . , k}, let

δj =
∑

`∈X1,N

∑
y∈XK,N

γj(`, y)` ∈ Z.

Since α ∈ XK+1,N , we have

k∑
j=1

δj =
∑

`∈X1,N

∑
y∈XK,N

k∑
j=1

γj(`, y)` =
∑

`∈X1,N

∑
y∈XK,N

α(`, y)` = 0.

Since γ̃j ∈ XK,N , it follows that for all ` ∈ X1,N ,∑
y∈XK,N

γj(`, y) ≤
∑

y∈XK,N

γ̃j(y) ≤ µ(K,N).

Therefore, for all j ∈ {1, . . . , k},

|δj| ≤
∑

`∈X1,N

|`|µ(K,N) = N(N + 1)µ(K,N).
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Thus, δj ∈ X1,N(N+1)µ(K,N) for all j ∈ {1, . . . , k}. Since
∑k

j=1 δj = 0 and k > µ(1, N(N +

1)µ(K,N)), there exists a subset J of {1, . . . , k} such that ∅ 6= J ( {1, . . . , k} and∑
j∈J δj = 0. Define a mapping ζ : XK+1,N → Z+ by, for all x ∈ XK+1,N ,

ζ(x) =
∑
j∈J

γj(x).

We have ∑
x∈XK+1,N

ζ(x)x(1) =
∑

`∈X1,N

∑
y∈XK,N

∑
j∈J

γj(`, y)`

=
∑
j∈J

δj

= 0.

Since γ̃j ∈ XK,N for all j, we have∑
(`,y)∈XK+1,N

ζ(`, y)y =
∑

y∈XK,N

∑
`∈X1,N

ζ(`, y)y

=
∑
j∈J

∑
y∈XK,N

∑
`∈X1,N

γj(`, y)y

=
∑
j∈J

∑
y∈XK,N

γ̃j(y)y

= 0.

Thus,
∑

x∈XK+1,N
ζ(x)x = 0. Since J 6= ∅, we have

∑
x∈XK+1,N

ζ(x) ≥ 1. It is obvious that

for all x ∈ XK+1,N ,

ζ(x) =
∑
j∈J

γj(x) ≤
k∑

j=1

γj(x) = α(x).

Since J ( {1, . . . , k} and
∑

x∈XK+1,N
γj(x) ≥ 1 for all j ∈ {1, . . . , k}, there exists an

element x∗ of XK+1,N such that

ζ(x∗) =
∑
j∈J

γj(x
∗) <

k∑
j=1

γj(x
∗) = α(x∗).

This contradicts that α ∈ XK+1,N . This completes the proof of Claim 11.

Hence, we have established the proof of Lemma 3.
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Lemma 4 (Gordan’s lemma). Let E be a nonempty subset of ZL. Define a subset E ′

of E as follows: x ∈ E ′ if and only if x ∈ E and there exists no y ∈ E with y < x. If E

is bounded from below, then E ′ is a nonempty finite set and satisfies that E ⊆ E ′ + ZL
+.

Proof. See, e.g., Inoue [9, Lemma 5.1].

Lemma 5 (Hadamard’s inequality). If B = (b1, . . . , b`) is an ` × ` matrix of real

numbers, then

|detB| ≤
∏̀
j=1

‖bj‖,

where detB is the determinant of matrix B and ‖ · ‖ is the Euclidean norm.

Proof. See Dunford and Schwartz [6, pp.1018-1019].

Lemma 6. Let E ⊆ XL,N , z∗ ∈ E \ {0}, and 0 ∈ ri (co(E)), where ri(C) denotes the

relative interior of set C. Let m = dim span(E), s̄ = min{s ∈ R | s z∗ ∈ co(E)}, and

q = 2m−1mm/2Nm+1. Then, 1 ≤ m ≤ L, |s̄| ≤ N , and there exist q0 ∈ Z++ with q0 ≤ q,

{x1, . . . , xm} ⊆ E, and (α(1), . . . , α(m)) ∈ Qm
+ such that

m∑
j=1

α(j) = 1,

q0 α
(j) ∈ Z+ for all j ∈ {1, . . . ,m},

q0 s̄ ∈ −Z++, and
m∑

j=1

α(j)xj = s̄ z∗.

Proof. From E ⊆ XL,N and z∗ ∈ E\{0}, it follows that 1 ≤ m ≤ L. Since E is a nonempty

finite set, co(E) is compact. Since z∗ 6= 0, s̄ is well-defined and, from 0 ∈ ri (co(E)), s̄ < 0.

In addition, from s̄ z∗ ∈ co(E) ⊆ co(XL,N) and z∗ 6= 0, it follows that |s̄| ≤ N/‖z‖∞ ≤ N .

