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Abstract

In this thesis we are concerned with the long time behavior of continuous time ran-

dom walks on infinite graphs. The following three related problems are considered.

1. Stochastic completeness of the random walk. We characterize the stochas-

tic completeness of the random walk in terms of function-theoretic and geometric

properties of the underlying graph.

2. Uniqueness of the Cauchy problem for the discrete heat equation in certain

function classes. We provide a uniqueness class on an arbitrary graph in terms of

the growth of the L2-norm of solutions and show its sharpness. An application of

this results to bounded solutions yields a criterion for stochastic completeness in

terms of the volume growth with respect to a so-called adapted distance. In special

cases, this leads to a volume growth criterion with respect to the graph distance as

well.

3. Escape rate of the random walk. We provide upper rate functions for stochas-

tically complete random walks in terms of the volume growth function.
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Chapter 0

Introduction

0.1 General overview

In this thesis we are concerned with long time behavior of continuous time random

walks (Markov chains) on infinite graphs. We are interested in the following three

related problems.

(1) Stochastic completeness of the random walk.

The random walk is stochastically complete if it has infinite lifetime with

probability 1. Our results about stochastic completeness are of two kinds:

(a) characterizations of stochastic completeness using certain function-theoretic

properties of the graph (the weak Omori-Yau maximum principle and the

Khas’minskii criterion for graphs).

(b) relation of the stochastic completeness to the geometric properties of the

underlying graph, such as bounds of degree and volume growth.

(2) Uniqueness class for the Cauchy problem for the heat equation.

Analogous to the classical Cauchy problem for the heat equation, one can

define a similar problem on a graph and ask in what class of functions is the

solution unique. For example, uniqueness in the class of bounded functions

is equivalent to the stochastic completeness. We obtain the uniqueness class

on graphs in terms of the growth of certain integrals of functions. Unlike the

classical uniqueness class of Tichonov, that consists of functions bounded by

ec|x|
2

, the uniqueness class on a simplest graph Z consists of functions bounded

by eε|x| ln |x|, and the class is sharp.

(3) Escape rate for random walks on a graph, that is, how far away can the random

walk move in a given time t. This question only makes sense on stochastically
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complete graphs. We prove upper bounds on the escape rate in terms of the

volume growth of the graph.

0.2 Setup

We briefly outline the settings of this thesis. A more detailed account of the frame-

work is provided in Chapter 1 following the work of Keller and Lenz [33].

A weighted graph is a triple (V, w, µ) where V is a countably infinite vertex set

and w(x, y) and µ(x) are nonnegative weight functions on V ×V and V respectively

such that

(1) µ(x) > 0 for all x ∈ V ;

(2) w(x, x) = 0 for all x ∈ V ;

(3) w(x, y) = w(y, x) for all x, y ∈ V ;

(4)
∑

y∈V w(x, y) < +∞ for all x ∈ V .

We can view µ as a measure on V and construct the function spaces lp(V, µ) in the

usual way. The function w defines an edge set E by

x ∼ y ⇔ w(x, y) > 0, and E = {(x, y) ∈ V × V : x ∼ y},

that equips V with an undirected, simple (i.e. without loops and multiedges), infinite

graph structure. Throughout the thesis, all graphs will be assumed to be of this type.

We call x and y neighbors if x ∼ y holds. When the underlying graph (V,E) is

connected, there is a natural graph distance ρ on V , namely, the length of the

shortest path between every two points.

An analogue of the classical Laplacian on Euclidean spaces or more generally on

Riemannian manifolds, the so-called formal Laplacian ∆ ([33]) on a weighted graph

(V, w, µ) can be constructed as

(0.2.1) ∆f(x) =
1

µ(x)

∑

y∈V
w(x, y)(f(x)− f(y))

where f is any real valued function on V such that (0.2.1) makes sense. For example,

let (V,E) be a locally finite and connected graph. It is natural to consider the weight

function w with w(x, y) = 1 for x ∼ y, and w(x, y) = 0 otherwise. Then there are

two natural choices of µ (and consequently, ∆) on V .
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(1) The normalized (or combinatorial) Laplacian case: µ(x) = deg(x), where

deg(x) = #{y ∈ V : y ∼ x} is the number of neighbors of x. And

∆f(x) =
1

deg(x)

∑

y∈V,y∼x

(f(x)− f(y)).

(2) The so-called physical Laplacian case (named by Weber [53]): µ is the counting

measure (i.e. µ(x) ≡ 1), and hence

∆f(x) =
∑

y∈V,y∼x

(f(x)− f(y)).

Let ∆0 be the restriction of ∆ to the space Cc(V ) of finitely supported functions

on V and let L be the Friedrichs extension of ∆0 on l2(V, µ). The (minimal) heat

semigroup {Pt}t≥0 on (V, w, µ) is constructed as

Pt = exp (−tL) ,

and can be extended from l2(V, µ) to l∞(V ), the space of bounded functions on V .

A weighted graph (V, w, µ) (or the formal Laplacian ∆) is called stochastically

complete if

for all t > 0, Pt1 = 1.

One reason why the stochastic completeness problem is interesting is that it is

related to a number of other equivalent properties and can be investigated from

different points of view. In the analytic aspect, an equivalent property is that for

some/any T > 0, the Cauchy problem of the heat equation

(0.2.2)











∂

∂t
u(x, t) + ∆u(x, t) = 0,

lim
t→0+

u(x, t) = 0,

has only zero solution in the class of bounded functions on V × (0, T ].

From the probabilistic point of view, the heat semigroup Pt serves as the tran-

sition semigroup of a minimal, reversible, continuous time Markov chain {Xt}t≥0

on V which can be naturally constructed from the weight functions w and µ. The

stochastic completeness of (V, w, µ) is equivalent to the non-explosion of {Xt}t≥0,

that is, for all (x, t) ∈ V × (0,∞),

Px (Xt ∈ V ) = 1.
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Let d be a distance function on V , such that all d-balls are finite. If the weighted

graph (V, w, µ) is stochastically complete then one can ask whether there exists a

function R(t) on [0,∞) such that for some x0 ∈ V ,

Px0
{d(Xt, x0) ≤ R(t) for all sufficiently large t} = 1.

Such a function R(t) is called an upper rate function and can be considered as a

quantitative way of understanding the stochastic completeness.

Now return to the two examples of weights on a locally finite and connected

graph (V,E). The normalized Laplacian, is not interesting for the point of view of

stochastic completeness. Due to the boundedness of ∆, the corresponding random

walk is always stochastically complete in this case.

In the pioneering work of Dodziuk [8] and Dodziuk, Matthai [9], they first consid-

ered the question of stochastic completeness of the physical Laplacian which turned

out particularly interesting. Inspired by the work of Dodziuk and Matthai, Weber

[53] and Wojciechowski [54] independently studied the stochastic completeness of

the physical Laplacian in depth. Following their terminology, we will call a graph

(V,E) stochastically complete if so is the physical Laplacian on it. Keller and Lenz

[33, 34] first considered the stochastic completeness problem for general weighted

graphs and set up a convenient framework based on the theory of Dirichlet forms.

0.3 Main results

For simplicity, we state all results for the physical Laplacian on graphs, whereas in

the main body we prove them in a more general form for weighted graphs. In this

section, ∆ denotes the physical Laplacian and µ denotes the counting measure.

We first study the weak Omori-Yau maximum principle for graphs which provide

a convenient equivalent condition for stochastic completeness.

Theorem 0.1 (=Theorem 2.1.2). A graph (V,E) is said to satisfy the weak Omori-

Yau maximum principle if for every nonnegative bounded function f on V with and

for every α > 0,

sup
Ωα

∆f ≥ 0,

where

Ωα = {x ∈ V : f(x) > sup
V
f − α}.

Then a locally finite and connected graph (V,E) is stochastically complete if and

only if it satisfies the weak Omori-Yau maximum principle.



Chapter 0. Introduction 5

Remark 0.3.1. Pigola, Rigoli, and Setti [42, 43] first studied the weak Omori-Yau

maximum principle on manifolds, based on earlier work by Omori [41] and Yau [57].

As a consequence, we obtain a simple proof of the Khas’minskii criterion for

graphs. For the classical Khas’minskii criterion on manifolds, see Khas’minskii [36].

Theorem 0.2 (=Theorem 2.3.1). Let (V,E) be a locally finite and connected graph.

If there exists a nonnegative function γ on V such that

γ(x) → +∞

as x leaves every finite set and

∆γ(x) + λγ(x) ≥ 0

outside a finite set, then (V,E) is stochastically complete.

An application of the Khas’minskii criterion for graphs is the following theorem.

Theorem 0.3 (=Theorem 2.5.4). Let (V,E) be a locally finite and connected graph.

Let f ∈ C1([0,+∞)) be some positive, increasing function such that

∫ +∞

0

dr

f(r)
= +∞.

If for some fixed x0 ∈ V ,

∆ρ(x0, x) ≥ −f(ρ(x0, x))

outside a finite set, then (V,E) is stochastically complete.

Remark 0.3.2. Previously, a similar result was proved by Weber [53] for f = const.

Both results are analogous to the curvature type criteria for stochastic completeness

of manifolds by Yau [58] and later Ichihara [30], Varapoulos [52] and Hsu [27].

To obtain criteria for stochastic completeness in terms of the volume growth

function, we need introduce the notion of adapted distances. Our key observation is

that the volume growth with respect to the graph distance is not an adequate quan-

tity for the stochastic completeness problem. An essential feature of the geodesic

distance on a Riemannian manifold is that

(0.3.3) |∇d(x0, x)| ≤ 1

which is important in constructing cut-off functions with controlled energy density.
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A natural analogue of (0.3.3) for a distance d on a graph (V,E) is that

(0.3.4)
∑

y∈V,y∼x

d2(x, y) ≤ 1

for all x ∈ V . In the physical Laplacian case, a short calculation shows that gener-

ally the graph distance ρ does not satisfy (0.3.4). This observation naturally leads

us to adopt a notion of adapted distances on weighted graphs to the stochastic com-

pleteness problem. The following definition is first introduced by Frank, Lenz and

Wingert [15] in the more general setting of nonlocal Dirichlet forms when studying

spectral properties (they use the phrase “intrinsic metric” instead).

Definition 0.4 (=Definition 1.6.2). Let (V,E) be a locally finite and connected

graph. We call a distance d on V adapted if (0.3.4) holds for all x ∈ V and d(x, y) ≤ 1

whenever x ∼ y.

Such type of distances always exist on a connected graph. Let (V,E) be a locally

finite and connected graph. Define a function σ (x, y) for all pairs of neighbors x ∼ y

by

(0.3.5) σ(x, y) = min

{

1
√

deg(x)
,

1
√

deg(y)
, 1

}

.

It naturally induces a distance d on X as follows: for all pairs of distinct points x, y,

(0.3.6) d(x, y) := inf{
n−1
∑

i=0

σ(xi, xi+1) : x0 = x, xn = y, ∀0 ≤ i ≤ n− 1, xi ∼ xi+1}.

Our main result is the following.

Theorem 0.5 (=Theorem 4.1). Let (V,E) be a locally finite and connected graph.

Let d be an adapted distance on (V,E). Assume that for some point x0 ∈ V , for

some constants C > 0 and 0 < c < 1
2
, the volume of balls µ(Bd(x0, r)) satisfies

(0.3.7) µ(Bd(x0, r)) ≤ C exp (cr ln r) ,

for all r > 0 large enough. Then (V,E) is stochastically complete.

Note that for a geodesically complete Riemannian manifold M , if

(0.3.8)

∫ ∞ rdr

ln vol(B (x0, r))
= ∞

for some x0 ∈ M , then M is stochastically complete. This sharp volume growth

criterion is due to Grigor’yan [19]. The borderline of stochastic completeness and
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incompleteness for manifolds lies around ecr
2

type volume growth in contrast to

(0.3.7). We do not know whether Theorem 0.5 is sharp or not for graphs.

It is desirable to have criteria for stochastic completeness in terms of the volume

function relative to the graph distance ρ. Wojciechowski [56] first showed that for

each ε > 0, there are stochastically incomplete graphs called anti-trees with cr3+ε

type volume growth with respect to the graph distance. Our result here is as follows.

Theorem 0.6 (=Theorem 4.2.2). Let (V,E) be a locally finite and connected graph.

If for some point x0 ∈ V , and some constant c > 0,

(0.3.9) µ(Bρ (x0, r)) ≤ cr3

for all r ∈ N+, then (V,E) is stochastically complete.

Interestingly, the theorem above is proven as a corollary of Theorem 0.5. Unlike

the manifold case, the borderline between stochastic completeness and incomplete-

ness goes on cubic volume line rather than quadratic exponential one. This is also

part of our motivation to consider adapted distances.

As it was already mentioned above, the stochastic completeness is equivalent

to the Cauchy problem in the class of bounded functions. In fact, we obtain our

Theorem 0.5 as a consequence of a more general result about uniqueness class.

Theorem 0.7 (=Theorem 3.1). Let (V,E) be a locally finite and connected graph.

Let d be an adapted distance on V such that all d-balls are finite. Let u(x, t) be a

solution to the Cauchy problem (0.2.2) on V × [0, T ] for some T > 0. If there are

an increasing sequence of positive numbers {Rn}n∈N with

lim
n→∞

Rn = +∞,

and two constants C > 0, 0 < c < 1
2
such that for some x0 ∈ V ,

(0.3.10)

∫ T

0

∑

x∈Bd(x0,Rn)

u2(x, t)µ(x)dt ≤ C exp (cRn lnRn) ,

then u(x, t) ≡ 0 on V × [0, T ].

The proof uses the approach of Grigor’yan [19] via the integrated maximum

principle for solutions of the heat equation. However, due to the discreteness of the

Laplacian, a direct application of the method of [19] does not work. The key point

of the proof is a new integrated maximum principle specific to the graph setting,

that is stated in Lemma 3.1.1.
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The uniqueness class given by (0.3.10) is sharp up to the constant c. We will

show in Section 3.3 that on the simplest graph Z there are nonzero solutions u(x, t)

to the Cauchy problem (0.2.2) with exp (c1R lnR) type growth for some c1 > 0. For

this counterexample, we use the approach of Tichonov [51] to construct a solution

u(n, t) of the heat equation on Z with u(n, 0) ≡ 0 in the form

u(n, t) =



















g(t), n = 0,(0.3.11)

g(t) +
∞
∑

k=1

g(k)(t)

(2k)!
(n+ k) · · · (n+ 1)n · · · (n− k + 1), n ≥ 1,

u(−n− 1, t), n ≤ −1,

where

g(t) = exp

(

− 1

t2

)

.

However, due to the discreteness of the setting, the resulting solution is entirely

different from that of Tichonov and grows at a much slower rate exp (c1R lnR).

Remark 0.8. It is a classical problem to find the uniqueness classes in the setting

of heat equation on Euclidean spaces, see for example the work of Tichonov [51]

and Täcklind [50]. Our uniqueness class (0.3.10) in the integrated form is more in

the spirit of the work of Oleinik and Radkevich [40], Gushchin [26] in the Euclidean

case, and Grigor’yan [19] in the manifold case.

In the probabilistic approach, we study the upper rate function of the escape

rate for the continuous time random walk corresponding to the physical Laplacian.

Theorem 0.9. Let (V,E) be a locally finite and connected graph with an adapted

distance d. Let {Xt}t≥0 be the continuous time Markov chain associated with the

physical Laplacian.

(1) If for some constant 0 < c < 1
2
and for all r ≥ 2,

µ(Bd(x0, r)) ≤ exp (cr ln r) ,

Then for any a > 1
1−2c

, there is some constant C > 0 such that

R(t) = Cta ln t

is an upper rate function for {Xt}t≥0.

(2) If for some constant M > 0 such that

µ(Bd(x0, r)) ≤ expMr
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for all r ≥ 2, then there exists some constant C > 0 such that the inverse

function ψ−1(t) of

(0.3.12) ψ(R) = C

∫ R

8

rdr

f(r) + ln ln(r)

is an upper rate function for {Xt}t≥0.

In the case that the graph has at most exponential type volume growth, our

result (0.3.12) coincides with the recent results on manifolds by Hsu and Qin [28].

Previously, similar results are obtained by Grigor’yan and Hsu [24] for Cartan-

Hardamad manifolds. However for exp (cr ln r) type volume growth, our result is

different.

It remains unclear whether this is a technical difference or essential. In the view

of the sharpness of Theorem 0.7 about uniqueness class, one could expect that for

some c > 0, exp (cr ln r) is a borderline case for stochastic completeness and the

escape rate in this case is sharp. However, we still do not have evidence for that.

Alternatively, it could happen that our method for proving stochastic completeness

is not sharp enough and the volume growth criterion (0.3.8) still holds if we consider

adapted distances. By calculations of concrete examples, we are more inclined to

the latter possibility.

0.4 Structure of the thesis

We now briefly review the contents of the main chapters not explicitly mentioned

above. In the first chapter we survey the foundations for our work: the analytical

framework of Keller and Lenz [33] and the construction of the minimal continu-

ous time Markov chain. Theorem 1.5.1 gathers various equivalent conditions for

stochastic incompleteness. A more detailed comparison between adapted distances

and the graph distance is given via examples. The next chapter is devoted to an

alternative approach to the geometric criteria for stochastic completeness (stochas-

tic incompleteness) of Wojciechowski [54, 55, 56] and Weber [53]. We develop the

weak Omori-Yau maximum principle and prove the Khas’minskii criterion for gen-

eral weighted graphs. Combining them, we are able to give a unified approach to

many know geometric criteria together with simpler proofs. Stability of stochastic

incompleteness of weighted graphs is discussed in Section 2.4. Chapter 3 deals with

the uniqueness class problem. An extension of Theorem 0.7 is proved with the help

of an important technical tool, Lemma 3.1.1. We also show that Theorem 0.7 is

close to be sharp by examples. In Chapter 4, we prove Theorem 0.5 and Theorem
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0.6 for a class of weighted graphs similar to physical Laplacian case. The probabilis-

tic point of view is taken up in the last chapter. We give more explicit upper rate

functions for different types of volume growth functions in Theorem 5.3.

Note that the historical notes here are by no means complete. In particular, we

should point out that there are extensive literature on the stochastic completeness

problem in the general context of continuous time Markov chain. See for example

the work of Feller [12, 13], Reuter [45] and Chung [3]. For the stochastic com-

pleteness problem on manifolds, we refer the survey paper of Grigor’yan [22] for a

comprehensive historical account. We will provide more references at the beginning

of each chapter as well.



Chapter 1

Foundations

This chapter is expository and nothing is claimed to be original. Most of the ma-

terials here are taken from the pioneering work [33], [34], [53], and [54] with some

modifications to fit the need of this thesis. For the general theory of Dirichlet forms

and the corresponding Hunt processes, we refer to the classical monograph [17]. We

will also make use of results from Davies’ book [4]. It is worth clarifying that many

results here are presented not in their possibly more general original form in order

to fit our work later on.

We first briefly summary the framework of weighted graphs set up by Keller and

Lenz [33]. We refer the reader to [33] and [34] for most proofs. However, for the

sake of completeness, we will include some facts such as the parabolic minimum

principle Theorem 1.4.15 which do not directly appear in their paper. These proofs

here are based on the ideas of Weber [53] and Keller and Lenz [33] and are not

claimed to be new. The main theorem of this chapter is Theorem 1.5.1 which gives

a big list of equivalent conditions for stochastic incompleteness. It allows us to

transfer a question about heat semigroups to questions about the uniqueness of

solutions to elliptic and parabolic (partial) difference equations. The conditions

there are not new. In the setting of weighted graphs, most of them are due to

Weber [53], Wojciechowski [54], Keller and Lenz [33, 34]. However, we added two

more conditions ((7) and (7’)) in analogue with the smooth setting. These two

conditions are important for the study of uniqueness class in Chapter 3. See [22]

for the equivalent conditions for stochastic incompleteness on manifolds. After the

thesis was written up, we noticed that Keller, Lenz and Wojciechowski [35] just

fixed the gap in the literature and covered the parabolic minimum principle and the

conditions (7) and (7’) in Theorem 1.5.1.

Then for preparation of the study of the uniqueness of solutions of parabolic

(partial) difference equations, we introduce the notion of adapted distances and
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compare them with the usual graph distance. Adapted distances naturally leads

to cut-off functions that fit the classical Caccioppoli type estimates which will be

our key technique in Chapter 3. This notion is first introduced by Frank, Lenz

and Wingert [15]. Inspired by the integrability conditions for a Lévy measure, the

work of Masamune and Uemura [37] implicitly contains the same notion. Folz [14]

also came up with similar ideas with the goal to obtain heat kernel estimates on

weighted graphs. In the case of strongly local Dirichlet forms on distance spaces,

the corresponding notion of intrinsic distances is classical and has been applied to

stochastic completeness problems. See for example [49]. The first work introducing

different distances on graphs seems to be Davies [6]. Based on communications with

Grigor’yan and Wojciechowski, we found the idea of applying the adapted distances

to the stochastic completeness problem of weighted graphs. A different notion of

weighted distance has also been introduced by Colin de Verdière, Torki-Hamza and

Truc [7] in the context of essential self-adjointness.

