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Introduction

The theoretical background for this work is provided by Quantum Chromodynamics

(QCD), the theory of strong interactions (see for instance [1]). QCD is part of the

SU(3)×SU(2)×U(1)-Standard model for the elementary particle interactions. Describing

all features of hadronic matter QCD is expected to explain such different properties as

confinement and asymptotic freedom [2, 3, 4]. These widely different properties of strong

interactions led to the speculation that strongly interacting hadronic matter has a quali-

tatively new behavior at asymptotic large temperatures and/or hadron densities. In fact,

it is expected [5] that the structure of hadronic matter becomes rather simple in the high

energy regime (for reviews see [6, 7, 8]). For instance, in the limit of large temperatures

hadronic matter is expected to dissolve into their elementary constituents, the quarks and

the gluons, forming a new state of matter, the so-called quark-gluon plasma. To some

extent this new plasma state is comparable to an ideal gas of quarks and gluons. As

the qualitative behavior of matter in this high temperature phase is quite different from

ordinary hadronic matter, which confines quarks and gluons, this presumably implies the

existence of a phase transition between these two phases. Many qualitative aspects of

the confinement deconfinement phase transition in QCD can already be discussed in the

quenched approximation, i.e. SU(3) gauge theory. Here the Polyakov loop can be used

as an order parameter to distinguish both phases [9, 10]. Its properties and in particular

its proper definition which allows to give it a physically meaningful interpretation are the

central topics of this thesis.

Due to asymptotic freedom one may expect that QCD can be analyzed with perturbative

methods (for an introduction into these methods see [1, 11, 12]). Unfortunately, however,

the well-established perturbative treatment of field theories in general is insufficient in its

application to QCD. For instance, the ordinary perturbative treatment of QCD does not

signal confinement and, due to asymptotic freedom, perturbative methods are limited in

QCD to the high energy sector. This situation becomes even more complicated at finite

temperature as with the weakening of the coupling at high temperatures different well

separated length scales dominate the quark gluon plasma, i.e.

1/T ≪ 1/(gT ) ≪ 1 /(g2T ) (1)

The different scales call for different perturbative re-summation techniques [13, 14]. At

the ultra-soft scale, i.e. at distances of about 1/(g2T ), perturbation theory will break

down even at extremely large temperatures [15, 16, 17]. Thus, although the break-down

9



10 Introduction

of perturbation theory is not that obvious to take place even in the high energy, weakly

coupled plasma phase, the long wave-length plasma contributions in general cannot be

handled as small perturbations. This indeed prevents a perturbative analysis of long dis-

tance phenomena on quite general grounds [15]. Moreover, it cannot be expected that

a perturbative approach is well suited for the study of inherently non-perturbative as-

pects of the confinement deconfinement phase transition. Thus, in order to study QCD

in the full energy regime, even down to the low energy sector, one is indeed forced to use

non-perturbative methods. For this reason the QCD thermodynamics is mainly a domain

of the non-perturbative lattice approach (for an introduction to this field see [18]). MC

simulation methods can provide a powerful tool to give unique quantitative results for the

phase transition temperature, the order of the phase transition, the equation of state and

different other quantities which are of interest for theory and experiment (for reviews see

[19, 20]). The latter are, for instance, the zero temperature heavy quark potential as well

as the heavy quark free energies at finite temperatures [21, 9].

Subject of this thesis is a detailed analysis of the thermal properties of the Polyakov

loop and its correlation functions on the lattice in pure gauge theory (SU(N = 3)). The

expectation value of the Polyakov loop and its (spatial) correlation functions are related

to the change in free energy due to the presence of static quarks placed into the thermal

gluonic heat bath. They are of considerable interest in particle physics as they reflect

the screening properties of the medium in the high temperature phase as well as the

confining properties in the low temperature, chiral symmetry broken phase. They are

thus sensitive to the confinement deconfinement phase transition in QCD and allow to

study the confining forces at finite temperatures. In fact, the QCD phase diagram has

been analyzed in great detail in terms of the heavy quark free energies. Moreover, thermal

modifications on the Polyakov loop correlation functions have been subject of quite a few

studies in the past. Such studies refer to the pure gauge theory at finite temperature

as well to full QCD and to QCD at finite baryon number densities (reviews and further

references can be found in Refs. [22, 20]). However, although the Polyakov loop correlation

functions have been analyzed in detail in the past, there are long standing problems which

have not been solved so far. For instance, these are

• the non-perturbative calculation of the color singlet and color octet quark antiquark

free energies. In fact, while the color averaged free energies are well-known from

earlier studies, the color singlet and octet free energies are much less studied so far.

This is to some extent due to the fact that up to quite recently [23] a satisfactory non-

perturbative gauge invariant formulation has not be given. Indeed, the knowledge

of the color singlet and color octet free energies is mainly based on perturbative

arguments [24, 9]. It is therefore quite important to study the color singlet and color

octet free energies in gauge invariant non-perturbative formulations in a confined

and deconfined medium.

• the renormalization of the Polyakov loop (TrL) and its correlation functions on

the lattice. This is a long standing problem which is not only of purely academic
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interest [22]. For instance, 〈TrL〉 acts as an order parameter for the confinement-

deconfinement phase transition which should have a physical meaning. The natural

physical meaning of the order parameter is the heavy quark free energy ∆Fq which

is related to the Polyakov loop expectation value via

〈TrL〉 ≃ exp (−∆Fq(T )/T ) . (2)

There also exist recent studies which claim that a renormalized Polyakov loop ex-

pectation value can be used to construct effective actions for the hadron dynamics

near the phase transition [25, 26]. In this context the equation of state has been

related to the temperature variation of the Polyakov loop [27, 28].

• the calculation of the excess potential energies and entropies from free energies. In

general the Polyakov loop correlation functions refer to free energies of a system of

n quarks and ñ antiquarks,

∆Fnqñq̄ = ∆Enqñq̄ − T∆Snqñq̄, (3)

which contain the internal energies ∆Enqñq̄ and entropies ∆Snqñq̄ which are of in-

terest in heavy quark physics. For example, investigations of meson and hadron

properties [29, 30] using thermal properties of the Polyakov loop and the Polyakov

loop correlation functions in potential models [31, 32] show the need for an analysis

of potential energies rather than the free energies. In fact, only phenomenological

arguments could be used to motivate the potential energies in the past. Indeed, a

non-perturbative evaluation of the potential energies and entropies is still outstand-

ing at finite temperatures.

It should be obvious that these problems call for further investigations of the Polyakov

loop and its correlation functions on the lattice. In the first chapter we discuss the thermal

properties of the color singlet, octet and averaged free energies from large to quite small

distances at temperatures ranging from T = 0.9Tc to temperatures of about 12Tc. The

data for the color singlet and octet free energies we present here are calculated in a

gauge independent way (following [23]). We also present here a new 1-loop perturbative

calculation for the color averaged free energies.

In the second chapter we discuss the renormalization of the Polyakov loop and its corre-

lation functions on the lattice. As the lattice renormalization of the Polyakov loop is a

long standing problem we first introduce into the problem and discuss earlier and current

concepts. We then outline our new renormalization scheme for the 2-point correlation

functions of the Polyakov loops which leads to a proper and well-defined continuum limit

for the Polyakov loop expectation value on the lattice. Clearly, to our scheme corresponds

a renormalization constant. This effective renormalization constant will be calculated by

us at several lattice couplings.

In the last chapter of this thesis we discuss a first application of the renormalized free

energies. In particular, we calculate separately the potentials and entropies from the

renormalized free energies using thermal relations. We discuss the thermal properties of
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the finite temperature potentials and entropies.

In this thesis we restrict ourselves to the pure gauge theory, SU(3), as we are in main parts

interested in the inherent effects concerning the confinement deconfinement phases and the

phase transition. We stress here, however, that the conceptual approach we develop here

for SU(3) can easily be generalized to the case of full QCD.



Chapter 1

Heavy quark free energy and the

running coupling at finite

temperature

In this first chapter we begin with our analysis of the thermal properties of the quark

antiquark free energies1 in both phases of SU(3), in the confinement and deconfinement

phases. We are interested in the thermal modifications at large (rT ≫ 1), intermediate

(rT ≃ 1) and small (rT ≪ 1) quark antiquark separations, where r denotes the separation

between the qq̄-pair and T is the temperature of the thermal medium. We discuss in detail

non-perturbative effects in the free energies, i.e. the thermal properties of color screening

above Tc and the r-running of the coupling defined in terms of heavy quark free energies

at finite temperatures. We close this chapter with general notes on the free energies at

temperatures below the deconfinement point.

