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ABSTRACT. This article investigates the representative-agent

hypothesis for an infinite population which has to make a social choice

from a given finite-dimensional space of alternatives. It is assumed

that some class of admissible strictly concave utility functions is

exogenously given and that each individual’s preference ordering can

be represented cardinally through some admissible utility function. In

addition, we assume that (i) the class of admissible utility functions

allows for a smooth parametrization, and (ii) the social welfare function

satisfies Arrovian rationality axioms. We prove that there exists an

admissible utility functionr, called representativeutility function,

such that any alternative which maximizesr also maximizes the social

welfare function.

The proof utilizes a special nonstandard model of the reals, viz.

the ultraproduct of the reals with respect to the ultrafilter of decisive

coalitions; this construction explicitly determines the parameter vector

of the representative utility function.
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2 A REPRESENTATIVE INDIVIDUAL UTILITY FUNCTION

1. INTRODUCTION

The existence of a representative agent is as ubiquitious an assumption

in macroeconomic theory as it is controversial, to say the least,

from a microeconomic perspective (see Kirman 1992 and also Hartley

1996). Methodologically, the representative-agent hypothesis is of utmost

importance for many branches of macroeconomics, since it provides a —

however tentative — microfoundation for models which otherwise would

arguably be up in the air.

So far, there have been only few attempts at underpinning the

representative-agent hypothesis itself. Clark (1992) has provided an indirect

justification for certain representative utility functions through randomized

social choice theory. A vindication for the representative consumer

hypothesis — of course, without reference to normative social choice theory

— can be found in a paper by Dow and Ribeiro da Costa Werlang (1988).

The usage of representative agent models in policy analysis can typically

be of one of two kinds: Either one assumes the social planner’s goal to

be (1) the maximization of the social welfare function, or one postulates

that the social planner aims at (2) the maximization of some other utility

function which depends on the aggregate reaction of the population to his

or her policy choices. The first situation is to some extent simpler and will

be studied in the present paper.

Consider a population which has to make a social choice from a given

finite-dimensional vector space of alternatives. Suppose that a set of strictly

concaveadmissibleutility functions is given, and that every individual’s

preference ordering can be represented by some admissible utility function.

Assume that the population’s collective decision procedure is given by a

social welfare function in the sense of Arrovian social choice theory (Arrow

1963). We call an admissible utility functionr representativeif and only

if every alternative which maximizesr also maximizes the social welfare

function. If such a representative utility function exists, then the social
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planner can determine an optimal social choice simply by maximizing a

single admissible utility function.

This paper constructs a representative individual utility function under

the assumption that the set of alternatives is a finite-dimensional vector

space. In addition, we assume that (i) the class of admissible utility

functions can be smoothly parametrized and contains only strictly concave

utility functions with well-posed maximization problems, and that (ii) the

social welfare function satisfies Arrovian rationality axioms, which by

results of Kirman and Sondermann (1972) ensure that the set of decisive

coalitions is an ultrafilter.

The crucial step in our construction is the choice of asocially acceptable

utility function: an admissible utility function whose maximum argument

can never be overturned by any decisive coalition. The parameter of this

socially acceptable utility function is explicitly derived from the sequence

of parameters of the individual utility functions. (It is the image of

that sequence under the canonical embedding into an ultraproduct of the

parameter space with respect to the ultrafilter of decisive coalitions.) In

fact, for any non-principal ultrafilter as the collection of decisive coalitions,

one can establish the existence of a socially acceptable utility function

under the above assumption (i), i.e. assuming the existence of a regular

parametrization for the class of admissible utility functions (Theorem 1).

Utilizing assumption (ii) and the Kirman-Sondermann correspondence

between Arrovian social welfare functions and ultrafilters (Kirman and

Sondermann 1972), we prove that the socially acceptable utility function

maximizes the social welfare function and is hence a representative utility

function in the sense defined above (Theorem 2).

One can interpret this utility function as belonging to a representative

agent, even though there does not need to be an actual individual in

the population to which this utility function belongs. Therefore, our

analysis clarifies the ontological status of the representative individual, thus
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responding to an objection raised by Kirman (1992) and Hartley (1996)

against macroeconomic representative-agent models.