Since s̄ z∗ lies on the relative boundary of polytope co(E), there exists a (m − 1)-

dimensional facet F of co(E) such that s̄ z∗ ∈ F . Hence, there exist affinely independent

vectors {x1, . . . , xm} ⊆ E such that s̄ z∗ ∈ co{x1, . . . , xm} ⊆ F .
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Claim 12. {x1 − xm, . . . , xm−1 − xm, z
∗} is linearly independent.

Proof. Suppose, to the contrary, that {x1 −xm, . . . , xm−1 −xm, z
∗} is linearly dependent.

Since {x1 − xm, . . . , xm−1 − xm} is linearly independent (because {x1, . . . , xm} is affinely

independent), there exists a (β(1), . . . , β(m−1)) ∈ Rm−1 \ {0} such that

z∗ =
m−1∑
j=1

β(j)(xj − xm).

Let p ∈ span(E) \ {0} be a normal vector to facet F such that

p · x ≥ p · (s̄ z∗) for all x ∈ co(E).

Then, for all j ∈ {1, . . . ,m− 1}, p · (xj − xm) = 0 and, therefore, we have

p · z∗ =
m−1∑
j=1

β(j) p · (xj − xm) = 0.

Hence, p · x ≥ p · (s̄ z∗) = 0 for all x ∈ co(E). This contradicts that 0 ∈ ri (co(E)). We

have established the proof of Claim 12.

We may assume that {x1 − xm, . . . , xm−1 − xm, z
∗, χm+1, . . . , χL} is a basis of RL.

For every j ∈ {1, . . . , L}, let x̂j = (x
(1)
j , . . . , x

(m)
j )T ∈ Zm, where the symbol T is the

transposition operator of vectors. Also, let ẑ∗ = (z∗(1), . . . , z∗(m))T ∈ Zm. Since s̄ z∗ ∈

co{x1, . . . , xm}, there exists (α(1), . . . , α(m)) ∈ Rm
+ such that

m∑
j=1

α(j) = 1 and

s̄ z∗ =
m∑

j=1

α(j) xj =
m−1∑
j=1

α(j) (xj − xm) + xm.

Let B = (x̂1 − x̂m, . . . , x̂m−1 − x̂m, ẑ
∗). Then, B is a nonsingular m×m matrix. Since

B


α(1)

...

α(m−1)

−s̄

 = −x̂m,
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by Cramer’s rule, we have

α(j) =
detBj

detB
for all j ∈ {1, . . . ,m− 1},

where

Bj = (x̂1 − x̂m, . . . , x̂j−1 − x̂m,−x̂m, x̂j+1 − x̂m, . . . , x̂m−1 − x̂m, ẑ
∗).

Since all elements in matrices B and Bj (j = 1, . . . ,m− 1) are integral, we have

| detB| ∈ Z++ and

| detB|α(j) = | detBj| ∈ Z+ for all j ∈ {1, . . . ,m− 1}.

Hence,

| detB|α(m) = | detB| −
m−1∑
j=1

| detB|α(j) ∈ Z+.

In addition, by Hadamard’s inequality (Lemma 5), we have

| detB| ≤
m−1∏
j=1

‖x̂j − x̂m‖ × ‖ẑ∗‖ ≤ mm/2(2N)m−1N = 2m−1mm/2Nm.

Although | detB| s̄ may not be integral, from | detB| s̄ z∗ =
∑m

j=1 | detB|α(j) xj ∈ ZL, it

follows that | detB| s̄ ‖z∗‖∞ ∈ Z. Let q0 = | detB| ‖z∗‖∞ ∈ Z++. Since z∗ ∈ XL,N , we

have

q0 ≤ 2m−1mm/2Nm ·N = q.

Summing up, we have

q0 ∈ Z++ with q0 ≤ q,

{x1, . . . , xm} ⊆ E,

(α(1), . . . , α(m)) ∈ Qm
+ ,

m∑
j=1

α(j) = 1,

q0 α
(j) ∈ Z+ for all j ∈ {1, . . . ,m},

q0 s̄ ∈ −Z++, and
m∑

j=1

α(j) xj = s̄ z∗.

This completes the proof of Lemma 6.
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Lemma 7 (Inoue’s [9] separation theorem). Let F be a nonempty subset of ZL and

let V be a linear subspace of RL spanned by some elements of ZL. If F is bounded from

below and if co(F ) ∩ (V − RL
+) = ∅, then there exists a p ∈ V ⊥ ∩ ZL

+ and an ε > 0 such

that

p · z ≥ ε for all z ∈ co(F ),

where V ⊥ is the orthogonal complement of V .

Proof. See Inoue [9, Theorem 5.2].
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