Nonetheless, we should first clarify our conventions and notations and also should sum-

marize what is known about heavy quark free energies. Actually, the heavy quark free

energies have been subject of many studies in the past. However, while the so-called color

averaged free energies (∆Fqq̄), which are defined in the case of SU(3) on (and similarly

for SU(N)) [9]

∆Fqq̄(r, T ) = −T ln

(
1

9
e−∆F1(r,T )/T +

8

9
e−∆F8(r,T )/T

)

, (1.1)

have been studied to high accuracy at intermediate and large distances at finite temper-

atures, the color singlet (∆F1) and color octet (∆F8) quark antiquark free energies are

1The introduction of the Polyakov loop and its relation to the free energies we discuss here is subject

of Sec. 1.2. At this level of the discussions of the thermal properties of the heavy quark antiquark free

energies it is indeed sufficient to realize that the heavy quark free energies are free energies: As free energies

(F ) they contain the potential energies (E) as well as the entropies (S), i.e. F = E − TS. They are thus

often called potential energies of the quark antiquark pair in the gluonic heat bath. In terms of potentials

confinement is said to lead to increasing functional dependence with increasing distances while the plasma

phase (deconfinement) is related to a flattening of the potentials at large distances.

13



14 Heavy quark free energy and the running coupling at finite temperature

much less known, so far. It follows from (1.1) that the thermal influence of the medium

on the free energies becomes more transparent in terms of the color singlet and octet free

energies.

Unfortunately, however, the formulation of free energies can be given a gauge indepen-

dent, physically reasonable meaning only in the case of the color averaged free energies

although the physical interest rather points at the color singlet and color octet free en-

ergies. Indeed, up to quite recently [23] the singlet and octet free energies could not be

formulated (accurately) in a gauge independent manner [24]. In a recent study it is shown

[23] that a formulation of the color singlet and color octet free energies can be given in

terms of manifestly gauge invariant, non-local operators and this formulation is equiva-

lent to a formulation of the free energies in Coulomb gauge. We mainly discuss in this

chapter the thermal effects on the color singlet and color octet quark antiquark free ener-

gies calculated in the latter, thus gauge independent way (following [23]). In this chapter

we summarize various new aspects of the different thermal properties of Polyakov loop

correlation functions.

We begin with some general notes on the thermal properties of the (color averaged) heavy

quark free energies. We follow here closely the discussion outlined in [33] as it summarizes

the present knowledge on this field.

1.1 Heavy quark free energies

In order to show the basic features of the free energies in a confining medium we show

in Fig. 1.1 lattice results for the color averaged heavy quark antiquark free energies

(∆Fqq̄(r, T )) in quenched QCD (pure SU(3) gauge theory) at temperatures below Tc.

As can be seen from this figure the free energies show the so-called quark confinement as

the quark antiquark free energies increase with increasing distances. It follows that it is

impossible to separate completely the two static color charges in this medium as it would

cost an infinite amount of (free) energy. Consequently, the interaction between the static

quarks in this phase is quite strong and gets stronger with increasing distance. It can

also be seen from Fig. 1.1 that the slope of the free energies as function of the distance

is decreasing when going to higher temperatures. This property may suggest that above

some temperature (Tc) the strong interaction gets weak which may result in a (new) phase

of almost interaction free particles.

It is well-known that a linearly increasing free energy of a qq̄ pair at large distances arises

from the string picture in the confined (T < Tc) phase. In this model2 for the quark

interactions an (infinite) thin color flux-tube, the one-dimensional so-called string, forces

the quarks to be confined. One is now interested in the time evolution of this system:

Hence, one is interested in the surfaces, so-called world-sheets, which are defined through

2We discuss here the string picture which arises for the pure gauge theory. In the absence of dynamic

quarks the well-known string breaking, which is observed on the lattice [34, 35, 36] and is subject of several

models [37], does not take place. An excellent review and further going studies of the string models we

refer to can be found in Ref. [38].
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Figure 1.1: The color averaged heavy quark antiquark free energies at temperatures below the de-

confinement point as a function of the distance rT . This figure shows lattice data from simulations

on lattices with size 323 × 4.

the time evolution of the string [39]. In terms of heavy quark free energies, these are given

by

e−∆Fqq̄(r,T )/T ≃ 〈TrL(x)TrL†(x̄)〉 ≃
∑

surfaces

e−Seff(surfaces) (1.2)

where Seff parameterizes the surfaces which appear due to the time evolution of the fluc-

tuating string where the Polyakov loops (L(x), L†(x̄)) describe the propagations of the

static quark and antiquark. One often uses the Nambu-Goto action (SNG) [39] in the

Gaussian approximation (SGauss
NG ), defined as

Seff → SGauss
NG = σ

∫

d2ξ ∂axt∂axt, (1.3)

where xt describes the transversal displacement of the string from the flat surface and σ is

the string tension. It is interesting to realize that the Gaussian approximation (1.3) does

assume that xt is the only relevant dynamic variable and therefore this approximation of

string fluctuation does describe a whole class of different string models [40, 41]. In fact, as

one neglects any internal degrees of freedom of the string, i.e. the color structure or the

space-like extent of the color flux tube, this estimate is restricted to (asymptotic) large

distances where the color flux tube is allowed to be approximately described through an

one-dimensional string. These models are therefore called the asymptotic string models

[42]. Following these models, the surface fluctuations are bound to vanish at the static

boundaries given by the Polyakov loops, and the boundary conditions in time and spatial
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directions are respecting the bosonic properties of the gauge fields. As the Polyakov loops

in (1.2) are spatially separated by a distance, r = |x − x̄|, the string is called open. The

mathematical tool needed to analyze the properties of fluctuating surfaces was established

in [43, 44].

At finite temperatures, the inverse temperature, T−1, is related to the time-like extent of

the world sheet and thus the lowest order approximation of the world sheet by a flat surface

leads to SGauss
NG ≃ σrT−1. This is similar to the so-called area law which is related to

the confinement signal in the free energies [18]. The transverse displacements of the string

fluctuations from the flat surface have been approximated in different limits, one is the

ordinary T → 0 limit [40] and another one gives the leading temperature corrections [45].

A third approximation is to increase the dimension of space-time (D) in which the string

is embedded and then to calculate the string fluctuations by means of a 1/D-expansion

[46]. The first method leads to the zero temperature approximation (T → 0),

Vqq̄(r) = σr − π

12r
+ O(1/r3), (1.4)

where we have assumed that the string is placed in a D = 4 dimensional space-time.

This is the well-known zero temperature heavy quark potential in the free (bosonic) string

picture [40, 47]. As the underlying effective string action unifies a whole class of string

pictures, the Coulomb factor will arise in all these asymptotic string models. However, it

is a long range Coulomb-like correction to the linear term and should not be confused with

the short range Coulombic perturbative term. Higher orders are indeed known to result in

a series in odd powers of 1/r which can be resummed leading again to a close expression

for Vqq̄(r) [38]. In the second case one deals with the leading T -dependent corrections in

the confinement phase. The asymptotic behavior of (1.2) is then given by [45]

∆Fqq̄(r, T ) =
(

σ − π

3
T 2
)

r + T ln(2rT ) + O(rT 3) + O(T 2). (1.5)

In contrast to the Coulomb-like term −π/12r in (1.4) a universal term appears which

leads to a temperature correction of the string tension, σ → σ(T ). From this expression

the string tension is supposed to decrease with increasing temperatures. This property

can indeed be seen from the free energies shown in Fig. 1.1. The third approximation

mentioned above leads to a different temperature dependence of the string tension at

temperatures close to Tc [46]. One finds ∆Fqq̄(r, T ) = σ(T )r with

σ(T ) = σ

√

1 − T 2

T 2
c

(1.6)

and Tc is obtained as

T 2
c =

3

π(D − 2)
σ. (1.7)

From the string picture it is thus expected that the string tension in the free energies will

continuously vanish at some (critical) temperature Tc. This is the critical temperature

where the confinement deconfinement phase transition is supposed to appear. We note,
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however, that the phase transition of SU(3) in D = 4 dimensions is of first order [48],

while the transition in the string picture for D → ∞ is a second order one. One thus

expects deviations from (1.6) in color SU(3).

Finally we note that also a general expression for the heavy quark antiquark free energies

has been calculated at finite temperatures from the string picture [49]:

∆Fqq̄(r, T ) =

(

σ − π

3
T 2 +

2

3
T 2arctan(1/(2rT ))

)

r

−
(
π

12
− 1

6
arctan(2rT )

)
1

r
+

1

2
T ln

(
1 + (2rT )2

)
(1.8)

It can easily be checked that this expression reproduces the limits given in (1.4) and (1.5),

while it continuously changes between these two limits within increasing or decreasing r.

The predictions of the string picture have extensively been studied with MC lattice data

in the past. A comparison of (1.4) with early SU(3) lattice data shows a Coulomb term

γ = 0.25±0.02 [50] in the Cornell potential, VCornell(r) = −γ/r+sr, which is indeed quite

close to π/12, while the findings of current studies enlarge this value, γ ≃ 0.295 [51]. Also

the spatial extent of the strings have been investigated within different methods [52, 53].