The existence proof for the socially acceptable (and hence representative)

utility function is based on an interplay between the explicit use

of ultrapowers and the implicit use of bounded ultrapowers through

Robinsonian nonstandard analysis (Robinson 1966), both with respect to

the non-principal ultrafilter of decisive coalitions.1

2. MODEL FRAMEWORK

In this paper, we consider the following model for a population

which faces a social choice situation and whose individuals have cardinal

preferences.

2.1. Population. We fix a setN , thepopulation. Elements ofN are called

individuals, subsets ofN coalitions. We fix some subsetD of the power-set

of N . The elements ofD will be calleddecisive coalitions.

For our results, we shall later on assume thatD is non-principal ultrafilter

and hence thatN is infinite.

2.2. Alternatives. We also fix a setX, the set ofalternatives.

For our results, we will have to assume thatX is a non-zero finite-

dimensional vector space; for simplicity, we shall assumeX = Rm for

some positive integerm.

2.3. Utilities. For everyi ∈ N , we fix some functionui : X → R, to be

interpreted as the cardinal(individual) utility function ofi. We define the

utility profile asu := 〈ui〉i∈N .

We fix some classM of functions fromX toR such that{ui}i∈N ⊆ M.

The elements ofM are calledadmissible utility functions.

1The connection between social choice theory and model theory, with a particular

emphasis on ultrapowers, has been described Lauwers and Van Liedekerke (1995).

Anderson (1991) is the standard introductory reference on nonstandard analysis in its

applications to mathematical economics.
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For our results, we shall later on assume thatM only consists of strictly

concave utility functions (fromX = Rm toR) and thatM can be smoothly

parametrized.

3. AXIOMS

Having described the ontology of the model in Section 2, we now

formulate assumptions which (i) ensure that our notion of decisive sets

is consistent with the usual social choice terminology and (ii) allow us to

construct a representative individual utility function.

Kirman and Sondermann (1972)[Theorem 1; Proposition 2] have shown

that the collection of decisive coalitions generated by a social welfare

function satisfying Arrovian rationality axioms is always a non-principal

ultrafilter. We therefore require thatD is a non-principal ultrafilter onN .

This, however, is only possible ifN is infinite. Thus, our first axiom is:

Axiom 1 (Decisive Coalitions). D is a non-principal ultrafilter onN . In

particular, N is infinite.

The key assumption for the construction of a representative utility

function is the existence of a sufficiently regular parametrization of the

admissible utility functions. We now formulate the properties of this

parametrization.

Axiom 2 (Parametrization). X = Rm. Moreover, there existd ∈ N and a

twice continuously differentiable functionv : Rd+m → R such thatM =
{
v (α; ·) : α ∈ Rd

}
. In particular, there is a sequence〈αi〉i∈N ∈ (

Rd
)N

such thatui = v (αi; ·) for all i ∈ N .

We adopt the standard notation for derivatives: For eachx ∈ Rm, the first

derivative ofv(·; x) is denoted by∂αv(·; x), and for eachα ∈ Rd, the first

and second derivatives ofv(α; ·) are denoted by∂xv(α; ·) and∂x∂xv(α; ·),
respectively.
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For technical reasons, we need strict concavity of the representative

utility function. To ensure this, we assume that all admissible utility

functions are strictly concave. Also, our arguments that the representative

utility function and all individual utility functions have a global maximum;

therefore we assume that all admissible utility functions have global

maxima. We denote the transpose of a vectory by Ty.

Axiom 3 (Strict Concavity and Wellposedness). For all u ∈ M andx, y ∈
Rm with y 6= 0, Tyu′′(x)y < 0. Moreover, everyu ∈ M attains its global

maximum onRm.

Of course, the Strict Concavity and Wellposedness conditions imply that

v(α; ·) even has a unique global maximum for everyα ∈ Rd.

Finally, we need to ensure that the parameter of the representative utility

function will be finite. This will be achieved by the following axiom:

Axiom 4 (Bounded Parameters). There exists someR ∈ N such that the

coalition of all i with |αi| < R is decisive.

4. A SOCIALLY ACCEPTABLE UTILITY FUNCTION

An admissible utility functionr : Rm → R is said to beD-socially

acceptablefor u if and only if there exists somẽx ∈ Rm with r (x̃) = max r

such that for everyy ∈ Rm \ {x̃}, the coalition ofi with ui (x̃) > ui (y) is

decisive.

The key to the aggregation of parametric individual utility functions into

a representative utility function is the following result:

Theorem 1. Assuming Axioms 1,2,3,4, there exists someD-socially

acceptable utility function foru.

