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ABSTRACT. This article investigates the representative-agent
hypothesis for an infinite population which has to make a social choice
from a given finite-dimensional space of alternatives. It is assumed
that some class of admissible strictly concave utility functions is
exogenously given and that each individual’s preference ordering can
be represented cardinally through some admissible utility function. In
addition, we assume that (i) the class of admissible utility functions
allows for a smooth parametrization, and (ii) the social welfare function
satisfies Arrovian rationality axioms. We prove that there exists an
admissible utility functionr, called representativeutility function,
such that any alternative which maximizegalso maximizes the social
welfare function.

The proof utilizes a special nonstandard model of the reals, viz.
the ultraproduct of the reals with respect to the ultrafilter of decisive
coalitions; this construction explicitly determines the parameter vector

of the representative utility function.
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2 A REPRESENTATIVE INDIVIDUAL UTILITY FUNCTION

1. INTRODUCTION

The existence of a representative agent is as ubiquitious an assumption
in macroeconomic theory as it is controversial, to say the least,
from a microeconomic perspective (see Kirman 1992 and also Hartley
1996). Methodologically, the representative-agent hypothesis is of utmost
importance for many branches of macroeconomics, since it provides a —
however tentative — microfoundation for models which otherwise would
arguably be up in the air.

So far, there have been only few attempts at underpinning the
representative-agent hypothesis itself. Clark (1992) has provided an indirect
justification for certain representative utility functions through randomized
social choice theory. A vindication for the representative consumer
hypothesis — of course, without reference to normative social choice theory
— can be found in a paper by Dow and Ribeiro da Costa Werlang (1988).

The usage of representative agent models in policy analysis can typically
be of one of two kinds: Either one assumes the social planner’s goal to
be (1) the maximization of the social welfare function, or one postulates
that the social planner aims at (2) the maximization of some other utility
function which depends on the aggregate reaction of the population to his
or her policy choices. The first situation is to some extent simpler and will
be studied in the present paper.

Consider a population which has to make a social choice from a given
finite-dimensional vector space of alternatives. Suppose that a set of strictly
concaveadmissibleutility functions is given, and that every individual’s
preference ordering can be represented by some admissible utility function.
Assume that the population’s collective decision procedure is given by a
social welfare function in the sense of Arrovian social choice theory (Arrow
1963). We call an admissible utility functianrepresentativef and only
if every alternative which maximizesalso maximizes the social welfare

function. If such a representative utility function exists, then the social
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planner can determine an optimal social choice simply by maximizing a
single admissible utility function.

This paper constructs a representative individual utility function under
the assumption that the set of alternatives is a finite-dimensional vector
space. In addition, we assume that (i) the class of admissible utility
functions can be smoothly parametrized and contains only strictly concave
utility functions with well-posed maximization problems, and that (ii) the
social welfare function satisfies Arrovian rationality axioms, which by
results of Kirman and Sondermann (1972) ensure that the set of decisive
coalitions is an ultrafilter.

The crucial step in our construction is the choice sbaially acceptable
utility function: an admissible utility function whose maximum argument
can never be overturned by any decisive coalition. The parameter of this
socially acceptable utility function is explicitly derived from the sequence
of parameters of the individual utility functions. (It is the image of
that sequence under the canonical embedding into an ultraproduct of the
parameter space with respect to the ultrafilter of decisive coalitions.) In
fact, for any non-principal ultrafilter as the collection of decisive coalitions,
one can establish the existence of a socially acceptable utility function
under the above assumption (i), i.e. assuming the existence of a regular
parametrization for the class of admissible utility functions (Theorem 1).

Utilizing assumption (ii) and the Kirman-Sondermann correspondence
between Arrovian social welfare functions and ultrafilters (Kirman and
Sondermann 1972), we prove that the socially acceptable utility function
maximizes the social welfare function and is hence a representative utility
function in the sense defined above (Theorem 2).