In general one can say that these studies confirm that the field strength between the static

charges in QCD is indeed quite large and the spatial extent of this kind of flux tube becomes

thin when the charges get separated to large distances. In fact, recent studies of the string

picture claim that at zero temperature the string behavior of heavy quark potential takes

place at surprisingly small distances, r >∼ 0.5 fm [54]. At shorter distances, however, the

string picture fails as the thin string approximation breaks down and, moreover, at very

short distances QCD depends on a running, asymptoticly free coupling. In conclusion,

at intermediate distances improved string pictures should be applied, which, for instance

respect more degrees of freedoms than the asymptotic string picture does. At very short

distances, however, the zero temperature quark potential is calculable perturbatively and

shows the logarithmic weakening of the coupling [55].

A comparison of the string picture at finite temperature and MC studies of gauge theo-

ries has been performed in many studies. For instance, the second term in (1.5), which

originates from the transverse fluctuations of the string at finite temperature, is estab-

lished in the context of numerical calculations (see for instance [33]). The temperature

dependence of the string tension at temperatures close to Tc has also been analyzed in

detail. It is established that in color SU(2), which also exhibits a second order phase

transition, the string tension vanishes ∼ (1/T − 1/Tc)
ν with a critical exponent ν taking

its 3-D Ising value as suggested by universality [56]. In contrast to a critical behavior in

SU(2), in color SU(3) one expects a discontinuous behavior and a non-vanishing string

tension at the critical temperature as the confinement deconfinement phase transition in

this case is (weakly) first order [48]. In fact, deviations from (1.6) were found at high

temperatures while the presence of a logarithmic term with the predicted strength in (1.5)

is well-established [33].
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Figure 1.2: The color averaged heavy quark antiquark free energies at temperatures above the

deconfinement point as functions of the distance rT . This figure shows lattice data from simulations

on lattices of size 323 × 8.

Let us turn now to the thermal properties of the (color averaged) quark antiquark free

energies in the deconfined medium. To get an idea of the general behavior of the free

energies in this phase we show in Fig. 1.2 lattice data for the color averaged free energies

at several temperatures above Tc. In general, the free energies at large distances flatten

and approach some finite values. In this figure we have normalized the free energies such

that they approach zero at large distances, δFqq̄(r, T ) = ∆Fqq̄(r, T ) − ∆Fqq̄(r → ∞, T ).

The flattening of the free energies is consistent with deconfinement. This suggests that the

heavy quark pair can be separated from each other at large distances as the interaction

of the color charges is weakening at large distances. In general the statement is that the

static color charges get screened in the thermal medium which causes the flattening of the

free energies. It can also be seen from that figure that the flattening of the free energies

sets in at smaller distances as the temperature increases.

In fact, the deconfined medium is supposed to consist of weakly interacting quarks and

gluons, g2(T ) → 0. This property might result in an ordinary perturbative treatment of

the free energies (in power-expansions of g2). However, it is well-known (see for instance

[18]) that perturbation theory has only a limited predictive power for the behavior of

the free energies in the deconfined phase. In particular, it cannot be expected that the

perturbative approach is well suited for the study of inherently non-perturbative aspects

of the free energies at temperatures close to the phase transition separating the low from

the high temperature plasma phase. Its range of validity is thus quite uncertain and

infra-red problems appear which lead to the dynamical generation of chromo-electric and
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chromo-magnetic mass scales which are of O(gT ) and O(g2T ) and thus in general cannot

be collected in a power series of g2. This indeed prevents a perturbative treatment of the

long distance properties of the free energies. At high temperatures, however, improvements

of perturbation theory have been established (i.e. HTL-resummation techniques [13] or

screened perturbation theory [14]) which allow to give at least reasonable estimates at

length scales below O(1/gT ). In the discussions of free energies in a deconfined medium

one thus often resorts to these kind of high temperature perturbative methods.

In high temperature perturbation theory the color singlet and color octet free energies are

given to leading order by one gluon exchange [57, 9]. Consequently, to this order δF1 and

δF8 only differ by the Casimir3

δF1(r, T ) = −(N2 − 1) δF8(r, T ) + O(g4). (1.9)

As discussed above, at finite temperature the crucial point to respect is that the IR limit

of the gluon polarization tensor (Π00(q)) in general is non-zero as it is related to the Debye

mass, Π00(q → 0) = mD. In fact, from HTL-resummed lowest order perturbation theory

one expects a Debye screened Coulomb behavior for δF1 and δF8 in position space. In this

case, the Fourier transformation of the gluon propagator (∼ 1/(q2 +m2
D)) leads to

δFi(r, T ) = Ci
α(T )

r
e−mD(T )r, (1.10)

where C1 = −4/3 and C8 = +1/6 for N = 3 [57, 9]. In this relation we have introduced

the coupling α(T ) = g2(T )/4π as a temperature dependent quantity. Although not in

leading order, higher order contributions indeed will lead to a running coupling (after

renormalization). In addition we have assumed that we work at such high temperatures

that beside the temperature there is no other scale which could control the coupling.

Therefore we use g = g(T ) which provides asymptotic freedom, g2(T ) → 0, in the high

temperature limit. Apart of the Debye mass, Eq. (1.10) does not respect any further

momentum dependencies of the polarization tensor (in momentum space). It thus has

been noted that this estimate of the color singlet free energy estimates only the IR limit

[59]. In position space, this is the large distance regime. Consequently, at short distances

and low temperatures we expect deviations from (1.10).

As noted above, because of the interaction with the heat bath the gluon acquires a chromo-

electric mass, me(T ), which results from the non-zero IR limit of the polarization tensor.

To lowest order in perturbation theory, this is obtained as (in SU(N))

m(0)
e =

√

N

3
g(T )T . (1.11)

In general, one identifies the leading order Debye mass with this chromo-electric mass,

mD(T ) = m
(0)
e (T ). Note that the power in the coupling of the lowest order is reduced,

m
(0)
e ≃ gT , which is the typical scale for electric screening. The electric screening mass is

3This relation is quite similar to the leading order relation of the color singlet (V1) and color octet (V8)

potentials at zero temperature, V1 = −(N2 − 1)V8 + O(g4) [58]. At zero temperature, the leading order

potentials in position space are given by the Fourier transformation of the gluon propagator (∼ 1/q2)

which leads to a Coulombic potential at this order [58].
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also known in next-to-leading order in which it depends on an anticipated chromo-magnetic

gluon mass although the magnetic gluon mass itself cannot be calculated perturbatively

[60]. It is said to scale typically like mg ≃ g2T , which is the non-perturbative scale

recovered above.

In contrast to δF1(r, T ) and δF8(r, T ) the color averaged free energy to leading order

perturbation theory is given by two gluon exchange diagrams [57, 9]. Correspondingly, at

high temperatures one expects

δFqq̄(r, T )

T
= − 1

16

(
δF1(r, T )

T

)2

≃ −α
2(T )e−2mD(T )r

9(rT )2
. (1.12)

One can easily check that this relation follows also from the high temperature expansion

of the exponentials in (1.1) by using the relation given in (1.9). In fact, the leading order

term, which could behave like 1/r, drops out in the color averaged free energies [57].

The validity of (1.12) is limited in the same way as (1.10). However, to justify the high

temperature expansion of the exponential functions in (1.1), relation (1.12) is limited to

small values of δF1/T and δF8/T , which means large distances r and high temperatures.

Nonetheless, also at quite large distances perturbation theory is known to break down

as the spatial 3 dimensional confinement is entering at length scales 1/g2T . In fact, due

to the spatial confinement the long distance behavior of any spatial correlation function

is expected to be dominated by the exchange of some bound state of the effective three

dimensional theory [61, 62]. Thus one would expect that the large distance behavior of

the color averaged free energies is also described by a simple color screened Coulomb

form. In practice, however, the relative strength of the perturbative ∼ 1/r2 and the non-

perturbative ∼ 1/r contribution is not known and it is thus not clear at which distance

the non-perturbative 1/r-term will dominate the free energies.