Besides the analytical aspect, we describe the probabilistic side as well, that

is, the minimal right continuous Markov chain corresponding to a weighted graph.

This topic is classical and there are many good monographs: Chung [3], Freedman

[16], Norris [39], and Stroock [48], just to name a few. So we only briefly survey the

results that we need without proof. This part will only be used in Chapter 5.

1.1 Weighted graphs

Throughout the paper, V will be a countably infinite set with the discrete topology

and the associated trivial Borel σ−algebra. We denote the space of compactly

supported (i.e. finitely supported) functions on V by Cc(V ).

Let µ(x) : V → (0,∞) be a positive function on V . It can also be viewed as a

fully supported (Radon) measure on V . For the measure space (V, µ), we naturally

associates the function spaces lp(V, µ) for p ∈ [1,∞):

lp(V, µ) = {f : V → R|
∑

x∈V
|f(x)|pµ(x) <∞}.

For p = ∞, lp(V, µ) is just the space of bounded functions on V and is in fact

independent of µ. So it is proper to denote it by l∞(V ) for simplicity. We will use

the notation

〈f, g〉 =
∑

x∈V
f(x)g(x)µ(x)

for f ∈ lp(V, µ) and g ∈ lq(V, µ) where p ∈ [1,∞) and 1
p
+ 1

q
= 1 (when p = 1, we

adopt the convention that q = ∞). Note that obviously Cc(V ) ⊆ lp(V, µ) for all
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p ∈ [1,∞].

To make V a weighted graph, we need another function w : V × V → [0,∞)

such that the following holds:

(1) w(x, x) = 0 for all x ∈ V ;

(2) w(x, y) = w(y, x) for all x, y ∈ V ;

(3)
∑

y∈V w(x, y) < +∞ for all x ∈ V .

The triple (V, w, µ) is called a weighted graph in this thesis. The function w naturally

induces a symmetric relation E ⊆ V × V on V , that is,

(x, y) ∈ E ⇔ w(x, y) > 0.

We call such a pair of x, y neighbors and denote it by x ∼ y. Viewing V as the vertex

set and putting single edges between neighbors, this gives (V, w, µ) an underlying

graph structure (V,E). We often need consider subsets of V and the following

definition is useful.

Definition 1.1.1. Let (V, w, µ) be a weighted graph and U is a subset of V . We

define the (outer) boundary ∂U of U as

∂U = {x ∈ U c : ∃y ∈ U, x ∼ y}.

And the closure Ū of U is defined to be

Ū = U ∪ ∂U.

The weighted graph (V, w, µ) is called locally finite if every vertex in V has only

finite many neighbors. We call a pair of points x 6= y in V connected if there is a

chain of points {x0, · · · , xn} in V such that

x0 = x, xn = y, xk ∼ xk+1 for all 0 ≤ k ≤ n− 1.

With the convention that every point is connected with itself, this induces an e-

quivalence relation on V . We call a weighted graph connected if for all pairs of

points in V are connected. For the general case, we can naturally define connected

components. Note that the notion of connected components also makes sense for a

subset U of V by directly restricting w to U ×U and viewing U as a subgraph. We

will discuss the notion of subgraphs in more details later.
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Remark 1.1.2. The underlying graph of a weighted graph is undirected, loop-less

and without multiedges but not necessarily locally finite or connected. Such graphs

are often called simple graphs. Another way to construct a weighted graph is to

start from such a graph and to put weights on the vertex set and the edge set. See

Example 1.1.5 below.

Remark 1.1.3. In [33], the framework of Keller and Lenz is in fact more general. They

allow to include a potential term and introduce a notion of stochastic incompleteness

at infinity. In view of the Dirichlet subgraphs introduced by them, this is in fact

a more natural setting. Nevertheless, in this thesis, we adopt the more “classical”

setting and focus on the stochastic completeness problem without a potential term.

In analogue with the degree function on locally finite graphs (without weights),

we have a notion of weighted degree:

Deg(x) =
1

µ(x)

∑

y∈V
w(x, y).

Its meaning is clearer from the probabilistic point of view to be introduced in Section

1.7.

The main object of our study is the so called formal Laplacian ∆ introduced by

Keller and Lenz [33]:

∆f(x) =
1

µ(x)

∑

y∈V
w(x, y)(f(x)− f(y))

where f is a function on V in the domain D of ∆:

D = {g : V → R|
∑

y∈V
w(x, y)|g(y)| <∞ for all x ∈ V }.

The operator ∆ can be viewed as a discrete version of the Laplace-Beltrami operator

on Riemannian manifolds.

Remark 1.1.4. It is easy to see that l∞(V ) ⊆ D. When the underlying graph of

(V, w, µ) is locally finite, D is just the space of real valued functions on V .

Example 1.1.5. Let (V,E) be an infinite, locally finite simple graph with V the

vertex set and E the edge set viewed as a symmetric subset of V × V . The weight

function w(x, y) on V × V is supported on E and satisfies that w(x, y) = 1 if

(x, y) ∈ E. The vertex weight function µ(x) is simply defined to be identically 1. In

this case the formal Laplacian is

(1.1.1) ∆f(x) =
∑

y,y∼x

(f(x)− f(y)).
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This is the so-called physical Laplacian studied first by Dodziuk [8] and Dodziuk,

Matthai [9], and then independently by Weber [53] and Wojciechowski [54]. See

also the work of Keller, Lenz and Wojciechowski [35] for recent developments. The

weighted degree function in this case is Deg(x) = deg(x) where deg(x) is the normal-

ly defined degree function of a graph, that is, the number of neighbors of vertices.

The physical Laplacian case offers a large family of weighted graphs whose stochas-

tic completeness problem is interesting. Most of our results are aimed (though not

restricted) to understand this family.

As the physical Laplacian is the best understood case, it is useful to generalize

it to a more general family of weighted graphs that share most of the good proper-

ties. Direct restrictions are locally finiteness and connectedness. Further more, we

introduce two assumptions on the weights.

Assumption 1.1.6. The weights on vertices of the weighted graph (V, w, µ) have

a positive lower bound, namely

Cµ = inf
x∈V

µ(x) > 0.

Assumption 1.1.7. The weights on vertices and edges of the weighted graph

(V, w, µ) satisfies the following relation:

(1.1.2) w(x, y) ≤ Cwµ(x)µ(y) for all x, y ∈ X,

for some constant Cw > 0.

Example 1.1.8. Let (V,E) and w(x, y) as in Example 1.1.5. This time we choose

the vertex weight to be µ(x) = deg(x). The formal Laplacian now becomes

∆f(x) =
1

deg(x)

∑

y,y∼x

(f(x)− f(y)).

It is easy to see that the weighted degree function is Deg(x) ≡ 1. This is the most

common setting in the analytical study of random walks. However, from the point

of view of stochastic completeness, it is not an interesting case as such weighted

graphs are always stochastically complete. See [8], [9] for example.
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1.2 Dirichlet forms, semigroups and resolvents

There is a natural Markovian symmetric quadratic form Qc on Cc(V ) for a weighted

graph (V, w, µ) defined as:

Qc(u, v) =
1

2

∑

x∈V

∑

y∈V
w(x, y) (u(x)− u(y)) (v(x)− v(y)) .

Such a quadratic form is determined by its diagonal value. Consider its maximal

extension Qmax on l2(V, µ) with diagonal

Qmax(u) = Qmax(u, u) =
1

2

∑

x∈V

∑

y∈V
w(x, y) (u(x)− u(y))2 ,

where the value ∞ is allowed. Viewed as a extended real valued function on l2(V, µ),

Qmax(u) is lower semicontinuous in u by Fatou’s Lemma. By Theorem 1.2.1. in [4],

Qmax is a closed form and hence Qc is closable. We denote the closure of Qc by E
with domain F . By standard results (Theorem 3.1.1. in [17]), the pair (E ,F) is a

Dirichlet form. By construction, it is in fact a regular Dirichlet form.

The general machinery of Dirichlet forms provides us several (families of) oper-

ators corresponding to (E ,F). First, there exists a unique selfadjoint operator L on

l2(V, µ) such that F is the domain of L1/2 and

E(f, f) = 〈L1/2f, L1/2f〉

for f ∈ F . The operator L defined as above is the Friedrichs extension of ∆0 which

is the restriction of the formal Laplacian ∆ to Cc(V ). The operator L then generates

a strongly continuous semigroup

{Pt = exp(−tL), t > 0},

and a strongly continuous resolvent

{Gα = (α + L)−1, α > 0}

on l2(V, µ). One significant connection between the semigroup and the resolvent is

(1.2.3) Gαu =

∫ ∞

0

e−tαPtudt

for any u ∈ l2(V, µ). Again by standard theory ([17]), Pt and Gα have the posi-

tivity preserving property, that is, they map nonnegative functions to nonnegative
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functions.

To introduce the notion of stochastic completeness, we need extend Pt to l
∞(V ).

This is done by first taking monotone approximations in l2(V, µ) for nonnegative

functions in l∞(V ) and then extend by linearity. Positivity preserving is essential

in this extension. For details, we refer to p.49 in [17]. In fact, as in [4], Pt (and

the corresponding resolvent Gα) can be extended to lp(V, µ) for all p ∈ [1,∞].

These semigroups and resolvents are strongly continuous for p ∈ [1,∞) and weak

∗ continuous for p = ∞. They are consistent on their common domains. So when

there is no risk of confusion, we will denote all of them by Pt and Gα respectively.

They are selfadjoint ([4]) in the sense that

P
(q)
t =

(

P
(p)
t

)∗
, G(q)

α =
(

G(p)
α

)∗

for all p ∈ [1,∞) and 1
p
+ 1

q
= 1. For any p ∈ [1,∞), as the semigroup P

(p)
t is strongly

continuous, it has a corresponding generator L(p) with a dense domain D(L(p)) in

lp(V, µ). The p = ∞ case is subtler, as the generator is defined through the resolvent

(α+ L(∞))−1 =
(

(α+ L(1))−1
)∗
,

with domain G
(∞)
α (l∞(V )) which is not generally dense in l∞(V ). It is worth pointing

out that the relation (1.2.3) remains true for G
(∞)
α and P

(∞)
t on l∞(V ).

Remark 1.2.1. Note that the Dirac function

δx(y) =
1

µ(x)
χ{x}(y) ∈ Cc(V ),

where χU is the characteristic function of a subset U of V . The semigroup Pt then

has a natural kernel

p(t, x, y) = (Ptδx)(y),

since

〈Ptδx, f〉 = 〈δx, Ptf〉 = Ptf(x)

for all f ∈ l2(V, µ), x ∈ V . Through this kernel, the semigroup and the resolvent

can be extended on a general class of functions including all nonnegative functions.

Note also that p(t, x, y) = p(t, y, x) since Pt is a bounded symmetric operator. See

[33] for more details.

An immediate consequence of the weak ∗ continuity of P
(∞)
t is that Ptv(x) is

continuous in t on (0,∞) for all x ∈ V when v ∈ l∞(V ). In the meanwhile,

lim
t→0

(Pt1) (x) = lim
t→0

〈δx, Pt1〉 = lim
t→0

〈Ptδx, 1〉 = 〈δx, 1〉 = 1,
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for all x ∈ V as Pt is strongly continuous on l1(V, µ). Now we can give the definition

of stochastic completeness:

Definition 1.2.2. A weighted graph (V, w, µ) is said to be stochastically complete

if and only if the corresponding semigroup Pt satisfies that

Pt1 = 1

for all t > 0. Otherwise (V, w, µ) is called stochastically incomplete.

1.3 Minimum principles

In this section, we introduce the elliptic minimum principle of Keller and Lenz [33]

and develop a parabolic version of minimum principle. The parabolic minimum prin-

ciple is certainly classical in the PDE theory. See the book [44] for example. In the

setting of physical Laplacian on locally finite graphs, it is first proven independently

by Weber [53] and Wojciechowski [54] in a slightly different form (maximum princi-

ple). It is already known to Keller and Lenz in the more general setting of weighted

graphs though it is not stated explicitly in their paper. Here we will present a proof

of the parabolic minimum principle for the sake of completeness.

Theorem 1.3.1. (Elliptic Minimum Principle) Let (V, w, µ) be a weighted graph.

Let U ⊆ V be a given subset with connected components {Ui}i∈I . Assume a function

f on V satisfies:

(1) (∆ + α)f ≥ 0 on U for some α > 0;

(2) f |Ui
attains its minimum on each connected component Ui of U ;

(3) f ≥ 0 for all x ∈ U c.

Then, u ≡ 0 or u > 0 on each connected component of U . In particular u ≥ 0.

Theorem 1.3.2. (Parabolic Minimum Principle) Let (V, w, µ) be a weighted graph.

Let U ⊆ V be a given finite subset and T > 0. Assume that a function u on V ×[0, T ]

satisfies:

(1) u(x, t) is continuous and differentiable in t on [0, T ] for all x ∈ U ;

(2) as a function of x ∈ V , u(x, t) ∈ D for all t ∈ [0, T ];

(3) ∂
∂t
u+∆u ≥ 0 on U × [0, T ];
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(4) u ≥ 0 on U c × [0, T ], and u(x, 0) ≥ 0 for all x ∈ U .

Then u ≥ 0.

Proof. As U× [0, T ] is compact, u|U×[0,T ] attains its minimum at some point (x0, t0).

If u < 0 at some point in U × [0, T ], then

u(x0, t0) < 0.

Note that u ≥ 0 on U c× [0, T ]. Together with the fact that u(x0, t0) is the minimum

on U × [0, T ], we have

∆u(x0, t0) =
1

µ(x0)

∑

y∈V
w(x0, y) (u(x0, t0)− u(y, t0))

=
1

µ(x0)

∑

y∈U
w(x0, y) (u(x0, t0)− u(y, t0))

+
1

µ(x0)

∑

y∈Uc

w(x0, y) (u(x0, t0)− u(y, t0))

≤ 0.

We first consider the case that ∂
∂t
u+∆u > 0 on U × [0, T ]. Since u(x, 0) ≥ 0 for

all x ∈ U , we see that t0 ∈ (0, T ] and as a consequence

∂

∂t
u(x0, t0) ≤ 0.

Hence we have

∆u(x0, t0) > − ∂

∂t
u(x0, t0) ≥ 0.

A contradiction.

For the general case, consider the function

vε(x, t) = u(x, t) + εt

where ε > 0. We have

∂

∂t
vε(x, t) + ∆vε(x, t) =

∂

∂t
u(x, t) + ∆u(x, t) + ε > 0.

The assumptions (1), (2) and (3) for u also hold for vε as

vε(x, 0) = u(x, 0), vε(x, t) ≥ u(x, t).
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From the previous argument, we see that

u(x, t) + εT ≥ vε(x, t) ≥ 0.

As ε > 0 is arbitrary, the assertion follows. �

1.4 Dirichlet subgraphs

To understand the finer properties of the semigroup Pt such as minimality of Pt1

and the explicit form of the generators, we need make use of the regularity of the

Dirichlet form (E ,F) and develop the approximation of Pt by its restrictions on

subgraphs.

For U ⊆ V , taking the weights to be w|U×U , µ|U , we obtain a naive definition of

subgraph. The stability of stochastic incompleteness under the operation of taking

subgraphs will be discussed in Chapter 2.

In this section, we mainly use a notion of Dirichlet subgraphs introduced by

Keller and Lenz [33]. Denote µ|U by µU . Let iU : l2(U, µU) → l2(V, µ) be the

canonical embedding, that is, extension by zero outside U . Let pU : l2(V, µ) →
l2(U, µU) be the canonical projection, that is, the adjoint of iU . Then we have a

selfadjoint operator L
(D)
U on l2(U, µU) by

L
(D)
U = pULiU .

The operator naturally induces a Dirichlet form on l2(U, µU) by

Q
(D)
U (u) = E(iUu).

We will denote the corresponding semigroup on l2(U, µU) by P
U,(D)
t and the resolvent

by G
U,(D)
α . Afterwards, for simplicity, we will omit the superscript (D) which hints

that the operator L
(D)
U is obtained by restriction to a subgraph with the Dirichlet

boundary condition.

For the case that U is finite, we can easily see by direct calculation that

pULiU = LU = pU∆iU .

Recall that L is a selfadjoint operator on l2(V, µ) while ∆ is the formal Laplacian

on its domain D.

The elliptic and parabolic minimum principles introduced in the previous section

imply the monotonicity structure of GU
α and PU

t with respect to U . More explicitly,
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we state the following two theorems which are due to Keller and Lenz [33] in the

setting of weighted graphs.

Theorem 1.4.1. (Elliptic domain Monotonicity) Let (V, w, µ) be a weighted graph.

Let K1 ⊆ K2 ⊆ V be given with K1 and K2 finite. Then, for all f ∈ l2(V, µ) with

f ≥ 0,

iK1
GK1

α pK1
f ≤ iK2

GK2

α pK2
f

pointwise.

Theorem 1.4.1 is proven through the elliptic minimum principle Theorem 1.3.1.

It essentially use that fact that

LU = pU∆iU

when U is finite. Similarly by the parabolic minimum principle, we have a parabolic

domain monotonicity theorem.

Theorem 1.4.2. (Parabolic domain Monotonicity) Let (V, w, µ) be a weighted graph.

Let K1 ⊆ K2 ⊆ V be given with K1 and K2 finite. Then, for all f ∈ l2(V, µ) with

f ≥ 0,

iK1
PK1

t pK1
f ≤ iK2

PK2

t pK2
f

pointwise.

Proof. Let

ui = iKi
PKi
t pKi

f

for i = 1, 2. By the general theory of strongly continuous semigroups on Hilbert

spaces, we have
∂

∂t

(

PKi
t pKi

f
)

+ LKi

(

PKi
t pKi

f
)

= 0.

Note that here “ ∂
∂t
” is the strong derivative on l2(Ki, µKi

). However, since the Dirac

function δx(y) ∈ l2(V, µ), the above equation also holds in the pointwise sense.

Consider LKi
= pKi

∆iKi
and

pKi
iKi

= Id

on l2(Ki, µKi
), it follows that

(1.4.4) pKi
(
∂

∂t
ui +∆ui) = pKi

∂

∂t

(

iKi
PKi
t pKi

f
)

+ pKi
∆iKi

(

PKi
t pKi

f
)

= 0.
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Now let v = u2 − u1. Obviously v ≥ 0 on Kc
1 × [0, T ]. It is also clear that

v(x, 0) = iK2
pK2

f(x)− iK1
pK1

f(x) ≥ 0.

By (1.4.4), for any fixed T > 0, we have that

(1.4.5)
∂

∂t
v(x, t) + ∆v(x, t) = 0

on K1 × (0, T ]. Since v is a bounded function and is continuous on K1 × [0, T ], as

observed in [33], by the differential mean value theorem, (1.4.5) extends toK1×[0, T ].

(See also Remark 1.4.8.) Then v ≥ 0 on V × [0, T ] by the parabolic minimum

principle Theorem 1.3.2. As T > 0 is arbitrarily chosen, the assertion holds. �

Remark 1.4.3. For general Dirichlet forms, domain monotonicity has already been

shown in the works [46], [47] before [33].

The following theorem of Keller and Lenz [33] makes serious use of the regularity

of the Dirichlet form.

Theorem 1.4.4. Let (V, w, µ) be a weighted graph and (E ,F) be the associated

regular Dirichlet form. Let {Kn}n∈N be an increasing sequence of finite subsets of V

with V = ∪n∈NKn. Then for any f ∈ Cc(V ),

lim
n→∞

iKn
GKn

α pKn
f = Gαf

in l2(V, µ). The corresponding results also holds for the semigroups PKn
t .

In view of the domain monotonicity Theorem 1.4.1 and Theorem 1.4.2, the ap-

proximations in Theorem 1.4.4 are in fact monotone both for the resolvents and the

semigroups. So for each nonnegative function g ∈ lp(V, µ) for some p ∈ [0,∞], we

can find a sequence of nonnegative functions gn ∈ Cc(V ) monotonically increasing

to g. By the construction of Pt (or Gα), the sequence Ptgn (or Gαgn) increases to Ptg

(or Gαg). Fix a sequence of increasing finite sets Kn ⊆ V . Then by Theorem 1.4.2

and Theorem 1.4.4, the sequence of functions iKm
PKm
t pKm

gn converges monotoni-

cally to Ptgn. And by Theorem 1.4.1 and Theorem 1.4.4, the sequence of functions

iKm
GKm

α pKm
gn converges monotonically to Gαgn. These monotone approximations

allow Keller and Lenz [33] to establish finer properties of the semigroups and resol-

vents. Above all, they show that the generators L(p) with p ∈ [1,∞] are restrictions

of ∆ on their domain.

Theorem 1.4.5. Let (V, w, µ) be a weighted graph. Let p ∈ [1,∞]. For any g ∈
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lp(V, µ), Gαg is in the domain D of ∆ and

(∆ + α)Gαg = g.

As a consequence, L(p)f = ∆f for any f ∈ D(L(p)).

Remark 1.4.6. We would like to remind that confusions might appear if we do not

distinguish an operator and its certain restrictions. Take g ∈ l∞(V ) for example.

As stated above,

(∆ + α)Gαg = g,

since Gαg ∈ D and L(∞) is a restriction of ∆ on its domain. However,

Gα (∆ + α) g = g

may fail as g is not necessarily in the domain of L(∞).

