
Dissertation

Coordination and Composition Patterns in
the “Curious Robot” Scenario

Ingo Lütkebohle

September 6th, 2011

Abdruck der genehmigten Dissertation zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.). Der Technischen Fakultät der Universität Bielefeld am
27. April 2010 vorgelegt. Verteidigt und genehmigt am 30. September 2010.

Gutachter:
Dr.-Ing. habil. Sven Wachsmuth
Prof. Reid Simmons, Carnegie Mellon University

Prüfungsausschuss:
Prof. Dr. Robert Giegerich, Universität Bielefeld
Dr. Robert Haschke, Universität Bielefeld

Gedruckt auf alterungsbeständigem Papier nach ISO 9706

Abstract

The advancement of robotics as a field towards new applications and domains has
always been accompanied with and enabled by advances in robot software archi-
tecture. This is true for the first plan-based systems, introducing flexibility in ac-
tion sequences, through behavior-based architectures, introducing speed, agility, and
emergent behavior, to hybrid layered architectures with their combination of aspects
of both. Most recently, a focus on the software engineering aspects and component-
based architectures aims to increase engineering efficiency and maintainability, while
also studying the architectural proposals in more empirical depth.

This thesis contributes to this development by advancing architectural principles
needed for better Human-Robot-Interaction (HRI) systems, in particular, situated,
social HRI. These systems are characterized by a tight integration of interaction and
action, and by the need to rapidly iterate designs, particularly the interaction, during
research and development.

Specifically, the well-known principle of describing action execution with finite-
state machines has been developed into a general, abstract coordination interface, the
Task-State Pattern. Firstly, the historical emergence of a commonality in otherwise
different coordination systems has been identified and formalized as an architectural
pattern. Secondly, a means of implementation has been proposed that enhances
abstract observability, allowing diverse tasks to be observed in a general fashion.
Thirdly, the benefits of implementing the pattern in a service-level toolkit have been
demonstrated.

Moreover, the efficient design and engineering of components based on the data-
flow principle has been studied. In particular, a decomposition method to increase
the re-usability of the constituent nodes in such components has been proposed,
based on ideas from event-based software integration. The suitability of the method
for the robotics domain has been studied, to contribute to the design knowledge, and
to suggest possible remedies for situations where data-flow alone is not adequate,
such as maintaining global state.

All of these contributions have been integrated, and empirically evaluated, in a
comparative fashion on multiple successive iterations of an HRI scenario, the “Curi-
ous Robot”. Such comparative evaluation is, to the best of the authors knowledge, a
first in this area. The identified pattern is applied here to provide tight integration
between coordination components in the interaction and manipulation sub-system
without large changes to each. As a result, the scenario realizes detailed mixed-
initiative, multimodal interaction in an object-learning setting.

Acknowledgements

The following work would have been impossible in a very real sense without Julia
Peltason and Robert Haschke, my two primary collaborators in the ERBI project. I
thank them deeply for going with that odd Curious Robot idea and making it much
more than I ever could have done alone.

Thanks to my advisor, Sven Wachsmuth, for sticking with me through many
changes of mind and managing the unmanageable. Thanks to Sebastian Wrede,
for showing me that it can be done, and in style. Thanks to Franz Kummert, for
telling me what I must strive for, and for keeping the bottom line solid enough to
do so. Thanks to my external reviewer, Reid Simmons, for accepting to review the
work of a stranger.

All this time, I’ve had the pleasure of being part of many amazing groups of people.
First of all, the V9 “subgroup”: Christian Thurau, Dirk Stößel, Marc Hanheide,
Volker Wendt and Oscar Carrascero, I owe thanks for many lunches and it ended way
too soon! Thanks to everyone on the DESIRE team, particularly Lars Schillingmann,
Christof Elbrechter, Risto Koiva and Florian Schmidt of the ERBI team for sharing
the curiosity (and the CeBit crunch!). Thanks to Uli Reiser, Christian Faubel, Thilo
Grundmann, Christopher Parlitz and all the others from the TP team for sticking
with it through the end. Thanks to everyone on Q2 for having me despite deserting
them, just as many thanks to the CLF crowd for accepting me as one of their own.
Christian Peters, thanks for many discussions and Florian, thanks (not only!) for all
the video. Not least, many thanks to the ToBI team, for having me in Graz.

Outside of the immediate circle, I would like to give a shout to Roland Philippsen
for introducing me to the conference circle and approving of my bad puns, to Davide
Brugali for supporting us in the TC, and to Yukie Nagai for showing us her country.

To my friends, I cannot emphasize enough how much being anchored through you
means to me. Andi und Tommi, ich verlass mich drauf, dass ihr mich auch mit Dr.
noch genauso wenig ernst nehmt. Simon, Holger, Agnes, Till, Mirco, Andi D. and
Daniel, many thanks for climbing with me. Sarah, Antonia, Claudius and Simone, I
thank for a different perspective and sharing spaces with me. Jim, Bill and Meghan
and the others in Vancouver, Victoria and the isles, thanks for a great time.

Last, and most, many thanks to my family, for supporting me without question
and to Julia, for many common journeys, on the road and in life.

Contents

I. Motivation and Scenario 1

1. Robot-Software for Mixed-Initiative HRI 3
1.1. Context: Social Robots that Learn in Interaction 4

1.1.1. Enabling detailed, yet general, verbal commentary 5

1.1.2. Continuous, bi-directional interaction-action coupling 6

1.2. Architectures for iterative development 7

1.2.1. Within-component composition 8

1.3. Methodology: Case studies on successive iterations 10

1.4. Reusable Software Toolkits . 11

1.5. Summary . 11

2. Experimental Scenario: The “Curious Robot” 13
2.1. “Intuitive” Human-Robot-Interaction? 13

2.2. Scenario Rationale . 14

2.2.1. Learning from Humans . 15

2.2.2. Differences in interaction style 16

2.3. The “Curious Robot” Scenario . 18

2.3.1. Main Experimental Platform 19

2.3.2. Development History . 19

2.3.3. Interaction Overview . 20

2.3.4. System Capabilities . 21

2.4. Interaction Challenges and Remedies 22

2.4.1. Scenario Challenges . 22

2.4.2. The Dialog Structuring Approach 24

2.5. Summary . 26

3. The Task-Interaction Architecture 27
3.1. The Role of Architecture for Robotics 27

3.1.1. Scenario-related Architectural Challenges 32

3.2. System Overview . 32

3.2.1. Components & Functionality 34

3.3. Functional sub-system Schema . 35

3.3.1. Communication . 36

3.3.2. Model of Computation . 37

vii

Contents

3.4. System Schema . 37

3.4.1. Feedback Coupling . 39

3.4.2. Concrete Architecture of the Final Demonstrator 40

II. Coordination 43

4. The Abstract Task-State Pattern 45
4.1. Overview . 46

4.1.1. An Example Problem for Motivation 46

4.1.2. The Solution in a Nutshell . 47

4.2. User’s View . 48

4.2.1. An example life-cycle . 48

4.2.2. Communication . 48

4.2.3. Using the Pattern as a Client 49

4.2.4. Using the Pattern as a Server 50

4.3. Implementing the Pattern in a Toolkit 50

4.3.1. Premises and Design Influences 50

4.3.2. Summary of implementation steps 51

4.3.3. Advantages and Responsibilities 52

4.3.4. Structure . 52

4.3.5. Dynamics . 54

4.3.6. An Example Life-Cycle . 57

4.3.7. Alternatives . 58

4.4. History & Known Uses . 60

4.4.1. Intelligent Machine Architecture 60

4.4.2. Task Control Architecture . 61

4.4.3. Task Description Language . 61

4.4.4. DESIRE Architecture . 62

4.4.5. Active Memory Architecture 62

4.4.6. XCF Task Toolkit . 63

4.4.7. ROS ActionLib . 63

4.4.8. Plan Execution Interchange Language 64

4.5. Consequences . 65

4.6. Summary . 67

5. Separation of Concerns in Life-Cycle Coordination 69
5.1. Pattern Identification and Analysis of Historical Use 69

5.1.1. Example: The COGNIRON Home-Tour 69

5.1.2. Verdict: Successful, but onerous to get right 71

5.1.3. Analysis of a typical component: “Following” 71

5.2. The XCF Task Toolkit (XTT) . 73

5.2.1. XTT Design Guidelines . 73

5.2.2. XTT Structure . 74

viii

Contents

5.2.3. System Interaction . 76

5.2.4. Task Server Implementations 77

5.2.5. Summary . 78

5.3. Proof of Concept: Text-to-Speech Service 78

5.3.1. Preventing Insider Bias and 2nd System Effect 78

5.3.2. History and Use of the Text-to-Speech Component 79

5.3.3. System Context . 79

5.3.4. Stakeholder Analysis . 80

5.3.5. Study Design . 80

5.3.6. Data Analysis . 81

5.4. Summary . 82

6. Life-Cycle Coordination for Mixed-Initiative HRI 83
6.1. Context: Initiative Generation for the Curious Robot 83

6.2. Study Design . 84

6.2.1. Generalization and Validity . 85

6.2.2. Goal: Validate Life-Cycle-Based Coordination 85

6.3. History and Evolution of the Scenario 86

6.4. Coordination Use Cases . 87

6.4.1. Analysis of Coordination Integration 87

6.4.2. From Actions to Activities . 90

6.4.3. Overlapping Activities or “Implicit Completion” 93

6.4.4. External Synchronization for Additional Feedback 96

6.5. Discussion . 98

6.5.1. Life-Cycle Design . 98

6.5.2. Component Types . 100

6.5.3. Life-Cycle Subsets . 100

6.5.4. Overall Suitability . 101

6.5.5. Distribution of Work . 101

III. Composition 103

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition105
7.1. Component Modeling for Distributed Systems 105

7.1.1. Graph-Oriented Program Models 106

7.1.2. Reactive Systems . 107

7.1.3. Computer-Aided and Model-Driven-Engineering (MDE) 108

7.2. Execution models . 109

7.2.1. Classical data-flow model . 109

7.2.2. Kahn process networks . 110

7.2.3. Communicating Sequential Processes 110

7.2.4. Synchronous Data Flow . 111

ix

Contents

7.3. The Filter-Transform-Select (FTS) Toolkit 111

7.3.1. Historical Overview . 111

7.3.2. FTS Requirements & Design 112

7.4. (De-)Composition Principles . 115

7.4.1. Decomposition for re-use . 115

7.4.2. Multi-Level Composition Support 116

7.5. Toolkit Implementation . 117

7.5.1. User-Visible API . 117

7.5.2. Declarative Graph Specification 121

7.5.3. Execution . 123

7.6. Visualization . 127

7.6.1. Activity Diagram Semantics for FTS Graphs 127

7.7. Summary . 128

8. Data-Flow Case Studies 129
8.1. Proof of concept: Data fusion . 129

8.1.1. Functional component overview 129

8.1.2. Analysis of original action selection 131

8.1.3. Graph-based re-implementation 132

8.1.4. Adding visualization . 135

8.1.5. Summary . 138

8.2. Case study 2: Hardware independent serial robot control 138

8.2.1. MABOTIC robot control protocol 139

8.2.2. VISCA control protocol . 142

8.2.3. “scontrol” protocol driver . 145

8.2.4. Discussion . 146

IV. System and Conclusion 147

9. System Evolution 149
9.1. Scenario pre-test: “What is that?” . 149

9.2. Initial Object Learning System . 151

9.2.1. Use Cases . 152

9.2.2. Hard & software components 153

9.2.3. Notes on integration . 155

9.3. User evaluation of the Object Learning System 156

9.3.1. Experimental design . 157

9.3.2. Results of the experiment . 158

9.3.3. Discussion . 162

9.4. Relation to proposed methods . 163

9.5. Extended / Alternative Scenarios . 165

9.5.1. CeBIT demonstrator . 166

9.5.2. Enhanced object learning system 168

x

Contents

9.6. Functional architecture . 170
9.6.1. Interaction subsystem . 170
9.6.2. Motion control subsystem . 171
9.6.3. Non-verbal feedback subsystem 172

9.7. Related Work . 174
9.7.1. Collaborative construction scenarios 174
9.7.2. Interactive mobile robots . 177
9.7.3. Social Robots . 179

9.8. Summary . 181

10.Conclusion 183
10.1. Communication for Coordination . 183
10.2. Rapid Component Composition . 184
10.3. Integration in an HRI scenario . 186

A. Software Metrics 189
A.1. Metrics vs. Case Studies . 189

A.1.1. Tools Used . 191

B. Full Example Frames from Interaction 193
B.1. “What is That?” Sequence . 193

C. Graph and Document Examples 199
C.1. Graph Specification Language . 199

C.1.1. Document Type Definition . 199
C.2. Example graph specifications . 200

C.2.1. Curiosity Generation Specification 200
C.2.2. Selection Visualization . 204

C.3. Example graph visualizations . 206
C.4. Data format examples . 206

C.4.1. Saliency computation output 206
C.4.2. Object detector output . 206
C.4.3. Interaction region . 207

D. Protocol Specifications 209
D.1. MABOTIC iModule Command Specification 209

E. Video Study Material 211
E.1. Questionnaire for the video study . 211

E.1.1. Translation of questionnaire . 213
E.2. Transcription of subject recordings . 214

E.2.1. Responses to free questions (German) 214
E.2.2. Responses to free questions (English) 215

xi

List of Tables

2.1. Scenario Creation Dates . 19
2.2. Example Dialog . 20

5.1. Dependencies in the TTS front-end component. 81
5.2. Chidamber/Kemerer OO metrics for the TTS front-end 81

6.1. Transition summary for a label query. 90
6.2. Transition summary for grasping with update. 93
6.3. Transition summary for implicit completion. 96

8.1. CK metrics for the original selection component 132
8.2. Aggregated CK metrics for node implementations. 135

9.1. Study Plan . 157
9.2. Percent of subjects using a particular concept 159
9.3. Aspect of Grasping described. 160
9.4. User Commands after Failed Grasp . 160
9.5. Replies after System Initiative . 161

xiii

List of Figures

1.1. Example Interaction Steps . 4

2.1. User interface of Rhino, the mobile tour guide robot 13

2.2. Egg crushing . 15

2.3. The static interaction setup. 19

2.4. Frames from the interaction sequence with utterances overlaid. 21

3.1. Package and component overview of the whole system 33

3.2. Abstract sub-system Schema . 35

3.3. Abstract System Schema . 38

3.4. Birds-Eye System Overview . 41

4.1. Components involved in a task. 48

4.2. Basic life-cycle example . 49

4.3. General structure: Distributed with toolkit layers 51

4.4. Minimal toolkit structure for clients 53

4.5. Partitioned life-cycle access . 54

4.6. Methods for example abstract server base class 55

4.7. Invocation sequence for submitting a new task. 55

4.8. Invocation sequence for notifying listeners. 56

4.9. Example of message overlap due to network delay 56

4.10. A fairly general life-cycle. 59

4.11. actionlib client state machine . 64

5.1. COGNIRON Interaction Diagram . 70

5.2. COGNIRON System state-machine . 71

5.3. Structure of components in the XCF Task Toolkit. 74

5.4. The Future and the Callable interfaces 75

5.5. Interaction of service level with the event bus. 76

5.6. Callable task server handler accept/reject interaction. 77

5.7. Original Text-to-Speech context. 79

5.8. Text-to-Speech context with Task Toolkit 80

6.1. Task Interaction in the Curious Robot Scenario. 84

6.2. Task Example 1: Label Query Interaction Sequence 88

6.3. Task Example 2: Motion replanning after User Correction 91

6.4. Task Example 3: Label correction with Implicit Completion 94

xv

List of Figures

6.5. Task Example 4: Gaze Feedback Sequence 97

7.1. Overview of base types. 118
7.2. Abstract bases for node implementation. 118
7.3. Graph and associated interfaces. 119
7.4. Engine and state-support. 120
7.5. State machine for Activatable. 120
7.6. Basic engine execution loop . 125
7.7. Overview of FTS Engine classes. 126
7.8. Junction types in UML 2.0 activity diagrams 128
7.9. Plate notation example. 128

8.1. Typical region fusion input data . 130
8.2. Action selection graph . 134
8.3. Output of the region selection visualization 136
8.4. Graph for the visualization component. 137
8.5. MABOTIC control implementation graph 141
8.6. Line driver graph for the Sony D31. 144
8.7. Command output graphs for scontrol revisions. 146

9.1. Interaction setup and the operator control application. 151
9.2. Use cases of the “Curious Robot” . 152
9.3. Initial object learning setup. 153
9.4. Components in the autonomous object learning system 155
9.5. Situation for “What is that?” in the video study 158
9.6. Overall system value judgments . 161
9.7. State Machine for the initial life-cycle model 163
9.8. CeBIT 2009 trade fair demonstrator 166
9.9. Functional layers in the initial object learning system 171
9.10. Functional layers of the feedback sub-system 173
9.11. SFB360 setup . 174
9.12. Collaborative construction robots. 176
9.13. Interactive Mobile Robots . 178
9.14. Social Learning Robots . 180

B.1. “What is that?” . 193
B.2. “That is a banana” . 194
B.3. “Banana, OK.” . 195
B.4. “How do I grasp that?” . 196
B.5. “With the power grasp” . 197
B.6. “I start grasping now” . 198

xvi

Part I.

Motivation and Scenario

1

1. Robot-Software for Mixed-Initiative
Human-Robot-Interaction

Robotics as a field is characterized by a progression from fixed, pre-taught automation
tasks towards flexible activity in open environments. By supporting integration and
complexity management, robot software architecture has been an essential enabler
on this path, first integrating complex sensors in the sense-plan-act paradigm, then
ideas from biology and psychology, towards reactive, situated architectures.

Along that path, robot software systems are growing not only in capability, but
also in complexity, and size. The first factor is that, usually, more capabilities also
means more software realizing them, plus still more for choosing and combining them.
The second contributor is that many of the components have become individually
more complex, e.g. to cope with unstructured, dynamic environments. The most
developed sub-systems, such as navigation, now routinely rival or surpass that which
was previously only seen in whole systems.

Despite these advances, robots are still quite a ways from being functional in the
real-world, both due to old challenges not being entirely solved and due to new ones
becoming apparent. In the search for solutions, it is not unusual that researchers
have to explore solutions that change existing assumptions, both on the functional
and on the architectural level.

An example of changing architectural requirements that will be a guiding concern
in this thesis currently occurs in Human-Robot-Interaction (HRI). While tradition-
ally HRI has been command-oriented, social and affective methods are now being
added, to improve interaction success and efficiency. Functionally, these require many
new and experimental components, e.g. for affect perception, dialog and learning.
Architecturally, they require a much tighter and bi-directional coordination interface,
to enable detailed feedback about and interaction with the actions of the robot.

Moreover, the growing scope and enhanced capabilities of robots also affect their
development. In particular, capable robots are now usually created by teams, and
this requires a guiding architecture that supports developers, both during develop-
ment and integration. Team-work also increases co-development, where multiple
interdependent components of a system are experiencing rapid change at the same
time. Architecturally, such situations place a strong emphasis on interfaces and
composability of functional blocks.

Therefore, this thesis will go beyond the functional issues and also examine solu-
tions with regard to enabling efficient team-work. Towards this, the solutions are
intended to realize architectural qualities, such as low coupling and encapsulation,
which are known to positively influence overall complexity. Moreover, they will be

3

1. Robot-Software for Mixed-Initiative HRI

evaluated in a team context, over multiple iterations of a significant system.

Besides simple pragmatism, this approach is based on a hypothesis about robotics
research in general: That a good combination of approaches could often simplify
the individual solutions, but such a path is rarely chosen because of overly high
integration effort. As such effort detracts from what is perceived as the primary
research goal, people are more likely to stay on their methodological islands. While
integration is certainly not the only issue, if robotics is to advance as a systems
science, it needs to solve this problem, and this thesis examines how to do so.

1.1. Context: Social Robots that Learn in Interaction

The majority of the work to be presented has been carried out in the context of a
project to realize a social robot that learns from interaction with people. The scenario
is called the “Curious Robot” (Lütkebohle et al., 2009a), and its goal is to explore
interactive teaching in a setting where both partners are active in the process, loosely
inspired by children learning. Figure 1.1 shows two exemplary interaction steps from
it: One where the robot asks for an object on its own initiative (1.1(a)), the other
where it puts an object away (1.1(b)).

(a) Robot asks for the red apple’s label. (b) Robot grasps the red apple.

Figure 1.1.: Example Interaction Steps

Architecturally, the scenario is interesting for two reasons: Firstly, it uses speech
as a concurrent control modality, with a tight, yet flexible, level of integration that
goes beyond the typical command interaction. In particular, interaction is possible
at any stage of robot activity, and both robot and human can take the initiative
for interaction. To facilitate this, the system provides detailed feedback about what
it is doing, enabling the user to modify these activities at any time. Apart from
controlling activities, verbal interaction is also used to query the robot’s acquired
knowledge. Several social structuring mechanisms, both verbal and non-verbal, are

4

1.1. Context: Social Robots that Learn in Interaction

provided to assist this process.

Secondly, the system comprises a full set of perception and action components,
developed by a diverse team, and working across two different (but integrated) phys-
ical platforms: An anthropomorphic robot for interaction, and a hand-arm system
for powerful manipulation. Together, these attributes ensure realistic architectural
challenges, and that a representative set of issues is covered. A summary of the
resulting challenges will now be given, to outline the scope of the work undertaken.

1.1.1. Enabling detailed, yet general, verbal commentary

A seemingly trivial, but often neglected, ability is to provide detailed verbal com-
mentary both on what the robot is doing (“reporting”), and what it understood from
the human (“feedback”). Even with highly trained personnel, such as astronauts, the
lack of verbal responses has been found to impair task success (Fong et al., 2006a).
The ability of the dialog system to provide commentary based on a generic inter-
face to other components has been a crucial architectural starting point, providing a
foundation for what came after.

In practice, there are two fundamentally different ways to achieve such commen-
tary: One way is to place output generation calls into the components performing the
actions. While this is simple and straightforward, it is essentially similar to placing a
debugging “printf” statement into code – useful in the short term, but not a general
solution. It can only report what the author of the component thought of, in the
terms that the author considered, and targeted at the specific output. Furthermore,
it is an add-on that must be maintained in addition to the core functionality, and
thus is at risk of falling out of sync with that functionality. While there is not much
information available in the literature, anecdotal evidence suggests that this is cur-
rently the most widespread method for verbal reporting in systems which are not
explicitly about speech dialog.

In contrast, commentary from observation generates messages by observing the
state-changes an action component undergoes in the course of carrying out its action.
This also requires that the component maintains such state in an observable manner,
but as this form of state-keeping directly supports carrying out the action, instead
of being an add-on, it is not at as much risk of falling out of sync. Furthermore, it
is often already being provided in robotics systems, as part of the coordination or
planning and execution system. More generally, in keeping with the “printf”-analogy,
commentary from observation could be likened (architecturally) to the function of a
debugger, support for which is now standard in all operating systems.

Thus, the requirement for verbal commentary are a subset of those for coordination:
It needs information about which actions are carried out, and what state they are in.
For coordination, the interested party is the coordination manager, for reporting, it
is the interaction manager component.

In both cases a general, action-independent protocol to convey this information
is desirable to prevent a static, inflexible coupling. Again similar to coordination,
reporting also needs detailed state information, for example to differentiate an action

5

1. Robot-Software for Mixed-Initiative HRI

being requested from one actually being undertaken (due to situational constraints,
this is not generally the same).

That said, the typical structure of coordination did require some adaptation to
achieve the non-functional qualities mentioned earlier. Most importantly, tradition-
ally the mapping from action-specific to action-independent states is often performed
in the coordination component. This does not provide optimal re-use (it would have
to be done again in other interested “listener” components). Therefore, it is sug-
gested to place this mapping in the task server, so that all messages sent out by the
server already have both task-specific and abstract state information available for
observation throughout the system.

In spite of the general goal of abstraction, specific information may be required
for better feedback. For example, during grasping, both the motion of the arm to
the object, and the process of grasping itself, is of interest – this corresponds to the
visibility of all tasks, not just global goals. Also, while the abstract level can report
starting and stopping of tasks, it is certainly more helpful to provide information on
what is starting. This requires action-specific details.

Therefore, this thesis will present a means of communicating such information that
i) provides an abstract level for high re-use and decoupling, ii) is associated with more
detailed descriptions for inspection by specialized extensions, and iii) is observable
by many parts of the system.

Furthermore, the goal is to do this in a way which is not specific to the system
described here, but generalizes to most systems. This can only be achieved by taking
proven approaches as a foundation, and thus, a pattern-based approach has been
adopted, that generalizes and extends existing work in this area. General models
of task life-cycle, leading to reusable frameworks for coordinating execution have
been explored by several authors, for example Lefebvre and Saridis (1992); Simmons
(1994); Simmons and Apfelbaum (1998); Kortenkamp et al. (1998); Wrede et al.
(2006). The commonalities, and differences, as well as implementational caveats of
these have not so far been systematically explored, however. One contribution of
this thesis is to generalize them as an architectural design pattern, called “Abstract
Task-State-Pattern”. It is described fully in chapter 4.

1.1.2. Continuous, bi-directional interaction-action coupling

While feedback is important in many applications, for the current system, it has
been only a prerequisite for a more important function: Enabling the human and
the robot to interact about the actions being carried out while they occur. Knowing
when something is going on, and what, is important for that, but the system is also
intended to enable modification, or cancellation, of what is going on.

Such requirements are common to many robotics application, they are the tra-
ditional domain of coordination. What is different in the “Curious Robot” system
is the desire to provide this through natural, situated interaction. This joins two
individually complex sub-systems (motion-control and interaction) at the hip, with
tight integration. The goal is to allow interaction while the action is still being exe-

6

1.2. Architectures for iterative development

cuted. For example, during grasping, the pose might be slightly off, which is fairly
easy to correct during the action (“more to the left”), because the action context is
implicit. It could also be that the robot tries to grasp the wrong object, and the
action needs to be aborted. This is obviously required to occur while the action is
being performed, otherwise it would be useless. Conversely, the motion sub-system
needs to be able to report failure of a task, or failure to update the goal.

On the one side, this requires that the context be addressable, and that the ac-
tion tracking can capture the necessary concepts. More importantly, however, as
mentioned above, two individually complex sub-systems are involved here, and inte-
grating these while keeping overall complexity low is the primary challenge. This has
initially been approached by treating one of them as the service, and the other as the
coordinator, and re-using existing coordination interfaces. While such an approach
resulted in a good decoupling, it suffered from limited integration. Over time, it
became clear that an extension of the coordination protocol is necessary to achieve
better integration, and that the resulting system actually has two executives, which
coordinate amongst each other.

The resulting system structure has been studied on several representative cases,
with an eye towards i) ensuring that the necessary protocol enhancements are re-
stricted to well-defined extension points, and ii) that the overall system retains low
coupling. Chapter 5 describes the initial, and chapter 6 the final experiments.

1.2. Architectures for iterative development

In the requirements discussed so far, the driving force has been better functionality.
However, particularly but not only in research situations, the development process
presents its own challenges. The team-based nature of robotics research has already
been mentioned in the beginning, but another crucial issue is to enable fast iterations,
which, here, will be primarily approached by making it easier to assemble and change
components.

On the one hand, building up a system through an iterative development process is
simply good engineering practice. On the other hand, however, it is also necessary for
research into system architectures: It enables empirical comparison, through before-
after analysis, where a suggested change is compared to a previous iteration of the
same component and/or system.

As systems are growing in size, the problem of composition, i.e. how to assemble
a functional system from components, or a functional components from parts, con-
sumes are larger share of the work. This is the traditional area of architecture, with
many diverse proposals. This thesis broadly follows the approach of hybrid/layered
architectures (cf. Kortenkamp and Simmons (2008)), and in these, particularly the
model of recursively layered structures of increasing abstraction, e.g. as proposed
by Albus (1992). The resulting architectural schema will be presented in chapter 3.
Within this schema, the primary focus of this thesis is on the interconnections be-
tween and within components in an architecture, an aspect that can be hard to

7

1. Robot-Software for Mixed-Initiative HRI

generalize across implementations, but that for exactly this reason is also particu-
larly important, and, in the present author’s opinion, currently insufficiently studied.

The first of these interconnections, that between components, strongly relates to
the communications interface, which constitutes the main contribution for between-
component composition. As it has already been discussed in the previous section, due
to its direct relation to HRI, this section will only discuss the second contribution,
towards within component composition.

1.2.1. Within-component composition

Compositing components from existing building blocks is not a novel issue, and
various approaches of dealing with it have been proposed. Architecturally, the
“pipes-and-filters” (Meunier, 1995), and the more general dataflow (Lee and Messer-
schmitt, 1987; Lee and Parks, 1995) styles are well-known. In languages, visual lan-
guages (Johnston et al., 2004) are popular for “end-user programming” and high-level
prototyping, whereas scripting languages such as Python1 and Ruby2 are commonly
used to combine existing libraries. Not least, behavior definition languages popular
with layered architectures (Firby, 1994; Gat, 1998; Bonasso, 1991) serve a similar
purpose.

All that said, it must be noted that the direct approach for building components,
through manual assembly, is still widely used, possibly even dominant. Therefore,
the question addressed in this thesis is not whether it is possible to use one of these
approaches, as it almost certainly is, but what real benefits it offers, as measured
through empirical studies.

The basic approach taken is to model components as a graph, with nodes as the
processing blocks, and edges transporting data. Conceptually, this is most similar
to the data-flow model, particularly as realized through process networks. The ex-
plicit graph model supports the desired re-use and flexibility goals in the most direct
manner, because the selection and connectivity of the nodes is externally specified.
Moreover, the data-flow model is agnostic with respect to the implementation lan-
guage – it represents a pure composition model that can be combined with different
languages, a necessity for any research system. Last, but not least, graphs are more
expressive than the simple pipeline architectures popular in some domains, and which
are insufficient for many algorithms, such as those using iterative methods.

Taking this model as the basis, the question about the benefits becomes one about
the suitability of data-flow for typical robotics’ components. While the approach can
support a variety of tasks, two issues that have been prominent in the work under-
taken at Bielefeld University are i) scaffolding code and ii) platform independence.
They were thus chosen for case studies of the proposed approach. The resulting work
will now be introduced, with full details found in chapter 8.

1http://www.python.org, also see the Python bindings for ROS ros (2011)
2http://www.ruby.org/

8

http://www.python.org
http://www.ruby.org/

1.2. Architectures for iterative development

Moving scaffolding to composition descriptors

Scaffolding code (also known as “glue code” or “boilerplate code”) is common on
the borders of components. Particularly when components require information from
various sources to perform their function, the code necessary for communication,
type conversion, and so on, can make up a significant portion of the components
codebase. This is despite the fact that it does not directly contribute to the function
of the component.

We have examined this on an information fusion component, with many inputs,
various data type conversions, and common transformations. Such components are
commonly found in robotics systems, both on their own and as part of other com-
ponents. Due to their many inputs and simple structure, they constitute a good
baseline case. The particular items of interest have been how easy to compose, and
change, the component is, and how much re-use of nodes could be realized.

Two difficulties made this nontrivial: Firstly, glue code is often configuration-
rich, e.g. to specify endpoint names or the exact types for conversion. This should
be handled in the model in a manner that keeps this information easy to change.
Secondly, there is usually a reason such code is not simply encapsulated in a library
call, be it that it is too specific, or that a minimal API is desired. Therefore, it
became clear that intermediate level of code granularity is desirable – above function
calls, but below the component levels.

Towards this, it is proposed to use principles known from event-based architectures
to decompose functionality into easily recombinable nodes (cf. section 7.4). The level
of re-use achieved is determined through case studies on conversion of components
to the toolkit (see section 8.1), and by studying the adaptability, and re-usability of
the resulting graph specifications (section 8.1.4). Furthermore, conclusions can be
drawn on the necessary utility support to make said graphs efficiently creatable (cf.
section 8.2.4).

Making platform specific code easily replaceable

The scenarios described in this thesis use several different robots, whose control in-
terface, while similar in many respects, also contained important differences. For
example, while all robots accept commands to set a desired joint position, they dif-
fer in whether later commands silently overwrite earlier ones or not, which directly
influences the external interfaces. The adaptation necessary to achieve a consis-
tent interface has in some ways been the most complex part of the low-level driver
implementation.

Ironically, the platform issue is becoming more prominent as hardware platforms
become more standardized. Widely available platforms usually come with software
frameworks, such as NAOqi (NAO, 2011) for the Aldebaran Nao, ROS (ros, 2011)
for Willow Garage’s PR2 (and many others), Yarp (Fitzpatrick et al., 2011) (for
the iCub), and others. These frameworks are incompatible in many ways, such as
the middleware used or, again, their control semantics. Given the different scope of

9

1. Robot-Software for Mixed-Initiative HRI

the platforms, complete compatibility is unlikely to be achieved anytime soon, but
there are enough similarities that some re-use of functionality appears possible. To
achieve such reuse, it would be useful if i) the framework-specific parts constituted a
replaceable part of the component, and ii) replacing them would be as easy as using
a different configuration file.

One would expect that a graph-oriented composition approach could satisfy both
of these requirements and, for the platforms used in this thesis, that is indeed the
case, as explained in section 8.2. More interesting, however, is how well it does so.
Two experimental studies have been conducted, to examine the complexity of the
graphs created, and how easy it is to make changes to them.

1.3. Methodology: Case studies on successive iterations

The work reported in the following combines system construction with analysis of
empirical case studies. Construction is a necessary first step, but empirically based
analysis is needed to derive generalizable results.

Unfortunately, comparison across systems is not currently the norm in architecture
research, for two primary reasons: Firstly, it is often prohibitively expensive, with
current technology, to build a system of any significant complexity using completely
different approaches. Secondly, systems built independently often differ in very many
aspects, which makes comparison hard, if not impossible. This situation is in stark
contrast to many other research areas, where comparative analysis is the norm.

This thesis addresses this problem in two complementary ways: Firstly, it will
present comparative analyses on successive iterations of a single system (cf. chap-
ter 9). There are both studies that vary individual components only (described in
chapters 5 and 8), as well as studies that add or replace components (described in
chapters 5 and 6). By looking at defined iterations of a single system, comparison at
reasonable effort is made possible, and the resulting architectural qualities become
visible.

Secondly, the subject matter of these studies, as outlined above, are methods that
aim to reduce construction and integration effort. If proven successful, these methods
are expected to lead to opportunities for comparing substantially different systems.

Moreover, these studies are intended both as a first step towards more overall
comparison and to report on the construction of the present system in a way that
others can compare against. The chosen method for reporting, case studies, provides
insight not just into the outcome, but also into the process that lead to it, and perhaps
most importantly, the context in which it was achieved. This is important because
the process, including human dynamics, may have as much to do with the outcome
as the methods used and a purely analytic approach is considered to be insufficient
to capture such effects (Runeson and Höst, 2009).

This is not to say, however, that process will be the primary item examined. In
contrast, the created artifacts will be described using a number of measures and
models. Regarding metrics, several established software metrics have been applied, a

10

1.4. Reusable Software Toolkits

summary of which is given in appendix A.1.1. The models used are primarily UML
and state-machine models, slightly adapted for distributed systems, as outlined in
the respective chapters.

In the words of Fenton, the goal is to

... gradually build up an empirical body of knowledge, simply by pro-
viding relevant quantitative information about real projects that we are
involved with (Fenton, 2001, p. 196).

1.4. Reusable Software Toolkits

The software developed during this thesis is freely available on the author’s home-
page3. Most importantly, this includes the coordination and dataflow toolkits. The
versions used during the present thesis are written in the Java(TM) (Gosling et al.,
2005) language and run on any platform that supports Java. Besides the present
work, they have been used in several other local projects and are considered sta-
ble and reasonably mature. Work to provide these toolkits in C++ is ongoing –
experimental versions have been built, but are nowhere near complete.

The system described in the following also uses many other software packages –
some of which the present author had a hand in, but also many contributions by
others – which are generally not publicly available. An important exception is the
XCF middleware toolkit (Wrede, 2008)4.

In particular, both C++ (for Linux) and Java implementations of the “Active
Memory” event-bus, which is required by the coordination toolkit, are available from
that page. Both are implemented as a network server and can be used regardless
of client language. The C++ implementation has more features, particularly re-
garding persistence, but the Java version has significantly fewer dependencies and is
recommended for trial use.

1.5. Summary

In sum, this thesis will, firstly, present the Abstract Task-State pattern, a general coor-
dination pattern that facilitates both detailed reporting of action during interaction,
and a bi-directional interface to change action through verbal commentary. Sec-
ondly, it will present a decomposition strategy for component decomposition based
on graphs, and a toolkit in support of the graph-based composition approach for
component construction.

These contributions are thoroughly validated on several specific case studies, and
proven throughout the construction of three successive iterations of the “Curious
Robot” system. For the Task-State-Pattern four case studies of components in the
“Curious Robot system” at various levels of integration are presented. An overall low

3http://ingo.fargonauten.de/phd-soft/
4https://code.ai.techfak.uni-bielefeld.de/trac/xcf

11

http://ingo.fargonauten.de/phd-soft/
https://code.ai.techfak.uni-bielefeld.de/trac/xcf

1. Robot-Software for Mixed-Initiative HRI

level of coupling, and tight integration with a generic interface will be demonstrated.
For the graph-based composition approach, improved re-use and flexibility will be
shown on two case studies, information fusion and generalized serial control.

12

2. The “Curious Robot”

Architectures are a means to an end, and as outlined in the introduction, the aim
of the architecture developed in this thesis has been to support a Human-Robot-
Interaction (HRI) scenario, the so-called “Curious Robot”. This scenario, and the
questions and developments from HRI it is intended to address, have been a cen-
tral driving force for architecture design and research. The relevant questions and
approaches will now be introduced, to provide a foundation for later chapters.

2.1. “Intuitive” Human-Robot-Interaction?

Figure 2.1.: User interface of
Rhino, the mobile tour guide
robot (from Burgard et al.,
2000).

Human-Robot-Interaction (HRI) is a broad area
that includes any means by which a human and
a robot can directly interact to accomplish a
task. This encompasses screens-and-buttons inter-
faces placed on a robot, physical HRI where hu-
mans guide a robot through physical contact (Bil-
lard et al., 2008), and social HRI (Breazeal et al.,
2008) which focuses on using social cues with natu-
ral modalities such as speech and gesture. A border-
line area is tele-operation, where the robot is remote
controlled.

In the present work, a system will be considered
where interaction occurs through “natural” modal-
ities, particularly speech and gesture. The goal of
such an approach is an intuitive interaction, that
exploits humans’ existing competence in using these
modalities.

However, just using such modalities does not
guarantee an intuitive interaction. An illustra-
tive example is that of the two mobile robots
“Shakey” (Nilsson, 1984) and “Rhino” (Burgard
et al., 2000). Shakey uses a natural language interface which accepts command sen-
tences typed in on a keyboard. Rhino, in contrast, uses a simple screen-and-button
interface (shown in figure 2.1).

Of these two, Rhino is immediately usable by a naive user because the available
choices are shown on the screen. For Shakey, however, control requires knowledge
of the command language, which suffers from the well-known “vocabulary prob-
lem” (Furnas et al., 1987): The language is far less rich than human language and

13

2. Experimental Scenario: The “Curious Robot”

no untrained user knows which sentences are understood and which are not. Thus,
Shakey cannot be used immediately.

In its defense, it must be said that Shakey is by far the older robot and, further-
more, was not intended for direct interaction. However, it demonstrates that what
some might view as a more “natural” or “advanced” interface can actually be more
difficult to use intuitively.

Having said this, language obviously can be much more powerful than four buttons
for tour selection and has a strong appeal for HRI. The point to be made here is
simply that “just using language” on its own does not yet make a good interface.
Rhino’s example, for instance, emphasizes that communicating a few initial activity
options is necessary for intuitive use.

In the remainder of this chapter, the scenario in which this thesis has been un-
dertaken will be motivated, related to the state of the art and then described in
detail. In particular, the human-robot-interaction and the hardware capabilities will
be described.

2.2. Scenario Rationale

The application area of the scenario is domestic service robotics, in which a robot
is expected to perform services in human homes. In this area, it concentrates on
the manipulation of objects, that is, picking them up, stowing them away, etc. Such
capabilities form the basis for many other, more sophisticated tasks, in which they
must be sequenced according to the particular task at hand.

It is expected that a robot will come with basic knowledge of objects and manipu-
lation but that such knowledge is limited. Typical things that are hard to prespecify
include the particular names for objects used by the robot’s owner, the sheer diver-
sity of objects, particulars of manipulation which have to be obeyed due to local
constraints, the exact order of sequences to carry out, and so on.

Therefore, robots must be able to acquire the missing knowledge during operation
and this has been a relatively active field of research. In it, one strain emphasizes
autonomous exploration by the robot, whereas the other emphasizes human tutoring.
Autonomous exploration can yield knowledge of what an object looks like and how
it moves (for example Metta and Fitzpatrick (2003)). It can also, for manipulators
with limited degrees of freedom, yield possible grasp poses fairly quickly (e.g. Zhang
and Rössler (2003)).

In other areas, the purely autonomous approach is too limited, however. On the
one hand, this includes complex search spaces, such as those posed by a manipulator
close to the human hand with its many degrees of freedom. Search in such spaces
can be sped up drastically by emulating demonstration actions (Billard et al., 2008;
Steffen et al., 2009). On the other hand, it includes everything which is specific to
a particular person or set of persons, such as object labels. This is knowledge which
must necessarily be either synchronized with a human or learned from scratch and
such learning is the focus of the present scenario.

14

2.2. Scenario Rationale

2.2.1. Learning from Humans

Of the many aspects that could be acquired from human input, for learning of ob-
ject manipulation, two areas are of primary interest: Learning of robot motion and
learning of object attributes (such as labels).

Learning a motion in itself poses many challenges, which have been called a
“Pandora’s box of important computational questions in perceptual motor con-
trol” (Schaal, 1999, p. 239). Motion learning is divided into the acquisition of
so-called “motion primitives”, and learning sequences of such primitives that achieve
complex actions. Motion primitives may be basic actions (such as reaching) or com-
pound actions such as “grasping a cup” or “walking”. The compound representation
is less flexible but results in a more compact state-space. The chosen abstraction
level also has implications for interaction and this work will use abstract primitives.

For the present scenario, it is not so much the learning of motion primitives itself –
they are assumed to be already known – which is interesting, but their configuration.
Motion primitives are generic and have to be “adjusted for a specific goal” (Schaal,
1999, p. 238), e.g. to specify the target of a grasp. In a given interaction situation,
this specification may be either determined automatically from the scene or specified
by the human partner. Thus, the interaction and the motion sub-system must be
able to communicate about these specifications.

Furthermore, the sequence of actions executed throughout the interaction could
be an excellent basis for the learning of activities. While the present scenario has
concentrated more on the interplay between interaction and a single action, learning
about activities would be a natural extension and most likely possible using the
proposed interaction paradigm.

Learning of object attributes

The label is the most obvious candidate, of the possible object attributes, for learning
from humans, because it is not intrinsic to the object and cannot be acquired in any
other way. However, other attributes, such as softness, may also be very worthwhile
to learn from humans, to prevent unsavory accidents, or just to select the most
appropriate and efficient means of manipulation.

Figure 2.2.: Egg
crushing (Piccoli,
2009).

Furthermore, human feedback can also make a hard task
easier. For example, the method shown in figure 2.2 eventu-
ally manages to grasp the egg autonomously without break-
ing it (and generalizable, too), but it is actually very difficult
to distinguish correct from incorrect grasps in a general way.
A flexible ball may exhibit similar compression characteris-
tics without breaking, so just detecting compressibility is not
enough. Alternatively, breaking the egg might actually be the
goal, e.g. when cooking.

In many such cases, human feedback can provide the nec-
essary answer. It also bears noting, however, that for such

15

2. Experimental Scenario: The “Curious Robot”

interaction to be endurable by the human partner, the algorithm must not take too
long to learn.

2.2.2. Differences in interaction style

An often neglected aspect of such learning scenarios is the interaction style. In most
cases, either the designers of the system use it, or users are instructed prior to inter-
action. Not accidentally, such scenarios are also often known as “tutoring scenarios”,
with the implicit assumption that the human is teaching (e.g. compare Breazeal et al.
(2004); Kruijff et al. (2006); Rohlfing et al. (2006) and the survey by Goodrich and
Schultz (2007)).

As a result, many programming-by-demonstration scenarios ignore how to tell the
robot to start learning and also ignore how the “tutor” knows what to do. HRI
studies which focus on such aspects have shown, however, that the start of an in-
teraction can be problematic (Hanheide and Sagerer, 2008), and they have further
highlighted the importance of the recipient’s reactions (Lohan et al., 2009; Vollmer
et al., 2009). In essence, this comes back to the vocabulary problem mentioned ini-
tially, just extended: Users do not only lack knowledge about the vocabulary of a
robot, they also lack knowledge about what the robot does and does not know. When
humans encounter similar problems, the recipient is instrumental in communicating
its understanding to ensure smooth interaction (Pitsch et al., 2009).

Put another way, the central issue is that there are two areas of knowledge: One
is the target area, e.g. object labels, motions, and so on. In this, the human is the
expert. The other, however, is the interaction style and here, the robot is in some
sense more “knowledgeable” than the human or at least, it is more restricted and
thus constrains the interaction and the goals.

Mixed-Initiative Interaction

An approach that explicitly acknowledges the flexible change of roles in interaction
is represented by so-called mixed-initiative interaction (MII):

Mixed-initiative interaction refers to a flexible interaction strategy in
which each agent (human or computer) contributes what is best suited
at the most appropriate time (Marti A. Hearst, introducing Allen et al.
(1999)).

An example of MII in robotics is “traded control” (Kortenkamp et al., 1997), where
robots are partially autonomous but may require human assistance. The principle
has also been applied to a mixture of robot teams and humans, where robots can
both interact amongst themselves and with humans (Murphy et al., 2000).

A crucial aspect in mixed initiative is that, firstly, participants must have some
degree of autonomy and, secondly, there must be a criterion for deciding when to
take or relinquish initiative. In the examples mentioned above, these are either failure

16

2.2. Scenario Rationale

situations or complementary activities (e.g., where a particularly expensive sensor is
only present in few robots).

While mixed-initiative introduces flexibility into the interaction, the applications
so far still assume the human user to be an expert who knows how to react. This
makes sense in their target applications, but in a learning situation, many other
aspects often need to be dealt with, such as the focus of attention, and additionally,
the initiative can change much more often than in the aforementioned situations.
Therefore, additional guidance is necessary.

Social HRI

In contrast to the above, social HRI focuses explicitly, and sometimes exclusively, on
the social aspects of an interaction. The characteristics desired for social interactions
are “efficient, enjoyable, natural and meaningful” (Breazeal et al., 2008). Note here
the converse to the previous situation: That the interaction is effective is tacitly
assumed.

In fact, much research on social HRI focusses not on the task but on achiev-
ing prerequisites for successful interaction, which may then lead to successful task
achievement. Apart from the functional side, much of this research is also motivated
by an interest in “social intelligence” as such, e.g. because of studies that suggest
that social intelligence, including general emotion and empathy, is a precursor and/or
base for rational reasoning in general (cf. Dautenhahn, 1995; Damasio, 1994).

For the present work, however, one particular aspect of the research in social
robotics is most interesting: The wide-spread use of paralinguistic (nonverbal) cues
inspired by human behavior. Such cues can be used by both the robot and the
human to improve the flow of interaction. Breazeal et al. provide a taxonomy of
such paralinguistic cues as either (Breazeal et al., 2008, p. 1352; my emphasis):

1. Regulators: expressions such as gestures, poses and vocalizations that are
used to regulate/control conversational turn-taking.

2. State displays: signs of internal state including affect, cognitive, or conver-
sational states that improve interface transparency.

3. Illustrators: gestures that supplement information for the utterance. These
include pointing gestures and iconic gestures.

All of these are potential candidates for reducing confusion in naive users but it is
surmised that state displays and illustrators will be most relevant for communicating
what the the task is about, whereas regulators are more important to manage the
overall interaction and possibly detect errors.

Autonomy

Bekey (2005) defines autonomous systems as “systems capable of operating in the
real-world environment without any form of external control for extended periods of

17

2. Experimental Scenario: The “Curious Robot”

time.” Interestingly, while he also discusses robot learning at length (Bekey, 2005,
chapter 6), it is primarily seen as a prerequisite for autonomy, furthering the goal for
robot to be “able to operate in a world of humans” (Bekey, 2005, p. 471).

This work certainly shares the goal of enabling robots to live amongst humans
and also that learning is required to achieve that goal. However, more than just
a prerequisite, learning and autonomy are viewed to be mutually supporting. In
addition to learning for autonomy, the following two aspects are also considered
important.

Autonomy in learning. A robot needs to be autonomous in asking for information
that can then be used for improved autonomy. This includes both taking the
initiative, as well as deciding when such information would be advantageous.
Most importantly, it relieves the user of the burden to have to know what to
teach.

Learning about autonomy. Just as important, a robot must be able to learn about
restrictions on its actions, so that it does not repeatedly initiate actions that
are undesirable. This also includes the ability to react to input from the human
when not expected (because, hopefully, the robot would not have undertaken
an undesirable action when it expected it to be countermanded).

On an abstract level, this view is similar to the requirement that “inner directing
mechanisms can be reflected upon and/or selectively modified”, specified by Boden
(2008, p. 306). To that, the present work would like to add that such reflection
and/or modification can also occur external to the system (i.e., by a human) and
that therefore, it is beneficial to be able to treat human input in a similar way.

2.3. The “Curious Robot” Scenario

The central interaction idea explored in this thesis is that the robot structures the
interaction. On the surface, this takes the form of asking questions, and commenting
on actions while they are executed. Thereby, the robot provides information on what
it knows and requires, and also implicitly, when interaction is possible at times that
the human might not initially except. Regarding the task at hand, the robot remains
in a learning position, but regarding the interaction, it assumes an initially driving
role, with interaction autonomy. After the human has learned about the interaction
style, she can assume more initiative.

The purpose of such learning about the dialog is that it integrates everything into
one, complete interaction – starting from the point where a human walks up to the
system, through the learning interaction, to the point where the results of learning
are verified. The ultimate goal of this research are systems that can be used by naive
users without prior instruction, because the scenario provides integrated guidance.
Naturally, achieving this goal requires more than just the architectural contributions
presented in this thesis, but they provide the required foundation on which to realize
better interaction components.

18

2.3. The “Curious Robot” Scenario

2.3.1. Main Experimental Platform

The main experimental platform consists out of two fixed 7-DOF industrial ma-
nipulator arms that carry a Shadow “Dextrous Hand” each, and the anthropomor-
phic robot torso BARTHOC (Hackel et al., 2005). The industrial manipulators are
mounted from the top, the humanoid torso is situated at the back. A view of the
setup from the point of view of human partner is shown in figure 2.3(a) and fig-
ure 2.3(b) shows a birds-eye sketch of the setup. Besides the visible hardware, there
is a camera (640x480, RGB) looking down at the table from the ceiling. Two stereo
microphones left and right of the humanoid robot provide speech localization, and
a head-set is used for speech recognition. Lastly, a CyberGlove II (LLC) provides
hand posture sensing.

(a) View from the human’s position

Table

Bowl

Visible area

BARTHOC

Human

1
8

0
cm

131,8cm

9
7

,4
cm

(b) Sketch of setup

Figure 2.3.: The static interaction setup.

2.3.2. Development History

Several different integrated systems have been created over the course of this thesis,
as specified in table 2.1. The dates given are the completion dates for integration.
Partial integrations or developments on the level of individual components which did
not result in a significant change of the scenario have not been listed.

Date Name Comments

Feb 2008 Pre-Study BARTHOC only, no manipulation, cf. 9.1
Jun 2008 Curious Robot Bi-Manual Interaction, cf. 2.3.3
Mar 2009 CeBit 2009 No manipulation, first gaze feedback, cf. 9.5.1
Nov 2009 Final Demonstrator Haptic learning, advanced dialog, cf 9.5.2.

Table 2.1.: Scenario Creation Dates

19

2. Experimental Scenario: The “Curious Robot”

Of these scenarios, the June 2008 scenario has been the one with which the most
user testing was carried out. A version of the scenario demonstrated at CeBit trade
fair 2009 also received a lot of user exposure, but it was limited in functionality and
the trade fair situation precluded capturing personalized data. As of the time of this
writing, the final demonstrator has been demoed and tested at various occasions, but
not with naive users.

2.3.3. Interaction Overview

The overall goal in the scenario is that the robot learns facts about everyday objects,
specifically, the names humans use for them, and which of its grasp types it may
apply. This information is determined in an interaction setting where these objects
are present, through interaction with a human partner in a natural speech dialog.
Once it has acquired the necessary information, the robot will move away the object
and proceed to the next one.

At any point during this basic scheme, the human may interject with corrections,
requests to abort an action, requests to present the knowledge acquired, and so
on. Doing this during the activities themselves is much more efficient than after,
e.g. to abort an action as soon as the human has detected an error, or filling wait
time by asking for knowledge. This should of course be possible without requiring
detailed information about the implementation, e.g. by learning from the robot’s
explanations.

Speaker Dialog-Act Verbal Non-verbal

1 Human - Hello, robot. -
2 Robot Greet Hello. -
3 Robot Learn label What is that? Point
4 Human - . That is a banana. -
5 Robot Confirm hypothesis. Banana. OK. -
6 Robot Learn grip How can I grasp the banana? -
7 Human - . With power grasp. -
8 Robot Confirm hypothesis. Power grasp. OK. -
9 Robot Explore grip I am going to grasp the banana. -
10 Robot Confirm OK, I start grasping now. Grasp
11 Human - Stop! Release
12 Robot Abort action OK, I stop. -
13 Human - Grasp the banana! -
14 Robot Confirm start OK, I start grasping now. Grasp
15 Robot Confirm end OK.
16 Human - Good bye. -
17 Robot Say goodbye Good bye. -

Table 2.2.: Example Dialog (adapted from Lütkebohle et al., 2011, table 2)

Some example photographs from the sequence in table 2.2 are shown in figure 2.4.