5. AGGREGATION

We now link the model of Section 2 with classical Arrovian social choice

theory. For this purpose, we first review some terminology from normative
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social choice theory, along the lines of the presentation in Kirman and

Sondermann (1972).

5.1. Individual preferences. A relationP ⊆ X×X is called aweak order

if and only if P satisfies both of the following properties:

(1) P is asymmetric: For allx, y ∈ X, if xPy then notyPx.

(2) P is negatively transitive: For all x, y, z ∈ X, if neitherxPy nor

yPz then also notxPz.

Herein, xPy is shorthand for〈x, y〉 ∈ P , and should be read as ‘x is

preferred toy ’. Let P be the set of weak orders onX. For allx, y ∈ X and

P = 〈Pi〉i∈N ∈ PN , we define

C (x, y, P ) := {i ∈ N : xPiy} .

For x ∈ X andP ∈ P, x will be calledP -maximalif and only if xPy

for all y ∈ X \ {x}.
For u : X → R and P ∈ P, we say thatu is a cardinal utility

representationof P if and only if for all x, y ∈ X,

u(x) > u(y) ⇔ xPy.

Given any u, there is obviously a uniqueP whose cardinal utility

representation isu. This relation will be denoted byP u, and one easily

verifies thatP u ∈ P. Given anN -sequenceu = 〈ui〉i∈N of functions from

X toR (as in Section 2), we define

P u := 〈P ui〉i∈N ∈ PN .

5.2. Social welfare functions. A social welfare functionis a mapσ :

PN → P. We say that a coalitionC ⊆ N is σ-decisiveif and only if

for all x, y ∈ X andP ∈ PN one hasxσ (P ) y wheneverxPiy for all i ∈ C

andyPjx for all j ∈ N \ C. The set ofσ-decisive coalitions is denoted by

Dσ.

Consider now Arrow’s rationality axioms forσ:
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Axiom 5 (Unanimity Preservation; Pareto Principle). For all x, y ∈ X and

P ∈ PN , if C (x, y, P ) = N thenxσ (P ) y.

Axiom 6 (Independence of Irrelevant Alternatives). For all x, y ∈ X

and P , P ′ ∈ PN , if both C (x, y, P ) = C (x, y, P ′) and C (y, x, P ) =

C (y, x, P ′) then

xσ (P ) y ⇔ xσ (P ′) y, yσ (P ) x ⇔ yσ (P ′) x.

Axiom 7 (No Dictatorship). There exists noi0 ∈ N such that for allx, y ∈
X andP ∈ PN ,

xPi0y ⇒ xσ (P ) y.

6. SOCIAL WELFARE MAXIMIZATION AND

A REPRESENTATIVE UTILITY FUNCTION

Kirman and Sondermann (1972) have established a correspondence

between (i) Paretian, independent and non-dictatorial social welfare

functions and (ii) non-principal ultrafilters.2 This correspondence allows

us to translate Theorem 1 into the setting of normative social choice theory.

Herein, an admissible utility functionr is calledσ-representativeof P ∈
PN if and only if there exists somẽx ∈ X with r (x̃) = max r and any such

x̃ is alsoσ (P )-maximal. (Whilstr ∈ M does not have a unique maximum

in general, in our setting the uniqueness ofx̃ follows from Axiom 3.)

Theorem 2. Let D = Dσ. Axiom 1 follows from Axioms 5,6,7 combined.

Assuming Axioms 2,3,4,5,6,7, there exists an admissible utility function

which isσ-representative ofP u.

2As elaborated by Kirman and Sondermann (1972), Hansson (1971, Postscript 1976),

Armstrong (1980, 1985) and Schmitz (1977), even such non-dictatorial social welfare

functions can still exhibit invisible dictatorship, viz. if and only ifN is endowed with

a certain topological or measure-theoretic structure (e.g. a finite, countably additive

measure).
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By the Parametrization axiom, the representative utility function of

Theorem 2 can be written asv (α̃; ·) for someα̃ ∈ Rd. It can thus be

interpreted as belonging to some “admissible” individual, be it an actual

member of the population (in the case whereα̃ = αi for somei ∈ N ) or

just some imaginary individual which can be characterized by the parameter

vectorα̃. For this reason, the representative utility function of Theorem 2

may also be called a representativeindividualutility function.