Together with the construction of Pt on l∞(V ), an immediate consequence of

this explicit form of generators is the differentiability of Ptf for f ∈ l∞(V ).

Definition 1.4.7. Let (V, w, µ) be a weighted graph. Let u(x, t) be a function on

V × [0,∞) (or on V × [0, T ] for some T > 0). Then u(x, t) is said to be a solution to

the Cauchy problem of the heat equation with initial condition f(x) on V × [0,∞)

(or on V × [0, T ]) if it satisfies the following conditions:

(1) as a function of x ∈ V , u(x, t) ∈ D for all t ∈ [0,∞) (or for all t ∈ [0, T ]);

(2) as a function of t ∈ [0,∞) (or of t ∈ [0, T ]), u(x, t) is differentiable for all

x ∈ V ;

(3) u(x, t) satisfies

(1.4.6)







∂

∂t
u(x, t) + ∆u(x, t) = 0,

u(x, 0) = f(x),

on V × [0,∞) (or on V × [0, T ] respectively).

Remark 1.4.8. As observed in [33], when u(x, t) is assumed further to be bounded,

it is enough to have that u(x, t) is differentiable in t on (0,∞) and continuous in t

on [0,∞), and satisfies (1.4.6) on V × (0,∞) with u(x, 0) = f(x). Note that

lim
t→0+

∂

∂t
u(x, t) = − lim

t→0+

1

µ(x)

∑

y∈V
w(x, y)(u(x, t)− u(y, t)) = −∆f(x)



24 Chapter 1. Foundations

by Lebesgue’s dominated convergence theorem. Then by the differential mean value

theorem, ∂
∂t
u(x, 0) exists and satisfies that

∂

∂t
u(x, 0) + ∆u(x, 0) = 0.

Roughly speaking, (1.4.6) automatically extends from (0,∞) to [0,∞). In the case

that the underlying graph is locally finite, this automatic extension even holds with-

out assuming the boundedness of u(x, t). The same argument applies to bounded

time intervals [0, T ].

Theorem 1.4.9. Let (V, w, µ) be a weighted graph. Let Pt on l
∞(V ) be defined as

before. For any f ∈ l∞(V ), the function u(x, t) = Ptf(x) is differentiable in t on

[0,∞) for each x ∈ V and is a solution to the Cauchy problem of the heat equation

with initial condition f(x).

Remark 1.4.10. In the setting of physical Laplacians on locally finite graphs, this

result is shown by Weber [53] and Wojciechowski [54] independently. The general-

ization to weighted graphs is due to Keller and Lenz [33].

In particular, we can see that the function u = 1−Pt1 solves the Cauchy problem

of the heat equation with zero initial condition:

(1.4.7)







∂

∂t
u(x, t) + ∆u(x, t) = 0,

u(x, 0) = 0.

A direct calculation shows the following:

Lemma 1.4.11. Let u be a bounded solution to the Cauchy problem of the heat

equation with zero initial condition (1.4.7). Then for any α > 0, the function

g =

∫ ∞

0

e−tαudt

satisfies that

(1.4.8) (∆ + α)g = 0.

Remark 1.4.12. Let f ∈ l∞(V ). If the Cauchy problem of the heat equation with

zero initial condition (1.4.7) has a nonzero bounded solution, we can not expect Ptf

to be a unique bounded solution to the Cauchy problem of the heat equation with

initial condition f . There is also bounded solutions to the equation

(∆ + α)g = f
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other than Gαf .

However, if f ∈ l∞(V ) is nonnegative, Ptf and Gαf have the minimal property.

Theorem 1.4.13. Let (V, w, µ) be a weighted graph. Let f ∈ l∞(V ) be nonnegative.

Then Gαf is the smallest nonnegative function such that

(∆ + α)g ≥ f.

Remark 1.4.14. This theorem is taken from [33]. In fact, the f ∈ l∞(V ) condition

can be neglected. For details we refer to [33].

Theorem 1.4.15. Let (V, w, µ) be a weighted graph. Let f ∈ l∞(V ) be nonnegative.

For any T > 0, Ptf is the smallest nonnegative solution to the Cauchy problem of

the heat equation with initial condition f (1.4.6) on V × [0, T ].

Proof. Let u(x, t) be another nonnegative solution. As described before, let fn ∈
Cc(V ) be a sequence of nonnegative functions monotonically increasing to f and

Kn ⊆ V be a sequence of finite sets monotonically increasing to V . Define a double

sequence of functions

gm,n = iKm
PKm

t pKm
fn.

Then for each n, gm,n increasingly converges to Ptfn. And Ptfn increasingly con-

verges to Ptf . The function gm,n satisfies that

∂

∂t
gm,n =

∂

∂t
iKm

PKm

t pKm
fn

= −iKm
LKmPKm

t pKm
fn

= −iKm
pKm

∆iKm
PKm

t pKm
fn

= −iKm
pKm

∆gm,n.

And the initial value of gm,n is

gm,n(x, 0) = iKm
pKm

fn(x).

Consider vm,n = u− gm,n. We see that

pKm

∂

∂t
vm,n + pKm

∆vm,n = −pKm

∂

∂t
gm,n − pKm

∆gm,n

= pKm
iKm

pKm
∆gm,n − pKm

∆gm,n

= 0,
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as pKm
iKm

= Id. Hence
∂

∂t
vm,n +∆vm,n = 0

on Km × [0, T ]. It is clear that vm,n ≥ 0 on Kc
m × [0, T ] and

vm,n(x, 0) = u(x, 0)− gm,n(x, 0) = f(x)− iKm
pKm

fn ≥ 0.

By the parabolic minimum principle Theorem 1.3.2, we have vm,n ≥ 0, that is,

u(x, t) ≥ gm,n(x, t)

on V × [0, T ]. It follows that

u(x, t) ≥ Ptfn(x).

Finally we can conclude that

u(x, t) ≥ Ptf(x)

on V × [0, T ]. �

1.5 The equivalence theorem

After all these preparations, we can obtain the following big list of equivalent con-

ditions for stochastic incompleteness. It is the starting point of our further investi-

gation in this thesis.

Theorem 1.5.1. Let (V, w, µ) be a weighted graph. The following statements are

equivalent:

(1) The weighted graph (V, w, µ) is stochastically incomplete. In other words, there

is some t > 0 and some x ∈ V such that Pt1(x) < 1.

(2) The function
∫∞
0
e−tα(1− Pt1)dt is nonzero for any α > 0.

(2’) The function
∫∞
0
e−tα(1− Pt1)dt is nonzero for some α > 0.

(3) For any α > 0, there is a nonzero, nonnegative bounded function g(x) on V

such that

(∆ + α) g = 0.

(3’) For some α > 0, there is a nonzero, nonnegative bounded function g(x) on V

such that

(∆ + α) g = 0.
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(4) For any α > 0, there is a nonzero, bounded function g(x) on V such that

(∆ + α) g = 0.

(4’) For some α > 0, there is a nonzero, bounded function g(x) on V such that

(∆ + α) g = 0.

(5) For any α > 0, there is a nonzero, nonnegative bounded function g(x) on V

such that

(∆ + α) g ≤ 0.

(5’) For some α > 0, there is a nonzero, nonnegative bounded function g(x) on V

such that

(∆ + α) g ≤ 0.

(6) There exists a nonzero, nonnegative bounded function u(x, t) on V × [0,∞)

such that u solves the Cauchy problem of the heat equation with zero initial

condition (1.4.7).

(6’) There exists a nonzero, bounded function u(x, t) on V × [0,∞) such that u

solves the Cauchy problem of the heat equation with zero initial condition

(1.4.7).

(7) For any T > 0, there exists a nonzero, bounded function u(x, t) on V × [0, T ]

such that u solves the Cauchy problem of the heat equation with zero initial

condition (1.4.7).

(7’) For some T > 0, there exists a nonzero, bounded function u(x, t) on V × [0, T ]

such that u solves the Cauchy problem of the heat equation with zero initial

condition (1.4.7).

Proof. (1) ⇒ (2) : This follows from the fact that Pt1(x) is continuous in t for all

x ∈ V .

(2) ⇒ (2′), (3) ⇒ (3′), (4) ⇒ (4′), (5) ⇒ (5′), (7) ⇒ (7′) : Obvious.

(2) ⇒ (3), (2′) ⇒ (3′) : The 1 − Pt1 is a nonnegative bounded solution to the

Cauchy problem of the heat equation with zero initial condition (1.4.7). So by

Lemma 1.4.11, the function
∫∞
0
e−tα(1 − Pt1)dt is a nonnegative bounded solution

to

(∆ + α) g = 0.

And by assumption, it is nonzero.
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(3) ⇒ (4), (3′) ⇒ (4′), (6) ⇒ (6′), : Obvious.

(4) ⇒ (5), (4′) ⇒ (5′) : Let f be a nonzero bounded function on V and satisfies

(∆ + α) f = 0.

Divide f into positive and negative parts as f = f+ − f−. If f+ = 0, then −f is a

nonzero, nonnegative bounded solution to

(∆ + α) g = 0.

Otherwise, f+ is a nonzero, nonnegative bounded function. For x ∈ V , if f+(x) = 0,

then it is clear that f+(x) − f+(y) ≤ 0 for any y ∈ V . Otherwise f+(x) > 0, then

for all y ∈ V ,

f+(x)− f+(y) = f(x)− f+(y) ≤ f(x)− f(y).

Hence f+ satisfies that for all x ∈ V ,

(∆ + α) f+(x) =
1

µ(x)

∑

y∈V
w(x, y)(f+(x)− f+(y)) + αf+(x) ≤ 0.

(5) ⇒ (2), (5′) ⇒ (2′) : Let g be a nonzero, nonnegative bounded function on V

such that

(∆ + α) g ≤ 0.

Without loss of generality, we can assume that g ≤ 1. Then we have that g′ = 1− g

is nonnegative bounded and satisfies

(∆ + α) g′ ≥ α.

Let f =
∫∞
0
αe−tα(1− Pt1)dt. Then 0 ≤ f ≤ 1 and

f ′ = 1− f =

∫ ∞

0

αe−tαPt1dt = Gα(α1).

By Theorem 1.4.13, we have f ′ ≤ g′ and hence g ≤ f . Since g is nonzero and

nonnegative, f is nonzero.

(4′) ⇒ (7) : Consider the functions u(x, t) = eαtg(x) and v(x, t) = Ptg(x) where

g is as in (4′). Then it is easy to see that they are both bounded solutions to the

Cauchy problem of the heat equation with initial condition g on V × [0, T ] for any

T > 0. On the other hand, for any t > 0,

sup
x∈V

|v(x, t)| ≤ sup
x∈V

|g(x)| < eαt sup
x∈V

|g(x)| = sup
x∈V

|u(x, t)|,
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as g is nonzero and bounded. So the function w(x, t) = u(x, t)− v(x, t) is a nonzero

bounded solution to the Cauchy problem of the heat equation with zero initial

condition on V × [0, T ] for any T > 0.

(7′) ⇒ (1) : Let u(x, t) be a nonzero bounded solution to the Cauchy problem of

the heat equation with zero initial condition on V ×[0, T ]. Without loss of generality,

we can assume that

sup
x∈V,t∈[0,T ]

u(x, t) > 0, sup
x∈V,t∈[0,T ]

|u(x, t)| < 1.

So the function v = 1 − u is a positive solution to the Cauchy problem of the heat

equation with initial condition 1 and

inf
x∈V,t∈[0,T ]

v < 1.

By Theorem 1.4.15, we have

Pt1 ≤ v.

Thus for some (x, t) ∈ V × [0, T ], Pt1(x) < 1.

(1) ⇒ (6) : As we already showed before, 1 − Pt1 is a nonzero, nonnegative

bounded solution to the Cauchy problem of the heat equation with zero initial

condition on V × [0,∞).

(6′) ⇒ (7) : Obvious. �

Remark 1.5.2. This list of equivalent conditions for stochastic incompleteness is

classical in the smooth setting. The proof given here is a combination of those in

[33] and [22].

Remark 1.5.3. Theorem 1.5.1 translates the stochastic incompleteness problem to

the uniqueness problem of certain linear (partial) difference equations. In Chapter

2, we will make use of the equivalent conditions related to the equation

(∆ + α) g = 0,

and the inequality

(∆ + α) g ≤ 0.

In Chapter 4, the conditions related to the Cauchy problem of the heat equation

with zero initial condition will be used extensively.
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1.6 The graph distance and adapted distances

The main technical tool we adopt in the study of the Cauchy problem of the heat

equation with zero initial condition is a priori estimates. More explicitly, we use a

discrete analogue of the classical Caccioppoli type estimate. To briefly explain the

idea, let f be a function in the domain D of the formal Laplacian ∆ on a weighted

graph (V, w, µ). Let η be a finitely supported function on V as a “cut off” function.

Lemma 1.6.1.

−
∑

x∈V
∆f(x) · f(x)η2(x)µ(x) ≤ 1

2

∑

x∈V
f 2(x)

∑

y∈V
w(x, y) (η(x)− η(y))2 .

We omit the proof here as it is essentially contained in the proof of Lemma 3.1.1.

Intuitively, the left hand side of the above inequality corresponds to the “local mass”

∑

x∈V
f 2(x)η2(x)µ(x)

if we assume further (∆ + α)f = 0 for some α > 0, or the rate of change of it if f

also depends on time t and satisfies

(
∂

∂t
+∆)f = 0.

The right hand side will be a multiple of the “local mass” as well if we have

(1.6.9)
1

µ(x)

∑

y∈V
w(x, y) (η(x)− η(y))2 ≤ C

for some C > 0. This leads to a quantitative comparison of the “local mass” of f at

different space(-time) regions. In practice, η is often constructed as a tent function

of the form

η(x) = C(R− d(x, x0))+

with respect to a distance d on V . Our task in this section is to compare the

distances on a weighted graph to determine those that fulfill our need.

For a connected weighted graph, we can introduce a natural graph distance with

respect to its underlying graph structure. Let x and y be two distinct points in V .

We call a sequence of points x0, · · · , xn a chain connecting x and y if x0 = x, xn = y

and xi ∼ xi+1 for all i = 0, 1, ..., n − 1. The number n is called the length of this

chain. A natural graph distance ρ can be defined on X as the minimal length of

chains connecting two distinct points. It is easy to see that the graph distance is
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finer than the discrete metric. However, the graph distance can not distinguish

different weighted graphs with the same underlying graph structure.

We will make use of the graph distance in the study of the physical Laplacian in

Chapter 2. So we introduce some notations for preparation. We fix a point x0 ∈ V

as a reference point of the graph and define

r(x) = ρ(x, x0).

A key feature of the graph distance is that if x ∼ y, then

|r(x)− r(y)| ≤ 1.

We use further the following notations for a locally finite connected weighted graph.

SR = {y ∈ V : r(y) = R},

BR = ∪R
n=0Sn = {y ∈ V : r(y) ≤ R},

m±(x) = #{y : y ∼ x, r(y) = r(x)± 1},

K±(r) = max
x∈Sr

m±(x),

and

k±(r) = min
x∈Sr

m±(x),

that have clear geometric meanings.

Tent functions constructed from the graph distance generally do not satisfy

(1.6.9) as it does not see the quantitative information of weights. So in order to

use Caccioppoli type estimates, it is necessary to introduce a new family of dis-

tances that are sensitive to weights.

Definition 1.6.2. We call a distance d on a connected weighted graph (V, w, µ)

adapted if

(1)

(1.6.10)
1

µ(x)

∑

y∈V
w(x, y)d2(x, y) ≤ 1

for every x ∈ V ,

(2) d(x, y) ≤ 1 whenever w(x, y) > 0.



32 Chapter 1. Foundations

Remark 1.6.3. Note that the quantity

1

µ(x)

∑

y∈V
w(x, y) (η(x)− η(y))2

can be viewed as a discrete analogue of |∇η|2(x). So (1.6.10) is an analogue of the

fact that

|∇d|2 ≤ 1

where d is the geodesic distance on a Riemannian manifold. Tent functions with

respect to an adapted distance automatically satisfy (1.6.9) by the triangulated

inequality.

In the physical Laplacian case, the graph distance ρ on a locally finite and

connected graph is generally not an adapted distance as

1

µ(x)

∑

y∈V
w(x, y)(r(x)− r(y))2 = m+(x) +m−(x),

1

µ(x)

∑

y∈V
w(x, y)ρ2(x, y) = deg(x).

However the following construction shows that such a distance always exists on a

connected weighted graph.

Definition 1.6.4. Define a function σ (x, y) for all for all pairs of neighbors x ∼ y

by

(1.6.11) σ(x, y) = min

{

1
√

Deg(x)
,

1
√

Deg(y)
, 1

}

.

It naturally induces a distance d on X as follows: for all pairs of distinct points x, y,

(1.6.12)

d(x, y) := inf{
n−1
∑

i=0

σ(xi, xi+1) : x0, x1, · · · , xn is a chain connecting x and y}.

Remark 1.6.5. It is easy to see by definition that

d(x, y) ≤ σ(x, y) ≤ 1

if x ∼ y. A direct consequence is that for any x, y ∈ V ,

d(x, y) ≤ ρ(x, y).
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So the volume growth with respect to an adapted distance is generally larger than

that with respect to the graph distance. When the weighted degree function Deg(x)

is bounded from above by some constant C > 1, we have that

1√
C
ρ(x, y) ≤ d(x, y) ≤ ρ(x, y).

In this case, the adapted distance and the graph distance have similar properties.

For a locally finite and connected weighted graph (V, w, µ), the closed balls in the

graph distance are compact (finite). This is a nice topological property and the tent

functions are finitely supported. However, it is not necessarily true for an adapted

distance on (V, w, µ). So we propose the following assumption that is frequently

adopted in the Chapters 3, 4 and 5.

Assumption 1.6.6. There exists an adapted distance d on (V, w, µ) such that the

d-balls Bd(x, r) are finite sets for any x ∈ V, r > 0.

Remark 1.6.7. Suppose we are looking for a sufficient condition in terms of volume

growth with respect to an adapted distance d. Then necessarily the balls in d have

finite measure. Suppose that the weighted graphs are not too far from the physical

Laplacian case in the sense that they satisfy Assumption 1.1.6. That is, the weights

µ(x) on vertices have a positive lower bound. It follows that Assumption 1.6.6 is

automatically fulfilled. So Assumption 1.6.6 is not so restricted as it looks at first.

Remark 1.6.8. Note that since we always assume that weighted graphs are infinite,

a weighted graph that satisfies Assumption 1.6.6 is necessarily of infinite radius in

the adapted distance there.

To provide some intuition for the adapted distances, we introduce the special

families of weakly symmetric graphs that allow explicit calculations in many cases.

They are also important in the later chapters. The stochastic completeness problem

of them was first systematically studied by Wojciechowski [56].

Definition 1.6.9. Let (V,E) be a locally finite and connected graph. Fix a point

x0 ∈ V as a reference point. The graph V is called weakly symmetric (with respect

to x0) if it satisfies

m+(x) = g+(ρ(x, x0)), m−(x) = g−(ρ(x, x0))

with functions g+(r), g−(r) : N → N.

Example 1.6.10 (Model Trees). Let (V,E) be an infinite, locally finite tree, that

is, an infinite undirected, connected graph such that any two vertices are connected
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by exactly one simple chain (a chain with no duplicate vertices). Assume further

that (V,E) is symmetric with respect to a reference point x0. In other words,

m−(x0) = 0, m−(x) = 1 for x 6= x0 and m+(x) = f(ρ(x, x0)) where f : N → N+ is a

integer valued function.

We consider the physical Laplacian on (V,E) and the adapted distance d con-

structed in Definition 1.6.4. Recall the notation r(x) = ρ(x, x0). The we have

Deg(x0) = f(0) and Deg(x) = 1 + f(r(x)) for x 6= x0. Let f(n) = [(n + 1)s] where

s > 0 and [c] is the integer part of c . Then for x ∈ Sn and y ∈ Sn+1 such that

x ∼ y, we have

σ(x, y) ≍ 1

(n+ 1)s/2
,

where “ ≍ ” means that the two sides are bounded by each other up to positive

constants. So for x ∈ V such that r(x) = n > 1, we have

d(x, x0) ≍
{

(n + 1)1−s/2, , if 0 < s < 2,(1.6.13)

ln(n+ 2), if s = 2.(1.6.13′)

If s > 2, we see that (V,E) is bounded in d. Assumption 1.6.6 is fulfilled only when

0 < s ≤ 2. So the relation between adapted distances and the graph distance can be

subtle. Unboundedness and locally finiteness may fail in adapted distances. Similar

calculations can also be done for the following example constructed by Wojciechows-

ki [56].

Figure 1: Anti-tree of Wojciechowski

Example 1.6.11 (Anti-trees). Let {Sn}n∈N be a sequence of disjoint, finite, nonemp-

ty sets with S0 = {x0}. Denote #Sn by S(n). Let

V =
⋃

n∈N
Sn
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and

E = {(x, y) ∈ V × V |∃n ∈ N, x ∈ Sn, y ∈ Sn±1}.