20

2.3. The “Curious Robot” Scenario

They are also reproduced at full size in appendix B. Please note that the images have
been taken from the initial version of object learning system (cf. section 2.3.2), as it
was the one that has received most user testing.

(a) “What is that?” (b) “That’s a banana.” (c) “Banana, OK”

(d) “How do I grasp...” (e) “... power grasp” (f) “Grasping now”

Figure 2.4.: Frames from the interaction sequence with utterances overlaid.

2.3.4. System Capabilities

In the capabilities of the system, a trade-off had to be achieved between the overall
complexity and realistic interaction challenges. On the one hand, it was felt that the
project held enough challenges in manipulation and interaction (see next section)
and that, therefore, perception had to be simplified to make the project feasible. On
the other hand, the characteristics of perception are an important influence on the
interaction and must not be stubbed out entirely.

Therefore, object detection and learning has been included and must run quickly, so
that it can be performed during the interaction. This was achieved at comparatively
little effort by using simple features and a black background. Furthermore, real
speech recognition was used, because any real interaction system will have to be able
to cope with the errors introduced by imperfect recognition. However, to prevent
the robot’s noise (which is substantial, both during operation and otherwise) from
impairing recognition too much, a head-set was used for speech input and the stereo
microphones were only applied for localization, which is more robust.

Correspondingly, the challenges have been selected to further the interaction:

• No prior object knowledge is present in the system, both regarding an object’s
visual appearance and regarding its shape or the way it could be grasped. All

21

2. Experimental Scenario: The “Curious Robot”

of these aspects must be learned. Naturally, the position of objects is also
variable.

• No unnatural interaction restrictions. In particular, the interaction partner
should not need to be known in advance, both regarding position and appear-
ance. This also requires speaker-independent speech recognition.

• No prior instruction The human interaction partners should not require prior
instruction to operate the system1.

2.4. Interaction Challenges and Remedies

At first glance, the scenario might appear trivial: Ask for two pieces of information,
then put the object away. The dialog example in table 2.2 already illustrates that
a substantial dialog can result from these simple premises and then there are the
errors. The potential errors are so numerous that the entire following section will be
devoted to them. Afterwards, the chosen interaction strategy will be described, as it
is specifically intended to prevent and/or reduce these issue.

2.4.1. Scenario Challenges

As in any realistic application, numerous things can go wrong perceptually and during
action execution. Furthermore, the dialog must be able to recover from interaction
errors, which is a non-trivial undertaking. Both of these problems are well-known
and the following list is intended as a summary to convey the range of potential
issues resulting therefrom.

• Speech recognition errors. Speech recognition is imperfect, with typical errors
being that words are mistaken for other words (“substitutions”, S), not recog-
nized at all (“deletions”, D), or that noise (e.g., coughing) is recognized as a
word (“insertions”, I). The correctness of recognition is measured by the “word
error rate” (WER), as (S +D+ I)/N , with N being the total number of words
spoken.

The WER is not the only factor in play, as some words are more important
than others and it may still be possible to pick out a few usable chunks from
many errors (Hüwel et al., 2006), or through combination with other modal-
ities (Wachsmuth and Sagerer, 2002). However, the WER does provide an
indication of the errors the rest of the system must cope with.

Spontaneous speech is particularly hard, due to its more irregular nature, with
typical word error rates between 20-40%, as measured by DARPAs SWITCH-
BOARD and CALL HOME tasks (Rabiner and Juang, 2008, p. 533). Even
higher rates are possible due to error cascades (Karat et al., 2000).

1Strictly speaking, this is impossible to achieve, because appearances are already informative, and
experimental settings also require some form of cover story. However, the goal here is to give as
little information as possible.

22

2.4. Interaction Challenges and Remedies

More positively, for task-constrained speech recognition error rates as low as
2.5% have been achieved as measured by DARPAs “Airline Travel Information
System” (ATIS) task (Rabiner and Juang, 2008, p. 523). This underlines the
importance of contextual constraints.

The causes for speech recognition errors are many and particularly relevant for
speech based interaction, so they will be shortly summarized here:

– Out-of-vocabulary words. Words that are not in the training set of the
recognizer may lead to errors. At best, they cannot be matched to any
known word and are rejected. At worst, they are matched to the most
similar word, which is then recognized erroneously. Both of these errors
may further contribute to grammar errors.

– Grammar violations. Grammar is an important statistical recognition cue,
because certain word orders are much more likely than others. However,
human conversational speech is frequently ungrammatical and, further,
word recognition errors may lead to correct sentences becoming ungram-
matical. Grammar design is thus a trade-off between providing helpful
constraints and overconstraining the problem.

– Inapplicable training sets. Speech training sets are expensive to create and
many existing training sets only contain speech from particular situations
(such as reading newspaper articles) or a particular pronunciation (e.g.,
British English). This influences the pronunciation greatly and can also
cause certain errors (such as ungrammatical speech or filler words) to be
underrepresented, thus skewing the language models.

– Foreign speakers. A special case of the previous point, foreign speakers
are often particularly hard to recognize due to differences in phonetic
realization.

• The vocabulary problem. The vocabulary available to the robot is usually sig-
nificantly smaller than that of humans and is not known to the human inter-
action partner (Furnas et al., 1987). This may cause the human to use words
or concepts the robot cannot understand, leading to the aforementioned out of
vocabulary errors. More importantly, however, it may also lead to the human
being confused and not saying anything at all, or asking about possibilities.

• Unwarranted expectations. Closely related to the previous problem is the fact
that, without further information, humans often form expectations about a
system’s capabilities from visual appearance alone (Duffy, 2003; Lohse, 2009).
Such expectations often overestimate the true capabilities of the system (Han-
heide and Sagerer, 2008). This, again, may cause the humans to produce
sentences which the robot does not understand. For examples, see section 9.3.

• Uninterpretable constructions. Even when speech recognition is correct, dialog
systems cannot interpret all valid sentence constructions. In particular, relative

23

2. Experimental Scenario: The “Curious Robot”

clauses, elided words and deictic constructions are difficult and may sometimes
require external information for interpretation.

• Turn-taking confusion. Long processing by the robot or confusion on the part
of the human may lead to pauses which confuse turn-taking in the dialog, thus
causing, for example, both partners to speak up at once or both wait for the
other to speak next.

• Spurious object detections.Object detection may get confused and produce ob-
jects which are not there because of shadows or highlights, motion of the human
and/or the robot’s own motion. This can cause the robot to refer to objects
that are not actually present, or not present anymore. While some of these
spurious results may be suppressed through temporal averaging, this increases
latency (compare previous point).

• Wrong object detections. Visually similar objects may be confused by the robot,
internally assigning the wrong label. This can lead to confusion in the dialog
when an object is referenced that is not actually present. Conversely, another
object of the same type may not be recognized as such due to different lighting
or orientation, leading to repeated questions, which again confuses the user
who assumes that the object has been learned already.

• Temporary failure. As interaction and action execution are largely decoupled,
users may request actions when they are not currently possible. Additionally,
the system may fail to perform an action but not notice this, and the user needs
a means to inform the system about this.

From this list of possible errors alone, it is not hard to understand why many
attempts at Human-Robot-Interaction have resulted in frustration for both users
and developers, or led to restricted scenarios operable only by trained personnel.
The simple fact is that good solutions for many of these problems are not yet known.
Fortunately, it may be possible to reduce some of these issues by combining different
solutions and exploiting the constraints provided by an active robot system.

2.4.2. The Dialog Structuring Approach

The thesis followed in this scenario is that, of the many potential issues outlined,
many can be prevented, and the remaining can be reduced in impact, through active
dialog structuring by the robot. The concrete structuring strategy followed will now
be described.

The most important means for structuring is the implicit capability display,
whereby the robot reveals its capabilities through its actions. Furthermore, to aid
in the crucial start phase, the robot has partial interaction autonomy and can start
acting immediately. The various phrases reveal capabilities, and regulate, as follows:

24

2.4. Interaction Challenges and Remedies

• “What is that?” (Label query) This reveals that the robot has a concept of
objects, but that it does not know their names, yet. The phrase also avoids
use of descriptive attributes.

In the first iteration, this phrase is accompanied by an illustrator gesture,
whereby the robot points at the object. In subsequent iterations, it is also
accompanied by a state display: The robot either looks at the object in question
or at the user.

• “How do I grasp the L?” (Grip query). This has been the initial grip query
phrase. It reveals that the robot can grasp objects, but it does not reveal how
(cf. section 9.3 for why use it). Furthermore, it reveals that the robot has
learned the label, thus making it available for future reference.

• “Show me how to grip L, please.” This grip query phrase has not been used
with naive users, yet, but it is the candidate phrase to indicate that gripping
should be demonstrated using the CyberGlove. It reveals that the robot can
make use of the demonstration (and that it can do so now).

• “OK, power grasp” This informational phrase provides the robot’s technical
terms for grasp types after demonstration, as a shortcut for future use.

• “OK, I start grasping now” This is, firstly, an explicit state display. Further-
more, the use of the word “start” indicates that the action will take a while.
Lastly, it indicates that the action could be aborted, though this is a weak cue
that should be reinforced through other means.

• “I’m passing the bowl. Let me know when to release it.” This response to the
bowl passing request contains an explicit instruction on what to do when the
user is ready to take over the bowl. It also provides a cue as to which word to
use for that request (“release”).

On a more general level, the use of questions in structuring provides two cues:

• Questions are a regulatory cue that lets the user know she can act, once the
question utterance is complete.

• Questions also predispose users to answer in a way that continues the question,
instead of a full sentence.

As an example for the latter, consider object label presentations: When a tutor
explains it directly, full sentences with deictic references are likely to occur in many
different variations. For instance, possible constructions include “That is a ...”, “Look
at the ...”, “Look, a ...”, “The ... here”. Furthermore, the same information may be
given implicitly in many different ways, e.g. as “The X belongs on top of the Y”. In
contrast, when asked like “What is that?”, only one answer construction is used (cf.
section 9.3).

25

2. Experimental Scenario: The “Curious Robot”

2.5. Summary

To enable robots to share their environment with humans and learn novel tasks, they
must be able to learn from humans, but such learning is difficult for both the robot
and the human. To improve this, social cues, natural speech dialog and interaction
autonomy by the robot have been combined in a scenario, where the robot learns
objects attributes in mixed autonomy. In particular, the system attempts to prevent
many potential problems by posing questions autonomously, thus providing both
information on its goal and on its current state. The resulting behavior resembles
that of curious kid, and gave rise to the name “Curious Robot”.

Three different iterations of the system have been built, and evaluated in various
forms. Achieving the integration, and flexible role change, while keeping the system
maintainable, has caused many interesting questions on the architectural level. The
respective solutions, and the corresponding evaluations, makes up the bulk of the
remainder of this thesis. Last, but not least, details on the user-centered evaluations
are found in chapter 9.

26

3. The Task-Interaction Architecture

The architecture design presented in the following is not a wholly new proposal, but
builds on proven structures, particularly layered architectures (Kortenkamp and Sim-
mons, 2008). Based on these, the present architecture intends to advance the state of
the art on integration between Human-Robot-Interaction and robot activities. This
already suggests a, in comparison to earlier descriptions, increased emphasis on the
interconnections between components. Furthermore, to support rapid, incremental
research prototypes, it emphasizes the maintainable construction of systems from
multiple, largely independent sub-systems.

In particular, novel aspects of the resulting system are the tight interplay between
two independent coordination components, one for motion control, and one for dialog
management, and a more concrete description of the functional structure within
sub-systems and components. The principles upon which these are built will be
introduced in this chapter, and the results are frequently touched upon throughout
the remainder of this thesis.

3.1. The Role of Architecture for Robotics

Before going into details of the present architecture, first some context from both
robotics and software engineering.

A rough but useful definition of the role of architecture for robotics is given in Rus-
sell and Norvig (2002, p. 786) as “The architecture of a robot defines how the job
of generating actions from percepts is organized”. Kortenkamp and Simmons (2008,
p. 187) elaborate a bit more on the ingredients of research in robot software archi-
tecture by distinguishing, on the one hand, the subdivision of a robot’s system into
subsystems, and their interaction (the structure) and the “computational concepts”
that shape its design (the style), which includes the communication and control style.

The raison d’être for architectures is succinctly summarized by the same authors
as: “Robot software systems tend to be complex” and the goal of architecture to:

[. . .] facilitate development by providing beneficial constraints on the
design and implementation of robotic systems, without being overly re-
strictive (Kortenkamp and Simmons, 2008, p. 188).

In other words, there are usually many ways of realizing the same functionality in
a robot software system, but not all of them are equally good, particularly when it
comes to the management of complexity. An architecture should guide the developers
towards the better solutions. Complexity management and beneficial constraints for

27

3. The Task-Interaction Architecture

design are the main benefits an architecture should provide and by which architecture
proposals can be compared.

This is generally in line with the software engineering view on software architec-
ture, which views architecture as a sub-field of software design, with complexity
management one of the main goals (Shaw and Garlan, 1996, p. 1).

However, while all systems have an architecture, some in the robotics community
have questioned whether such research will lead to generalizable knowledge on robot
software. For example, Bonasso reports that

There has always been some skepticism in the community that there is
any generality to be derived from using software architecture with robots
[...] (in Kortenkamp, Bonasso, and Murphy, 1998, p. 193).

There are also those that doubt the possibility of a common architecture not for
theoretical but for the purely practical reason, that it is difficult to achieve consensus
in a large community. For example, Smart (2007, p. 5) has asked to “divide the
fields into subfields”, to facilitate agreement on a common middleware, which is one
architecturally relevant component of a system.

This practical concern is echoed by Kortenkamp and Simmons, who observe that
“in many existing robot systems it is difficult to pin down precisely the architecture
being used” (Kortenkamp and Simmons, 2008, p. 187) and that one cause of this is
that “architecture and the domain-specific implementation are often intimately tied
together”.

In essence, this means that the diversity of robotics is a problem in finding common
ground. One big contributing factor is that most roboticists have only experience
with one or a few domains and tend to make assumptions in their implementation
which are not valid in other domains, or for other architectures.

Having mentioned this, it appears prudent to step back a little and re-evaluate
the original goals. While a single joint architecture looks unlikely, this is not all
that uncommon. Many fields have several competing architectures, which usually
share a few common principles but differ in others. Also, it is probably the case
for applications from many other fields that architecture and implementation details
become blurred with time and re-factoring would be needed to clean things up.

Component-Based Systems

Fortunately, a few common ideas on how to architect robot software systems have
emerged and while these may not always give the complete picture, they at least
provide some guidance. Regarding the many differences between systems, maybe an
older quote from Firby still applies:

Many details differ between these proposals, particularly in the area of
philosophical commitment, but they share the common idea that the
actual behavior of the robot at any given moment is the result of a set of
interacting processes acting on input from the environment (Firby, 1994).

28

3.1. The Role of Architecture for Robotics

As Firby alludes to, many differences may be not for technical but for other reasons
(the “philosophical commitment” refers to the representation debate kicked off by
Brooks (1991)). In other words, the proposals often differ in how functionality is
broken up into parts, but they agree that there are fairly independent parts which
must be integrated coherently. This suggests the possibility of an underlying technical
core which is common to all, or at least many, systems.

In fact, recent tutorials by Brugali et al. (2007); Brugali and Scandurra (2009)
have emphasized this point, by making a connection to software engineering and
distributed systems research. In these areas, the type of system common in robotics
is called a “component-based distributed system” and a rich literature for design and
integration exists.

In contrast to the focus on the organization of control prevalent in earlier ar-
chitecture research, software engineering focuses mainly on re-use and flexibility.
Therefore, clear specifications for component interfaces are said to be “key to its
successful use” (Brugali and Scandurra, 2009, p. 89). This approach is based on the
fundamental tenet that “only what is hidden can be changed without risk” (Par-
nas, 1972b,a). Furthermore, explicit contracts are emphasized to lay down “mutual
obligations”, such as “preconditions, postconditions, invariants, and protocol spec-
ifications” (Brugali and Scandurra, 2009, p. 92). Thus, components are treated as
black boxes, but have explicit, well-specified behavior.

Of course, earlier architectures also had component interfaces, as these are re-
quirements of an implementation. However, they were rarely specified or reported
on. Regarding contracts, it can probably be said that the control organization consti-
tutes a contract. Here, the difference to previous research is that explicit specification
of contracts is requested and that such contracts could be used for functional obli-
gations, too. Besides better system specification, explicitly specified contracts also
enable better use of supporting tools.

In general, the concept of component-based systems for robotics is not so much a
novel insight as a bridge to encompass valuable research from other domains on how
to engineer such systems in a disciplined manner.

Separation of architectural concerns

A well-known strategy to reduce system complexity is to break up the problem into
parts that can be solved individually and then recombined in a principled fashion. On
the architecture level, Radestock and Eisenbach (1996) have proposed the separation
of communication, computation, configuration, and coordination. These are defined
in Radestock and Eisenbach (1996, section 2) as:

Communication describes how something is communicated, for example, whether it
occurs through RPC or message passing.

Computation realizes the “behavior” and thus what is communicated.

Configuration defines the interaction structure, i.e. who is communicating with
whom.

29

3. The Task-Interaction Architecture

Coordination defines patterns of interaction, or when something is communicated.

This particular separation is claimed to enable a “high degree of re-use and easier
maintenance”. It must be noted that achieving such independence cleanly can depend
on the particular choices made – for example, RPC-style communication makes it
more difficult to choose the target externally, because the sender already specifies
one. While adaptation or interception can make it possible, they also incur additional
complexity, which must be weighed against the advantages gained.

Therefore, and this is also the area the previous authors have targeted, such sep-
aration is usually only sought at the component level of a distributed systems. The
approach in distributed systems particularly concerned with this separation is known
as event-based distributed systems (DEBS) (Mühl, Fiege, and Pietzuch, 2006).

In contrast to adaptation, DEBS emphasize that components generate and con-
sume event notifications, which have no target (Mühl et al., 2006, p. 3). Thus, there
is no need for adaptation, though it requires components to accept inputs at some
later time instead of immediate results. In notification, there is room for consider-
able variation. For example, a typical event-bus, of which the “Active Memory” used
in this thesis is an example, broadcasts events and then filters based on the event
contents or metadata. This works on the inter-component level, and is maximally
flexible, but also adds some matching overhead.

A second example, the data-flow framework proposed in chapter 7, uses a fixed –
but externally specified – connection between nodes that comes close to a function
call in efficiency. It works on the intra-component level, which requires more efficient
event notification and has less of a need for variation in communication mechanisms.

In sum, the present work shares the goal of separating these concerns and intends
to further it, with an eye on the possible gains and reasonable effort. To this end, two
mechanisms already mentioned – one on the inter-, the other on the intra-component
level – will be introduced. The question whether the desired re-use and flexibility
can indeed be achieved will be one important aspect of evaluation.

Coordination in robotics

Typical coordination concerns in robotic systems are sequencing basic actions to
achieve a complex activity, managing access to scarce resources, and selecting the
next activity to do. This is also often referred to as “control”, but to avoid confusion
with low-level control (as in a PID controller), the term coordination is preferred.

Originally, two fairly different styles have been proposed for this purpose: In the
(much earlier) sense-think-act style, a strict sequence of perception, planning and
acting is repeated throughout. The planning stage predetermines the sequence of
actions to do, taking resource constraints into account, and thus covers coordination.

In contrast, in the behavorial style, a number of action components are running
concurrently, reacting to inputs. Here, coordination is split into two phases: Firstly,
behaviors only become active when certain conditions hold. This may still result in
several conflicting behaviors attempting to run, and therefore, an arbitration step

30

3.1. The Role of Architecture for Robotics

is added. Typical arbitration methods are a priority scheme, as in the subsump-
tion architecture (Brooks, 1986) or combination of the output requests, as in motor
schemas (Arkin, 1989).

The relative merit of these styles has been the subject of intense discussion (e.g.
compare Kortenkamp and Simmons (2008, section 8.2)), much of it because these
questions have also been related to models of cognition. Apart from that, however,
the advantage of behaviors (fast reaction to local stimuli) and planning (optimiz-
ing longer-term activities) proved individually too attractive and led to combined
architectures.

For example, in Gat’s “ATLANTIS” architecture – which is typical of many archi-
tectures at the time – there are three hierarchical layers: “controller”, “sequencer”
and “deliberator”, in this order (Gat, 1998, p. 200). The control layer is supposed
to contain “primitive behaviors”, so this layering could be considered to use a be-
havioral style at the bottom, with behavior-selection and coordination on top. The
use of the term “primitive behavior”, however, already signifies that these proposals
may use different granularities than a pure behavior-based architecture.

This leads to an architectural issue in three-layered architectures: How to as-
sign functionality to the various layers. For example, Mataric (1992) and Connell
(1992) represent two early architectures for mobile robot navigation that use the
same underlying path planning approach and the same landmark types, but dras-
tically different distribution of functionality – Mataric encodes the map in a linked
behavior hierarchy and Connell uses a symbolic model.

Similarly, Volpe et al. (2001) point out that there is still considerable debate
about the best assignment of functionality between planning and execution. Fur-
thermore, they note that the three-layer model obscures the internal hierarchies and
sub-systems contained within the layers.

Decision-making Structure vs. Functional Structure

It would appear that some of the described differences in distributing functional-
ity are due to irreconcilable differences in views about cognitive architectures, but
nonetheless, many similar functional algorithms will be needed. Thus, the primary
objective of this thesis is to enable system construction in a way that facilitates re-
use and reconfigurability and thus leads to better comparability between alternative
architectural choices.

In particular, it would appear that the mentioned styles differ primarily in how
they make decisions. That they make decisions, that these decisions are based on
both sensory input from the world and some form of a model1, and that they result
in some kind of action in the world, these things are common. It might be said that
such a description is too abstract to be useful, because it glosses over the differences
in decision making. However, the position taken in this thesis is not that this view
is better, but rather that it is complementary to the decision-oriented view. Thus,

1Drastically different models, but models nonetheless.

31

3. The Task-Interaction Architecture

while it may obscure decision making, it highlights functional relations. Both of these
views are necessary for a complete architectural description.

The functional structure used in the following is that of a loop with the environ-
ment. These loops will likely exist at various levels of abstraction, so there needs
to be a way to coordinate between them. The differences in architectures are then
expected to be expressed primarily in the number and type of coordination structure
between these loops.

3.1.1. Scenario-related Architectural Challenges

Apart from the previously outlined issues, which are largely shared with all com-
plex robot systems, the following three challenges are specific to the Human-Robot-
Interaction research targeted by the previously introduced scenario.

1. Interaction independence. The optimal interaction policy is often not known
but still the subject of ongoing research. Such research needs to evaluate al-
ternatives, i.e. compare different systems. If a different user interaction would
require changes throughout the system, the effort would make the undertaking
infeasible. Conversely, if a change in the system would require changes to the
interaction immediately, functional progress would be stifled. The notion of
dialog independence (Sotirovski and Kruchten, 1995) from traditional human-
computer-interaction calls for a separation of these sub-systems to achieve the
necessary flexibility. This challenge is the overarching issue addressed.

2. Coupling of activity execution to state monitoring. As mentioned above, during
interaction it is frequently necessary or advantageous to comment on the state
of actions (e.g., whether an action is ongoing, completed, etc.) If the state of
actions can only be inferred from changes to the environment, or by monitoring
of internal variables, any change to the executing component would require
changes to the interaction components, too.

3. Conflicting resource access. Interaction and perception may both require the
same resource, e.g. speech output or a camera head. To resolve such conflicts,
both resource availability and higher-level tasks must be considered. For exam-
ple, while speech could be output continuously or the camera could be moved
incessantly, this would not achieve the purpose. From an architectural point
of view, it is important to ensure that such conflicting accesses can be resolved
without incurring functionally unnecessary couplings between the components.

3.2. System Overview

Like many current robotics systems, the system developed as part of this thesis is a
component-based, distributed system (Stewart and Khosla, 1995; Brugali and Fayad,
2002; Brugali et al., 2007). It consists out of just over twenty functional (cf. figure
3.1) components, described in the following.

32

3.2. System Overview

sensors

<<component>>

Camera

<<component>>

Posture-
sensing Glove

<<component>>

Stereo
Microphones

<<component>>

Robot
Position

actuators

<<component>>

Robot Arm

<<component>>

Robot Hand

<<component>>

Robot Head

<<component>>

Speaker

actions

<<component>>

Information
Gatherer

<<component>>

Look at
Region

<<component>>

Look at
Voice

speech

<<component>>

Dialog
Manager

<<component>>

Speech
Localization

<<component>>

Speech
Recognition

<<component>>

Text to
Speech

<<component>>

Speaking
Detector

<<component>>

Speech
Analysis

motion

<<component>>

Arm
Control

<<component>>

Hand
Control

<<component>>

Head
Control

<<component>>

Hierarchical
State Machine

vision

<<component>>

Object
Detection

<<component>>

Visual
Saliency

models

<<component>>

Object
Model

haptics

<<component>>

Handposture
Recognition

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>><<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 3.1.: Package and component overview of the whole system. Except for the “models”
package (which has been placed to reduce clutter), the diagram has been laid
out to indicate the different functional levels along the y-axis, with sensors at
the bottom and services at the top. Thus, it is a “flattening” of the loop in
figure 3.2.

33

3. The Task-Interaction Architecture

The present system uses the XCF middleware toolkit (Wrede et al., 2006). XCF
offers several interaction patterns, but here, only the event-based notification mech-
anism is used. The whole system is event-based, to decrease coupling between com-
ponents (Faison, 2006; Mühl et al., 2006). Furthermore, the event notification mech-
anism also provides efficient communication at small overhead. For example, the
components in figure 3.1 show “use” associations pointing from the consumer to the
producer. However, the consumers do not have to poll producers actively, but sim-
ply register content-based event matchers on the event-bus (which is called “Active
Memory” in XCF, because it can also provide notification storage). The producers
push new information onto the bus as soon as it becomes available and the bus then
delivers it to the consumers.

The XCF infrastructure components that perform event notification have been
omitted for brevity from most of the diagrams in this thesis, with just a few exceptions
where the exact interaction is relevant for the function. In all other cases, only the
resulting notification is shown, directly linking producer to consumer.

3.2.1. Components & Functionality

The present system can be roughly split in two halves functionally: Motion control
(shown at the top of figure 3.1) and interaction management (below the separator),
which includes perception. The fact that the “use” associations only point from
bottom to top already indicates that the loop between the two sub-systems is not
closed on the sensor-level (though motion control is closed-loop internally). However,
through the use of the life-cycle coordination pattern (cf. chapter 4), there is a bi-
directional high-level interaction, so that completion and failure information can be
communicated.

Robot perception uses three external sensors (for vision, speech and haptics), plus
internal joint position sensing. Based on these sensors, there are components realizing
hand gesture classification, object detection and salient point detection as well as
speech recognition, speaker localization and voice activity detection.

Robot action is realized by three types of components, with one each for the head,
the arms and the hands. Of these, hand and arm control are tightly integrated via
the Hierarchical State Machine (HSM for short) component, whereas the head is
controlled independent, as it does not share a work-space with the arms.

The link between perception and action is realized, primarily, by two coordina-
tion components, the dialog manager and the hierarchical state machine. This is
supported through independent but coordinated behaviors for background activities
(the “looking” components).

Last, but not least, there is a dedicated system initiative component, the “infor-
mation gatherer”. It realizes the internal information acquisition strategy by making
suggestions to the dialog manager. While many of the other components provide
scenario-specific functionality, they only produce it upon request. Thus, in some
sense, this component is the one which creates the drive of the “Curious Robot”.

34

3.3. Functional sub-system Schema

3.3. Functional sub-system Schema

While the control architecture of the present systems follows the style of a recursively
layered architecture (Kortenkamp and Simmons, 2008; Albus, 1992), the emphasis
of this thesis is on the functional structure, and the interfaces needed between the
functional parts. The general idea of a loop with the environment is depicted in 3.2:
It describes the common parts, which every externally visible function of a robot
needs for realization, as a functionally layered, closed loop with the environment.

Sensor

Transformation

Action Proposal

Sequencing

Constraint Checking
Service

Model

1..*

1..*
1..*

1..*

1..*

1

1..*

11

1..*

<<events>>
<<events>>

<<task>>

<<task>>

0..1

0..1 0..1environment

Figure 3.2.: Abstract sub-system Schema. The “environment” here can be either the real
world or the world-view of an underlying sub-system, cf. figure 3.3

For a behavioral style, such loops would be tightly integrated, possibly in one com-
ponent, and with a minimal model. In a pure sense-think-act style, the loops would
be on different hierarchies, with a symbolic model, and action proposals exclusively
passed in from higher levels. A hybrid style also uses several hierarchically structured
loops, but would typically include (limited) action proposal and decision capability
on lower layers.

The schema should not be construed to say that each of these functions must be in
a separate component – for comparatively simple things such as a behavior or PID
control, it may very well be all in one component with functions on different layers.
It is only on higher and more complex levels, that the functional blocks are typically
different, possibly distributed, components.

The functional parts given are not new, but have appeared in similar forms in pre-
vious architectural proposals, sometimes under different names. The will be shortly
summarized now, and an overview diagram at the end of this chapter will also show
the concrete assignments of the components of this system to the parts.

35

3. The Task-Interaction Architecture

Sensor. Measures a conceptually separate sub-system. For the lowest layer of a
robot, this measures from a hardware sensor. For other layers, it observes the
data produced from a lower-level component. The output is the raw sensor
value, typically one or more decimal numbers.

Transformation. Any kind of data transformation, for example, aggregation, win-
dowing, fusion, classification, prediction, etc. The output of these transforma-
tions can be diverse and be both numeric, symbolic or combinations thereof.
There are often several transformations chained together.

Action Proposal. Suggest a new action or a modification of a current action and
produces a description of the desired action. Anything from changing the
motor current (outputs new current value), moving a robot part (outputs target
description), producing a verbal utterance, up to full-blown planning.

Constraint checking. Determines whether a proposed action is possible given the
current system state. For example, this may check a motor duty-cycle limit,
joint limits, the current human interaction state, etc. If the action is possible,
it is output unchanged. Otherwise, a refusal is communicated back to the
proposal component. This is often part of the action proposal, but separated
out here, to facilitate external proposals.

Sequencing. Takes one or more checked actions and coordinates their execution.
For example, this may cause successive actions to be either serialized or all but
the last one being discarded. Synchronization between different services is also
performed here.

Service. A generalization of the common actuator to other components that carry
out longer-running actions as a service. It takes an action representation and
executes it by controlling a lower level (either hardware or an underlying sub-
system). It reports back whether the action was successfully started or an error
occurred. Errors during execution can be either reported here or through an
appropriate sensor.

Model. A model of the environment. Depending upon the type of system, this may
be a very minimal representation of sensor readings, or a more elaborate, ab-
stract representation. Examples include the speed of a motor, the configuration
of a kinematic model, an estimated world-state, etc.

3.3.1. Communication

Most of the connections in the loop are specified as m:n, i.e. each component may
have several inputs and each input may go into more than one component. The
exception to this is the sequencing step, which is explicitly intended to coordinate the
various inputs and produce a coherent action – thus, it needs to be a single component
and each service has to be associated with exactly one sequencing component.

36

3.4. System Schema

The interaction pattern for communication is pure event-based notification from
sensor through transformations to the action proposal stage. After that, it is based
on the life-cycle coordination pattern (cf. chapter 4). This pattern enables commu-
nication about the state of an action without introducing direct couplings between
components.

That said, one note on generality: The schema has been modeled as it is to allow
future extension and it is certainly conceivable that there are multiple components
for most types. However, in most current systems, including the present one, true
m:n communication is common only in the sensing and transformation stages and
even there only at higher levels. After that, there is often only one or a few action
proposal components per loop.

The reason is simply that there are often many sensors and usually even more trans-
formation components, regardless of the type of system. In contrast, action-proposal
are usually fewer, particularly in hybrid architectures with only a few background
behaviors, such as the current one.

However, one other uncommon aspect is not just for future extension: While sen-
sors and transformations are often viewed as output-only, modeling their connections
bidirectionally is intended and reflects the view that these components usually also
have inbound communication. At the simplest end this could be just an ”active/in-
active” state but it could also expose internal variables or training inputs, and thus
facilitate external configuration of these transformations or adaptation through learn-
ing.

3.3.2. Model of Computation

The sub-system schema presupposes a component-based, distributed architecture,
where each component has its own process. For such a model, the schema shown is
complete.

It would be interesting to explore use of the schema for the internal structure of
components, and in fact, its general structure has been designed to encompass low-
level motor control, too. Here, however, the models of computation are more diverse
(cf. Bhattacharyya et al. (2005, chapter 1) for an overview). For the schema to
encompass this, additions may be required, depending upon the exact model chosen.
While such extensions are beyond the scope of this thesis, it is notable that the strict
layering may be impaired for some models, but not for others. If the component is
fairly simple, such as PID control, this is not usually a concern. For more complex
components, use of models which keep the layering (such as discrete event or process
networks) is suggested.

3.4. System Schema

The second part of the schema describes how to combine multiple sub-system loops
into a coherent system. This schema represents the primary architectural guidance
principle proposed, by limiting the points of contact (which represent the extension

37

3. The Task-Interaction Architecture

points) between the loops, and using the task-state pattern for coordination between
them. The proposed approach is visualized in figure 3.3.

The “transformation” stage of the left sub-system becomes the input for the higher-
level “sensor” stage and the “action proposal stage” receives input from the higher-
level “service” stage. These are the only points of contact. Note that there may be
more than one sensor and more than one service in the right sub-system.

Sensor

Transformation

Action Proposal

Sequencing

Constraint Checking
Service

Model

1..*

1..*
1..*

1..*

1..*

1

1..*

11

1..*

<<events>>
<<events>>

<<task>>

<<task>>

0..1

0..1 0..1

Sensor

Transformation

Action Proposal

Sequencing

Constraint Checking
Service

Model

1..*

1..*
1..*

1..*

1..*

1

1..*

11

1..*

<<events>>
<<events>>

<<task>>

<<task>>

0..1

0..1 0..1

world

Figure 3.3.: Abstract System Schema. A full system will usually have more than two loops
and more than two levels, but the general structure remains the same.

That a system is built up hierarchically is a common approach, because of the belief
that “hierarchical structures reduce complexity”, known as Simon’s law after Herb
Simon (Endres and Rombach, 2003, p. 40)2. The reason for this is that sub-systems
may be studied individually and the effect any outside system may have on them is
restricted to the connecting points, thus making it predictable and comprehensible,
even if not all the external systems are known.

The exact choice of the points of contact is a design choice, however. The choice
made in the present system emphasizes re-use and sub-system independence. Re-
use is realized by taking the sensory data for the higher-level sub-system from the
transformation stage, after post-processing and analysis.

It should be noted that the same transformation component may belong to more
than one processing loop and that different loops may post-process outputs that other
loops use directly as input to action proposal. Therefore, access to transformed data

2Simon’s original account has likely idealized this principle beyond the empirical evidence, partic-
ularly regarding the way how hierarchy is created. Nowadays, the view is more that hierarchy is
not inevitable but that it can be imposed to serve a useful function. For example, compare Agre
(2003).

38

3.4. System Schema

at various stages is not prohibited by the schema. However, the schema strongly
suggests that higher-level layers which interact with an action proposal component
use the same input as that component as the basis of their sensory processing.

Sub-system independence is achieved by injecting requests at the action proposal
stage. Often, these take the forms of parameters, such as the set-point of a PID
controller, which are simply used within the action proposal stage and not passed
on. Therefore, control of the underlying sub-system can be said to be indirect,
because the concrete action can only be influenced in ways allowed by the action
proposal component. Direct access to the service layer is prohibited (and, in fact,
prevented by the sub-system encapsulation), to ensure safe operation3.

Furthermore, the design also emphasizes that requests by higher levels are never
guaranteed to succeed. There are numerous reasons for failure to perform as re-
quested, primarily changes in the environment which cannot be compensated, but
also because something is requested which the underlying hardware cannot perform.
Despite best efforts, such cases can occur due to bugs or inconsistencies in any of the
participating components. The present schema provides a clean way of checking and
reporting.

3.4.1. Feedback Coupling

The service layer of the higher-level component requires feedback about the outcome
of its requests. However, in the present design, the only point of contact is the
action proposal stage, whereas the outcome of actions is only known at the service
stage. Thus, a question about the schema might be how the feedback is achieved. The
answer to this question is the life-cycle coordination pattern, introduced in chapter 4,
which provides such feedback.

Given the use of feedback from later stages, it might appear that there is hidden
coupling to these stages of the loop. This may or may not be the case, depending upon
the data exchanged. In principle, and this is why there is no coupling shown in the
schema, coordination can rely solely on the life-cycle states, which are independent
of functionality. In this case, the only data-coupling would be to the data received
and sent by the action proposal stage.

However, if later stages also add information to the action representation, and
such information is used by the other levels, an implicit coupling would indeed be
present. The present system does not do this, but it is certainly conceivable that
other systems might.

3The necessary checks are intended to be lightweight and quick. For example, for collision pre-
vention during motion, one would expect checking of joint limit constraints and direct collision
sensors, not full world-model based collision detection (which would rather be part of path plan-
ning, i.e. action proposal). In other words, fast checks that prevent mistakes and don’t add
significant latency.

39

3. The Task-Interaction Architecture

3.4.2. Concrete Architecture of the Final Demonstrator

This section outlines the sub-systems of the final demonstrator, to provide the context
for the remainder of this thesis. Full details will be given in chapter 9, which discusses
the evolution of the scenarios and evaluates their respective architectures.

The final demonstrator consists out of three coupled sub-systems (cf. figure 3.4):

1. Interaction Management (middle). Realizes the “curious robot”, which engages
the human in a dialog about objects it perceives.

2. Manipulator Control (left). Coordinates control of the main robot arms and
hands, for pointing and grasping, based upon action requests by the interaction
management sub-system.

3. Social Feedback (right). Observes the dialog and produces social cues, such as
gaze feedback and quasi-immediate reaction to user utterances.

To give a rough idea of the components and their interaction, figure 3.4 shows a
birds-eye view of all sub-systems. The main point here is that the coupling between
sub-systems is low, which is a fairly rare sight for a complex robot system. Fur-
thermore, it can be seen that all sub-systems have components in all stages of the
sub-system schema, albeit in different forms and this will be one of the discussion
items during the architecture evaluation.

One further fact worth mentioning regarding figure 3.4 is that some of the com-
ponents are depicted on multiple levels, including gaps (e.g. “Hierarchical State
Machine (HSM)”) or even almost all levels (e.g. “arm control”). Such spread vio-
lates the suggested schema. One reason for this situation is that these are monolithic
components which could not be exhaustively analyzed (so they might contain inter-
nal communication that the present author is not aware of). Thus, while it appears
that they follow the suggested layering internally (compare the notes on the various
functionalities provided by “arm control”), this is not known for certain.

However, the more important reason, here and in the rest of the thesis, is that
these figures represent the reality as it is, not what the present author would have
considered best4. While for some of the components development has been carried
out directly, or could be influenced, for other’s no influence has been possible. Fur-
thermore, for almost all systems, a look in hindsight reveals room for improvement,
so such cases are likely less surprising than a perfect picture.

4Fortunately there is a large overlap, just not a complete one.

40

3.4. System Schema

L
e

v
e

l
2

 :
 H

ie
ra

rc
h

ic
a

l
S

ta
te

 M
a

c
h

in
e

L
e

v
e

l
1

 :
 H

ie
ra

rc
h

ic
a

l
S

ta
te

 M
a

c
h

in
e

 :
 H

e
a

d
s

e
t

M
ic

ro
p

h
o

n
e

 :
 R

o
b

o
t

S
e

lf
Im

a
g

e

 :
 S

p
e

e
c

h
R

e
c

o
g

n
it

io
n

 :
 T

e
x

t
to

S
p

e
e

c
h

 :
 D

ia
lo

g
M

a
n

a
g

e
r

 :
 D

ia
lo

g
M

a
n

a
g

e
r

 :
 S

p
e

e
c

h
A

n
a

ly
s

is

 :
 F

ra
m

e
C

a
p

tu
re

 :
 S

te
re

o
M

ic
ro

p
h

o
n

e
s

 :
 S

p
e

e
c

h
L

o
c

a
li

z
a

ti
o

n

 :
 L

o
o

k
 a

t
R

e
g

io
n

 :
 L

o
o

k
 a

t
V

o
ic

e

 :
 H

e
a

d
C

o
n

tr
o

l

 :
 H

e
a

d
C

o
n

tr
o

l

 :
 L

o
o

k
 a

t
R

e
g

io
n

 :
 L

o
o

k
 a

t
V

o
ic

e

L
e

v
e

l
3

 :
 H

ie
ra

rc
h

ic
a

l
S

ta
te

 M
a

c
h

in
e

L
e

v
e

l
3

 :
 H

ie
ra

rc
h

ic
a

l
S

ta
te

 M
a

c
h

in
e

 :
 I

n
fo

rm
a

ti
o

n
G

a
th

e
re

r
 :

 A
rm

C
o

n
tr

o
l

 :
 A

rm
C

o
n

tr
o

l

 :
 H

a
n

d
C

o
n

tr
o

l

 :
 H

a
n

d
C

o
n

tr
o

l

 :
 R

e
g

io
n

F
u

s
io

n

 :
 A

rm
C

o
n

tr
o

l
 :

 H
a

n
d

C
o

n
tr

o
l

 :
 A

rm
C

o
n

tr
o

l

 :
 V

is
u

a
l

S
a

li
e

n
c

y

 :
 H

a
n

d
C

o
n

tr
o

l
 :

 A
rm

C
o

n
tr

o
l

 :
 O

b
je

c
t

D
e

te
c

ti
o

n

c
o

lli
s
io

n
 d

e
te

c
ti
o

n

h
a

rd
w

a
re

 d
ri
v
e

r

fo
rw

a
rd

 m
o

d
e

l

tr
a

je
c
to

ry
 p

la
n

Figure 3.4.: Birds-Eye System Overview (for details, cf. sections 9.2 and 9.5.2)

41

Part II.

Coordination

43

4. The Abstract Task-State Pattern

The following chapter will introduce one of the two core contributions in the form
of a software design pattern. A design pattern, according to the seminal work of
Gamma, Helm, Johnson, and Vlissides (1994):

A design pattern [...] describes a commonly-recurring structure of com-
municating components that solves a general design problem within a
particular context (Gamma et al., 1994).

The present pattern primarily addresses the architecture of systems:

An architectural pattern expresses a fundamental structural organization
schema for software systems. It provides a set of predefined subsystems,
specifies their responsibilities, and includes rules and guidelines for orga-
nizing the relationships between them (Buschmann et al., 1996, p. 12).

The use of patterns to guide construction is common in many areas. It requires
that existing solutions are analyzed to identify patterns, then report those appear
worth repeating for future reference. In software engineering, this practice has been
popularized beginning in the late 1980s (Beck and Cunningham, 1987), achieving
widespread popularity in the mid 1990s.

An early, and often cited, influence on software design patterns has been work
on patterns for building architecture by Alexander, Ishikawa, and Silverstein (1967,
1977). According to these authors, patterns describe

...an issue that frequently recurs in our environment and explains the
core of the solution for that problem, so that the solution can be applied
repeatedly, without ever replicating it exactly.

At the time of writing, about 15 years later, many books and papers on patterns
have been published, with considerable breadth and depth. Apart from the original
focus on object-oriented software of Gamma and colleagues, software architecture has
also been an important area of pattern work, with the “Pattern-Oriented Software
Architecture” series now at five volumes (Buschmann et al., 1996; Schmidt et al.,
2000; Kirchner and Jain, 2004; Buschmann et al., 2007a,b).

This type of work contrasts with software architecture in robotics, where the focus
often seems to be on the the differences between approaches, despite (or possibly be-
cause of) the prevalence of two common themes, namely behavioral and layered/hy-
brid architectures. While this is perfectly understandable, as authors concentrate on
the things the general approach could not solve, it is the present author’s opinion that

45

4. The Abstract Task-State Pattern

the pattern reporting approach is complementary and may provide a unifying view.
Therefore, in the following, a pattern-based approach for a common architectural
principle will be adopted.

4.1. Overview

The pattern has been distilled based on experience from a number of case studies,
carried out as part of this thesis and described in chapters 5 and 6. Additionally, it
incorporates a review of the relevant literature, both to establish known uses and to
encompass alternative implementations.

There is not a single format for describing patterns, but all of them are are usually
variations and refinements of Alexanders mantra “a solution for a problem in con-
text”. For example, Buschmann et al. (1996, section 1.2) proposes a refined context-
problem-solution structure for the “Pattern-Oriented Software Architecture” series.
The context for the pattern has already been described in previous chapters, so here,
the structure is slightly modified to start with the problem, but otherwise follows
their suggestions.

4.1.1. An Example Problem for Motivation

As a short example, consider an autonomous robot that assists a human by handing
over a cup from the table. This requires a fair bit of manipulation (perceiving
the goal, moving a manipulator, grasping) and Human-Robot-Interaction (specifying
the goal, maybe aborting the action, reporting on robot activity). Much has been
reported in the literature on how to come up with a plan of action for performing
such a task, and then executing it (cf. section 3.1), but the latter usually involves
putting together a number of more basic activities.

Of interest here is the complexity of this “putting together”, particularly the com-
munication necessary. Using basic activities requires deciding when (and if) to start
something, whether progress is being made, and determining if it is successful or
failed. This, in turn, requires knowledge about what is being done, and often also
how. For example, whether the cup has been grasped depends on stable contact of
the effector (what), which could be determined by haptics (how). For arm motion,
success may be tracked by measuring joint angles (different how).

This diversity is a fact of (robotics) life, but it becomes a problem when such
information is needed throughout the system, e.g. to provide feedback on the robot’s
actions, handle a variety of errors in a general manner, or, in general, for all high-
level control. In particular, system integration and team-work are both less efficient
in the face of growing diversity.

Therefore, the primary goal is to provide detailed information about ongoing activ-
ities without requiring detailed knowledge of component implementation throughout
the system. In other words, we are interested in a common abstraction that achieves
polymorphism: A shared interface that handles functionally different components in
a unified manner. This interface is the task-state pattern.

46

4.1. Overview

A unified interface improves decoupling, because it allows applications to be de-
veloped against the common parts only. However, a potential problem is that it
can reduce flexibility, because components must not deviate from the proscribed
procedure. Therefore, secondary goals are, firstly, separation of concerns, to enable
combining task-specific and task-independent aspects cleanly, and secondly, evolv-
ability, in particular to allow changing the common task-state machine in a defined
and maintainable manner.

4.1.2. The Solution in a Nutshell

Terminology

A task is an identifiable piece of work that fulfills a goal. In robotics, a typical
task would be moving an actuator to a certain position. In distributed systems, the
task goal is typically defined by one component, called task client, and executed by
another, called task server. To correctly function, the client must send the goal to
the server, and the server must report its progress using task notifications, which
contain information about the execution state of the task. For the aforementioned
actuator movement, the state could be expressed by a joint position measurement.
The means for exchanging goal and state notifications is subsumed under the term
event bus.

Definition

The “Abstract Task-State pattern”1 structures communication between task client
and server, adding and using an abstract state representation common to all tasks in
the system. It has two parts: An extended task representation, and a communication
interface with both synchronous and asynchronous capabilities.

The task representation consists of a pair of abstract state (new) and task-
specific representation (as usual). The abstract state refers to a state-machine
common to all tasks that the system can carry out, irrespective of their functional
differences. Typical states include “initiated”, “started”, and “completed” or equiv-
alents thereof. The resulting state-machine is called the task life-cycle. Compare
figure 4.1 for an overview of the concepts introduced so far.

The communications interface is based on asynchronous notifications2, so that it
can deliver multiple notifications about state changes. To associate the various notifi-
cations to the task, it includes a (de-)multiplexer. A central advantage of the pattern
is that, through its knowledge of the task’s life-cycle, it can generically resolve some
of the difficulties commonly associated with asynchronous updates. Furthermore,
the client interface described by the pattern includes methods to wait for state tran-
sitions, thus offering a synchronous interface, where that is desired.

1Hereafter also often called Task-State Pattern or ATS pattern.
2Use of multiple synchronous calls is possible, and there is at least one implementation of the

pattern doing so. However, for distributed components, asynchronous notification matches the
decoupled nature of execution better, and thus is considered the typical implementation strategy.

47

4. The Abstract Task-State Pattern

Toolkit

ClientTask LifeCycle ServerTask

ClientInterface ServerInterface

ClientTask LifeCycle ServerTask

ClientInterface ServerInterface
Client Server

EventBus

Figure 4.1.: Components involved in a task.

4.2. User’s View

Before explaining how toolkits realizing the pattern are implemented, this section
will shortly introduce its use by component developers. Besides guidance for these
developers, we hope that this will also make them aware of the advantages of using
the pattern, and ask for it in frameworks that don’t yet offer it3.

4.2.1. An example life-cycle

Component developers should be aware of the task life-cycle used in their system, so
that they know which states and transitions are possible. A simple life-cycle is shown
in figure 4.2: It has only two real states: An “initiated” state, which is held when
the client requested it, but the server has not yet acknowledged, and a “running”
state, when the server is executing the task. The end-states are also relevant, one
for successful (“done”), and one for unsuccessful execution (“canceled”). Note that
unsuccessful execution can also be caused by the server rejecting task execution, e.g.
when it is busy with something else.

There are essentially two ways for interacting with the life-cycle: Inspecting the
task-object and registering for event notifications. The latter is most appropriate if
the delay between a state-change and the reaction to it should be short. We expect
that this will be usually true for servers.

4.2.2. Communication

So far, in component-based robotics, client and servers exchange task-specific mes-
sages that encode the goal to be performed, and the current state of actions. For
example, such data could be a target motor position, respectively the currently
achieved position. To this, using the task-state pattern adds task-independent state-
information, such as whether the target motion is acceptable, currently executing, or

3Currently available open-source toolkits are i) ROS Actionlib, http://www.ros.org/wiki/

actionlib, and ii) the XCF Task Toolkit, http://opensource.cit-ec.de/projects/xtt

48

http://www.ros.org/wiki/actionlib
http://www.ros.org/wiki/actionlib
http://opensource.cit-ec.de/projects/xtt

4.2. User’s View

initiated runningaccepted

done

already done

rejected

cancelled

failed

Figure 4.2.: A basic life-cycle example. The two terminal states could be fused, but then
users would be required to keep track of the event which lead to it.

finished. Managing this information is usually the responsibility of a dedicated task
toolkit. This toolkit takes the place of the communication layer (cf. section 4.3.1).

Interaction between client and server then entails in the client sending goals to-
gether with a task-independent transition event (e.g. [“initiate”, neck pan=50°]).
The server responds with a decision on execution or not (e.g. “accepted” or “re-
jected”). Both client and server may update the task-specific representation. Ex-
amples of such updates would be when the server reports intermediate positions, or
when the client decides based on some external input that the motion so far is already
sufficient. The client can also decide sufficiency for tasks that are not intrinsically
bounded (e.g. moving a mobile base forward at a defined speed).

Because client and server are running independently of each other, situations may
occur where both of them attempt to change the task at the same time. It is the
toolkit’s responsibility to resolve such cases (cf. section 4.3.5).

4.2.3. Using the Pattern as a Client

When the result of the task should be used immediately, the procedure is roughly
as follows: i) Submit the task to the client interface, which returns a task object. ii)
wait either for finish, or for the next transition. iii) check whether the task has been
successful, and react accordingly.

Compared to message-passing, this procedure will provide explicit feedback on
whether the task request has been executed or not. Compared to remote-procedure
calls, it can provide explicit feedback both at the beginning and at the end of task
execution, by waiting for the next transition in step 2, instead of just for completion.

Furthermore, more detailed life-cycles, such as the one in figure 4.10 (page 59), can
provide information about, and interaction with tasks in more versatile ways, while
keeping the same coherent interface. Updating goals and canceling tasks are two
often-used functions a more general life-cycle can provide in a consistent manner.

Last, but not least, instead of waiting, clients may also ask to be notified of state-
changes whenever they occur. This facilitates managing several tasks at the same

49

4. The Abstract Task-State Pattern

time, and can also be convenient when only some transitions necessitate a reaction
(e.g. failures).

4.2.4. Using the Pattern as a Server

Creating a server for using task-state based reporting is fairly straightforward: Pri-
marily, a server must map from its internal view of the task’s progress to the abstract
state-machine, and report the transitions. Depending on the life-cycle, this may ei-
ther be together with its usual messages, or in addition to them. For example, when
it starts acting upon a task, the server should publish an appropriate event (in the
example life-cycle, this would be “accepted”). The same applies when the task is
complete.

When advanced life-cycles are used, the server implementors face more work, e.g.
to support updating and cancellation. Fortunately, because of the general state-
machine, the toolkits can support default implementations (rejecting the requests,
or using cancel-then-restart for updates). In this way, server implementors can start
using a basic implementation, then transparently add more capabilities.

Readers familiar with other coordination approaches might have noted that placing
some of the mapping into the server is a distinctive feature of the proposed pattern.
In fact, earlier realizations of the pattern often didn’t do this, yet (cf. section 4.4).
Only the one presented in this thesis (XTT) and the ROS actionlib Marder-Eppstein
and Pradeep (2010), work this way. As these have been independently developed, this
refinment is still considered part of the pattern. The advantage here is that, i) the
life-cycle provides a standardized semantics for communication between client and
server, and ii) generic observation (which only looks at the abstract states) becomes
possible easily, because the mapping is performed in a single place, before messages
are sent out.