One can interpret this utility function as belonging to a representative
agent, even though there does not need to be an actual individual in
the population to which this utility function belongs. Therefore, our

analysis clarifies the ontological status of the representative individual, thus
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responding to an objection raised by Kirman (1992) and Hartley (1996)
against macroeconomic representative-agent models.

The existence proof for the socially acceptable (and hence representative)
utility function is based on an interplay between the explicit use
of ultrapowers and the implicit use of bounded ultrapowers through
Robinsonian nonstandard analysis (Robinson 1966), both with respect to

the non-principal ultrafilter of decisive coalitiohs.

2. MODEL FRAMEWORK

In this paper, we consider the following model for a population
which faces a social choice situation and whose individuals have cardinal

preferences.

2.1. Population. We fix a set/V, thepopulation Elements ofV are called
individualsg subsets ofV coalitions We fix some subséb of the power-set
of N. The elements dD will be calleddecisive coalitions

For our results, we shall later on assume thas$ non-principal ultrafilter

and hence thaV is infinite.

2.2. Alternatives. We also fix a sef{, the set oflternatives
For our results, we will have to assume th&tis a non-zero finite-
dimensional vector space; for simplicity, we shall assukhe= R™ for

some positive integer.

2.3. Utilities. For everyi € N, we fix some function; : X — R, to be
interpreted as the cardin@hdividual) utility function ofi. We define the
utility profile asu := (u;),;cy-

We fix some clas31 of functions fromX to R such that{u,},.,, € M.
The elements aM are callecadmissible utility functions

The connection between social choice theory and model theory, with a particular
emphasis on ultrapowers, has been described Lauwers and Van Liedekerke (1995).
Anderson (1991) is the standard introductory reference on nonstandard analysis in its

applications to mathematical economics.
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For our results, we shall later on assume fthabnly consists of strictly
concave utility functions (fromX = R™ to R) and thatvl can be smoothly

parametrized.

3. AXIOMS

Having described the ontology of the model in Section 2, we now
formulate assumptions which (i) ensure that our notion of decisive sets
is consistent with the usual social choice terminology and (ii) allow us to
construct a representative individual utility function.

Kirman and Sondermann (1972)[Theorem 1; Proposition 2] have shown
that the collection of decisive coalitions generated by a social welfare
function satisfying Arrovian rationality axioms is always a non-principal
ultrafilter. We therefore require thd? is a non-principal ultrafilter onV.

This, however, is only possible i¥ is infinite. Thus, our first axiom is:

Axiom 1 (Decisive Coalitions) D is a non-principal ultrafilter onN. In

particular, N is infinite.

The key assumption for the construction of a representative utility
function is the existence of a sufficiently regular parametrization of the
admissible utility functions. We now formulate the properties of this

parametrization.

Axiom 2 (Parametrization) X = R™. Moreover, there exist € N and a
twice continuously differentiable functian: R¥*™ — R such thatM =
{v(a;-) : @ € R} In particular, there is a sequendey;), v € (Rd)N

such thatu; = v («y;-) forall i € N.

We adopt the standard notation for derivatives: For eachR™, the first
derivative ofv(-; z) is denoted by, v(; ), and for eachn € R, the first
and second derivatives ofq; -) are denoted by, v(«; -) andd,d,v(«; -),

respectively.
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For technical reasons, we need strict concavity of the representative
utility function. To ensure this, we assume that all admissible utility
functions are strictly concave. Also, our arguments that the representative
utility function and all individual utility functions have a global maximum;
therefore we assume that all admissible utility functions have global

maxima. We denote the transpose of a vegtby Ty.

Axiom 3 (Strict Concavity and Wellposednesspr all w € M andz,y €
R™ with iy # 0, Tyu”(x)y < 0. Moreover, every, € M attains its global

maximum o™,

Of course, the Strict Concavity and Wellposedness conditions imply that
v(a; -) even has a unique global maximum for everg R
Finally, we need to ensure that the parameter of the representative utility

function will be finite. This will be achieved by the following axiom:

Axiom 4 (Bounded ParametersYhere exists som& € N such that the

coalition of alli with |o;| < R is decisive.