Several MC studies have shown that non-perturbative phenomena prevail up to temper-

atures at least several times the critical temperature [63, 64, 65, 66]. In terms of the

color averaged free energies non-perturbative effects have been studied in detail with MC

methods at finite temperatures in the case of SU(3) [33, 67] and in the case of SU(2)

[68, 23, 69, 70]. In particular, deviations from the perturbative 1/r2 behavior of the color

averaged free energies have been found in color SU(2) and color SU(3) at intermediate

distances, i.e. 1/4 <∼ rT <∼ 4 [67, 33, 70]. They show that the r-dependence of these free

energies can be well parameterized with the ansatz

δFqq̄(r, T )

T
= − a

rd
e−mr (1.13)

with an arbitrary power-behavior d. The general statement is that at these distances

and sufficiently large temperatures (T >∼ 2Tc) d → 2 is approximately fulfilled while at

temperatures close to Tc deviations are significant so that in general d <∼ 2. In particu-

lar, it can be excluded that the 2-gluon exchange with an effective chromo-electric mass

is the dominant screening mechanism [33]. This might not be too surprising as various

non-perturbative modes may play a role in the long distance sector of the quark gluon

plasma [71, 72]. It is thus important to quantify the color screening effects by a genuinely

non-perturbative approach. By means of the exponential decrease of the color averaged
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Figure 1.3: The screening functions in color SU(3) in terms of
√

Sqq̄(r, T ) from lattices of size

323 × 8 (filled symbols) and 323 × 16 (open symbols) at several temperatures above Tc. We also

compare in this figure the HTL-like resummed perturbative calculation of the color averaged free

energies to the lattice data (lines).

free energies the screening mass for color SU(3) has been discussed in [33]. They note

that the screening mass scales with the temperature like mD ≃ 2.5T , thus a perturbative

decrease due to the temperature dependent renormalized coupling g(T ) is not seen at least

up to temperatures a few times the critical one, T <∼ 2Tc. They conclude that it is very

likely that non-perturbative phenomena and higher order perturbative contributions are

needed to explain the screening behavior. Results on the color singlet and color octet

(triplet) free energies defined in Landau gauge are reported for SU(3) in [67] and in a

gauge independent manner for SU(2) in [23]. A recent related discussion of the free ener-

gies in the case of SU(2) can be found in [69]. They also investigate the non-perturbative

color screening masses from the color singlet free energies at temperatures close to Tc, i.e.

T <∼ 3Tc. They agree with the general findings discussed above.

The color averaged free energies have also been discussed in full 1-loop HTL-like resummed

perturbation theory (see for instance our analysis in Ref. [73]). In Fig. 1.3 we compare

our perturbative calculations to SU(3) lattice data for the color averaged free energies at

several temperatures in the deconfined phase. Details on our computations are summarized

in Appendix B. In order to provide a detailed analysis of the quark antiquark free energy

we refer in that figure to the dimension-less quantity defined as

Sqq̄(r, T ) = −9

[
1

rT

]−2

× δFqq̄(r, T )

T
. (1.14)
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This so-called screening function Sqq̄(r, T ) [74] is defined in the spirit of high temperature

leading order perturbation theory and hence should show the exponential fall-off due to

color screening (hence its name) at large distances. It can be seen that our perturbative

calculation does not fit the lattice data at T <∼ 3Tc. This break-down of perturbation

theory is not too surprising as the coupling at such small temperatures is presumably still

large and inherent non-perturbative effects at temperatures close to Tc are well-known to

enter the free energies [33]. At higher temperatures, however, the validity of perturbation

theory is much improved at these distances.

At small distances the lattice data for
√

Sqq̄(r, T ) in Fig. 1.3 show a weakening which

is not expected from high temperature perturbation theory. We will see in the analysis

performed in this chapter (and see also chapter 2) that this weakening of the screening

function at short distances is caused by two effects. First of all it results from a weakening

of the power-like behavior of the free energies at short distances, i.e. δFqq̄ ≃ −1/r2 →
−1/r. This reduction in the power behavior presumably suggests that at short distances

the color averaged free energies are dominated by some effective one gluon exchange. An-

other reason for a decrease of the screening function is that Coulomb part of the the finite

temperature free energies is dominated by vacuum physics at small distances, i.e. the

running of the coupling, g2(r). The latter effect also means a conceptual barrier for a

description of free energies in high temperature (g2(T ) → 0) perturbation theory at such

small distances. This is indeed expected from the separation of length scales at finite

temperature discussed with (1).

In the following section we introduce the heavy quark free energies and their relation to

the Polyakov loop and its correlation functions with more rigor. We follow here closely

the analysis of Refs. [9, 23] as we pay attention to the formulations of the color singlet

and color octet free energies in a genuinely gauge independent manner.

1.2 The Polyakov loop and its correlation functions

As we will be interested in the lattice formulation of the pure gauge theory at finite

temperature in thermal equilibrium, we consider the Euclidean path integral throughout

this thesis. In this case, the grand canonical partition function Z(T, V ) is basically given

as an integral over the gluon fields Aµ,

Z(T, V ) =

∫

DAµe
−SE [Aµ], (1.15)

where T denotes the temperature and V the finite volume. Both, the temperature and

the volume, can be defined in the equilibrium as integration boundaries of the Euclidean

Lagrangian LE which gives the gauge action SE ,

SE [Aµ] =

1/T∫

0

dx0

∫

V

d3x LE [Aµ] =
1

2

1/T∫

0

dx0

∫

V

d3x TrFµν(x)Fµν(x), (1.16)
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where Fµν(x) is the usual field strength tensor of the SU(N) gauge theory,

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] , (1.17)

and x = (x0,x). The theory defined through (1.16) is quantized in terms of the path

integral defining the partition function (1.15). For instance, any observable will be ex-

pressed through the expectation value of the corresponding operator, 〈Ô〉, which in the

path integral formalism is calculated from its classical counter part, O,

〈Ô〉 =
1

Z(T, V )

∫

DAµ O e−SE [Aµ]. (1.18)

As in general the quantity 〈Ô〉 contains infinities, this quantity is related to the physical

observable only up to renormalization. All thermodynamic information about the system

can be deduced from the partition function (1.15), once it is known properly. A review on

this topic in thermal QCD can be found in [19]. A general overview on finite temperature

field theory is provided in textbooks (see for instance [11, 12]).

1.2.1 Polyakov loop and heavy quark free energy

We are now interested in the free energy of one4 static quark placed into the gluonic heat

bath. Following Ref. [9], this can be formulated in terms of the thermal Wilson line L(x),

the so-called Polyakov loop defined in [76],

TrL(x) = TrT exp



i

β∫

0

dx0λ ·A0(x0,x)



 , (1.19)

which describes the propagation of the static quark along the time direction. In this

relation the trace is normalized such that Tr1 = 1. The expectation value of the thermal

Wilson line is related to the difference in free energy, ∆Fq, due to the presence of a static

quark in the gluonic heat bath, via

e−β∆Fq(x) ≃ 〈TrL(x)〉. (1.20)

Note that this relation is correct only up to renormalization. Some notes are in order:

First we note that we define the Polyakov loop as the trace of the thermal Wilson line [77].

Thus, the Polyakov loop TrL(x), is a gauge invariant quantity. Secondly, offhand, the

Polyakov loop is an element of SU(N) and is therefore complex. Moreover, the pure gauge

theory has a global Z(N) symmetry, where Z(N) is the center of the group of SU(N).

The elements of the center of SU(N) are given by the matrices

exp (iφ)1 where φ =
2πk

N
and k = 0, 1, ..., (N − 1), (1.21)

4As we are interested in this section in the Polyakov loop expectation value and not in its correlation

functions, we examine here the case of one single test quark. The existence of a single test color charge

in the gluonic heat bath is complicated as the Polyakov loop expectation value will vanish. We will not

elaborate here any further on as we will define the Polyakov loop expectation value from the large distance

properties of the 2-point correlation functions. In fact, the rather formal problems with single color charges

drop out in this way. The general case with n quarks and n̄ antiquarks is given in Ref. [9]. It should be

noted, however, that this discussion is complicated through the problem of triality [9, 75].



24 Heavy quark free energy and the running coupling at finite temperature

which are complex for N > 2. Under such a transformation the Polyakov loop trans-

forms like TrL → eiφTrL. It follows that the Polyakov loop expectation value is N -fold

degenerate,

〈TrL〉 = exp

(

i
2πk

N

)

|〈TrL〉|, (1.22)

where in pure gauge theory each of these degenerate vacua is equivalent. In conclusion,

the value of the Polyakov loop, TrL, is a complex number for N > 2 and its expectation

value given in Eq. (1.20) vanishes. This situation changes much, however, in full QCD, for

instance in the presence of massive quarks. In this case, the only stable vacuum is that

for which 〈TrL〉 is real (k = 0). Another property of the Polyakov loop expectation value

is the following one: Confinement implies a vanishing Polyakov loop expectation value,

|〈TrL〉| = 0 [76]. On the other hand, in the deconfinement phase one expects |〈TrL〉| 6= 0

and moreover, a weak coupling will lead to |〈TrL〉| = 1, which is supposed to be its high

temperature limit. Therefore, 〈TrL〉 is said to be an order parameter for the confinement

deconfinement phase transition, quite similar to the magnetization in a ZN spin system.

Thus, if |〈TrL〉| turns on continuously at Tc the transition is of second order. If it will

behave discontinuously at Tc it indicates a first order phase transition. It is supposed, that

the phase transition in SU(3) is of first (or weakly first) order [48], while the transition in

SU(2) is a second order one [56].

1.2.2 Polyakov loop correlation functions

We are interested in the state of n static quarks at spatial positions x1,x2, ...,xn and a

number n̄ of their charge conjugate partners, static antiquarks at positions x̄1, x̄2, ..., x̄n̄.