4.3. Implementing the Pattern in a Toolkit

Having discussed what the pattern is good for, and how it can be used, we will
now provide guidelines for implementation. This will be of most interest for toolkit
developers, but also provides a general overview about the boundary between the
toolkit and other components.

Patterns are rarely implemented in exactly the same way, so we will first describe
the most typical implementation of the pattern, and then discuss alternatives. Fur-
thermore, common pitfalls and appropriate remedies will be discussed.

4.3.1. Premises and Design Influences

We consider implementations for distributed systems, assume that task execution
is fundamentally asynchronous, that multiple tasks may occur in parallel, and that
each of them can have multiple state changes and/or results. Therefore, we assume
that communication is using asynchronous event notifications.

50

4.3. Implementing the Pattern in a Toolkit

The suggested implementation of the pattern is as a toolkit layer, i.e. a library
for re-use in all components of a system. Apart from re-use, we advocate this to
ensure safety and robustness: Our experience is that communication between asyn-
chronously running components has many edge cases which are often not covered
until testing reveals them. A toolkit can combine experience from many systems
and cases, to provide a safe and robust behavior. Using it in a layered structure, as
shown in figure 4.3, prevents the user’s from bypassing it.

Client Server
Client Toolkit Server Toolkit

Event Bus

Figure 4.3.: General structure: Distributed with toolkit layers

The second most important design goal is a gradual adoption curve for developers.
Developers generally prefer the simplest solution and while the pattern’s life-cycle
provides evolvability of the overall system, it may, at first, appear more complex
than needed. Therefore, the toolkit should afford developers the choice to have their
components support only a minimal subset, with opportunities for gradual growth.

4.3.2. Summary of implementation steps

This section is intended as a (short) check-list of implementation steps and a guide
to the remainder of this chapter.

1 Specify the life-cycle model

The life-cycle is a finite-state machine that contains all states and their possible
transitions for tracking the task’s progress. More details on choosing a good state-
machine will be given in subsection 4.3.6. For implementing it, we recommend using
a configurable model, to aid evolving the life-cycle.

In addition to the finite-state-machine, it should be specified which transitions may
be invoked by the client, which by the server, and which by both. This facilitates
checking allowable transitions by the toolkit (see next step).

2 Specify client and server task objects

The task objects contain the task representation, and the current instance of the
life-cycle. See figure 4.1 and section 4.3.4 for minimal attributes needed.

The task objects should be distinct for client and server, to check that only allowable
transitions are invoked.

3 Implement a demultiplexer for notifications

51

4. The Abstract Task-State Pattern

The (de-)multiplexer maps from incoming notifications to the corresponding task
object, and transmits outgoing notifications. See section 4.3.5 for its responsibilities.
A typical implementation strategy is the asynchronous completion token pattern
(ACT) (Schmidt et al., 2000, p.261–284).

4 Implement notification for client and server

Information about the state of ongoing changes should be available as asynchronous
notifications. This saves users from having to periodically poll state objects. The
Observer pattern is a typical implementation choice Gamma et al. (1994). For servers,
observers are also used to initiate new tasks. See section 4.3.4 for the interfaces.

5 Implement a client interface

The client interface is the point where new tasks are submitted by clients (cf. sec-
tion 4.3.4). It cooperates with the demultiplexer to send notifications out, and also
manages what the client observes.

6 Implement an abstract base class for servers

The server processing has a fairly regular structure and is amenable to support
through an abstract base class. Specifically, it can map incoming events to dedicated
functions, and provide default implementations for optional parts of the life-cycle.
See section 4.3.4 for details.

4.3.3. Advantages and Responsibilities

The toolkit’s function is to communicate, and keep track of, changes in the state of a
task, including start and end, between two or more (distributed) components. This is
non-trivial because components are running independently, all communication incurs
a transmission delay, and thus two component’s view of a task may diverge. It is the
toolkit’s responsibility to handle these cases in a robust manner.

Conventional middleware is not sufficient here, because it has no concept of the
relation between messages. In contrast, the task-state-pattern knows the life-cycle
and can use it to recover from errors.

A secondary issue is that a single client/server pair may be engaged in more than
just one task at the same time. Therefore, incoming notifications must be associated
with a task, and the application side notified of changes as they occur.

Finally, a task toolkit should prevent components from attempting state changes
that are not valid according to the life-cycle. If such illegal transitions are still
received, either because of bugs or due to network errors, the toolkit must recover
from them.

4.3.4. Structure

For the toolkit’s structure, we distinguish between objects visible to the user of the
toolkit, and internal objects. The user-visible objects are: i) an interface for clients

52

4.3. Implementing the Pattern in a Toolkit

to, firstly, submit new tasks, and, secondly, receive change events, which we call
the client service, ii) a server interface to be implemented, and iii) an object to
represent, and modify, ongoing client tasks, and iv) the same for the server side,
a server task object. The toolkit-internal objects are a) the life-cycle model, and
b) a demultiplexer object that associates incoming messages with their tasks. See
figure 4.4 for an overview.

Toolkit

*Service
submit(g: spec)

EventListener
changed(Event, State, *Task)

<<StateMachine>>

Lifecycle

*Task
id
serial
rep
lifecycle
update(*State)

DemultiplexerDemultiplexer

EventListener
changed(Event, State, *Task)

Event-Bus

<<StateMachine>>

Lifecycle

*Task
id
serial
rep
lifecycle
update(*State)

Application

*Service
submit(g: spec)

Figure 4.4.: Minimal toolkit structure for clients. The server side is similar, but combines
Service and Listener into an abstract base class.

The life-cycle describes all states a task can have, but client and server differ in how
they are allowed to modify it. To prevent errors, the task objects restrict possible
changes: The client task object accepts only those modifications that a task client
may perform, and rejects the others, and vice versa for the server side (cf. figure 4.5).

Task Object and Notification Structure

The attributes of the task object (cf. figure 4.4) are essential for the added functional-
ity that the toolkit provides, and have to be included in all task-related notifications.

id An identifier for the task. Has to be unique at least per server, and ideally globally,
to preclude potential confusion.

53

4. The Abstract Task-State Pattern

LifeCycle

ActionObject RestrictedLC

SubmitterService HandlerService

ActionObject
LC
SubmitterLC

LC
HandlerLC

SubmitterLC HandlerLC

Figure 4.5.: Partitioned life-cycle access

serial A number that is incremented on each update and used to detected missed
updates. Also note the originator field of task messages, described below.

rep A representation of the task to be performed in detail, including goal, parame-
ters, and the current state (in task-specific terms). This field is specific to the
type of the task and is not directly modified by the task toolkit, just updated
from notifications.

In addition to these fields, it must be possible to determine which component sent
a notification, to check for overlaps (compare section 4.3.5). Usually, this is available
from the middleware, but if not, an additional originator field must be included in
notifications. It specifies whether an update has been sent by the client or by the
server.

Designing for Gradual Adoption

When creating a new server implementation, or when moving a simpler server to a
more advanced life-cycle, the server implementor has to support additional features.
It may be desirable to postpone this effort to a later stage, e.g. for testing, or to
rapidly provide basic support before realizing more features. It may also be that a
few servers cannot support all parts of the life-cycle, for example, a safety critical
task may not allow cancellation.

For such cases, we have found it useful to provide an abstract base class for the
server, which provides default functionality for the unsupported cases. See figure 4.6
for an example abstract server interface.

4.3.5. Dynamics

The dynamics of the task toolkit are fairly simple, primarily a pipeline, with the
toolkit interjecting between client or server and the middleware. On the sending
side, the toolkit checks that changes are valid and rejects them if not. The receiving

54

4.3. Implementing the Pattern in a Toolkit

EventListener
changed(Event, State, *Task)

ServerBase
e: Executor
changed(Event, State, *Task) {final}
initiated(t: Task): Callable {abstract}
abort(t: Task): bool
update(t: Task): bool

Return true when
handled, false otherwise

Figure 4.6.: Methods for example abstract server base class. The method “initiated” has to
be implemented, the others provide defaults and can be overriden as necessary.

side is slightly more complex, because, firstly, it has to associate notifications with
tasks, and secondly, it must detect and handle message overlap.

Figure 4.7 shows an example sequence for the sending side. It should be noted that
this sequence is less fixed than the structure. While the pattern requires a number of
objects, their interaction has more flexibility. For example, we show the client service
organizing the various other objects, but a different distribution of responsibilities is
certainly possible, e.g. with the client task creating the life-cycle. We found that, in
our cases, the sequence shown minimizes associations between the objects, but the
importance of that design goal is up to the implementors judgment.

state : LifeCycleModel

 : Submission Service

ao : ActionObject

 : Demultiplexer : Submitter : EventBus

ao7:

send(ao)4:

register(act, ao)6:

2:

3:

submit(spec)1:

act5:

Figure 4.7.: Invocation sequence for submitting a new task.

When receiving a notifications from the event-bus, the process is essentially re-
versed, as shown in figure 4.8. Notifications that are not found by the demultiplexer
– which means they have been created by other clients – are ignored.

55

4. The Abstract Task-State Pattern

 : Submitter Event Handler : Submission Service : Demultiplexer : EventBus

[if found]

opt

subscribe2:

register1:

notify(ao)6:

lookup(e)4:

ao5:

notify(e)3:

Figure 4.8.: Invocation sequence for notifying listeners.

Detecting and recovering concurrent updates

Not shown so far is the handling of message overlap. Such overlap can occur for
several reasons. Firstly, client and server may both attempt to change the state of
a task at approximately the same time, but transmission delays cause their changes
to overlap. This case is shown in figure 4.9, where, globally, “update 1” is first and
“update 2” is second, but locally (at the end points), the notification for “update 1”
may arrive after “update 2” has been sent.

TaskSubmissionService HandlerServiceEventBus

update 11:

update 22:

notify 13:

notify 26:
notify 25:

notify 14:

Figure 4.9.: Example of message overlap due to network delay

56

4.3. Implementing the Pattern in a Toolkit

An easy method to detect such cases is the use of a serial number, as specified
for the task objects before. Prior to sending a notification, the serial is always
incremented by one. Upon receiving a new notification, its serial is compared to the
local serial, with the following three possibilities:

1. If the serial is higher than the local one, the notification is a normal update
and processing continues.

2. If the serial is equal to the local one, it means that both parties have sent at
the same time. This calls for a recovery procedure (see below).

3. If the serial is lower than the local one, it means that the remote component
has missed several notifications by the local component. This is usually a
serious error and should only occur in case of network problems. Recovery
may be attempted, but unless the communication problems are fixed, may not
be successful.

Fortunately, case two is recoverable through checking the life-cycle for allowed
sequences. A simple means to do so is to use what we call the “server dominant”
approach. In this, firstly, the server always determines the current state, because it
is the component executing it. Secondly, if the life-cycle allows it, the server applies
the client’s update after its own and sends an additional notification to that effect. If
the life-cycle does not permit the client’s update after the server’s, it is ignored.The
client always accepts the notifications from the server as the correct state, even when
the local state would not ordinarily allow the transition.

A drawback of the “server dominant” approach is that clients must be prepared to
receive a notification for unexpected target states. This is a common requirement,
but if it is undesirable, alternative approaches may be preferred. See section 4.3.7
for a short discussion.

For case three, we recommend reporting an error. While additional checks may de-
termine that the original problem has ceased and operation could continue, this is not
well-placed within the communication infrastructure (which the toolkit is part of).
Higher-level mechanisms should be employed to determine the viability of continued
operation, and re-start tasks, if possible.

4.3.6. An Example Life-Cycle

The life-cycle directly determines the distinctions that can be made when tracking
tasks. Because having a start and an end is central to the task concept, and execution
may always fail, we consider the basic life-cycle introduced earlier to be the core of
what all life-cycles must support (cf. figure 4.2). However, we expect that most users
will want more features.

The necessary distinctions are dependent on the system the toolkit is designed for,
but here we will present a life-cycle that has served us well, and that we consider to
be a good candidate for most systems. See figure 4.10 for a visualization. In addition

57

4. The Abstract Task-State Pattern

to the basics, it also supports updating the goal during execution, aborting tasks, and
delivering intermediate results. Its states and transitions have the following meaning:

• initiated Initial state for newly published tasks.

– accepted Execution is commencing.

– rejected No action will be taken.

• running Execution is ongoing.

– update Goal has changed

– result available Intermediate result added

– completed Goal reached

– cancel Execution stop requested

– failed Goal could not be reached

• update requested Updated goal available

– accept Target is new goal.

– reject Previous goal will remain target.

• cancel requested Aborting execution is requested

– cancel failed Aborting not possible.

– aborted Execution aborted.

• canceled Execution stopped without reaching goal.

• done Goal reached, execution stopped.

One design choice has been made in the general life-cycle model: it returns to
the running state when an update fails. That means it will continue to act on its
previous target. It would also be conceivable to attempt an abort in such a case
and the model might need to be enhanced to encompass this. The argument for the
current choice is that the client is generally best positioned to decide whether the
failure is severe enough to warrant aborting the action.

4.3.7. Alternatives

The implementation guidelines described so far attempt to strike a balance between
simplicity and efficiency. However, other implementational choices are certainly pos-
sible and this section reports some different choices we have seen so far.

58

4.3. Implementing the Pattern in a Toolkit

initiated running

update requested

cancel requested

accepted

done

already done

rejected

cancelled

failed

accept, rejectupdate

intermediate result

cancel
cancel failed

Figure 4.10.: A fairly general life-cycle.

Representing the task

Figure 4.4 has specified a single “rep” attribute that contains the entire current
state of the task, both goal specification and results. The tacit assumption behind
that is that the entire representation is communicated every time the state changes.
Depending on how large the representation becomes, and how often it changes, this
may cause communication overhead. Furthermore, it requires that the representation
is modified during operation. Again depending on the complexity of doing so, this
may be inefficient.

An alternative approach is to communicate and store only updates. This is ap-
propriate when the representation is updated much more often than it is read. The
drawback of this choice is that it makes reconstructing the current state more dif-
ficult, and it also makes observation harder, because an observer has to follow all
messages to reconstruct the state.

Conflict detection and resolution

As mentioned in section 4.3.5, the “server dominant” model for overlap resolution
requires that client must be able to accept whatever state the server reports, even if
that state would be unreachable from the last state they have requested. This is not
normally an issue, but may be considered confusing.

Furthermore, the “server dominant” model treats all overlaps in the same man-

59

4. The Abstract Task-State Pattern

ner. Users may want to have more say in treating such cases, to make case-by-case
decisions. While this somewhat contradicts the value of the pattern to generalize
handling, we would not want to rule out the necessity entirely.

Therefore, we’ll shortly present two alternatives to conflict resolution that we have
observed in implementations.

• Central broker. Instead of communicating directly between client and server, all
communication may be enforced to pass through a central broker that resolves
conflicts. From a communication perspective this introduces a single point
of failure. Furthermore, a central conflict resolution strategy may be hard to
specify. Nevertheless, such an approach can provide predictability.

• Delayed Transition Evaluation. All transitions are executed with a fixed delay
that is larger than the maximum possible communication delay. This strategy
may be used when real-time transports are available that guarantee a known
maximum transmission time. This is not recommended for best-effort commu-
nication protocols, since they could always exceed the expected maximum.

4.4. History & Known Uses

Historically, the use of life-cycle based coordination appears to have been developed as
an abstraction on earlier, fine-grained but action-specific coordination mechanisms.
Early approaches introduced use of life-cycle based coordination primarily to detect
and handle errors in a generalized way, with the actions themselves coordinated on
a finer level (Lefebvre and Saridis, 1992; Simmons, 1994; Wrede et al., 2006). In
at least two published cases, an earlier mechanism for fine-grained coordination was
succeeded by abstract life-cycle based coordination (Simmons and Apfelbaum, 1998;
Hanheide and Sagerer, 2008).

4.4.1. Intelligent Machine Architecture (IMA) (Lefebvre and Saridis,
1992)

The so-called “intelligent machine architecture” coordinates low-level tasks, such
as blob detection and robot limb motion, using Petri-Nets. The states in these
petri-nets are action-specific, but have obvious life-cycle relations. For example, the
blob-detection action has states “start find spot” and “end find spot”. Similarly, the
visual controller has states “VC ready”, “VC start”, “VC done” and so on (Lefebvre
and Saridis, 1992, figure 5).

The petri-net structure of this approach is also an example of a hierarchical model.
The higher levels (such as the visual controller) contain conflict-resolution states
(“ready”, “available”, etc.), whereas the lower levels do not have such states and just
use start and end states. Error handling is similarly organized in a 3-level hierarchy:

Errors are handled first by the Coordinator, and are passed up to the
Dispatcher only when a local strategy is not adequate to resolve the con-

60

4.4. History & Known Uses

dition. In some instances the Dispatcher must turn over error resolution
to the Organization Level where operations may be replanned (Lefebvre
and Saridis, 1992, section 5, paragraph 4).

This architecture, however, does not exploit the similarities in these models and
thus its coordination mechanism is not action-independent. Additionally, the coor-
dination hierarchy, while explicitly designed, is not modeled but implicitly contained
in the petri-net structure.

Information on the implementation of the IMA is scarce, but it is mentioned that
message-passing is used for communication, which has very similar semantics to
an event-bus, in particular, it also uses asynchronous communication. The main
difference is that messages are addressed to a known recipient, instead of being
selected from the event-cloud by the handler, as described for the task-state pattern.

4.4.2. Task Control Architecture (TCA) (Simmons, 1994)

Similarly to the IMA, the Task Control Architecture uses fine-grained models encoded
as so-called “task-trees”. This architecture does not yet exhibit abstract states, but
already utilizes an external execution monitor, described as follows:

In particular, monitors and exception handlers can be added without
modifying existing components. [...] a module can associate an exception
handler with a class of messages handled by another module, so that
whenever a message is issued and added to the task tree, the exception
handler is automatically added to that node (Simmons, 1994, section IV,
paragraph 2).

Notably, in the above quote, “classes of messages” are mentioned, which suggests
a relatively close dependence of exception handlers on the monitored tasks. Not
long after, Simmons introduces a more abstract mechanism, in the form of the Task-
Description-Language approach (see below).

TCA uses the IPC messaging middleware (Simmons and James, 2001), which
supports both publish/subscribe as well as client-server models. It is not specified
which of the two is used in the TCA.

4.4.3. Task Description Language (TDL) (Simmons and Apfelbaum,
1998)

The successor to the previously described TCA is one of the earliest examples of
abstract, life-cycle model based coordination. In this architecture, all tasks are
coordinated using the abstract states “disabled”, “enabled”, “active” and “com-
pleted” (Simmons and Apfelbaum, 1998, p. 1933). It also introduces the concept of
an “expansion”, which describes the state of an entire task sub-tree using the same
set of states [ibid].

61

4. The Abstract Task-State Pattern

The TDL keeps the approach of an external exception handler, but also introduces
abstract states called “succeeded” and “failed” to attach it to tasks, thus again
moving towards an abstract life-cycle model.

TDL, as its name implies, is a language compiled to C++ code. The resulting code
uses the the Task Control Management (TCM) library as the service-level API. Like
TCA before it, TCM can use the IPC message-passing middleware. Additionally, it
supports Real-Time Inc’s DDS4 publish/subscribe middleware, which suggests that
the TCM itself is also based on a publish/subscribe model.

4.4.4. DESIRE Architecture (Plöger et al., 2008)

A non-event based implementation of life-cycle based coordination is exemplified
by the DESIRE service robotics architecture. Its life-cycle model consist out of
“Running”, “Finished”, “CommandAbort” and “CommandFatalError” states, with
the last state signifying an unrecoverable error. Errors are further distinguished
into “Abort”, “ContractViolation” (indicating an erronous activity specification) and
“FatalError” (indicating an internal error).

While the DESIRE life-cycle model does contain a state indicating an unacceptable
action specification, it is still primarily a model that can only support a centrally
coordinated system, because no request states are modeled. Correspondingly, the
DESIRE system includes a planning component, which is integrated at the service-
level.

Instead of event-based communication, the DESIRE architecture uses the RPC in-
teraction style of a CORBA-based object-oriented middleware, but communication
between requesting and handling components is mediated using the so-called “Ablauf-
steuerung” (execution control) component, which also realizes the service-level. The
execution control thus realizes asynchronous communication between submitter and
handler.

4.4.5. Active Memory Architecture (AMA) (Wrede et al., 2006;
Hanheide and Sagerer, 2008)

A coordination approach first using Petri-Nets and later on a finite-state-model has
been built on the Active Memory Architecture. The architecture was originally
developed for a cognitive vision system (Wrede et al., 2006; Wachsmuth et al., 2007)
and later transferred to human-robot-interaction (Hanheide and Sagerer, 2008). The
“Active Memory”, which gives the approach its name, is (technically) an active
database coupled with an event-bus.

The earlier, Petri-Net based coordination realized a fine-grained execution monitor
based on temporal monitoring of the actions and enabled, respectively disabled,
recovery actions if errors were detected. It did not explicitly model the action life-
cycle, because actions were continuously repeated as part of the vision-processing

4http://www.rti.com/products/dds/

62

4.4. History & Known Uses

cycle anyway. In this approach, the petri-net controller was realized as a dedicate
coordination component.

The later, finite-state approach added an explicit request-acknowledgement life-
cycle for action monitoring. Actions in this context were fairly coarse-grained, e.g.
“acquire a map of the room”. Depending on the nature of the sensor used, these
larger activities could either map to a single action (e.g., analyzing a single view
from a 360° degree camera) or multiple sub-actions (e.g., activation of a 180° laser
scanner plus rotation of the platform to acquire a 360° view). To accommodate both
types of handlers without changes to the clients, a model with several optional states
was used, similarly to the one in figure 4.10. In this approach, coordination was
decentralized and co-located with the participating components.

4.4.6. XCF Task Toolkit (XTT) (Lütkebohle et al., 2009a)

The XCF Task Toolkit (XTT) is a service-level coordination implementation, initially
based on the life-cycle-model of the active memory architecture approach. It has been
developed as part of this thesis, in order to experiment with the effect of various
model-level, interface- and implementation-level changes. Detailed technical and
case-study information from these experiments is found in chapter 5.

XTT uses a layered architecture which embeds the service-level into participating
components, but hides the middleware communication from the application-level
and also enforces adherence to the life-cycle model. Conflict detection uses serials
and recovery employs the dominant handler approach. On the API level, XTT is
somewhat unique in that it offers both the common Observer interfaces, as well
as synchronous adapters, with a submitter-side Future and a handler-side Callable
interface (Sun, 2009a).

As the name suggests, XTT is built on the event-based middleware XCF, in par-
ticular, the Active Memory-based event-bus (Wrede et al., 2006). It hides the com-
munication mechanism, but exposes the data-transport classes of that toolkit, in
conjunction with an application-level conversion registry.

4.4.7. ROS ActionLib (Marder-Eppstein and Pradeep, 2010)

The “actionlib” is a recently developed (2009) C++ toolkit for action execution based
on the “Robot Operating System”5, an Open Source initiative that aims to build a
complete infrastructure for mobile robot systems. Similar to the XTT, it comprises
a service-level toolkit for task state coordination.

A notably different aspect of the actionlib is that it maintains two separate state
machines, one for the server and one for the client. The server machine is considered
to be the reference, with the client tracking it. In term of the task-state pattern, this
represents use of the “dominant handler” recovery strategy directly within the client
state machine. If this recovery strategy is chosen, it is likely the most elegant way

5http://www.ros.org/

63

http://www.ros.org/

4. The Abstract Task-State Pattern

of implementing it. The resulting client state machine is not exactly simple, though
(cf. figure 4.11), but still reasonable given its functionality.

Similarly to XTT, actionlib is layered on top of a middleware that supports status
notification – therefore, changes of ongoing tasks may be observed by other compo-
nents in the system at any time. Also similarly to XTT, the action server supports
both callback-based and queue-based invocation of actions.

Figure 4.11.: actionlib client state machine

The actionlib is generally very full-featured, with every option of the generic life-
cycle (cf. figure 4.10). The terminology is slightly different, with the most notable
difference in naming for cancellation: Cancellation before action execution is called
“recall”, whereas cancellation after is called “preemption”.

A further interesting aspect is the actionlib’s cancellation handling, which supports
both temporal and id-based references. Thus, there is built-in support for cancella-
tion of all ongoing actions started before some time, as well as cancellation based on
goal ids.

4.4.8. Plan Execution Interchange Language (PLEXIL) (Baskaran et al.,
2007)

PLEXIL is somewhat unusual, in that it is not a coordination system as such (though
a reference implementation, called “Universal Executive” is available), but a proposal
for a standard interchange format, based on the concept of a tree containing pro-

64

4.5. Consequences

cessing nodes. It relates to coordination in that coordination systems are needed to
execute the specified plan, and in that it contain a common, abstract life-cycle for
all nodes in the plan tree.

The life-cycle itself has the states Inactive, Waiting, Executing, Finishing,
Iteration Ended, Failing, and Finished. As can be seen from these states already,
an emphasis is placed in preparation of a task, to ensure synchronized starts. It also
contains an intermediate feedback facility, the Iteration Ended state.

PEXIL’s life-cycle is slightly different from the approaches presented so far, in that
it distinguishes possible transitions by node type. The node types themselves are
categorized according to the kind of action performed, and between leaf and parent
nodes, mostly to be able to reason about what kind of changes may occur when
executing a PLEXIL plan. In essence, though, these distinctions are not particularly
different, they just make the life-cycle’s cleaner to present.

A bigger difference is that several of the transitions reference changes to other
nodes in the tree, e.g. Ancestor end condition or All children waiting or-

finished. These are essentially events on the coordination level, not on the task
level, but PLEXIL’s life-cycle has provisions for automatically propagating these
coordination-level events to changes in a node’s state.

In general, PLEXIL embodies a development of the centralized coordination model:
It contains a rich language for coordination, based on a variety of conditions. It does
not, however, explicitly specify the communication interface between the coordina-
tion engine and the services. Moreover, its conditions (at least the examples given)
rely heavily on being able to inspect various component-specific attributes. Thus,
while it would not be incompatible with using the pattern as described here, it sug-
gests a different model, one where mapping from task-specific states to abstract states
occurs in a central component, not in the servers.

4.5. Consequences

Coordinating systems using the task-state pattern is expected to offer the following
benefits:

• Separation of concerns. The abstract life-cycle model separates the state of
action execution from the details of the action to be carried out. The pat-
tern further hides communication details from the application level, but offers
customizability of model and error handling. Thus, applications need not deal
with complex middleware interfaces or optimizing communication, but can con-
centrate on action execution.

• Transparency and Extensibility. The current state of action execution is ex-
posed in the system in a well-defined, re-usable way. This opens avenues for
a variety of service components, e.g. for error handling, restarting of failed
activities, recovery from component failure, etc.

65

4. The Abstract Task-State Pattern

• Correctness. By dividing the distributed state-keeping mechanics, which are
hard to implement correctly in the face of unreliable communication, from the
application-level concerns, the overall likelihood of correctness is increased.

Additionally, conflict detection and recovery have clear interfaces, which makes
them standard instead of optional. Model constraints are further checked lo-
cally, which exposes application errors early on.

• Encapsulation, modularity and re-usability are increased by offering an action-
independent, high-level coordination mechanism that is applicable to all actions
in a system. Instead of having to implement dedicated coordination models for
every possible action, one common model can be applied.

• Incremental development. Life-cycles with optional transitions, coupled with
event-based coordination facilitate incremental system development. For exam-
ple, if an optional preparation state is included in the model, but components
do not initially support it, they can simply register for the following start event.
If later on support for preparation is added, the submitter component can stay
the same and functionality is transparently increased.

• Bridging of different abstraction levels. Integrating different abstraction lev-
els, e.g. between motor control and planning, to give just one example, are
a consistent problem in system building. The life-cycle model helps here by
offering a means for high-level coordination of low-level components. In partic-
ular, models such as the generalized life-cycle (cf. figure 4.10) support updating
targets without restarting an action, which can provide an abstract interface
for highly-coupled components such as visual servoing.

Using the pattern may also incur some liabilities:

• Mismatch to action life-time. For very short-lived activities, the communica-
tion overhead of multiple state change notification messages may be unwar-
ranted. In particular, if event-notifications are sent over standard TCP chan-
nels, latencies can add up quickly due to ack-waiting. This is potentially the
case, for example, for CORBA Notification Service implementations, due to
CORBA’s RPC underpinnings (COR, 2004).

• Overcomplicated life-cycle The attempt to provide a single life-cycle that en-
compasses all possibilities may result in an automaton that is much too com-
plicated for most components. In this case, if a more suitable life-cycle cannot
be found through a redesign, other coordination methods should be explored.

• Tendency to discretize The life-cycle model, with its explicit states, may cause a
discretization of activities which are more naturally described using continuous
values. While obvious cases of this, such as dynamical systems, are not likely
to use the task-state pattern, other cases may not be so clear cut and could be
biased on this direction because of the use of the pattern.

66

4.6. Summary

4.6. Summary

This chapter has presented the Abstract Task-State Pattern, as a generalizable, ex-
tensible communication interface for robot tasks. Based on an analysis of the relevant
literature, the pattern has been identified and generalized. Furthermore, an exten-
sion to place mapping from task-specific states to the abstract state in the server has
been proposed and, in contrast to earlier implementations, it is suggested to realize
the pattern in a client-server toolkit, similar to communication middleware. Detailed
designs for the recurring parts of such a toolkit have been presented.

In the following chapters, the general utility of the pattern, including the exten-
sions, will be empirically studied based on a number of case studies.

67

5. Separation of Concerns in Life-Cycle
Coordination

This chapter describes the origins of the task-state pattern and investigates its use,
and the design and implementation of the supporting toolkit, in a real, integrated
system. First, an example system from the COGNIRON robotics project will be
discussed, where the pattern was already identifiable, but implemented in an ad-hoc
manner (cf. 5.1.1). An analysis of implementation effort indicates that a dedicated,
re-usable toolkit implementing the pattern may improve design quality and reduce
errors.

In the second part (section 5.2), the toolkit design is presented, with a focus on two
different APIs offered to service implementors: One that completely hides the life-
cycle, thus preventing protocol violations at the cost of a more restricted execution,
and another that exposes all events directly, for more flexibility.

Lastly, the toolkit’s architectural benefits are evaluated on a comparative study of
a text-to-speech component, demonstrating reduced coupling and better cohesion.

5.1. Pattern Identification and Analysis of Historical Use

Interfaces similar to the task-state pattern have probably been developed indepen-
dently at many groups all over the world, to varying degrees of formalization. Here
at Bielefeld, the first incarnation came about from the interaction mechanism of the
dialog manager and the navigation components, developed for the “Home-Tour” sce-
nario of the EU-Project “COGNIRON” (Booij et al., 2008; Hanheide and Sagerer,
2008). The pattern was later encountered in the DESIRE architecture, which is
based on Simmon’s TCA approach (Plöger et al., 2008; Simmons, 1994). The second
system triggered identification as a pattern, but the present work is based on the
first.

5.1.1. Example: The COGNIRON Home-Tour

The COGNIRON “Home-Tour” is a Human-Robot-Interaction scenario where the
human tutor shows a mobile robot around his or her apartment. It is characterized
by an alternation between the robot following the human around and the robot
acquiring a unique signature of a room that allows it to recognize the room afterwards
(mapping). The change between these actions is initiated by the human, and in
one instance the robot signals completion (for mapping), whereas in the other, the
human signals it (for following). Additionally, the robot may encounter a failure

69

5. Separation of Concerns in Life-Cycle Coordination

during execution (for example, getting stuck in a door), or reject a command when
it is momentarily unable to comply (for example, a follow request when mapping is
ongoing).

The goal of the pattern in this context is to harmonize interaction between the
various action-performing components and the dialog manager, which relayed the hu-
mans requests. Ideally, the dialog manager should have the same high-level protocol
to all other components, with only the specifics of the action request changing.

However, good HRI performance requires a fairly fine-grained interaction between
dialog and component, for example, to notify the human when a longer-running
action is ongoing, but omit such notification, when the action is short. Amongst
more technical reasons, this was decisive in precluding the use of a synchronous
remote procedure call. The intertwined interaction scenario is shown in figure 5.1.

activity Location Location[]

arbitrate HAM commands

replace LOCATION
state "accepted"

reset arbitration

<LOCATION>
 <NAME>kitchen</NAME>
 <STATE>accepted</STATE>
</LOCATION>

Speech Understanding

Process Presentation

insert LOCATION
state "initiated"

verbal feedback:
processing

verbal feedback:
finished

<LOCATION>
 <NAME>kitchen</NAME>
 <STATE>initiated</STATE>
</LOCATION>

"Dining room, I

take a look at it!"

"OK, I learned it."

autonomous exploration

memorize
 room representation

replace LOCATION
state "completed"

capture view

<LOCATION>
 <NAME>kitchen</NAME>
 <STATE>completed</STATE>
</LOCATION>

Labels Room

"This is the

kitchen."

Location Learning ArbitrationDialogHuman

 [method="exploration"]

 [method="visual"]

Figure 5.1.: COGNIRON Interaction Diagram (from Hanheide and Sagerer, 2008, figure 5).

Communications in the scenario is based on event-notification using the XCF mid-
dleware (Wrede et al., 2006), where messages are encoded as XML. Because of the
use of XML, it was easy to insert a “STATUS” tag just prior to sending regardless of

70

5.1. Pattern Identification and Analysis of Historical Use

the format of the action specification. While no explicit life-cycle is presented, from
figure 5.1, the automaton in figure 5.2 can be derived.

initiated acceptedaccepted

completed

completed

completed

rejected

rejected

failed

failed

Figure 5.2.: State Machine for the Life-Cycle used in the COGNIRON system

As used in the system, the model represents a mixture of request-acknowledgement
and central control: On initiation, a request can be rejected. However, for aborting
a task, the state was set to “completed” and this could not be refused (Peltason,
2008).

Another aspect of that life-cycle is that it had two different failure states: “re-
jected” and “failed”. This is because the state-name is always equal to the transition
and the condition is based just on that. Therefore, it cannot distinguish logically
equivalent states which have different causes. Instead, both causes have to be han-
dled individually. With just one instance of this, it probably was not considered
a major nuisance, but for extended life-cycles, it can become more of a hassle and
generally reduces abstraction.

5.1.2. Verdict: Successful, but onerous to get right

The use of the state-based coordination in the home-tour scenario is generally con-
sidered a success by all involved, firstly because of the abstraction it afforded the
dialog manager and secondly, because it facilitated monitoring of the current state of
an interaction (Peltason, 2008). This was also evidenced by the fact that, while orig-
inally designed only for the “following” activity, it was re-used basically unchanged
for mapping, too.

However, at this time, all action-handling components had to implement their
side of the protocol over and over again. Additionally, on the dialog manager side,
handling of the action specification (which is different between tasks) has been inter-
twined with protocol management, thus preventing re-use, even though the potential
is obvious.

5.1.3. Analysis of a typical component: “Following”

To get an idea of the consequences of the situation, let us take a slightly closer look
at one of the components involved. While this is only a cursory analysis, it reflects

71

5. Separation of Concerns in Life-Cycle Coordination

the considerations that have led to the implementation of a dedicated toolkit.

One component in the above system is the “following” behavior, which, in its
original form, consists out of 1,593 source lines of C++ code (SLOC). Of that, the
layer for state-management amounts to 241 SLOC, or 15.1% 1. While this percentage
is not insignificant, it could hardly be considered prohibitive.

However, firstly, this size does not reflect the significant human effort which went
into defining the model, and communicating its exact mechanics and semantics to
all developers. This is likely the far costlier effort.

Secondly, it is telling how often the code in question is changed. In this particular
component, the state-management code was factored out into its own class a year
earlier. Since that time, it has been involved in 29% (23 of 79) of all changes, despite
the fact that a) the model has not changed and b) it is only called from three places
of the main application code!

From a manual inspection of the class in question2, it has been determined that this
high rate of change is caused by coupling with related, but different functionality. It
is this other functionality that changes often, because it deals with manipulating the
action specification, which is enhanced more often. However, the risk that regressions
occur in the state-management code, due to the unrelated changes, is high, and at
the same time completely unnecessary.

In addition, many potential communication errors have to be handled, as outlined
in the pattern description (cf. section 4.3) and it is probably not an accident that
the current (year 2009) implementation of the generic task-management library runs
to about 1500 SLOC, or almost six times the size. While the general implementation
also has substantial extra functionality, the difference in size is partially due to its
handling of error-prone edge cases that are missed by the ad-hoc implementations
used previously.

Having said this, existing toolkits for task management were also considered. The
known toolkits, however, required a particular form of modeling action execution
on the lower-levels. For example, the Task-Description Language implementation
models activities as task-trees (Simmons and Apfelbaum, 1998). While use of such a
model may have been interesting, and probably even beneficial, a more incremental
approach was preferred, which could do without explicit models and instead re-use
action handlers as they were.

Thus, the decision to implement a re-usable task-coordination library was made,
as the effort appeared negligible. As is often with such judgments, it proved to be
not quite as simple, but probably still easier than switching the middleware and,
in particular, only required switching effort for those researchers that were going to
benefit from the new toolkit.

1Calculated based on data generated using David A. Wheeler’s ’SLOCCount’ on revision 180 (svn
revision r19364) of component “Following AM”.

2In file “AMDataShortTerm.cc”

72

5.2. The XCF Task Toolkit (XTT)

5.2. The XCF Task Toolkit (XTT)

The XCF Task Toolkit (XTT) has been named, in one part, after the XCF middle-
ware on which it was implemented (Wrede et al., 2006), and in the other part, after
the “task” concept in Simmons’s task control architecture (Simmons, 1994). How-
ever, it was never intended as a re-implementation of TCA, but is based on the view
that the TCA, the DESIRE architecture and the previously described coordination
model all represented different implementations of the same underlying pattern.

While XTT has been designed and solely implemented by the present author, as
part of this thesis, it has been used by several other researchers in the course of
the “ERBI” sub-project of the German service robotics initiative3. Correspondingly,
XTT’s design owes many ideas, and requirements, to the discussions with and ex-
perimental experiences of these colleagues, most notably Julia Peltason and Robert
Haschke.

The toolkit has had three releases, which were mostly driven by enhancements to
the protocol level, to improve fault-tolerance. In addition, some minor extensions to
the life-cycle model were made in the third release.

5.2.1. XTT Design Guidelines

Based on the implementational difficulties observed in the original system, the fol-
lowing requirements are specified for a service-level implementation.

1 Separate State-Management from Activity Specifications. The main advantage to
be gained from a toolkit is that it should be re-usable for differing activities. In
particular, this requires that the activity specification, which is different for each
activity, be independent from the state storage (even though for transport, the state
must be attached to the activity specification).

2 Scheduler Independent. The implementation should not require a particular way of
scheduling low-level actions, but instead support whatever means the handlers were
using already.

3 Protocol Compatibility. Both for reasons of compatibility, and to facilitate incremen-
tal development, the protocol level has to be completely compatible with previous
implementations. Future extensions can then be explored in an incremental way,
while keeping backwards compatibility.

4 Life-Cycle Correctness. The toolkit should only offer operations that cannot violate
the life-cycle. This is likely to require dedicated submitter- and handler-side inter-
faces. Where an operation is legal only some of the time, runtime checking must
occur.

3http://www.service-robotik-initiative.de/

73

http://www.service-robotik-initiative.de/

5. Separation of Concerns in Life-Cycle Coordination

5 Reduction of Implementation Effort. Recurring functionality should be provided
by the toolkit as much as possible, to reduce the development effort for handler
developers.

6 Prevent Direct Middleware Access. Both to reduce coupling and to prevent
application-developers from bypassing the checking enforced by the toolkit, the un-
derlying middleware should not be directly accessible.

7 Use Middleware Transport Datatype. The XCF middleware uses a very flexible trans-
port type based on the XML data model, which is essentially an attribute-value tree,
for the main data plus optimizations for large binary data. This data-type should
be kept and exposed to the application level, to allow manipulation of the action
representation directly. Correctness can be ensured by checking the representation
prior to middleware communication

5.2.2. XTT Structure

As shown in figure 5.3, the XCF Task Toolkit has basically two branches (with the
“TaskSubmissionService” for the submitter-side, the others for the handler side),
both of which sit on the middleware, in package “net.sf.xcf”. The application-level
interface consists of the services, and implementations of the standard “Future” and
“Callable” interfaces.

MemoryEventAdapter

net.sf.xcf

MemoryEventAdapter XOPData

MemoryTaskListener

TaskSubmissionService
submit(XOPData): Future

TaskHandler

CallableTaskHandler
initiate(XOPData): Callable

QueueingTaskServer

CancellableTask ServerTask

Future Callable

java.util.concurrent

Future Callable
Added in second iteration

Figure 5.3.: Structure of components in the XCF Task Toolkit.

74

5.2. The XCF Task Toolkit (XTT)

In the initial implementation, life-cycle state changes were realized by implement-
ing patterns for mapping between synchronous and asynchronous execution, taken
from the standard “java.util.concurrent” package. These patterns, “Future” and
“Callable” represented the main interface for life-cycle interaction. For reference,
they are reproduced in figure 5.4.

Using these interfaces, the life-cycle could be mapped as follows, first for the sub-
mitter side:

• TaskSubmissionService::submit set state to “initiated”

• Future::get wait until a terminal state is achieved. If terminal is “completed”,
return the result. If terminal is “failed” or “rejected” throw corresponding
Exception.

• Future::cancel set state to “abort”.

• Future::isDone true if a terminal state has been achieved

• Future::isCancelled true if a terminal state is achieved and it is not “com-
pleted”

Correspondingly, on the handler side:

• CallableTaskServer::initiate If a Callable is returned, state is set to “ac-
cepted” and the callable is called. Otherwise, if an exception is thrown, the
state is set to “rejected”.

• Callable::call If an exception is thrown, state is set to “failed”. Otherwise,
state is set to “completed” and the result is returned.

• State “abort” received from client. Interrupt the thread executing the
Callable::call. If interruption succeeds, set state to “aborted”, otherwise to
“abort failed”.

Future
get(): T
get(timeout: long, unit: TimeUnit): T
cancel(mayInterrupt: boolean): boolean
isDone(): boolean
isCancelled(): boolean

Callable
call(): R

T R

java.util.concurrent

Future
get(): T
get(timeout: long, unit: TimeUnit): T
cancel(mayInterrupt: boolean): boolean
isDone(): boolean
isCancelled(): boolean

Callable
call(): R

T R

Figure 5.4.: The Future and the Callable interfaces (Sun, 2009c).

As a result of these mappings, the life-cycle is never explicitly manipulated by
the application-level. The idea behind that is that the life-cycle is managed in the
service-level only and that correctness can be guaranteed (assuming the service-level
can be made to be correct).

75

5. Separation of Concerns in Life-Cycle Coordination

5.2.3. System Interaction

The network-level interaction of the service-level with the “Active Memory” event
bus is shown in figure 5.5. The unconnected messages represent the interface to the
application level, which has been omitted for brevity. Please note the use of both
synchronous (filled triangle, with reply) and asynchronous calls (open arrow). Also,
please note that reception of asynchronous notification is not guaranteed to occur in
the sequence shown, due to network latency (cf. figure 4.9).

SubmissionService HandlerServiceActiveMemory

client
change

14:

submit1:

(ID, XOP)15:

insert(XOP)2:

client
notify

13:

update(ID, XOP)9:

request
handling

7:

ack8:

change
action

16:

notify(INSERT)5: notify(INSERT)4:

notify18:

notify(UPDATE, ID, XOP)10:

12: OK

generateID3:

notify(UPDATE, ID, XOP)17:

19: OK

6: ID

notify11:

Figure 5.5.: Interaction of service level with the event bus.

The task identifier is generated by the active memory and used in subsequent
“update” notifications. The service implementations use this to demultiplex messages
to tasks. The active memory also generates self-notifications, which are filtered out
in the service-level.

76

5.2. The XCF Task Toolkit (XTT)

5.2.4. Task Server Implementations

There are two different task-handler base classes, for different use cases. The first
of these, the “QueueingTaskServer” is straightforward: It only delivers notifications
into a queue, for handlers which prefer to handle state changes explicitly. The sec-
ond, however, completely manages life-cycle state changes for anything that can be
encapsulated as a simple function call, as described in section 5.2.2.

Mapping to function calls involves several edge cases, to be able to support accep-
t/reject, updates and cancellation. See figure 5.6 for an overview of reject support.
When the request to create a handler callable fails, the task is rejected, otherwise it
is executed.

CallableTaskServer

handler : Callable

ExecutorService

task : Callable

[exception]

[else]

alt

initiate1:
createHandler2:

reject3:

4:

create5:

submit(task)6:

done11:

Future7:

call8:

accept9:
call10:

complete12:

Figure 5.6.: Callable task server handler accept/reject interaction.

In a similar way, the created Future (cf. step 7) supports cancellation, which can
be triggered when an “abort” signal is received. This will cause the “ExecutionSer-
vice” to interrupt the thread executing the task callable. If interruption succeeds,
“aborted” is set, otherwise “abort failed”. This interaction has been left out of the

77

5. Separation of Concerns in Life-Cycle Coordination

diagram for brevity.

The fact that showing the full callable/task interaction would have made the di-
agram twice as large is an indication of how onerous it is to implement the various
cases. This is certainly one reason why developers prefer to implement just a simple
RPC handler, with all the drawbacks that has. However, the CallableTaskServer
completely encapsulates this and derived classes only have to provide one handler
function. Thus, it is hoped that such an adapter will ease use of life-cycle based
coordination considerably.

5.2.5. Summary

The XCF Task Toolkit provides a service-level implementation, encapsulating the
middleware details and, if desired, life-cycle state management for service implemen-
tations. Middleware encapsulation solves the various network race issues identified
previously and reduces overall complexity considerably. An optional task server that
manages the life-cycle of a simple function call is provided to ease the transition from
RPC-style services to the life-cycle protocol. The overall goals of toolkit have been
correctness and support for separation of concerns in applications.

5.3. Proof of Concept: Text-to-Speech Service

The proof of concept has been undertaken before the first wider release of the task
toolkit, to validate that it is functional and easily usable. The results reported in this
section are largely based on quantitative and qualitative analysis of the components’
source code, with a focus on dependency and complexity analysis, using the metrics
described in section A.1.

5.3.1. Preventing Insider Bias and 2nd System Effect

In this study, which directly measures a particular implementation, it is important
that this implementation not be influenced by a knowledge of the goal of the study.
However, due to the early stage of the toolkit and the needs of the overall project at
the time of the experiment, only the present author was available to carry out the
modification for use of the toolkit.

To remove the potential bias this could have caused, the implementational parts
of the study have been split. In the first part, the present author has added support
for the task toolkit to the component by only adding new code calling the old, in
the form of a completely new class. In a second step, a student assistant has been
tasked with removing any references to the previous, RPC-based, invcation method
from the code. The student was forbidden to perform any other, unrelated changes
or clean-ups. Thus, it is believed that the resulting code base is a valid comparison
target.

A second potential risk is the second system effect, whereby an improved under-
standing of the target domain causes a better design on the second try. This risk has

78

5.3. Proof of Concept: Text-to-Speech Service

been headed off through the exclusive use of additions to existing code in the first
step, which furthermore only related to the external interface, not the functionality
of the component as such.

5.3.2. History and Use of the Text-to-Speech Component

Text-to-speech synthesis is a common service in systems that use spoken language
to communicate. It takes a text representation as input and produces an auditory
signal that resembles human speech, which is then played back to a human listener.

The test component realizes a front-end to the “Mary” Text-to-Speech System
(TTS) (Schröder and Trouvain, 2003). The Mary TTS is a client-server system
with a custom Remote Procedure Call (RPC) interface, developed in Java. Mary’s
server only produces the waveform, playback must occur on the client. The original
implementation of the client accepts the string to be spoken, uses the Mary API for
synthesis and then plays back the resulting waveform.

The component originally used an RPC-style interface, where the entire synthesis
and playback operation is performed during one XCF remote procedure call. This
call could either be performed fully blocking, where the call returns when playback
is complete, or partially-blocking, where it returns as soon as synthesis is complete,
but before playback. If the latter option is chosen, an estimate of playback time is
returned.

If another output request is made before the previous output is complete, synthesis
occurs in parallel, but playback waits until the previous output is complete. If this
happens, the estimate of playback time is accurate in terms of the duration of the
audio sequence, but it does not take the waiting time into account.

5.3.3. System Context

Even though text-to-speech is primarily a service component, its state and interaction
is still relevant for several parts of the system. In the original component, as shown
in figure 5.7, text-to-speech sits between the dialog manager and the synthesization
server.

In addition, the text-to-speech component notifies the speech recognition compo-
nent about imminent output, because otherwise, depending upon speaker and micro-
phone conditions, the recognizer could try to interpret the synthesized audio output.
Note that this creates a dependency from the TTS server to the speech recognizer.

Text-To-SpeechDialogManager

SpeechRecognition

Mary-TTS

inform of output

Figure 5.7.: Original Text-to-Speech context.

79

5. Separation of Concerns in Life-Cycle Coordination

In contrast, figure 5.8 shows the context after use of the task toolkit: Mainly, the
direct association between DM and TTS has been replaced by mediated interaction
through the event-bus (“ActiveMemory”). Of course, a dependency is still present.
Other interested listening components could be attached in the same way.

Text-To-SpeechDialogManager

SpeechRecognition

ActiveMemory

Mary-TTS

Figure 5.8.: Text-to-Speech context with Task Toolkit. This shows the actual dependency
structure after the experiment – in particular, the direct notification of the
speech recognition component has not been changed, even though the toolkit
would in principle be capable of replacing it with observation instead. The
reason has been that changing the recognizer component at the time was not
an option, but this is planned for the future.

5.3.4. Stakeholder Analysis

The stakeholders for anything that affects the TTS front-end are the researchers
working on the dialog manager (because it is the primary user of the TTS service),
the developer of the front-end itself, researchers who are interested in fine-grained
coordination of speech and gesture and system integrators.

A relevant social aspect in this context is that the first two of the stakeholders do
not gain directly from application of the toolkit: The dialog manager only needs to
know when playback is complete and the tts front-end has all information needed lo-
cally. While one could assume that they have nothing against a functional extension,
they do have important interests: Namely, that current functionality should stay
correct and their components should not become more complicated unnecessarily.

Additionally, system integrators have the interest that other components won’t be
adversely affected.

5.3.5. Study Design

From the previous analysis, the objectives of the prototype are:

1 Show that the “Callable” handler interface can protect handler applications from
the additional complexity of the task-state pattern and ensure correctness of the
life-cycle.

80

5.3. Proof of Concept: Text-to-Speech Service

2 Provide the additional information needed for fine-grained coordination.

The text-to-speech frontend will be changed to use the task toolkit for incoming
speech output, instead of the RPC interface. The dialog manager will be changed to
use the task toolkit for submission of action request. Verification of the objectivities
will be performed quantitatively, through dependency metrics, and qualitatively, by
judgment of the original authors.

5.3.6. Data Analysis

The data to be used for this experiment are the source code of the text-to-speech
front-end prior to and after integration of the task toolkit.

The first set of metrics pertains to the middleware dependencies in the component.
In table 5.1, the total number of classes and methods is given, with the number of
those that reference the middleware or task toolkits in brackets. These are compared
with total the number of classes and methods referenced from the middleware and
task toolkit.

Version #Classes (ref) #Methods (ref) #Referenced C #RM avg refs

before 14 (5) 71 (12) 9 11 3.75
after 10 (5) 76 (14) 8 8 2.86

Table 5.1.: Dependencies in the TTS front-end component.

Overall, the trend is towards lower number of dependencies, but in general the
numbers are fairly close together and the changes are more for technical reasons. For
example, the RPC interface of the middleware requires listener classes, thus there
are slightly more classes before than after.

The second set of metrics concerns the object-oriented complexity of the adapter
class. For this, only the modified classes were compared in detail.

Classname WMC CBO RFC LCOM Ca NPM

MaryXCF 19 21 80 101 4 6

MaryConnector 15 13 60 5 3 9
MaryTS 7 12 26 17 1 3

Table 5.2.: Chidamber and Kemerer OO Metrics (cf. appendix A.1) before/after.
“MaryXCF” is the original server, renamed to “MaryConnector” afterwards.
“MaryTS” is the task-server implementation.

The Chidamber & Kemerer Metrics given in table 5.2 demonstrate that addition
of the task-server has distributed complexity. While not all metrics can be simply
summed, it is apparent the coupling between objects (CBO) has roughly split between
the two new classes and similarly for the response for a class (RFC) and afferent

81

5. Separation of Concerns in Life-Cycle Coordination

couplings (Ca). The one huge change, however, is on the cohesion metric (LCOM),
highlighted above: The methods in the two new classes are much more cohesive than
before. Taken together, this strongly suggests that the desired separation of concerns
has been achieved.

5.4. Summary

The coordination interface used in these experiments can provide a clear, flexible
and tightly integrated model for coordination. However, they cause increased com-
munication effort, due to the larger number of updates per task, and the common
mixing of such updates with manipulation of the action representation. The effects
of this could be substantiated through examination of two components which pre-
viously implemented the coordination interface directly. Components should not be
concerned with such communication issues and be able to concentrate on the action
executed only.

The use of a service-level toolkit successfully achieved separation of concerns for a
typical service handler component. Furthermore, despite the fact that the component
now supports a much more capable interaction method, the sum of couplings to
middleware and task toolkit were lower than the previous couplings to the middleware
alone, which suggests that the design of the component has improved.

So far, data from two isolated components has been studied as proof of concept. A
service-level toolkit has further potential benefits when used in a system with several
initiative-taking components. Therefore, data from a fully integrated system will be
presented in chapter 6.

Acknowledgements

Many thanks go to Lars Schillingmann, a colleague in the ERBI project, who allowed
adaptation of his handler component, and to Julia Peltason who specified the original
requirements for the QueueingTaskServer.