4. A SOCIALLY ACCEPTABLE UTILITY FUNCTION

An admissible utility functionr : R™ — R is said to beD-socially
acceptabldor v if and only if there exists some € R™ with r () = maxr
such that for every € R™ \ {z}, the coalition ofi with u; () > w; (y) is
decisive.

The key to the aggregation of parametric individual utility functions into

a representative utility function is the following result:

Theorem 1. Assuming Axioms 1,2,3,4, there exists somwesocially

acceptable utility function fot.

5. AGGREGATION

We now link the model of Section 2 with classical Arrovian social choice

theory. For this purpose, we first review some terminology from normative
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social choice theory, along the lines of the presentation in Kirman and
Sondermann (1972).

5.1. Individual preferences. ArelationP C X x X is called aveak order

if and only if P satisfies both of the following properties:

(1) PisasymmetricFor allz,y € X, if Py then noty Pzx.
(2) P is negatively transitive For all z, y, = € X, if neitherz Py nor

yPz then also not Pz.

Herein, x Py is shorthand for(z,y) € P, and should be read as fis
preferred ta) '. Let PP be the set of weak orders on. For allz, y € X and
P = (P),.x € PV, we define

C(x,y,P):={i e N : zPy}.

Forz € X andP € P, x will be called P-maximalif and only if z Py
forally € X \ {z}.
Foru : X — RandP € P, we say thatu is a cardinal utility

representatiorof P if and only if for all x,y € X,
u(z) > u(y) < zPy.

Given any u, there is obviously a unique® whose cardinal utility
representation is. This relation will be denoted by“, and one easily
verifies thatP* € P. Given anN-sequence: = (u;),. Of functions from

X toR (as in Section 2), we define
P = <PUi>z‘eN c PV

5.2. Social welfare functions. A social welfare functions a mapo :
PN — P. We say that a coalitio C N is o-decisiveif and only if
forallz,y € X andP € PY one hasvo (P) y whenever: Py forall i € C
andyP;z forall j € N\ C. The set obr-decisive coalitions is denoted by
D,.

Consider now Arrow’s rationality axioms for:
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Axiom 5 (Unanimity Preservation; Pareto Principlépr all =,y € X and
P e PN if C(x,y, P) = N thenzo (P)y.

Axiom 6 (Independence of Irrelevant Alternativesjor all z,y € X
and P, P € PV, if both C (z,y,P) = C(z,y,P') and C (y,z,P) =
C (y,z, P') then

zo (P)y < zo (P)y, yo (P)x & yo (P')x.

Axiom 7 (No Dictatorship) There exists n@, € N such that for allz, y €
X andP € PV,

zP,y = zo (P)y.

6. SOCIAL WELFARE MAXIMIZATION AND

A REPRESENTATIVE UTILITY FUNCTION

Kirman and Sondermann (1972) have established a correspondence
between (i) Paretian, independent and non-dictatorial social welfare
functions and (ii) non-principal ultrafiltefs. This correspondence allows
us to translate Theorem 1 into the setting of normative social choice theory.
Herein, an admissible utility function is calledo-representativeof P €
PN if and only if there exists some € X with r () = maxr and any such
7 is alsoo (P)-maximal. (Whilstr € M does not have a unigue maximum

in general, in our setting the uniquenesgdbllows from Axiom 3.)

Theorem 2. LetD = D,. Axiom 1 follows from Axioms 5,6,7 combined.
Assuming Axioms 2,3,4,5,6,7, there exists an admissible utility function

which iso-representative oP*.