In general, the heavy quark free energy Fnq,n̄q̄ is defined as the logarithm of the partition

function Znq,n̄q̄ of the thermal (gluonic) system containing n static color sources and n̄

static anti-color sources,

Znq,n̄q̄(V, T,x1, ...,xn, x̄1, ..., x̄n̄) ≡ exp

(

−Fnq,n̄q̄(V, T,x1, ...,xn, x̄1, ..., x̄n̄)

T

)

=

∫

DAµe
−SE [Aµ]

n∏

i=1

TrL(xi)

n̄∏

i=1

TrL†(x̄i), (1.23)

where the trace is normalized such that Tr1 = 1. The corresponding expectation value of

the product of Polyakov loops is related to the difference in free energy due to the presence

of static q(q̄)-sources in the gluonic thermal heat bath [9]:

〈
n∏

i=1

TrL(xi)
n̄∏

i=1

TrL†(x̄i)

〉

=
Znq,n̄q̄(V, T,x1, ...,xn, x̄1, ..., x̄n̄)

Z(V, T )

= exp

(−∆Fnq,n̄q̄(V, T,x1, ...,xn, x̄1, ..., x̄n̄)

T

)

,

where

∆Fnq,n̄q̄(V, T,x1, ...,xn, x̄1, ..., x̄n̄) ≡ Fnq,n̄q̄(V, T,x1, ...,xn, x̄1, ..., x̄n̄) − F (V, T ). (1.24)
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In this relation Z(V, T ) = exp(−F (V, T )/T ) is the partition function of the pure SU(N)

gauge theory introduced in (1.15). The free energies described above consist of a contribu-

tion from the (internal) energy ∆Enq,n̄q̄ and of a contribution from the entropy ∆Snq,n̄q̄.

In general the statement is ∆Fnq,n̄q̄ = ∆Enq,n̄q̄ − T∆Snq,n̄q̄, where

∆Enq,n̄q̄(V, T,x1, ...,xn, x̄1, ..., x̄n̄) ≡ Enq,n̄q̄(V, T,x1, ...,xn, x̄1, ..., x̄n̄) − E(V, T ),

∆Snq,n̄q̄(V, T,x1, ...,xn, x̄1, ..., x̄n̄) ≡ Snq,n̄q̄(V, T,x1, ...,xn, x̄1, ..., x̄n̄) − S(V, T ). (1.25)

In this relations we consider the quantities E(V, T ) and S(V, T ) with respect to the free

energy F (V, T ),

F (V, T ) = E(V, T ) − TS(V, T ). (1.26)

In particular, we will consider in our discussion the 2-point Polyakov loop correlation

functions (n = n̄ = 1) and the Polyakov loop expectation value 〈TrL〉. A convenient

starting-point for a discussion of these quantities is to consider the correlation function of

the Polyakov loop, G(r, T ), and the correlation function of the (untraced) Polyakov loop,

H(r, T ), where the latter one is a gauge dependent quantity:

G (r, T ) =
〈

TrL(x1)TrL†(x̄1)
〉

(1.27)

H (r, T ) =
〈

L(x1)L
†(x̄1)

〉

, r ≡ |x1 − x̄1|. (1.28)

The Polyakov loop expectation value 〈TrL〉 is defined through the disconnected part of

the correlation function G(r, T ). Since the r-dependence of a correlation function of op-

erators is controlled through the connected parts, which vanish if the distance between

the operators becomes large, it is possible to define the Polyakov loop expectation value

through the large distance behavior of n-point Polyakov loop correlation functions. We

define 〈TrL〉 through the large distance behavior of G(r, T ),

|〈TrL〉| = lim
r→∞

(G(r, T ))1/2 . (1.29)

In this way |〈TrL〉| ∈ R can be related to the free energy ∆Fq ∈ R of a single test

quark. The decomposition of the 2-point Polyakov loop correlation function of the traced

Polyakov loops in Eq. (1.27) in the (color) singlet and the adjoint (∼ color octet for N ≡ 3)

representation is expressed in terms of projection operators P1 and PN2−1 defined as

P1 =
1

N2
1⊗ 1− 2

N
T̄ a ⊗ T a ,

PN2−1 =
N2 − 1

N2
1⊗ 1+

2

N
T̄ a ⊗ T a, (1.30)

where T a (a = 1, ..., (N2 − 1)) denote the generators of the gauge group SU(N) [58, 57].

The color singlet (∆F1(r, T )) and the color adjoint (∆FN2−1(r, T )) quark antiquark free

energies are defined in terms of the projection operators applied to the correlation function

of the untraced Polyakov loop H(r, T ), which leads to (see [23])

exp

(

−∆F1(r, T )

T

)

=
Tr(P1H(r, T ))

TrP1
=
〈

TrL†(x̄1)L(x1)
〉

(1.31)
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and

exp

(

−∆FN2−1(r, T )

T

)

=
Tr(PN2−1H(r, T ))

TrPN2−1

=
N2

N2 − 1

〈

TrL†(x̄1)TrL(x1)
〉

− 1

(N2 − 1)

〈

TrL†(x̄1)L(x1)
〉

. (1.32)

As it stands, the color singlet and color adjoint free energies defined in (1.31) and (1.32)

are gauge dependent quantities. In order to determine ∆F1 and ∆FN2−1 properly one

has to fix the gauge. However, it has recently been shown [23], that a gauge independent

definition of the color singlet and color adjoint free energies can be achieved in terms of

dressed Polyakov lines, L̃(x) = Ω†(x0,x)L(x)Ω(x0,x) with Ω ∈ SU(N), and that such a

definition coincides with (1.31) and (1.32) in Coulomb gauge. In general the statement is

that one has to fix a gauge which is local in time and leads to a positive transfer matrix5.

According to the decompositions given above, the 2-point correlation function of the traced

Polyakov loop, G(r, T ) in (1.27), is related to the color singlet and color adjoint free energy

through [9]

G(r, T ) =
1

N2

(

e−∆F1(r,T )/T + (N2 − 1)e−∆F
N2−1(r,T )/T

)

= exp

(

−∆Fqq̄(r, T )

T

)

(1.33)

which defines ∆Fqq̄(r, T ). According to the statistically weighted decomposition of G(r, T )

into the color singlet and color octet free energy, ∆Fqq̄(r, T ) is referred to as the color

averaged free energy.

1.2.3 Lattice formulation of the qq̄-free energy and lattice artifacts

The path integral appearing in Eq. (1.15) is regularized by introducing a four dimensional

space-time lattice of sizeN3
σ×Nτ with a lattice spacing a. The volume and the temperature

introduced in (1.16) are then related to the number of lattice points in the space (Nσ) and

in the time (Nτ ) directions, respectively,

V = (Nσa)
3 , T = (Nτa)

−1 . (1.34)

Enforced by the requirement of gauge invariance one introduces link variables Uµ(x) which

are associated with the link between two neighboring sites of the lattice and describe the

parallel transport of the field Aµ from the site x to the neighboring site in the µ̂ direction,

x+ µ̂a,

Uµ(x) = T exp

(

ig

∫ x+µ̂a

x
dxµAµ(x)

)

. (1.35)

5It has recently been shown with numerical lattice data that modifications appear in the color octet

and singlet free energies when using different gauges which are local in time [78]. They conclude that this

may indicate that the statement made in Ref. [23], i.e. that one can fix to any local-in-time gauge, is too

strong. As it is, however, explicitly shown that the results in Coulomb gauge fixed by us coincide with

the gauge independent definition of the singlet and octet free energies, this statement does not affect our

analysis.
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The link variables Uµ(x) are thus elements of the SU(N) color group. We will not elaborate

here any further on details of the lattice formulation as it is described in textbooks and

review articles [18, 19].

The straightforward formulation of the Polyakov loop in (1.19) on a lattice with periodic

boundary conditions in time direction is

TrL(x) = Tr

Nτ−1∏

x0=0

U0(x0,x), (1.36)

where U0(x0,x) ∈ SU(N) denotes the gauge link variable on the lattice in time direction

with respect to (1.35). Inserting (1.36) in Eqs. (1.33), (1.31) and (1.32) we calculate the

color averaged, the color singlet and color octet (N ≡ 3 in our calculations) heavy quark

antiquark free energy on the lattice. As discussed above, we need to fix the Coulomb

gauge. On the lattice, this can be done by maximizing

ReTr
∑

µ=1,2,3

(

Uµ(x0,x) + U †
µ(x0,x + µ̂)

)

, (1.37)

which is local in time. In fact, the equivalence of maximizing this quantity and fixing the

Coulomb gauge (∂iAi = 0) is explicitly shown [23]. Finally we note that

∆Fi(r, T ) = Fi(r, T ) − F (T ) (1.38)

for i = 1, 8, qq̄, where F (T ) is defined through (1.26) and we have assumed the infinite

volume limit.