82

6. Life-Cycle Coordination for
Mixed-Initiative
Human-Robot-Interaction

The prototype described in the previous chapter was deliberately restricted with
respect to both its API and the life-cycle employed, to reduce the potential for
errors. This worked well in the case of a simple service component, but it became
clear quickly that for components that participate in, or even coordinate, multiple
actions, this restricted approach was not sufficient. While coordination components
are not as numerous, their higher level of interaction with task execution also means
that they would benefit more from a toolkit, making the effort of specialized support
worthwhile.

Therefore, the case study presented in this chapter investigates life-cycle based
coordination, as used in the task-state-pattern, in the context of several use cases
from a fully integrated system, specifically the “Curious Robot” scenario (cf. chap-
ter 2). Particular emphasis has been placed on a) the suitability of the model for
coordination components, b) any changes to the life-cycle and/or the API required
as a result of issues identified and c) the general suitability related experience gained
through application of the model by other developers and their feedback.

The rest of the chapter will first introduce some context and then introduce the
study design. In the main part, the use cases are presented and analyzed. The
chapter concludes with a discussion of the main results.

6.1. Context: Initiative Generation for the Curious Robot

In the “Curious Robot” system, the robot can take dialog initiative at any time,
primarily based on perceptual input, but also on internal goals. To ensure that this
occurs consistent with the current state of interaction with the human partner, the
dialog manager coordinates human and system initiative, in the so-called “mixed-
initiative” approach (Allen, 1999).

Interaction between the DM and components that would like to initiate a system
action occurs based on the task-state pattern: Components propose an action and
if it is currently possible, the dialog accepts and tracks it, providing commentary
throughout execution. When the action is not currently possible, it is rejected. All
components performing overt activity have to coordinate in this way with the dialog,
either directly or indirectly, and at any time during execution, the human partner
may interrupt or change the task, or propose a different one.

83

6. Life-Cycle Coordination for Mixed-Initiative HRI

whatisthat whatisthatactivity []

Activity

DialogTask Initiative

task update

task create

task create

abort

process utterance

update grounding
stateprovide label

create user
initiated task

task update

text to speechinterrupt

receive utterance

reject/clarify

utterance

speech recognition

publish interest item

compute saliency label objects

grab image

Perception

create system
initiated task

interest item

rank regions

speech feedback

<<datastore>>

Active Memory

interest region

interaction
unit

<<iterative>>

perform subtask task update

interrupt

task start

command specific
verbal and
non-verbal output

object or grip name

repeat

repeat

 [new]

 [robot initiative]

 [system available]

 [is interrupt]

 [human initiative]

Figure 6.1.: Task Interaction in the Curious Robot Scenario.

As a result, the order of system vs. human activity is not at all fixed. The full
system interaction is shown in figure 6.1. Activities related to motion planning and
execution are not shown here, but are coupled through listeners on the task updates.
Note that the connection of the dialog to the rest of the system is through events
only, and that there are quite a number of concurrent activities in the system, even
without motion control.

6.2. Study Design

The present study has been carried out as an active design study (Runeson and
Höst, 2009): It has been performed during use of the toolkit and its results guided
the toolkit’s further development. The overarching goals have been a) to investigate
consequences of and validate the design choices made in the toolkit’s implementation
in a realistic setting and b) to extract generalizable insights that can guide future
applications of the task-state pattern in different scenarios.

The case study will examine the two coordination components in the “Curious
Robot” scenario (cf. chapter 2): the dialog manager, which manages human-robot-
interaction, and the hierarchical state machine (HSM), which manages arm and hand
motion. For these, firstly, their direct interaction with other components will be inves-
tigated and, secondly, the resulting sub-system separation will analyzed, to determine
whether the intended separation of concerns was achieved.

84

6.2. Study Design

6.2.1. Generalization and Validity

While one case study cannot be claimed to provide generally valid results, every
effort has been made to assure as much generalization as possible. Firstly, the two
coordination systems examined differ in many aspects and had previously been de-
veloped independently. Secondly, the system stretches all the way from abstract
human-robot-interaction to low-level motor control and thus encompasses a large
part of the functionality relevant in state-of-the-art robot systems, particularly those
targeted at service robotics.

Third, and not least, it should also be pointed out that the system under study
underwent three development iterations during the study period (cf. chapter 9).
This differentiates it from typical “one-shot” case studies and allows insight into
maintenance concerns, which are known to make up the larger part of a system’s
life-time.

The iterative approach has also provided opportunity to verify the claimed benefits
by the other involved developers. It could be said that these developers are not fully
independent, because they are part of the same project and university (though in
two different groups) and that is certainly true. They did use the approach during
an actual project over several years, however, and when issues presented themselves,
these developers were affected negatively. Thus, they were not inclined to simply
please the present author, but had every interest in problems being identified and
addressed.

Taken together, these characteristics of the study are expected to allow conclusions
which, while not necessarily applicable to all systems, are likely to be valid and of
sufficient generality to apply to a reasonably interesting subset.

6.2.2. Goal: Validate the suitability of life-cycle based coordination.

The first aspect addressed in the study is whether the life-cycle model is appropri-
ate for the coordination requirements. An overly complicated life-cycle model would
mean more effort in component construction and a more difficult validation proce-
dure during integration. Therefore, it is to be avoided. On the other hand, an overly
simple or restrictive life-cycle model would mean that aspects not covered would
have to be treated outside of the model, either by convention, or by inventing addi-
tional coordination mechanisms on top. The concrete question here is under what
circumstances, and in which combinations, transitions are used and if that use is
appropriate.

From the viewpoint of a toolkit developer, it would also be interesting to identify
widely applicable subsets of the life-cycle model. If such subsets could be identified,
default implementations can be provided which handle some aspects (those which
are not supported by the component) in a default manner and thus reduce effort and
improve correctness for application development. The question here is whether and
if yes, which, subsets of the life-cycle model are in use.

85

6. Life-Cycle Coordination for Mixed-Initiative HRI

Data Used

During design of the life-cycle model, the intended use of the transitions was specified
and there was also some idea of the combination in which these transitions were to
be used. However, only practical experience can tell if these expectations hold.

To supply the data to answer this question, a model-based approach has been
chosen, as a suitably abstracted level. The reason is primarily that individual source-
code level differences and the clutter introduced by other functionality being mixed
up with state-management (particularly in components not using the task toolkit
already) are not of interest for this study. A second reason is that the diagrams,
while not small, are sufficiently compact to be included with the analysis here and
thus facilitate outside inspection.

In the following, a number of exemplary use cases are modeled using UML sequence
diagrams and the models are then analyzed qualitatively. The analysis has been
verified by the authors of the respective components.

A risk of the model-based approach is that the model may not reflect the reality.
This is true even for automatically reverse-engineered models, as the extraction pro-
cess of current tools is not error-free and has to be manually checked. In fact, it is
unfortunately still the case that automatically generated models are, at the present
time, more error-prone than manually created ones. Therefore, the models used in
the following have been created manually and were validated for correctness by the
component developers.

Parameters Used

For each component in the models, the following aspects were analyzed: a) the
transitions occurring in interactions with that component, b) the action that occurred
as a result of a transition and c) the ratio of accepted inbound to accepted outbound
actions and d) the maximum number of concurrently active actions initiated by that
component.

Aspect (a) is intended to allow identification of subsets of transitions used, whereas
aspect (b) allows analysis of the fit of the transition to the action. Aspects (c) and
(d) are intended to provide some insight into differences in coordination styles.

6.3. History and Evolution of the Scenario

The dialog manager used for this study originated within the COGNIRON Human-
Robot-Interaction project, and has later been extended during the ERBI project.
In contrast to many other dialog components, its focus is not so much on detailed,
scripted dialogues or information gathering/giving but on managing the interaction
state between human and robot. Its guiding principle is that of “grounding”, pro-
posed by Clark and Brennan (1991) and realized in this case by Li (2007). It is
particularly notable for flexible, nested dialog exchanges.

86

6.4. Coordination Use Cases

Later extensions focused on providing more feedback on and interaction during on-
going activities by the robot. In particular, the DM tracks action execution, provides
verbal feedback about it at appropriate points and allows the human to interrupt or
comment on activities. While some of these capabilities were present previously, they
were developed specifically for particular actions, at considerable effort per action.
To provide a generalizable and extensible component architecture, the task-state pat-
tern was introduced. This extension, and subsequent substantial refactoring, were
performed by Julia Peltason.

6.4. Coordination Use Cases

In the following, four use cases will be introduced to demonstrate the range of differ-
ent applications for this case study. The first is a general overview, the second and
third a look at the two different subsystems involved, and the fourth, an example of
independent synchronization enabled through use of the generalized task model.

A Note on Model Interpretation

The models in the following are visualized as UML sequence diagrams, as the message
sequence is the most relevant information for the purposes of this study. However,
in contrast to regular sequence diagrams, there are three modifications: a) The
objects are independent components, b) messages are communicated through the
middleware, not in-process and c) the event-bus used for communication is not shown.

The first two of those are straightforward mappings to semantics for event-based
systems. The third, however, was made for brevity: If the event-bus were included in
the diagrams, the number of messages would have at least doubled. As all the shown
interactions are just examples anyway, this would not have contributed additional
information, but would have significantly increased clutter. However, the decoupled
communication typical for event-based systems remains:

All messages are shown as originating from the sending and terminating
at receiving components. This should not be construed as a dependency
from sender to receiver but is solely for brevity of presentation. Compo-
nents are still decoupled through the event-bus.

All models will be accompanied by tables that summarize the task state transitions
occuring in them by component, to indicate which subset of the life-cycle is being
used.

6.4.1. Analysis of Coordination Integration

The sequence diagram for an example activity is shown in figure 6.2, and will be
described in detail in the following.

The figure represents a fairly straightforward sequence: First, the system initiative
creates a “label query” task (1), the dialog is notified (2) and accepts the task (4),

87

6. Life-Cycle Coordination for Mixed-Initiative HRI

Speech
Recognition

Dialog
Manager

{}

Active
Memory

System
Initiative

Text-To
Speech

Motion
Control

timeout in
seconds

received
("An apple")

17:

point at object6:

say
("What is that?")

8:

accept LabelQuery4:

check interaction
state

3:

to home
position

18:

complete
LabelQuery

22:

check
interaction state

14:

reject LabelQuery15:

say confirm19:

notify about insert2:

notify about
accept

5:

notify about
reject

16:

notify about
complete

23:

notify about insert13:

insert task
LabelQuery

1:

insert task
LabelQuery

12:

complete say11:

accept say9:

accept say21:

complete
point

10:

accept point7:

accept home20:

{60}

Figure 6.2.: Example 1: Label Query Interaction Sequence. All life-lines shown represent
independent components which communicate through the middleware. The
“Active Memory” is the event-bus component.

88

6.4. Coordination Use Cases

after checking that nothing else is pending (3). Executing the task results in two
new tasks (pointing, 6, and verbalization, 8), which are accepted, too (7, 9), and
eventually complete (10, 11).

Some time after that, the human provides an answer (17), which causes the robot
to confirm the label received (18) and move back to home positions (19). Acceptance
of these by the components (20, 21) completes the overall interaction (22, 23) (but
compare figure 6.4 for an alternative ending).

In between, a timeout expires and the system creates an initiative again (12, 13),
which is rejected (15, 16), after the state check (14) reveals that another task is
ongoing. The timeout is a simple (and not the only) means to prevent the interaction
from completely stalling if the human fails to answer.

Historical Information

This use case was the first to be realized in the “Curious Robot” scenario and there
were two versions which differed in that in the first, all components had custom
implementations of the task-state pattern whereas in the second, the task toolkit
was used for some of them. Specifically, it has been used for the “system initiative”,
“text-to-speech” and “dialog manager” components. The motion control subsystem
kept its independent implementation. Because of this, it provided an ideal test-case
to ensure that the new implementation was compatible (and it was).

It is also notable that in the first implementations of this use-case, all state changes
were communicated, but the components ignored some of them. For example, the
first system initiative component never checked whether its actions were actually
executed, but simply produced new actions at about 30Hz (the vision processing
rate), which, together with rejection, caused 60 messages per second largely going to
waste. This mode of operation was soon found to be a sub-optimal use of resources,
because even discarding events can take up noticeable time, when there is many of
them. While obviously the rate could have been throttled down to more manageable
levels, this would have caused a loss in reactivity to changes in the environment.

A better change has been realized based monitoring life-cycle information: The ac-
tion proposal component suppresses proposals when an earlier one is currently being
processed (i.e. has been accepted), up until a given timeout (60 seconds by default).
This vastly reduces message traffic at no loss in functionality. Thus, while the pro-
posal component’s functionality could be realized without life-cycle information, it
can be realized more efficiently with them.

Analysis

In this typical situation, the dialog manager is both a server (of system initiative
tasks) and a client (of tasks for text-to-speech and motion control). Furthermore,
with regard to system initiative tasks, it constitutes the also typical case of a server
which can only perform one task at a time and its conflict policy is to reject.

89

6. Life-Cycle Coordination for Mixed-Initiative HRI

Table 6.1 summarizes the transitions, ratios and actions performed of the inter-
action shown in figure 6.2. In this simple overview, it can be seen that there is an
accept/reject sequence between system initiative and the dialog, which reflects that
the user can usually only tolerate one interaction at a time. This matches the in-
tended use of that part of the model. The other transitions use accept and complete
in the intended manner, too. Please note that the motion control interaction has
been simplified here and will be explained in more detail later.

One interesting aspect is that the text-to-speech service does not use an accept/re-
ject sequence, even though only one utterance can be spoken at the same time. This
is because the TTS server queues requests and produces them in the order they were
received, one after the other. Therefore, there can be a time gap between “initiate”
and “accept”, when a new request is received before the old one is complete. As all
utterances are caused by the dialog, such a situation does not occur in our scenario,
but it would be something to keep in mind for scenarios where it can happen.

Component Transitions RIO CO Results

System Initiative I, A, R, C 0:2 1 A: wait 60s until next
Dialog Manager I, A, R, C 1:4 2 I: check state, initiate sub-actions
Motion Control I, A, C n/a n/a I: initiate sub-actions
Text to Speech I, A, C 1:0 0 I: start action

Table 6.1.: Transition codes: I – initiate, A – accept, R – reject, C – complete. RIO: rate of
accepted in to accepted out. CO: max concurrent outbound. A value of ”n/a”
means not shown here.

6.4.2. From Actions to Activities

So far, the interaction looks very similar to a hierarchical decomposition of a larger
task into multiple sub-tasks – and it is. However, let us look a bit closer at the
situation when the full motion control sub-system is included into consideration.

In figure 6.3, the left-hand side shows the user-facing side of the system, up to
the “Dialog”. The right hand side, starting with the hierarchical state machine
(“HSM”), shows what goes on within the motor control subsystem: At first, a grasp
task is started and the HSM interjects with trajectory planning and the various
control components to move the arm to its position, then grasp. This is already a
fairly typical, decomposed interaction which the rest of the system is not particularly
interested in the details of.

After the arm is in position, a user correction is received via speech input, telling
the robot to grasp slightly more to the left (just as an example, of course). This
causes a position correction (in this case not shown here, but it represents a fixed
offset relative to the position determined by vision), and a corresponding update to
the grasp target specification. The HSM then aborts the grasping process, plans a
new trajectory for the arm (likely very short), repositions the arm and starts grasping

90

6.4. Coordination Use Cases

Hand
Control

Text-To-
Speech

Arm
Control

PlannerSpeech
Recog

Dialog HSM

powergrasp
aborted

15:

powergrasp
complete

24:

complete
say

10:

complete say23:

complete
say

29:

complete
pregrasp

9:

pregrasp
complete

21:

postgrasp
complete

26:

plan
trajectory

7:

replan18:

trajectory8:

trajectory20:

receive
PoseCorrection

12:

initiate Grasp3:

initiate say
(grasping)

5:

update Grasp13:

initate say
(ok, more left)

19:

initiate say
(ok, done)

28:

initiate
GraspInteraction

1:

complete
GraspInteraction

30:

accept GraspInteraction2:

accept Grasp4: start
pregrasp

6:

start
powergrasp

11:

cancel
powergrasp

14:

start
pregrasp

16:

updated Grasp17:

start
powergrasp

22:

start
postgrasp

25:

Grasp complete27:

Figure 6.3.: Example 2: Motion replanning after User Correction. All life-lines represent
independent components, except for “Trajectory Planner” which is contained
with “Arm Control”.

91

6. Life-Cycle Coordination for Mixed-Initiative HRI

again. After this is complete, the grasp task is marked as complete, and the dialog
produces user confirmation.

Historical Information

In user studies, we found that interaction with the robot about its physical activities
is challenging for users (cf. 9.3) and that users would benefit from every help they
could get, including the ability to change the action while it is still ongoing (which
was not possible at the time). Therefore, the “update” transition shown in this use
case was introduced, to enable such tighter coupling. It was one of several changes
in the later stages of the scenario and one which we do not yet have user study
information on, to determine whether it actually improves interaction performance.

From the viewpoint of the architect, it is interesting to note that adding the tran-
sition to the life-cycle of the toolkit was trivial, and changing the components to
use it at all was not particularly complicated either, but that designing a human-
robot-interaction to make good use of it is a real challenge. It is expected that it
will take several more user studies to make progress on this issue. However, these
studies can now take place on the basis of much tighter integration possible between
the coordination components, without sacrificing independent development.

Analysis

This use case demonstrates the coordination of larger activities: The action carried
out by one subsystem is realized as several sub-actions internally and the “update”
transition of the extended life-cycle model enables the other sub-system to modify
the ongoing activity, without having to be aware of the sub-activities. This could
not have been realized by simply canceling the old and starting a new action, as the
motion subsystem cannot infer the relation between the two on its own.

Such interactions are not exclusively found during human-robot-interaction, but
may also occur, for example, in visual servoing. Visual servoing is typically char-
acterized by a very tight, real-time coupling of vision and motor control. However,
it could also be realized based on the extended life-cycle shown here, given suitable
underlying communications mechanisms (and running in a single process, most likely,
but still as independent threads, thus maintaining a degree of independence).

The characteristics of the components involved are summarized in 6.2. It should be
noted that the interaction between the HSM and the arm/hand control components
does not use the explicit life-cycle but has roughly similar operations to the basic
life-cycle. The interaction between dialog and HSM uses the extended life-cycle
coordination and the HSM performs the mapping.

One can see that the dialog manager and the HSM are slightly different coordi-
nation components. The dialog has overlapping activities ongoing (one to motion
control and several to speech output), whereas the HSM performs strictly sequen-
tial1. There are two reasons for this: In this example, it is simply that grasping does

1In the sense that there always is only one logical activity going on, even though it can involve

92

6.4. Coordination Use Cases

Component Transitions RIO CO Results

Text to Speech I, A, C 1:0 0 I: start action
Dialog Manager all except Ca/Cd 1:4 2 I: check state, initiate subactions
Motion Control all except R 1:4 1 I: initiate subactions

U: cancel current, initiate replanning
C: start next subaction

Arm/Hand Control I, A, C, Ca, Cd 1:0 0 I: start, Ca: abort

Table 6.2.: Transition codes: I – initiate, A – accept, R – reject, U – updated, Ud – updated,
Ca – cancel, Cd – canceled C – complete. RIO: rate of accepted in to accepted
out. CO: max concurrent outbound. A value of ”n/a” means not shown here.

not make sense before the arm is in position. More importantly, however, while the
HSM can move two arms at the same time, they share parts of their physical space
and always have to be controlled together, to prevent collisions.

6.4.3. Overlapping Activities or “Implicit Completion”

Complementing the previous use case, let us now look closer at the interaction sub-
system. A particularly interesting issues arising in Human-Robot-Interaction is that
of “implicit completion”: The completion (or acknowledgement) of the prior action
is not signaled explicitly, but implicitly – by successfully beginning the next action.

For example, in our object label query task, the robot confirms the label provided
by the human and then the human has two options: Either simply yield the turn
and allow the robot to proceed, or correct the confirmation. Correction can become
necessary due to speech recognition errors and could be prevented by always asking
for confirmation. This is, however, not optimal in the majority of cases where recog-
nition is correct, so an optimization is useful. It was also felt that this approach is
more “human-like”, though this remains to be established.

The resulting sequence is illustrated in figure 6.4: A “LabelQuery” system initiative
task (1, asking for an object label) starts the interaction and causes both a pointing
gesture to the referent (3, 5, 6, 7, 9, 10) and a verbal query (4, 8) to be performed.
Then, there is a correction iteration, where the human first provides a label (11), the
system uses that to train an object recognizer and confirms the name (12-14).

For this example, a case is shown where the first recognition is incorrect, so the
human partner provides a correction and the system starts over (15-19). This is
followed by implicit completion, where the system attempts the next query (20-22)
and implicitly completes the previous task. As the human replies (25), the next task
proceeds. The system could also have refused the new task and taken initiative in
going back to the earlier task, which, in this mapping, would cause a new LabelQuery,
initiated by the human.

both arms simultaneously.

93

6. Life-Cycle Coordination for Mixed-Initiative HRI

Trajectory
Planner

Arm
Control

Text-To
Speech

Speech
Recog

Hand
Control

Object
Recog

Dialog HSM

timeout in seconds

causes motion
back to home pos

relearning

continues with
query of step 20

trajectory7: complete
point

9:

plan6:

complete
confirm

14:

complete
Query

8:

complete
Query

17:

complete
say query

24:

label
received

11:

label
reject

15:

label
received

18:

reply
received

25:

initiate
LabelQuery

1:

initiate
Pointing

3:
initiate
Query

4:

LabelQuery
result_avail

12:

initiate
confirm
label

13:

initiate
new query

16:

LabelQuery
result_avail

19:

initiate
GripType
Query

20:

initiate say
query

22:
complete
LabelQuery

23:

accept GQ21:

accept
LabelQuery

2:

start
point

5:

point10:

{60}

Figure 6.4.: Label correction with Implicit Completion. As before, all life-lines represent
independent components (except for “Trajectory Planner” which is contained
within “Arm Control”) and communication is through the middleware.

94

6.4. Coordination Use Cases

Historical Information

This is the second use case that required the introduction of a transition which
was not present before: “result available”. This transition is a self-transition on the
“accepted” running state and used to provide intermediate results. It was introduced
because the object detection component could improve its operation when it receives
the information that the training data was not to be considered complete.

At the time, there was some discussion on whether the same functionality could
have been realized by a sub-action specifically targeted at the object recognizer, but
it was felt that the dialog should not be required to interact with object recognition
directly, as this would have increased coupling unnecessarily.

Furthermore, the use case provided a secondary validation of an API design choice
made earlier: Because there are overlapping actions, the pure “Callable” task server
implementation is not suitable – interaction between successive actions’ states are
required. The QueueingTaskServer can provide these, simply by interleaving event
notifications in the queue, and thus the necessity of such an API for coordination
components was again underlined.

Analysis

This scenario demonstrates why separating interaction coordination from motion co-
ordination is a requirement to enable experimental research: The mapping of human
activities to task states shown here is the result of one particular theory of commu-
nication. One might just as well require an explicit confirmation by the human to
complete the task, or, as another alternative, consider the task completed only after
the human has replied to the new query – to name just two of the many choices that
are currently tested out in research systems.

There is not a clear choice what the “best” way of interaction would be and, most
likely, different trade-offs would lead to different strategies. For example, the present
strategy has been chosen because, in the large majority of cases, recognition of the
label works well and explicit confirmation was only adding another step that came
across as tedious, time-consuming and machine-like (because of repetition for each
object). If recognition performance were worse, e.g. due to outside noise or a non-
native speaker, another strategy might be more appropriate. One could even use
multiple strategies in the same system, and select amongst them based on current
performance.

While most likely not the only one, the task-state pattern provides a way of com-
bining different interaction management components with motion control in a way
that is close to the level of abstraction required in typical HRI situations. Thereby,
it facilitates independent experimentation with different strategies, as the rest of the
system can stay unchanged.

Regarding the life-cycle model, the only notable addition is the interaction with
the object detector: During the interaction, the validity of the label received from
the user is not entirely certain, as it could have been detected in error. However,

95

6. Life-Cycle Coordination for Mixed-Initiative HRI

the system has to be able to act on its intermediate knowledge, because the user
expects it. Therefore, the intermediate “result available” state provides a result,
even though the task is not completely finished, yet. The object recognizer, which
does not otherwise participate in the interaction, listens for such transitions (as well
as for “completed” transitions) and uses this intermediate information to immediately
update sensor information, yet keep open the option of re-learning.

While the reporting of intermediate results may appear useful for many other
cases, care must be taken because it requires a level-of-detail decision: Which level of
detail will be interesting? This can be hard to decide. For example, during grasping,
some components may be interested only about completion, whereas others might be
interested in the time when contact between hand and object is established, or other
intermediate steps. Whenever such information would be available by other means,
e.g. by registering directly for tactile events, that should be preferred, in order to
simplify the information conveyed in the task protocol.

In this case, the information received (a speech utterance) was produced by a
speech recognizer but could only be associated to the object by the dialog, because
it knows the current interaction state. Therefore, the alternatives were to either
provide the new information as part of the ongoing action or to create a new action,
specifically targeted at the object recognition component. In the latter case, this
could have been implemented either as part of the dialog or as a dedicated component.
In both of the latter, more implementation effort would have been necessary, so it
appeared most straightforward to include it in the existing task.

Component Transitions RIO CO Results

Text to Speech I, A, C 1:0 0 as before
Dialog Manager I, A, C, Ra 2:5 2 I: check state, initiate sub-actions

Ra: provide intermediate result
Motion Control I, A, C 1:1 1 as before
Arm/Hand Control I, A, C, Ca, Cd 1:0 0 as before
Object Recognition Ra 0:0 0 Ra: train classifier

Table 6.3.: Transition codes: I – initiate, A – accept, R – reject, Ra – result available, C
– complete. RIO: rate of accepted in to accepted out. CO: max concurrent
outbound.

6.4.4. External Synchronization for Additional Feedback

The last use-case details external synchronization. Here, a component does not itself
participate in the life-cycle, but it observes the life-cycle of another action and acts
in synchrony with that other one.

As an example, gaze feedback is used. In interaction between humans, the gaze is
a powerful feedback mechanism used to indicate, for example, the current focus of
interest. Similarly, human-robot-interaction can benefit from the viewing direction

96

6.4. Coordination Use Cases

Gaze
Feedback

Active
Memory

System
Initiative

Head
Control

Dialog

initiate
set viewdir

5:

initiate
pop viewdir

10:

insert notification2:

accept notification4:

complete notification9:

initiate LabelQuery1:

completed
set viewdir

6:

complete
pop viewdir

11:

accept LabelQuery3:

label received7:

complete LabelQuery8:

Figure 6.5.: Example 4: Gaze Feedback Sequence. All life-lines shown represent independent
components. Middleware communication is shown (the “ActiveMemory”).

of the robot being oriented at objects in its focus and to do so, the viewing direction
needs to be coordinated with the current dialog state. This results, for example, in
the robot looking alternatively at the currently attended object, or at the interaction
partner.

However, a robot’s viewing direction is more than just feedback: It is also, to
give just one example, an important means of extending the visible area, by looking
around. Therefore, its control scheme is not logically a part of the dialog manager
and the dialog manager should not be complicated by having to address these other
issues.

External synchronization offers a way to reconcile these issues: It allows the view-
ing direction to be separate, while still enabling synchronization to the current dialog
activities. Figure 6.5 shows in detail how events on the active memory cause notifi-
cations for components subscribed to this type of event.

97

6. Life-Cycle Coordination for Mixed-Initiative HRI

Historical Information

While the use case has applied the existing life-cycle model, it was relevant for
toolkit implementation for another reason: It introduced the concept of a dedicated
“listener” component, which receives transitions events but does not modify the state.
The API had not previously supported that directly but was refactored to separate
out the necessary functionality.

Analysis

Extensibility as used in the present use case has been recognized as one of the advan-
tages of the task-state pattern: The level of abstraction allows coordination without
detailed knowledge of the proceedings and the event-based method of communication
allows integrating extensions without disturbing the existing system.

That being said, it must be recognized that the coupling is not as loose as it
appears at first: Often, during development of a system, the abstract state-change
notifications are taken to be synonymous with particular activities by the compo-
nents – as observed by the developer during testing – even though this association
is nowhere guaranteed. Later changes, then, may affect the external components in
unforeseen ways.

Therefore, while the approach is attractive for incremental changes, the association
must be recorded and should be re-examined after changes. In the “Curious Robot”
system event notifications are subscribed to based on content-conditions. These
conditions, and a runtime record of matching events, have proven very useful in
tracing such indirect couplings and a means of recovering and recording indirect
couplings from the system interactions should be considered a necessary precondition
for safe system evolution.

6.5. Discussion

In the use cases presented, a diverse set of components has been integrated suc-
cessfully using the task-state pattern. For evaluation of the approach with regard
to the specified goals, both the historical information and the analysis presented so
far will now be discussed, to provide a summary of the results and a comparison to
alternative approaches.

6.5.1. Life-Cycle Design

Beyond general advice for designing finite-state automatons, there was design guid-
ance for designing life-cycles. In the studies presented, the first state-machine has
essentially been just found in existing systems, and was then later extended. Is there
something we can learn from these extensions?

Functionally, the original life-cycle (cf. figure 4.2) realized a request-response pat-
tern with two regular returns (one upon start, one upon termination) and exception

98

6.5. Discussion

notification (the distinction between “completed” and “failed”). Furthermore, it al-
lowed the client to signal completion, which requires multiple client messages. In
essence, then, this is an advanced form of asynchronous procedure call, a well-known
building block for distributed systems.

To this, two capabilities were added over time: Updates and intermediate results.
The second of these is a straightforward extension from two returns to multiple
returns, it simply corrected an oversight of the original specification. Updates, how-
ever, are more interesting, because they could, essentially, have been realized also by
aborting a current task and starting a new one. In fact, some other realizations of
the pattern (ROS’s actionlib) realize updates implicitly, by sending new goals.

So, what is the advantage of this new transition? The advantage is that it keeps
the context of the task. It communicates to the executing component that this is
not something new, but merely a change. This is useful only for such components
that associate significant state with tasks. In fact, looking at the case studies, there
are only two components which makes use of this transition: The hierarchical state
machine for motion control, a coordination component, receives it and the dialog
manager, another coordination component, sends it. The former benefits because it
can skip initialization steps (return to home and similar things) and the latter benefits
from keeping context, because aborting and starting tasks is usually associated with
verbal feedback, which would need to be suppressed in the case of internally caused
updates.

In essence, then, this transition has mostly been introduced to accommodate in-
teraction between coordination components. Now that it exists, other components
might use it as a shortcut instead of abort-restart, but that was not its original
purpose.

Moreover, both of these components could have done without the new transition,
but it made their implementations easier. This came at the cost of, potentially,
making other component’s implementation harder (because they have to support the
new states), but this is not a big issue, because the life-cycle includes an option to
refuse an update, which can be used by the toolkit to realize a default implementation.
Thus, existing components did not actually need to change.

From this, we can conclude that the minimal life-cycle is essentially a finite-state
machine realizing a restricted from of multi-message exchange, bound to the essential
characteristics of activities of medium duration. It is fairly static, and found as such
in multiple implementations.

The extended life-cycle, in contrast, relates to and is mostly useful for coordina-
tion components. Again, coordination components do not interact with tasks in an
arbitrary manner. Essentially the only common coordination functionality missing
from the current life-cycle is a feature to coordinate the commencement of related
tasks – the current system uses sequential start-up, which was sufficient for the pur-
pose at hand, but the improvement possibility is certainly there. Apart from this, the
generic life-cycle as proposed is considered essentially complete, because it models the
essential characteristics of tasks, and fulfills the common coordination requirements.

Of course, only time will tell whether this view is correct. If it is not, however,

99

6. Life-Cycle Coordination for Mixed-Initiative HRI

we can deduce one more piece of advice from the current case studies: Use toolkits,
and always include a possibility to refuse a new transition. In this way, default
implementations can safely pave the way for incremental adoption of new life-cycles,
without requiring changes to components.

6.5.2. Component Types

By examining the ratio of incoming to outgoing actions as well as the number of
concurrently active actions, a separation into four distinct sets of components can be
made:

1. Components that do not participate in the task-state based coordination. In
the use cases presented, these are all perceptual components, such as speech
recognition. More generally, these can be called pure analysis components.

2. Components which only perform actions for others. This category includes
actuators and other types of output components, but the form of interaction is
also used, e.g. in information retrieval processes. Thus, the common “actuator”
is eschewed for the more general term service components.

3. Components which only produce actions. There is only one of these at the
moment, the “system initiative”. In other systems, planners have this role.
One might be tempted to call them “decision” components, but due to the
experiences from real-world systems, a more cautious term is preferred, so they
are dubbed action proposal components.

4. Components which both produce and handle actions (dialog and HSM). These
have been called coordination components throughout this chapter and that
is the suggested term. Other terms found in the literature are “sequencing”,
“executive” or “scheduling” components, though all of these appear to originate
from architectures that assume central and/or preplanned control, which is why
they are not used here.

6.5.3. Life-Cycle Subsets

As can be seen from the transitions in use, the original, basic life-cycle remains
widely used for interaction with service components. That said, a number of possible
functional enhancements have been discussed which would make some of them useful
for these components, too. For example, the “abort” transition is not widely used,
but would be useful, for example, with text-to-speech synthesis to abort a question
when the human interject (Peltason, 2010). Similarly, the “updated” transition could
be used with the same service, allowing it to insert a placeholder when the utterance
is changed in mid-sentence (as humans do when they say “ehm”, for example).

It is probably safe to assume, however, that not all service components will want
or be able to support these extended transition – at least initially. Therefore, toolkit
support should be provided (and has been provided in the XTT), to provide default

100

6.5. Discussion

handling of such transition for components which cannot support them. This default
behavior should be easy to switch off, when components are enhanced.

6.5.4. Overall Suitability

Overall, the integration was a success: Three successive demonstrators were built,
with steadily increasing functionality and stability. The task-state pattern con-
tributed to this success mainly through two factors. Firstly, it reduced development
effort for component developers and secondly, it provided a ready-made template for
the addition of novel components. In particular the latter aspect was noticeable,
as novel components were integrated late into the system with very little effort (cf.
chapter 9).

Regarding the API suitability, some extensions were necessary, firstly, to support
coordination and, secondly, to extend the life-cycle. They were largely due to the
system becoming more capable, as outlined throughout this chapter.

Developer feedback has generally been positive, in particular because effort for
implementation of the task-state pattern and generally undesired book-keeping is re-
duced (Peltason, 2010). This has already led to requests for toolkit implementations
for other languages.

6.5.5. Distribution of Work

One interesting, and totally unplanned, effect of separating concerns through use of
the task toolkit was that in the initial stages of development, when the toolkit was
still being developed, it added another developer to an existing task: When there
was a bug in the pattern implementation, it could be solved concurrently with the
component developers working on unrelated functionality. While adding people does
not always speed up development, this is a case where it did – most likely, because
the functionality was split along a clearly demarcated interface.

Obviously, this is only the case when a) the toolkit developer is available and willing
to work on the system at the same time as the other developers, because otherwise
it would have a detrimental effect and b) there is enough unrelated functionality
to work on so that component developers do not have to idle around while waiting
for the toolkit to be fixed. In our experience, requirement b) is not a problem, but
requirement a) can be and requires management support.

While the effect of the additional development workpower can level off after the
toolkit reaches maturity, some positive effects remain because there are more peo-
ple available to explain integration-related aspects – a notoriously time-consuming
and tricky part of system development. Additionally, integration has already been
partially solved towards a higher-level of problem definition.

Acknowledgements

Grateful acknowledgement is given to Julia Peltason and Robert Haschke, colleagues
in the ERBI project. Julia Peltason undertook the work on the dialog manager and

101

6. Life-Cycle Coordination for Mixed-Initiative HRI

continued to use the toolkit for several other extensions, thus providing invaluable
feedback for its development. Robert Haschke is the lead developer of the HSM
component and integrated it with the task-state pattern.

102

Part III.

Composition

103

7. Modeling with Directed Typed Graphs
and Event-Oriented Decomposition

While the previous chapters have focused on the architecture and coordination of
distributed components, the following chapter will deal with flexible construction of
novel components1. As in systems, an overarching goal is to construct components
from existing modules. In this thesis, a secondary goal is to construct components in
a way that facilitates functional comparison and experimentation with alternatives.

To achieve module interconnection in a generalized way, the approach taken is
that of data-flow, which treats modules as directed typed graphs (DTGs), where the
nodes of the graph are functions and the arcs transport (and, if necessary, buffer)
data. Furthermore, similar to visual programming, but different from lower-level
data-flow approaches, connectivity is completely externally specified and thus easily
changed.

An open issue in DTGs is the optimal node granularity, and how to decompose
existing functionality into nodes. In this work, the potential for re-use is empha-
sized and it is suggested that decomposing components by the principles suggested
for event-based system integration (Barrett et al., 1996) could aid such re-use. In
particular, they separate application-specific assumptions from algorithmic blocks.

A toolkit to support this approach has been developed as part of this thesis and
its foundations and design rationale will be given in the remainder of this chapter.
It has been evaluated experimentally on the present system, the results of which are
given in chapter 8.

7.1. Component Modeling for Distributed Systems

Two primary issues usually motivate construction from modules: Firstly, in inte-
grating a core algorithm into a larger system, often a significant amount of so-called
“glue” code is necessary. This includes, for example, conversion between representa-
tions, setting up and using communication channels, etc. Such code is dependent, at
the very least, on a particular middleware and the particular system decomposition
into components. Therefore, it is in general desirable to keep it separate from the
algorithm implementation.

Secondly, most algorithm implementations are based on utility libraries, such as
data structures, mathematical tools, etc. These libraries have to be embedded again

1In the following, “component” will be used to denote a distributed component and “module” will
be used to denote a functional unit within such a component.

105

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

and again in different places, often just in different, sometimes even fixed parame-
terizations.

The first issue is usually approached through layering, and the question for a
component model is how to identify connecting points and satisfy them upon con-
struction. The second issue is dependent on the modeling method and in the present
approach, inspiration has been drawn from the data-flow model and event-driven
programming. The foundations of these will be now be introduced, to be followed
by the description of the combined toolkit.

7.1.1. Graph-Oriented Program Models

Treating modules as graphs dates back at least to the dataflow model of the 1970s,
which, according to a survey by Johnston, Hanna and Millar, was motivated by the
desire to exploit hardware-level parallelism (Johnston et al., 2004). In this model,
every instruction is a node in a graph, with the arcs transporting data between
nodes. Therefore, with suitable hardware, every instruction may be executed in
parallel, when its inputs are available.

When conventional imperative languages proved difficult to compile to these novel
architectures, matching languages were developed. Over time, the previously rad-
ically different models were realized on standard systems through multi-processors
and software threads.

Unfortunately, these early dataflow approaches did not achieve the anticipated
improvements because their theoretical assumption (of hardware-level parallelity) is
not realizable. They operated at a level that was too fine:

While von Neumann architectures operate at process-level granularity
(i.e., instructions are grouped into threads or processes and then executed
sequentially), dataflow operates at instruction-level granularity (Johnston
et al., 2004, section 3.2).

Such instruction-level granularity added huge overhead to each instruction and Silc
et al. succinctly summarized the situation as follows: “pure dataflow computers [. . .]
usually perform quite poorly with sequential code.” (cited after Johnston et al., 2004,
section 3.2).

Fortunately, by this time, dataflow languages had achieved an appeal in their own
right and

The reason for the decline in dataflow research in the late 1980s and early
1990s was almost entirely due to problems with the hardware aspects of
the field. There was little criticism of dataflow languages[. . .](ibid)

In fact, there is a large number of visual, data-flow oriented languages today,
some of which are the de-facto standards in their field. Examples include NI Lab-
View2 for laboratory data analysis, Mathworks Simulink3 for simulation and mod-

2http://www.ni.com/labview/
3http://www.mathworks.com/products/simulink/

106

http://www.ni.com/labview/
http://www.mathworks.com/products/simulink/

7.1. Component Modeling for Distributed Systems

eling, Max/MSP4 for music processing and synthesis, StreamBase Studio5 for event
processing (particularly financial data), and many others.

These languages create new components from existing functions – where these
functions typically contain many instructions, thus avoiding the performance prob-
lems. This suggests that the graph-oriented view may be a suitable abstraction level
for module interconnection. Furthermore, the graph is a suitably abstract represen-
tation of the functionality of a component, which lends itself well to inspection and
automated analysis or transformation.

Analysis

For the design of a novel toolkit, several facts from the historical overview seem
particularly relevant. The first is the granularity problem: The level of individual
instructions is much too fine for both performance and development. While it is still
an open question what a suitable coarser level could be, many toolkits sidestep the
issue by distinguishing “host” and “coordination” languages: The nodes themselves
are implemented in a conventional, imperative language, the “host” language. In
contrast, the connectivity of the graph is specified through a simpler, often visual,
“coordination” language.

Furthermore, it is probably not accidental that all the successful dataflow oriented
toolkits are domain-specific. They come with extensive domain-support libraries,
which can be immediately plugged together to demonstrate the framework’s value.
The domain-specific constraints provided may also simplify execution (compare sec-
tion 7.2, particularly 7.2.4).

7.1.2. Reactive Systems

Common to the dataflow approaches, with their processing nodes and data flowing
through the graph is a view that Harel and Pnueli (1985) have called “transforma-
tional”.

A transformational system accepts inputs, performs transformations on
them and produces outputs (Harel and Pnueli, 1985, p. 479).

In contrast, they pose the concept of a “reactive” system:

Reactive systems, on the other hand, are repeatedly prompted by the out-
side world and their role is to continously respond to external inputs[...]
A reactive system, in general, does not compute or perform a function6,
but is supposed to maintain a certain ongoing relationship, so to speak,
with its environment (Harel and Pnueli, 1985, p. 479).

4http://cycling74.com/products/
5http://www.streambase.com/products-StreamBaseStudio.htm
6In the mathematical, not the general sense.

107

http://cycling74.com/products/
http://www.streambase.com/products-StreamBaseStudio.htm

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

The terminology used here may be slightly misleading for robotics, because robotic
systems always include both of these aspects. It might be clearer to describe trans-
formational and reactive as complementary views on a system. Essentially, the dis-
tinction Harel and Pnueli are making is that the transformational view emphasizes
the computation that a system performs, irrespective of where its input comes from
and what its output achieves. In contrast, the activities of a reactive system are all
about maintaining the relationship to the environment, irrespective of how that is
achieved. In robotics, the interaction with the world embodies the reactive aspects.

An example of how this is realized in robotics is Brooks’ early Subsumption archi-
tecture. While Brooks focuses mostly on the data-flow between the components of
his architecture, each of these components internally contains a finite-state-machine
maintaining, in the reactive fashion, a relationship with its environment (including
the rest of the system) (Brooks, 1986, see p. 22).

To describe reactive systems, they propose what is, in essence, an inverse view to
dataflow: The statechart (Harel, 1987). Nodes in statecharts represent the possible
states and functions are carried out during transitions. What state-charts add is
the concept of an “external input”, to which the system reacts. This input specifies
which of the paths out of a state is taken.

Analysis

The dichotomy between transformational and reactive systems is an important one
and, in fact, the entire previous chapter has been devoted to a pattern that manages
state between components. That said, the management of state depends on the
level at which a system is viewed. A serial device driver, for example, needs to keep
internal state to interpret incoming data, but can hide much of this state from the
rest of the system. This rest, in turn, may have to keep higher-level state, only some
of which is communicated externally.

Thus, it is the present author’s opinion that the state-centric view is useful for
describing the boundaries of a system, whereas the flow-centric view is useful for
describing the sequence of actions that occur during state-transitions. A consequence
of this view is that the toolkit, which is primarily flow-based, must incorporate
functionality to interoperate with reactive processing.

7.1.3. Computer-Aided and Model-Driven-Engineering (MDE)

The previous sections introduced dataflow oriented graphs and state-machines as
basics for modeling software. However, this is not to say that the goal of this chap-
ter is a general software modeling approach. Such tools have been tried in the
1980s under the name “computer-aided software engineering” (CASE) and while
they generated a lot of publicity, they were ultimately unsuited for serious software
development (Schmidt, 2006).

While Schmidt attributes some of the problems of the CASE approach to the
“paucity of the underlying platforms”, which necessitated overly complex code gen-

108

7.2. Execution models

eration, he also mentions the problems of a “one size fits all” approach, which is too
generic and non-customizable (Schmidt, 2006). It is notable that this is almost the
exact opposite of the domain-specific dataflow frameworks mentioned previously.

Model-Driven-Engineering, in contrast, attempts to close the semantic gap through
modeling for domain support, or meta-modeling. Domain-specific modeling languages
are created to aid developers in these domains (Schmidt, 2006; Balasubramanian
et al., 2006). Models are built using these meta-modeling languages and translation
engines then transform them to code in a host language, which can be executed
normally. While at the moment these host languages are predominantly imperative,
the models usually contain information that could be used to generate for other
targets.

While such domain support is an important step in the forward direction (creating
code from models), it does not improve the so-called “roundtrip engineering”, which
updates models from code. Furthermore, the integration with host languages for node
implementation in MDE tools is generally not as advanced as in dataflow-oriented
environments, owing to the higher abstraction level of MDE. It remains to be seen
whether this gap can be closed once MDE tools become more mature and can benefit
from their generality or whether domain-specific tools will remain superior, despite
their smaller user base.

7.2. Execution models

In the previous overview of modeling approaches, two means for execution have been
presented: Translational ones, which transform the model to an executable form and
direct ones, where the model is executed by a suitable interpreter, which may also
be in hardware. Naturally, these can be combined to form hybrid execution engines
and in some cases, such hybrids are created directly by developers using host and
coordination languages in conjunction. In the following, the various methods will be
discussed in more detail.

7.2.1. Classical data-flow model

Classically, data-flow is data-driven: Whenever the necessary data is available at the
input(s) of a node, it will be processed and the result, if any, is placed on the output
arc(s). Execution thus follows the data, as it flows through the graph – hence the
name.

The necessary data is determined by a node’s “firing set”, which specifies the
inputs that have to be available. Furthermore, flow graphs where every input causes
one output are called “well behaved”. In the flow analogy, nodes that take input
from other nodes are “downstream” with respect to these nodes. Parallelism can
be achieved when upstream nodes do not have to wait for downstream nodes to be
finished.

In practice, this pure model has the problem that it requires intermediate storage
for data which is not yet processed. When node execution is completely decoupled,

109

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

the storage required can become unbounded, unless additional constraints are met.
Furthermore, it may perform unnecessary processing, e.g. when the data produced
by upstream nodes is not actually used.

The pure data-flow execution models assume the engine to be in the hardware.
In the absence of such hardware, or when mapped to coarser granularity, a process
network engine is usually used (see below).

7.2.2. Kahn process networks

One approach to keep storage requirements from growing and prevent unnecessary
computation is “demand-driven” execution, used, for example, in Kahn process net-
works (KPN) (Kahn and MacQueen, 1977). Here, nodes are called “processes” and
they are connected by “channels”. Kahn defines channels to “behave like unbounded
FIFO queues” (Kahn and MacQueen, 1977, my emphasis), but they do not have to
unbounded in practice.

The difference in the KPN model is that processes only become active when their
output is requested, i.e. on demand. They then produce some data, and will not be
activated again until this output has been consumed.

The disadvantage of pure demand-driven execution is that it only exploits par-
allelism between different input paths, not within one path. To allow parallelism
within a path, Kahn suggests the use of an “anticipation coefficient A(C)”, for a
channel C (Kahn and MacQueen, 1977, section 3.1). Then, a node that has been
activated will produce not just one but A(C) items of data, in anticipation of future
use. This enables parallel processing whilst bounding storage requirements.

Furthermore, due to the demand-driven activation, the dataflow concept of “firing
sets” does not make sense in KPNs. However, KPNs explicitly query their input
channels, which creates an implicit internal condition to the same effect.

7.2.3. Communicating Sequential Processes

A similar, but slightly different approach, the “Communicating Sequential Processes”
(CSP) model, is due to Hoare (1978) and Brookes et al. (1984). In this model, pro-
cesses execute independently and are always active. However, when communicating,
they block until the remote process is also available for communication. This reduces
storage requirements and provides well defined synchronization semantics.

CSPs are also used slightly differently: Whereas in the dataflow approach, the
connections between the nodes are created externally, CSPs specify the nodes they
would like to communicate with internally. Depending on how the remote processes
are named, this may require more knowledge about the surrounding system.

Furthermore, while the original data-flow approach was based on nodes executing
primitive operations, CSPs are clearly high-level programs. However, since the orig-
inal formulation, the data-flow concept has also developed to encompass nodes with
coarser granularity, so this distinction is vanishing.

110

7.3. The Filter-Transform-Select (FTS) Toolkit

7.2.4. Synchronous Data Flow

A different solution to the practical problems is to restrict the dataflow graph in
ways that make execution statically schedulable at compile time. This is done in
the Synchronous Data-Flow approach due to Lee and Messerschmitt (1987). Its
essential aspect is that the number of input and output items consumed respectively
produced are pre-specified. Based on this specification, the execution order can be
pre-determined. This is called “static” scheduling, with the traditional approach
being called “dynamic” scheduling in contrast.

There are fairly elementary nodes with asynchronous behavior, such as condition-
als. The SDF approach handles these by creating synchronous sub-graphs, which are
statically scheduled, and selecting the correct schedule at runtime (Lee and Messer-
schmitt, 1987, section V.C).

7.3. The Filter-Transform-Select (FTS) Toolkit

Having presented the main influences, the following section will introduce a novel
toolkit for component construction. Its design is primarily based on the dataflow idea,
hence it is transformational in nature. In addition, a taxonomy will be introduced
that classifies nodes as filtering, transforming or selecting and the filter and selection
nodes, in particular, are intended to provide a bridge to the reactive aspects of
a component. This taxonomy has also led to the name “FTS”, which stands for
“filter-transform-select”.

First, the requirements and the design of the toolkit addresses will be introduced.
Both technical and social aspects will be considered, the latter of which we consider
particularly important for adoption. After that, the structure is introduced and two
different execution models are compared.

7.3.1. Historical Overview

Two precursors had been created prior to designing the current toolkit. As a first
experiment, the present author developed a so-called “conditional dispatch” library,
which allowed incoming events to be assigned to handler functions based on a set
of conditions on the content of the input. This is similar to pattern matching dec-
larations in functional languages such as Haskell, but has been realized for XML
documents using XPath for pattern matching.

The conditional dispatch library could select either the first handler from a list, or
all matching handlers. Importantly, it was considered an error if no match was found.
Therefore, it realized a selection amongst options. Furthermore, the conditions in-
cluded state variables and support was present to easily modify state variables across
a number of conditions. While this was not designed with reactive programming in
mind, the association – and similar usage patterns – quickly appeared.

At the same time, Sebastian Wrede implemented so-called “message-transforming-
function trees” in an experimental version of the XCF middleware framework (Wrede,

111

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

2008). It was based on a chain of transformations to be associated with an event-
selection expression acting as a filter. Several such chains could be combined in a
tree and evaluated in parallel.

The foundational experiments have been merged conceptually in the Filter-
Transform-Select toolkit, created jointly by Sebastian Wrede and the present au-
thor (Lütkebohle et al., 2009b). It combines the ideas of selection amongst alterna-
tives and chained transformations. Furthermore, the recognition of a common need
caused the creation of a solid representation in the form of graph which could support
loops. This laid the ground for a flexible component modeling approach which can
be applied beyond the limited applications of the previous implementations.

7.3.2. FTS Requirements & Design

From the historical development, it is already possible to discern two major functional
requirements: Firstly, in event-based components the idea of a condition, which
decides what further processing to perform, appears again and again. In many cases,
such conditions are embedded within other code, which makes them hard to change.
Therefore, a means to separate these conditions from the handler code was desired.

Secondly, a lot of recurring glue code, such as (un)marshaling, data extraction
and fusion of data and so on, is naturally described as a chain of transformations.
This code occurs so often that just calling a sequence of external functions becomes
tedious. Furthermore, the use of different middleware toolkits, or none at all, means
that different transformational chains are used with the same core algorithm. There-
fore, it was desired to separate this code from the core and make it easily changeable
at the same time.

Parallel and sequential execution models

One of the most influential requirements has been flexibility with regard to execution
models. The primary reason for this flexibility is to support components with dif-
ferent requirements regarding timing, concurrency and performance. While process
networks are very flexible and sometimes required, they are neither the most efficient
nor the most predictable execution model.

Furthermore, many parallel execution models leave synchronization aspects up to
the developer. When nodes are not side-effect free, this can be a difficult problem
and it may be desirable to ensure serialized execution.

Thus, it is required to have at least one parallel and one sequential execution
mechanism. For the parallel mechanism, a data-driven process network approach
with FIFO queues is to be used. For the sequential mechanism, a breadth-first graph
traversal algorithm is employed. The reason for this choice is to be found in the way
fusion is realized: When a node requires multiple inputs, these are collected through
fusion nodes, and then passed as one to the target node. To allow rate adaptation,
these fusion nodes also support caching data. If a depth-first traversal were used,
this caching would lead to the target node being called directly once the first of the

112

7.3. The Filter-Transform-Select (FTS) Toolkit

inputs has been updated. This is only desired when no updates for the other inputs
are available in this time-slice. Breadth-first processing, however, gives the other
data inputs a chance to update the fusion node’s cache before further processing
occurs.

A functional node interface

The node interface is one of the most crucial design aspects. On the one hand, it
must be powerful enough to encapsulate a variety of functions. On the other hand,
it must be simple enough to be easily, and correctly, usable. The latter requirement
is particularly important to facilitate adoption of the toolkit, as discussed above.