2As elaborated by Kirman and Sondermann (1972), Hansson (1971, Postscript 1976),
Armstrong (1980, 1985) and Schmitz (1977), even such non-dictatorial social welfare
functions can still exhibit invisible dictatorship, viz. if and only ¥ is endowed with
a certain topological or measure-theoretic structure (e.g. a finite, countably additive

measure).
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By the Parametrization axiom, the representative utility function of
Theorem 2 can be written as(a;-) for somea € R It can thus be
interpreted as belonging to some “admissible” individual, be it an actual
member of the population (in the case whére- «; for somei € N) or
just some imaginary individual which can be characterized by the parameter
vectora. For this reason, the representative utility function of Theorem 2
may also be called a representaiindividual utility function.

In the (trivial) special case where there exists some such that

{i e N : a; = ap} is decisivep (ay; ) is a representative utility function.

7. CONCLUSION

Given a parametric class of sufficiently reguladmissible utility
functions as well as a population with individual utilities from that class
and some social structure on the population in terms of a famitieoisive
coalitions we have establihed the existence aogially acceptableitility
function, i.e. an admissible utility function whose maximum argument will
be supported against any other alternative by some decisive coalition.

If the social structure on the population is derived from a social welfare
function satisfying Arrovian rationality axioms, then the socially acceptable
utility function is evenrepresentativei.e. its maximum argument also
maximizes the social welfare function. It can be interpreted as being
the utility function of some — actual or imaginary — “representative

individual”.

APPENDIXA. PROOFS

Proof of Theorem 1Let *R := R /D be theD-ultrapower ofR, and letx

be the canonical embedding— [(z),.y], from R into *R. The maps

can be extended to a nonstandard embedding from the superstructuke over
into the superstructure ovéR (via a bounded ultrapower with respect to the

non-principal ultrafilterD, cf. Albeverio et al., 1986, Section 1.2). For the
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rest of this proof, we work in the resulting nonstandard universe. We have
to construct some parameteisuch thaw (&; -) is D-socially acceptable

Puta := [{);cn], € *RY and letd := °a. This standard part exists
in R? due to the Boundedness axiom. Applying the transfer principle of
nonstandard analysis to the Wellposedness axiom, we learriutiat )
attains its global maximum in some € *R™. However, applying the

transfer principle to the first-order condition
VaeRY Vo e R™  ((Vy € R™ v(a;y) <v(a;x)) = dpv(as2) = 0)

we find that*o,v (a; ) = 0.

Consider now the map which assigns to each € R the uniquex =
w(a) € R™ such thatd,v (o; ) = 0. (Existence and uniqueness follow
from the Strict Concavity and Wellposedness axiom.) On the one hand, the

transfer principle yields that
Vo € *R? V€ *R™ (z = *w(a) < *0,v (a;z) = 0),

hencer = *w (@). On the other hand, the implicit function theorem teaches
thatw is continuously differentiable and thus continuous, whencés S-
continuous. Since is finite, it follows thatz = *w (@) is finite, too. We
putz := °z.

Due to the Parametrization axiom,is continuous and hence is S-

continuous. Therefore, we have for ale R™,
1) vimy) —v(@z) = v(@y) = "v(@z) = v(@y) - v(XT).

In the next step, we combine Taylor’s theorem with the Strict Concavity
axiom, to see that the right-hand side of Equation (1) has a strictly negative
standard part: Applying the transfer principle to Taylor's theorem yields a
finite ¢ € *R™ such that

v (y) = v (a4 T)

=Ty =)0 (@) + 5T (g~ 7 Dudev (356) (y — 7).
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hence

(@) — o (@) = 37 (s — 200 (@6) (4 — 7)

(since z is a local maximum of‘v (a;-)). Now, 0,0,v is continuous
by the Parametrization axiom, $@,0,v is S-continuous and therefore
*0,0,v (;€) ~ 0,0,v(&;°€), which is negative definite by the Strict

Concavity axiom. It follows that

way) — (@) = 5T (- D00 () (v - 7)
~ (- B)0.00 (6:76) (v B
and thus
@  WeER\{i}  CCul@y)-v(an) <o

Comparing this result with Equation (1), we lastly obtain thaf; y) —
v(a;7) < 0 for all standardy # z. This proves that is the unique
maximum ofv (&; -).