For our study of the short distance properties of the 2-point Polyakov loop correlation

functions we also use lattice calculations at off-axis separations on the lattice. At short

distances these calculations suffer from violations of rotational symmetry although a tree

level improved lattice gauge action will be used by us. At short distances deviations from

the continuum remain also in the on-axis data. In order to correct for these violations we

used the lattice Coulomb potential to redefine the distances (r → rI) as suggested in [55]:

We replace Fi(r, T ) with Fi(rI , T ) for i = 1, 8, qq̄ where

1/rI = 4π

∫ +π

−π

d3k

(2π)3
exp(ikr)D

(0)
00 (k) (1.39)

denotes the lattice Coulomb term. For our improved action, D
(0)
00 (k) denotes the tree level

gluon propagator on the lattice [79, 80]:

D
(0)
00 (k) =




∑

i=1,2,3

sin2(ki/2) +
1

3
sin4(ki/2)





−1

. (1.40)

As an example we show in Fig. 1.4 the short distance lattice data of the color singlet

quark antiquark free energy δF1(r, T ) ≡ ∆F1(r, T ) − ∆F1(r → ∞, T ) at T/Tc = 1.5

calculated with the tree level improved Symanzik gauge action using the lattice distances

a
√
n (n = 1, 2, 3, ...) (in units of the string tension) and with the improvement through
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Figure 1.4: The color singlet free energy δF1(r, T ) ≡ ∆F1(r, T ) − ∆F1(r → ∞, T ) compared to

δF1(rI , T ) at fixed temperature T/Tc = 1.5. The black filled data points refer to the improved

distance rI while the grey open symbols show the bare lattice distance in units of the string tension√
σ. This figure shows the results of our calculation for small quark antiquark separations, which

in units of the lattice spacing a are defined at a
√
n with n = 1, 2, ....

the lattice Coulomb potential, respectively. The open circles show the free energy as a

function of r and the closed symbols show results corrected with rI . Following Ref. [55],

the data of δF1(rI , T ) are supposed to show less lattice artifacts than δF1(r, T ) at short

distances. In fact, although we have used a tree level improved action, at short distances

δF1(r, T ) shows deviations from a smooth curve, while δF1(rI , T ) seems to correct for

these deviations, as the closed symbols rather look like ’interpolating’ between δF1(r, T ),

while at distances a
√
n and n >∼ 6 the corrections become less important as the improved

lattice gauge action shows a better behavior with respect to rotations. Similar results have

been obtained by us at all temperatures.

In our discussions of the free energies we are also interested in the derivatives of the

free energy with respect to distance, r, which at short distances is sensible to lattice

artifacts. In order to avoid any fit to the quite complex structure of the free energies at

short distances we want to perform the differentiation using directly the lattice data. For

instance, we calculate

Don(r̃, T ) =
∆F1(rI [(n+ 1)a], T ) − ∆F1(rI [na], T )

rI [(n+ 1)a] − rI [na]
, n = 1, 2, 3, ..., (1.41)

where r̃ = rI [na + a/2]. When replacing r with rI the quantity r̃2Don(r̃, T ) is known to



1.2 The Polyakov loop and its correlation functions 29

reproduce the continuum limit up to O(a4) corrections [79]. This method has successfully

been applied at distances r >∼ 2a [55]. However, as we are interested in the properties

of the free energy at quite short distances it is convenient to include also off-axis data

since at short distances the free energies change a lot as function of the separation of the

color sources. In fact, this allows us to analyze the lattice data at shorter distances than

rI [a(2 + 1/2)]. For instance, the shortest distance resolved by us in terms of derivatives is

r̃ = rI [a(1 + 1/
√

2)].

In this thesis we are interested in an analysis of the different thermal properties of the

Polyakov loop and its correlation functions in color SU(3). In our numerical calculations

we use a tree level Symanzik-improved gauge action on the lattice consisting of 1× 1 and

2 × 1 loops. This construction of the gauge action on the lattice is known to correct for

the leading ultra-violet cut-off effects and improves the approach to the continuum limit

[79, 81]. In the Polyakov loop correlation functions this influences in particular the regime

of short quark antiquark separations, as the rotational symmetry gets improved at dis-

tances which become comparable to the lattice spacing a, r ∼ O(a). We have calculated

the color singlet, color octet and color averaged free energies with the methods described

above using lattices of size 323×Nτ with Nτ = 4, 8 and 16. In parts of our analysis we also

used lattices of size 483 × 4 and 643 × 4. This allows us to discuss the free energies from

large (rT ≫ 1) to quite small (rT ≪ 1) distances. In fact, the smallest distance which

can be resolved on the lattice is given by rT = 1/Nτ while the largest distance is limited

through rT = Nσ/(2Nτ ). We have calculated the free energies for temperatures close to

the deconfinement point in both phases up to temperatures about 12Tc. We thus mainly

discuss here the thermal modifications of the free energies in the deconfined medium.

The rest of this chapter is organized as follows: We begin with our analysis of the free

energies at temperatures above Tc. We study the thermal properties of the color singlet and

color octet free energies in detail at small, intermediate and large distances. For instance

we extract the chromo-electric screening masses from the color singlet free energies up to

temperatures of about 12Tc and compare our results to leading order perturbation theory.

We also investigate the r-running of the finite temperature coupling extracted from the

free energies. Finally we discuss our lattice results for the free energies at temperatures

below Tc.

We should note here that earlier studies of the color singlet and octet free energies per-

formed by us were based on the cyclic Wilson loop [73, 82]. The cyclic Wilson loop is a

gauge independent operator and is suggested [57] to give the color singlet free energies at

small distances. Throughout this thesis we will, however, present and discuss only lattice

data for the free energies calculated from (1.31) and (1.32) in Coulomb gauge as these

data yield the color singlet and octet free energies in a gauge independent manner at all

distances.
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1.3 Further analysis of the quark antiquark free energies at

high temperature

For the study of the color singlet and octet free energies in the deconfinement phase we

follow here the conceptual approach we have used for the color averaged free energies. We

normalize the free energies such that they vanish at large distances by means of subtracting

the disconnected part from the correlation functions, for instance

δF1(r, T )

T
≡ − ln

〈TrL(x)L†(x̄)〉
|〈L〉|2 , |x − x̄| = r , (1.42)

and similarly we define δF8(r, T ). This normalization, however, leads to a strong temper-

ature dependence in the free energies at short distances. Although this normalization is

physically unmotivated as one would expect zero temperature vacuum physics at small

distances, this normalization allows to study relations from high temperature perturbation

theory and also screening effects become transparent when using this normalization.

1.3.1 Short versus long distances

We will first discuss the cross-over from the short distance Coulomb-like behavior of the

color singlet free energies to the color screened long distance behavior. It is indeed con-

venient to do this in terms of color singlet free energies as they have the advantage that

perturbative calculations at small distances, rT ≪ 1, which are supposed to be valid for

g2(r) ≪ 1, as well as at large distances, rT ≫ 1, which are supposed to be valid at high

temperatures where g2(T ) ≪ 1, are both dominated by one gluon exchange diagrams

[58, 24]:

δF1(r, T ) ≃ −g
2(r)

3πr
for rT ≪ 1 (1.43)

while

δF1(r, T ) ≃ −g
2(T )

3πr
e−µ(T )r for rT ≫ 1. (1.44)

Motivated by these asymptotic forms we introduce the screening functions, S1(r, T ), for

the color singlet free energies as

S1(r, T ) = −3

4

[
1

rT

]−1

× δF1(r, T )

T
. (1.45)

In the spirit of perturbation theory this quantity is supposed to be related to the coupling

g2(r, T ) while at large distances it carries information about color screening (hence its

name) and is thus supposed to drop exponentially. At very short distances, however,

one would expect that the screening functions recover the properties of vacuum physics

in terms of a logarithmic weakening of the coupling g2(r). Consequently we expect that

S1(r, T ) will exhibit a maximum at some intermediate distance which we can identify as

the point separating the short distance regime from the long distance regime.
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Figure 1.5: Lattice results for the color singlet free energies at temperatures above Tc. In this

figure we have normalized the free energies such that they approach zero at large distances. The

screening function we show here in terms of the color singlet free energies is defined in (1.45). We

summarize in this figure lattice data from simulations on lattices of size 323 × 4, 8 and 16. The

grey lines which match the lattice data correspond to fits with respect to an r- and T -dependent

coupling. These fits are discussed in Sec. 1.3.3.

In Fig. 1.5 we show lattice results for the color singlet free energies at several temperatures

in the deconfined phase in terms of the screening functions, S1(r, T ). The expected fea-

tures discussed above are clearly seen in this figure. At temperatures below 3.0Tc a clear

maximum is visible in the screening functions. At higher temperatures the tendency to

develop a maximum is also apparent. However, in those cases our simulations could not

be performed at sufficiently small distances to demonstrate this property clearly. We find

that the maximum occurs at rT ≃ 0.3 at a temperature about 1.2Tc, corresponding to

r ≃ 0.2 fm, and slowly shifts to smaller values at higher temperatures. Beyond this scale

S1(r, T ) drops rapidly and thus exhibits screening. We note, however, that the screening

function takes on a proper exponential form only for distances rT >∼ 1. This property can

clearly be seen when plotting the screening functions on a logarithmic scale.