The following choices have been made to realize this:

• Informational annotations. Some execution models (such as synchronous data-
flow) require additional information. However, such information should be
optional, to keep the minimal interface simple and clean. Thus, the use of
external annotations has been chosen, whose addition is optional.

• Functional interface. Different execution models may require different data
exchange mechanisms, such as FIFO queues, shared buffer or direct parameter
passing. Thus, the base mechanism must be versatile enough to support all
of these without being too complicated. For this toolkit a functional interface
with single input/output has been chosen.

While restricting the interface to single inputs and outputs appears restrictive at
first, the inputs and outputs can also be structures containing multiple elements, so
it is not really restriction, just an interface simplification for the execution engine.
Sometimes, the application domain may provide such a structure naturally, for other
cases, the framework supports lists and maps as generic data structures. Further-
more, when several output elements are requested, it may be a useful optimization
to compute them incrementally.

Marking layers and hierarchies

Layering, with information hiding between layers, is a well accepted design principle
and should be supported in the toolkit. When connectivity is externally specified,
information hiding between nodes is already realized, because the nodes are not
aware of where their input comes from, and have no direct access to the source
object. However, the graph structure still needs to be known across layers, because,
for example, to connect two sub-graphs from different layers, their output and input
nodes are needed.

Thus, to hide the graph structure, a means to mark input and output nodes in a sub-
graph is to be part of the toolkit. These markings must contain enough information
to establish connections between layers automatically, which will include at least the
type of the data exchanged.

113

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

Furthermore, layering usually prohibits connections between non-adjacent layers
to reduce coupling and improve abstraction. As connectivity is already externally
specified in the current approach, such coupling would be on the data-structure level
only. This is considered acceptable for the present design and might even enable
beneficial optimizations.

However, it may certainly be the case that a lower layer produces data of the same
type as a higher layer, e.g. when the higher layer performs filtering or smoothing. If
connections are purely made on the basis of type, this could create accidental con-
nections. Therefore, a means to mark the layer of a node is necessary. If desired, this
specification could then be used to prevent non-adjacent layers from communicating,
though this is not done in the present implementation.

Performance estimates

In the chosen process model, passing data between nodes occurs through blocking
queues, specifically the java.util.concurrent.ArrayBlockingQueue introduced
with JDK version 5. While queue overhead is low, it is still orders of magnitude
higher than function call overhead, so an early concern was that this overhead might
become too costly. Fortunately, this concern could largely be put away, due to the
following considerations.

Early estimates have been that a typical data fusion component working on vision
data could come to about 3,000 node executions per second, and a serial control com-
ponent up to about 10,000 executions per second. As it turned out, these numbers
overestimated the number of nodes required considerably, and in practice numbers
about one order of magnitude lower are actually observed. Still, it is better to err on
the high side and also leave some room for growth, so they were used for an estimate
to ensure future scalability.

Benchmarking data-passing with multiple threads and contention is a complex
subject, but from measurements available in the literature, it is known that the
locking primitives used for such queues take between 30 and 400 nanoseconds (ns),
depending on contention, on Intel Pentium4® class processors (Lea, 2005, tables 2
and 3). Further, data-transfer through this kind of queue takes about 5,000ns or 5µs
an AMD Opteron® class processors (Scherer et al., 2006, figure 3).

This means that the transfer of 10,000 messages through such a queue is estimated
to take about 50 milliseconds, for an overhead of 5% when transfering this number
of messages per second. This is significant, but considered tolerable. Measurements
on the overall framework have since confirmed that it remains within this range.
Thus, we can conclude that while the overhead is noticeable, it it is certainly within
a reasonable range.

Furthermore, Java’s built-in APIs are by far not the most efficient for these ap-
plications. Due to the popularity of the message-passing model for concurrent pro-
cessing, vast performance increases in the underlying primitives have been achieved.
For queues in Java, implementations are now available that reduce the overhead
by a factor of at least three (Scherer et al., 2006, figure 7). Furthermore, new

114

7.4. (De-)Composition Principles

event-processing-oriented frameworks have appeared that achieve up to 25 million
messages per second on generally available machines (Thompson et al., 2011). This
means that, should message-passing overhead become a problem in the future, huge
room for growth is available by moving to one of these frameworks.

7.4. (De-)Composition Principles

Having given a number of technical considerations for the toolkit design, the following
section will focus on aspects which have been designed to provide developer support
for easy composition of components from modules. As the history of CASE tools has
shown, the social and economical aspects are crucial for adoption, yet most research
has focused solely on technical concerns. Besides a number of design aspects, this
fact has also been the motivation to study the concrete uses of the toolkit, the results
of which are presented in chapter 8.

A general principle has been to keep the toolkit small and easy to understand. One
consequence is that the toolkit has not been designed as a development environment,
but as a framework-level library. Furthermore, a crucial goal was to keep the size of
the API limited, with the original goal specified loosely as “maximum of 10 classes
or interfaces”. This could not be realized by far, but its spirit has been followed
by keeping the size of the user-visible core API in that range and through minimal
interfaces.

7.4.1. Decomposition for re-use

While the concept of a graph with connected functions can encompass many types
of programs, this generality is not without pitfalls. As mentioned previously, the
granularity has consequences for performance. However, more importantly, from the
viewpoint of a developer, it is not clear how to decompose module into nodes.

This may only be a minor issue, depending on the application area. For example, in
more structured domains, such as signal processing, typical decomposition strategies
may be well established. Furthermore, structured programming suggests particular
control strategies, such as conditionals and loops, which also have relevance for the
execution flow. Thus, it might appear natural to decompose along these lines.

However, for novel domains decomposition are still unclear and, in general, a
decomposition on the granularity of individual control structures is considered too
be to fine.

Therefore, a decomposition into filters, transformations and selection nodes is ad-
vocated (Lütkebohle et al., 2009b), for the following reasons:

• Conditions vs. algorithms One of the primary aspects in integrating legacy
components is to change the conditions (hence, filters) under which the al-
gorithms (the transformations) are applied. For example, a behavior that is
executed in just a single condition on one scenario might be used for several
conditions in another scenario. Such changes should be possible on the level of

115

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

the processing graph and that is only possible if conditions and transformations
are separated7.

• Selection vs. Filtering. The “select” distinction is to be used whenever there
are multiple options, at least one of which must be taken. This is distinct from
a filter step, which is used to determine whether the conditions for further
processing are met. For a select node, it is an error if no condition is met,
whereas for a filter node, this is a normal case. This restriction, and its use
in the framework, facilitates a structured dataflow design that prevents errors,
because processing is guaranteed to continue after the select.

Besides these distinctions, the decomposition also depends on the level of inter-
est. For example, an algorithm often contains many conditions. As outlined above,
describing a graph structure on that level is considered too fine. Therefore, the de-
composition into filters, transformations and selectors is suggested to be performed
at the highest possible level, just below the component boundary. In effect, the inputs
for filters and selectors should be externally provided data.

That said, it is certainly envisioned that the toolkit may be employed in a hierar-
chical manner to model the sub-module level – possibly using a different execution
model. In such use, the decomposition level would have to be different, but that is
beyond the scope of the current work.

Learning curve and testing support

The inverted control-flow of a framework may hamper testability, if care is not taken.
Instead of the developer writing code that calls library functions, the developer im-
plements interfaces, which are invoked by the framework. This is a well-established
approach (Johnson and Foote, 1991), but may slightly decrease understandability
and increase the learning curve. Furthermore, in a true process network, many con-
current processing threads may be active, calling nodes in no predetermined order.
This can make it much more difficult to determine when and where errors occur.

To reduce the effect of this, the toolkit should include support for isolated execution
of a node and stepwise execution of a graph. Furthermore, it should be possible to
observe the execution of a graph while it is running, ideally in such a way that the
data and execution trace can be captured and replayed8.

7.4.2. Multi-Level Composition Support

Like many dataflow toolkits, the present toolkit should support dedicated host and
coordination languages. A specialized coordination language can reduce the tedium

7This does not mean that all conditions can be separated out that way, some of them are essential to
the way the transform works. However, many conditions that purely decide whether to perform
processing or not are good candidates for extraction. Further, even some of those appearing
essential may be extracted by splitting the transform at the same time.

8While capturing is indeed supported in the toolkit, replay has not yet been implemented.

116

7.5. Toolkit Implementation

of constructing graphs and enable high-level constructs to be expressed succinctly.
However, firstly, it is not clear what the optimal abstraction level of a coordination
language is and whether it should be primarily visual or textual. Furthermore, a
coordination language requires a translation to an executable representation, which
is another source of errors.

Therefore, a stepwise approach with three layers has been taken.

1. Directly accessible base API. The basic API for creating graphs is exposed to
developers, so that they can use it procedurally.

2. Low-level graph language. Built on top of the base API, this language should
have a one-to-one mapping to nodes and edges, but may already translate from
abstract node types to concrete implementations.

3. Domain-Specific Modeling Languages. To raise the abstraction for particular
domains, a translation from a domain-specific model to the low-level graph
language should be supported.

The third layer has been implemented and tested experimentally, but has not been
used in the current system. The remainder of this chapter will only address the first
two layers.

It can already be said that creating a model programmatically also opened up
possibilities to introduce hidden coupling through shared state. While this decreased
the advantages to be gained from an explicit model, it also enabled the toolkit to be
used in situations which would not (yet) have been supported otherwise.

7.5. Toolkit Implementation

The current implementation consists out of a core engine and a number of support
libraries, all realized in Java™ (Gosling et al., 2005). Two of these libraries realize
monitoring and the declarative graph specification, they will be described in the
following. The remaining libraries are more specific and not relevant here.

7.5.1. User-Visible API

The elementary types in the FTS toolkit are specified through interfaces, except for
the model itself (“Graph”) and a generic execution runner (“EngineThread”). Ab-
stract base classes implementing the interfaces are provided as the default extension
points for users of the library. The associations between these and the interfaces are
shown in figure 7.1.

The main node interface is, obviously enough, called “Node”, with a number of
sub-types according to the roles of the nodes in a graph. Two of these (“Source”
and “Sink”) are essentially tagging interfaces, adding no functionality. The other
two, “AbstractFilter” and “AbstractTransform”, are abstract base classes for the
implementation of the corresponding types. Initially, select nodes were constructed

117

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

from (Filter, Node*) pairs, but as this did not ensure the requirement that at least
one path must always be taken, dedicated “SelectFirst” and “SelectAll” types have
been added later on. As these classes require no extensibility, they are framework-
internal and constructed through a convience factory method in the “Graph” class.

GraphNode Engine

AbstractFilter AbstractTransform

Marked

Source Sink

Event EngineThread

<<creates>>

<<handles>>

<<interprets>>

<<runs>>

2..*

0..*

Figure 7.1.: Overview of base types.

Abstract bases and data access

One notable aspect about the base libraries is the treatment of the data communi-
cated. Some internal functionality requires meta-data about data flowing through
the graph, which should be hidden as much as possible from the users of the library
– both for reasons of simplicity and to prevent changes.

The resulting base classes are shown in figure 7.2. Both these classes implement
“handleEvent” and finalize it, to prevent modification in derived classes (Gosling
et al., 2005, section 8.4.33). Thus, classes derived from “AbstractFilter” cannot
modify their output and classes derived from “AbstractTransform” do not see the
Event type at all, which keeps them from accessing and/or modifying meta-data.

Node
handleEvent(in: Event): Event

AbstractFilter
isMatch(in: Event): boolean

AbstractTransform
transform(in: Object): Object

<<immutable>>
Event

createDerived(): Event

Figure 7.2.: Abstract bases for node implementation.

118

7.5. Toolkit Implementation

These restrictions are not strictly enforced – anybody may implement the Node
interface directly and modify data. Instead, they are simply provided to prevent
users from inadvertently making errors.

Model Functionality

The model stores the graph connectivity information in an adjacency-list representa-
tion. While this choice is not exposed through the interface, the available operations
depend on this implementation to be efficient. The relevant methods of the “Graph”
class are shown in figure 7.3.

Apart from the nodes and edges making up the graph model, the graph also stores
marker information which can be used to establish connections between layers with-
out knowledge about the structure of the participating graphs (cf. section 7.3.2).
When such marks are present, they may cause new graph edges to be created when
merging graphs. At the moment, merging is implemented based on types and, op-
tionally, a scope. Marks are optional and Graphs can also be merged without marks
being present.

Graph
connect(from: Node, to: Node): GraphConnector
getSourceNodes(): Collection<Node>
selectFirstOf(from: Node, cases: Pair<Filter,Node>[])
selectAllOf(from: Node, cases: Pair<Filter,Node>[])
getEmergents(from: Node): Iterator<Node>
merge(g: Graph): Graph
mark(m: Marked

Marked
getNode(): Node
isInScope(s: String): bool

Mark
scope: String

ReceiveTypeMark
inType: Class

EmitTypeMark
outType: Class

GraphConnector
connect(to: Node): GraphConnector
emit(outType: Class): GraphConnector
receive(inType: Class): GraphConnector

Figure 7.3.: Graph and associated interfaces.

To simplify manual creation of the graph, a “GraphConnector” class is provided
for creating node chains. It allows continuing a connection made using the “Graph”
connect method and/or add marker information to the last node added. Besides
reducing the amount of information that has to be passed, this connector class also
facilitates creating objects only within the function call themselves, which can again
reduce clutter, because declarations are elided.

119

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

State Support

Use of some nodes may require activating hardware or other background processes,
some of which may start producing data immediately. Therefore, such activation
must not occur prior to running the graph, which is performed by the engine. The
Activatable interface, shown in context in figure 7.4, facilitates this.

Engine Activatable
performAction(a: Action): bool
getCurrentState(): State

StateSupport
performAction(a: Action): bool
getCurrentState(): State {final}
start(): boolean {abstract}
stop(): boolean {abstract}

<<enumeration>>

Action
Start
Stop

<<enumeration>>

State
Started
Stopped
Error

<<controls>>

<<uses>>

Figure 7.4.: Engine and state-support.

The activatable node is initially in the “stopped” state and the obvious transitions
are defined as shown in figure 7.5. All actions will are triggered on exit, to indicate
that the next state is not yet reached. If an action fails, the error state is entered.
An alternative model for this state machine would have been to include “Starting”
and “Stopping” states. However, this could be interpreted to suggest asynchronous
execution, which is not the intention.

StartedStopped

Error

start

stop

stop start

failed stop failed start

resetFailed

Figure 7.5.: State machine for Activatable.

While the state-machine itself is straightforward, the fact that errors may occur on
any change results in substantial code-repetition. Furthermore, it is a well-accepted
principle to enable extensibility through the use of abstract base-classes. Therefore,
a support-implementation for the state support has been provided, which may be

120

7.5. Toolkit Implementation

used to delegate state-changes to.

7.5.2. Declarative Graph Specification

Having introduced the host language API, this section describes a means of graph
construction using declarative statements. This work consists of two parts: A funda-
mental graph construction language, including toolkit support to construct graphs
from this language, and support for transformations from domain-specific languages
to this language. While some experiments with such domain-specific languages have
been undertaken, the focus here will be on the fundamental graph construction lan-
guage only.

Apart from the graph’s connectivity, the graph declaration should also contain the
necessary information to create the nodes of the graph. This includes the type of
the nodes and their construction arguments. While the current implementation is in
Java, the description should allow other languages. Hence, the use of a type-mapping
is employed, which maps generic names to the implementation-specific types.

A number of general graph description languages exist, including, for example,
GraphXML (Herman and Marshall, 2001), the Graph eXchange Language Holt et al.
(2002), the GML format (Himsolt, 1999) and the dot format used in the Graphviz
system (Gansner et al., 2009). It was desired to use a well-known parser infras-
tructure, which suggested of XML-based formats, e.g. GXL or GraphXML. In their
direct form, these general formats tend to generate fairly large files, which hinders
manual construction. Therefore, a custom XML-based format with a mapping to the
GXL has been chosen.

The primary objective for the language specification has been brevity for typi-
cal use-cases. In particular, the connectivity is inferred from the sequence of the
document, unless specified otherwise.

Shortly, the language has the following elements:

model – Root element.

node – Declares a node – used for all types of nodes.

select – Encloses a selection block.

target – Encloses a single selection target.

filter – Declares a filter node for selection.

arg – Declares a node construction argument.

fuse – Introduces a fusion node.

The full document type definition (DTD) is provided in appendix C.1.1.

121

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

Graph Specification Examples

A very simple graph with just two nodes, a source and a sink, is specified as follows:

<?xml version=”1.0” encoding=”utf−8”?>
<model>
<node type=”FibonacciSource”/>
<node type=”QueueSink”/>

</model>

Listing 7.1: Queueing Fibanocci numbers

In listing 7.1, the first node is one that produces numbers from the Fibonacci series
as output and the second node is one that consumes its input and places it in a
queue. They are implicitly connected in the order shown.

A more complete example is given in listing 7.5.2. It demonstrates the language
support for selection expressions and explicit linkage through named nodes and the
“source” attribute. Functionally, the listing is somewhat artificial: It declares two
sources, both of which produce XML documents, but with differing content. The
select statement then decides amongst two possibilities of selecting content from
these documents and the remaining nodes print out the selection and place it into a
queue again.

As can be seen from the listing, this way of creating flow-graphs is very low-level –
too low-level for most purposes. Therefore, it is more likely to be produced by tools.
However, it can be used manually, if required, and this is how the examples in this
thesis have been produced.

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <model>
3 <node name=”fib” type=”XMLFibonacciSource”/>
4 <node name=”time” source=”null” type=”XMLTimestampSource”/>
5 <select name=”choice1” source=”fib,time” selectMax=”1”>
6 <target>
7 <filter type=”XPathFilter”>
8 <arg type=”StringChild”>/fibonacci</arg>
9 </filter>

10 <node type=”XMLPrint”/>
11 <node type=”XPathTransformSingle”>
12 <arg type=”StringChild”>number(/fibonacci/value)</arg>
13 </node>
14 <node type=”Print”/>
15 </target>
16 <target>
17 <filter type=”XPathFilter”>
18 <arg type=”StringChild”>/∗</arg>
19 </filter>
20 <node type=”Print”/>

122

7.5. Toolkit Implementation

21 <node type=”XPathTransformSingle”>
22 <arg type=”StringChild”>string(.)</arg>
23 </node>
24 <node type=”Print”/>
25 </target>
26 </select>
27 <node name=”static” source=”null” type=”StaticSource”>
28 <arg type=”StringChild”>something else</arg>
29 </node>
30 <fuse sources=”choice1,static” required=”choice1,static”/>
31 <node type=”QueueSink”/>
32 </model>

Node construction

The largest implementational issue when processing a graph specification as given
above is to construct the nodes within. Firstly, a mapping from the type-name in
the specification and the real type name must be specified. This is to be done in
a way that allows extension by developers without modifying the core toolkit. In
the present work, the implementation is based on the Java(tm) Service Provider
Interface (Sun, 2009b). While this API is not available for all languages, it does not
make any language-specific assumptions and could be provided for other languages
easily.

More troublesome is the matching of arguments to class constructors, which is
based on reflection. Many languages, including C and C++, do not offer run-time
reflection in an easily usable way. For such languages, translating to source code
and compiling statically may provide a simpler avenue to support declarative graph
specifications. This is done, for example, by Ptolemy II (Bhattacharyya et al., 2005).

7.5.3. Execution

In the current toolkit implementation, the graph-based program model is executed
through interpretation: An engine class queries all sources, determines the recipients
of the input data, invokes them and cycles until all data has been consumed by sinks.
Then the overall cycle begins anew. If, during execution of a node, any error occurs,
an error handler is invoked which may decide whether execution is terminated or
continues.

Sources are queried on a background thread using the JDK-standard “Comple-
tionService”. This service queries all sources in parallel and delivers their data into
a queue once it becomes available. In particular, this ensures that multiple sources
are queried at approximately the same time (though this is not a hard real-time
guarantee).

The basic execution loop, including the initialization of activatables, the submis-
sion of sources and the loop that distributes input data is shown in figure 7.6. This

123

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

loop is shared by all current engines.
At the time of this writing, two different types of engines exist. They differ in

the level of parallel execution, with one realizing a sequential and the other realizing
highly parallel execution.

Figure 7.7 shows an overview of the visible engine classes. Both engine implemen-
tations are derived from an abstract base class “AbstractEngine” which realizes the
common functionality, such as initializing “Activatable” nodes, querying sources and
handling errors. Furthermore, a convenience factory exists to create these classes,
which is also used by the default engine runner, “EngineThread”.

Breadth-first engine

This engine utilizes a single thread and traverses the graph in breadth-first order,
executing nodes as they are encountered.

Execution. Nodes are executed when an input item for them is at the front of the
shared input queue.

Concurrency. None.

Output handling. Output of node execution is duplicated once per child and added
at the end of a shared FIFO queue. Between children, the order is not fixed.

Predictability. Due to the breadth-first strategy, all first-level children of a node are
guaranteed to be executed before any of the deeper levels.

Input strategy. Sources are queried when the queue is empty, i.e. once the previous
input data has been completely processed.

Due to these characteristics, the breadth-first engine realizes a fairly space-efficient,
predictable execution but without any concurrency. The processing speed is deter-
mined by the slowest node, with the advantage that overruns are avoided.

In the data-flow model, this engines realizes an execution that is fairly close to
that realized by naive synchronous data-flow, though scheduling is still dynamic and
not as efficient.

Queuing Engine

In contrast, the queuing engine is closest to the pure data-flow execution model: It
starts one thread per node.

Execution. Nodes are executed when an input item is available at the front of their
respective input queue.

Concurrency. Multi-threaded, one thread per node.

Predictability. No guarantees.

124

7.5. Toolkit Implementation

CompletionService

sc : SourceCallable

ActivatableEngine Graph

[!interrupted()]

[queue.isEmpty()]

opt

[t=queue.next()
 != null]

[e=es.next()
!= null]

loop

loop

graph traversal
and dissemination

source query

main loop

loop

[s=sources.next() != null]

loop

[not(as.empty())]

[state=Error]

break

loop

source initialization

Activatable
startup

s=nextCompleted12:

d=get14:

state=getCurrentState5:

getActivatables2:

performAction(Start)4:

abort6:

getSourceNodes7:

create9:

submit(sc)10:

run1:

take11:

getEmergents16:

get13:

addWorkItem18:

queue15:

as=getActivatables3:

sources=getSourceNodes8:

es=getEmergents17:

Figure 7.6.: Basic engine execution loop. “addWorkItem” is to be provided by the sub-class.

125

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

Engine AbstractEngine

BreadthFirstEngine

EngineThread
EngineThread()
EngineThread(Engine e)
run(): void

QueueingEngine

<<factory>>

Engines
getSequential(g: Graph): Engine
getParallel(g: Graph): Engine

Figure 7.7.: Overview of FTS Engine classes.

Output handling. Output of node execution is first added to a share FIFO queue. A
dedicated thread takes it from there, duplicates it once per recipient and adds
it to the FIFO queue of the recipient node. There is an option for discarding
all but the last item.

Input strategy. Sources are queried once the previous data has been distributed to
the first-level children.

This engine realizes a fairly simple model for higher concurrency. The use of one
thread per node is not optimal, but guarantees that each node is executed sequen-
tially, which simplifies implementation and guarantees FIFO ordering. The process-
ing speed is determined by the sources, i.e. it is data-driven. This may cause overruns
if sources do not have a natural periodicity or if later nodes are slower than earlier
ones.

It should also be noted that the scheduling overhead of the QueueingEngine can
be substantial, due to the relatively large number of threads. This is particularly
relevant for chain-style graphs, or chain-style subsets and reflects the general issue of
using multiple threads for essentially sequential code (cf. section 7.1.1). This issue
can, for example, be reduced through aggregation of node-chains into composite
nodes.

Multiple engines per graph

An experimental strategy for execution is to use multiple “BreadthFirst” engines per
graph. The advantage of this is that it achieves concurrency while avoiding overruns,
because sources are only queried once the previous input has been processed. The
disadvantage is that it guarantees neither FIFO ordering nor sequential node execu-
tion: Due to unpredictable thread scheduling, it may very well happen that an input

126

7.6. Visualization

item received later is processed earlier. Furthermore, two threads may call the same
node at the same time.

Despite these problems, this method may be used to speed up processing in cases
where input order is not important. As it does not reduce latency, it is only useful
to increase throughput in cases where the source data-rate exceeds the throughput
with one thread.

7.6. Visualization

One of the advantages of a graph model is that it affords direct visualization. By
showing the graph’s nodes and edges, labeled with their names and configuration
information, a good overview of a component’s functionality and structure can be
given immediately.

Furthermore, the proposed FTS principle results in a classification of the nodes,
and this can be used to pack more, easily viewed information into a more compact
display. Based on node-type information, a visualization using the standard UML
activity diagram notation (UML2.0, chapter 12) can be produced in a fully automated
fashion, as outlined in the following.

7.6.1. Activity Diagram Semantics for FTS Graphs

The graphical elements in an activity diagram are shown in figure 7.8. The elements
of an FTS graph are mapped as follows:

1. Filters Filters are represented as conditionals with a single outgoing edge.
Implicitly, the other edge leads to final flow.

2. Transformations. Boxes with rounded-corners, the notation for an activity, are
used to represent pure transformation nodes a graph.

3. Fusion. The AND merge type, shown with a vertical bar as in figure 7.8(a) is
used to represent fusion nodes: Data produced is a combination of the inputs.

4. Select. Selects are represented as conditionals with multiple outgoing edges,
as in figure 7.8(b). In principle, UML activity diagrams do not permit more
than one outgoing branch to be taken (i.e., the conditions must be mutually
exclusive). This has been relaxed for the present work, however.

5. Data flow. Edges represent both control- and data-flow, as the control always
follows the available data. When multiple inputs are present without a fusion
this is shown as an OR junction, as in figure 7.8(c). When data is duplicated
amongst multiple outgoing edges, control flow also splits, indicated by a vertical
bar as in figure 7.8(d).

127

7. Modeling with Directed Typed Graphs and Event-Oriented Decomposition

A1 A2

A3

(a) AND Merge

A1

A2 A3

[> 0] [< = 0]

(b) Condition

A1 A2

A3

(c) OR Merge

A1

A2 A3

(d) Duplication

Figure 7.8.: Junction types in UML 2.0 activity diagrams (UML2.0).

A1

A2a

A2b

A2c

A3

(a) regular graph with repeated A2

3

A1 A2 A3

(b) equivalent plate notation

Figure 7.9.: Plate notation example.

Plate notation

In some of the graphs presented, many nodes of the same type exist in the same
position. For example, in the motor control examples shown later, there is one source
node per actuator. The visual clutter caused by repetition can make interpretation
difficult, which is why an extension of the UML notation has been introduced: Plate
notation. This notation aggregates nodes that a) are of the same type and b) have
exactly the same predecessors and successors. The visual notation has been adopted
from usage in the display of probabilistic graphical models. An example is shown in
figure 7.9.

7.7. Summary

This chapter has presented the design considerations and resulting implementation
for a toolkit to construct components out of smaller building blocks according to the
data-flow principle. Particular emphasis has been placed on application of the toolkit
to existing (legacy) components, by suggesting i) a principle for decomposition that
is intended to enhance reusability, ii) a simple API for users of the toolkit, and iii) a
choice of sequential and parallel execution styles.

While embodying some novel principles, the primary purpose of the toolkit is to
support experiments that study the data-flow approach in robot software systems.
These experiments will be described in the chapter 8.

128

8. Data-Flow Case Studies

The suitability of using the FTS approach for component construction will be eval-
uated in this chapter based on a number of case studies. These encompass regular
and data-flow based applications, the latter of which are realized based on the toolkit
introduced in chapter 7.

The first objective is to study the differences when realizing the same functionality
based on the data-flow approach or using “traditional” component construction. The
intent of this comparison is not to make absolute value judgments – far too many
variables would be a factor. Instead, the intent is to gain insight into what kind of
issues to expect when changing between approaches.

The second objective is to study the evolution of data-flow based components, to
determine whether the claimed benefits hold. In particular, the evolvability and level
of re-use will be investigated. This should also serve to identify possibilities for future
improvement.

In addition to the metrics introduced in section A.1, the case studies will be based
on visual analysis of the graph structure of the components.

8.1. Proof of concept: Data fusion

As a proof-of-concept study, the action selection component has been chosen. This
component is responsible for robot initiative, i.e. it creates action proposals at the
highest level. It has been developed specifically for the “Curious Robot” scenario,
thus it was a natural choice as a case study object.

Moreover, action selection is an important part of any autonomous system. While
there are many different methods to make the selection, they all need to base their
decisions on input from external sources. Hence, communication and interaction with
other components, as well as data fusion is an important prerequisite to achieve such
functionality. From an algorithmic point of view, it is also often the least interesting,
so a means to reduce the effort needed for integration is likely to be interesting for
many such components.

Last, but not least, data fusion typically exhibits a straightforward tree structure.
This represents the simplest processing case, i.e. it is the baseline for suitability.

8.1.1. Functional component overview

The functionality of the action selection component can be summarized as follows:

129

8. Data-Flow Case Studies

RegionsSaliency Interest-Region

Figure 8.1.: Typical input data (from Lütkebohle et al. (2009a)).

1. React to new visual events. Combine visual data of various types based on
spatial coherence (i.e., sufficient overlap in the image). This creates a list of
merged visual regions.

2. Rank visual regions according to saliency. From the list of regions, the visually
most interesting one is selected. This outputs a region description. In the
present component, saliency information is externally computed using Nagai’s
method (Nagai et al., 2003b).

3. Integrate background knowledge. If this region has been the object of interaction
before and some knowledge was acquired, merge it into the region description.

4. Determine next most interesting piece of information. Based on what is already
known, this determines what piece of information is needed to enable robot
activity.

5. Propose an action that acquires the desired information. This is where an action
proposal for external execution is created and sent.

Example input

A visualization of typical inputs is shown in figure 8.1. The actual input consists
of symbolic descriptions, with the saliency given as coordinates with an associated
saliency value (cf. appendix C.4.1) and the regions given as a bounding box and, if
known, an object detection label (cf. appendix C.4.2).

Discussion

At each of the processing steps outlined, a number of choices is encoded in the im-
plementation. For example, to determine spatial coherence, a common coordinate
system, and a common region representation is required. This can be simple, e.g.
relative pixel coordinates (to account for different resolutions) and rectangular re-
gions. However, it may easily be more complicated, with coordinate transformations

130

8.1. Proof of concept: Data fusion

required and/or more exact region descriptions. Fusion could also be based on more
than just spatial coherence and include, for example, visual similarity. Last, but not
least, sensors or analyzers might run at different rates, which would then require a
history and interpolation. None of this should affect the the subsequent processing
steps, however.

Additionally, it is easily conceivable that steps might be re-ordered or new steps
introduced. For example, the concept of “most interesting region” could certainly
include existence of background knowledge. This would require steps two and three
to be re-ordered and a new saliency computation to be inserted (instead of using an
external, purely visual measure, as is the case currently).

Apart from these functional considerations, communication is a further consider-
able contributor to complexity. In the present component, a number of data sources
must be specified and their data formats must be parsed into an internal represen-
tation. To reduce coupling and enable component evolution, it should be easy to
change these.

8.1.2. Analysis of original action selection

An initial, independent version of the action selection component has been imple-
mented by Lars Schillingmann for the first iteration of the “Curious Robot” demon-
strator (Lütkebohle et al., 2009a, section 2.D). It was implemented in Java and used
the XCF middleware (Wrede, 2008), and XML utility code from the BonSAI toolkit1.

To provide a reference for comparison, some metrics on the code will be given first.
Table 8.1 has the Chidamber and Kemerer metrics. As can be seen, the component
is small-to-mid-size, with 778 source lines of code distributed amongst 22 classes, 5
of which are small inner classes. None of the classes exhibit noticeable anomalies in
the CK metrics.

From the code size, the basic COCOMO (Boehm, 1984) model would put such a
component at 1.87 person-months, without overhead. While this may be an overes-
timate, given that it assumes a typical commercial development process, the compo-
nent interfaces with many others, which adds developer communication effort. Thus,
it is probably not too far off.

The functional logic of the component is contained in merely three classes: “De-
faultEntityComparator” ranks regions, “GripManager” manages background knowl-
edge and “InteractionRegionThread” sends out proposals. In the latter two classes,
only one of the class’s methods is actually functionally relevant, the rest just con-
tains marshaling code. This also demonstrates a typical issue, which is that i/o and
function are often intermixed.

It has to be said that the original implementation already re-uses a considerable
amount of code, both regarding middleware and regarding data transformation utili-
ties. Even then, the combination of data from various sources in a relatively low-level

1http://opensource.cit-ec.de/projects/bonsai

131

http://opensource.cit-ec.de/projects/bonsai

8. Data-Flow Case Studies

Classname WMC DIT NOC CBO RFC LCOM Ca NPM
AgingThread 4 2 0 3 24 2 1 2
DefaultEntityComparator 7 1 0 3 16 21 1 3
GripManager 10 1 0 9 21 19 5 2
GripManager$1 2 0 0 10 13 0 1 1
GripManager$2 2 0 0 19 29 0 1 1
Identifier 2 1 0 3 2 1 2 2
InteractionRegionThread 8 2 0 16 48 0 3 2
InteractionRegionThread$1 2 0 0 12 18 0 1 1
InterestRater 2 1 0 10 14 1 0 2
PointXYIdentifier 3 1 0 4 14 3 1 3
RaterConfiguration 6 1 0 2 10 11 1 5
Region 9 4 0 5 24 22 8 7
RegionListReceiver 4 1 0 15 19 2 2 1
RegionListReceiver$1 2 0 0 7 6 0 1 1
SalientEntity 11 1 0 2 14 9 9 11
SalientEntityList 14 1 0 8 37 27 9 12
SalientPoint 13 0 0 6 31 64 8 11
SalientPointListReceiver 4 1 0 14 16 2 2 1
SalientPointListReceiver$1 2 0 0 7 6 0 1 1
StateLogThread 3 2 0 5 18 0 1 2
Timestamp 2 1 0 3 9 0 1 2
Total 112 21 0 163 389 184 59 73
Average 5.33 1.00 0.00 7.76 18.52 8.76 2.81 3.48
σ 3.88 0.93 0.00 4.91 10.68 15.00 2.94 3.51

Table 8.1.: CK metrics for the original selection component (cf. section A.1).

language such as Java leads to a comparatively high amount of code for a simple pur-
pose.

Furthermore, the mix of functional and marshaling code is not surprising, given
that the functional core is the smallest part of the program. That is, the situation
is as it is not because the component was badly designed. On the contrary, it is well
designed regarding its primary concern: Communication. It is just that communica-
tion should not be the primary concern of such a component: Fusion, ranking and
proposal should be!

From this situation, two conclusions have been drawn: Firstly, configuring mid-
dleware communication endpoints and (un-)marshaling code should be easier and
provided in a less component specific way. Secondly, data manipulation should occur
at a higher-level, to reduce the amount of code necessary.

8.1.3. Graph-based re-implementation

From the two issues outlined previously, only one is directly related to the FTS
approach: Creating middleware endpoints and (un-)marshaling code can certainly
be made easier in a graph-based framework. In contrast, the issue of high-level
data transformation is a domain-specific one, but equally important, if not more so.
Thus, it constitutes a good test to determine the suitability of the toolkit to provide
domain-specific support.

The previous functionality has thus been replicated, based on the data-flow toolkit,
by the present author, and tested in the second and third iterations of the demon-

132

8.1. Proof of concept: Data fusion

strator (cf. section 2.3.2). For the final iteration, visualization has been added, as
described in the next section.

The initial graph-based implementation of the selection component is visualized in
figure 8.2, with the full (textual) specification given in appendix C.2.1. The graph
contains about 40 nodes, and the specification has 131 lines.

As can be seen, there are four different input channels reading from the event-bus
(which is called “Active Memory” for historical reasons, hence the node name). The
associated filters are already contained in the source nodes and thus not shown (cf.
appendix C.2.1, line 3 to 40, for details).

Two of the inputs contribute to tracking of background knowledge (on the left side,
leading into “ListCollector”), the two others (on the right) deliver visual perceptual
data. The “Unpack” nodes create internal data-structures from the XML inputs
which are then fused and ranked by “RegionInfoRank”. They are then converted
(“packed”) to XML again and the rest of the processing occurs based on the XML
representation.

In the lower part, the jointly-delivered background information and current in-
puts are fused. This occurs based on three XPath selectors: One for determining
which background document matches, and two for specifying what to copy from the
background to the target and where, respectively. This fusion has been directly im-
plemented (as opposed to using XQuery). While it is only used in this component,
it is intended to realize a common fusion pattern.

After the fusion, three different paths can be chosen, based on the information
already available in the fused data. After a choice has been made, the document is
modified to reflect the next goal, timestamped and sent out. The “TextFrame” node
simply displays the last document sent for the human operator.

It should be noted that while many nodes work on XML documents, the use of
XML is by no means required to achieve reuse. The re-usability stems from the
use of an attribute-value-tree (AVT) with associated path navigation (XPath) and
modification (XQuery) languages. XML is merely a convenient choice, because of
the wealth of tools available and any other AVT that has such tools could be used
for similar effect.

Analysis

The first, readily apparent result of the conversion is demonstrated by the generic
nature of the nodes: The graph consists of 39 nodes (including filters) that belong
to 25 different types. Only one of these is completely specific to the component at
hand (“RegionInfoRank”) and one other is slightly specific in that it has only been
used for this particular component, so far (“CompareAndFuse”). The other nodes
are generic ones configured according to need and, of course, the graph structure
itself is specific. Where in the previous implementation the re-use potential was only
theoretical, in the graph-based implementation it is fully realized, as shown by the
fact that 23 of the 25 different node types (or 37 of 39 nodes total) are completely
generic. This is further supported by the fact that slightly more than half of these

133

8. Data-Flow Case Studies

s t a r t

MemorySource
Shor tTerm

MemorySource
Shor tTerm

MemorySource
Shor tTerm

MemorySource
Shor tTerm

e n d

ListClear

ListCollector

FusionSourceTag
[t a g = f u s e . b a c k g r o u n d]

C o m p a r e A n d F u s e

TaggedFus ionNode

XPathSingle
XPath = /*

[XPathMatcher
...on/STATUS)]

AddChildElement

SetStat icAttr ibute

[XPathMatcher
. . .serLabel)]]

SetStat icAttr ibute

[XPathMatcher
.. .

SetStat icAttr ibute

[XPathMatcher
...not(Grip)]]

D o c u m e n t F r o m

CurrentTime

DocumentSer ia l i ze r DocumentXOP

TextFrame
TaskSubmiss ion
TaskService on ShortTerm

XcfEventXOMDocument
XcfEvent

Unpack
to-ObjectRegionArray

ArrayToList

[NonEmptyArray]

FusionSourceTag
[t ag=reg ions .ob j ec t s]

RegionInfoRank

Count ingTaggedFusionNode

Pack
to-ObjectRegion

[Periodic
. . . ter .@645fd]

FusionSourceTag
[t a g = f u s e . t a r g e t]

XcfEventXOMDocument
XcfEvent

ListAdd

XcfEventXOMDocument
XcfEvent

Unpack
to-SalientPointArray

RegionResolut ionScale

[NonEmptyArray]

ArrayToList

FusionSourceTag
[tag=reg ions . sa l i ency]

(a) upper part

s t a r t

MemorySource
Shor tTerm

MemorySource
Shor tTerm

MemorySource
Shor tTerm

MemorySource
Shor tTerm

e n d

ListClear

ListCollector

FusionSourceTag
[t a g = f u s e . b a c k g r o u n d]

C o m p a r e A n d F u s e

TaggedFus ionNode

XPathSingle
XPath = /*

[XPathMatcher
...on/STATUS)]

AddChildElement

SetStat icAttr ibute

[XPathMatcher
. . .serLabel)]]

SetStat icAttr ibute

[XPathMatcher
.. .

SetStat icAttr ibute

[XPathMatcher
...not(Grip)]]

D o c u m e n t F r o m

CurrentTime

DocumentSer ia l i ze r DocumentXOP

TextFrame
TaskSubmiss ion
TaskService on ShortTerm

XcfEventXOMDocument
XcfEvent

Unpack
to-ObjectRegionArray

ArrayToList

[NonEmptyArray]

FusionSourceTag
[t ag=reg ions .ob j ec t s]

RegionInfoRank

Count ingTaggedFusionNode

Pack
to-ObjectRegion

[Periodic
. . . ter .@645fd]

FusionSourceTag
[t a g = f u s e . t a r g e t]

XcfEventXOMDocument
XcfEvent

ListAdd

XcfEventXOMDocument
XcfEvent

Unpack
to-SalientPointArray

RegionResolut ionScale

[NonEmptyArray]

ArrayToList

FusionSourceTag
[tag=reg ions . sa l i ency]

(b) lower part

Figure 8.2.: Action selection graph. The graph as visualized has been split after step 3 of the
initial functional description. That is, figure 8.2(a) shows information reception,
ranking and integration of background knowledge whereas figure 8.2(b) shows
the selection and proposal steps.

134

8.1. Proof of concept: Data fusion

(13 of 23) are already being used widely in other components.

In particular, please note how all the input chains contain exactly the same node
types at level one and the leftmost and the two rightmost ones up to level two.
Moreover, the rightmost chain has exactly the same types as the second from the
right up to level 7, where they join up, with the the second from the right having
just one more transformation (“RegionResolutionScale”) inserted.

For the “unpack” type nodes this is possible because of an underlying, service
provider-based registration infrastructure for XML-converters. Therefore, it must be
added that the actual parsing implementation differs. However, please note some-
thing which is not visible in the graph visualization: The output types of the con-
verters are the same. This allows the rest of the graph to treat them alike.

In terms of source code, the node implementations used amount to 696 source lines
of code, 103 of which are contained in the two specific nodes mentioned above. In
essence, then, the graph specification and the specific nodes taken together comprise
234 lines of novel code for 0.56 person months of development time according to
COCOMO basic, compared to 1.87 for the original component. While one would
expect that the XML specification is faster to write than conventional source code, it
is safer to err on the high side. This means that, assuming all the general nodes had
been implemented already, the component could have been realized with (at most)
one third of the effort.

WMC DIT NOC CBO RFC LCOM Ca NPM SLOC

Total 111 3 1 113 329 169 1 59 669
Average 4.11 0.11 0.04 4.19 12.19 6.26 0.04 2.19 28.5

Table 8.2.: Aggregated CK metrics for node implementations.

Furthermore, the rewrite has resulted in an explicit representation of the compo-
nent’s structure, where all external configuration variables are directly editable in a
simple XML file. Thus, for example, a change of sources or the addition of new goals
can be realized without recompiling.

Last, but not least, it is notable that the decomposition of functionality into nodes
was not problematic at all. This is likely in part due to the fact that the functionality
was well understood beforehand, but it is notable that the separation was not as
clean in the original, non-graph-based implementation. This suggests that the graph-
oriented component design can be a mental aid during construction.

8.1.4. Adding visualization

An extension of this case study has been to add visualization support to the compo-
nent discussed so far. This is work that has been carried out for the third iteration of
the “Curious Robot” system and adds novel functionality which was not previously
present in the action selection component.

135

8. Data-Flow Case Studies

Visualization of results is a frequently useful function during development of a
system, but can create the need for a GUI or other logging functionality in compo-
nents that would otherwise not need one. Alternatively, visualization can be added
based on the results produced by the component to be observed, and its inputs. This
requires combining all the same input processing functionality slightly differently, to
enable visualization. Thus, it is a prime candidate for testing whether the claims of
improved reuse can actually be achieved.

Figure 8.3.: Output of the region selection visualization – best viewed in color. The rect-
angles shaded in blue are candidates for object detection, the red rectangles
are salient points and the green rectangle is the region selected for interaction.
Please note that this screen-shot was taken during maintenance of the robot.

The output of the visualization is shown in figure 8.3 and the graph realizing it
in figure 8.4. As expected, the graph shares many nodes with the action selection
graph. In particular, the two right-most chains are almost exactly the same input
processing chains as in the previous graph, up to the point where ranking would have
occurred. Left of that is the chain processing the output of action selection and the
leftmost input receives the camera image over which the information will be overlaid
to provide context. Missing from the graph are the inputs for background knowledge,
as these were not interesting for visualization.

The lower-left part of the graph realizes the actual visualization. First, a GUI
component is created that matches the size of the incoming image and it will be
updated when the size changes – this is an example of how state can be kept internal
to the graph, by using a fusion node for storage. Up to this point, the entire graph
consists of generic nodes only.

The actual visualization code is contained in the “StatelessAugmentedDisplay”,
which receives a drawing surfaces and several lists of regions that will be drawn.
The coloring is again generic and has been assigned by attribute-assignment nodes
in the input processing chains. The visualization output itself is custom, with the

136

8.1. Proof of concept: Data fusion

s t a r t

Subsc r ibe rSource
In j ec to rQueueHeadSource

MemorySource
Shor tTerm

MemorySource
Shor tTerm

MemorySource
Shor tTerm

e n d

Sing leAt tachment

I m a g e D e c o d e r

Raw2Buf fe r ed Image

FusionSourceTag
[tag=disp lay . image]

Pane lFor Image

[I m a g e D i m e n s i o n C h a n g e d]

SinglePanelJFrameSink

FusionSourceTag
[tag=disp lay .pane l]

Count ingTaggedFusionNode

S ta t e l e s sAugmen tedDisp l ay

[Periodic]

XcfEventXOMDocument
XcfEvent

XPathSingle
XPath = / /Region

Unpack
to-ObjectRegion

SingleColorRegion

SingletonList

FusionSourceTag
[tag= in te rac t ion reg ion]

Conca tena teL i s t s

Requ i redNamesTaggedFus ionNode

FusionSourceTag
[tag=disp lay . reg ions]

XcfEventXOMDocument
XcfEvent

Unpack
to-SalientPointArray

RegionResolut ionScale

[NonEmptyArray]

Sal iencyShadedColorRegions

ArrayToList

FusionSourceTag
[t ag=sa l i enc i e s]

XcfEventXOMDocument
XcfEvent

Unpack
to-ObjectRegionArray

SingleColorRegions

[NonEmptyArray]

ArrayToList

FusionSourceTag
[t ag=ob jec t r eg ions]

(a) upper part

s t a r t

Subsc r ibe rSource
In j ec to rQueueHeadSource

MemorySource
Shor tTerm

MemorySource
Shor tTerm

MemorySource
Shor tTerm

e n d

Sing leAt tachment

I m a g e D e c o d e r

Raw2Buf fe r ed Image

FusionSourceTag
[tag=disp lay . image]

Pane lFor Image

[I m a g e D i m e n s i o n C h a n g e d]

SinglePanelJFrameSink

FusionSourceTag
[tag=disp lay .pane l]

Count ingTaggedFusionNode

S ta t e l e s sAugmen tedDisp l ay

[Periodic]

XcfEventXOMDocument
XcfEvent

XPathSingle
XPath = / /Region

Unpack
to-ObjectRegion

SingleColorRegion

SingletonList

FusionSourceTag
[tag= in te rac t ion reg ion]

Conca tena teL i s t s

Requ i redNamesTaggedFus ionNode

FusionSourceTag
[tag=disp lay . reg ions]

XcfEventXOMDocument
XcfEvent

Unpack
to-SalientPointArray

RegionResolut ionScale

[NonEmptyArray]

Sal iencyShadedColorRegions

ArrayToList

FusionSourceTag
[t ag=sa l i enc i e s]

XcfEventXOMDocument
XcfEvent

Unpack
to-ObjectRegionArray

SingleColorRegions

[NonEmptyArray]

ArrayToList

FusionSourceTag
[t ag=ob jec t r eg ions]

(b) lower part

Figure 8.4.: Graph for the visualization component.

node accounting for 37 source lines of code (SLOC) and the display panel containing
another 71 SLOC.

Analysis

Firstly, please note the added input chain (second from the left) which is fused with
the two rightmost chains. The latter subgraph is a direct copy of the fusion graph
from the selection component, with just two transformations added that specify a
color for visualization. Moreover, the new input chain again uses many of the same
node types. Thus, the predicted reuse has been achieved.

That said, a look at the detailed component specification (cf. appendix C.2.2)
reveals that the graph specification itself has been copied and modified. This means
that, while reuse is present at the node-level, it is not present at the level of the
graph specifications. While certainly some form of inclusion specification could have
provided reuse of subgraphs verbatim, the chains used here are slightly modified,
with novel nodes inserted. Therefore, a means of graph transformation would have
been needed, too.

A similar issue can occur in direct, library-based reuse – if the granularity of a
library function is too high, inserting functionality into the middle of processing
becomes impossible. In contrast, if the granularity is lower, similar to the level of
the nodes used in the present case study, more effort is required during library use,
due to the effort for combining them. Most languages, with the notable exception of
functional ones, contain no explicit support for simple/declarative interconnection of

137

8. Data-Flow Case Studies

functions.

At the moment, the lack of reuse in specifications is not considered a pressing
problem, due to their relatively small size. However, a remedy would certainly be
required to scale up this approach to the level of more complex components. A
possible solution might combine ideas from meta-modeling (cf. section 7.1.3) and
refactoring (Fowler et al., 1999)), but this is left for future work.

8.1.5. Summary

The case-study has demonstrated that an information fusion component can be re-
alized in the FTS approach for substantially less effort. In this case, at most one
third, likely less, of the effort of standard development would have been required.
This is due to increased potential for reuse, which the explicit graph-structure has
lifted from almost non-existent to 92% of nodes (23 of 25). A second sub-case, adding
visualization support, has further demonstrated that graph-based construction aids
in adding functionality to the overall system in a non-intrusive way.

While these two cases do not permit generalization just yet, they suggest that the
identification of common, high-level data-structures is a crucial step to realize the
reuse potential. While this is a well-established accepted fact in object-oriented devel-
opment, it has not been a focus of attention for data-flow languages, so far (Johnston
et al., 2004).

Last, but not least, it appears that the graph-oriented decomposition of compo-
nents into nodes has resulted in a clean separation of concerns. It may also be the
case that the graph model functions as a mental aid during construction, allowing
the developers to maintain a high-level mental model of the component. Whether
this is due to the comparatively small size of the graph specifications, which can be
comprehended in their entirety, or due to other factors or a combination, would be
an interesting question for future work.

8.2. Case study 2: Hardware independent serial robot
control

The previous case study has investigated a data-fusion application which can be
found in many systems, robotic and otherwise. Therefore, the next case study looks
at an application area which is closer to hardware and control aspects: Robot control
through a serial link.

Using serial links for robot control is a popular approach. The actual control
algorithm is implemented on a micro-controller, often as the only function of that
controller, which makes achieving real-time scheduling fairly simple. Furthermore,
such micro-controllers often offer convenient sensory inputs. For example, the XMega
microcontroller used in the “Flobi” head (Lütkebohle et al., 2010) has – amongst
other inputs – three quadrature decoders which can be directly coupled with motor
encoders, to achieve high-accuracy, high-speed velocity and position sensing for very

138

8.2. Case study 2: Hardware independent serial robot control

little CPU time. Achieving the same functionality on a PC requires a real-time
operating system and measurement boards that are several order of magnitude more
expensive.

To link this micro-controller to the PC, a control protocol must be implemented.
Usually, each robot manufacturer has a custom protocol, sometimes more than one.
Some of them provide libraries that implement these protocols, some don’t. In any
case, to realize a hardware independence layer, these protocols must be adapted to
a common abstraction layer – either based on direct protocol implementation, or by
adapting the vendor-supplied libraries.

The requirements for implementing such protocols are the following:

• Transduce abstract control commands to the vendor protocol and inversely for
sensor data. This may sometimes be dependent on current device state.

• Manage access to the serial link – many protocols prohibit sending a command
before a reply for the previous one has been received.

• Realize a blend mode – protocols differ in whether a new command overwrites
a previous one, is queued or is refused. Some protocols allow a choice, in others
this must be realized through explicit queuing or cancellation.

• Deliver feedback information on start of command execution.

For the present work, a hardware independence layer for different robots has been
implemented by the present author. The robots are:

1. The BARTHOC humanoid torso (Hackel et al., 2005), manufactured by
MABOTIC GmbH. This robot is controlled through Atmel-based micro-
controller boards delivered as part of the robot by MABOTIC, including
firmware. The protocol is relatively simple.

2. The Sony EVI D31 Pan-Tilt-Zoom camera, using the VISCA™ protocol (Son,
1999). This camera is common in many robotic applications and the protocol
is also used for several other cameras by Sony. This protocol is fairly elaborate
and includes substantial device state.

3. The “Flobi” anthropomorphic robot head (Lütkebohle et al., 2010), developed
jointly by Bielefeld University and MABOTIC GmbH. The controller boards
for this robot, and their firmware, have been developed by Simon Schulz of
Bielefeld University. Close cooperation was possible during their design and
the command protocol was jointly specified by Simon Schulz and the present
author.

8.2.1. MABOTIC robot control protocol

In principle, the MABOTIC control protocol is about as simple as it gets. It is a
binary, serial protocol with only five fixed packet types, running at 38,400bps over a

139

8. Data-Flow Case Studies

standard RS-232 serial port, full-duplex. The packets have a standard 4 byte header
and an optional 2-3 byte payload. The header has sender, recipient, payload size and
type information, each encoded as a single byte.

The main command types are a) version inquiry, b) joint position set immediate
and c) joint position store, d) joint execute and e) joint position inquiry. A few more
commands are available, but are only used for maintenance. The full specification,
as it is, is contained in appendix D.1. Not mentioned there, but implicit is that novel
set points for an actuator silently overwrite previous ones, i.e. the blend mode is
overwrite.

As is already apparent from the command types, the robot is purely position
controlled. Joint positions are specified in the hardware range, hence the conversion
from joint angles to hardware values must by performed by the implementor.

The only complication during implementation of this protocol arises from link
management: New commands must only be sent after a reply for the previous one
has been received. This is because the serial controller chip (an Atmel AT90S8535),
has only one byte serial buffer, and the firmware does not read from this buffer while
processing a command (Schwope, 2008).