In the (trivial) special case where there exists someα0 such that

{i ∈ N : αi = α0} is decisive,v (α0; ·) is a representative utility function.

7. CONCLUSION

Given a parametric class of sufficiently regularadmissible utility

functions as well as a population with individual utilities from that class

and some social structure on the population in terms of a family ofdecisive

coalitions, we have establihed the existence of asocially acceptableutility

function, i.e. an admissible utility function whose maximum argument will

be supported against any other alternative by some decisive coalition.

If the social structure on the population is derived from a social welfare

function satisfying Arrovian rationality axioms, then the socially acceptable

utility function is evenrepresentative, i.e. its maximum argument also

maximizes the social welfare function. It can be interpreted as being

the utility function of some — actual or imaginary — “representative

individual”.

APPENDIX A. PROOFS

Proof of Theorem 1.Let ∗R := RN/D be theD-ultrapower ofR, and let∗
be the canonical embeddingz 7→ [〈z〉i∈N

]
D

from R into ∗R. The map∗
can be extended to a nonstandard embedding from the superstructure overR

into the superstructure over∗R (via a bounded ultrapower with respect to the

non-principal ultrafilterD, cf. Albeverio et al., 1986, Section 1.2). For the
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rest of this proof, we work in the resulting nonstandard universe. We have

to construct some parameterα̃ such thatv (α̃; ·) is D-socially acceptable

Put ᾱ :=
[〈αi〉i∈N

]
D
∈ ∗Rd, and letα̃ := ◦ᾱ. This standard part exists

in Rd due to the Boundedness axiom. Applying the transfer principle of

nonstandard analysis to the Wellposedness axiom, we learn that∗v (ᾱ; ·)
attains its global maximum in somēx ∈ ∗Rm. However, applying the

transfer principle to the first-order condition

∀α ∈ Rd ∀x ∈ Rm ((∀y ∈ Rm v(α; y) ≤ v(α; x)) ⇒ ∂xv(α; x) = 0)

we find that∗∂xv (ᾱ; x̄) = 0.

Consider now the mapw which assigns to eachα ∈ Rd the uniquex =

w(α) ∈ Rm such that∂xv (α; x) = 0. (Existence and uniqueness follow

from the Strict Concavity and Wellposedness axiom.) On the one hand, the

transfer principle yields that

∀α ∈ ∗Rd ∀x ∈ ∗Rm (x = ∗w(α) ⇔ ∗∂xv (α; x) = 0) ,

hencēx = ∗w (ᾱ). On the other hand, the implicit function theorem teaches

thatw is continuously differentiable and thus continuous, whence∗w is S-

continuous. Sincēα is finite, it follows thatx̄ = ∗w (ᾱ) is finite, too. We

put x̃ := ◦x̄.

Due to the Parametrization axiom,v is continuous and hence∗v is S-

continuous. Therefore, we have for ally ∈ Rm,

(1) v (α̃; y)− v (α̃; x̃) ' ∗v (ᾱ; y)− ∗v (ᾱ; x̃) ' ∗v (ᾱ; y)− ∗v (ᾱ; x̄) .

In the next step, we combine Taylor’s theorem with the Strict Concavity

axiom, to see that the right-hand side of Equation (1) has a strictly negative

standard part: Applying the transfer principle to Taylor’s theorem yields a

finite ξ ∈ ∗Rm such that

∗v (ᾱ; y)− ∗v (ᾱ; x̄)

= T (y − x̄)∗∂xv (ᾱ; x̄) +
1

2
T (y − x̄)∗∂x∂xv (ᾱ; ξ) (y − x̄) ,
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hence

∗v (ᾱ; y)− ∗v (ᾱ; x̄) =
1

2
T (y − x̄)∗∂x∂xv (ᾱ; ξ) (y − x̄)

(since x̄ is a local maximum of∗v (ᾱ; ·)). Now, ∂x∂xv is continuous

by the Parametrization axiom, so∗∂x∂xv is S-continuous and therefore
∗∂x∂xv (ᾱ; ξ) ' ∂x∂xv (α̃; ◦ξ), which is negative definite by the Strict

Concavity axiom. It follows that

∗v (ᾱ; y)− ∗v (ᾱ; x̄) ' 1

2
T (y − x̄)∂x∂xv (α̃; ◦ξ) (y − x̄)

' 1

2
T (y − x̃)∂x∂xv (α̃; ◦ξ) (y − x̃)

and thus

(2) ∀y ∈ Rm \ {x̃} ◦ (∗v (ᾱ; y)− ∗v (ᾱ; x̄)) < 0.