In Fig. 1.6 we show our lattice results for the color octet free energies at several tem-

peratures above the deconfinement point. Similarly to the data for the color singlet free

energies we have subtracted from these free energies the disconnected part of the correla-

tion functions. It can be seen from that figure that the color octet free energies behave

indeed repulsive at small distances. In general, to leading order high temperature pertur-

bation theory the color octet free energies are given similarly to the singlet free energies by
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Figure 1.6: The color octet free energies from lattice simulations with lattices of size 323 × 8

at several temperatures above Tc. The free energies in this figure are normalized such that they

approach zero at large distances.

one gluon exchange. Thus, a proper Coulombic behavior is expected to dominate the color

octet free energies. While this behavior can indeed be identified at high temperatures, the

behavior of the free energies at temperatures smaller than 1.05Tc clearly deviates from

this simple behavior. For instance, the octet free energy at 1.01Tc exhibits a minimum as

function of the distance. At small distances the color octet free energy at that small tem-

perature behaves repulsive while it behaves attractive at distances larger than rT >∼ 0.8.

This property is not expected from perturbation theory and shows that at small temper-

atures still strong non-perturbative effects dominate the color octet free energies.

In conclusion, from the large distance behavior of the color singlet free energies we can

extract screening masses while in the short distance range the r-running of the coupling

can be studied from the finite temperature free energies. We note that S1(r, T ) shows

strong temperature effects even at quite small distances. As discussed above this is to a

large extent due to the normalization of the screening functions, i.e. we have subtracted

a temperature dependent constant, ∆F1(∞, T ), which forces S1(r, T ) to approach zero at

large distances and at the same time introduces an artificial temperature dependence at

small distances.
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1.3.2 Non-perturbative color screening

We discuss the large distance behavior of the free energies at high temperatures and

determine the screening masses from the color singlet free energies. Unfortunately, the

data for the color octet free energies turn out to be still too noisy to investigate their

large distance exponential decay. As we aim to analyze correlated data a fit method is

required which respects the correlation between the data. We thus use correlated fits as

they include also off-diagonal elements of the correlation matrix in this analysis (for details

on this method see for instance [84]). However, with this method it is not possible to fit

the free energies directly. To determine the screening masses from the free energies within

this approach we thus perform a correlated fit of the connected Polyakov loop correlation

function in the color singlet channel

K1(r, T ) = 〈TrL(x)L†(x̄)〉 − |〈TrL〉|2. (1.46)

Due to the exponential screening this correlation function has the same large distance

behavior as the corresponding free energy. Hence it is mandatory that the correlation

function above is fitted carefully at large distances. In our fits we use the general expo-

nential ansatz,

K1(r, T ) =
a(T )

rd
exp(−m(T )r) + c, (1.47)

which includes an additive constant c. For the color singlet free energies one expects d = 1

from perturbation theory as they are dominated by one gluon exchange and this is also

expected from the 3D-effective theory. We thus have fixed d = 1 in this case6. We then

analyzed the correlation function by varying the upper and lower distance limit of the fit

range. On finite lattices the upper limit is given by rT = Nσ/(2Nτ ). We thus have fixed

the upper limit to a distance close to this limitation where we still find reasonable small

χ2/d.o.f.. We used lattices with spatial extent Nσ = 32 and Nτ = 4, 8. The lower fit

range is chosen such that we find a region where the fit results behave stable against the

variation of the lower fit range and in addition we find reasonable small values of χ2/d.o.f..

In general, this leads to a lower fit range of about rT >∼ 1. The errors on these values are

obtained from a Jack-knife analysis. We note that the additive constant c in our fits are

compatible to zero within the statistical errors although they were essential to find small

values for χ2. Our results from this study of the screening masses of the color singlet

free energies are shown in Fig. 1.7 as function of the temperature. In that figure we also

show results for the screening masses of the color averaged free energies (d = 1) at tem-

peratures T <∼ 1.03 calculated from correlated fits and we also summarize the data from

[33]. As the latter data respect an arbitrary d, however, we show these results normalized

with µav = µ/d. Our numerical results from the correlated fit analysis are summarized in

6The fit analysis can equally well be done with the color averaged correlation functions. In this case we

fixed both cases, d = 1 and d = 2. At temperatures close to Tc we noticed that only the case with d = 1 led

to reasonable small values for χ2/d.o.f.. For large temperatures both, d = 1 and d = 2, gave acceptable χ2

values. This may imply that at high temperatures the true large distance behavior of the color averaged

free energies sets in at distances which are considerable larger than those available by the present study.

In our analysis we thus stick to the temperature range where d = 1 is well-established, T <∼ 1.03Tc [85].
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Figure 1.7: The color singlet screening masses (µ1) from correlated fits of the correlation functions

at large distances and the masses (µ) from [33] as function of the temperature. We have normalized

the color averaged masses with the arbitrary power (d), i.e. µav ≡ µ/d. They grey triangles at

temperatures close to Tc denote the results for µav calculated with the correlated fit method with

d = 1 from lattices of size 323 × 4 (triangles up) and 483 × 4 (triangles down) [83].

Tab. 1.1.

It can be seen from that figure that the color singlet screening masses at temperatures

close to the deconfinement point still approach large values while the results for the color

averaged screening masses drop drastically at temperatures close to Tc. For instance,

µ1/T >∼ 2.2 is obtained at the lowest temperature analyzed by us while the masses of

the color averaged free energies from [33] approach values which are quite small, i.e.

µav/T <∼ 0.5. As the screening masses determined from the color averaged free energies

become that small it is an interesting question whether they will vanish at the deconfine-

ment point or will stay finite [12]. To analyze this question in more detail and to take care

of effects from the finite spatial lattice volume at small temperatures we also calculated

the color averaged screening masses using the correlated fit method with d = 1 on lattices

of size 323 × 4 and of size 484 × 4. In fact, d = 1 is suggested up to T <∼ 1.03Tc [85]. The

data from this study are shown in Fig. 1.7 with the grey triangles (323 × 4: triangles up,

483 × 4: triangles down, see also Tab. 1.1). The screening masses determined by us with

this method are larger at temperatures close to Tc than the normalized values, µav = µ/d,

of Ref. [33]. This is mainly due to the fact that we use an uncorrelated fit analysis. From
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Non-perturbative screening masses

singlet averaged

323 × 4 323 × 8 323 × 4 483 × 4

T/Tc µ1(T )/T T/Tc µ1(T )/T T/Tc µqq̄(T )/T T/Tc µqq̄(T )/T

1.0128 2.20 (11) 1.2 2.83 (39) 1.0128 1.03 (3) 1.0034 0.84 (5)

1.031 2.39 (13) 1.5 2.42 (39) 1.031 1.32 (9) 1.0128 1.08 (3)

1.05 2.49 (07) 3.0 2.02 (19)

1.10 2.72 (10) 6.0 1.87 (16)

1.15 2.71 (10) 9.0 1.83 (29)

1.24 2.66 (14) 12.0 1.82 (28)

1.68 2.48 (08)

2.21 2.16 (09)

3.00 2.12 (06)

Table 1.1: The non-perturbative screening masses determined from the large distance exponential

screening of the correlation functions. We used here the correlated fit method. The error estimate

respects the Jack-knife analysis for the statistical uncertainty and the systematic uncertainty from

the variation of the fit range.

a comparison of the correlated fit data of both lattices it follows that the finite size effects

are negligible. Form our analysis it follows that the discontinuity in the screening mass for

the color averaged free energy is about µav(Tc) ≃ 0.7Tc. It is thus most likely that the

screening masses for the color averaged free energies will stay finite at the deconfinement

point. This behavior thus signals a first order phase transition. Further discussions of the

screening masses will be presented elsewhere (see Ref. [83]).

We have also analyzed the color singlet screening masses at high temperatures. At

high temperatures the color singlet masses (in units of the temperature) deduced by us,

µ1(T )/T , decrease continuously with increasing temperature. In general this behavior is

suggested by leading order perturbation theory (1.11) due to the weakening of the cou-

pling, g(T ). To make contact with high temperature perturbation theory we adjusted

the leading order color electric screening mass to our data at the highest three tempera-

tures analyzed by us (i.e. T>∼6Tc) using the ansatz me/T = Ag(T ). For the temperature

dependent (renormalized) coupling g2(T ) we used the two-loop formula

g−2(T ) = 2b0 ln

(
2πT

ΛMS

)

+
b1
b0

ln

(

2 ln

(
2πT

ΛMS

))

(1.48)

where b0 = 11/(16π2) and b1 = 102/(16π2)2. The scale is set by Tc/ΛMS = 1.14(4)

[86, 87] and the lowest Matsubara frequency 2πT . Perturbation theory suggests A = 1

for the color singlet screening mass. The fit, however, leads to A = 1.52(15) which is

incompatible with this value, although the temperature dependence of the lattice data

can be well-described with this perturbative inspired ansatz down to surprisingly small

temperatures about T >∼ 2Tc.