The graph implementing the protocol is shown in figure 8.5. It consists of two
sub-graphs, which are executed by separate engines: One for transcoding commands
to the protocol and one for reading replies. The sending graph has one input per ac-
tuator, of which there are 27, and one input for inquiry commands. The per-actuator
nodes perform the conversion from angular space to device space. The “Command-
Generator” node implements the transformation from the internal command format
to the MABOTIC protocol. On the parsing side, the “ReplyReader” transforms the
input bytes to the internal format again.

To achieve the send-read coupling mentioned in the previous paragraph, the graphs
are linked through the “GraphSynchronizer” nodes. When no command it outstand-
ing, the first of these (“leader”) passes through and sets a lock. The second (“fol-
lower”) then releases the lock. If a command arrives inbetween, the first will block
until the lock is released.

Last, but not least, confirmation about start of motion cannot be derived solely
from sensor information in the BARTHOC robot, because some joints are actuated
by servos with no externally visible position sensors. Thus, confirmation is provided
after the command has been submitted and the robot is starting to move. This
functionality is realized through the “SourceTagCorrelator” node.

Analysis

Similar to the protocol, the graph structure is fairly straightforward for both sub-
graphs, with the notable exception of the hidden link between the two graphs (from
“leader” to “follower”, as explained above). This reveals a fairly interesting difference
in explicitness when using a direct API and the visualization.

The presented implementation of the protocol has been split so that it can be
executed in two different engines in parallel, with a link as above. In the Java code,

140

8.2. Case study 2: Hardware independent serial robot control

2 7

s t a r t

Ac tua to rGraph$2
Q u e u e H e a d S o u r c e

In j ec to rQueueHeadSource

e n d

C o m m a n d G e n e r a t o r
Mabotic.

Se r i a lSequenceCor re l a to r

SourceTagCorre la tor$2

[Tag
. . . n == t rue]]

Conf i rmingOutpu tS t ream

[GraphSynchron ize r$1
l eade r]

(a) Command generation & confirmation

s t a r t

I n p u t S t r e a m S o u r c e

e n d

ReplyReader

Se r i a lSequenceCor re l a to r$1
Even tQueueSink

[GraphSynchron ize r$2
follower]

(b) Input parsing

Figure 8.5.: The two subgraphs making up the implementation of the MABOTIC robot
control protocol.

141

8. Data-Flow Case Studies

this link is obvious: A common “GraphSynchronizer” object is created, which has two
linked nodes as attributes that are then placed into the different graphs. However,
the link is not reflected in the graph structure and thus the visualization – which
is only based on the explicit edges – does not show it. Likewise, all future analysis
based solely on the graph will miss this important link. The goal of achieving better
comparability through comparing the graphs only would not be achievable in such a
situation.

Fortunately, a possible way out is to use a fusion node with history. This fusion
would take both the “CommandGenerator” and the “ReplyReader” as inputs and
could then pass on commands only when a reply for the last commands is also present
as input. This fusion node would need a history so that it can queue up multiple
commands while waiting for the replies.

Changing the synchronization to a fusion node would be beneficial in at least three
ways: Firstly, it makes things more explicit. Secondly, and perhaps more importantly,
it removes a lock-and-wait idiom, replacing it with a data-driven trigger. Lastly, it
removes one thread from the execution, because the new graph, where no node ever
blocks, can be executed with one engine instead of two2.

Given that the MABOTIC protocol graph was one of the earlier experiments with
the FTS toolkit, the lesson to be learned here is probably an old one: It takes some
mental realignment to realize the benefits of a new approach. Furthermore, the
solution is obvious in hindsight, probably at least in part through the help of the
visualization.

8.2.2. VISCA control protocol

In contrast with the previous case, the VISCA protocol (Son, 1999) is much more
powerful, and correspondingly more complex. Challenges include:

• Transducing. Some commands require knowledge of device state, for example
cancellations need to know the command number.

• Link access. Motor control commands follow a three-step procedure with send,
ack and complete. After sending a command, everything must wait until it is
acknowledged. Later on, when the command is completed, the camera sends a
reply on its own.

• Blend mode. The D31 camera has no consistent blend mode. There are two
command sockets and when one of them is available, commands overwrite each
other. However, when no socket is available, commands are refused.

• Deliver feedback. Because the VISCA protocol can deliver completion infor-
mation at any time, it can only be associated with a command through the

2This is possible even though InputStream is blocking, because synchronous sources are queried on
independent threads to achieve fairness (cf. fig. 7.6).

142

8.2. Case study 2: Hardware independent serial robot control

socket number, which is reported in the ACK message. This requires the de-
vice state to be tracked and communicated throughout much of the protocol
implementation.

Some of these changes are beneficial – for example, receiving an explicit completion
notification removes the need for sensor polling in many cases. However, the incon-
sistent blend mode is a clear hindrance for a consistent, device-independent external
interface. Furthermore, it is greatly aggravated by the fact that the cancel com-
mand – which is needed to create a virtual blend mode of overwrite – is device-state
dependent.

The result of this can be seen clearly in the initial protocol implementation, shown
in figure 8.6. The graph is fairly large but please note the edges marked in blue and
drawn dashed. All of these lead into the “AutoCancel” node and they are feedback
from command execution. In contrast, only one (the remaining) edge into that node
is actual control input.

Moreover, the entire left side of the graph (beginning right after the “InputScan-
ner” compound at the top, ending at the “SocketReplyMapper” at the bottom) is
needed to match replies to the commands that caused them. Whereas in the previous
case study, each reply was associated with the command just sent, the possibility for
intermediate completion replies from the camera precludes this. As a consequence,
where previously one, general sequence-matching node was sufficient to perform this
function, now ten protocol-specific nodes (including filters) are necessary.

Analysis

The cause for the circular graph structure shown is the desire to provide “overwrite”
command blend mode: Newer commands should be able to abort earlier commands,
if so specified, without the user having to know any details about the way the earlier
command is executed on the device.

As mentioned already, the cancel command requires knowledge of which socket the
previous command is in. The only way to handle this automatically is to maintain
knowledge of the current socket state, which can only be determined from the replies
of the camera. Hence the need for “backwards” transitions from reply receiption to
a node which also transforms incoming commands.

Such cycles are certainly needed in many applications and while they may clutter
the visualization slightly, they are not a bad thing. However, the existence of so many
back-links is symptomatic of an underlying problem: hidden state. In contrast to the
previous case study, where state could be entirely maintained in generic fusion nodes
whose behavior is well-known, this time the state is contained within an opaque and
protocol-specific “AutoCancel” node.

Further, it is notable that some of the select conditions used are specific and not
configurable, e.g. “FirstReply” contains explicit code to select either measurement
replies or acknowledgements. This is in contrast to the data fusion example where

143

8. Data-Flow Case Studies

s t a r t

E v e n t Q u e u e S o u r c e

C o m p o u n d
Init ial izableSerialSource

Inpu tScanne r

e n d

[Type
.. .ntrolEvent]

[Else]

AutoCancel

UUIDTagging

[GraphSynchron ize r$1
l eade r]

[Type
.. .ntrolEvent]

CG

[Device
.. .eOf([Cam])]

PanTiltCG

[Device
... PanTilt])]

ZoomCG

[Device
...Of([Zoom])]

InitializableSerialSink

PairFusion

OnceOnlyPairFusion

Socke tS t a t e

[PairType]

CancelReply

[PairType]

Inqui ryReader

[PairType]

SocketReplyMapper

Even tQueueSink

Inqu i ryGenera to r

[Type
. . . ensorEvent]

[Else]

UUIDTagging

[FirstReply]Socke tComple te

[Socke tComple te
. . .ocketReply]

Figure 8.6.: Line driver graph for the Sony D31.

144

8.2. Case study 2: Hardware independent serial robot control

the XPath language provides an explicit, transparent means to select based on the
content of data. The lack of such a language for general objects impairs reuse.

In a similar vein, the elaborate graph construction needed to match replies to com-
mands is not something one routinely wants to construct manually. It also does not
enhance reuse, as it is completely protocol specific, up to the node implementations.
While there are certainly many ways of going about this, it would appear that the
use of an event expression language, including temporal constraints, would be one
solution that ties in particularly well with the declarative way of building graphs.

8.2.3. “scontrol” protocol driver

The “scontrol” protocol is a custom development for the “Flobi” robot
head (Lütkebohle et al., 2010). The content of protocol packets is modeled on CAN
bus messages (CAN), with extended payload lengths and the semantics of commands
are similar to the MABOTIC protocol (i.e., a novel command for the same actuator
overwrites a previous one).

Due to the similarities, the control implementation graph contains no surprises.
However, one interesting aspect of the implementation is that the protocol underwent
a minor revision: The first revision did not use replies for simple commands, in an
attempt to reduce the potential for collisions on the bus. The lack of replies meant
that multiple write commands could be sent without waiting.

The obvious drawback is that it is unknown whether the controller has actually
received the command. The link was not over CAN but RS-422 instead and a com-
bination of an electrically noisy environment and relatively high data-rates (1Mbps)
caused frequent errors. Because of this, the second revision did introduce acknowl-
edgements for write packets, too. These then required writes to be included in link
access management.

Fortunately, the necessary synchronization changes could be accommodated in the
write graph purely by rewiring it, as shown in figure 8.7.

Analysis

In the scontrol protocol, the data-flow approach has delivered on both its promises:
Reuse of general building blocks (serial link i/o, link management, reply association)
and flexibility through external specification of node connectivity. This demonstrates
that the approach is capable of exploiting protocol similarity, despite differences in
packet format.

Development of the “scontrol” implementation has been continued by Patrick
Holthaus, a colleague working with the “Flobi” head. This work is focused on fea-
ture additions and still ongoing, also based on the FTS toolkit. While his work is
beyond the scope of this thesis, it can be said that the data-flow approach could
easily accommodate all required changes to the implementation so far.

145

8. Data-Flow Case Studies

3

s t a r t

Ac tua to rGraph$1
Q u e u e H e a d S o u r c e

In j ec to rQueueHeadSource In j ec to rQueueHeadSource

e n d

ControlEventTransducer

Packe tGene ra to r

Ser ia lPor tGraph$1
Serial Sink

Serial2Protocol$3
WriteConfirm

ReadSenso rEven tTransduce r

[GraphSynchron ize r$1
l eade r]

(a) v1: read sync only

3

s t a r t

Ac tua to rGraph$1
Q u e u e H e a d S o u r c e

In j ec to rQueueHeadSource In j ec to rQueueHeadSource

e n d

ControlEventTransducer

Packe tGene ra to r

[GraphSynchron ize r$1
l eade r]

Ser ia lPor tGraph$1
Serial Sink

Serial2Protocol$3
WriteConfirm

ReadSenso rEven tTransduce r

(b) v2: all commands synced

Figure 8.7.: Command output graphs for scontrol revisions.

8.2.4. Discussion

The toolkit has been experimented on three different robot control protocols, across
three different robot platforms. Both the reuse and the flexibility goals could be
demonstrated in these case studies.

As expected, the benefit of flexible graph construction was particularly visible
during evolutionary development of a protocol (the “scontrol” case study). This
indicates that the approach is suitable for rapid application development.

In comparison to the previous case-study on data-fusion, it could be seen that
a declarative, content-based condition language is beneficial and reuse is reduced
when one is not available. For simple filtering conditions, this may be outweighed
by efficiency and/or simplicity considerations. However, for more complex, temporal
constraints, an expression language appears necessary to constrain complexity of the
implementation graphs. This is related to work in event-processing languages (Luck-
ham, 2002; Arasu et al., 2006; Demers et al., 2007) and future work may explore this
relation.

Not surprisingly, it was found that optimal use of an data-flow approach may take
some learning. In particular, synchronization and state-management are two areas
which appear to be substantially different. Of these, state-management is somewhat
mixed, with local state easily managed but shared state still presenting somewhat of
a problem.

146

Part IV.

System and Conclusion

147

9. System Evolution

In this, final, evaluation chapter, the evolution of the architecture over the itera-
tions of the present system will be discussed. The issues encountered while realizing
more capable Human-Robot-Interaction will serve as a backdrop to evaluate the pro-
posed architectural concepts. In this, both social and technical requirements will be
considered, in keeping with the two main objectives of an architecture: a) provide
beneficial constraints for development (thus guiding the developers, a social aspect)
to b) realize a usable, performant system (the technical aspects).

The main scenario idea came about as a direct reversal of an older scenario: In
the “Home Tour” (Hanheide and Sagerer, 2008), people are followed by a robot and
direct the robot’s attention by pointing at things and labeling them. As outlined
previously, this was criticized on the grounds that people cannot know a-priori what
the robot does and does not know, both regarding which objects it knows and what
sentences it understands. Therefore, an alternative approach is that the robot struc-
tures interaction. In the present system, this structuring is done by asking on its
own – so-called robot-initiative.

In keeping with a reversal of the prior situation, the robot should also point at ob-
jects while asking for their names, and possibly other information, then start interac-
tion with the objects as its facilities permit. This situation models that no knowledge
about object labels and/or descriptive attributes is prespecified. Of course, detecting
objects is already by no means trivial, but it was hypothesized that visual saliency,
known from computational models of human attention, might provide a means to
identify object-candidates from which the interaction could be started.

9.1. Scenario pre-test: “What is that?”

For the described scenario to be feasible, a crucial question is whether people would
let the robot set interaction goals. While mixed-initiative has been successfully used
before, it is usually employed in situations where humans give the initial command
and the robot just takes initiative when it gets into trouble following that command.
In contrast, in the present scenario the robot sets the goals of the interaction.

If humans would not accept the robot’s goals, the undertaking would have been
over before it even began. If they did, there are also some more technical questions.
For example, it may turn out that pointing is not a good means of referencing objects
or that visual saliency does not deliver sensible object candidates.

Therefore, a small test was conducted to establish that the scenario was worth
exploring. The test also provided an opportunity for early integration of basic com-

149

9. System Evolution

ponents. While by no means representative (the test group contained just four sub-
jects), it is a good example of the core scenario idea.

Test procedure

The test has been conducted using the “Wizard of Oz” paradigm (Kelley, 1983;
Dahlbäck et al., 1993), with some live components. Action selection was provided
by a human operator, whereas saliency computation and pointing used the actual
algorithms to be employed in the future system. The latter aspect is intended to
verify that the chosen saliency algorithm is usable. The robot’s activities followed
four steps:

1. The vision system computes visual saliency of the camera image, using Nagai’s
saliency algorithm (Nagai et al., 2003a).

2. The system selects the most salient point and has the right robot hand point
at it.

3. Concurrently with the previous action, the question “Was ist das?” (English:
“What is that?) is uttered.

4. Upon receiving an answer, the robot confirms with “Aha, ein(e) label” (English:
“Ah, a label”) and repeats the procedure with the next object (the saliency map
is recomputed on every iteration, but known objects are blotted out).

This sequence is the main sequence, with deviations due to user activities always
possible. Robot activity is controlled by a human operator using a graphical user
interface, shown in figure 9.1. The interface allowed both speech output and restricted
robot motion. Each step of the procedure outlined is individually controllable and
can be executed and/or repeated as desired. This has been used, for example, to test
how subjects reacted to repeated questions for the same object.

The robot used in this test was BARTHOC Junior, a smaller version of the hu-
manoid torso robot of the main setup. Both models have the same motion capabili-
ties.

Four naive individuals (non computer-science students) made up the test sample.
This sample is obviously not representative by far, and was not intended to be, but
it is considered sufficient to establish the worth of proceeding further. Furthermore,
it turned out to be a diverse sample, useful in establishing a number of potentially
problematic issues.

Test outcome

The main outcome of the test has been that, yes, users did allow the robot to specify
goals, and – not unexpectedly – also took initiative. They also asked a lot of questions
at all stages during the proceedings. In particular, they queried the robot about the
knowledge it acquired and they also picked up objects to demonstrate them explicitly,
after being asked once.

150

9.2. Initial Object Learning System

Table

80cm

ca. 125cm

Table

HumanRobot

(a) interaction setup. arm range:
red/shaded; objects: blue/small.

(b) remote control user interface

Figure 9.1.: Interaction setup and the operator control application.

Furthermore, pointing has been established as interpretable, but the distance be-
tween the finger of the robot and the object to be pointed at is crucial. While this
could not be established directly, it appeared as if the direction of the pointing finger
was less important than the absolute distance to the object. If multiple objects were
in the general direction, users were confused and similarly for objects which were
relatively far away. Figure 9.1(a), shows an example object arrangement and it can
be seen that several objects were out of range and/or close together in approximately
the same direction.

Because of the resulting confusion over the target of pointing, subjects frequently
used clarification questions. In these questions, some of the subjects assumed the
robot to understand color attributes. Some of the subjects also pointed at objects,
whereas others picked them up.

Last, but not least, visual saliency using Nagai’s algorithm did turn out to be
useful in suggesting image regions to ask for. Distractors, such as edges, did occur
but while these did cause problems, the were much smaller than the problems caused
by the pointing procedure.

9.2. Initial Object Learning System

Having established that the scenario idea is acceptable, the next step has been to
transfer it to a fully autonomous setup. In particular, this required automating the
choice of a next action and the integration of a dialog management component to
handle the various sub-dialogs that occurred during the main sequence. Regarding
perception, object and speech recognition had to be integrated

151

9. System Evolution

Furthermore, the previous robot did not do anything besides asking. This is con-
sidered too limiting, both for studying the interaction itself and with regard to the
larger context this thesis has been undertaken in, which is about manipulation for
service robotics.

In this context, “object learning” includes basic manipulation capabilities and the
remainder of this section will be about the initial system created for this purpose.
The initial system consists of 19 distinct components and has been developed by
five persons. In the following, the scenario will first be detailed and then exam-
ined regarding the suitability of the architectural principles to facilitate technical
integration and developer coordination.

9.2.1. Use Cases

The robot has acquired several more use cases, which will be specified in the follow-
ing. Additionally, the possible user activities are also specified as use cases. Each
of the use cases specified contains multiple activities on the system level, but on
the interaction level, they constitute the steps from which the overall interaction is
created. An overview of the use cases is given in figure 9.2.

Accept
object presentation

Associate previous
Info

Rank regions
by saliency

Correct previous
label

Update appearance

Say OK

Recognize
Objects

Store Label

Provide label

Store Object
Appearance

Store Grip
Type

What is that?

How do I
grasp that?

Stop current
action

extension points
information kind

Ask about
Objects

Provide grip
name

Provide information

extension points
information kind

Update Object
Representation

Grasp Object

Look for
Objects

Ask for bowl

Curious Robot

User

<<extend>>

(information kind)<<extend>>

(information kind)

<<extend>>

(information kind)

<<extend>>

<<extend>>

(information kind)

<<include>>

<<extend>>

(information kind)

<<include>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

(information kind)

Figure 9.2.: Use cases of the “Curious Robot”

The information requests are extended by one: Asking for a grip types, in case
this cannot be inferred automatically. Requesting other types of information follows
basically the same model, so it has not been considered necessary to include more
information requests.

Otherwise, the robot can perform two manipulation actions. Firstly, placing ob-
jects into a bowl by picking them up (using the specified grip) and dropping them

152

9.2. Initial Object Learning System

into the bowl and secondly, picking up the bowl with both hands and passing it to
the user.

Last, but not least, an object recognition component has been added, which is
responsible for storing information about the objects. The interaction of the dialog
and object recognition constitutes a major part of the scenario.

User actions

In the initial system, the user is mainly providing information, as requested by the
robot. Furthermore, she can stop the robot’s actions at any time. Lastly, she may
request that the robot passes the bowl.

It must be said that the bowl passing action is somewhat orthogonal to the main
scenario idea, as the user has to know how to do that already, instead of being told
by the robot. It has been included primarily to be able to demonstrate bi-manual
manipulation in conjunction with object learning.

9.2.2. Hard & software components

The setup physically contains two robots: The humanoid torso “BARTHOC” and
two software-coupled Mitsubishi PA-10 industrial robots, with Shadow robot hands
attached. Of these, only the PA-10s actually move during the initial scenario. The
humanoid is in a fixed position, looking at the table.

Part of the design has been to simplify perception. For vision, this is done by using
a static camera viewing the scene from above, and a black background with known
lighting. The resulting visible area is shown in figure 9.3(a). The camera used is a
Sony DFW-500 at a resolution of 640x480.

Table

Bowl

Visible area

BARTHOC

Human

1
8

0
cm

131,8cm

9
7

,4
cm

(a) Sketch of setup (b) Photo of setup

Figure 9.3.: Initial object learning setup.

153

9. System Evolution

The software structure of this version is shown in figure 9.4, with components
arranged according to the functional areas they belong to. There is one component
each for each of the active parts of the robot (arm, hand, “voice”/speaker) and the
sensors (camera, joint sensors, microphone) and one derived sensor which computes
a self-occlusion image.

Many of the analysis and behavioral components are standard, as follows:

Visual Saliency uses Nagai’s variant of the Itti-Koch model (Nagai et al., 2003a),
embedded in the iceWing framework (Lömker et al., 2006).

Speech Recognition applies the speaker independent ESMERALDA (Fink, 1999)
toolkit with HMM-based recognition, a bi-gram language model, a robust,
scenario-specific grammar and German conversational speech training data
from the VERBMOBIL project.

Speech Analysis is performed through a robust, chunk-based analysis compo-
nent (Hüwel et al., 2006)

Text-to-Speech applies the Mary TTS toolkit (Schröder and Trouvain, 2003)

The Motion Subsystem and its components has been developed for the present
setup by Robert Haschke and colleagues (Ritter, Haschke, Röthling, and Steil,
2007)

Custom components

Scenario specific additions have been made as follows:

The Information Gatherer is the action selection component developed for this sce-
nario and discussed in detail in section 8.1

Object Recognition uses a color-histogram and shape based recognizer with one-
shot learning developed by Christof Elbrechter (Lütkebohle et al., 2009a)

The Dialog Manager is based in part on an earlier system, but has been substan-
tially extended for the present scenario by Julia Peltason (Peltason et al., 2009b;
Lütkebohle et al., 2009a).

Communication between these components is performed using the XCF middle-
ware toolkit (Wrede, 2008). For the high-level interaction, the life-cycle based inter-
action is applied – which, in this iteration was not using the XCF Task Toolkit.

It is obvious, and not surprising, that the autonomous system requires much more
functionality, and actual integration, compared to the Wizard-of-Oz test. The larger
set of components also came with a larger research team and corresponding coordi-
nation challenges. While the test has been carried out by just two persons (Julia
Peltason and the present author), the software for the autonomous system has been

154

9.2. Initial Object Learning System

sensors

<<component>>

Frame
Capture

<<component>>

Robot
Position

<<component>>

Headset
Microphone

<<component>>

Robot Self
Image

actuators

<<component>>

Robot Arm

<<component>>

Robot Hand

<<component>>

Speaker

motion

<<component>>

Arm
Control

<<component>>

Hand
Control

<<component>>

Hierarchical
State Machine

<<component>>

Kinematic
Model

<<component>>

Trajectory
Planning

vision

<<component>>

Object
Detection

<<component>>

Visual
Saliency

speech

<<component>>

Dialog
Manager

<<component>>

Speech
Recognition

<<component>>

Text to
Speech

<<component>>

Speech
Analysis

actions

<<component>>

Information
Gatherer

<<use>> <<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 9.4.: Components in the autonomous object learning system

built by five (Robert Haschke, Christof Elbrechter, Lars Schillingmann and the pre-
vious two).

Fortunately, a substantial functionality base already existed, which made the sce-
nario feasible and allowed it to be built comparatively fast. The existing functionality
had also already been separated into independent components for distribution on sep-
arate machines. However, the fact that these components were originally developed
for different scenarios did cause some additional effort during integration

9.2.3. Notes on integration

Integration occurred at various levels in the present system (and this also applies
up to the last iteration built so far). While this part of system building is known
to uncover problems and generally take more time than expected, the participating
researchers had all built systems before and the system was designed to avoid many
of the classic, problematic issues.

Calibration. As the camera is static, it could be easily calibrated to the robot coor-
dinate space. Hand-Arm calibration was contained in two, tightly coordinated
components.

Sensor level. The only integrated sensor with several components in this iteration
is vision. Because only one camera was used, the main problem to achieve

155

9. System Evolution

integration was to agree on a common coordinate system – different algorithms
ran at different resolutions, so absolute pixel coordinates were out. The re-
sulting solution is to use relative pixel coordinates, which could be compared
regardless of resolution.

Model Level. The main model that is built up during operation of the system is
one of objects being interacted with. For this purpose, a common “interaction
region” representation has been created, which is jointly built up by the vari-
ous components and provides a common reference point. For an example, see
appendix C.4.3.

Interaction-Action Level. The task-state pattern, which had been successfully used
in the COGNIRON system, has been applied in the present system to integrate
dialog, object recognition and the motion control coordinator (HSM).

The integration of this system is remarkable primarily because it has been so
unremarkable. It appears that this is due in large part to the XCF middleware toolkit,
which has been designed specifically to allow iterative integration and emphasizes a
focus on representations, instead of commands (Wrede, 2008). For example, the
addition of relative coordinates to the output of the vision components could take
place one component at a time, because additions to data structures are backwards
compatible in the XCF approach.

The present system has added task-based coordination to these principles, which
focuses on a single interaction model. So far, it appears that the combination works
well on the technical level, and the resulting system will be evaluated regarding its
interaction in the next section.

This is not to say that integration has been entirely without problems. However,
the problems mainly had to do with exercise in the full system uncovering bugs in
individual components. This is quite different from the, not uncommon, case where
integration uncovers fundamental design problems. Fortunately, such severe flaws
did not occur and the system could be delivered to testing.

9.3. User evaluation of the Object Learning System

Every Human-Robot-Interaction (HRI) system must be tested with users other than
its designers, to determine whether it can actually deliver what it has been designed
to do. Such a test determines how well users can actually perform the intended task
with the system. In the present system, the evaluation target has been the efficacy
of the dialog structuring approach. The evaluation questions are:

• Does the guidance by the system give users a correct idea of what they can do?

• Does the guidance improve intelligibility of the humans actions by the system?

Apart from these, user’s impressions and suggestions for the system are also of in-
terest.

156

9.3. User evaluation of the Object Learning System

9.3.1. Experimental design

The experiment has been based on the video-study paradigm and credit is due to
Manja Lohse1 for suggesting that this form of study might be easier on the subjects
than a real study with a system in its first iteration. This section is largely based on
Lütkebohle et al. (2009a), with some additions regarding value judgments. For that
paper, the video has been filmed with the full team, while the study itself has been
designed and carried out by Julia Peltason and the present author.

In a video-study a recording of an experienced person interacting with the system
is shown to the test subjects2. The video is stopped at predefined positions and
questions are posed to the subjects, as shown in table 9.1. The questions are asked
after the robot has acted, but prior to the moment where the recorded person answers,
to guarantee an unbiased answer. We can then compare user’s reactions in the varying
interaction situations. The difference in the responses for the various situations can
give us insight on the general effectiveness of the guidance (our first item), and the
variability in the responses indicates whether the constraints increase predictability
(our second item).

Time (mm:ss) Situation Question

00:07 Scenario shown What do you think could this robot do?
How would you instruct this robot?

00:29 “What is that?” What would you do now?
00:47 “How can I grasp that?” What would you do now?
00:51 “Beg your pardon?” How would you correct?
03:40 Failed to grasp apple. What would you do now?
06:33 Points at empty position. What is happening?

Table 9.1.: Study Plan

The advantage of a video study like this one is that diverse interactions may
be explored without frustrating the subjects, because they can show their intuitive
behavior first, which may or may not be supported by the system, yet, and then
continue further interactions based on the behavior the experienced test subject
demonstrates. The obvious disadvantage is that results may not generalize to direct
interaction. However, video studies have been shown to generalize well when correctly
analyzed (Woods et al., 2006). In general, the benefits of early feedback outweigh
the potential drawbacks.

Outline of the demonstration

In the video shown, the human and the robot collaboratively identify objects lying
on the table, coordinate how to grasp an object and then the robot places it in a bowl
(see figure 9.5). Ten test subjects were recruited from visitors to a university wide

1Applied Informatics Group, Bielefeld University. mlohse@techfak.uni-bielefeld.de
2See http://aiweb.techfak.uni-bielefeld.de/content/curious-robot for the video used.

157

http://aiweb.techfak.uni-bielefeld.de/content/curious-robot

9. System Evolution

outreach event and thus had varying backgrounds and ages. They did not receive
prior information about the goal of the scenario but have been told that we intend
to broaden the interaction capabilities of the robot and that any action they would
like to take was acceptable and of interest. The video was shown to them using the
procedure described above, and each of them has also been video-taped to record
their motion and facial expression for qualitative analysis.

Figure 9.5.: Situation for “What is that?”, as shown in the experiment video.

9.3.2. Results of the experiment

The following results are based, firstly, on a log of subject answers kept by the exper-
imenter and, secondly, a questionnaire filled out by the subjects. The questionnaire
did capture some information about the subject and let the subject judge the system.
It is reproduced in appendix E.1.

Observations during initial system description

The first situation is a static image of the scenario (figure 9.5), where subjects are
asked to speculate on the systems interaction capabilities by appearance alone. All

158

9.3. User evaluation of the Object Learning System

subjects could deduce the task to be “placing objects into the bowl”. They also
agreed that the system was capable of vision, grasping and speech recognition, even
though no direct indication of that was given.

After that, however, the descriptions of how they might attempt to interact with
the system varied widely and no clear pattern emerged. For example, one person
said “Take the green apple and put it in the blue bowl” while another provided “I
would explain that it should combine the four things” and a third said “Make a fruit-
salad!” (which make sense, because all the objects visible were fruit). A summary
of the variations is shown in table 9.2.

Apart from variations in terminology and concepts, it is particularly interesting
that half the subjects only used meta-commentary, such as in the second example
above, and did not provide any concrete command, even though the experimenters
prompted them multiple times. This may have been due to the study setup, but as
can be seen in later parts, subjects did produce concrete example commands when
it was clear to them what they could say.

Label Domain fruit name “object”
80% 20%

Container Label “bowl” “dish” none
40% 40% 20%

Attributes Used none Shape Color Size
50% 40% 30% 10%

Subtask none sorting
70% 30%

Commands Given none “put a in b “put all...” “sort”
50% 20% 20% 10%

Table 9.2.: Percent of subjects using a particular concept

Further, please note that 50% of the subjects did not use any attributes for object
specifications, but those that did often used multiple attributes at once. Of these,
shape was the most frequent, followed by color. Only one person used a size attribute.
These frequencies cannot really be considered typical, because the sample size has
been comparatively small, but the split between use/non-use of attributes might be
a more general trend.

Description of grasping

One of the questions used during the trial has been “How do I grasp the ’object’?”.
The robot did not provide any indication on which aspect of grasping it wants de-
scribed, hence this question is considerably more open than the others. The motiva-
tion underlying this question is twofold: Firstly, it is interesting to see how subjects
react to unclear guidance and secondly, this provides an uninfluenced view on how
subjects naturally describe grasping. Table 9.3 shows the aspects used (sometimes

159

9. System Evolution

several aspects were given). In at least one respect, the results are very clear: Sub-
jects took an average of 19 seconds to answer, compared to just 5 seconds for the
label question. This indicates considerable more confusion, as expected.

Aspect Described Percent of Subjects

Effector position relative to object 30%
Trajectory of effector 20%
Fingers to Use 40%
Force to Use 30%
Grasp point on object 20%

Table 9.3.: Aspect of Grasping described.

From the video recordings of the subjects, it is also apparent (again not surpris-
ingly) that many subjects performed the action of grasping during the explanation.

Observations regarding user initiative

An example of user initiative can be observed in a situation where the robot fails
to grasp the object. These utterances are syntactically more varied, particularly
when users provide corrections, see table 9.4. However, they are conceptually much
more straightforward than the initial descriptions and it appears promising that users
do provide verbal commentary relating to grasp parameters, such as “rounder” or
“softer”, which are complementary to visual demonstration.

Answer % of Subjects

“Try again” 40%
“Grasp the ...” 20%
Grasp corrections (“rounder”, “both hands”, “softer”) 40%

Table 9.4.: User Commands after Failed Grasp

Reactions to system guidance

In contrast, answers to the “What is that?” question by the robot are considerably
more consistent, as shown in table 9.5. Only three constructions are used in total
and they are all slight variations of a single sentence. The subjects apparently found
it easy to answer this question, as they needed only an average five seconds to an-
swer (measured from end of question to end of answer). Only one subject required
clarification.

In an error condition, where the system pointed at an empty spot, two variations
occur, roughly in equal proportion: Asking for clarification and giving the name of

160

9.3. User evaluation of the Object Learning System

the closest object. The latter were always accompanied by comments expressing that
an error occurred and thus recognizably different from regular replies.

Situation Answer Percent of Subjects

“What is that?” “That is a...” 70%
“a ...” 20%
“a yellow ...” 10%

empty pointing “What do you mean?” 50%
(pointing wrong) “That is a ...” 40%
“nothing” 10%

Table 9.5.: Replies after System Initiative

Overall judgments

The last part of the evaluation had the subjects answer a few questions (cf. ap-
pendix E.1.1) that reflect their overall judgment of the system and the interaction
seen. The results are summarized in figure 9.6.

The speech output was acoustically well intelligible.

I always knew what was being asked for.

The responses were appropriate.

It was well discernible where the robot pointed.

I would have reacted the same way

The system has learned something

The system has tried to do what the human wanted

The system has achieved what the human wanted

0 2 4 6 8 10 12

disagree completely disagree mixed agree agree completely

Figure 9.6.: Overall system value judgments. Also compare appendix E.1.1 for the exact
questions, as the ones shown here have been slightly abbreviated.

The statements have been posed in the positive and overall, subjects mostly agree

161

9. System Evolution

or strongly agree with the statements, with some mixed answers. This is to be
expected3, and should not be interpreted to mean that the subjects were completely
satisfied with the system. The true information is more in the trend of the answers,
e.g. which of them they answered more or less positively than the others.

Perhaps most notable is the response to the statement “I would have reacted the
same way as the person in the video”. It is the only question to receive disagreement
at all (20%) and another 40% answered “mixed”. This indicates that the interaction
as shown still has quite a way to go before it can be considered intuitive. From an
analysis of the transcripts, it appears that most of the disagreements were caused by
differences in handling erroneous situations and the description of grasping (where
most people would have demonstrated it).

In particular, several subjects commented that they would not have said “stop”
or similar things on action failure, but would have repeated the previous command
instead. This is an example of implicit feedback which most systems do not handle.

A slightly interesting response regards the discernibility of pointing: It received
rather mixed results. This appears to be largely due to the video study setup,
where people could not clearly see the pointing in depth. However, it may also have
something to do with the distance from the finger to the object, particularly when
objects are close together.

A last revealing judgment has been the (single) person that answered that the
system has not learned anything: The person complained that the robot did not say
what it has learned, even though it acted on its knowledge.

9.3.3. Discussion

Speculation behavior. From the initial speculations of the users, it appears that
subjects tend to make judgments of the sort “because multiple colors appear, the
system can differentiate colors”, thus assuming capabilities that the system may
not actually support. In the present case, they assumed object labels to be known,
which has not been the case and would have been a problem if not for the system’s
guidance. This illustrates the (sometimes accidental) influence of appearances, and
a dialog system should be prepared to address such preconceptions.

Detecting subject uncertainty. It is notable that subjects sometimes used
meta-commentary (“I would have...”) and sometimes gave very explicit answers,
despite the same amount of prompting by the experimenters. It seems that subjects
used meta-commentary when they would have been unsure of what to do in a real
situation.

Furthermore, responses after guidance by the system are not only more explicit,
but also show extreme consistency, almost to the point of being exact repetitions.
Even reactions to errors are surprisingly consistent and corrections are provided
without hesitation.

3When subjects have a neutral reaction, they are known to answer slightly towards what they
believe the experimenter would want them to say.

162

9.4. Relation to proposed methods

initiated running

cancel requested

accepted

done

already done

rejected

cancelled

failed cancel
cancel failed

Figure 9.7.: State Machine for the initial life-cycle model

It is concluded that task-structuring by the robot is necessary and should include
not just verbal help but also contextual constraints. The results indicate that the pro-
posed method achieves this for object reference. Grasp descriptions, however, need
more guidance, which is not surprising as this aspect was intended to be exploratory.

Discourse structuring Another result from the responses is that a dialog sys-
tem is required and simple “question-reply” not sufficient: Requests for clarification
occur frequently and user initiative plays an important role for error detection. Ad-
ditionally, even though utterances are relatively consistent conceptually, there are
still considerable syntactical variations present.

The responses by the test subjects also show that the interaction as currently
implemented would not be their preferred mode in some cases. The preferred alter-
natives are relatively few and consistent, so that they can be implemented in the
next iteration of the system.

An aspect that remains open is how to let users know when they may interrupt
the system, e.g. with additional commentary or error feedback. The study design
prompted them, but in a real situation, other cues are necessary. This is basically a
social interaction issue and it would thus be interesting to add more social feedback
mechanisms to the interaction.

9.4. Relation to proposed methods

The initial version of the system marks the starting point for many of the previous,
method-oriented case studies. This means, most importantly, that the toolkits devel-
oped later have not been used, yet. However, the task-state has been applied based
on custom implementations by the component developers for the action selection,
dialog manager and HSM components.

The life-cycle model in use during this version is as shown in figure 9.7.

In comparison to the basic and general life-cycle models (cf. figure 4.2, respectively

163

9. System Evolution

4.10), this model marks a mid-way point. It does include cancellation of requests,
but neither updates nor intermediate results.

From the experience in this version of the system, the task-state pattern is con-
sidered to be a good candidate for a general interaction protocol between diverse
components. However, three issues were identified that should be improved.

Partial implementation

In the initial version, the components only implemented part of the life-cycle model.
In particular, aborting was only supported by the HSM. The dialog could issue a
cancel request to the HSM, but it could not react to such requests by the action
selection component. The action selection component, in turn, did not issue cancel-
lations. This meant, for example, that updated information from vision could not be
taken into account.

It may be that part of the reason for this situation is that cancellation deviates
from the standard procedure call semantics. Without it, the task-state pattern co-
ordination degenerates to a slightly improved version of RPC, which has well-known
semantics for most developers. If this is indeed the case, cancellation, and any other
extensions such as updates that leave this well-known area, would increase the like-
lihood of partial implementations.

To be clear, it is not a target that all components support the full model. However,
if a state is not supported, it should be refused explicitly to ensure that a submitter
can safely try it and fall back. Otherwise, client components would have to include
knowledge of what a particular handler component supports, which is not the goal
of a general model.

Model extension

Furthermore, extensions to the life-cycle model are not currently possible in a back-
wards compatible way. For example, if a novel state is introduced, components that
do not implement it must still answer in a way intelligible for the source compo-
nent. This is, however, not possible without either a) versioning support, b) explicit
changes to the components for each such extension, or c) the introduction of an
adapter component. While all of these may be possible solutions for some cases,
they each have their respective drawbacks.

While it is not suggested that the model be extended indiscriminately, some future
extension should be possible. The favorable experience with the XCF middleware,
which enables data structure extension in a backwards compatible way, further sup-
ports this view.

It is suggested that both of these problems can be solved through a service-level
toolkit for implementing the task-state pattern. Thus, the the XCF Task Toolkit
implementation described in the previous chapters was started.

164

9.5. Extended / Alternative Scenarios

The issue of three-way interaction

One other problematic aspect has been the interaction between the dialog manager
and the object recognizer. As mentioned previously, the recognizer can simply ob-
serve dialog events to acquire label information. However, this label information
must be associated with the visual appearance of the objects at the beginning of the
interaction, which may not be the same as the one at the end, when the label is avail-
able. For this reason, it was decided that the object recognizer should store a visual
snapshot in the interaction region representation used for task coordination. This is
the same representation that is used for coordinating a task between the dialog and
the HSM, resulting in a three-way interaction.

It is the opinion of the present author that this decision, while convenient at the
time, has been a serious mistake, given the technical circumstances. The reason is
that the semantics of the event-bus used are such that derived events replace the
events they are derived from. Therefore, to keep the image information that the
object recognizer has added, the dialog must use the updated representation when
adding its label. This means that a change in the object object recognizer affects the
dialog, too, which is not desirable.

The first, conceptual, problem is that the life-cycle model does not specify a tran-
sition for this and thus, it was performed while keeping the current state. Because of
this, initial implementations did not count it as an update and ignored it. It would
appear that this may be easily fixed through an extension of the model.

However, the harder problem is that of three-way interaction without explicit
synchronization. This is already visible in the above: Because a third component
issued the update, neither of the original participants in task-state coordination for
this task were aware of it. Therefore, neither could detect that an update had been
missed, which may not only occur due to bugs, but also due to timing races. In
contrast, if only two components participate, a missed update is always detectable
by one of them, because the previous version is present locally.

In practice, races does not occur in this situation, because it takes much longer
for the text-to-speech service to synthesize the question (which has to happen before
it can be spoken) than it takes the object recognizer to attach the image snapshots.
Therefore, the update will happen before the human partner even has a chance of
replying. Nevertheless, situations such as these must be avoided.

9.5. Extended / Alternative Scenarios

Based upon the present system and in the light of the user evaluation, two further
iterations of the system have been created. The first of these was aimed at demon-
stration during a trade fair (2009’s CeBIT) where it was presented for one week.
It incorporates some of the evaluation’s lessons already, particularly regarding feed-
back. However, it has also been significantly stripped down in other respects, to fit
the fair context, and thus constitutes a branch in functionality.

In contrast, the second iteration is a direct continuation of the full object learning

165

9. System Evolution

system, addressing concerns identified during the user evaluation. Furthermore, it
has also been used for final evaluation of the proposed toolkits, as described in
previous chapters.

9.5.1. CeBIT demonstrator

The CeBIT demonstrator has been an interesting diversion and an opportunity to
expose the research system to a larger audience. In contrast to other robotic systems
at CeBIT, which were only demonstrated by experts on a predefined schedule, the
“Curious Robot” is explicitly targeted at naive users and thus it was decided to run
it continuously. This meant, most importantly, that the system had to run 10 hours
a day for seven days straight, which had never been tried before. It also meant severe
constraints on the hardware and space available (cf. figure 9.8).

Besides the runtime challenge, it has also been a challenge to get across a scientific
topic in such a context, with limited time and many competing exhibits. It is certainly
a credit both to the scenario and to the demonstration personnel4 that this has been
achieved and the booth was always crowded.

(a) cramped resources (b) trade fair guests

Figure 9.8.: CeBIT 2009 trade fair demonstrator

Scientifically, this demonstrator served as a case study on how quickly the system
could be changed to accommodate the trade fair situation. This not only required
stripping out parts that could not be brought but also adding replacement parts, so
that the scenario as a whole was still interesting. The following changes have been
carried out:

• Removal of manipulators and all grip-related behaviors.

• Use of a Pan-Tilt camera for feedback (in place of the humanoid robot).

4The assistance of Johnathan Maycock, Matthias Schöpfer, Sebastian Wrede, Patrick Holthaus,
Florian Schmidt and Franz Kummert has been a tremendous help and is gladly acknowledged.

166

9.5. Extended / Alternative Scenarios

• Addition of a display to “point” through highlighting.

• Calibration of a moving camera to a static one, to integrate visual information
from both cameras.

• Addition of information-query behaviors by which subjects could ask the robot
for learned information.

• Addition of a situation-reporting behavior that listed the available objects.

Many of these additions have been simple to integrate, due to the task-state pat-
tern. For example, the query and reporting behaviors could be added in a straightfor-
ward manner, by augmenting the dialog and adding a simple service component for
the object models. These and other changes are similar to the one for the extended
learning scenario, discussed in previous chapters.

Action selection: A case for declarative specifications

Removing grasping functionality could be achieved simply by disabling respective
action targets. However, at the time, the action selection component had been only
partially refactored. It did use the conditional dispatch prototype, but not the full
FTS toolkit, yet, and in particular, no declarative component model. Therefore, dis-
abling the actions required code edits, instead of just changing the graph specification
file.

This example demonstrates why having a declarative specification for components
as a matter of course can be beneficial. For instance, it would certainly have been
easily possible to make the conditions for the various behaviors configurable – allow-
ing them to be disabled without code edits. However, at the time the component
was written, it did not appear necessary. When the need came, it was too late to
make such a change.

In essence, reconfigurability of traditional components is an additional feature that
takes additional development time. Moreover, it is specific to the component. In con-
trast, declarative graph specifications, in conjunction with the filter-transform-select
decomposition of nodes, prepares for such changes, without additional, component-
specific work.

User feedback from fair use

The trade fair situation did not permit a full study, despite the attraction of studying
dozens or even hundreds of visitors: It would simply have hampered the demonstra-
tion to get permission from every user and, additionally, the situation could not be
sufficiently controlled, because visitors talk a lot to each other about what they have
seen and done.

However, a few subjective impressions may be interesting to report. Most im-
portantly, the scenario seemed to be a big hit with the visitors. We attribute this
largely to two factors: Firstly, visitors could try it out for themselves, in contrast to

167

9. System Evolution

all the other robot exhibits. Secondly, and very unexpectedly, visitors always had fun
with the image captured by the Pan-Tilt camera and shown on the display screen.
In particular the situation where the camera looks up at the face, and visitors saw
themselves generated many laughs. More importantly, after this situation, visitors
became more engaged. It appeared as if recognizing the system as “active” changed
their stance towards it.

9.5.2. Enhanced object learning system

The enhanced object learning system represents the final demonstrator built and it
incorporates enhancements to the scenario in response to user evaluation. Moreover,
the methods developed during this thesis have been fully applied in this version. In
particular, the addition of the feedback sub-system (see section 9.6.3) has utilized
both the task-state pattern (for observing interaction state changes) and the FTS
toolkit (for creating the components).

Gaze cues The feedback sub-system already represents one of the additions made
due to results from the user evaluation: It provides faster feedback and regulatory
cues for interaction. Its necessity was not wholly surprising, as such cues have been
proposed often (most notably by Breazeal (2004)), but from the multitude of possible
cues, gaze was selected based as the most obvious turn-taking cue for object-related
interaction.

Learning feedback. As outlined, subjects inquired about the systems knowledge
during the interaction. Furthermore, they were unsure of what the system has
learned. To address this, the dialog has been extended to provide information on
what it learned upon request. This includes both labels, grip types and which objects
the present scene contains. The language for these queries is based on a straight-
forward reversal of the questions the robot asks, e.g. “How do you grasp the apple?”.

One consequence of this change is that the possibility for the user to take initiative
has been substantially enhanced. The dialog manager used supports nested interac-
tion, so inquiries can be made at any point, including during motor activity. As such
activities take a while, they provide a natural point of inquiry. The actions can also
be aborted, as before.

One interesting aspect here is that the information necessary to answer the queries
is not provided by the object recognizer component, but is based on records of previ-
ous (successfully completed) task interactions. These records are automatically kept
by the “Active Memory” event bus.

Implicit interaction & guidance. One efficiency improvement made to the interac-
tion has been to replace the explicit confirmation question with an implicit acknowl-
edgment: Instead of asking “I understood X, is that correct?”, the robot now says
“OK, X” and proceeds. The user can then correct the robot (“No, Y” or “A Y”,
again), or accept and proceed. This removes one round-trip from the interaction,

168

9.5. Extended / Alternative Scenarios

while still keeping the possibility to correct misunderstood words. This change has
been based on the user feedback, where subjects answered that, in case of an error,
they would repeat their previous utterance.

To realize implicit completion, both the dialog manager and the task-state life-
cycle had to be extended. The latter extension has been the “result available” state,
which signifies that an intermediate result is available, but not the final one. This
has been done to simplify rollback for the object recognizer in case of an erroneous
label.

Hand posture classification. In the video study, subjects uniformly had trouble
with describing the specifics of physical actions, such as the difference between dif-
ferent ways of grasping. They had no trouble actually demonstrating the grasp,
however.

Therefore, to enable subjects to demonstrate grasps directly, a posture-sensing
glove has been added. The posture is then classified into the three different grip
types supported. Classification information is fused back into the input for the
dialog system, to be processed in conjunction with verbal information.

No change to the interaction has been made to use this glove, but during user
evaluation, subjects have been observed to instinctively perform grasping motions
during their explanations (in the first trials, without wearing the glove). Thus, the
classification is also performed during the subjects explanatory statement, and can
be associated with any complementary verbal information.

Of course, it has to be admitted that putting on a posture-sensing glove is an
obvious hint to subjects that the system will be able to interpret its input, so little
further guidance is necessary. It is also a constraint, so further options are being
considered.

One option is to recognize the hand-posture visually, but this is still an incredibly
challenging problem. For the object shapes in use, automatic selection of grasp pos-
tures would actually be more feasible. This would change the interaction requirement
to corrective feedback and this is currently being considered for the next iteration.

Toolkit and component changes This iteration uses the task toolkit in all com-
ponents, except for those in motion control. Furthermore, the FTS toolkit has been
used for the action select component as well as the new feedback behaviors, and the
fusion component integrating the CyberGlove input.

These additions result in the extended set of components already shown in the sce-
nario description, figure 3.1. The motor and interaction sub-systems are unchanged
on the architecture level, but a new sub-system (for feedback) has been added. All
three will be described jointly in the succeeding section.

169

9. System Evolution

9.6. Functional architecture

The functional architecture is the distribution of functionality amongst components,
and the associations between these components in the integrated system. It deter-
mines the path of data through processing stages and constrains which components
may interact in what way.

The main subject of this section will be to examine the interplay between architec-
tural principles and system evolution. The visualizations in the following have been
made according to the (sub-)system schemata shown in sections 3.3 and 3.4. How-
ever, these schemata were developed after the initial system and thus in themselves
already represent an analysis step.

For the motion control and interaction subsystems, both the initial and the ex-
tended object learning system share the same components and functional architec-
ture, depicted in figure 9.9. The motion control and interaction sub-systems are very
loosely coupled externally, with tighter internal coupling. In the extended system, a
third sub-system has been added, coupled to the interaction sub-system in the same
way (see figure 9.10).

9.6.1. Interaction subsystem

The interaction subsystem adheres most closely to the schema, which is not sur-
prising, as it is the one the present author was most directly involved in. The
main notable fact relating to the schemata is that the dialog manager (DM) com-
ponent is shown twice: In the checking and the sequencing layers. The DM is the
only component in the sequencing layer and contains both functions, thus this is a
straightforward change and one which does not violate the layering of the schema.

Object recognition integration

One other notable aspect in the interaction subsystem is the integration of the object
recognition component. This component initially has no label information and once
the user provides a label (determined by the dialog), the representation must be
updated.

Due to the use of an event-based integration approach, this interaction can occur
without explicit notification. The events generated by the Dialog Manager contain
a reference to the object region and by “listening in” on these events, the object
recognizer can get the necessary information.

The exact integration had good and bad aspects. The fact that object recognizer
modifies a document shared by dialog manager and a third component, is consid-
ered problematic in hindsight (cf. 9.4). However, the ability to purely observe other
component’s activities in this way is highly advocated and can result in a loosely
coupled, yet well coordinated system.

170

9.6. Functional architecture

Level 1 : Hierarchical
State Machine

Level 2 : Hierarchical
State Machine

 : Headset
Microphone

 : Robot Self
Image

 : Speech
Recognition

 : Dialog
Manager

 : Speech
Analysis

 : Text to
Speech

 : Dialog
Manager

 : Frame
Capture

Level 4 : Hierarchical
State Machine

Level 3 : Hierarchical
State Machine

 : Information
Gatherer

 : Visual
Saliency

 : Object
Detection

 : Arm
Control

 : Hand
Control

 : Arm
Control

 : Hand
Control

 : Hand
Control

 : Region
Fusion

 : Arm
Control

 : Arm
Control

 : Arm
Control

 : Hand
Control collision detection

hardware driver

forward model

trajectory plan

Figure 9.9.: Functional layers of the motion control (left) and interaction (right) sub-systems,
and the components they contain.

9.6.2. Motion control subsystem

In the motion control sub-system, the picture is quite different at first blush. There
are only three distinct components: The control components for the arm and the
hand and the hierarchical state machine. The control components include both
sensors, transformation, checking and service components internally. Transformation
from joint angles to a robot posture is carried out by an internal kinematic model,
collision checking is via an internal simulation engine and the service part implements
the control drivers. Furthermore, the arm server also includes an internal action
proposal component in the form of a trajectory planner.

It is also notable that the HSM, which has been shown as one component previ-
ously, is shown at three levels now. This analysis is the result of a question: How
could one component perform so many different functions, without becoming hope-

171

9. System Evolution

lessly incoherent? The answer to that question is found in the hierarchical nature of
the state-machine, each level of which has connections to different external compo-
nents.

At first, this might be interpreted as a fundamentally different design. However,
a closer look reveals that the interaction between the other components servers and
the various levels of the hierarchical state machine maps quite well. There is a
direct association between the hierarchy of the state machine and the functionality
associated with the layers: Level 2 contains the mapping from goals to a sequence
of steps to carry out and level 3 monitors the execution of these steps, and upon
completion, proposes the next step to carry out. The highest level of the HSM
maintains the current activity state and can thus check whether a new action would
currently be possible without interruption.

This interaction reveals that not only does the “arm control” component internally
contain the various functional components of the subsystem schema, their interaction
is also sequenced by an external component, the HSM. This sequencing breaks up the
execution of higher-level actions into functional stages with striking resemblance to
the stages of the subsystem schema. It is still a different design, but not a radically
different one.

In conclusion, while the motion subsystem contains all the individual parts speci-
fied by the subsystem schema, the implementation as a few, tightly integrated com-
ponents has led to a different internal design. It should be noted that its design
predates the current system and is also more concerned with real-time considera-
tion than the rest of the system. Some of its aspects have been incorporated into
the subsystem schema described earlier, whereas some other aspects are still under
discussion for a future, potentially consolidated architecture.