In other words, we connect every vertex in Sr to every vertex in Sr+1 to get a graph

(V,E) that is symmetric with respect to x0. The resulting graph (V,E) is infinite,

locally finite, connected and simple.

1.7 Continuous time Markov chains

The materials in this section are standard and we include them just for the sake

of completeness. We mainly follow the notations and constructions in [39]. In

particular, we only consider the minimal right-continuous Markov chains which is

closely related to the semigroup Pt we constructed in Section 1.2. For the much

more subtle non-minimal chains, see [3] and [16]. To the author’s knowledge, most

of the results are due to Feller [11, 12], Doob [10], Chung [3] etc.

Let (V, w, µ) be a weighted graph. Define

qxy =
w(x, y)

µ(x)

for x 6= y and

qxx = −Deg(x).

The matrix Q = (qxy)V×V satisfies that

(1) 0 ≤ −qxx <∞ for all x;

(2) qxy ≥ 0 for all x 6= y;

(3)
∑

y∈V qxy = 0 for all x.

This kind of matrices are called Q-matrices in [39]. There is a natural jump matrix

Π = (πxy)V×V associated with Q as:

πx,y =







qxy
|qxx|

, if x 6= y, and qxx 6= 0,

0, if x 6= y, and |qxx| = 0;

πx,x =

{

0, if qxx 6= 0,

1, if qxx = 0.

Following [39], we can construct a minimal right-continuous Markov chain {Xt}t≥0

corresponding to the Q-matrix. First we adjoin a cemetery point ∂ to V and de-

note the set V ∪ ∂ by V∂. From the jump matrix Π we can construct a discrete
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time Markov chain {Yn}n∈N on V . Let T1, T2, · · · be a sequence of independent ex-

ponential random variables of parameter 1 that are independent of {Yn}n∈N. Set

Sn = Tn/q(Yn−1) and Jn = S1 + · · · + Sn with the convention J0 = 0. Define the

(first) explosion time ζ by

ζ = sup
n
Jn,

which is the first time that Xt jumps out of V . Then the continuous time Markov

chain {Xt}t≥0 on V∂ is defined as

Xt =

{

Yn, if Jn ≤ t < Jn+1 for some n ∈ N,

∂, if t ≥ ζ.

For all n ∈ N+ , conditioning on Y0 = x0, · · · , Yn−1 = xn−1, S1, · · · , Sn are indepen-

dent exponential random variables with parameters q(x0), · · · , q(xn−1) respectively.

The process {Xt}t≥0 has the (time homogenous) Markov property in the sense that

for all n ∈ N, all sequences of time 0 ≤ t0 ≤ · · · ≤ tn+1, and all sequences of points

x0, · · · , xn+1 in V∂,

P(Xtn+1
= xn+1|Xt0 = x0, · · · , Xtn = xn) = P(Xtn+1−tn = xn+1|X0 = xn).

Remark 1.7.1. (a) In [39], it is shown that the Markov chain {Xt}t≥0 has the strong

Markov property.

(b) From the above construction, we see that 1
Deg(x)

gives the expected holding time

of the process at x ∈ V . This is a probabilistic interpretation of the weighted

degree function.

(c) It is also direct to see that at the time when the process {Xt}t≥0 leaves a point

x ∈ V , it can only jump to the neighbors of x.

The following definition of explosion of a Markov chain is taken from [39].

Definition 1.7.2. The Markov chain {Xt}t≥0 is called explosive if for some x ∈ V ,

Px(ζ <∞) > 0.

Otherwise {Xt}t≥0 is called nonexplosive.

The quantity

p̃(t, x, y) = Px(Xt = y) = P(Xt = y|X0 = x)

is called the transition probability of {Xt}t≥0. For any t ≥ 0, define the matrix Pt
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by Pt = (p̃(t, x, y))V×V . The family {Pt}t≥0 is in fact a matrix semigroup as

Pt+s = PtPs,P0 = Id,

for all s ≥ 0, t ≥ 0. From the construction of {Xt}t≥0, we see that {Xt}t≥0 is explosive

if and only if for some x ∈ V and some t > 0,

(Pt1)(x) =
∑

y∈V
p̃(t, x, y) = Px(Xt ∈ V ) < 1.

The matrix semigroup Pt can be also viewed as an operator semigroup as

Ptf(x) =
∑

y∈V
p̃(t, x, y)f(y) =

∑

y∈V
f(y)Px(Xt = y) = Ex (f(Xt))

for f ∈ l2(V, µ).

The following properties of {Xt}t≥0 and Pt are showed in Theorem 2.8.3 and

Theorem 2.8.4 of [39].

Proposition 1.7.3. Let (V, w, µ) be a weighted graph and {Xt}t≥0 be the corre-

sponding minimal right-continuous Markov chain constructed as before. Then the

semigroup Pt = (p̃(t, x, y))V×V is the minimal nonnegative solution to the backward

equation
∂

∂t
Pt = QPt,P0 = Id.

In other words, for all x, y ∈ V, t ≥ 0,

∂

∂t
p̃(t, x, y) =

∑

z∈V
qxzp̃(t, z, y) =

1

µ(x)

∑

z∈V
w(x, z)(p̃(t, z, y)− p̃(t, x, y)),

and

p̃(0, x, y) = χx(y).

Proposition 1.7.3 allows us to relate Pt to the semigroup Pt we constructed before.

Recall Theorem 1.4.15, for each y ∈ V , the function

p(t, x, y)µ(y) = p(t, y, x)µ(y) = (Ptδy)(x)µ(y)

is the minimal nonnegative solution to











∂

∂t
p(t, x, y)µ(y) =

1

µ(x)

∑

z∈V
w(x, z)(p(t, z, y)µ(y)− p(t, x, y)µ(y)),

p(0, x, y)µ(y) = µ(y)δx(y) = χx(y).
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From the minimality of both p̃(t, x, y) and p(t, x, y), we have the relation

p̃(t, x, y) = p(t, x, y)µ(y).

Thus

Ptf(x) =
∑

y∈V
p̃(t, x, y)f(y) =

∑

y∈V
p(t, x, y)f(y)µ(y) = Ptf(x).

The semigroup Pt coincides with Pt that we constructed using Dirichlet form theory

and thus the notions of explosion and stochastic incompleteness just coincide.

Proposition 1.7.4. A weighted graph (V, w, µ) is stochastically incomplete if and

only if the corresponding minimal right continuous Markov chain {Xt}t≥0 is explo-

sive.

Now we consider the restriction of the process {Xt}t≥0 to a finite set U of V .

Let τU be the first exit time of U , that is

τU = inf{t ≥ 0 : Xt ∈ U c}.

We can define a semigroup PU
t on l2(U, µU) as (see (4.1.2) in [17] for example)

PU
t f(x) = Ex

(

f(Xt)1{t<τU}
)

.

Since U is finite, {PU
t }t≥0 is a semigroup of finite matrices. The corresponding

Markov chain {XU
t }t≥0 can be viewed as constructed from {Xt}t≥0 in the way that

at the first time when Xt runs out of U , we send it to the cemetery point ∂ and it

never gets back. It is a standard calculation from the construction of {Xt}t≥0 and

the definition of τU to obtain that PU
t satisfies

∂

∂t
PU

t = QUPU
t ,PU

0 = IdU ,

where the matrix QU = (qUxy)U×U is

qUxy =



















w(x, y)

µ(x)
, x 6= y, x ∈ U, y ∈ U

− 1

µ(x)

∑

z∈V
w(x, z), x = y ∈ U .

Remark 1.7.5. Note that as U is finite, PU
t is simply exp

(

tQU
)

.

The following proposition will be used in Chapter 5.
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Proposition 1.7.6. Let (V, w, µ) be a locally finite weighted graph with the formal

Laplacian ∆. Let W and U be two finite subsets of V such that Ū ⊆ W . Define a

function u on W × [0,∞)to be

u(x, t) = Px(τU ≤ t).

Then u(x, 0) ≡ 0 and u(x, t) satisfies

∂

∂t
u(x, t) + ∆u(x, t) = 0,

for all x ∈ U and t ≥ 0.

Proof. By the definition of PW
t , we have that

u(x, t) = Px(τW ≤ t) = 1− Ex

(

1{τW>t}
)

= 1− PW
t 1W (x).

It is clear that u(x, 0) ≡ 0 on W . Moreover, viewing 1W as a column vector, for all

x ∈ W ,
∂

∂t
u(x, t) = − ∂

∂t
PW

t 1W (x) = −QWPW
t 1W (x).

Since Ū ⊆W , for all x ∈ U , we have that y ∈ W if w(x, y) > 0. Hence for all x ∈ U ,

QWPW
t 1W (x) =

∑

y∈W

w(x, y)

µ(x)
PW

t 1W (y)−
∑

y∈V

w(x, y)

µ(x)
PW

t 1W (x)

=
1

µ(x)

∑

y∈V
w(x, y)(PW

t 1W (y)− PW
t 1W (x))

= ∆u(x, t).

The equation
∂

∂t
u(x, t) + ∆u(x, t) = 0

then holds for all x ∈ U and t ≥ 0. �





Chapter 2

The weak Omori-Yau maximum

principle

In this chapter we first prove that the stochastic completeness of a weighted graph

is equivalent to a discrete analogue of the weak Omori-Yau maximum principle.

The latter notion was introduced by Pigola, Rigoli, and Setti [42], [43], where they

proved the aforementioned equivalence in the setting of manifolds and gave many

applications. For the original form of Omori-Yau maximum principle, see [41], [57].

Then we apply the weak Omori-Yau maximum principle to obtain an analogue

of the Khas’minskii criterion [36] for weighted graphs. The proof here is inspired

by the one in [43]. Together with the weak Omori-Yau maximum principle, the

Khas’minskii criterion gives most known criteria for stochastic completeness or s-

tochastic incompleteness as well as new criteria. Stability of stochastic incomplete-

ness is also investigated through the weak Omori-Yau maximum principle. Most

of the contents of this chapter are taken from the author’s paper [29] with possible

modifications.

Recently, Keller, Lenz and Wojciechowski [35] obtained another proof of the

Khas’minskii criterion for weighted graphs in a slightly different form.

2.1 Equivalence to stochastic completeness

From now on, we will denote the supremum of a function f on V by f ∗.

Definition 2.1.1. A weighted graph (V, w, µ) is said to satisfy the weak Omori-Yau

maximum principle if for every nonnegative function f on V with f ∗ = supV f < +∞
and for every α > 0,

sup
Ωα

∆f ≥ 0,
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where

Ωα = {x ∈ V : f(x) > f ∗ − α}.

Theorem 2.1.2. For any weighted graph (V, w, µ), the weak Omori-Yau maximum

principle is equivalent to stochastic completeness.

Proof. Assume that the weak Omori-Yau maximum principle holds but the graph is

stochastically incomplete. By Theorem 1.5.1, there exists a bounded, non-negative,

nonconstant solution f of the equation ∆f + λf = 0 for some λ > 0. Choosing

α = f∗

2
> 0, we have

sup
Ωα

∆f = sup
Ωα

(−λf) ≤ −λf
∗

2
< 0

which is a contradiction.

Conversely, if (V, w, µ) is stochastically complete but the weak Omori-Yau max-

imum principle does not hold, there exists a nonnegative function f on V with

f ∗ < +∞ and some α > 0 and c > 0 such that

sup
Ωα

∆f < −2c.

Define

fα = (f + α− f ∗)+,

which is obviously nonconstant, nonnegative and bounded. Setting λ = c
α
, we claim

that

∆fα + λfα ≤ 0,

which implies stochastic incompleteness by Theorem 1.5.1 and leads to a contradic-

tion.

For x ∈ Ωc
α, fα(x) = 0, so the claim is trivially true.

For x ∈ Ωα, we have

λfα(x) ≤ λα = c,

and

fα(x)− fα(y) = f(x)− f ∗ + α− fα(y) ≤ f(x)− f(y).
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Hence

∆fα(x) + λfα(x) =
1

µ(x)

∑

y

w(x, y)(fα(x)− fα(y)) + λfα(x)

≤ 1

µ(x)

∑

y

w(x, y)(f(x)− f(y)) + c

= ∆f(x) + c ≤ −c.

�

2.2 A key lemma

The following lemma describes some elementary properties of a function f that

violates the weak Omori-Yau maximum principle.

Lemma 2.2.1. Suppose that a weighted graph (V, w, µ) is stochastically incomplete.

Let f be a nonnegative function on V such that f ∗ < +∞ and for some α > 0 and

c > 0,

sup
Ωα

∆f ≤ −c.

Let α′ = min{α, c}. Then the following is true.

(1) f cannot attain its supremum f ∗ on V , and in particular, is nonconstant;

(2) supΩα′
∆f ≤ −α′;

(3) for every n ≥ 1, and every x ∈ Ωα′

n

,

Deg(x) =
1

µ(x)

∑

y

w(x, y) ≥ n.

In other words,

Ωα′

n

⊆ {x ∈ V : Deg(x) ≥ n}.

Proof. (1) Suppose that there exists x0 ∈ V such that f(x0) = f ∗. In particular,

x0 ∈ Ωα. We have that

1

µ(x0)

∑

y∈V
w(x0, y)(f(y)− f(x0)) = −∆f(x0) ≥ c > 0.

Thus there exists y ∈ V such that f(y) > f(x0), a contradiction.
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(2) Since α′ ≤ α, we have Ωα′ ⊆ Ωα. So

sup
Ωα′

∆f ≤ sup
Ωα

∆f < −c ≤ −α′.

(3) For x ∈ Ωα′

n

, set

l =
1

µ(x)

∑

y:f(y)>f(x)

w(x, y),

we have

α′ ≤ −∆f(x) ≤ 1

µ(x)

∑

y:f(y)>f(x)

w(x, y)(f(y)− f(x)) ≤ lα′

n
.

Therefore l ≥ n and, in particular, Deg(x) ≥ n for all x ∈ Ωα′

n

. �

Note that stochastic incompleteness is a global property while the weighted de-

gree function is a local quantity. We can define a “global weighted degree function”

in an iterative way.

Lemma 2.2.2. Fix a non-decreasing sequence Θ = {ak}k≥0 of nonnegative real

numbers. We use the convention that

∑

y,y∈∅
w(x, y) = 0.

For x ∈ V and k ∈ N, define

DegΘ,0(x) = Deg(x),

and

DegΘ,k+1(x) =
1

µ(x)

∑

y,DegΘ,k(y)≥ak

w(x, y).

Then for any x ∈ V , {DegΘ,k(x)}k≥0 forms a non-increasing, nonnegative sequence.

In particular,

DegΘ,∞(x) = lim
k→∞

DegΘ,k(x)

exists for all x ∈ V .

Proof. The sequence {DegΘ,k(x)}k≥0 obviously has nonnegative entries. We only

need to prove that for any k ≥ 0,

DegΘ,k+1(x) ≤ DegΘ,k(x).
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For k = 0, we have

DegΘ,1(x) =
1

µ(x)

∑

y,Deg(y)≥a0

w(x, y) ≤ 1

µ(x)

∑

y

w(x, y) = DegΘ,0(x).

Assume that the assertion holds for k = n− 1 ≥ 0, that is

DegΘ,n(x) ≤ DegΘ,n−1(x).

Since an ≥ an−1, we see that for k = n,

DegΘ,n(x) =
1

µ(x)

∑

y,DegΘ,n−1(y)≥an−1

w(x, y)

≥ 1

µ(x)

∑

y,DegΘ,n−1(y)≥an

w(x, y)

≥ 1

µ(x)

∑

y,DegΘ,n(y)≥an

w(x, y)

= DegΘ,n+1(x).

The assertion follows by induction. �

Definition 2.2.3. We call DegΘ,∞(x) the global weighted degree of x with respect

to the sequence Θ. For the special case when ak ≡ n ≥ 0, we denote DegΘ,∞(x) by

Degn,∞(x) and call it the global weighted degree of x with parameter n.

Remark 2.2.4. Note that unlike the weighted degree Deg(x), the global weighted

degree of x contains information of points that may not be neighbors of x.

The definition of global weighted degree is a good one in the sense that it is

“stable” and there is no need to define something like Degn,∞+1(x).

Lemma 2.2.5. Let Degn,∞(x) be the global weighted degree function of some weight-

ed graph (V, w, µ) for some n ≥ 0. Then the following holds for all x ∈ V :

1

µ(x)

∑

y,Degn,∞(x)≥n

w(x, y) = Degn,∞(x).

Proof. Fix some x ∈ V . We abuse the notation and view w(x, ·) as a finite measure

on V as
1

µ(x)

∑

y

w(x, y) <∞.
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Note that {Degn,k(x)}∞k=1 decreases to Degn,∞(x). We have that

Degn,∞(x) ≥ n⇔ ∀k ∈ N,Degn,k(x) ≥ n.

Denote by Ak the set

{y ∈ V : Degn,k(x) ≥ n}.

Then as a non-increasing sequence of sets

lim
k→∞

Ak = {y ∈ V : Degn,∞(x) ≥ n}.

We obtain by the finiteness of w(x, ·),

1

µ(x)

∑

y,Degn,∞(x)≥n

w(x, y)

=
1

µ(x)
w(x, lim

k→∞
Ak)

=
1

µ(x)
lim
k→∞

w(x,Ak)

= lim
k→∞

Degn,k(x)

=Degn,∞(x).

�

Now we state the monotonicity of Degn,∞(x) in n.

Lemma 2.2.6. For m > n ≥ 0, k ∈ N, the following holds for any x ∈ V ,

Degn,k(x) ≥ Degm,k(x).

In particular, for any x ∈ V ,

Degn,∞(x) ≥ Degm,∞(x).

Proof. The first assertion can be proven by an induction procedure similar to the

proof of Lemma 2.2.2. The k = 0 case is obvious as

Degn,0(x) = Deg(x) = Degm,0(x).

Assume that for all x ∈ V ,

Degn,k(x) ≥ Degm,k(x).
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Then we have

Degn,k+1(x) =
1

µ(x)

∑

y,Degn,k(y)≥n

w(x, y)

≥ 1

µ(x)

∑

y,Degm,k(y)≥n

w(x, y)

≥ 1

µ(x)

∑

y,Degm,k(y)≥m

w(x, y)

= Degm,k+1(x).

This completes the induction. The last assertion follows by taking the limit k → ∞
in

Degn,k(x) ≥ Degm,k(x).

�

The notion of the global weighted degree function allows us to improve Lemma

2.2.1 as follows.

Theorem 2.2.7. Suppose that a weighted graph (V, w, µ) is stochastically incom-

plete. Let f be a nonnegative function on V such that f ∗ < +∞ and for some

α > 0,

sup
Ωα

∆f ≤ −α.

Then for any n ≥ 1,

Ωα
n
⊆ {x ∈ V : Degn,∞(x) ≥ n}.

And for any m > n ≥ 1,

Ω α
m
⊆ {x ∈ V : Degn,∞(x) ≥ m}.

As a consequence, (V, w, µ) has unbounded global weighted degree for any parameter

n ≥ 1.

Proof. In the proof of part (3) of Lemma 2.2.1, we already showed that for x ∈ Ωα
n
,

l =
1

µ(x)

∑

y:f(y)>f(x)

w(x, y) ≥ n.

We claim that for all x ∈ Ωα
n
, k ∈ N,

n ≤ l ≤ Degn,k(x).



48 Chapter 2. the weak Omori-Yau maximum principle

Assuming the claim, we see that for any x ∈ Ωα
n
,

n ≤ l ≤ Degn,∞(x).

Hence

Ωα
n
⊆ {x ∈ V : Degn,∞(x) ≥ n}.

Now we complete the proof of the claim. For all x ∈ Ωα
n
,

Degn,0(x) =
1

µ(x)

∑

y

w(x, y) ≥ 1

µ(x)

∑

y:f(y)>f(x)

w(x, y) = l.

Assume that the claim is true for k. In other words, for all x ∈ Ωα
n
,

Degn,k(x) ≥ l ≥ n.

Note that if f(y) > f(x) for x ∈ Ωα
n
, y is necessarily in Ωα

n
and consequently,

Degn,k(y) ≥ l ≥ n.

Thus we have

Degn,k+1(x) =
1

µ(x)

∑

y,Degn,k(y)≥n

w(x, y) ≥ 1

µ(x)

∑

y:f(y)>f(x)

w(x, y) = l

for any x ∈ Ωα
n
. The claim follows by induction.

By Lemma 2.2.6, we see that for m > n ≥ 1,

Ω α
m
⊆ {x ∈ V : Degm,∞(x) ≥ m} ⊆ {x ∈ V : Degn,∞(x) ≥ m}.

The set Ω α
m
is nonempty for anym > n, so that the function Degn,∞(x) is necessarily

unbounded for any n ≥ 1. �

An immediate consequence of the properties of the global weighted degree func-

tion is the following result.

Proposition 2.2.8. Let (V, w, µ) be a weighted graph. For some n ≥ 1, let Degn,∞
be the global weighted degree function as before. Suppose that for any sequence of

points {xk}∞k=1 with xk ∼ xk+1 for any k ∈ N,

∞
∑

k=1

1

Degn,∞(xk)
= ∞.
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Then (V, w, µ) is stochastically complete.

Proof. Assume the contrary is true. Then there exists a nonnegative function f on

V with f ∗ < +∞ and some α > 0 such that

sup
Ωα

∆f ≤ −α.