Comparing this result with Equation (1), we lastly obtain thatv (α̃; y) −
v (α̃; x̃) < 0 for all standardy 6= x̃. This proves that̃x is the unique

maximum ofv (α̃; ·).
In order to verify thatv (α̃; ·) is D-socially acceptable, we still need to

show that for any giveny ∈ Rm \ {x̃}, the set of alli ∈ N with ui (x̃) >

ui (y) is decisive (i.e.∈ D). Define a functiont by t(z) := v (z; x̃)−v (z; y)

for all z ∈ Rd, whence

{i ∈ N : ui (x̃) > ui (y)} = {i ∈ N : v (αi; x̃)− v (αi; y) > 0}

= {i ∈ N : t (αi) > 0} .(3)

Due to the construction of the nonstandard embedding∗ via the bounded

ultrapower (with respect toD) of the superstructure over the reals, one has

the equivalence{i ∈ N : t (αi) > 0} ∈ D ⇔ ∗t (ᾱ) > 0 which through

Equation (3) yields

(4) {i ∈ N : ui (x̃) > ui (y)} ∈ D ⇔ ∗t (ᾱ) > 0.

However, by applying the transfer principle to the defining equation fort,

we get∗t(z) = ∗v (z; x̃)− ∗v (z; y) for all z ∈ ∗Rd, so∗t (ᾱ) = ∗v (ᾱ; x̃)−
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∗v (ᾱ; y) and therefore (by theS-continuity of∗v),

∗t (ᾱ) = ∗v (ᾱ; x̃)− ∗v (ᾱ; y) ' ∗v (ᾱ; x̄)− ∗v (ᾱ; y) .

The standard part of the right-hand side is strictly positive by inequality (2),

and therefore◦ (∗t (ᾱ)) > 0, too. Hence,∗t (ᾱ) > 0, and by equivalence (4)

finally

{i ∈ N : ui (x̃) > ui (y)} ∈ D.

¤

Proof of Theorem 2.Kirman and Sondermann (1972)[Theorem 1;

Proposition 2] have shown thatDσ is a non-principal ultrafilter whenever

σ satisfies Axioms 5,6,7. Hence, Axiom 1 follows from Axioms 5,6,7 for

D = Dσ.

Now suppose Axioms 2,3,4,5,6,7 and hence also Axiom 1 are satisfied

(for D = Dσ). Then, Theorem 1 ensures the existence ofα̃ ∈
Rd and x̃ ∈ Rm = X such that v (α̃; x̃) = max v (α̃; ·) and

{i ∈ N : ui (x̃) > ui (y)} ∈ Dσ for everyy ∈ X \ {x̃}. Fix an arbitrary

y ∈ X \ {x̃}. For all i ∈ N with ui (x̃) > ui (y) we havex̃P uiy and thus

x̃P u
i y by definition. Therefore,

{i ∈ N : x̃P u
i y} ⊇ {i ∈ N : ui (x̃) > ui (y)} ∈ Dσ.

SinceDσ is an ultrafilter and hence closed under supersets, also

{i ∈ N : x̃P u
i y} ∈ Dσ.

Kirman and Sondermann (1972)[Theorem 1(i)] have shown that this already

implies x̃σ (P u) y. Sincey was an arbitrary element ofX \ {x̃}, we obtain

thatx̃σ (P u) y for everyy ∈ X \ {x̃}. ¤

APPENDIX B. COMMENTS ON METHODOLOGY

Ultrafilters have been applied extensively in social choice theory for

nearly four decades: First, Fishburn (1970) proved that the axioms in
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Arrow’s social choice theorem3 are consistent for economies with infinitely

many individuals, although they are inconsistent for economies with finitely

many individuals. Hansson (1971, Postscript 1976) strenghened these

results. In the seminal work by Kirman and Sondermann (1972), it was

shown that under the assumption of some measure-theoretic structure on

the set of individuals, Arrow’s axioms can lead, even for economies with

infinitely many individuals, to aninvisible dictator, i.e. to a decreasing

sequence of winning coalitions with arbitrarily small measure. Armstrong

(1980, 1985) generalized Kirman and Sondermann’s (1972) results to

measure spaces of individuals. Other generalizations of Kirman and

Sondermann’s (1972) analysis were discovered by Grafe and Grafe (1983)

as well as (for intergenerational economies) Campbell (1990). Schmitz

(1977) showed that Kirman and Sondermann’s (1972) results cannot be

extended to spaces of individuals that are endowed with an infinite measure,

and Hansson (1976) pointed out that for some topologies on the population

set, there will even be multiple invisible dictators, which seems to stretch

the term “dictator” too far.