9.6.3. Non-verbal feedback subsystem

The non-verbal feedback subsystem is a new one, created in response to user eval-
uation results. Its components are depicted in figure 9.10. The primary functional
reason for its existence (in this system) is that it can be important to communi-
cate that the system is attending (and to what) before the user’s activities are fully
analyzed.

As introduced in chapter 2, two types of feedback are currently produced:

• Gaze direction. The humanoid torso BARTHOC turns its head and eyes to be
directed at either the human partner or the region being interacted with.

• Motion pausing. When the human starts to speak, the robot arm will slow down
in motion, eventually halting, thus providing both an immediate reaction as
well as more time to process speech.

The sub-system observes the selected interaction region, candidates for which are
produced by “region fusion” (RF) and selected for use by the dialog manager (DM).
As the DM selects the region, it may appear counter-intuitive to link from RF instead.

172

9.6. Functional architecture

Level 2 : Hierarchical
State Machine

Level 1 : Hierarchical
State Machine

 : Headset
Microphone

 : Robot Self
Image

 : Speech
Recognition

 : Text to
Speech

 : Speech
Analysis

 : Dialog
Manager

 : Dialog
Manager

 : Frame
Capture

 : Stereo
Microphones

 : Speech
Localization

 : Head
Control

 : Look at
Region

 : Look at
Voice

 : Look at
Region

 : Look at
Voice

 : Head
Control

 : Information
Gatherer

 : Object
Detection

 : Visual
Saliency

 : Region
Fusion

Figure 9.10.: Functional layers of the interaction (left) and feedback behavior (right) sub-
systems, and the components they contain. Connections are via data or life-
cycle event notifications.

173

9. System Evolution

However, the link is intended to specify coupling. Because the DM uses the generic
life-cycle protocol, there is no coupling specific to it, whereas the data format of the
region description does introduce coupling. Hence, the sensor is data-coupled to RF,
not to DM.

It should be noted that the non-verbal feedback as realized currently does not
perform incremental processing, but instead works on new modalities compared to
the initial version. For example, incremental speech recognition would still produce
symbolic output. In contrast, speaker detection (one of the new sensors) simply
detects voice activity, without regard to its content. Voice activity can be detected
with comparatively high reliability and low error rates even while the first word (or
even the first syllable) is still being spoken.

9.7. Related Work

Despite considerable work on individual aspects of interaction, learning and collabo-
ration, fully integrated systems that interact with a human while performing a task
are comparatively rare. Fortunately, however, the one domain that has seen work
from several groups is close to the present work: Collaborative construction. Other
relevant work can be found in several robot competitions, both at the AAAI Confer-
ence and in the new RoboCup@Home league, as well as in learning social robots.

9.7.1. Collaborative construction scenarios

Collaborative construction, in this context, refers to joint work by at least one robot
and one human on a common task. Early work in this area typically has the human
command the robot, whereas more recent work moves to a mixed initiative setting,
with the robot also being able to elicit help.

Situated Artificial Communicators (SRC 360) (Knoll et al., 1997; Rickheit and
Wachsmuth, 2006)

Figure 9.11.: SFB360 setup (Knoll
et al., 1997).

An influential early system is the outcome of
the special research area 360 “situated artificial
communicators”, at Bielefeld University. In
this system, human and robot collaborate on
an assembly task, with the human instructing
the robot in natural language, and the robot
replying through actions and speech output.
Typical commands include picking up objects
and screwing together parts, as well as meta-
commentary (“move the arm out of the way”).

The project has been a collaboration be-
tween computer science and linguistics depart-
ments and thus it is not surprising that an em-

174

9.7. Related Work

phasis has been placed on natural dialog, which obeys interaction maxims of human
interaction.

In particular, the system has turned away from the so-called “front-end” style, that
treats the robot as a passive receptacle of commands. In earlier systems, the oper-
ator has provide a detailed, multi-step sequence of instructions, with unambiguous
specifications of all parts. This is hard for the human partner and quite error-prone,
because it requires to take all actions into account beforehand. In contrast, incremen-
tal dialog focuses on providing instructions one at a time, in their matching context,
and in response to the current situation and/or errors.

One of the important dialog principles that follows from this approach is the con-
cept of “situatedness”. It refers to the use of the situational context (e.g. the objects
present (Vorwerg et al., 2006), the configuration of the robot and the perspective
of the human) to disambiguate deictic references (Kransted et al., 2006) and for
concrete, human-interpretable error responses. While the former aspect has been
the subject of many other systems, the latter aspect is often ignored, even though
detailed, helpful feedback is an important cue for state transparency. The necessary
combination of vision and language for interaction, while challenging, has also been
a continuing influence (Bauckhage et al., 2006).

Compared to the present system, the SRC360 system assumes human experts, both
with regard to the task at hand, as well as regarding the possible dialog commands.
While an emphasis was placed on supporting typical human constructions, the dialog
is still severely limited and no guidance about the dialog or the goal is provided at all.
Furthermore, no regulatory cues are provided, and a strict one-for-one turn-taking
model is enforced.

The system has also been limited to a number of predefined objects, manipulation
actions, grasps and dialog. No learning of any kind has taken place. Despite this,
the incremental approach towards interaction has shaped many subsequent systems,
certainly including the present one.

Extended interaction in the BAUFIX domain The BAUFIX objects have proven
surprisingly persistent and can be found in several other systems, whose similarities
suggest that the have been inspired at least in part by the SFB360 work, but clearly
address the shortcomings of that work.

Learning grasps has been the focus of the GRAVIS system by Steil, Röthling,
Haschke, and Ritter (2004) (cf. figure 9.12(a)). It uses a combination of visual ob-
servation of human demonstration (for initial posture) and physical simulation (for
optimization). Similarly, Zhang (2004), focused on learning grasps purely through
experimentation. Neither of these systems extends the original interaction capabili-
ties, however.

Collaboration is targeted by the JAST scenario (Rickert et al. (2007); Foster et al.
(2009a); and cf. figure 9.12(b)). Here, the human performs the construction with as-
sistance by the robot, who instructs him/her and also passes objects that the human
cannot reach. The respective action strategies of the robot have been examined in

175

9. System Evolution

(a) GRAVIS setup (Steil et al., 2004) (b) JAST setup (Rick-
ert et al., 2007)

(c) ROBONAUT setup (Fong
et al., 2006b)

Figure 9.12.: Collaborative construction robots.

more detail in several case studies: Foster et al. (2009b) has found a slightly positive
effect of changing referring expressions when objects are in hand, as opposed to on
the table and Foster et al. (2009a) has found that announcing the goal of the action
significantly improves understanding by the human and reduces inquiries.

Architecturally, the original scenario as well as the extended versions use a hybrid
approach, which is fairly obvious choice when integrating perception with symbolic
natural language processing. Despite the fact that several of them use powerful
dialog systems, decision making is central to one component. This probably reflects
the fact that in all of these systems, dialog is exclusively driven by one side and the
other side is restricted to clarification requests that cannot affect the ongoing task.

Robonaut (Fong et al., 2005, 2006a,b) The “Robonaut” is a proposal for a robotic
assistant in space, to support astronauts in tasks they cannot do on their own. In
common with the present system, the Robonaut uses a mixed-initiative dialog based
on natural speech.

The present experiments with Robonaut are on the ground, in a seam welding task
(cf. figure 9.12(c)). Two special purpose robots – one for welding, one for inspection
– collaborate with a human who holds up the parts to weld. The Robonaut has
ambitious goals for collaboration, in particular, the selection of available interaction
partners should be automatic for both the robot and the human. User initiative is
supported to request robot assistance, and robot initiative supports asking for help
with weld inspection. Last, but not least, a particularly impressive aspect of the
system is the support for resolution of spatial references, which supports taking the
perspective of the user.

In comparison to the present system, both dialog structuring and status feedback
are missing, i.e. exactly those aspects that are considered most important for the
present work. Now, in contrast, Robonaut targets expert users, so one might expect

176

9.7. Related Work

that guidance is not necessary. However, to the contrary, a user study by Fong et al.
(2006b) demonstrates that even with such highly trained personnel, these supporting
measures would have been needed. In particular, Fong reports that astronauts did use
incorrect commands and this was missed because the system has no speech feedback
at all. Furthermore, a grave issue was reported to be the lack of status monitoring:
Astronauts had difficulty assessing the status of the robots.

Architecturally, the Robonaut system uses a combination of various approaches:
Tasks are described using the Task-Description Language (TDL) (Simmons and
Apfelbaum, 1998), though communication occurs not via IPC (Simmons and James,
2001) (as usual for TDL) but through an agent framework, except for the dialog
which communicates using the ICE middleware. This combination of approaches
has been used because of existing legacy software (Simmons, 2010).

9.7.2. Interactive mobile robots

Mobile robots are one of the most popular areas of robotics research right now,
and the scenario chapter has already used interaction with them as a motivating
example (cf. chapter 2). However, most of of the work on them has concentrated on
navigation and mobility, and recently also manipulation. A notable exception are two
competition series, the AAAI robot challenge and the RoboCup, which both have
acquired a HRI part in recent years. Therefore, representative robots from these
competitions will be discussed. Furthermore, Ishiguro et al. (2001)’s ROBOVIE
robot is widely used for interaction research in Japan.

General results from competitions Due to the emphasis on navigation issues,
Human-Robot-Interaction is still comparatively limited in mobile robots and usu-
ally restricted to either commands or inquiries, i.e. one- or two-step exchanges.

Furthermore, because of the need to integrate a large variety of different functional
modules, the results from competitions are overshadowed by one blatant result: The
huge effort involved, which is accomplished primarily through lots of “elbow grease”.
In particular, recognized problems are the integration of decision making, how to
cope with errors in perception of natural modalities in noisy and highly dynamic
environments, and monitoring and reporting the robot’s state (Gockley et al., 2004;
Maxwell, 2007; Michaud et al., 2007).

One consequence of this is that only few, if any, robots actually manage to complete
the challenge tasks completely. However, considerable progress is being made from
year to year and the increased interest in such challenges is because they constitute
one of the few means of comparing performance of whole systems. Therefore, their
importance will likely increase.

Graduate Robot Attending Conference ConferencE (GRACE) A contestant in
the AAAI robot challenge with a marked focus on integration is GRACE, with a
maximum of five institutions collaborating in 2002. Later instances had fewer par-

177

9. System Evolution

(a) GRACE (Simmons et al.,
2003)

(b) SPARTACUS (Michaud et al.,
2007)

(c) ROBOVIE-IV (Mit-
sunaga et al., 2008)

Figure 9.13.: Interactive Mobile Robots

ticipants, but built on this base. Regarding integration of HRI, different approaches
have been experimented with over the years.

The 2002 (Simmons et al., 2003) and 2005 (Michalowski et al., 2007) versions
modeled interaction through FSMs and coupled it with a task-oriented architecture.
The first used speech, the second a touch-screen, for input. Interaction of dialog with
other ongoing tasks appears to be very limited. In contrast, the 2003 (Gockley et al.,
2004) version used a much more elaborate interaction system, with a dedicated dialog
and two different parsers (with the simple one winning out due to its robustness – a
familiar result). It sported multiple interactions with other components that carried
out longer-running tasks. Little is reported about the realization of these, but they
are marked as two-way, which indicates a fairly tight integration.

The change in approaches illustrates that interaction is still much less of a “stan-
dard” component than other functional parts, probably owing to the variety of ways
it can be used, and the problems with speech recognition in a noisy environment.
More positively, the development over the years also illustrates that HRI is becoming
a more confidently used tool to solve a robot’s challenges.

SPARTACUS (Michaud et al., 2007) A contestant at the 2005 challenge with a very
explicit focus on architectural concerns is represented by SPARTACUS. Its task was
to register, go to the correct room and hold a talk (the standard conference guest
task). SPARTACUS’ basic architecture is behavior-based and utilizes a hierarchical
priority-schema for arbitration. Furthermore, it emphasizes an adaptation based
approach towards rapid integration, through the MARIE framework (Côté et al.,
2006). Unfortunately, SPARTACUS could not successfully complete the full challenge
due to the various issues, but it covered a few important bases.

178

9.7. Related Work

To provide coordinated exchange of data between processes, the SPARTACUS
architecture uses a so-called “Dynamic Task Workspace” (DTW), which contains a
generic representation. This is similar in spirit to the generic task life-cycle. To adapt
from the behavior-specific representation to this generic store, Michaud et al. (2007)
proposes a “System Know-How” global component. In a later5 paper, however,
Michaud et al. (2006) do not show the SNOW module anymore and describe that it
is “by exchanging information through the DTW that motivations are kept generic”
(my emphasis). It is not entirely clear whether the SNOW module is gone or just not
shown, but it is never mentioned throughout the whole paper, whereas the previous
one shows it as a part of the high-level architecture. This indicates that the global
adaptation module has been replaced with a generic representation, as is argued for
here and, if this is indeed what happened, it would be gratifying to see that a system
that has tried it apparently did change over to a general coordination protocol.

ROBOVIE-IV The most recent development of the robovie (Ishiguro et al., 2001)
series, Robovie-IV (cf. figure 9.13(c)) is a mobile robot explicitly designed for social
interaction, that tries to engage office workers in a dialog about themselves (Mit-
sunaga et al., 2006). Notably, the robot engages people in a dialog on its own, by
saying “Hi” when it detects them, and it continues this behavior during the interac-
tion. From a six-week study (Mitsunaga et al., 2008), it can be discerned that the
robot could successfully engage people in interaction. Unfortunately, while a number
of people were polled about their impressions, and thus the robot cannot be wholly
unsuccessful, the overall interaction success has not been measured.

The architecture is based on “tasks” (behaviors) implemented in a scripting lan-
guage, with the dialog task coordinating the others. It is not specified how this
coordination takes place or how it is formalized. In any case, the robot does not
perform longer running tasks that it could report on.

9.7.3. Social Robots

The study of social robots is particularly relevant for the scenario design, as it ad-
dresses how to use social cues to improve Human-Robot-Interaction. While there is
usually a focus on paralinguistic cues, the goal of embedding guidance into the task
interaction (as opposed to an “introduction speech” or just having the robot give
commands) is shared with the current work.

Socially Guided Exploration Thomaz and Breazeal (2008) outline, in common with
the present work, that most previous systems have been restricted to either tutoring
or exploration and that it is useful to combine the two. In Thomaz and Breazeal
(2008), they suggest interpreting human gaze and pointing to increase object saliency,
which assumes human tutoring behavior and expects the human to know how to act.

5While published earlier, the one about the 2005 architecture has been delayed due to journal
publication.

179

9. System Evolution

(a) Socially Guided Learning
(Thomaz and Cakmak, 2009)

(b) Learning Attention (Nagai, 2005) (c) Demonstration
for BIRON

Figure 9.14.: Social Learning Robots

In contrast, in Thomaz and Cakmak (2009) the robot is autonomous and just uses
its own gaze in a looking-back-and-forth way to indicate failure and thus induce the
human to act.

This uses comparatively little instruction: Subjects are told the goal and not to
move when the robot moves. The robot neither understands nor produces speech
and the interaction is extremely limited, but it demonstrates the value of such simple
cues. In comparison to the present work, there is still the requirement for instruction
and, furthermore, there is no interactive dialog about the task, just action on the
same objects.

Unfortunately, not much is known about the architecture of these systems, ex-
cept that they are using the “C5M” architecture, an unpublished modification of
Blumberg (1996). It is described as a behavior-based architecture.

Learning Joint Attention Nagai et al. (2003b) presents a system whereby the robot
learns reading the partner’s gaze direction in an unsupervised manner, thus achieving
joint attention. Originally, this is based purely on statistical correlation. In Nagai
et al. (2006), the same task is explored using feedback from the partner, both re-
garding correctness and to incrementally increase the difficulty of the task. In the
latter, it could be demonstrated that learning is sped up.

This scenario demonstrates how to scale a learning task that would usually be
extremely tedious to do through demonstration to an interactive scenario, by draw-
ing from ideas of human development – the robot’s capabilities are initially more
limited, which paradoxically eases the learning task. Furthermore, it demonstrates
how adaptation by the human can provide the necessary stimulus for improved per-
formance. However, it again assumes the human to be an expert and, furthermore,
uses a GUI to provide feedback, instead of integrating that into the scenario.

Human Augmented Mapping A system built in the COGNIRON project – which
the author’s working group at Bielefeld University has been involved in – is the

180

9.8. Summary

“BIRON” robot companion (Fink et al., 2004; Wrede et al., 2007). It is a companion
robot, living in people’s homes and its defining scenario is the so-called “Home Tour”
in which the human shows the robot around the home and explains it (Li et al., 2004).
In other words, the scenario is completely driven by the human.

In contrast to other such companions, however, and this is also the aspect closer
to the current work, BIRON has later been extended towards mixed-initiative dia-
log (Booij et al., 2008; Hanheide and Sagerer, 2008). This is triggered by navigation:
Based on the detection of transitions or the confidence level of localization, a clar-
ification dialog can be entered. The goal here is quite different from the present
system: The clarification does not provide the human with additional guidance, it
merely serves the localization component. The dialog also already emphasized the
role of state-reporting during the interaction, to improve usability (Wrede et al.,
2007).

The integration requirements of this interaction led to implementation of the task-
state pattern in an early form (Peltason et al., 2009a), which formed the basis of the
formalization and toolkit by the present author described in chapter 4.

BIRON’s architecture was planned to be a reactive-deliberative hybrid (Li et al.,
2004), but the planner has never been implemented. Instead, the system used an
FSM to specify the scenario, first directly implemented and today in a sequencing
component (Spexard and Hanheide, 2009). The system also used RPC-style interac-
tion throughout, which has been partially converted to a pub/sub and event-based
style now, though the tight coupling and corresponding assumptions of the RPC
interaction do make this a more involved undertaking. It can certainly be said that
the integration experiences of the BIRON team, which the present author has heard
about often, have been a decisive influence in designing the current, more loosely
coupled, event-based architecture.

9.8. Summary

The initial autonomous object learning system has combined a flexible, robust dia-
log manager, a powerful manipulator subsystem and a saliency-based action selection
component that proposes the next interaction goal. The integration has been suc-
cessfully carried out using the XCF middleware toolkit for exchange of extensible
representations. For high-level interaction, the task-state pattern has been used.
This coordination model has been found to be a desirable abstraction, but its im-
plementation posed some open questions, which led to a service-level toolkit that
encapsulates communication complexity.

The system has been evaluated using the video study paradigm regarding the
efficacy of the dialog structuring approach and the overall functionality. A clear
difference in interaction consistency was observed between closed questions (very
consistent behavior) and open questions, which demonstrates the value (or, indeed,
the necessity) of dialog structuring support for complex HRI.

To improve the interaction, particularly to better teach grasping and give more

181

9. System Evolution

immediate feedback, an extended version of the system has been constructed. Both a
haptic input device with grip type classification and a third subsystem, for non-verbal
feedback, have been added. Integration with the existing subsystem has, again, been
performed using the task-state pattern. Furthermore, information giving capabilities
of the interaction subsystem have been extended. Last, but not least, the feedback
behaviors and additional data fusion components in the extended version have been
rapidly constructed using the FTS toolkit.

182

10. Conclusion

This thesis has explored two architectural aspects for building robot software sys-
tems: i) the communication interface for component coordination, and ii) component
composition for rapid construction and change. These aspects are considered to be
of particular importance for building larger-scale systems in a principled fashion,
with the first addressing inter-component construction and the second addressing
within-component construction.

For each of them, initially a common approach has been realized as a toolkit,
and integrated into a Human-Robot-Interaction scenario, dubbed “Curious Robot”.
While the integration itself also constitutes a contribution, the primary goal has been
to enable empirical study of the architectural qualities resulting from the chosen
approaches. Therefore, three major iterations of the scenario have been built by a
team of developers, to allow comparative empirical analysis. Empirical analysis of
these or comparable approaches is rare, and comparative analysis has not been done
before at all. Moreover, the iterative improvement of the approaches has also led to
some novel refinements and generalizations.

10.1. Communication for Coordination

Regarding the first aspect, communication for coordination, the task-oriented ap-
proach to coordination has been used as a basis. In this, a combination of an abstract
state-machine and task-specific representations is used. The suggested advantage of
this approach, a unified treatment of functionally different components, has been
demonstrated through multiple case studies.

While task-oriented coordination is only one of several proposed approaches,
through an analysis of the literature an important commonality with a number of
other coordination methods could be established: The use of an abstract state-
machine for communicating task execution progress. While the abstract nature of
the state-machine is often obscured by inconsistent naming, the actual use and histor-
ical progression towards more abstraction suggests a pattern. The identification and
formulation of this pattern, under the name “Abstract Task-State Pattern” forms
the core of contributions in this area.

Earlier realizations of this pattern usually placed the mapping between task-specific
states and the abstract state-machine in a dedicated coordination component. In this
thesis, it is suggested that placing it in the executing component instead can lead to
improved observability of task execution, and improved de-coupling on the system
level. This has been demonstrated through a case-study of the third iteration of

183

10. Conclusion

the “Curious Robot” where-in a new sub-system could be added, and its activity
coordinated with the earlier sub-systems, through the use of observation alone.

Finally for this area, a toolkit-based implementation of the pattern has been ex-
plored, which could be shown to reduce implementation effort and reduce component
complexity.

Outlook

Throughout the work presented, the Task-State-Pattern has emerged as a simplifying
and reusable building block for system construction. Part of this success is due to
the flexibility afforded by a replaceable life-cycle, which allows tailoring a toolkit to
the system at hand. However, it is still unclear whether this flexibility is needed in
full, or whether the same simplicity with room for growth could also be had from
one, fully generic life-cycle. A potential drawback would be complexity, an advantage
increased commonality.

One promising avenue to explore this question would be to apply the approach
in systems of a different structure. The present system has derived many of its
requirements from the tightly integrated Human-Robot-Interaction, so it might be
insightful to explore tele-operated or fully-autonomous systems instead.

A different avenue of development would be exploring the integration of the pattern
into communications middleware. It has increasingly become clear that it performs
a similar function, but also that it derives part of its ability to simplify from having
more domain knowledge available (in the form of the life-cycle). Therefore, keep-
ing this advantage while moving to deeper layers would probably be an insightful
challenge.

In the other direction, research on the pattern has so far side-stepped high-level
coordination, such as hierarchical dependency structures. This is intentional – the
pattern should be able to be used with several different coordination structures. How-
ever, it certainly has the consequence that even simple constructs, such as sequential
or parallel execution, are not yet covered. As one of the goals of the pattern is to
make transition to a full coordination package easier, it might be useful to explore
whether providing simple combinations of patterns within the toolkit might facilitate
“moving up” to more complex coordination approaches.

10.2. Rapid Component Composition

Regarding the second aspect, rapid component composition, the data-flow method of
constructing components from a graph of smaller constituent nodes has been chosen
as the base method. Due to the explicit connection model and externally specified
node configuration, it lends itself well to rapid composition and change, and nodes are
a potentially good level for reusing functionality. It was not clear, however, whether
the approach is suitable for all kinds of components, as it has so far been primarily
used in specialized domains such as signal processing.

184

10.2. Rapid Component Composition

Therefore, this thesis has explored the use of data-flow based component construc-
tion for components typical of robotic software systems. Through empirical analysis
of the size and complexity of constructed graphs, it could be shown the that the
approach is ideally suited for transformation-heavy components, such as data fusion.

Moreover, it was found that while data-flow is generally applicable also for im-
plementing protocol driver implementations, such as those used for serial control
of micro-controller-based robots, its suitability differs depending on the structure
of the protocol. In particular, for protocols where global state must be maintained,
data-flow construction appears to be less well suited and it has been suggested that a
combination with an explicit state-tracking mechanism would be useful, which would
leave the area of pure data-flow.

Classically, data-flow has been used at different levels of granularity, with a trade-
off between the complexity of the structure and the re-usability of individual nodes.
In general, re-use has an identification and learning cost that must be weighed against
the size of the functionality gained. This favors larger nodes. An opposing force
is that smaller nodes tend to incorporate fewer assumptions, which improves their
transferability. To address this, the filter-transform-select principle has been pro-
posed. It generally distinguishes filtering nodes (which incorporate decisions) from
transformation nodes. Furthermore, to improve predictability of graph execution,
it distinguishes filter nodes, which determine whether processing occurs at all, from
selection nodes, which choose between alternative paths. By applying this principle
at the highest level of a node, the node granularity can be decided.

Regarding the original goals of improved re-use and changeability, it has been
found that the data-flow model can produce generic nodes which lend themselves
well to re-use. Structural changes were also found to be possible on the model
alone, e.g. to change resource-access models for hardware control, while keeping the
protocol itself stable, or to add optional visualization to existing transformation-
oriented components.

Outlook

There is both considerable existing work on component composition, as well as on-
going work into model-driven approaches, which has direct relations to the data-flow
oriented component composition approach. One clear candidate for further work is
on higher-level abstractions and domain-specific languages: The latter, in particular,
are already being explored and promising early results are available. While they
can already be translated to the regular graph specification, this would not result
in a higher-level view. Thus, appropriate visualizations must be found. Further,
work to combine the approach with Harel statecharts is ongoing, thus improving the
representation of state in a principled way.

One looming issue in using data-flow with the various process models is a potential
explosion of complexity: There is a reason why such approaches are not yet popular
for general purpose applications and while the current implementation has been
deliberately limited to a well understood model, care must be taken not to increase

185

10. Conclusion

the complexity in the quest for more power. Therefore, similar to the way the present
work has suggested a novel decomposition strategy, potential future work might lie
in providing strategies to reduce and/or manage this complexity.

10.3. Integration in an HRI scenario

The present thesis considers the primary value of an architecture to be to facilitate
system construction and maintenance in a team. Accordingly, all of the studies
presented have been taken from successive iterations of a fully integrated system, the
“Curious Robot”. The advantages shown during these studies are all architecturally
related, and have demonstrated that the proposed principles can achieve the desired
loose coupling and separation of concerns.

Loose coupling, however, is only an achievement when combined with the necessary
functional integration. Here, the system has actually increased functional integration
beyond the state of the art in a consistent fashion.

Firstly, the integrated systems demonstrate a particularly high amount of func-
tional integration between the speech dialog and the acting components. This allows
the dialog component to provide detailed feedback throughout action execution, in a
generic manner based on the abstract task-states. Furthermore, the combination of
abstract and task-specific information in passively observable state notifications also
allows more specific verbal commentary, at a low coupling cost.

Secondly, placing the mapping from task-specific state to abstract state in the
server components has increased observability of overall system activities. This has
been demonstrated by adding a new sub-system solely based on observation.

A second goal has also been to improve team-based system construction, through
a guiding architecture. Here, it has been argued that the common task-state pattern
provides a re-usable and well-understood interaction pattern that reduces communi-
cation effort. By applying a common concept throughout the system, developer un-
derstanding is increased, and interfaces are simplified. This could also be supported
by demonstrating that a toolkit-based approach decreases effort and complexity for
server component developers.

Last, but certainly not least, the whole system has also been empirically tested
through user experiments. This primarily took the form of video studies, wherein
users judged the naturalness and understandability of the resulting interaction. As
a non-rigorous complement, a simplified version of the system has also been used
with great success by many naive users at a trade fair. This has demonstrated that
the general architectural concepts are sound, but more evaluation would certainly
be needed to draw more general conclusions regarding the Human-Robot-Interaction
concepts.

Outlook

The integrated system obviously poses many open questions, and evaluating the full
system in full user studies is a crucial next step, to validate the work done so far,

186

10.3. Integration in an HRI scenario

and identify open issues. Work on this is currently ongoing.
From an architectural point of view, the interplay between components beyond the

task-state pattern has already become more interesting. The over-arching question
here is how to push recurring structure into the architecture, e.g. supporting toolkits,
thus reducing the developers work, without constraining development too much.

Furthermore, the present author believes that empirical study of existing systems is
crucial for gaining more insight into which approaches really are beneficial, and which
are not. However, such empirical research is often hampered by a lack of tools, and a
lack of comparability. Promising developments in this direction are the emergence of
common robot software frameworks, such as OpenRTM1, ROS2, Yarp3, and others.
These provide at least a common communications infrastructure. Analysis of the
interactions within these systems is still very hard, however, due to the required
detailed knowledge of the components at hand. For one of the frameworks (ROS),
the task-state pattern is already being used, and ongoing work has examined the
applicability of analysis based on the pattern alone, to elucidate system dynamics,
with promising first results. Broadening this approach to the other frameworks would
therefore be one ingredient in improving cross-system comparability that the present
author intends to explore.

1http://www.openrtm.org/
2http://www.ros.org/
3http://eris.liralab.it/yarp/

187

http://www.openrtm.org/
http://www.ros.org/
http://eris.liralab.it/yarp/

A. Software Metrics

A.1. Metrics vs. Case Studies

As Basili et al have pointed out early on, many issues of interest for software en-
gineering, such as the benefit of a certain development technique or practice, are
comparatively more expensive to determine manually, because long observation of
human activity is required. Furthermore, the observation may disturb the process1,
thus shedding doubts on its validity. Therefore, metrics represent the attempt to cre-
ate automatable measures that correspond to these issues (Basili and Reiter, 1979).

That the metrics do, in fact, correspond to the issues of interest is a matter of
intense debate and, to this day, considerable research activity in the field of software
engineering. The predictive power of metrics has been particularly criticized and it
can probably be said that many metrics do not have as much predictive power as
was hoped for, particularly when taken beyond their original context.

A well-studied example of use out of context is McCabe’s Cyclomatic Com-
plexity (McCabe, 1976), which counts the number of independent execution paths
through a procedure. His formulation of the metric exactly corresponds to the num-
ber of distinct tests that must be created to exercise all paths, that is, it measures
test effort. However, it also corresponds, albeit not as exactly, to the control flow
complexity and further correlates fairly strongly with overall length. Length of the
code, in turn, is known to be a weak predictor for defect density, so the idea that
McCabe complexity might be a better predictor for defects was fairly obvious. After
all, it measures not just length but also independent paths. However, this could not
be shown and on the contrary, the available evidence indicates that it has weaker
correlation with defect density than length of code (Shepperd, 1988; Fenton and Neil,
1999).

In this thesis, the metrics are always embedded in case studies and thus presented
in context. Moreover, they have only been used for comparison, not for prediction.
The concrete metrics used are now shortly summarized

Chidamber and Kemerer Object-Oriented Metrics

Chidamber and Kemerer’s metrics were the first metrics to be proposed directly for
object-oriented development. Like all metrics, their relevance to practical concerns
is not without criticism, but both analytical and empirical evidence provide some
support for their claims (Chidamber and Kemerer, 1994; Basili et al., 1996).

1Known as the “Hawthorne” effect, after (Endres and Rombach, 2003, p.232).

189

A. Software Metrics

These metrics are concerned with coupling and cohesion properties, which are
widely believed to have an impact on the maintainability of software. Six different
metrics are proposed, with all of them computed per class:

1. WMC: Weighted Methods per Class. Enumerate the methods of a class as
M1, ...,Mn and let c1, ..., cn be the methods’ complexity (thus their weight).
Then WMC is simply the sum of all ci.

The weighting method to be used is left unspecified by Chidamber and Kemerer,
to allow different classical complexity measures (or just 1, for a method count).
Therefore, the metric is only comparable between tools with the same settings.

2. DIT: Depth of Inheritance Tree. This metric counts the number of superclasses
of a class. In cases of multiple inheritance, the maximum of the path lengths
is used.

3. NOC: Number Of Children. The number of immediate subclasses.

4. CBO: Coupling Between Object classes. The number of other classes that are
coupled to the class in question. Two classes are coupled when methods of one
class use methods or attributes defined by the other class.

5. RFC: Response For a Class. An unintuitively named metric, RFC is equal to
the size of the “response set”, which is defined as the “set of methods that
can potentially be executed in response of a message received by an object of
that class”. This explanation is slightly ambiguous because obviously, methods
executed may themselves execute other methods (including those of the original
class) and it is not clear whether these methods would also contribute to the
count.

Fortunately Chidamber and Kemerer also provide a more formal definition,
as follows. When {M} is the set of methods of the class and {Ri} is the
set of methods called by method i, then the response set is defined as RS =
{M} ∪alli {Ri}. From this definition, we can discern that only the methods
called directly from a method of the class are to be included in the count.

One last item of note regarding the RFC metric is that it explicitly considers
only “methods” called. In languages such as C++, which have both object
methods and non-object functions, the latter may be excluded and this is ap-
parently what Chidamber and Kemerer themselves have done (Chidamber and
Kemerer, 1994, footnote 27). However, it could certainly be argued that func-
tions also introduce external coupling and should therefore be included in the
count.

6. LCOM: Lack of COhesion in Methods. For the methods M1, ...,Mn of a class,
let {Ii} be the set of instance variables used by method Mi. Now consider all
possible pairs of sets and let P = {(Ij , Ij)|Ii ∩ Ij = 0}, be the pairs which have

190

A.1. Metrics vs. Case Studies

an empty intersection, and Q = {(Ij , Ij)|Ii ∩ Ij 6= 0} be the pairs with non-
empty intersections. Then LCOM = |P |− |Q| if |P | > |Q| and 0 otherwise. In
other words, this subtracts the number of pairs which share access to at least
one instance variable from those pairs which do not share anything.

Some of these metrics may appear skewed – for example, the LCOM metric is very
sensitive to the number of methods. Due to the number of pairs being of the order
O(n2), classes with many methods often have much larger LCOM values than classes
with few methods, even when they have more methods that are cohesive in relative
terms. Arguably, though, classes with many methods can be more difficult to grasp
mentally, so a lack of cohesiveness may actually be worse in them and this would
validate the way the LCOM metric is computed.

That said, the primary value of these metrics is irrespective of their absolute values:
They can be used to quantify changes in cohesion and coupling.

Churcher and Sheppherd (Churcher et al., 2002) note that derived measures, such
as Chidamber and Kemerers metrics, require precise definitions of underlying metrics
such as the number of methods in a class.

A.1.1. Tools Used

To compute the source-code metrics, three tools have been used:

• Chidamber Kemerer Java Metrics (CKJM) (Spinellis, 2007) computes Chi-
damber and Kemerer Metrics for Java software. It works on Java bytecode
and can thus be used for all Java programs used, regardless of whether source
code is available or not. CKJM computes the WMC metric using 1 for all
methods and the DIT metric is only accurate when all required JAR-files are
on the class-path. In addition to the classical CK metrics, it also computes two
additional but similar metrics:

– Ce: efferent Coupling. Ce is the inverse of CBO, i.e. it measures outside
references to a class

– NPM: number of public methods. In contrast to WMC, this metric counts
public methods only.

• sloccount (Wheeler, 2004) SLOCCount, for Source Lines of Code Count, deter-
mines the number of actual source lines, ignoring comments, empty lines, etc.
It supports all languages in use in the present system.

• Dependency Finder (Tessier, 2009) is a suite of tools for analysis of Java pro-
grams. It offers a range of interesting functionality, including metrics, but in
this thesis, it was used merely to trace dependencies and output them as XML
for further analysis. The produced dependency information is on the method-
level, i.e. for each method in the class-files analyzed, it produces a list of
methods called and the classes they belong to. As all the naming information
is present in string form, it is easy to post-process this information to compute
all dependencies going to a particular package, for example.

191

B. Full Example Frames from Interaction

This appendix contains example frames from interaction sequences at larger size than
possible within the main text. Several of these images are composited from video
and application screen-shots.

B.1. “What is That?” Sequence

Figure B.1.: “What is that?”

193

B. Full Example Frames from Interaction

Figure B.2.: “That is a banana”

194

B.1. “What is That?” Sequence

Figure B.3.: “Banana, OK.”

195

B. Full Example Frames from Interaction

Figure B.4.: “How do I grasp that?”

196

B.1. “What is That?” Sequence

Figure B.5.: “With the power grasp”

197

B. Full Example Frames from Interaction

Figure B.6.: “I start grasping now”

198

C. Graph and Document Examples

C.1. Graph Specification Language

C.1.1. Document Type Definition

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <!−−
3 Copyright 2008, 2009 Bielefeld University
4 Copyright 2008, 2009 Ingo Luetkebohle <ingo@fargonauten.de>
5
6 This program is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, version 3.
9

10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
17 −−>
18
19 <!−−
20 TODO define vocabulary identification data
21 PUBLIC ID : −//vendor//vocabulary//EN
22 SYSTEM ID : http://server/path/ NAME
23 −−>
24
25 <!ELEMENT ROOT ANY>
26 <!ATTLIST ROOT version CDATA #REQUIRED>
27 <!ELEMENT model (node∗ | select∗ | fuse∗ | sync∗ | mark∗ |CDATA∗)∗>
28 <!ELEMENT node (arg∗)>
29 <!ATTLIST node
30 type CDATA #REQUIRED
31 name ID #IMPLIED
32 source CDATA #IMPLIED
33 >

199

C. Graph and Document Examples

34 <!ELEMENT arg ANY>
35 <!ATTLIST arg
36 type CDATA #REQUIRED
37 name CDATA #IMPLIED
38 >
39 <!ELEMENT select (target+)>
40 <!ATTLIST select
41 source CDATA #IMPLIED
42 selectMax CDATA ”1”
43 >
44 <!ELEMENT target (filter, node+)>
45 <!ELEMENT filter (arg∗)>
46 <!ATTLIST filter
47 type CDATA #REQUIRED
48 >
49 <!ELEMENT fuse EMPTY>
50 <!ATTLIST fuse
51 sources CDATA #REQUIRED
52 names CDATA #IMPLIED
53 useOnceOnly (true|false) ”true”
54 checkComplete (true|false) ”true”
55 required CDATA #IMPLIED
56 >
57 <!ELEMENT sync EMPTY>
58 <!ATTLIST sync
59 source CDATA #REQUIRED
60 name CDATA #IMPLIED
61 label CDATA #REQUIRED
62 type CDATA #REQUIRED
63 point CDATA #REQUIRED
64 >
65 <!ELEMENT mark EMPTY>
66 <!ATTLIST mark
67 type CDATA #REQUIRED
68 nodeName CDATA #REQUIRED
69 >

C.2. Example graph specifications

C.2.1. Curiosity Generation Specification

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <model engine=”BreadthFirst”>
3 <!−− saliencies −−>

200

C.2. Example graph specifications

4 <node type=”MemorySource”>
5 <arg type=”StringChild”>ShortTerm</arg>
6 <arg type=”StringChild”>INSERT</arg>
7 <arg type=”StringChild”>/saliencies</arg>
8 </node>
9 <node type=”Event2Document”/>

10 <node type=”StaticUnpack”>
11 <arg type=”StringChild”>SalientPointArray</arg>
12 </node>
13 <node type=”NonEmptyArray”/>
14 <node type=”ResolutionScale”/>
15 <node name=”saliencies” type=”Array2List”/>
16
17 <!−− handle reset −−>
18 <node source=”null” type=”MemorySource”>
19 <arg type=”StringChild”>ShortTerm</arg>
20 <arg type=”StringChild”>INSERT</arg>
21 <arg type=”StringChild”>/SYSTEMRESET</arg>
22 </node>
23 <node name=”gripClear” type=”ListClear”/>
24
25 <!−− remember information on learned grips −−>
26 <node source=”null” type=”MemorySource”>
27 <arg type=”StringChild”>ShortTerm</arg>
28 <arg type=”StringChild”>REPLACE</arg>
29 <arg

type=”StringChild”>/InteractionRegion/STATUS[@value=”completed”]</arg>
30 </node>
31 <node type=”Event2Document”/>
32 <node name=”gripAdd” type=”ListAdd”/>
33 <node source=”gripAdd,gripClear” name=”gripList” type=”ListCollector”/>
34
35 <!−− regionlist −−>
36 <node source=”null” type=”MemorySource”>
37 <arg type=”StringChild”>ShortTerm</arg>
38 <arg type=”StringChild”>INSERT</arg>
39 <arg type=”StringChild”>/RegionList[not(InteractionGoal)]</arg>
40 </node>
41 <node name=”regiondoc” type=”Event2Document”/>
42 <node type=”StaticUnpack”>
43 <arg type=”StringChild”>ObjectRegionArray</arg>
44 </node>
45 <node type=”NonEmptyArray”/>
46 <node name=”objectregions” type=”Array2List”/>

201

C. Graph and Document Examples

47
48 <!−− rank regions −−>
49 <fuse sources=”saliencies,objectregions”
50 names=”regions.saliency,regions.objects”
51 useOnceOnly=”false” checkComplete=”true”/>
52 <node type=”RegionInfoRank”/>
53 <node type=”PeriodicFilter”>
54 <arg type=”Integer”>500</arg>
55 </node>
56
57 <!−− start xml based steps −−>
58 <node name=”InteractionRegion” type=”Pack”>
59 <arg type=”StringChild”>ObjectRegion</arg>
60 <arg type=”StringChild”>InteractionRegion</arg>
61 </node>
62
63 <!−− fuse prior information −−>
64 <fuse sources=”InteractionRegion,gripList”

names=”fuse.target,fuse.background”
65 useOnceOnly=”false” checkComplete=”false”/>
66 <node type=”CompareAndFuse”>
67 <arg

type=”XPath”>/InteractionRegion/Region/Object/@detectorLabel</arg>
68 <arg type=”XPath”>/InteractionRegion/Region/Object/Grip</arg>
69 <arg type=”XPath”>/InteractionRegion/Region/Object</arg>
70 </node>
71
72 <node type=”XPathFilter”><arg

type=”StringChild”>not(/InteractionRegion/STATUS)</arg></node>
73 <node type=”XPathTransformSingle”><arg

type=”StringChild”>/∗</arg></node>
74 <node name=”interestregion” type=”AddChildElement”>
75 <arg type=”StringChild”>InteractionGoal</arg>
76 </node>
77
78 <!−− select next action −−>
79 <select name=”actionSelection” selectMax=”1”>
80 <target>
81 <filter type=”XPathFilter”>
82 <arg

type=”StringChild”>/InteractionRegion/Region/Object/Grip[@type
!= ”unknown”]</arg>

83 </filter>
84 <node type=”SetStaticAttribute”>

202

C.2. Example graph specifications

85 <arg type=”StringChild”>type</arg>
86 <arg type=”StringChild”>grasp</arg>
87 </node>
88 </target>
89 <target>
90 <filter type=”XPathFilter”>
91 <arg type=”StringChild”>/InteractionRegion/Region/Object[@userLabel

or @detectorLabel][not(Grip)]</arg>
92 </filter>
93 <node type=”SetStaticAttribute”>
94 <arg type=”StringChild”>type</arg>
95 <arg type=”StringChild”>grip</arg>
96 </node>
97 </target>
98 <target>
99 <filter type=”XPathFilter”>

100 <arg type=”StringChild”>/InteractionRegion/Region/Object[@userLabel
or @detectorLabel]/Grip[@type = ”unknown”]</arg>

101 </filter>
102 <node type=”SetStaticAttribute”>
103 <arg type=”StringChild”>type</arg>
104 <arg type=”StringChild”>grip</arg>
105 </node>
106 </target>
107 <target>
108 <filter type=”XPathFilter”>
109 <arg

type=”StringChild”>/InteractionRegion/Region[not(Object/@detectorLabel)
and not(Object/@userLabel)]</arg>

110 </filter>
111 <node type=”SetStaticAttribute”>
112 <arg type=”StringChild”>type</arg>
113 <arg type=”StringChild”>label</arg>
114 </node>
115 </target>
116 </select>
117
118 <!−− add timestamp −−>
119 <node type=”DocumentFromNode”/>
120 <node name=”target” type=”CurrentTime”/>
121 <node type=”DocumentSerializer”/>
122 <node type=”TextFrame”><arg

type=”StringChild”>InteractionGoal</arg></node>
123

203

C. Graph and Document Examples

124 <!−− publish to memory −−>
125 <node source=”target” type=”Document2XOPData”/>
126 <node type=”TaskSubmission”>
127 <arg type=”StringChild”>ShortTerm</arg>
128 </node>
129
130
131 </model>

C.2.2. Selection Visualization

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <model>
3 <!−− saliencies −−>
4 <node type=”MemorySource”>
5 <arg type=”StringChild”>ShortTerm</arg>
6 <arg type=”StringChild”>INSERT</arg>
7 <arg type=”StringChild”>/saliencies</arg>
8 </node>
9 <node type=”Event2Document”/>

10 <node type=”StaticUnpack”>
11 <arg type=”StringChild”>SalientPointArray</arg>
12 </node>
13 <node type=”NonEmptyArray”/>
14 <node type=”ResolutionScale”/>
15 <node type=”SaliencyRegionColor”>
16 <arg type=”Color” r=”255” g=”0” b=”0” a=”150”/>
17 </node>
18 <node name=”saliencies” type=”Array2List”/>
19
20 <!−− regionlist −−>
21 <node source=”null” type=”MemorySource”>
22 <arg type=”StringChild”>ShortTerm</arg>
23 <arg type=”StringChild”>INSERT</arg>
24 <arg type=”StringChild”>/RegionList</arg>
25 </node>
26 <node name=”regiondoc” type=”Event2Document”/>
27 <node type=”StaticUnpack”>
28 <arg type=”StringChild”>ObjectRegionArray</arg>
29 </node>
30 <node type=”NonEmptyArray”/>
31 <node type=”SingleColorRegion”>
32 <arg type=”Color” r=”255” g=”255” b=”255” a=”100”/>
33 </node>

204

C.2. Example graph specifications

34 <node name=”objectregions” type=”Array2List”/>
35
36 <!−− interaction region −−>
37 <node source=”null” type=”MemorySource”>
38 <arg type=”StringChild”>ShortTerm</arg>
39 <arg type=”StringChild”>REPLACE</arg>
40 <arg type=”StringChild”>/InteractionRegion/STATUS[@value =

”accepted”]</arg>
41 </node>
42 <node type=”Event2Document”/>
43 <node type=”XPathTransformSingle”><arg

type=”XPath”>//Region</arg></node>
44 <node type=”StaticUnpack”>
45 <arg type=”StringChild”>ObjectRegion</arg>
46 </node>
47 <node type=”ColorRegion”>
48 <arg type=”Color” r=”0” g=”255” b=”0” a=”128”/>
49 </node>
50 <node name=”interactionregion” type=”SingletonList”/>
51
52 <!−− put saliencies and regionlist together −−>
53 <fuse sources=”saliencies,objectregions,interactionregion”
54 useOnceOnly=”true” required=”saliencies,objectregions”/>
55 <node name=”regions” type=”ConcatLists”/>
56
57 <!−− get base image −−>
58 <node source=”null” type=”Subscriber”>
59 <arg type=”StringChild”>InputImage</arg>
60 <arg type=”Boolean”>true</arg>
61 </node>
62 <node type=”SingleAttachmentTransform”>
63 <arg type=”StringChild”>image</arg>
64 </node>
65 <node type=”ImageDecoder”/>
66 <node name=”image” type=”Raw2BufferedImage”/>
67
68 <node type=”ImageDimensionChangedFilter”/>
69 <node name=”panel” type=”PanelForImage”/>
70 <node type=”SinglePanelFrame”>
71 <arg type=”StringChild”>Regions</arg>
72 </node>
73
74 <!−− fuse inputs −−>
75 <fuse sources=”panel,regions,image”

205

C. Graph and Document Examples

76 names=”display.panel,display.regions,display.image”
77 useOnceOnly=”false” checkComplete=”true”
78 />
79 <node type=”PeriodicFilter”><arg type=”Integer”>100</arg></node>
80
81 <node type=”StatelessAugmentedDisplay”></node>
82
83 </model>

C.3. Example graph visualizations

C.4. Data format examples

C.4.1. Saliency computation output

1 <saliencies width=”40” height=”30” img number=”1234”>
2 <point>
3 <coord ref=”image” kind=”relative” x=”0.125” y=”0.1”/>
4 <coord ref=”image” kind=”absolute” unit=”px” x=”5” y=”3”/>
5 <saliency saliency=”123456” colorV=”100” intensityV=”50”

orientationV=”10”/>
6 </point>
7 </saliencies>

C.4.2. Object detector output

1 <RegionList imageWidth=”640” imageHeight=”480”>
2 <TIMESTAMP>
3 <INSERTED value=”1211204126474”/>
4 <UPDATED value=”1211204126702”/> required?
5 </TIMESTAMP>
6
7 <Region varianceFirstMajorAxis=”434” varianceSecondMajorAxis=”433”

pixelCount=”4384”>
8 <Object detectorLabel=”apple” confidence=”0.87”/>
9 <coord ref=”image” kind=”relative” x=”” y=”” width=”0.4” height=”0.8”

majorAxisAngle=”90”/>
10 <coord ref=”image” kind=”absolute” unit=”px” x=”” y=”” width=”0.4”

height=”0.8” majorAxisAngle=”90”/>
11 <coord ref=”world” kind=”absolute” unit=”cm” x=”” y=”” z=””

width=”0.4” height=”0.8” majorAxisAngle=”90”/>
12 </Region>
13
14 <!−− further regions −−>
15 <Region>

206

C.4. Data format examples

16 ...
17 </Region>
18 </RegionList>

C.4.3. Interaction region

1 <InteractionRegion>
2 <TIMESTAMP>
3 <INSERTED value=”192835719357”/>
4 <UPDATED value=”012347912475”/>
5 </TIMESTAMP>
6 <Region varianceFirstMajorAxis=”434” varianceSecondMajorAxis=”433”

pixelCount=”4384”>
7 <coord ref=”image” kind=”relative” x=”” y=”” width=”0.4” height=”0.8”

majorAxisAngle=”90”/>
8 <coord ref=”image” kind=”absolute” unit=”px” x=”” y=”” width=”0.4”

height=”0.8” majorAxisAngle=”90”/>
9 <coord ref=”world” kind=”absolute” unit=”cm” x=”” y=”” z=””

width=”0.4” height=”0.8” majorAxisAngle=”90”/>
10 <saliency saliency=”” colorV=”” intensityV=”” orientationV=””/>
11 <Object detectorLabel=”apple” userLabel=”banana”>
12 <Grip type=”TwoFingerSpecial” quality=”1”/>
13 </Object>
14 </Region>
15 <InteractionGoal type=”label|grip|grasp”/>
16 <STATUS value=”initiated|accepted|completed”/>
17 <IMAGE uri=”imageName”/>
18 <TIMESTAMPS/>
19 ...
20 </IMAGE>
21 </InteractionRegion>

207

D. Protocol Specifications

D.1. MABOTIC iModule Command Specification

209

E. Video Study Material

E.1. Questionnaire for the video study

LimeSurvey https://projects.ai.techfak.uni-bielefeld.de/limesurvey/a...

1 von 2 14.08.2008 17:50

Curious Robot Videostudie 2009

Background

1: Alter?
Please write your answer here:

2: Geschlecht
Please choose *only one* of the following:

Female

Male

3: Studiengang
Please write your answer here:

4: Erfahrung mit Robotern?
Please choose *only one* of the following:

sehr viel

viel

durchschnitt

wenig

keine

Studienbegleitend

* 1-1: Was würden Sie mir diesem System tun?
Please write your answer here:

* 1-2: Was würden Sie tun?
Please write your answer(s) here:
Es geht darum, den Tisch aufzuräumen:

Nach erster Frage:

Nach zweiter Frage:

Nach "wie bitte"?:

vor erster Korrektur:

Vor zweiter Korrektur ("Zeigen ins Leere"):

* 1-3: Was fällt Ihnen an der Interaktion auf bezüglich
Please write your answer(s) here:
Reaktionsgeschwindigkeit des Roboters:

Rückmeldung, wenn etwas nicht verstanden wurde:

211

E. Video Study Material

LimeSurvey https://projects.ai.techfak.uni-bielefeld.de/limesurvey/a...

2 von 2 14.08.2008 17:50

trifft
voll
zu

trifft
eher
zu teil/teils

trifft
weniger

zu

trifft
nicht
zu

Die Sprachausgabe war
akustisch gut verständlich
Ich wusste stets, wonach
gefragt wurde
Die Rückmeldungen waren
passend
Es war gut erkennbar,
worauf der Roboter gezeigt
hat
Ich hätte mich auch so
verhalten, wie die Person
im Video
Das System hat durch die
Instruktion des Menschen
etwas gelernt
Das System hat versucht zu
tun, was der Mensch von
ihm wollte.
Das System hat erreicht,
was der Mensch von ihm
wollte

Reaktion des Roboters auf neue Situationen:

Bewertung

* 2-1: Wie beurteilen Sie das gesehene System?
Please choose the appropriate response for each item:

2-2: Was hätten Sie anders gemacht?
Please write your answer here:

2-3: Was glauben Sie, hat das System gelernt?
Please write your answer here:

10: Was hat Ihnen gut gefallen, was nicht?
Please write your answer here:

Submit Your Survey.
Thank you for completing this survey..

212

E.1. Questionnaire for the video study

E.1.1. Translation of questionnaire

In the following, all text except for the emphasized text is a literal translation of the
questionnaire. The emphasized text contains notes.

Background

1. Age

2. Gender

3. Course of study

4. Experience with robots (very much, much, average, little, none)

Study log

1. What would you do with this system?

2. What would you do now? (cf. table 9.1 for timing)

3. Was did you notice in the interaction regarding...

• reaction time of the robot

• response when something has not been understood

• reaction of the robot to new situations

Judgements

1. How would you judge the system you just saw regarding...

• The speech output was acoustically well intelligible.

• I always knew what was being asked for.

• The responses were appropriate.

• It was well discernible where the robot pointed.

• I would have reacted the same way as the person in the video.

• The system has learned something through the instruction of the human.

• The system has tried to do what the human wanted.

• The system has achieved what the human wanted.