It follows as in the proof of part (1) of Lemma 2.2.1 that for any point x ∈ Ωα, there

is some y with y ∼ x such that f(y) > f(x). Take some x1 ∈ Ωα
n
. Suppose that xk

has been chosen. Choose some xk+1 ∼ xk such that

f(xk+1) ≥ sup
y,y∼xk

f(y)− 1

2k
,

and

f(xk+1) > f(xk).

So xk ∈ Ωα
n
for any k ∈ N.

Similar to the proofs of part (3) of Lemma 2.2.1 and of Theorem 2.2.7, we have

α ≤ −∆f(xk)

≤ 1

µ(xk)

∑

y:f(y)>f(xk)

w(xk, y)(f(y)− f(xk))

≤ (f(xk+1) +
1

2k
− f(xk))

1

µ(xk)

∑

y:f(y)>f(xk)

w(xk, y)

≤ (f(xk+1) +
1

2k
− f(xk))Degn,∞(xk).

Note that

f(x1) +

∞
∑

k=1

(f(xk+1)− f(xk)) ≤ f ∗ <∞.

Hence ∞
∑

k=1

1

Degn,∞(xk)
≤

∞
∑

k=1

1

α
(f(xk+1) +

1

2k
− f(xk)) <∞.

A contradiction. �

Remark 2.2.9. With the global weighted degree function replaced with the weighted

degree function, this result is already known to Wojciechowski, Keller and Lenz

through analytical methods. From the probabilistic point of view, this is an easy

standard result, see [39] for example.
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2.3 Khas’minskii criterion

Now we are ready to prove the following analogue of Khas’minskii criterion for

stochastic completeness.

Theorem 2.3.1. Assume that for some n0 ≥ 1, the global weighted degree function

Degn0,∞(x) is unbounded for the weighted graph (V, w, µ). If there exists a nonneg-

ative function γ ∈ D on V such that

(2.3.1) γ(x) → +∞ as Degn0,∞(x) → +∞

and

(2.3.2) ∆γ(x) + λγ(x) ≥ 0

outside a set A of bounded global weighted degree Degn0,∞ for some λ > 0, then

(V, w, µ) is stochastically complete.

Proof. We only need to prove that (V, w, µ) satisfies the weak Omori-Yau maximum

principle. If not, there exists a nonnegative function f on V with f ∗ < +∞ and

some α > 0 such that

sup
Ωα

∆f ≤ −α.

Let

sup{Degn0,∞(x) : x ∈ A} =M < +∞.

By Theorem 2.2.7, changing α if necessary, we can assume that Degn0,∞ ≥ M + n0

for all x ∈ Ωα. It is clear that Ωα ∩A = ∅.
Let

u = f − cγ,

where the parameter c > 0 will be chosen later.

Since f ∗ < +∞ and

γ(x) → +∞ as Degn0,∞(x) → +∞,

there exists N(c) > M + n0 such that

sup
{x∈V :Degn0,∞

(x)<N(c)}
u(x) = u∗ := sup

V
u(x) < +∞.
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Let 0 < η < min(α
2
, α
2λ
). We can choose x̄ such that

f(x̄) > f ∗ − η

2
.

Choose c = c(η, x̄) > 0 small enough to ensure that cγ(x̄) < η
2
.

For n ∈ N+, we can choose xn with Degn0,∞(xn) < N(c) such that

u(xn) +
1

n
> u∗ ≥ u(x̄) = f(x̄)− cγ(x̄) > f ∗ − η

2
− η

2
.

We have

f(xn) +
1

n
≥ f(xn)− cγ(xn) +

1

n
> f(x̄)− cγ(x̄) > f ∗ − η,

and

cγ(xn) < f(xn)− f ∗ + η +
1

n
< η +

1

n
.

So for every index n > 2
η
, note that by definition η < α

2
and η < α

2λ
,

f(xn) ≥ u(xn) > f ∗ − η − 1

n
> f ∗ − 3

2
η > f ∗ − α,

cλγ(xn) <
3

2
λη <

3

4
α.

In particular, for every index n > 2
η
, xn ∈ Ωα and x 6∈ A. It follows that for all

n > 2
η
,

∆γ(xn) + λγ(xn) ≥ 0,

and

∆f(xn) ≤ −α.

Then

∆(f − cγ)(xn) = ∆f(xn)− c∆γ(xn)

≤ −α + cλγ(xn) < −α/4.
(2.3.3)

On the other hand, if u(y) > u(xn) where n >
2
η
, we have

f(y) ≥ u(y) > u(xn) > f ∗ − α.

So the following inclusions of sets hold for all n > 2
η
,

{y ∈ V : u(y) > u(xn)}
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⊆{y ∈ V : f(y) > f ∗ − α}
⊆{y ∈ V : Degn0,∞(y) ≥M + n0}
⊆{y ∈ V : Degn0,∞(y) ≥ n0}.

Hence

∆(f − cγ)(xn) = ∆u(xn)

=
1

µ(xn)

∑

y

w(xn, y)(u(xn)− u(y))

≥ 1

µ(xn)

∑

y,u(y)>u(xn)

w(xn, y)(u(xn)− u∗)

≥ 1

µ(xn)

∑

y,f(y)>f∗−α

w(xn, y)(−
1

n
)

≥ 1

µ(xn)

∑

y,Degn0,∞
(y)≥n0

w(xn, y)(−
1

n
)

= −Degn0,∞(xn)

n
> −N(c)

n
.

Choosing sufficiently large n, we obtain a contradiction to (2.3.3). �

Remark 2.3.2. Note that unlike in the case of manifolds we do not require that the

exceptional set A is compact.

Remark 2.3.3. We conjecture that the converse to Theorem 2.3.1 is true. Namely,

if a weighted graph (V, w, µ) is stochastically complete, then there should exist a

function γ(x) ∈ D on V satisfying the conditions (2.3.1), (2.3.2). This is motivated

by Nakai’s result [38] that the converse to Khas’minskii criterion [36] for parabolic

Riemannian manifolds is true.

A convenient version of Khas’minskii criterion on manifolds is given in [43] . We

give the discrete analogue here.

Theorem 2.3.4. Let (V, w, µ) be a weighted graph. If there exists a nonnegative

function σ ∈ D on V with

σ(x) → +∞ as Degn,∞(x) → +∞

satisfying:

∆σ(x) + f(σ(x)) ≥ 0

outside a set A of bounded global weighted degree Degn,∞ for some positive, increasing
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function f ∈ C1([0,+∞)) with

∫ +∞

0

dr

f(r)
= +∞,

then (V, w, µ) is stochastically complete.

Proof. Let

φ(r) = exp(

∫ r

0

ds

f(s) + s
),

we have φ(r) → +∞ as r → +∞ (cf. Lemma 2.3.5 below).

The function φ(r) is increasing and concave since:

(1) φ′(r) = φ(r)
f(r)+r

> 0;

(2) φ′′(r) = − φ(r)f ′(r)
(f(r)+r)2

≤ 0.

Therefore for r, s ≥ 0 we have

φ(r)− φ(s) ≥ φ′(r)(r − s).

Thus

∆φ(σ(x)) =
1

µ(x)

∑

y∈V
w(x, y)(φ(σ(x))− φ(σ(y)))

≥ φ′(σ(x))
1

µ(x)

∑

y∈V
w(x, y)(σ(x)− σ(y))

= φ′(σ(x))∆σ(x),

(2.3.4)

which also shows that φ(σ(x)) ∈ D. Now, consider γ(x) = φ(σ(x)), then

γ(x) → +∞ as Degn,∞(x) → +∞.

On the complement of A we have

∆γ(x) + γ(x) = ∆φ(σ(x)) + φ(σ(x))

≥ φ′(σ(x))∆σ(x) + φ(σ(x))

= φ′(σ(x))(∆σ(x) +
φ(σ(x))

φ′(σ(x))
)

= φ′(σ(x))(∆σ(x) + f(σ(x)) + σ(x))

≥ φ′(σ(x))(∆σ(x) + f(σ(x)) ≥ 0

(2.3.5)
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Theorem 2.3.1 applied to γ(x) with λ = 1 implies stochastic completeness. �

In the previous proof, we have made use of the following elementary fact.

Lemma 2.3.5. Let f ∈ C1([0,+∞)) be a positive, increasing function. Assume

further that
∫ +∞

0

dr

f(r)
= +∞.

Then
∫ +∞

0

dr

f(r) + r
= +∞.

For the sake of completeness, we give a proof here.

Proof. Note that the integral is only improper at +∞ since f is positive and in-

creasing on [0,+∞). Assume that

∫ +∞

0

dr

f(r) + r
< +∞.

For all x > 0, we have

0 <
x

2
· 1

f(x) + x
≤
∫ x

x
2

dr

f(r) + r
≤
∫ +∞

x
2

dr

f(r) + r
.

The third integral necessarily goes to 0 as x approaches +∞. Thus there exists

r0 > 0 such that for any r > r0,

r

f(r) + r
≤ 1

2
.

It follows that f(r) ≥ r for all r > r0. But then

∫ +∞

r0

dr

f(r) + r
≥
∫ +∞

r0

dr

2f(r)
= +∞.

A contradiction. �

2.4 Stability of stochastic incompleteness

In this section we show that after certain surgeries, a stochastically incomplete

graph will remain stochastically incomplete. The weak Omori-Yau maximum prin-

ciple allows us to pass from the stability of existence of certain functions to the

stability of stochastic incompleteness. Roughly speaking, Theorem 2.2.7 implies
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that a perturbation of bounded global weighted degree does not affect the stochas-

tic incompleteness. This intuition is made explicit by the following theorems.

Theorem 2.4.1. Let (V, w, µ) be a weighted graph and W ⊆ V . Let the subgraph

(W,w|W×W , µ|W ) be stochastically incomplete. If one of the following two conditions

holds, (V, w, µ) is also stochastically incomplete.

(1) For some m > n ≥ 1, sup{DegWn,∞(x) : x ∈ W, ∃y ∈ V \W,w(x, y) > 0} < m;

(2) There exists n ≥ 1, such that ∀x ∈ W,

1

µ(x)

∑

y∈V \W
w(x, y) < n.

Proof. (1) Since W is stochastically incomplete there exists a nonnegative function

f on W and α > 0 such that

sup
ΩW

α

∆W f ≤ −α.

Here

ΩW
α = {x ∈ W : f(x) > f ∗ − α},

and

∆W f(x) =
1

µ(x)

∑

y∈W
w(x, y)(f(x)− f(y))

for x ∈ W .

Define a function u on V by

u(x) =

{

(f(x) +
α

m
− f ∗)+, x ∈ W ,(2.4.6)

0, x ∈ V \W .(2.4.6′)

We see that u∗ = α
m

and

ΩV
α
m
= {x ∈ V : u(x) > 0} = {x ∈ W : f(x) > f ∗− α

m
} ⊆ {x ∈ W : DegWn,∞(x) ≥ m}

by Theorem 2.2.7.
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Thus for any x ∈ ΩV
α
m
, y ∈ V \W , we have w(x, y) = 0. Hence for every x ∈ ΩV

α
m

∆V u(x) =
1

µ(x)

∑

y∈V
w(x, y)(u(x)− u(y))

=
1

µ(x)

∑

y∈W
w(x, y)(u(x)− u(y))

≤ 1

µ(x)

∑

y∈W
w(x, y)(f(x)− f(y))

= ∆W f(x) ≤ −α.

(2.4.7)

The stochastic incompleteness of (V, w, µ) then follows from Theorem 2.1.2.

(2) As in (1), there is a nonnegative function f on W and α > 0 such that

sup
ΩW

α

∆W f ≤ −α

since W is stochastically incomplete by assumption.

Define a function u on V by

u(x) =

{

(f(x) +
α

2n
− f ∗)+, x ∈ W ,(2.4.8)

0, x ∈ V \W .(2.4.8′)

We see that u∗ = α
2n

and

ΩV
α
2n

= {x ∈ V : u(x) > 0} = {x ∈ W : f(x) > f ∗ − α

2n
}.

So for any x ∈ ΩV
α
2n
,

∆V u(x) =
1

µ(x)

∑

y∈V
w(x, y)(u(x)− u(y))

=
1

µ(x)

∑

y∈W
w(x, y)(u(x)− u(y)) +

1

µ(x)

∑

y∈V \W
w(x, y)(u(x)− u(y))

≤ 1

µ(x)

∑

y∈W
w(x, y)(f(x)− f(y)) +

1

µ(x)

∑

y∈V \W
w(x, y)

α

2n

≤ ∆W f(x) +
α

2
< −α

2
.

(2.4.9)
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The stochastic incompleteness of (V, w, µ) then follows from Theorem 2.1.2. �

Remark 2.4.2. Part (2) of Theorem 2.4.1 was first proved by Keller and Lenz [33].

Our proof here is more elementary.

In Theorem 2.4.1 we derive stochastic incompleteness of graphs from that of sub-

graphs. The weak Omori-Yau maximum principle allows also to obtain implications

in the opposite direction, as in the next statement.

Theorem 2.4.3. Let (V, w, µ) be a stochastically incomplete weighted graph and

m > n ≥ 1. The subgraph

W = {x ∈ V : DegVn,∞(x) ≥ m}

with weights (W,w|W×W , µ|W ) is stochastically incomplete as well.

Proof. There exists a nonnegative function f on V and α > 0 such that

sup
ΩV

α

∆V f ≤ −α.

We will show that f |W is a function violating the weak Omori-Yau maximum prin-

ciple.

From Lemma 2.2.1 and Theorem 2.2.7, we see that

sup
W

f = sup
V
f,

and

ΩW
α
m
= ΩV

α
m
.

We claim that for any x ∈ ΩW
α
m
,

∆W f(x) ≤ ∆V f(x) ≤ −α.

In fact, for x ∈ ΩW
α
m
, y ∈ V \W , we claim that f(y) ≤ f(x). If not

f(y) > f(x) > f ∗ − α

m
,

so that y ∈ ΩW
α
m
⊆W , a contradiction.
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Then for any x ∈ ΩW
α
m
, we obtain

−α ≥ ∆V f(x) =
1

µ(x)

∑

y∈V
w(x, y)(f(x)− f(y))

=
1

µ(x)

∑

y∈W
w(x, y)(f(x)− f(y))

+
1

µ(x)

∑

y∈V \W
w(x, y)(f(x)− f(y))

≥ 1

µ(x)

∑

y∈W
w(x, y)(f(x)− f(y)) = ∆W f(x).

The stochastic incompleteness of (V, w, µ) then follows from Theorem 2.1.2. �

Remark 2.4.4. The results in this section remains true if we replace the global weight-

ed degree Degn,∞ by weighted degree Deg briefly because

Deg(x) ≥ Degn,∞(x)

for all x and n ≥ 0. This version of these results are proven in [29].

2.5 Applications to the physical Laplacian

In this section, we apply the weak Omori-Yau maximum principle and Khas’minskii

criterion to the physical Laplacian on an (un-weighted) graph. We assume that

(V,E) is an undirected, locally finite, connected infinite graph without loops and

multi-edges where V is the set of vertices and E is the set of edges. Recall that the

physical Laplacian on (V,E) corresponds to the weights that w(x, y) ∈ {0, 1}, µ(x) ≡
1 and w(x, y) = 1 ⇔ (x, y) ∈ E. Throughout this section, we use (V,E) to denote

this weighted graph.

Let ρ be the graph distance on (V,E) as before and fix a point x0 ∈ V as a

reference point. We will frequently use the notations introduced in Section 1.6.

Recall that the weighted degree function

Deg(x) =
∑

y∈V
w(x, y) = #{y ∈ V : y ∼ x},

is exactly the number of neighbors of x in V , i.e. deg(x). And the formal Laplacian
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in this case is

(2.5.10) ∆f(x) =
∑

y,y∼x

(f(x)− f(y)).

Here f can now be an arbitrary function on V because of the locally finiteness. For

example,

(2.5.11) ∆r(x) = m−(x)−m+(x).

The machinery of the weak Omori-Yau maximum principle and Khas’minskii

criterion can be applied in two ways.

(1) Choose a series
∑∞

n=0 an with nonnegative terms, and define the function

f(x) =

r(x)
∑

n=0

an

which then can be used in the weak Omori-Yau maximum principle and

Khas’minskii criterion. Choosing the series appropriately we obtain sufficient

conditions for stochastic completeness and incompleteness.

(2) Alternatively, one can determine “natural” values of an by solving certain

difference equations or inequalities.

Before going into details we would like to point out that for a locally finite graph

of unbounded degree, deg(x) → +∞ implies r(x) → +∞. Thus Theorem 2.3.1 can

be restated in a weaker form:

Theorem 2.5.1. Let (V,E) be a locally finite and connected graph. Assume that

the degree function deg(x) is unbounded. If there exists a nonnegative function γ on

V with

γ(x) → +∞ as r(x) → +∞

satisfying

∆γ(x) + λγ(x) ≥ 0 outside a finite set A

for some λ > 0, then (V,E) is stochastically complete.

Remark 2.5.2. Keller, Lenz and Wojciechowski [35] also obtained independently a

similar form of Khas’minskii criterion for general weighted graphs using a different

method.
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2.5.1 Criteria for stochastic completeness

In what follows,
∑∞

n=0 an is a series with nonnegative terms.

Theorem 2.5.3. Let (V,E) be a locally finite and connected graph. If
∑∞

n=0 an =

+∞ and for some λ > 0, the following inequality

m+(x)ar(x)+1 −m−(x)ar(x) ≤ λ

r(x)
∑

n=0

an

holds outside a finite set, then V is stochastically complete.

Proof. Let γ(x) =
∑r(x)

0 an, then

∆γ(x) + λγ(x) = m−(x)ar(x) −m+(x)ar(x)+1 + λ

r(x)
∑

0

an ≥ 0

outside a finite set and γ(x) → +∞ as r(x) → +∞. By Theorem 2.5.1, (V,E) is

stochastically complete. �

Theorem 2.5.3 already gives some nontrivial results through some obvious choices

of an. One natural choice is an ≡ 1. Then a sufficient condition for stochastic

completeness is

m+(x)−m−(x) ≤ λr(x)

outside a finite set for some λ > 0. This improves the curvature type criterion of

Weber [53] where the sufficient condition is

m+(x)−m−(x) ≤ C

for some constant C > 0.

One can improve this result by choosing divergent series with smaller terms. We

do this via Theorem 2.3.4.

Theorem 2.5.4. Let (V,E) be a locally finite and connected graph. If for some

positive, increasing function f ∈ C1([0,+∞)) with
∫ +∞
0

dr
f(r)

= +∞,

m+(x)−m−(x) ≤ f(r(x))

outside a finite set, then (V,E) is stochastically complete.

Proof. We only need to take σ(x) = r(x) in Theorem 2.3.4. �
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Remark 2.5.5. Can we conclude that (V,E) is stochastically incomplete if

m+(x)−m−(x) ≥ f(r(x)),

where f(r) > 0 and
∑∞

r=0
1

f(r)
< +∞? This may be a useful complement to Theorem

2.5.4.

The following result was first obtained by Wojciechowski [56]. We give a shorter

proof, based on Theorem 2.5.1.

Theorem 2.5.6. Let (V,E) be a locally finite and connected graph. If
∑∞

r=0
1

K+(r)
=

+∞, then (V,E) is stochastically complete.

Proof. Let

γ(x) =

r(x)−1
∑

r=0

1

K+(r)

for r(x) > 0, and γ(x0) = 0. We then have that

γ(x) → +∞ as r(x) → +∞,

and outside a finite set

∆γ(x) + γ(x) = m−(x)
1

K+(r(x)− 1)
−m+(x)

1

K+(r(x))
+ γ(x) ≥ γ(x)− 1 ≥ 0.

The assertion follows from Theorem 2.5.1. �

2.5.2 Criteria for stochastic incompleteness

Similarly, using test series to define functions that violate the weak Omori-Yau max-

imum principle, we obtain a curvature type criterion for stochastic incompleteness:

Theorem 2.5.7. Let (V,E) be a locally finite and connected graph. If
∑∞

l=0 al <

+∞, al ≥ 0 and for some n ∈ N, c > 0, the inequality

m+(x)ar(x)+1 −m−(x)ar(x) ≥ c

holds for r(x) > n, then (V,E) is stochastically incomplete.

Proof. Let

f(x) =

r(x)
∑

l=0

al.
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Then

f ∗ =
∞
∑

r=0

ar < +∞.

Let α =
∑∞

l=n+1 al. Then f(x) > f ∗ − α implies r(x) > n. So in this case,

−∆f(x) = m+(x)ar(x)+1 −m−(x)ar(x) ≥ c.

By Theorem 2.1.2, (V,E) is stochastically incomplete. �

Theorem 2.1.2 can also be used to derive the following result about stochastic

incompleteness obtained by Wojciechowski [55].

Theorem 2.5.8. Let (V,E) be a locally finite and connected graph. If

(2.5.12)
∞
∑

r=1

max
x∈Sr

m−(x)

m+(x)
< +∞,

then V is stochastically incomplete.