In order to verify that (&; -) is D-socially acceptable, we still need to
show that for any gively € R™ \ {z}, the set of alk € N with v; () >
u; (y) is decisive (i.ec D). Define a functiont by t(z) := v (z;Z)—v (2;y)

for all z € R?, whence

{ieN:u @) >uy)} = {ieN :v(a;Z)—v(a;;y) >0}
3) = {1eN : t(n)>0}.
Due to the construction of the nonstandard embedding the bounded
ultrapower (with respect t®) of the superstructure over the reals, one has
the equivalencdi € N : t(a;) >0} € D < *t(a) > 0 which through
Equation (3) yields
4) {ieN :u (%) >u(y)} €D "t(@>0.

However, by applying the transfer principle to the defining equatiort,for

we get*t(z) = *v (2;2) — *v (z;y) for all z € *R?, so*t (a) = *v (a; &) —
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*v (a; y) and therefore (by th&-continuity of “v),

ta) ="v(az) = "v(ay) = v (@ T) - v (ay).

The standard part of the right-hand side is strictly positive by inequality (2),
and thereforé (*¢t (a)) > 0, too. Hence’t (a) > 0, and by equivalence (4)

finally
{ieN :u(z)>u(y}eD.
O

Proof of Theorem 2Kirman and Sondermann (1972)[Theorem 1;
Proposition 2] have shown thd, is a non-principal ultrafilter whenever
o satisfies Axioms 5,6,7. Hence, Axiom 1 follows from Axioms 5,6,7 for
D =D,.

Now suppose Axioms 2,3,4,5,6,7 and hence also Axiom 1 are satisfied
(for D = D,). Then, Theorem 1 ensures the existenceaofe
R? and # € R™ = X such thatv(a;Z) = maxv(a;-) and
{ieN :u(z)>u;(y)} € D, foreveryy € X \ {z}. Fix an arbitrary
y € X\ {z}. Foralli € N with u; (Z) > u; (y) we havez P*y and thus
Py by definition. Therefore,

{ieN : 2Py} D{ieN : u(z)>u(y)} €D,.
SinceD,, is an ultrafilter and hence closed under supersets, also
{te N : Py} € D,.

Kirman and Sondermann (1972)[Theorem 1(i)] have shown that this already
implieszo (P“) y. Sincey was an arbitrary element of \ {Z}, we obtain
thatzo (P*) y for everyy € X \ {z}. O

APPENDIXB. COMMENTS ON METHODOLOGY

Ultrafilters have been applied extensively in social choice theory for

nearly four decades: First, Fishburn (1970) proved that the axioms in
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Arrow’s social choice theorefrare consistent for economies with infinitely
many individuals, although they are inconsistent for economies with finitely
many individuals. Hansson (1971, Postscript 1976) strenghened these
results. In the seminal work by Kirman and Sondermann (1972), it was
shown that under the assumption of some measure-theoretic structure on
the set of individuals, Arrow’s axioms can lead, even for economies with
infinitely many individuals, to annvisible dictator i.e. to a decreasing
sequence of winning coalitions with arbitrarily small measure. Armstrong
(1980, 1985) generalized Kirman and Sondermann’s (1972) results to
measure spaces of individuals. Other generalizations of Kirman and
Sondermann’s (1972) analysis were discovered by Grafe and Grafe (1983)
as well as (for intergenerational economies) Campbell (1990). Schmitz
(1977) showed that Kirman and Sondermann’s (1972) results cannot be
extended to spaces of individuals that are endowed with an infinite measure,
and Hansson (1976) pointed out that for some topologies on the population
set, there will even be multiple invisible dictators, which seems to stretch
the term “dictator” too far.