Responses: Five point Likert scale (fully agree, partially agree, mixed, partially
disagree, fully disagree)

2. What would you have done differently?

3. What do you think did the system?

4. What did you like, what not?

213

E. Video Study Material

E.2. Transcription of subject recordings

E.2.1. Responses to free questions (German)

Responses are given exactly as the subjects wrote them down, one bullet point per
subject. Note that not all subjects provided answers to all questions.

English translations are provided in the following section.

“Was hätten Sie anders gemacht?”

• Ich hätte mehr gestikuliert

• farbliche Unterscheidung zw. gleichen Gegenständen

• Beispiel “Nichts” → ich: Was siehst du? (mehr Versuch und Irrtum)

• Nur Stichworte, keine Sätze

• Ich hätte nicht “halt” gesagt, sondern “versuch es noch einmal”

• Farben von gleichen Objekten eingebracht

• Anweisungen in Details vorgeben

• Benennung der Griffe; keinen Neustart nach Fehlversuch; neuen Befehl gleich
bei Fehlversuchen

“Was glauben Sie, hat das System gelernt?”

• bessere Anpassung der Hand an die Form (lang+rund)

• Griffweisen bzgl. unterschiedlicher Gegestände

• Griff ↔ Gegenstand

• Handgriffe passend zu Gegenstand zu nutzen

• welche Frucht mit welchem Griff zu tragen ist!

• Zuordnung Obstart ↔ Griff

• Greifen von verschiedenen Objekten, Objekte bestimmen, Unterschied zwis-
chen Banane + Apfel

• Versch. Obstsorten (Formen)

• Bewegung von Dingen, Zugreifen und an andere Stelle legen

• Bezeichnung der Gegenstände, Motorik zum Greifen der Gegenstände

214

E.2. Transcription of subject recordings

“Was hat Ihnen gut gefallen, was nicht?”

• Ungewöhnlich war die “Ruhestellung” der Hand mit ausgestreckten Fingern,
d.h. Als VP wäre ich vielleicht etwas verwirrt, ob der Roboter noch etwas von
mir will, oder nicht

• Gut: gute Reaktion des Roboters (Wahl der Sprache und Ausdruck) Weniger
gut: teilweise eher lange Phasen, ehe die nächste Reaktion erfolgte

• Gut: Umgang mit Roboter mi einfacher Sprache Bestätigung des Instru-
ierenden wiederholt Schlecht: Kein Feedback was der Roboter wahrnimmt
bzw. “denkt” -gute Spracherkennung -Roboterarme erstaunlich wendig und
“gefühlvoll” (hat das Obst nicht zerquetscht)

• das System ist sehr langsam! Der mechanische Aufbau der Hand ist sehr gut!

• Gute Stimme, gute Mechanik

• Einen Roboter mit Gesicht darzustellen- Hände zu kopieren+ Versuchsaufbau
wurde geändert-

• Beeindrucken, wie ein Roboter agiert+ Nichterkennen der Nuss-

• Die technische Umsetzung zu beobachten sowie das Zusammenspiel von Mensch
+ Roboter -

• Reaktionen auf Sprache - Formulierungen sind zu “technisch”

E.2.2. Responses to free questions (English)

This is the literal translation of the original German responses from the previous
section.

“What would you have done differently?”

• I would have gesticulated more

• color differences between same objects

• Example “Nothing” → I: what do you see (more trial and error)

• only keywords, no sentences

• I wouldn’t have said “halt” but “try again”

• color of same objects introduced

• Describe commands in detail

• Names of the grips; no restart after error; immediately new command on errors

215

E. Video Study Material

“What do you think the system has learned?”

• better adaptation of the hand to the form (long+round)

• grip types regarding different objects

• grip ↔ object

• use of hand grip types appropriate for object

• which fruit is picked up with which grip

• Mapping fruit type ↔ grip

• gripping of different objects, discern objects, difference between banana and
apple

• different types of fruit (shapes)

• motion of objects, grasping and putting at another place

• names of the objects, motor control for gripping of objects

“What did you like, what not?”

• the “rest position” of the hand was unconventional with extended fingers; that
means, as a subject I might have been confused whether the robot still wants
something from me or not

• good: good reaction of the robot (choice of speech and expression) not so good:
partially somewhat long pauses before the next reaction

• good: interaction with robot with simple speech, feedback of the instructor,
bad: no feedback what the robot perceives or “thinks”. good speech recogni-
tion. robot arms surprisingly agile and “feeling” (didn’t crush the fruit)

• the system is very slow! the mechanical construction of the hand is very good!

• good voice, good mechanical construction

• bad: showing a robot with a voice; good: copying hands; bad: experimental
setting was changed

• good: impressive how a robot works; bad: not recognizing the nut

• good: seeing the technical realization and the interplay between human and
robot

• reaction to speech: expressions are too “technical”

216

Bibliography

Corba notification service, version 1.1. Technical report, Object Management Group
(OMG), Inc, October 2004. 66

NAOqi Framework Overview, 2011. URL http://users.aldebaran-robotics.

com/docs/site_en/reddoc/framework/framework.html. Version 1.10.37 from
May the 30th, 2011. 9

Documentation - ROS Wiki, 2011. URL http://www.ros.org/wiki/. 8, 9

P. E. Agre. Hierarchy and history in simon’s ”architecture of complexity”. Journal
of the Learning Sciences, 12(3):413–426, 2003. doi: 10.1207/S15327809JLS1203 4.
38

J. S. Albus. RCS: a reference model architecture for intelligent control. Computer,
25(5):56–59, May 1992. ISSN 0018-9162. doi: 10.1109/2.144396. 7, 35

C. Alexander, S. Ishikawa, and M. Silverstein. Pattern Manual. Berkeley, Nov 1967.
45

C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language: Towns, Build-
ings, Construction. Oxford University Press, 1977. 45

J. E. Allen, C. I. Guinn, and E. Horvtz. Mixed-initiative interaction. IEEE Intelligent
Systems, 14(5):14–23, September 1999. ISSN 1094-7167. doi: 10.1109/5254.796083.
16

J. F. Allen. Mixed-initiative interaction. IEEE Intelligent Systems, 14(5):14–23,
1999. ISSN 1541-1672. doi: 10.1109/5254.796083. 83

A. Arasu, S. Babu, and J. Widom. The cql continuous query language: semantic
foundations and query execution. The VLDB Journal, 15(2):121–142, June 2006.
ISSN 1066-8888. doi: 10.1007/s00778-004-0147-z. 146

R. C. Arkin. Motor schema-based mobile robot navigation. The Interna-
tional Journal of Robotics Research, 8(4):92–112, August 1989. doi: 10.1177/
027836498900800406. 31

K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema. Devel-
oping applications using model-driven design environments. COMPUTER, 39(02):
33–40, 2006. doi: http://doi.ieeecomputersociety.org/10.1109/MC.2006.54. 109

217

http://users.aldebaran-robotics.com/docs/site_en/reddoc/framework/framework.html
http://users.aldebaran-robotics.com/docs/site_en/reddoc/framework/framework.html
http://www.ros.org/wiki/

Bibliography

D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E. Wise. A framework for event-based
software integration. ACM Trans. Softw. Eng. Methodol., 5(4):378–421, 1996. ISSN
1049-331X. doi: 10.1145/235321.235324. 105

V. R. Basili and R. W. Reiter. Evaluating automatable measures of software devel-
opment. In Workshop on Quantitative Software Models, pages 107–116, New York,
NY, October 1979. IEEE. 189

V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented design
metrics as quality indicators. Software Engineering, IEEE Transactions on, 22
(10):751–761, October 1996. ISSN 0098-5589. doi: 10.1109/32.544352. 189

V. Baskaran, M. Dalal, T. Estlin, C. Fry, R. Harris, M. Iatauro, A. Jónsson,
C. Pasareanu, R. Simmons, and V. Verma. Plan execution interchange language
(plexil) version 1.0. Technical report, NASA Ames Research Center / Jet Propul-
sion Laboratory / Carnegie Mellon University, 2007. 64

C. Bauckhage, G. A. Fink, J. Fritsch, N. Jungclaus, S. Kronenberg, F. Kummert,
F. Lömker, G. Sagerer, and S. Wachsmuth. Integrated perception for coopera-
tive human-machine interaction, volume 166 of Trends in Linguistics. Mouton de
Gruyter, March 2006. ISBN 311018897X. 175

K. Beck and W. Cunningham. Using Pattern Languages for Object-Oriented Pro-
grams. Technical Report CR-87-43, Tektronix, Inc, 1987. 45

G. A. Bekey. Autonomous Robots: From Biological Inspiration to Implementation
and Control. Intelligent Robotics and Autonomous Agents. The MIT Press, June
2005. ISBN 0262025787. URL http://www.amazon.com/exec/obidos/redirect?

tag=citeulike07-20&path=ASIN/0262025787. 17, 18

S. S. Bhattacharyya, C. Brooks, E. Cheong, J. Davis, M. Goel, B. Kienhuis, E. A.
Lee, J. Liu, X. Liu, L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay,
B. Vogel, W. Williams, Y. Xiong, Y. Zhao, and H. Zheng. Heterogeneous Concur-
rent Modeling and Design in Java: Introduction to Ptolemy II. Technical Report
UCB/ERL M05/21, EECS, Berkeley, CA, USA, July 2005. 37, 123

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot Programming by Demon-
stration, pages 1371+. Springer Verlag, Berlin / Heidelberg Germany, 2008. ISBN
978-3-540-23947-4. 13, 14

B. M. Blumberg. Old Tricks, New Dogs: Ethology and Interactive Creatures. PhD
thesis, Massachusetts Institute of Technology, 1996. 180

M. Boden. Autonomy: What is it? Biosystems, 91(2):305–308, February 2008. ISSN
03032647. doi: 10.1016/j.biosystems.2007.07.003. 18

B. W. Boehm. Software engineering economics. IEEE Transactions on Software
Engineering, SE-10(1):4–21, January 1984. ISSN 0098-5589. doi: 10.1109/TSE.
1984.5010193. 131

218

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262025787
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0262025787

Bibliography

R. P. Bonasso. Integrating reaction plans and layered competences through syn-
chronous control. In Proceedings of the Twelfth International Conference on Arti-
ficial Intelligence (IJCAI), pages 1225–1233, 1991. 8

O. Booij, B. Kröse, J. Peltason, T. Spexard, and M. Hanheide. Moving from aug-
mented to interactive mapping. In Robotics: Science and Systems Conference,
Zurich, 2008. 69, 181

C. Breazeal, G. Hoffman, and A. Lockerd. Teaching and working with robots as
a collaboration. In AAMAS ’04: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 1030–1037,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 1-58113-864-4. doi:
10.1109/AAMAS.2004.258. 16

C. Breazeal, A. Takashini, and T. Kobayashi. Social Robots that Interact with People,
pages 1349–1369. Springer Verlag, 2008. ISBN 978-3-540-23947-4. 13, 17

C. L. Breazeal. Designing Sociable Robots. The MIT Press, September 2004. ISBN
0262524317. 168

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. J. ACM, 31(3):560–599, July 1984. ISSN 0004-5411. doi:
10.1145/828.833. 110

R. Brooks. A robust layered control system for a mobile robot. Robotics and Au-
tomation, IEEE Journal of, 2(1):14–23, January 1986. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=1087032. 31, 108

R. A. Brooks. Intelligence without representation. Artif. Intell., 47(1-3):139–159,
January 1991. ISSN 0004-3702. doi: 10.1016/0004-3702(91)90053-M. 29

D. Brugali and M. E. Fayad. Distributed computing in robotics and automation.
Robotics and Automation, IEEE Transactions on, 18(4):409–420, December 2002.
doi: 10.1109/TRA.2002.802937. 32

D. Brugali and P. Scandurra. Component-based robotic engineering (part i) [tutorial].
Robotics & Automation Magazine, IEEE, 16(4):84–96, December 2009. doi: 10.
1109/MRA.2009.934837. 29

D. Brugali, A. Brooks, A. Cowley, C. Côté, A. Domı́nguez-Brito, D. Létourneau,
F. Michaud, and C. Schlegel. Trends in component-based robotics. In D. Brugali,
editor, Software Engineering for Experimental Robotics, volume 30 of Springer
Tracts in Advanced Robotics, chapter 8, pages 135–142. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-68949-2. doi: 10.1007/
978-3-540-68951-5 8. 29, 32

W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner,
and S. Thrun. Experiences with an interactive museum tour-guide robot. Artifi-
cialIntelligence, 114(1-2), 2000. 13

219

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087032
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087032

Bibliography

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns, volume 1 of Wiley Series
in Software Design Patterns. John Wiley & Sons, 1996. 45, 46

F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Architec-
ture: A Pattern Language for Distributed Computing, volume 4 of Wiley Series in
Software Design Patterns. John Wiley & Sons, 2007a. 45

F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Architec-
ture: On Patterns and Pattern Languages, volume 5 of Wiley Series in Software
Design Patterns. John Wiley & Sons, 2007b. 45

CAN. Road vehicles – Controller area network (CAN) – Part 1: Data link layer
and physical signalling. Standard ISO 11898-1:2003, International Organization
for Standardization (ISO), 2003. 145

S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, August 1994. ISSN
0098-5589. doi: 10.1109/32.295895. 189, 190

N. I. Churcher, M. J. Shepperd, S. Chidamber, and C. F. Kemerer. Comments on ” a
metrics suite for object oriented design”. Software Engineering, IEEE Transactions
on, 21(3):263–265, August 2002. doi: 10.1109/32.372153. 191

H. H. Clark and S. E. Brennan. Grounding in communication., pages 127–149. 1991.
ISBN 1557983763. 86

J. H. Connell. Sss: a hybrid architecture applied to robot navigation. In Robotics and
Automation, 1992. Proceedings., 1992 IEEE International Conference on, pages
2719–2724 vol.3, May 1992. doi: 10.1109/ROBOT.1992.219995. 31

C. Côté, Y. Brosseau, D. Létourneau, C. Räıevsky, and F. Michaud. Robotic software
integration using marie. International Journal of Advanced Robotic Systems, 3(1):
55–60, 2006. ISSN 1729-8806. 178

N. Dahlbäck, A. Jönsson, and L. Ahrenberg. Wizard of oz studies: why and how.
In IUI ’93: Proceedings of the 1st international conference on Intelligent user
interfaces, pages 193–200, New York, NY, USA, 1993. ACM. ISBN 0-89791-556-9.
doi: 10.1145/169891.169968. 150

A. Damasio. Descartes’ Error. G.P. Putnam, July 1994. ISBN 0399138943. 17

K. Dautenhahn. Getting to know each other – artificial social intelligence for au-
tonomous robots. Robotics and Autonomous Systems, 16:333–356, 1995. ISSN
0921-8890. 17

A. Demers, J. Gehrke, M. Hong, B. Panda, M. Riedewald, V. Sharma, and W. White.
Cayuga: A general purpose event monitoring system. In Conference on Innovative
Data Systems Research (CIDR), pages 412–422. VLDB, 2007. 146

220

Bibliography

B. Duffy. Anthropomorphism and the social robot. Robotics and Autonomous Sys-
tems, 42(3-4):177–190, March 2003. ISSN 09218890. doi: 10.1016/S0921-8890(02)
00374-3. 23

A. Endres and D. Rombach. Handbook of Software and Systems Engineering. Pearson
Education Ltd., 2003. ISBN 0-321-15420-7. 38, 189

T. Faison. Event-Based Programming: Taking Events to the Limit. Apress, 1 edition,
May 2006. ISBN 1590596439. 34

N. Fenton. Viewpoint article: Conducting and presenting empirical software engi-
neering. Empirical Software Engineering, 6(3):195–200, September 2001. ISSN
13823256. doi: 10.1023/A:1011449731678. 11

N. E. Fenton and M. Neil. A critique of software defect prediction models. IEEE
Trans. Softw. Eng., 25(5):675–689, August 1999. ISSN 0098-5589. doi: 10.1109/
32.815326. 189

G. Fink. Developing HMM-Based Recognizers with ESMERALDA. In V. Matousek,
P. Mautner, J. Oceĺıková, and P. Sojka, editors, Text, Speech and Dialogue, volume
1692 of Lecture Notes in Computer Science, chapter 42, page 843. Springer Berlin
Heidelberg, Berlin, Heidelberg, October 1999. ISBN 978-3-540-66494-9. doi: 10.
1007/3-540-48239-3 42. 154

G. A. Fink, J. Fritsch, S. Hohenner, M. Kleinehagenbrock, S. Lang, and G. Sagerer.
Towards multi-modal interaction with a mobile robot. Pattern Recognition and
Image Analysis, 14(2):173–184, 2004. 181

R. J. Firby. Task networks for controlling continuous processes. In In Proceed-
ings of the Second International Conference on AI Planning Systems, pages 49–
54, 1994. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.27.1223. 8, 28

P. Fitzpatrick, L. Natale, G. Metta, G. Spigler, A. Scalzo, A. van Rossum, D. Krieg,
A. Bernardino, A. Gijsberts, R. Detry, J. Gomes, Z. Ji, M. Castelnovi, F. Nori,
C. Beltran-Gonzalez, A. Mirza, U. Pattacini, M. Randazzo, J. Ruesch, M. P. Blow,
M. Brunettini, L. Olsson, G. Massera, F. Magnusson, E. Mislivec, P. Fitzpatick,
H. Kose-Bagci, and C. Castellini. Yet Another Robot Platform, 2011. URL http:

//eris.liralab.it/yarp/. Accessed on May 30th 2011. 9

T. Fong, I. Nourbakhsh, C. Kunz, L. Flückiger, J. Schreiner, R. Ambrose, R. Bur-
ridge, R. Simmons, L. M. Hiatt, A. Schultz, J. G. Trafton, M. Bugajska, and
J. Scholtz. The peer-to-peer human-robot interaction project. In In AIAA Space
2005, pages 2005–6750, 2005. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.72.9651. 176

221

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.1223
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.1223
http://eris.liralab.it/yarp/
http://eris.liralab.it/yarp/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.9651
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.9651

Bibliography

T. Fong, C. Kunz, L. M. Hiatt, and M. Bugajska. The human-robot interaction
operating system. In HRI ’06: Proceedings of the 1st ACM SIGCHI/SIGART
conference on Human-robot interaction, pages 41–48, New York, NY, USA, 2006a.
ACM. ISBN 1-59593-294-1. doi: 10.1145/1121241.1121251. 5, 176

T. Fong, J. Scholtz, J. A. Shah, L. Fluckiger, C. Kunz, D. Lees, J. Schreiner,
M. Siegel, L. M. Hiatt, I. Nourbakhsh, R. Simmons, R. Ambrose, R. Burridge,
B. Antonishek, M. Bugajska, A. Schultz, and J. G. Trafton. A preliminary study
of peer-to-peer human-robot interaction. In Systems, Man and Cybernetics, 2006.
SMC ’06. IEEE International Conference on, volume 4, pages 3198–3203, 2006b.
doi: 10.1109/ICSMC.2006.384609. 176, 177

M. E. Foster, M. Giuliani, A. Isard, C. Matheson, J. Oberlander, and A. Knoll.
Evaluating description and reference strategies in a cooperative human-robot dia-
logue system. In IJCAI’09: Proceedings of the 21st international jont conference
on Artifical intelligence, pages 1818–1823, San Francisco, CA, USA, 2009a. Mor-
gan Kaufmann Publishers Inc. URL http://portal.acm.org/citation.cfm?id=

1661737. 175, 176

M. E. Foster, M. Giuliani, and A. Knoll. Comparing objective and subjective mea-
sures of usability in a human-robot dialogue system. In Proceedings of the 47th
Annual Meeting of the Association for Computational Linguistics and the 4th Inter-
national Joint Conference on Natural Language Processing of the Asian Federation
of Natural Language Processing (ACL-IJCNLP 2009), Singapore, Aug. 2009b. 176

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, 1 edition, July 1999.
ISBN 0201485672. 138

G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabu-
lary problem in human-system communication. Commun. ACM, 30(11):964–971,
November 1987. ISSN 0001-0782. 13, 23

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994. 45, 52

E. R. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot, 2009. URL
http://www.graphviz.org/pdf/dotguide.pdf. 121

E. Gat. Three-layer architectures, pages 195–210. MIT Press, Cambridge, MA,
USA, 1998. ISBN 0-262-61137-6. URL http://portal.acm.org/citation.cfm?

id=292092.292130. 8, 31

R. Gockley, R. Simmons, J. Wang, D. Busquets, C. DiSalvo, K. Caffrey, S. Rosenthal,
J. Mink, S. Thomas, W. Adams, T. Lauducci, M. Bugajska, D. Perzanowski, and
A. Schultz. Grace and george: Social robots at aaai. Technical report, AAAI,
2004. 177, 178

222

http://portal.acm.org/citation.cfm?id=1661737
http://portal.acm.org/citation.cfm?id=1661737
http://www.graphviz.org/pdf/dotguide.pdf
http://portal.acm.org/citation.cfm?id=292092.292130
http://portal.acm.org/citation.cfm?id=292092.292130

Bibliography

M. A. Goodrich and A. C. Schultz. Human-robot interaction: a survey. Found.
Trends Hum.-Comput. Interact., 1(3):203–275, January 2007. ISSN 1551-3955.
doi: 10.1561/1100000005. 16

J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification,
The. Addison Wesley, 3rd edition, June 2005. ISBN 0321246780. URL http:

//java.sun.com/docs/books/jls/third_edition/html/j3TOC.html. 11, 117,
118

M. Hackel, S. Schwope, J. Fritsch, B. Wrede, and G. Sagerer. A humanoid robot plat-
form suitable for studying embodied interaction. In Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 56–61, Edmonton, Alberta, Canada, August
2005. IEEE, IEEE. 19, 139

M. Hanheide and G. Sagerer. Active memory-based interaction strategies for
learning-enabling behaviors. In International Symposium on Robot and Human
Interactive Communication (RO-MAN), Munich, 01/08/2008 2008. 16, 23, 60, 62,
69, 70, 149, 181

D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, June 1987. doi: 10.1016/0167-6423(87)90035-9. 108

D. Harel and A. Pnueli. On the development of reactive systems, pages 477–498.
Springer-Verlag New York, Inc., New York, NY, USA, 1985. ISBN 0-387-15181-8.
URL http://portal.acm.org/citation.cfm?id=101990. 107

I. Herman and M. Marshall. Graphxml — an xml-based graph description format.
In J. Marks, editor, Graph Drawing, volume 1984 of Lecture Notes in Computer
Science, chapter 6, pages 33–66. Springer Berlin Heidelberg, Berlin, Heidelberg,
May 2001. ISBN 978-3-540-41554-1. doi: 10.1007/3-540-44541-2 6. 121

M. Himsolt. Gml: A portable graph file format. Technical report, Universität Passau,
94030 Passau, Germany, 1999. URL http://www.infosun.fim.uni-passau.de/

Graphlet/GML/gml-tr.html. Accessed March 10th, 2010. 121

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–
677, August 1978. ISSN 0001-0782. doi: 10.1145/359576.359585. 110

R. Holt, A. Schürr, S. E. Sim, and A. Winter. Gxl - graph exchange language. Online,
July 2002. URL http://www.gupro.de/GXL/index.html. 121

S. Hüwel, B. Wrede, and G. Sagerer. Robust speech understanding for multi-modal
human-robot communication. In Proc. 15th Int. Symposium on Robot and Human
Interactive Communication, pages 45–50. IEEE Press, IEEE Press, 2006. 22, 154

H. Ishiguro, T. Ono, M. Imai, T. Maeda, T. Kanda, and R. Nakatsu. Robovie: an
interactive humanoid robot. Industrial Robot: An International Journal, pages
498–504, 2001. ISSN 0143-991X. doi: 10.1108/01439910110410051. 177, 179

223

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://portal.acm.org/citation.cfm?id=101990
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
http://www.gupro.de/GXL/index.html

Bibliography

R. E. Johnson and B. Foote. Designing Reusable Classes. IEEE Computer Society
Press, Los Alamitos, CA, USA, May 1991. ISBN 081868996X. 116

W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow programming
languages. ACM Comput. Surv., 36(1):1–34, March 2004. ISSN 0360-0300. doi:
10.1145/1013208.1013209. 8, 106, 138

G. Kahn and D. MacQueen. Coroutines and networks of parallel processes. In
B. Gilchrist, editor, Information Processing ’77: Proceedings of IFIP Congress,
pages 993–998, Amsterdam, The Netherlands, 1977. North-Holland Publishing
Co. 110

J. Karat, D. B. Horn, C. A. Halverson, and C. M. Karat. Overcoming unusability:
developing efficient strategies in speech recognition systems. In CHI ’00: CHI ’00
extended abstracts on Human factors in computing systems, pages 141–142, New
York, NY, USA, 2000. ACM. ISBN 1-58113-248-4. doi: 10.1145/633292.633372.
22

J. F. Kelley. An empirical methodology for writing user-friendly natural language
computer applications. In CHI ’83: Proceedings of the SIGCHI conference on
Human Factors in Computing Systems, pages 193–196, New York, NY, USA, 1983.
ACM. ISBN 0-89791-121-0. doi: 10.1145/800045.801609. 150

M. Kirchner and P. Jain. Pattern-Oriented Software Architecture: Patterns for Re-
source Management, volume 3 of Wiley Series in Software Design Patterns. John
Wiley & Sons, 2004. 45

A. Knoll, B. Hildenbrandt, and J. Zhang. Instructing cooperating assembly robots
through situated dialogues in natural language. In Robotics and Automation, 1997.
Proceedings., 1997 IEEE International Conference on, volume 1, apr 1997. doi:
10.1109/ROBOT.1997.620146. 174

D. Kortenkamp and R. Simmons. Robotic System Architectures and Programming,
chapter 8, pages 187–206. Springer-Verlag, 2008. 7, 27, 28, 31, 35

D. Kortenkamp, R. P. Bonasso, D. Ryan, and D. Schreckenghost. Traded control with
autonomous robots as mixed-initiative interaction. In AAAI Spring Symposium
SS-97-04, pages 89–94. AAAI, 1997. 16

D. Kortenkamp, R. P. Bonasso, and R. Murphy, editors. Artificial Intelligence and
Mobile Robots: Case Studies of Successful Robot Systems. AAAI Press, 1st edition,
March 1998. ISBN 0262611376. 6, 28

A. Kransted, A. Lücking, T. Pfeifer, H. Rieser, and I. Wachsmuth. Deictic object
references in task-oriented dialogue, volume 166 of Trends in Linguistics. Mouton
de Gruyter, March 2006. ISBN 311018897X. 175

224

Bibliography

G. J. Kruijff, J. D. Kelleher, G. Berginc, and A. Leonardis. Structural descriptions
in human-assisted robot visual learning. In HRI ’06: Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction, pages 343–344, New
York, NY, USA, 2006. ACM. ISBN 1-59593-294-1. doi: 10.1145/1121241.1121307.
16

D. Lea. The java.util.concurrent synchronizer framework. Sci. Comput. Program.,
58(3):293–309, Dec. 2005. ISSN 0167-6423. doi: 10.1016/j.scico.2005.03.007. 114

E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9), 1987. 8, 111

E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE, 83
(5):773–801, 1995. doi: 10.1109/5.381846. 8

D. R. Lefebvre and G. N. Saridis. A computer architecture for intelligent machines.
In Proceedings of IEEE International Conference on Robotics and Automation,
volume 3, pages 2745–2750, May 1992. doi: 10.1109/ROBOT.1992.219991. 6, 60,
61

S. Li. Multi-modal Interaction Management for a Robot Companion. Phd, Biele-
feld University, Bielefeld, 2007. URL http://bieson.ub.uni-bielefeld.de/

volltexte/2007/1174/pdf/diss.pdf. 86

S. Li, M. Kleinehagenbrock, J. Fritsch, B. Wrede, and G. Sagerer. “biron, let me
show you something”: Evaluating the interaction with a robot companion. In
W. Thissen, P. Wieringa, M. Pantic, and M. Ludema, editors, Proc. IEEE Int.
Conf. on Systems, Man, and Cybernetics, Special Session on Human-Robot In-
teraction, pages 2827–2834, The Hague, The Netherlands, October 2004. IEEE,
IEEE. 181

C. LLC. Cyberglove ii. URL http://www.cyberglovesystems.com/products/

cyberglove-ii/overview. Last checked 12th of February, 2010. 19

K. S. Lohan, A. L. Vollmer, J. Fritsch, K. Rohlfing, and B. Wrede. Which ostensive
stimuli can be used for a robot to detect and maintain tutoring situations? In
IEEE International Workshop on Social Signal Processing. IEEE, 2009. 16

M. Lohse. The role of expectations in HRI. In New Frontiers in Human-Robot
Interaction, 2009. 23

D. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional, May 2002. ISBN
0201727897. 146

F. Lömker, S. Wrede, M. Hanheide, and J. Fritsch. Building modular vision systems
with a graphical plugin environment. In Proc. of International Conference on
Vision Systems, St. Johns University, Manhattan, New York City, USA, January
2006. IEEE, IEEE. 154

225

http://bieson.ub.uni-bielefeld.de/volltexte/2007/1174/pdf/diss.pdf
http://bieson.ub.uni-bielefeld.de/volltexte/2007/1174/pdf/diss.pdf
http://www.cyberglovesystems.com/products/cyberglove-ii/overview
http://www.cyberglovesystems.com/products/cyberglove-ii/overview

Bibliography

I. Lütkebohle, J. Peltason, L. Schillingmann, C. Elbrechter, B. Wrede, S. Wachsmuth,
and R. Haschke. The curious robot - structuring interactive robot learning. In
International Conference on Robotics and Automation, Kobe, Japan, May 2009a.
Robotics and Automation Society, IEEE. 4, 63, 130, 131, 154, 157

I. Lütkebohle, J. Schaefer, and S. Wrede. Facilitating re-use by design: A filtering,
transformation, and selection architecture for robotic software systems. In Software
Development and Integration in Robotics, Kobe, Japan, 2009b. 112, 115

I. Lütkebohle, F. Hegel, S. Schulz, M. Hackel, B. Wrede, S. Wachsmuth, and
G. Sagerer. The bielefeld anthropomorphic robot head “flobi”. In 2010 IEEE Inter-
national Conference on Robotics and Automation, Anchorage, Alaska, 03/05/2010
2010. IEEE, IEEE. accepted. 138, 139, 145

I. Lütkebohle, J. Peltason, L. Schillingmann, C. Elbrechter, S. Wachsmuth, B. Wrede,
and R. Haschke. Realizing a robot system for interactive online learning. In To-
wards Service Robots for Everyday Environments. Springer Verlag, 2011. submit-
ted. 20

E. Marder-Eppstein and V. Pradeep. actionlib - ros wiki, 2010. URL http://www.

ros.org/wiki/actionlib. 50, 63

M. J. Mataric. Integration of representation into goal-driven behavior-based robots.
IEEE Transactions on Robotics and Automation, 8(3):304–312, June 1992. ISSN
1042296X. doi: 10.1109/70.143349. 31

B. Maxwell. Building robot systems to interact with people in real environments.
Autonomous Robots, 22(4):353–367, May 2007. ISSN 0929-5593. doi: 10.1007/
s10514-006-9020-9. 177

T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2(4), 1976. 189

G. Metta and P. Fitzpatrick. Better vision through manipulation. Adaptive Behavior,
11(2):109–128, June 2003. doi: 10.1177/10597123030112004. 14

R. Meunier. The pipes and filters architecture, pages 427–440. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1995. ISBN 0-201-60734-4. URL
http://portal.acm.org/citation.cfm?id=218662.218694. 8

M. Michalowski, S. Šabanović, C. DiSalvo, D. Busquets, L. Hiatt, N. Melchior, and
R. Simmons. Socially distributed perception: Grace plays social tag at aaai 2005.
Autonomous Robots, 22(4):385–397, May 2007. ISSN 0929-5593. doi: 10.1007/
s10514-006-9015-6. 178

F. Michaud, D. Létourneau, M. Fréchette, Beaudry, and F. Kabanza. Spartacus,
scientific robot reporter. Technical report, AAAI, 2006. 179

226

http://www.ros.org/wiki/actionlib
http://www.ros.org/wiki/actionlib
http://portal.acm.org/citation.cfm?id=218662.218694

Bibliography

F. Michaud, C. Côté, D. Létourneau, Y. Brosseau, J. M. Valin, Beaudry, C. Räıevsky,
A. Ponchon, P. Moisan, P. Lepage, Y. Morin, F. Gagnon, P. Giguère, M. A. Roux,
S. Caron, P. Frenette, and F. Kabanza. Spartacus attending the 2005 aaai con-
ference. Autonomous Robots, 22(4):369–383, May 2007. ISSN 0929-5593. doi:
10.1007/s10514-006-9014-7. 177, 178, 179

N. Mitsunaga, T. Miyashita, H. Ishiguro, K. Kogure, and N. Hagita. Robovie-iv: A
communication robot interacting with people daily in an office. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 5066–5072.
IEEE, October 2006. ISBN 1-4244-0258-1. doi: 10.1109/IROS.2006.282594. 179

N. Mitsunaga, Z. Miyashita, K. Shinozawa, T. Miyashita, H. Ishiguro, and N. Hagita.
What makes people accept a robot in a social environment - discussion from six-
week study in an office -. In 2008 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 3336–3343. IEEE, September 2008. ISBN
978-1-4244-2057-5. doi: 10.1109/IROS.2008.4650785. 178, 179

G. Mühl, L. Fiege, and P. Pietzuch. Distributed Event-Based Systems. Springer, 1st
edition, July 2006. ISBN 3540326510. 30, 34

R. R. Murphy, J. Casper, M. Micire, J. Hyams, Robin, R. Murphy, R. Murphy, R. R.
Murphy, J. L. Casper, M. J. Micire, and J. Hyams. Mixed-initiative control of mul-
tiple heterogeneous robots for urban search and rescue. Robotics and Automation,
2000. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.

4761. 16

Y. Nagai. The role of motion information in learning human-robot joint attention.
In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, april 2005. 180

Y. Nagai, K. Hosada, A. Morita, and M. Asada. A constructive model for the
development of joint attention. Connection Science, 15(4):211–229, December
2003a. doi: 10.1080/09540090310001655101. 150, 154

Y. Nagai, K. Hosoda, A. Morita, and M. Asada. A constructive model for the
development of joint attention. Connection Science, 15(4):211–229, 2003b. doi:
10.1080/09540090310001655101. 130, 180

Y. Nagai, M. Asada, and K. Hosoda. Learning for joint attention helped by functional
development. Advanced Robotics, 20(10):1165–1181, 2006. ISSN 0169-1864. doi:
10.1163/156855306778522497. 180

N. J. Nilsson. Shakey the robot. Technical report, SRI International, Menlo Park,
CA, USA, 1984. collection of earlier reports. 13

D. L. Parnas. A technique for software module specification with examples. Commun.
ACM, 15(5):330–336, 1972a. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
355602.361309. 29

227

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.4761
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.4761

Bibliography

D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, December 1972b. ISSN 0001-0782. doi: 10.
1145/361598.361623. 29

J. Peltason, 2008. Personal Interview during Task Toolkit Design. 71

J. Peltason, 2010. Personal Interview during XTT Evaluation. 100, 101

J. Peltason, F. H. Siepmann, T. P. Spexard, B. Wrede, M. Hanheide, and E. A. Topp.
Mixed-initiative in human augmented mapping. In International Conference on
Robotics and Automation, Kobe, Japan, 14/05/2009 2009a. IEEE, IEEE. 181

J. Peltason, F. H. K. Siepmann, T. P. Spexard, B. Wrede, M. Hanheide, and E. A.
Topp. Mixed-initiative in human augmented mapping. In International Conference
on Robotics and Automation, 2009b. 154

M. Piccoli. Gripping delicate objects, 2009. URL http://www.willowgarage.com/

blog/2009/08/04/breaking-eggs. Video report. 15

K. Pitsch, A.-L. Vollmer, J. Fritsch, B. Wrede, K. Rohlfing, and G. Sagerer. On the
loop of action modification and the recipient’s gaze in adult-child interaction. In
Gesture and Speech in Interaction, page 6, September 2009. 16

P. G. Plöger, K. Pervölz, C. Mies, P. Eyerich, M. Brenner, and B. Nebel. The desire
service robotics initiative. KI - Zeitschrift Künstliche Intelligenz, 22(4):29–32,
2008. ISSN 0933-1875. 62, 69

L. Rabiner and B.-H. Juang. Historical Perspective of the Field of ASR/NLU.
Springer, 2008. ISBN 978-3-540-49125-5. 22, 23

M. Radestock and S. Eisenbach. Coordination in evolving systems. In TreDS ’96:
Proceedings of the International Workshop on Trends in Distributed Systems, pages
162–176, London, UK, 1996. Springer-Verlag. ISBN 3-540-61842-2. URL http:

//portal.acm.org/citation.cfm?id=695228. 29

M. Rickert, M. Foster, M. Giuliani, T. By, G. Panin, and A. Knoll. Integrating
language, vision and action for human robot dialog systems. In C. Stephanidis,
editor, Universal Access in Human-Computer Interaction. Ambient Interaction,
volume 4555 of Lecture Notes in Computer Science, chapter 108, pages 987–995.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-73280-8. doi:
10.1007/978-3-540-73281-5 108. 175, 176

G. Rickheit and I. Wachsmuth, editors. Situated Communication, volume 166 of
Trends in Linguistics. Mouton de Gruyter, March 2006. ISBN 311018897X. 174

H. Ritter, R. Haschke, F. Röthling, and J. J. Steil. Manual Intelligence as a Rosetta
Stone for Robot Cognition. In International Symposium on Robotics Research
(ISRR), Hiroshima, 26/12/07 2007. International Foundation of Robotics Re-
search. 154

228

http://www.willowgarage.com/blog/2009/08/04/breaking-eggs
http://www.willowgarage.com/blog/2009/08/04/breaking-eggs
http://portal.acm.org/citation.cfm?id=695228
http://portal.acm.org/citation.cfm?id=695228

Bibliography

K. J. Rohlfing, J. Fritsch, B. Wrede, and T. Jungmann. How can multimodal
cues from child-directed interaction reduce learning complexity in robots? Ad-
vanced Robotics, 20(10):1183–1199, 2006. ISSN 0169-1864. doi: 10.1163/
156855306778522532. 16

P. Runeson and M. Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 14(2):131–164, April
2009. ISSN 1382-3256. doi: 10.1007/s10664-008-9102-8. 10, 84

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (2nd Edition).
Prentice Hall, 2 edition, December 2002. ISBN 0137903952. 27

S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences, 3(6):233–242, June 1999. ISSN 13646613. doi: 10.1016/S1364-6613(99)
01327-3. 15

W. N. Scherer, D. Lea, and M. L. Scott. Scalable synchronous queues. In Proceedings
of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’06, pages 147–156, New York, NY, USA, 2006. ACM. ISBN
1-59593-189-9. doi: 10.1145/1122971.1122994. 114

D. Schmidt, M. Stal, H. Rohnert, and F. Buschman. Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, volume 2 of Wiley
Series in Software Design Patterns. John Wiley & Sons, 2000. 45, 52

D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. COMPUTER,
39(02):25–31, 2006. doi: 10.1109/MC.2006.58. 108, 109

M. Schröder and J. Trouvain. The German Text-to-Speech Synthesis System
MARY: A Tool for Research, Development and Teaching. International Jour-
nal of Speech Technology, 6(4):365–377, October 2003. ISSN 13812416. doi:
10.1023/A:1025708916924. 79, 154

S. Schwope. Re: Nachtrag: Re: Duplexübertragung, July 2008. Personal Communi-
cation. 140

M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, April 1996. ISBN 0131829572. 28

M. Shepperd. A critique of cyclomatic complexity as a software metric. Softw. Eng.
J., 3(2):30–36, 1988. ISSN 0268-6961. URL http://portal.acm.org/citation.

cfm?id=48322. 189

R. Simmons, 2010. Personal communication. 177

R. Simmons and D. Apfelbaum. A task description language for robot control. In
Proc. of Conference on Intelligent Robotics and Systems, 1998. 6, 60, 61, 72, 177

229

http://portal.acm.org/citation.cfm?id=48322
http://portal.acm.org/citation.cfm?id=48322

Bibliography

R. Simmons and D. James. Inter Process Communication (IPC) – A reference man-
ual. Robotics Institute, Carnegie Mellon University, Pittsburg, PA, USA, 2001.
URL http://www.cs.cmu.edu/~ipc/. The manual is for version 2.6. In April
2010, the IPC software is at version 2.8.5. 61, 177

R. Simmons, D. Goldberg, A. Goode, M. Montemerlo, N. Roy, B. Sellner, C. Urm-
son, A. Schultz, M. Abramson, W. Adams, A. Atrash, M. Bugajska, M. Coblenz,
M. MacMahon, D. Perzanowski, I. Horswill, R. Zubek, D. Kortenkamp, B. Wolfe,
T. Milam, and B. Maxwell. Grace: an autonomous robot for the aaai robot chal-
lenge. AI Mag., 24(2):51–72, 2003. ISSN 0738-4602. URL http://portal.acm.

org/citation.cfm?id=960150.960159. 178

R. G. Simmons. Structured control for autonomous robots. Robotics and Automation,
IEEE Transactions on, 10(1):34–43, February 1994. doi: 10.1109/70.285583. 6,
60, 61, 69, 73

W. D. Smart. Is a common middleware for robotics possible? In Workshop on Mea-
sures and Procedures for the Evaluation of Robot Architectures and Middleware,
2007. 28

Command list – Intelligent Communication Color Video Camera EVI-D30/D31.
Sony Corporation, 4-16-1, Okata, Atsugi-shi, Kanagawa-ken, 243-0021 Japan,
v1.21, english edition, 1999. 139, 142

D. M. Sotirovski and P. B. Kruchten. Implementing dialogue independence. IEEE
SOFTWARE, 12(06):6170, 1995. doi: http://doi.ieeecomputersociety.org/10.
1109/52.469761. 32

T. P. Spexard and M. Hanheide. System integration supporting evolutionary de-
velopment and design. In H. Ritter, G. Sagerer, R. Dillmann, and M. Buss, edi-
tors, Human Centered Robot Systems, volume 6, chapter 1, pages 1–9. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-10402-2. doi:
10.1007/978-3-642-10403-9 1. 181

D. Spinellis. Chidamber and Kemerer Java Metrics, version 1.8, 2007. URL http:

//www.spinellis.gr/sw/ckjm/. last checked February 12th, 2010. 191

J. Steffen, S. Klanke, S. Vijayakumar, and H. J. Ritter. Realising dextrous ma-
nipulation with structured manifolds using unsupervised kernel regression with
structural hints. In ICRA 2009 Workshop: Approaches to Sensorimotor Learning
on Humanoid Robots, Kobe, Japan, 2009. 14

J. J. Steil, F. Röthling, R. Haschke, and H. Ritter. Situated robot learning for multi-
modal instruction and imitation of grasping. Robotics and Autonomous Systems,
47(2-3):129–141, June 2004. ISSN 09218890. doi: 10.1016/j.robot.2004.03.007.
175, 176

230

http://www.cs.cmu.edu/~ipc/
http://portal.acm.org/citation.cfm?id=960150.960159
http://portal.acm.org/citation.cfm?id=960150.960159
http://www.spinellis.gr/sw/ckjm/
http://www.spinellis.gr/sw/ckjm/

Bibliography

D. B. Stewart and P. K. Khosla. Rapid development of robotic applications using
component-based real-time software. Intelligent Robots and Systems, IEEE/RSJ
International Conference on, 1:465+, 1995. doi: 10.1109/IROS.1995.525837. 32

java.util.concurrent Package Summary. Sun Microsystems, Inc, 2009a.
URL http://java.sun.com/javase/6/docs/api/java/util/concurrent/

package-summary.html. Accessed March 10th, 2010. 63

API Documentation for ServiceLoader class. Sun Microsystems, Inc, 2009b.
URL http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.

html. Accessed March 10th, 2010. 123

Java™ Platform, Standard Edition 6 API Specification. Sun Microsystems, Inc.,
2009c. URL http://java.sun.com/javase/6/docs/api/. accessed 20-Jan-2010.
75

J. Tessier. Dependency Finder, version 1.2.1-beta3, 2009. URL http://depfind.

sourceforge.net/. last checked February 12th, 2010. 191

A. Thomaz and C. Breazeal. Experiments in socially guided exploration: lessons
learned in building robots that learn with and without human teachers. Con-
nection Science, 20(2):91–110, June 2008. ISSN 0954-0091. doi: 10.1080/
09540090802091917. 179

A. L. Thomaz and M. Cakmak. Learning about objects with human teachers. In
HRI ’09: Proceedings of the 4th ACM/IEEE international conference on Human
robot interaction, pages 15–22, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-404-1. doi: 10.1145/1514095.1514101. 180

M. Thompson, D. Farley, M. Barker, P. Gee, and A. Stewart. Disruptor: High per-
formance alternative to bounded queues for exchanging data between concurrent
threads. Technical report, 2011. URL http://code.google.com/p/disruptor.
115

UML2.0. Unified modeling language: Superstructure version 2.0. Technical report,
Object Management Group (OMG), Inc, 2005. 127, 128

VERBMOBIL. VERBMOBIL – Erkennung, Analyse, Transfer, Generierung und
Synthese von Spontansprache, 2000. URL http://verbmobil.dfki.de/. Last
accessed 23rd of March, 2010. 154

A.-L. Vollmer, K. Lohan, K. Fischer, Y. Nagai, K. Pitsch, J. Fritsch, K. Rohlfing,
and B. Wrede. People modify their tutoring behavior in robot-directed interaction
for action learning. In International Conference on Development and Learning,
volume 8, Shanghai, China, June 2009. IEEE, IEEE. 16

R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. The claraty archi-
tecture for robotic autonomy. In Aerospace Conference, 2001, IEEE Proceedings.,
volume 1, pages 1/121–1/132 vol.1, 2001. doi: 10.1109/AERO.2001.931701. 31

231

http://java.sun.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://java.sun.com/javase/6/docs/api/
http://depfind.sourceforge.net/
http://depfind.sourceforge.net/
http://code.google.com/p/disruptor
http://verbmobil.dfki.de/

Bibliography

C. Vorwerg, S. Wachsmuth, and G. Socher. Visually Grounded Language Processing
in Object Reference, volume 166 of Trends in Linguistics. Mouton de Gruyter,
March 2006. ISBN 311018897X. 175

S. Wachsmuth and G. Sagerer. Bayesian networks for speech and image integration.
In Proc. of 18th National Conf. on Artificial Intelligence (AAAI-2002), pages 300–
306, Edmonton, Alberta, Canada, 2002. 22

S. Wachsmuth, S. Wrede, and M. Hanheide. Coordinating interactive vision behaviors
for cognitive assistance. Computer Vision and Image Understanding, 108:135–149,
2007. 62

D. A. Wheeler. SLOCCount version 2.26. A set of tools for counting physical Source
Lines of Code, 2004. URL http://www.dwheeler.com/sloccount/. last checked
February 12th, 2010. 191

S. N. Woods, M. L. Walters, K. L. Koay, and K. Dautenhahn. Methodological issues
in HRI: A comparison of live and video-based methods in robot to human approach
direction trials. In Proceedings of the 15th IEEE International Symposium on Robot
and Human Interactive Communication, pages 51–58. IEEE, 2006. 157

B. Wrede, M. Kleinehagenbrock, and J. Fritsch. Towards an integrated robotic system
for interactive learning in a social context. In Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems - IROS 2006, Bejing, 2007. 181

S. Wrede. An Information-Driven Architecture for Cognitive Systems Research. PhD
thesis, Bielefeld University, 2008. 11, 111, 131, 154, 156

S. Wrede, M. Hanheide, S. Wachsmuth, and G. Sagerer. Integration and coordination
in a cognitive vision system. In International Conference on Computer Vision
Systems (ICVS), St. Johns University, Manhattan, New York City, USA, 2006.
IEEE. International Conference on Computer Vision Systems 2006. 6, 34, 60, 62,
63, 70, 73

J. Zhang. Self-valuing learning and generalization with application in visually guided
grasping of complex objects. Robotics and Autonomous Systems, 47(2-3):117–127,
June 2004. ISSN 09218890. doi: 10.1016/j.robot.2004.03.006. 175

J. Zhang and B. Rössler. Grasp learning by active experimentation using continu-
ous B-spline model, pages 353–372. Physica-Verlag GmbH, Heidelberg, Germany,
Germany, 2003. ISBN 3-7908-1546-2. URL http://portal.acm.org/citation.

cfm?id=860250. 14

232

http://www.dwheeler.com/sloccount/
http://portal.acm.org/citation.cfm?id=860250
http://portal.acm.org/citation.cfm?id=860250

	Motivation and Scenario
	Robot-Software for Mixed-Initiative HRI
	Context: Social Robots that Learn in Interaction
	Enabling detailed, yet general, verbal commentary
	Continuous, bi-directional interaction-action coupling

	Architectures for iterative development
	Within-component composition

	Methodology: Case studies on successive iterations
	Reusable Software Toolkits
	Summary

	Experimental Scenario: The ``Curious Robot''
	``Intuitive'' Human-Robot-Interaction?
	Scenario Rationale
	Learning from Humans
	Differences in interaction style

	The ``Curious Robot'' Scenario
	Main Experimental Platform
	Development History
	Interaction Overview
	System Capabilities

	Interaction Challenges and Remedies
	Scenario Challenges
	The Dialog Structuring Approach

	Summary

	The Task-Interaction Architecture
	The Role of Architecture for Robotics
	Scenario-related Architectural Challenges

	System Overview
	Components & Functionality

	Functional sub-system Schema
	Communication
	Model of Computation

	System Schema
	Feedback Coupling
	Concrete Architecture of the Final Demonstrator

	Coordination
	The Abstract Task-State Pattern
	Overview
	An Example Problem for Motivation
	The Solution in a Nutshell

	User's View
	An example life-cycle
	Communication
	Using the Pattern as a Client
	Using the Pattern as a Server

	Implementing the Pattern in a Toolkit
	Premises and Design Influences
	Summary of implementation steps
	Advantages and Responsibilities
	Structure
	Dynamics
	An Example Life-Cycle
	Alternatives

	History & Known Uses
	Intelligent Machine Architecture
	Task Control Architecture
	Task Description Language
	DESIRE Architecture
	Active Memory Architecture
	XCF Task Toolkit
	ROS ActionLib
	Plan Execution Interchange Language

	Consequences
	Summary

	Separation of Concerns in Life-Cycle Coordination
	Pattern Identification and Analysis of Historical Use
	Example: The COGNIRON Home-Tour
	Verdict: Successful, but onerous to get right
	Analysis of a typical component: ``Following''

	The XCF Task Toolkit (XTT)
	XTT Design Guidelines
	XTT Structure
	System Interaction
	Task Server Implementations
	Summary

	Proof of Concept: Text-to-Speech Service
	Preventing Insider Bias and 2nd System Effect
	History and Use of the Text-to-Speech Component
	System Context
	Stakeholder Analysis
	Study Design
	Data Analysis

	Summary

	Life-Cycle Coordination for Mixed-Initiative HRI
	Context: Initiative Generation for the Curious Robot
	Study Design
	Generalization and Validity
	Goal: Validate Life-Cycle-Based Coordination

	History and Evolution of the Scenario
	Coordination Use Cases
	Analysis of Coordination Integration
	From Actions to Activities
	Overlapping Activities or ``Implicit Completion''
	External Synchronization for Additional Feedback

	Discussion
	Life-Cycle Design
	Component Types
	Life-Cycle Subsets
	Overall Suitability
	Distribution of Work

	Composition
	Modeling with Directed Typed Graphs and Event-Oriented Decomposition
	Component Modeling for Distributed Systems
	Graph-Oriented Program Models
	Reactive Systems
	Computer-Aided and Model-Driven-Engineering (MDE)

	Execution models
	Classical data-flow model
	Kahn process networks
	Communicating Sequential Processes
	Synchronous Data Flow

	The Filter-Transform-Select (FTS) Toolkit
	Historical Overview
	FTS Requirements & Design

	(De-)Composition Principles
	Decomposition for re-use
	Multi-Level Composition Support

	Toolkit Implementation
	User-Visible API
	Declarative Graph Specification
	Execution

	Visualization
	Activity Diagram Semantics for FTS Graphs

	Summary

	Data-Flow Case Studies
	Proof of concept: Data fusion
	Functional component overview
	Analysis of original action selection
	Graph-based re-implementation
	Adding visualization
	Summary

	Case study 2: Hardware independent serial robot control
	MABOTIC robot control protocol
	VISCA control protocol
	``scontrol'' protocol driver
	Discussion

	System and Conclusion
	System Evolution
	Scenario pre-test: ``What is that?''
	Initial Object Learning System
	Use Cases
	Hard & software components
	Notes on integration

	User evaluation of the Object Learning System
	Experimental design
	Results of the experiment
	Discussion

	Relation to proposed methods
	Extended / Alternative Scenarios
	CeBIT demonstrator
	Enhanced object learning system

	Functional architecture
	Interaction subsystem
	Motion control subsystem
	Non-verbal feedback subsystem

	Related Work
	Collaborative construction scenarios
	Interactive mobile robots
	Social Robots

	Summary

	Conclusion
	Communication for Coordination
	Rapid Component Composition
	Integration in an HRI scenario

	Software Metrics
	Metrics vs. Case Studies
	Tools Used

	Full Example Frames from Interaction
	``What is That?'' Sequence

	Graph and Document Examples
	Graph Specification Language
	Document Type Definition

	Example graph specifications
	Curiosity Generation Specification
	Selection Visualization

	Example graph visualizations
	Data format examples
	Saliency computation output
	Object detector output
	Interaction region

	Protocol Specifications
	MABOTIC iModule Command Specification

	Video Study Material
	Questionnaire for the video study
	Translation of questionnaire

	Transcription of subject recordings
	Responses to free questions (German)
	Responses to free questions (English)