Proof. Denote maxx∈Sr

m−(x)
m+(x)

by η(r). Let

f(x) =

r(x)−1
∑

r=1

η(r)

for r(x) ≥ 2, and f(x) = 0 elsewhere. Then

f ∗ = sup f(x) =
∞
∑

r=1

η(r) < +∞.

Choose r0 > 2 sufficiently large so that

0 < α =
∞
∑

r=r0−1

η(r) <
1

2
.
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Then

Ωα = {x ∈ V : f(x) > f ∗ − α}

= {x ∈ V : f(x) >

r0−2
∑

r=1

η(r)}

= {x ∈ V :

r(x)−1
∑

r=1

η(r) >

r0−2
∑

r=1

η(r)}

= {x ∈ V : r(x) > r0 − 1}
= Bc

r0−1.

But for x ∈ Bc
r0−1, we have r(x)− 1 ≥ r0 − 1 and thus

η(r(x)− 1) < α <
1

2
.

Hence we obtain that for x ∈ Ωα,

∆f(x) = m−(x)η(r(x)− 1)−m+(x)η(r(x))

≤ 1

2
m−(x)−m−(x)

≤ −1

2
m−(x) ≤ −1

2
.

By Theorem 2.1.2 (V,E) is stochastically incomplete. �

Remark 2.5.9. Theorem 2.5.8 first appeared in a slightly weaker form as Theorem

3.4 in [55]. There stochastic incompleteness is established under the condition

∞
∑

r=1

K−(r)

k+(r)
< +∞

instead of (2.5.12).

2.5.3 The weakly symmetric graphs

Recall the Definition 1.6.9 of weakly symmetric graphs and the notations there. For

such graphs, Wojciechowski [56] proved the following criterion. Here we present a

proof based on the weak Omori-Yau maximum principle.

Theorem 2.5.10. A weakly symmetric graph (V,E) is stochastically complete if
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and only if
∞
∑

r=0

V (r)

g+(r)S(r)
= +∞

where S(r) = #Sr and V (r) = #Br.

Proof. Since

m+(x) = g+(r(x)), m−(x) = g−(r(x)),

we see that

g−(r)S(r) = g+(r − 1)S(r − 1).

Let

γ(x) =

r(x)−1
∑

r=0

V (r)

g+(r)S(r)

for r(x) > 0, and γ(x0) = 0. We have

∆γ(x) = g−(r(x))
V (r(x)− 1)

g+(r(x)− 1)S(r(x)− 1)
− g+(r(x))

V (r(x))

g+(r(x))S(r(x))

=
V (r(x)− 1)

S(r(x))
− V (r(x))

S(r(x))
= −1

(2.5.13)

for r(x) ≥ 1.

If γ(x) → +∞ as r(x) → +∞, then

∆γ(x) + γ(x) = γ(x)− 1 ≥ 0

outside a finite set. The stochastic completeness then follows from Theorem 2.5.1.

For the other implication suppose that γ∗ = sup γ(x) < +∞. Letting α = γ∗,

we see that on Ωα = Bc
0, by the calculation (2.5.13) above,

∆γ(x) = −1.

The stochastic incompleteness then follows from Theorem 2.1.2. �

Remark 2.5.11. Theorem 2.5.10 is analogous to the classical stochastic completeness

criterion for model manifolds proven by Grigor’yan [20], Ichihara [30], Khas’minskii

[36] (see Proposition 3.2 in [22]). As pointed out by Wojciechowski [56], it is inter-

esting to notice that for a weakly symmetric graph, the edges between points on the

same sphere play no role in stochastic completeness. See also [35] for further studies

of weakly symmetric graphs.



2.5. Applications to the physical Laplacian 65

Now we apply Theorem 2.5.10 to the Examples 1.6.10 and 1.6.11. The criteria

here are first due to Wojciechowski [54], [56].

Example 2.5.12 (Model Trees). Let (V,E) and f be as in Example 1.6.10. Then

(V,E) is stochastically complete if and only if

(2.5.14)

∞
∑

r=0

1

f(r)
= +∞.

Proof. We have that g+(r) = f(r) for r ∈ N and

S(r) =
r−1
∏

n=0

f(n) = f(r − 1)S(r − 1),

for r ∈ N+. By Theorem 2.5.10, the stochastic completeness of (V,E) is equivalent

to that ∞
∑

r=1

V (r)

f(r)S(r)
= +∞.

First assume that there exists some N ∈ N+ such that for all n > N , f(n) ≥ 2.

Then for r ≥ N + 1,

S(r) ≤ V (r) =

r
∑

n=0

S(n) ≤
r
∑

n=N+1

S(r)

2r−n
+ V (N) ≤ 2S(r) + C,

where C = V (N). And

∞
∑

r=N+1

1

f(r)
≤

∞
∑

r=N+1

V (r)

f(r)S(r)
≤ 2

∞
∑

r=N+1

1

f(r)
+ C

∞
∑

r=N+1

1

f(r)S(r)
.

Note that in this case

∞
∑

r=0

1

f(r)S(r)
=

∞
∑

r=1

1

S(r)
≤

∞
∑

r=1

1

2r
<∞.

Hence the stochastic completeness of (V,E) is equivalent to that

∞
∑

r=0

1

f(r)
= +∞.

For the rest case, that is, there is a strictly increasing sequence of {nk ∈ N}k∈N such

that f(nk) = 1. In this case, it is easy to see that (2.5.15) holds. On the other hand,

by Proposition 2.2.8, (V,E) is stochastically complete. This completes the proof. �
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Example 2.5.13 (Anti-trees). Let (V,E) and S(n) be as in Example 1.6.11. Then

by Theorem 2.5.10, the stochastic completeness of (V,E) is equivalent to that

(2.5.15)
∞
∑

r=0

∑r
n=0 S(n)

S(r)S(r + 1)
= +∞.

Remark 2.5.14. Taking S(r) = [(r + 1)2+ε] with some ε > 0, we see that (V,E) is

stochastically incomplete whereas

V (r) ≤ Cr3+ε

for some C > 0. This interesting fact, due to Wojciechowski [56], is significantly

different from the volume growth criteria in the classical case. It is then interesting

to ask what is the smallest possible volume growth with respect to the graph distance

for stochastically incomplete graphs. It is natural to conjecture that for the physical

Laplacian on graphs, the condition

(2.5.16) µ(Br) ≤ Cr3, C > 0,

implies stochastic completeness. This is first proven by Grigor’yan, Huang and

Masamune [25]. One goal of the next chapters is to offer two proofs through different

approachs.

Note that for geodesically complete Riemannian manifolds, the almost sharp

condition ([5], [19], [27], [32])

(2.5.17) µ(Br) ≤ expCr2, C > 0,

with respect to the geodesic distance implies stochastic completeness. The big d-

ifference between (2.5.16) and (2.5.17) indicates that the graph distance should be

replaced by some distances which are more suitable to give volume growth criteria

for stochastic completeness.

Remark 2.5.15. This construction of Wojciechowski [56], at the same time gives a

counterexample to the converse to Theorem 2.5.8. The graph (V,E) with S(r) =

(r + 1)3 satisfies
∞
∑

r=1

max
x∈Sr

m−(x)

m+(x)
=

∞
∑

r=1

(r − 1)3

(r + 1)3
= +∞,

but is stochastically incomplete.

Remark 2.5.16. On the other hand, there exist stochastically complete graphs with

arbitrarily large volume growth. For example, take a set of vertices {0, 1, 2, · · · , n · · · }
with edges n ∼ n + 1. For each vertex n, we associate a distinct finite set Vn and
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add extra edges between n and points in Vn. The resulting graph (V,E) is then a

tree whose volume growth can be chosen to be arbitrarily large. One can observe

that every vertex in V has at most two neighbors which have degree larger than 1.

It is then of bounded global weighted degree with parameter 1 and hence is stochas-

tically complete by Theorem 2.2.7. The stochastic completeness of V can be shown

via Theorem 2.4.3 as well.

For a weakly symmetric graph (V,E), the quantity g+(r)S(r) can be interpreted

as #∂Br where ∂Br is the boundary of Br as in Definition 1.1.1. Then the stochastic

completeness of a weakly symmetric graph (V,E) is equivalent to

∞
∑

r=0

V (r)

#∂Br
= +∞.

In an earlier version of [35], Keller and Wojciechowski proposed the following con-

jecture for a general (V,E).

Conjecture 2.5.17. Let (V,E) be a locally finite and connected graph. If for some

fixed point x0 ∈ V as a reference point,

(2.5.18)

∞
∑

r=0

#Br

#∂Br
= +∞,

then (V,E) is stochastically complete.

This is an analogue of a conjecture for the stochastic completeness of manifold

proposed by Grigor’yan in [22]. However, recently Bär and Bessa [2] constructed a

counterexample to Grigor’yan’s conjecture. Their idea can also be applied to the

physical Laplacian as follows.

Take a stochastically complete tree (V1, E1) with a reference point x1, for ex-

ample, a binary tree. Then (V1, E1) has exponential volume growth with respect

to the graph distance. Choose a stochastically incomplete graph with only polyno-

mial volume growth, for example, an anti-tree (V2, E2) as in Example 1.6.11 with

S(r) = (r+1)3. Denote the reference point by x2. Now we make a single extra edge

between x1 and x2 resulting in a new graph (V,E). Since the gluing happens at

only one point at (V2, E2), the graph (V,E) is stochastically incomplete by Theorem

2.4.1. However, for any fixed point x0 ∈ V as a reference point, the quantities #Br

and #∂Br are always of the order 2n. So we know that V satisfies (2.5.18) while it

is stochastically incomplete. This example is simpler than the example of [2] in the

manifold case, thanks to special features of the discrete setting.





Chapter 3

Uniqueness class

As shown in Theorem 1.5.1, stochastic completeness of a weighted graph (V, w, µ)

is closely connected to the Cauchy problem of the heat equation with zero initial

condition (1.4.7) where ∆ is the formal Laplacian associated to (V, w, µ). The main

result of this chapter is the following uniqueness class for the Cauchy problem of the

heat equation with zero initial condition.

Theorem 3.1. Let (V, w, µ) be a weighted graph such that its underlying graph is

locally finite and connected. We also assume that d is an adapted distance on V

such that Assumption 1.6.6 holds. Let u(x, t) be a solution to the Cauchy problem

of the heat equation with zero initial condition (1.4.7) on V × [0, T ] for some T > 0.

If there are an increasing sequence of positive numbers {Rn}n∈N with

lim
n→∞

Rn = +∞,

and two constants C > 0, 1 > ǫ > 0 such that for some x0 ∈ V ,

(3.0.1)

∫ T

0

∑

x∈Bd(x0,Rn)

u2(x, t)µ(x)dt ≤ C exp

(

1

2
(1− ǫ)Rn lnRn

)

,

then u(x, t) ≡ 0 on V × [0, T ].

This uniqueness class is given in an integrated form in the spirit of the classi-

cal results of Oleinik and Radkevich [40], Gushchin [26] and Grigor’yan [19, 22].

Tichonov [51] is among the first to obtain

|u(x, t)| ≤ exp
(

c|x|2
)

type uniqueness class the Cauchy problem of heat equation on Euclidean spaces.
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Täcklind [50] fist obtain the sharp form

|u(x, t)| ≤ exp f(|x|)

where f is a positive increasing function on [0,∞) such that

∫ ∞ rdr

f(r)
= ∞.

We first establish a discrete integrated maximum principle, Lemma 3.1.1 inspired

by Grigor’yan [21] and use it as a key tool to prove Theorem 3.1. The integrated

maximum principle on manifolds dates back to Aronson [1]. The discreteness of the

formal Laplacian causes serious difficulties and the resulting integrated maximum

principle is significantly different from the manifold case. Then we show by an easy

example that Theorem 3.1 is almost sharp. The example is based on the classical

example of Tichonov but has a much different feature.

3.1 Integrated maximum principle

Let (V, w, µ) be a weighted graph such that the underlying graph is locally finite

and connected. Recall that for a subset A of V , the closure Ā of A is

Ā = A ∪ ∂A = {x : x ∈ A; or x ∈ Ac, and ∃y ∈ A, s.t. x ∼ y}.

The following lemma can be viewed as a discrete version of Grigor’yan’s “integrated

maximum principle” [21].

Lemma 3.1.1. Let (V, w, µ) be a weighted graph that is locally finite and connected.

Let Ω ⊆ V be a subset of V . Fix some T > 0. Let u(x, t) be a function on Ω̄× (0, T ]

that is differentiable in t on (0, T ] and has pointwise zero right limit at time 0.

Assume further that u(x, t) solves the heat equation

(3.1.2)
∂

∂t
u(x, t) + ∆u(x, t) = 0,

on Ω× (0, T ]. Take two auxiliary functions η(x) on V and ξ(x, t) on V × [0, T ] such

that

(1) the function η(x) ≥ 0 is finitely supported and suppη ⊆ Ω;

(2) ξ(x, t) is continuously differentiable in t on [0, T ] for each x ∈ V ;
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(3) the inequality (η2(x) − η2(y))(eξ(x,t) − eξ(y,t)) ≥ 0 holds for all x ∼ y and

t ∈ [0, T ];

(4) the inequality µ(x) ∂
∂t
ξ(x, t) + 1

2

∑

y∈V w(x, y)(1 − eξ(y,t)−ξ(x,t))2 ≤ 0 holds for

any x ∈ V and t ∈ [0, T ].

Then for any τ ∈ (0, T ], we have the following estimate:

(3.1.3)
∑

x∈Ω
u2(x, τ )η2(x)eξ(x,τ)µ(x) ≤ 2

∫ τ

0

∑

x∈Ω̄

∑

y∈Ω̄
w(x, y)(η(x)− η(y))2u2(x, t)eξ(y,t)dt.

Remark 3.1.2. In the same spirit of generalizing Grigor’yan’s work to the graph

setting, Folz [14] develops a different version of “integrated maximum principle”

independently of us.

Before giving a proof of Lemma 3.1.1, we present an elementary fact that we will

use frequently.

Lemma 3.1.3. Let {ai}∞i=1 and {bi}∞i=1 be two sequences of real numbers such that

∞
∑

i=1

a2i <∞,
∞
∑

i=1

b2i <∞.

The inequality

(3.1.4)

∞
∑

i=1

aibi ≤
δ

2

∞
∑

i=1

a2i +
1

2δ

∞
∑

i=1

b2i

holds for all δ > 0.

Proof. By the Cauchy-Schwarz inequality we have that

∞
∑

i=1

aibi ≤
(

δ

∞
∑

i=1

a2i

)
1

2
(

1

δ

∞
∑

i=1

b2i

)
1

2

.

Then the desired inequality follows by the AM-GM inequality. �

Proof of Lemma 3.1.1. Note that by an argument similar to that of Remark 1.4.8,

u(x, t) can be extended by 0 to satisfy the heat equation (3.1.2) on Ω × [0, T ]. We

multiply the heat equation in (3.1.2) by u(x, t)η2(x)eξ(x,t)µ(x) and sum over x ∈ Ω:

(3.1.5)
∑

x∈Ω

∂

∂t
u(x, t) · u(x, t)η2(x)eξ(x,t)µ(x)



72 Chapter 3. the uniqueness class

+
∑

x∈Ω

∑

y∈Ω̄
w(x, y)(u(x, t)− u(y, t)) · u(x, t)η2(x)eξ(x,t) = 0.

Note that since η(x) is finitely supported, the sums in (3.1.5) are of finite type.

Furthermore, since suppη ⊆ Ω, if we make a sum over x ∈ Ω of some multiple of

η2(x), it is equivalent to do it over Ω̄. By symmetry of w(x, y), we have

(3.1.6)
∑

x∈Ω̄

∂

∂t
u2(x, t) · η2(x)eξ(x,t)µ(x)

+
∑

x∈Ω̄

∑

y∈Ω̄
w(x, y)(u(x, t)− u(y, t))(u(x, t)η2(x)eξ(x,t) − u(y, t)η2(y)eξ(y,t)) = 0.

In this proof, further through, the sums without specification of range will be un-

derstood to be over Ω̄.

Using the fact that

∂

∂t
u2(x, t) · eξ(x,t) = ∂

∂t
(u2(x, t)eξ(x,t))− u2(x, t) · eξ(x,t) ∂

∂t
ξ(x, t),

and the finiteness of the sums, we obtain

(3.1.7)
∂

∂t
(
∑

x

u2(x, t)η2(x)eξ(x,t)µ(x)) =
∑

x

u2(x, t)η2(x)eξ(x,t)µ(x)
∂

∂t
ξ(x, t)

−
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))(u(x, t)η2(x)eξ(x,t) − u(y, t)η2(y)eξ(y,t)).

We split the sum in the last line:

−
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))(u(x, t)η2(x)eξ(x,t) − u(y, t)η2(y)eξ(y,t))(3.1.8)

=−
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))2η2(x)eξ(x,t)(3.1.9)

−
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))u(y, t)(η2(x)− η2(y))eξ(x,t)(3.1.10)

−
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))u(y, t)η2(y)(eξ(x,t) − eξ(y,t)),(3.1.11)

which is a discrete analogue to the Leibniz rule. Then we apply Lemma 3.1.3 to

(3.1.10) and (3.1.11) to cancel the term in (3.1.9).
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First, for any δ1 > 0,

−
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))u(y, t)(η2(x)− η2(y))eξ(x,t)

≤ δ1
2

∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))2(η(x) + η(y))2eξ(x,t)

+
1

2δ1

∑

x

∑

y

w(x, y)(η(x)− η(y))2u2(y, t)eξ(x,t).

Applying the elementary fact

(η(x) + η(y))2 ≤ 2(η2(x) + η2(y)),

we have that by the symmetry of w(x, y),

−
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))u(y, t)(η2(x)− η2(y))eξ(x,t)

≤ δ1
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))2(η2(x) + η2(y))eξ(x,t)

+
1

2δ1

∑

x

∑

y

w(x, y)(η(x)− η(y))2u2(y, t)eξ(x,t)

=
δ1
2

∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))2(η2(x) + η2(y))(eξ(x,t) + eξ(y,t))

+
1

2δ1

∑

x

∑

y

w(x, y)(η(x)− η(y))2u2(y, t)eξ(x,t).

Using the condition (3) of Lemma 3.1.1, it follows that

−
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))u(y, t)(η2(x)− η2(y))eξ(x,t)

≤ δ1
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))2(η2(x)eξ(x,t) + η2(y)eξ(y,t))(3.1.12)

+
1

2δ1

∑

x

∑

y

w(x, y)(η(x)− η(y))2u2(y, t)eξ(x,t)

= 2δ1
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))2η2(x)eξ(x,t)

+
1

2δ1

∑

x

∑

y

w(x, y)(η(x)− η(y))2u2(x, t)eξ(y,t).
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Similarly, for any δ2 > 0,

−
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))u(y, t)η2(y)(eξ(x,t) − eξ(y,t))

= −
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))u(x, t)η2(x)(eξ(x,t) − eξ(y,t))

≤ δ2
2

∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))2η2(x)eξ(x,t)

+
1

2δ2

∑

x

∑

y

w(x, y)(1− eξ(y,t)−ξ(x,t))2u2(x, t)η2(x)eξ(x,t).

Choose δ1 = 1/4 and δ2 = 1 and apply the above estimates of (3.1.10) and (3.1.11)

to (3.1.8). It follows that

−
∑

x

∑

y

w(x, y)(u(x, t)− u(y, t))(u(x, t)η2(x)eξ(x,t) − u(y, t)η2(y)eξ(y,t))

≤ 2
∑

x

∑

y

w(x, y)(η(x)− η(y))2u2(x, t)eξ(y,t)

+
1

2

∑

x

∑

y

w(x, y)(1− eξ(y,t)−ξ(x,t))2u2(x, t)η2(x)eξ(x,t).

And hence by (3.1.7),

∂

∂t
(
∑

x

u2(x, t)η2(x)eξ(x,t)µ(x))

≤
∑

x

u2(x, t)η2(x)eξ(x,t)µ(x)
∂

∂t
ξ(x, t)

+ 2
∑

x

∑

y

w(x, y)(η(x)− η(y))2u2(x, t)eξ(y,t)

+
1

2

∑

x

∑

y

w(x, y)(1− eξ(y,t)−ξ(x,t))2u2(x, t)η2(x)eξ(x,t)

≤ 2
∑

x

∑

y

w(x, y)(η(x)− η(y))2u2(x, t)eξ(y,t),

where in the last inequality we used the condition (4) on the auxiliary function.

Integrate the above inequality with respect to t on [0, τ ], we get the desired inequality

as u(x, 0) ≡ 0. �

Remark 3.1.4. The idea behind Lemma 3.1.1 is the Caccioppoli type estimate Lem-

ma 1.6.1. In practical applications, η(x) is often chosen to be some kind of “cut off”

function. As explained before, the estimate Lemma 3.1.1 together with the “cut off”
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property of η(x), allow us to quantitatively compare the “local mass”

∑

x

u2(x, t)µ(x)

at different space-time regions.

3.2 Uniqueness class

Now we can prove the main Theorem 3.1 in this chapter by specifying the auxiliary

functions in Lemma 3.1.1. In the following, (V, w, µ) will be a weighted graph that is

locally finite and connected, and d is an adapted distance on V to make Assumption

1.6.6 hold.