Ultraproducts — a model-theoretic construction based on ultrafilters

(cf. e.g. Chang and Keisler, 1973) — entered social choice theory when

Lauwers and Van Liedekerke (1995) used them to prove that there is a one-

to-one correspondence between non-dictatorial Arrow-type aggregation

functions and non-principal ultrafilters.4

3These axioms are: the existence of at least three alternatives, transitivity (i.e.

unrestricted domain), independence, the Pareto principle, and non-dictatorship.
4In spite of this correspondence between Arrow aggregation functions and ultrafilters,

Lauwers and Van Liedekerke (1995) argued in the conclusion of their paper that

aggregation should not be formalized via ultrafilters in the context of social choice

(pp. 235-236): First, they claim that ultrafilters exhibit “insuperable arbitrariness” (p. 236).

As an example, they point to the well-known fact that every ultrafilterD on the set of

natural numbers must, because of its maximality, either claim that “D-almost all” positive

integers are even or claim that “D-almost all” integers are odd. (Herein, a property is set

to hold forD-almost alli if and only if the set of alli for which that property holds is in
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Some other applications of ultrafilters and ultraproducts in the social

sciences, with a particular emphasis on de Condorcet’s (1785) paradox,

were recently reviewed by Haddad (2005). The existence of non-principal

ultrafilters, under the assumption of the Axiom of Choice, was established

by Ulam (1929) and Tarski (1930); the main results on ultraproducts are

due to Łós (1955).

In this paper, the ultraproduct methodology is used to build a social-

choice theoretic foundation for representative-agent models for populations

with parametric individual utilities. We consider an infinite populationN

of individuals whose utilities are functions of the social planner’s policy.

We suppose that these functions can be parametrized in a smooth and

strictly concave manner. We consider an exogeneously given system of

decisive coalitionswhich form a non-principal ultrafilterD on N ; note

that every non-dictatorial Arrovian social welfare function on an infinite

population induces such aD (Fishburn 1970, Hansson 1976). The role of

the social planner is to implement the social choice of the population. In

other words, the social planner must maximize, simultaneously, the utility

of each individual in some decisive coalition. We show that this problem

D.) This also illustrates their second objection, viz. that ultrafilters do not represent our

intuition of “almost all” (p. 236).

From a foundational stance, the first point seems well-taken at first sight, since the

ultrafilter existence theorem is a consequence of the Axiom of Choice. However, the

ultrafilter existence theorem is not equivalent to the Axiom of Choice, as shown by

Halpern and Levy (1971) (cf. also Banaschewski 1983), and in special social choice

problems, ultrafilters may even be viewed as given exogeneously (modelling collections

of coalitions). The fact that ultrafilters do not necessarily formalize our notion of “almost

all” is no ultimate challenge for their use in social choice theory, since collective decision

making sometimes ignores significant minorities.

In this paper, in particular, we use an ultrafilter on the population set to model the set

of those coalitions which determine the social planner’s policy. Hence, the ultrafilter is an

exogeneous variable of the model, and it only captures a subjective notion of “most” (from

the social planner’s vantage point), not a concept of “almost all”.
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can be reduced to maximizing just one element of the parametrized set

of individual utility functions. One can interpret this utility function as

belonging to a representative agent, even though there does not need to be

an actual individual in the population to which this utility function belongs.

In this sense, our results clarify the ontological status of the representative

agent.

The proof of Theorem 1 employs both a classical ultrapower construction

and implicitly also a bounded ultrapower of a superstructure (through

Robinsonian nonstandard analysis) — both with respect to the non-principal

ultrafilter of all decisive coalitions among the population. The description

of our model and the statement of our results, however, do not assume any

knowledge of model theory or nonstandard analysis.

For an economically motivated introduction into model theory and

ultrapowers, we refer to Lauwers and Van Liedekerke (1995). Anderson

(1991) provides an introduction to nonstandard analysis with an emphasis

on applications in mathematical economics.
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