Ultraproducts — a model-theoretic construction based on ultrafilters
(cf. e.g. Chang and Keisler, 1973) — entered social choice theory when
Lauwers and Van Liedekerke (1995) used them to prove that there is a one-
to-one correspondence between non-dictatorial Arrow-type aggregation
functions and non-principal ultrafiltefs.

3These axioms are: the existence of at least three alternatives, transitivity (i.e.

unrestricted domain), independence, the Pareto principle, and non-dictatorship.
“4In spite of this correspondence between Arrow aggregation functions and ultrafilters,

Lauwers and Van Liedekerke (1995) argued in the conclusion of their paper that
aggregation should not be formalized via ultrafilters in the context of social choice
(pp. 235-236): First, they claim that ultrafilters exhibit “insuperable arbitrariness” (p. 236).
As an example, they point to the well-known fact that every ultrafilieon the set of
natural numbers must, because of its maximality, either claim thalimost all” positive
integers are even or claim thab*almost all” integers are odd. (Herein, a property is set

to hold for D-almost all; if and only if the set of alk for which that property holds is in
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Some other applications of ultrafilters and ultraproducts in the social
sciences, with a particular emphasis on de Condorcet’s (1785) paradox,
were recently reviewed by Haddad (2005). The existence of non-principal
ultrafilters, under the assumption of the Axiom of Choice, was established
by Ulam (1929) and Tarski (1930); the main results on ultraproducts are
due to L& (1955).

In this paper, the ultraproduct methodology is used to build a social-
choice theoretic foundation for representative-agent models for populations
with parametric individual utilities. We consider an infinite populatign
of individuals whose utilities are functions of the social planner’s policy.
We suppose that these functions can be parametrized in a smooth and
strictly concave manner. We consider an exogeneously given system of
decisive coalitionsvhich form a non-principal ultrafilte® on N; note
that every non-dictatorial Arrovian social welfare function on an infinite
population induces such@® (Fishburn 1970, Hansson 1976). The role of
the social planner is to implement the social choice of the population. In
other words, the social planner must maximize, simultaneously, the utility

of each individual in some decisive coalition. We show that this problem

D.) This also illustrates their second objection, viz. that ultrafilters do not represent our
intuition of “almost all” (p. 236).

From a foundational stance, the first point seems well-taken at first sight, since the
ultrafilter existence theorem is a consequence of the Axiom of Choice. However, the
ultrafilter existence theorem is not equivalent to the Axiom of Choice, as shown by
Halpern and Levy (1971) (cf. also Banaschewski 1983), and in special social choice
problems, ultrafilters may even be viewed as given exogeneously (modelling collections
of coalitions). The fact that ultrafilters do not necessarily formalize our notion of “almost
all” is no ultimate challenge for their use in social choice theory, since collective decision
making sometimes ignores significant minorities.

In this paper, in particular, we use an ultrafilter on the population set to model the set
of those coalitions which determine the social planner’s policy. Hence, the ultrafilter is an
exogeneous variable of the model, and it only captures a subjective notion of “most” (from

the social planner’s vantage point), not a concept of “almost all”.
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can be reduced to maximizing just one element of the parametrized set
of individual utility functions. One can interpret this utility function as
belonging to a representative agent, even though there does not need to be
an actual individual in the population to which this utility function belongs.

In this sense, our results clarify the ontological status of the representative
agent.

The proof of Theorem 1 employs both a classical ultrapower construction
and implicitly also a bounded ultrapower of a superstructure (through
Robinsonian nonstandard analysis) — both with respect to the non-principal
ultrafilter of all decisive coalitions among the population. The description
of our model and the statement of our results, however, do not assume any
knowledge of model theory or nonstandard analysis.

For an economically motivated introduction into model theory and
ultrapowers, we refer to Lauwers and Van Liedekerke (1995). Anderson
(1991) provides an introduction to nonstandard analysis with an emphasis

on applications in mathematical economics.
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