Lemma 3.2.1. Fix a point x0 ∈ V . Define

ξ(x, t) = −1

2
α2e2αt− α (d(x, x0)− δR)+ .

where α > 0, R > 0 and 0 < δ < 1
2
are to be chosen later. The condition (2) of

Lemma 3.1.1 clearly holds for ξ(x, t). And ξ(x, t) also satisfies the condition (4) in

Lemma 3.1.1, that is, the following inequality holds for any x ∈ V and t ∈ [0, T ]:

(3.2.13) µ(x)
∂

∂t
ξ(x, t) +

1

2

∑

y∈V
w(x, y)(1− eξ(y,t)−ξ(x,t))2 ≤ 0.

Proof. Note the following elementary inequality for a ∈ R:

(ea − 1)2 ≤ e2|a|a2.

Hence

1

2

∑

y∈V
w(x, y)(1− eξ(y,t)−ξ(x,t))2 ≤ 1

2

∑

y∈V
w(x, y)(ξ(y, t)− ξ(x, t))2e2|ξ(y,t)−ξ(x,t)|

≤ 1

2

∑

y∈V
w(x, y)α2d2(x, y)e2αd(x,y)

≤ 1

2
α2µ(x)e2α,

where in the last inequality we used the facts that

w(x, y) > 0 ⇔ x ∼ y
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and that d(x, y) ≤ 1 when x ∼ y. Then the inequality (3.2.13) follows easily. �

Remark 3.2.2. Note that eξ(x,t) is decaying quickly in space. This will help cancel

the growth of
∫ T

0

∑

x∈Bd(x0,Rn)

u2(x, t)µ(x)dt.

Lemma 3.2.3. Fix a point x0 ∈ V . Define

η(x) = min{(R− 1− d(x, x0))+
δR

, 1},

where R > 0 and 0 < δ < 1
2
to be chosen are the same as in Lemma 3.2.1. Then

η(x) satisfies the following inequality for any x ∈ V :

(3.2.14)
∑

y∈V
w(x, y)(η(x)− η(y))2 ≤ 1

δ2R2
µ(x)χ{(1−δ)R−2≤d(x,x0)≤R},

where χ is the characteristic function of a set.

Proof. Without loss of generality, we can assume that R > 0 is large enough. For

x ∈ V such that

d(x, x0) < (1− δ)R− 2,

we see that if y ∼ x,

d(y, x0) ≤ d(x, x0) + d(x, y) ≤ (1− δ)R− 1.

Hence η(x) = η(y) = 1. Similarly, for x such that

d(x, x0) > R,

if y ∼ x,

d(y, x0) ≥ d(x, x0)− d(x, y) ≥ R− 1.

And then η(x) = η(y) = 0.

Finally, for x such that

(1− δ)R− 2 ≤ d(x, x0) ≤ R,

we have

∑

y∈V
w(x, y)(η(x)− η(y))2 ≤ 1

δ2R2

∑

y∈V
w(x, y)d2(x, y) ≤ 1

δ2R2
µ(x).
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�

Proof of Theorem 3.1. Recall the notations in Theorem 3.1, Lemma 3.2.1 and Lem-

ma 3.2.3. Let x0 be the fixed point there. Let 0 < δ < 1
2
be small enough such

that

(3.2.15) (1− ǫ

4
)(1− 2δ) ≥ 1− ǫ

2
.

Define ξ(x, t) as in Lemma 3.2.1 with R > 2
1−2δ

and α > 0 to be chosen later. Define

η(x) as in Lemma 3.2.3.

It is easy to check the conditions (1), (2) and (3) in Lemma 3.1.1 and the condi-

tion (3) is proven in Lemma 3.2.1. So we can apply Lemma 3.1.1 in the special case

of Ω = V to assert that for any τ ∈ (0, T ],

(3.2.16)
∑

x∈V
u2(x, τ )η2(x)eξ(x,τ)µ(x) ≤ 2

∫ τ

0

∑

x∈V

∑

y∈V
w(x, y)(η(x)− η(y))2u2(x, t)eξ(y,t)dt.

Note that since R > 2
1−2δ

, we have η(x) = 1 when d(x, x0) ≤ δR. For the left side

of (3.2.16), we have

∑

x∈Bd(x0,δR)

u2(x, τ)µ(x)e−
1

2
τα2e2α ≤

∑

x∈V
u2(x, τ)η2(x)eξ(x,τ)µ(x).

For the right side of (3.2.16), the following estimate holds

2

∫ τ

0

∑

x∈V

∑

y∈V
w(x, y)(η(x)− η(y))2u2(x, t)eξ(y,t)dt

≤2eα
∫ τ

0

∑

x∈V

∑

y∈V
w(x, y)(η(x)− η(y))2u2(x, t)eξ(x,t)dt

=2eα
∫ τ

0

∑

x∈V
u2(x, t)eξ(x,t)

∑

y∈V
w(x, y)(η(x)− η(y))2dt

≤ 2

δ2R2
eα
∫ τ

0

∑

x∈V
µ(x)χ{(1−δ)R−2≤d(x,x0)≤R}u

2(x, t)e−α(d(x,x0)−δR)+dt

≤ 2

δ2R2
e3α−(1−2δ)αR

∫ τ

0

∑

x∈Bd(x0,R)

µ(x)u2(x, t)dt.

Put them together, we have

(3.2.17)
∑

x∈Bd(x0,δR)

u2(x, τ )µ(x)e−
1

2
τα2e2α ≤ 2

δ2R2
e3α−(1−2δ)αR

∫ τ

0

∑

x∈Bd(x0,R)

µ(x)u2(x, t)dt.
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Let Rn be as in Theorem 3.1. As in (3.0.1),

∫ T

0

∑

x∈Bd(x0,Rn)

u2(x, t)µ(x)dt ≤ C exp

(

1

2
(1− ǫ)Rn lnRn

)

.

For n big enough such that Rn > max{ 2
1−2δ

, 1}, choose α = 1
2
(1 − ǫ

4
) lnRn and let

R = Rn in (3.2.17). We have

∑

x∈Bd(x0,δRn)

u2(x, τ)µ(x)

≤ 2

δ2R2
n

e
1

2
τα2e2α+3α−(1−2δ)αR

∫ τ

0

∑

x∈Bd(x0,Rn)

µ(x)u2(x, t)dt

≤ 2C

δ2R2
n

exp

(

1

2
τα2e2α + 3α− (1− 2δ)αR +

1

2
(1− ǫ)Rn lnRn

)

≤ 2C

δ2R2
n

exp{1
8
τ (1− ǫ

4
)2(lnRn)

2R
1− ǫ

4
n +

3

2
(1− ǫ

4
) lnRn

+
1

2
(1− ǫ)Rn lnRn −

1

2
(1− 2δ)(1− ǫ

4
)Rn lnRn}.

(3.2.18)

Apply (3.2.15), we arrive at

∑

x∈Bd(x0,δRn)

u2(x, τ)µ(x)

≤ 2

δ2R2
n

exp

(

1

8
τ(1− ǫ

4
)2(lnRn)

2R
1− ǫ

4
n +

3

2
(1− ǫ

4
) lnRn −

ǫ

4
Rn lnRn

)

.

(3.2.19)

Let n approaches to +∞. Since Rn increases to +∞, we can see that the right side

of (3.2.19) tends to zero while the left side is nonnegative and nondecreasing. Hence

u(x, τ) ≡ 0

for all x ∈ V . Note that τ is arbitrarily chosen in (0, T ], the theorem follows. �

3.3 A sharpness example

The example here is a discrete analogue of the classical construction of Tichonov

[51]. See also the textbook of John [31]. However, the discrete case turns out to

have a different behavior.
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We equip Z with a graph structure such that for m,n ∈ Z,

m ∼ n⇔ |m− n| = 1.

Let the weights µ(n) ≡ 1 and w(m,n) ∈ {0, 1}. The heat equation takes a simple

form in this case:

(3.3.20)
∂

∂t
u(n, t) + 2u(n, t)− u(n− 1, t)− u(n+ 1, t) = 0.

As before, we have a natural graph distance ρ on Z which is just given by ρ(m,n) =

|m − n|. By choosing σ(n, n + 1) =
√
2
2

in Definition 1.6.4, we have that d =
√
2
2
ρ

is an adapted distance on (Z, w, µ). It is also direct to see that Assumption 1.6.6

holds.

Let g(t) be a smooth function on R such that all orders of derivatives of it goes

to 0 at t = 0. For example, we can take

g(t) =

{

exp(−t−β), t > 0,(3.3.21)

0, t ≤ 0,

where β > 1 is a constant.

For 0 < T < +∞, we define a function u(n, t) on Z× [0, T ] as follows:

u(n, t) =



















g(t), n = 0,(3.3.22)

g(t) +

∞
∑

k=1

g(k)(t)

(2k)!
(n+ k) · · · (n+ 1)n · · · (n− k + 1), n ≥ 1,

u(−n− 1, t), n ≤ −1.

In the above definition, the function (n+k) · · · (n+1)n · · · (n−k+1) plays the role

of the power x2k in the continuous setting. However, the main difference is that

(n + k) · · · (n+ 1)n · · · (n− k + 1)

vanishes for all k > |n|. Hence the sums in (3.3.22) are in fact all of finite type. It

is an elementary calculation to check that u(n, t) solves the heat equation. By the

property of g(t), we see that u(n, t) also satisfies the zero initial condition.

We choose g(t) as in (3.3.21). The following estimate is taken from [31] (p.172):

for all 0 < θ < 1 small enough,

(3.3.23) |g(k)(t)| < k!

(θt)k
exp(−1

2
t−β),
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holds for all k ∈ N. Hence for n ≥ 1, t > 0, we have

(3.3.24)

|u(n, t)| ≤ exp(−t−β)+

n
∑

k=1

k!

(2k)!(θt)k
(n+ k) · · · (n+1)n · · · (n− k+1) exp(−1

2
t−β).

We are going to make an estimate of |u(n, t)| independent of t. The following

estimate is elementary.

Lemma 3.3.1. Let k > 0, θ > 0. Then for t > 0,

1

(θt)k
exp(−1

2
t−β) ≤

(

2k

eβθβ

)
k
β

.

Proof. Note that
1

tk
exp(−1

2
t−β) = exp(−k ln t− 1

2
t−β).

Consider

(−k ln t− 1

2
t−β)′ = −k

t
+
β

2
t−β−1



















> 0, 0 < t <
(

β
2k

)

1

β ,

= 0, t =
(

β
2k

)

1

β ,

< 0, t >
(

β
2k

)

1

β .

Then we see that 1
tk
exp(−1

2
t−β) attains its maximum at

(

β
2k

)

1

β . The assertion fol-

lows. �

So now we have that

(3.3.26) |u(n, t)| ≤ 1 +
n
∑

k=1

k!

(2k)!
(n+ k) · · · (n+ 1)n · · · (n− k + 1)

(

2k

eβθβ

)
k
β

.

Roughly speaking, the following lemma shows that the last term in the estimate

(3.3.26) of |u(n, t)| is the dominating one.

Lemma 3.3.2. Fix some n ≥ 2. Let 1 ≤ k ≤ n− 1. Denote

k!

(2k)!
(n + k) · · · (n+ 1)n · · · (n− k + 1)

(

2k

eβθβ

)
k
β

by ak. Then for 0 < θ < 1 small enough, we have that for any 1 ≤ k ≤ n− 1,

ak ≤ ak+1.
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Proof. By direct calculations,

ak+1

ak
=

(k+1)!
(2k+2)!

(n+ k + 1) · · · (n + 1)n · · · (n− k)
(

2k+2
eβθβ

)
k+1

β

k!
(2k)!

(n+ k) · · · (n+ 1)n · · · (n− k + 1)
(

2k
eβθβ

)
k
β

=
(k + 1)(n+ k + 1)(n− k)

(2k + 2)(2k + 1)
× (1 +

1

k
)

k
β

(

2

eβθβ

)
1

β

(k + 1)
1

β

≥ (k + 1)(2k + 2)

(2k + 2)(2k + 1)

(

2

eβθβ

)
1

β

≥ 1

2θ

(

2

eβ

)
1

β

.

Hence for

0 < θ <
1

2

(

2

eβ

)
1

β

,

we have
ak+1

ak
≥ 1.

�

By Lemma 3.3.1 and Lemma 3.3.2, we have for θ > 0 small enough, for all

n ≥ 1, t > 0,

|u(n, t)| ≤ 1 + nan

= 1 +
n!

(2n)!
(2n)!

(

2n

eβθβ

)
n
β

= 1 + n!

(

2n

eβθβ

)
n
β

.

For θ > 0 small enough, it is direct to see that the sequence

1 + n!

(

2n

eβθβ

)
n
β

is nondecreasing.

Choose x0 = 0, and a sequence Rm =
√
2
2
m. For any T ∈ (0,+∞), we have

∫ T

0

∑

x∈Bd(x0,Rm)

u2(x, t)µ(x)dt ≤
∫ T

0

m
∑

n=−m

u2(n, t)dt
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≤ 2

∫ T

0

m
∑

n=0

u2(n, t)dt

≤ 2

∫ T

0

(1 +m)

(

1 +m!

(

2m

eβθβ

)
m
β

)2

dt

≤ 2T (1 +m)

(

1 +m!

(

2m

eβθβ

)
m
β

)2

.

Apply Stirling’s approximation to the last term in the above inequality, we have

that for all big enough m,

(3.3.27)

∫ T

0

∑

x∈Bd(x0,Rm)

u2(x, t)µ(x)dt ≤ CT exp

(

2
√
2(1 +

1

β
)(1 + ǫ)Rm lnRm

)

,

where ǫ > 0 is a constant and C > 1 is a large enough constant depending on ǫ.

Remark 3.3.3. Note that the gap between the estimate for a nonzero solution (3.3.27)

and the uniqueness class bound (3.0.1) only lies in the constant in the exponent.

This is very different from the known uniqueness class in the smooth setting where

the gap appears as different classes of functions in the exponent.
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Stochastic completeness and

volume growth

Applying the integrated uniqueness class (3.0.1) to bounded solutions of the Cauchy

problem of the heat equation with zero initial condition, we will get sufficient condi-

tions for stochastic completeness in terms of volume growth with respect to adapted

distances.

Theorem 4.1. Let (V, w, µ) be a locally finite and connected weighted graph that

satisfies Assumption 1.1.6. Let d be an adapted distance on (V, w, µ). Assume that

for some point x0 ∈ V , the volume of balls µ(Bd(x0, r)) satisfies

(4.0.1) µ(Bd(x0, r)) ≤ C exp (cr ln r) ,

for some constants C > 0, and 0 < c < 1
2
and for all r > 0 large enough. Then

(V, w, µ) is stochastically complete.

Interestingly, for a certain class of weighted graphs including the physical Lapla-

cian case, Theorem 4.1 implies a volume growth criterion in terms of the graph

distance that is a good complement to the anti-tree example of Wojciechowski. The

first volume growth type criterion for Riemannian manifolds is given by Gaffney [18].

Sharper criteria are exploited in depth by many authors, Grigor’yan [19], Davies [5],

Hsu [27], Karp and Li [32], just to name a few.

By concrete calculations, we are more inclined to believe that Theorem 4.1 is not

sharp. If this is the case, it will be a significant difference from the discrete setting

to the manifold setting where the integrated uniqueness class given by Grigor’yan

[19, 22] gives the sharp volume growth criteria for stochastic completeness.
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4.1 Volume growth criteria in the adapted dis-

tances

Having got the uniqueness class criterion in the previous chapter, we can apply it

to the stochastic completeness problem for a class of graphs.

Proof of Theorem 4.1. Let u(x, t) be a bounded solution to the Cauchy problem

(1.4.7) with zero initial condition on V × [0, T ] for some T > 0. By Theorem 1.5.1,

it suffices to show that

u(x, t) ≡ 0,

on V × [0, T ]. Without loss of generality, we can assume that

|u(x, t)| ≤ 1.

As already mentioned in Remark 1.6.7, d is in fact an adapted distance such

that Assumption 1.6.6 is fulfilled. Note that (4.0.1) implies that the volume of balls

µ(Bd(x0, r)) of (V, w, µ) are finite for every r > 0. Together with Assumption 1.1.6

that

Cµ = inf
x∈V

µ(x) > 0,

it follows that the balls µ(Bd(x0, r)) are finite.

Then by (4.0.1), for any T > 0, and for all r > 0 large enough,

∫ T

0

∑

x∈Bd(x0,r)

u2(x, t)µ(x)dt ≤ Tµ(Bd(x0, r)) ≤ CT exp (cr ln r) .

Since 0 < c < 1
2
, we have that u(x, t) ≡ 0 on V × [0, T ] by Theorem 3.1. �

Remark 4.1.1. In [25], together with Grigor’yan and Masamune, we prove a criteri-

on of stochastic completeness similar to Theorem 4.1 through a different approach

originally due to Davies [5] in the smooth setting. The criterion in [25] applies to a

large class of jump processes on general locally compact metric spaces.

4.2 Volume growth criteria in the graph distance

The volume growth criterion of stochastic completeness in adapted distances helps us

understand the corresponding criterion in terms of the graph metric. The following

is a direct consequence of Theorem 4.1.
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Corollary 4.2.1. Let (V, w, µ) be a locally finite and connected weighted graph that

satisfies Assumption 1.1.6. Let d be the adapted distance on (V, w, µ) defined as in

Definition 1.6.4. If for some point x0 ∈ V ,

µ(Bd(x0, r)) ≤ expCr

for some constant C > 0 and all r > 0 large enough, then (V, w, µ) is stochastically

complete.

The following theorem is a slight generalization of Theorem 1.4 in [25] and can

be viewed as a partial complement to Wojciechowski’s example of stochastically in-

complete graphs with polynomial volume growth with respect to the graph distance

[56]. See also Example 4.3.2 and Remark 2.5.14.

Theorem 4.2.2. Let (V, w, µ) be a locally finite and connected weighted graph that

satisfies Assumptions 1.1.6 and 1.1.7. Let ρ be the graph distance on (V, w, µ) as

before. If for some point x0 ∈ V , and some constant c > 0,

(4.2.2) µ(Bρ(x0, r)) ≤ cr3

for all r ∈ N+, then (V, w, µ) is stochastically complete.

Proof. For any non-negative integer r set

Sρ (r) = {x ∈ X : ρ (x, x0) = r} .

Set

V (x0, n) = µ(Bρ(x0, n)) =
n
∑

r=0

µ (Sρ (r)) .

Put ε = 1
5
and α = 200c where c is the constant in (4.2.2). It follows from (4.2.2)

that, for any n ≥ 1,

#{r ∈ [n− 1, 2n+ 1] : µ(Sρ(r)) > αn2} ≤ c(2n + 1)3

αn2
≤ εn.

It follows that

#{r ∈ [n + 1, 2n] : max
i=−2,−1,0,1

µ(Sρ(r + i)) > αn2} ≤ 4εn,

and hence,

(4.2.3) #{r ∈ [n+ 1, 2n] : max
i=−2,−1,0,1

µ(Sρ(r + i)) ≤ αn2} ≥ (1− 4ε)n.



86 Chapter 4. stochastic completeness and volume growth

Recall Assumption 1.1.7 that

w(x, y) ≤ Cwµ(x)µ(y)

for some constant Cw > 0. For any point x ∈ Sρ(r) we have

Deg(x) =
1

µ(x)

∑

y,y∼x

w(x, y)(4.2.4)

≤Cw

∑

y,y∼x

µ(y)(4.2.5)

≤Cw{µ (Sρ(r − 1)) + µ (Sρ(r)) + µ (Sρ(r + 1))}.(4.2.6)

So it follows from (4.2.3) that

(4.2.7) #{r ∈ [n + 1, 2n] : max
x∈Sρ(r−1)∪Sρ(r)

Degx ≤ 3Cwαn
2} ≥ (1− 4ε)n.

Let d be the adapted distance as in Definition 1.6.4. It follows that, for any

n ≥ 1√
3αCw

,

and any r ∈ [n+ 1, 2n] as in (4.2.7) such that

(4.2.8) max
x∈Sρ(r−1)∪Sρ(r)

Degx ≤ 3Cwαn
2,

every pair of x ∼ y with x ∈ Sρ(r − 1), y ∈ Sρ(r) satisfies

(4.2.9) σ(x, y) ≥ 1√
3αCwn

.

For any chain connecting a vertex x ∈ Sρ (n) with a vertex y ∈ Sρ (2n) and for any

r ∈ [n + 1, 2n] there is an edge xr ∼ yr from this chain such xr ∈ Sρ(r − 1) and

yr ∈ Sρ(r).

The length L of this chain is bounded below by
∑2n

r=n+1 σ (xr, yr). Restricting

the summation to those r that satisfy (4.2.8) and noticing that for any such r,

σ (xr, yr) ≥ 1√
3αCwn

, we obtain

L ≥ 1√
3αCwn

(1− 4ε)n =
1− 4ε√
3αCw

=: δ.
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Now we can estimate d (x0, x) for any vertex x /∈ Bρ (x0, R), where

R > 4 ∨ 4√
3αCw

.

Choose a positive integer k so that

2k ≤ R < 2k+1.

Any chain connecting x0 and x contains a subsequence {xi}ki=1 of vertices such that

xi ∈ Sρ (x0, 2
i). By the previous argument, the length of the chain between xi−1 and

xi is bounded from below by a constant δ, for any i = k0, k0 + 1, ..., k − 1 where

k0 = {[log2
1√

3αCw

] ∨ 0}+ 1.

It follows that the length of the whole chain is bounded below by δ(k− k0), whence

d (x0, x) ≥ δ(k − k0) ≥ δ (log2R− k0 − 1) .

Setting

r = δ (log2R− k0 − 1) ,

we obtain

Bd(x0, r) ⊆ Bρ(x0, R),

whence for all r > 0 large enough,

µ (Bd(x0, r)) ≤ µ (Bρ(x0, R)) ≤ cR3 ≤ C exp (br) ,

for some constants C and b. Hence, the volume growth with respect to the adapted

distance d is at most exponential, and we conclude by Corollary 4.2.1 that (V, w, µ)

is stochastically complete. �

4.3 Examples

Although the uniqueness class in Theorem 3.1 is close to be sharp, the volume

growth criteria of stochastic completeness derived from it, Theorem 4.1, seems to be

not sharp. This is indicated by calculations of the volume growth with respect to

adapted distances of some natural examples whose stochastic completeness is easy

to be determined.

In the following two examples of graphs, we consider the physical Laplacians and
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the adapted distance d as defined in Definition 1.6.4 on them.

Example 4.3.1 (Model Trees). Let (V,E) and f be as in Example 1.6.10. Take

f(n) = [(n + 1)s] for some s > 0. By Example 2.5.12, (V,E) is stochastically

complete if and only if 0 < s ≤ 1. As is already shown, for x ∈ V such that

r(x) = n > 1,

d(x, x0) ≍ (n+ 1)1−s/2.

And for n > 1,

µ(Bρ(x0, n)) ≍ S(n) ≍ (n!)s.

By Stirling’s formula, there exist constants 0 < c1 < c2, 0 < C1 < C2 such that

C1 exp (c1n lnn) ≤ µ(Bρ(x0, n)) ≤ C2 exp (c2n lnn) ,

for all n large enough. Hence, for some constants 0 < c3 < c4, 0 < C3 < C4 for all

r > 0 large enough,

C3 exp
(

c3r
2

2−s ln r
)

≤ µ(Bd(x0, r)) ≤ C4 exp
(

c4r
2

2−s ln r
)

.

As s > 0, we see that 2
2−s

> 1 and this type volume growth is far beyond the scope

of Theorem 4.1.

Example 4.3.2 (Anti-trees). Let (V,E) and S(n) be as in Example 1.6.11. First

we take S(n) = [(n+1)s] for some s > 0. By Example 4.3.2, (V,E) is stochastically

complete if and only if 0 < s ≤ 2. Similar to the previous example, for x ∈ V such

that r(x) = n > 1,

d(x, x0) ≍ (n+ 1)1−s/2,

if 0 < s < 2 and

d(x, x0) ≍ ln(n+ 1)

if s = 2. For n > 1, we have

µ(Bρ(x0, n)) ≍ n1+s.

So when 0 < s < 2, for all r > 0 large enough,

C1r
2+2s
2−s ≤ µ(Bd(x0, r)) ≤ C2r

2+2s
2−s

for some constants 0 < C1 < C2. And similarly for the case s = 2,

C1 exp c1r ≤ µ(Bd(x0, r)) ≤ C2 exp c2r
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for some constants 0 < c1 < c2, 0 < C1 < C2 and for all r > 0 large enough.

So far everything seems within the scope of Theorem 4.1. But we can make

subtler choices of S(n) such as S(n) = [(n + 1)2 lns(n + e)] with n > 0. Again by

Example 4.3.2, (V,E) is stochastically complete if and only if 0 < s ≤ 1.

To calculate the adapted distance d, note that for x ∈ Sn and y ∈ Sn+1 such

that x ∼ y, we have for all n large enough

σ(x, y) ≍ 1

(n + 1) lns/2(n+ e)
.

A direct calculation shows that for x ∈ V such that r(x) = n > 1,

d(x, x0) ≍ ln1−s/2(n).

For n > 1, we have

µ(Bρ(x0, n)) ≍ (n + 1)3 lns(n + e).

Hence, there exist constants 0 < c1 < c2, 0 < C1 < C2 such that

C1 exp
(

c1r
2

2−s

)

≤ µ(Bd(x0, r)) ≤ C2 exp
(

c2r
2

2−s

)

,

for all r > 0 large enough. Theorem 4.1 again fails to detect the borderline of volume

growth.

As shown by the previous examples and in analogue with the classical result of

Grigor’yan [22] on manifolds, we are more inclined to think that the borderline of

volume growth between stochastic completeness and incompleteness should be at

(4.3.10)

∫ ∞

1

rdr

lnµ(Bd(x0, r))
= ∞,

type. More precisely, let d be an adapted distance on (V, w, µ) that satisfies As-

sumption 1.1.6. If for some reference point x0 ∈ V , the volume of balls µ(Bd(x0, r))

satisfies (4.3.10), then (V, w, µ) is conjectured to be stochastically complete.

The conjectural volume growth criteria (4.3.10) has exactly the same form as

Grigor’yan’s on manifolds [19]. However, in contrast to the manifold case, one can

not expect to prove this as a consequence of some uniqueness class type result.

So some special features of stochastic completeness (or stochastic incompleteness)

should be taken into count and definitely new ideas may emerge.
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Escape rate

In this chapter, we assume that (V, w, µ) is a locally finite and connected weighted

graph such that Assumption 1.1.6 holds. Let {Xt}t≥0 be the corresponding minimal

right continuous Markov chain as constructed in Section 1.7. We are interested in

an upper bound on how “fast” such a Markov chain can go.

Definition 5.1. Let (V, w, µ) be a locally finite and connected weighted graph such

that Assumption 1.1.6 holds. Let d an adapted distance on (V, w, µ). Fix a reference

point x0 ∈ V . A function R(t) is called an upper rate function (with respect to d)

for the minimal process {Xt}t≥0 (or equivalently, for (V, w, µ)) if

Px0
{d(Xt, x0) ≤ R(t) for all sufficiently large t} = 1.

Remark 5.2. Let R(t) be an upper rate function for (V, w, µ) with respect to the

adapted distance d as in the above definition. Assume further that Assumption 1.6.6

holds. Then from the definition we see that the existence of an upper rate function

implies stochastic completeness of (V, w, µ).

Theorem 5.3. Under the settings in Definition 5.1, we assume that for all r ≥ 2,

(5.0.1) lnµ(B(x0, r)) ≤ f(r),

where f is a positive, increasing continuous function on [0,∞). For technical rea-

sons, we consider two special classes of functions f .

(1) There is some constant M > 0 such that

(5.0.2)
f(r)

r
≤M

for all r ≥ 2. In this case, there exists some constant C > 0 such that the
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inverse function ψ−1(t) of

(5.0.3) ψ(R) = C

∫ R

8

rdr

f(r) + ln ln(r)

is an upper rate function for {Xt}t≥0.

(2) The function f(r)
r

is increasing for r ≥ 2 and

(5.0.4)

∫ ∞

1

rdr

f(r) exp
(

C0
f(r)
r

) = ∞

for some constant C0 > 2. Then there is some constant C > 0, such that the

inverse function ψ−1(t) of

(5.0.5) ψ(R) = C

∫ R

1

rdr

f(r) exp
(

C0
f(r)
r

)

is an upper rate function for {Xt}t≥0.

Remark 5.4. (a) Note that by Remark 1.6.7, Assumption 1.6.6 is automatically ful-

filled since we assume Assumption 1.1.6 and (5.0.1).

(b) The upper rate function as the inverse function of ψ in (5.0.3) seems to be

sharp since it coincides with the results in the manifold case [24, 28]. It would

be interesting to see whether it is true even without the restriction (5.0.2).

We apply Theorem 5.3 to calculate some upper rate functions.

Example 5.5. (1) Take

f(r) = c ln r.

This corresponds to that the volume is bounded from above by some power

function of distance. In this case, the ln ln r term will be small compared to

f(r). So we have

R(t) = C
√
t ln t

is an upper rate function for some constant C > 0.

(2) Take

f(r) = crα

for some 0 < α ≤ 1. Then

R(t) = Ct
1

2−α

is an upper rate function for some constant C > 0.
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(3) Take

f(r) = cr ln r.

Here the constant c > 0 becomes important. If 0 < c < 1
2
, then for any

1/c > C0 > 2, there exists some constant C > 0 (depending on C0) such that

R(t) = Ct
1

1−cC0 ln t

is an upper rate function. If c ≥ 1/2, (5.0.4) cannot be true. So we are not able

to judge the existence of an upper rate function.

Remark 5.6. The last example above gives yet another proof of Theorem 4.1.

The proof of Theorem 5.3 consists of two parts. In the first part, using proba-

bilistic arguments, one reduces the question to estimates of certain solutions to the

heat equation. The probabilistic argument based on the Borel-Cantelli lemma is

standard (see, for example, [24], [28]). The required estimates are obtained then by

analytic methods. We apply the integrated maximum principle Lemma 3.1.1 in a

similar way to Chapter 3.

5.1 Main strategy

We generally follow the strategy in [23], and [24] for upper rate functions of the

Brownian motions on Riemannian manifolds. Recall that Bd(x, r) denotes a closed

ball centered at x with radius r in d. Let {Rn}∞n=0 be a strictly increasing sequence

of positive numbers to be chosen later such that limn→∞Rn = ∞. Denote the balls

Bd(x0, Rn) by Bn and define a sequence of stopping times τn by

τn = τBn
.

Suppose for a sequence of positive numbers {cn}∞n=1 we have that

∞
∑

1

Px0
(τn − τn−1 ≤ cn) <∞.

Then by Borel-Cantelli lemma, it follows that Px0
almost surely

τn − τn−1 > cn

for all n large enough. Let Tn =
∑n

1 ck. With Px0
probability 1, we have that

τn > Tn − T0 for all n large enough, where T0 is some random number. Suppose
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that we can find a strictly increasing homeomorphism ψ : R+ → R+ such that

(5.1.6) Tn−1 − ψ(Rn) → +∞

as n→ ∞. Then with Px0
probability 1, for n large enough and for t such that

ψ(Rn−1) < t ≤ ψ(Rn) < Tn−1 − T0,

we have that

(5.1.7) d(Xt) ≤ Rn−1 ≤ ψ−1(t).

Notice that limn→∞ ψ(Rn) = ∞, so (5.1.7) holds for all large enough t, Px0
almost

surely. In other words, ψ−1(t) is an upper rate function for {Xt}t≥0.

5.2 Exit time estimate

With the main strategy in hand, the key technical problem is to estimate the quantity

Px0
(τn − τn−1 ≤ cn).

By the strong Markov property of the minimal Markov chain {Xt}t≥0, we have

(5.2.8) Px0
(τn − τn−1 ≤ cn) = Ex0

(PXτn−1
{τn ≤ cn}).

By the construction of {Xt}t≥0, since (V, w, µ) is locally finite, we know that

Xτn−1
∈ ∂Bn−1, Xτn ∈ ∂Bn.

Define

rn = Rn −Rn−1 − 1

and assume rn > 2 for n ≥ 1. Hence Xt must run out of a ball Bd(Xτn−1
, rn) before

it leaves Bn. So it follows that

Px0
(τn − τn−1 ≤ cn) ≤ sup

z∈∂Bn−1

Pz{τBd(z,rn) ≤ cn}.

For a fixed z ∈ ∂Bn−1, define

u(x, t) = Px(τBd(z,rn) ≤ t)
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as a function on Bd(z, rn) × (0,∞). It is direct to see that 0 ≤ u(x, t) ≤ 1. Note

that B̄d(z, rn − 1) ⊆ Bd(z, rn). By Proposition 1.7.6, the function

u(x, t) = 1− PBd(z,rn)
t 1,

is a solution to the heat equation

∂

∂t
u(x, t) + ∆u(x, t) = 0,

on Bd(z, rn − 1)× [0,∞) with u(x, 0) ≡ 0.

Fix some n, we can then apply Lemma 3.1.1 to u(x, t). Choose the auxiliary

functions to be

ξ(x, t) = −2α2
ne

4αnt− 2αnd(x, z), and η(x) =
(eαn(rn−1) − eαnd(x,z))+

eαn(rn−1) − 1
,

with αn > 0 to be determined later. Concerning η(x), we have the estimate

∑

y∈V
w(x, y)(η(x)− η(y))2

≤ 1

(eαn(rn−1) − 1)2

∑

y∈V
w(x, y)(eαnd(x,z) − eαnd(y,z))2

≤α
2
ne

2αnd(x,z)+2αn

(eαn(rn−1) − 1)2

∑

y∈V
w(x, y)d2(x, y)

≤α
2
ne

2αnd(x,z)+2αn

(eαn(rn−1) − 1)2
µ(x).

(5.2.9)

It is direct to check that they fulfill the conditions in Lemma 3.1.1, so we have that

for any τ > 0

∑

x∈Bd(z,rn−1)

u2(x, τ)η2(x)eξ(x,τ)µ(x)

≤2

∫ τ

0

∑

x∈B̄d(z,rn−1)

∑

y∈B̄d(z,rn−1)

w(x, y)(η(x)− η(y))2u2(y, t)eξ(x,t)dt

≤2

∫ τ

0

∑

x∈B̄d(z,rn−1)

∑

y∈B̄d(z,rn−1)

w(x, y)(η(x)− η(y))2eξ(x,t)dt,

(5.2.10)

where we used the symmetry of w(x, y) and the fact that 0 ≤ u ≤ 1. Plug in the

explicit forms of the auxiliary functions, we have

u2(z, τ )µ(z)e−2α2
ne

4αnτ(5.2.11)
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≤2

∫ τ

0

∑

x∈Bd(z,rn)

∑

y∈Bd(z,rn)

w(x, y)(η(x)− η(y))2eξ(x,t)dt(5.2.12)

≤2

∫ τ

0

∑

x∈Bd(z,rn)

α2
ne

2αnd(x,z)+2αn

(eαn(rn−1) − 1)2
× e−2αnd(x,z)−2α2

ne
4αn tµ(x)dt(5.2.13)

=
e−2αn(1− e−2α2

ne
4αnτ )

(eαn(rn−1) − 1)2
µ(Bd(z, rn)).(5.2.14)

Recall that we assume that for any x ∈ V ,

µ(x) ≥ Cµ > 0.

It follows that

(5.2.15) u2(z, τ ) ≤ 1

Cµ

e−2αn(e2α
2
ne

4αnτ − 1)

(eαn(rn−1) − 1)2
µ(Bd(z, rn))

Let τ = cn, we have

Px0
(τn − τn−1 ≤ cn) ≤ sup

z∈∂Bn−1

u(z, cn) ≤
√

µ(Bn)

Cµ

eα
2
ne

4αncn

eαnrn − eαn
.

Note an elementary fact that if rn > 2, then

1

2
αnrn < αn(rn − 1)

and hence

1

eαnrn − eαn
≤ αn(rn − 1) + 1

αn(rn − 1)
e−αnrn ≤ (1 +

2

αnrn
)e−αnrn.

Together with (5.0.1), we have

(5.2.16) Px0
(τn − τn−1 ≤ cn) ≤

1
√

Cµ

(1 +
2

αnrn
) exp{α2

ne
4αncn +

1

2
f(Rn)− αnrn}.

Now we prove Theorem 5.3 by specifying Rn, cn and αn. We give separate proofs

for the two classes of functions f .
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5.3 Upper rate function for case (1)

Proof of Theorem 5.3, case (1). We choose Rn = 2n+3 for n ≥ 0 and then

rn = Rn −Rn−1 − 1 = 2n+2 − 1 ≥ 1

4
Rn ≥ 4

for n ≥ 1. Let

αn =
2f(Rn) + 2 ln lnRn

rn
.

Then we have by condition (5.0.2)

αn ≤ 8f(Rn)

Rn

+
2 ln(n+ 3)

2n+2 − 1
≤ 8M + 1,

and

1 +
2

αnrn
= 1 +

2

2f(Rn) + 2 ln lnRn
≤ 1 +

1

f(0)
.

Write

C1 =
1

8e32M+4

for short. Choose

cn = C1
r2n

f(Rn) + ln lnRn

.

The estimate (5.2.16) gives

Px0
(τn − τn−1 ≤ cn) ≤

1 + 1
f(0)

√

Cµ

exp{1
2
(f(Rn) + ln lnRn) +

1

2
f(Rn)− 2(f(Rn) + ln lnRn)}

≤
1 + 1

f(0)
√

Cµ

exp{−3

2
ln lnRn}.(5.3.17)

It easily follows that
∞
∑

n=1

Px0
(τn − τn−1 ≤ cn) <∞.

We can now determine a function ψ such that (5.1.6) holds. Consider

Tn =

n
∑

m=1

cm

≥ C1

16

n
∑

m=1

R2
m

f(Rm) + ln lnRm

=
C1

32

n
∑

m=1

Rm+1(Rm+1 −Rm)

f(Rm) + ln lnRm
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≥ C1

32

∫ Rn+1

R1

rdr

f(r) + ln ln r
.

Set

ψ(R) =
C1

64

∫ R

8

rdr

f(r) + ln ln r
.

By condition (5.0.2) we can see that

Tn − ψ(Rn+1) → ∞ as n→ ∞.

Thus ψ−1(t) is the desired upper rate function. �

5.4 Upper rate function for case (2)

Proof of Theorem 5.3, case (2). Let

ε = (
C0

2
− 1) ∧ 1 > 0

and
8

ε
+ 1 ≥ k0 = [

8

ε
] + 1 ≥ 8

ε
≥ 8.

We choose Rn = kn0 such that for all n ≥ 1,

rn = kn0 − kn−1
0 − 1 ≥ (1− 2

k0
)Rn ≥ (1− ε

4
)Rn > 2.

Choose

αn =
(1
2
+ ε

4
)f(Rn)

rn
.

We have that

1 +
2

αnrn
= 1 +

2

(1
2
+ ε

4
)f(Rn)

< 1 +
4

f(0)
.

Then choose

cn =
εf(Rn)

8α2
ne

4αn
.

The estimate (5.2.16) gives

(5.4.18) Px0
(τn − τn−1 ≤ cn) ≤

1 + 4
f(0)

√

Cµ

exp{−ε
8
f(Rn)}.
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By the assumed monotonicity of f(r)
r

for r ≥ 1 , we obtain that

∞
∑

1

Px0
(τn − τn−1 ≤ cn) ≤

1 + 4
f(0)

√

Cµ

∞
∑

1

exp{−ε
8
f(Rn)}

≤
1 + 4

f(0)
√

Cµ

∞
∑

1

exp{−ε
8
f(1)Rn} <∞.

We can now determine a function ψ such that (5.1.6) holds. Recall that

rn = (1− 1

k0
− 1

kn0
)Rn ≥ (1− ε

4
)Rn.

Note the elementary fact that

1 + ε
2

1− ε
4

≤ 1 + ε,

where 0 < ε ≤ 1. Then we can estimate cn as

cn =
εf(Rn)

8α2
ne

4αn
=

ε

8(1
2
+ ε

4
)2

r2n

f(Rn) exp{2(1 + ε
2
)f(Rn)

rn
}

≥ ε(1− ε
4
)2

8(1
2
+ ε

4
)2

R2
n

f(Rn) exp{2(1 + ε)f(Rn)
Rn

}
.

Write

C =
(1− ε

4
)2ε

16(1
2
+ ε

4
)2 8

ε
(8
ε
+ 1)

for short. Hence

Tn =
n
∑

m=1

cm

≥ ε(1− ε
4
)2

8(1
2
+ ε

4
)2

n
∑

m=1

R2
m

f(Rm) exp{2(1 + ε)f(Rm)
Rm

}

=
(1− ε

4
)2ε

8(1
2
+ ε

4
)2k0(k0 − 1)

n
∑

m=1

Rm+1(Rm+1 − Rm)

f(Rm) exp{2(1 + ε)f(Rm)
Rm

}

≥ 2C

∫ Rn+1

R1

rdr

f(r) exp{C0
f(r)
r
}
,

where in the lase inequality we have applied the assumption that f(r)
r

is increasing
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for r ≥ 1. Set

ψ(R) = C

∫ R

1

rdr

f(r) exp{C0
f(r)
r
}
.

By condition (5.0.4) we can see that

Tn − ψ(Rn+1) → ∞ as n→ ∞.

Thus ψ−1(t) is the desired upper rate function. �
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Notations

N the set of nonnegative integer numbers {0, 1, 2, 3, . . .}.
N+ the set of positive integer numbers {1, 2, 3, . . .}.
Z the set of integer numbers.

#A the cardinality of the set A.

(V, w, µ) a weighted graph, a triple where V is a countably infinite set,

w is a nonnegative function on V × V ,

and µ is a nonnegative function on V .

(V,E) a graph, V is a countably infinite set

and E is a symmetric subset of V × V .

{Xt}t≥0 a reversible minimal continuous time Markov chain.

∂A the (outer) boundary of a subset A of a graph (V,E).

Ā the closure of a subset A of a graph (V,E).

∆ the formal Laplacian on a weighted graph.

Pt the minimal heat semigroup on a weighted graph.
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