Finally we note that the values for the screening masses deduced by us for the color
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averaged free energies are close to recent results for the screening masses from plane-plane

correlations of Polyakov loops using a simple exponential fit [88], i.e. without power-like

pre-factors. We also note that the screening masses extracted from recent analysis of the

Landau gauge gluon propagator yield similar results to ours [89].

1.3.3 Notes on the running coupling at finite temperature

We now turn to a discussion of the color singlet free energies at small distances. In order

to eliminate any dependence of the free energies on (arbitrary) temperature dependent

normalization which for instance get introduced due to the normalization of the screening

functions we follow here the approach which is frequently used at zero temperature in order

to eliminate the dependence on zero temperature renormalization constants. We calculate

the derivative of the finite temperature free energies with respect to distance as discussed

in Sec. 1.2.3 at each fixed temperature, d∆F1(r, T )/dr. This eliminates undetermined

constant contributions to ∆F1(r, T ). The quantity

αeff(1)(r, T ) =
3r2

4
× d∆F1(r, T )

dr
(1.49)

then is supposed to provide an estimate of the running coupling constant at finite temper-

atures. We thus call αeff(1)(r, T ) the effective running coupling. At zero temperature a cor-

responding detailed analysis has recently been performed by analyzing the short distance

properties of the heavy quark potential [55]. At high temperatures and large distances,

however, αeff(1)(r, T ) will be dominated by the temperature scale and color screening ef-

fects will set in. We thus expect that the effective coupling will smoothly change from the

temperature dominated region at large distances (rT ≫ 1) to the r-dominated region at

short distances (rT ≪ 1) where vacuum physics is expected.

We compare our finite temperature results to the high statistics calculation of Ref. [55]

in Fig. 1.8. In this figure the results of the numerical calculation of the zero temperature

heavy quark potential at distances r >∼ 0.1 fm are summarized by the fat black line. Also

shown in this figure is the Cornell potential from the string picture with the thin grey

line. This line agrees with the lattice data at zero temperature for r >∼ 0.1 fm but strong

deviations from the finite temperature data are expected at small distances.

Our numerical results on αeff(1)(r, T ) in the QCD plasma phase clearly show a running

with the dominant length scale r at small distances. For temperatures below 3Tc we

find that αeff(1)(r, T ) agrees with the zero temperature lattice data in its entire regime of

validity. Only at larger distances thermal effects become visible and lead, as expected, to

a decrease of the coupling relative to the coupling at zero temperature. For temperatures

higher than 3Tc this effect is also visible at smaller distances. At small distances the

effective couplings coincide at different temperatures while the thermal effects become

visible at large distances. In fact, at large distances the effective coupling will be effected

much by screening. The high temperature data for αeff(1)(r, T ) indeed show this behavior

as they vanish at large distances.

The study of the effective coupling at finite temperature could equally well be done in
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Figure 1.8: The derivative of the color singlet free energies with respect to r at different temper-

atures in terms of (1.49) and the zero temperature running coupling from [55] (thick black line).

Also shown is in this figure the potential from the zero temperature string picture (thin grey line)

and the 3-loop calculation from [55] (thin black line). The inserted figure contains only the values

of the derivatives of the free energies at the shortest distances available by us. These values are

also compared to the perturbative 3-loop coupling [55] in the so-called qq-scheme. In this small

figure we also summarize values at temperatures below Tc (stars and crosses). For more details see

the text.

terms of the data for the free energies in the color octet channel. In this case, leading

order perturbation theory suggests that the effective coupling defined as

αeff(8)(r, T ) = −r
2

6
× d∆F8(r, T )

dr
(1.50)

yields similar results than αeff(1)(r, T ) at small distances. We have indeed analyzed this

relation and find that both estimates for the effective running coupling yield consistent

results at small distances. At large distances differences become visible. They are, how-

ever, quite small at temperatures larger than 6Tc.

The conclusions drawn from our analysis of the color singlet free energies at small distances

are twofold: First of all it follows that the color singlet and color octet free energies cannot

be described by a simple color screened Coulombic term, i.e. ≃ −a(T )e−m(T )r/r at small

distances (rT ≪ 1), as the logarithmic r-running of the coupling becomes quite important.

In contrast to this, at large distances (rT ≫ 1) the scale in the coupling is clearly set by the
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temperature as the color singlet free energies can be well-fitted with this simple screened

Coulombic ansatz. The analysis of the r- and T -dependence is more transparent in terms

of color singlet free energies7.

Moreover, it follows that the finite temperature effective coupling αeff(1)(r, T ) can be de-

scribed at small distances by zero temperature perturbation theory. This property can

clearly be seen from the small inserted figure in Fig. 1.8. In that figure we compare αeff(1)

at the two smallest distances for each temperature. They indeed give the coupling at zero

temperature from distances of about r ≃ 0.1 fm down to r ≃ 0.01 fm and agree well

with the lattice data from [55] at larger distances. In that figure we have also summarized

lattice data for the color singlet free energies at temperatures below Tc. They are denoted

by crosses (T = 0.75Tc), by switched crosses (T = 0.90Tc) and by stars (T = 0.94Tc). In

conclusion, it is possible to extract the zero temperature part from the finite temperature

free energies below and above Tc.

We should stress here that the observation of vacuum physics in our finite temperature

free energies at small distances will be conceptually essential for our approach used in

the renormalization of the Polyakov loop on the lattice. This long standing problem is

subject of the next chapter. Before we turn to details on this we briefly discuss the thermal

properties of free energies in a confined medium.

1.4 Notes on the quark antiquark free energies below Tc

In the string picture (in the Gaussian approximation) discussed in Sec. 1.1 the string does

not contain any internal degrees of freedom nor does it have reference to internal color

7It is also of considerable importance (see for instance our discussions in chapter 3) to find an accurate

parameterization for the free energies which allows to fit the data from short to large distances. Naively, one

would expect that the scale (µ(r, T )) in the coupling αeff(1)(µ) could be set by µ ≃ 1/r +T as this leads to

a dominant temperature scale at large distances while the scale is set by the distance at small r. By setting

the scale in this way the singularity in the perturbative coupling at zero temperature, α(r) ≃ 1/ ln(1/rΛ), at

distances which become comparable to the (inverse) QCD-Λ-scale is removed at finite temperature. Thus,

this scale-ansatz could indeed be used to parameterize αeff(1)(r, T ) and the screening functions S1(r, T ).

We used the leading order perturbation theory to motivate a parameterization g2(r, T ) ≃ 1/ ln(µ/Λ) with

µ ≃ 1/r + T for the coupling in the cross-over regime. In terms of the screening functions we thus use

S1(r, T ) ≃ g2(r, T ) exp (ρ(T )g(r, T ) × r) (1.51)

as this ansatz in addition to the scale dependence in the coupling g2(r, T ) could also respect the onset of

screening as function of distance, ρ(T )g(r, T ). Our results of fits of this function to lattice data for S1(r, T )

are shown as grey lines in Fig. 1.5. It can be seen from that figure that such a kind of parameterization can

fit the lattice data for the screening functions from short to large distances. Once the free parameters in

(1.51) are fixed this parameterization allows to study separately the coupling g2(r, T ) and the exponential

screening as function of T and r. We note here that we find a reasonable functional dependence of the

coupling and the values for ρ(T )g(r, T ) at distances about rT >∼ 1 are close to the values summarized in

Tab. 1.1. The values m(T ) = limr→∞ ρ(T )g(r, T ), which could be used to define screening masses, are

about 15% larger than the values in Tab. 1.1.

However, also other (energy-) scales, i.e. rT 2, 1/Tr2, ..., may become important in the cross-over region.

A different discussion from ours can be found in [90].
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structures. It thus equally well should describe the color singlet and color octet quark

antiquark free energies. Indeed, no additional8 boundary conditions are introduced on the

surfaces which cover the operator correlation given by 〈TrL(x)L†(x̄)〉 in (1.31) and (1.32).

In conclusion, the string picture in the Gaussian approximation suggests a confining color

singlet and color octet free energy, and, more importantly, the string tension of the quark

antiquark free energies in all three color channels is supposed to show a unique tempera-

ture dependence, i.e. σ1,8,qq̄(T ) = σ(T ).

We present our lattice results for the Polyakov loop correlation functions at temperatures

below Tc. Our results for the color singlet and color octet free energies at various temper-

atures are shown in Fig. 1.9. The left figure (A) shows the color singlet free energies while

the right figure (B) shows our results for the color octet free energies. In both figures

the free energies are given in units of the temperature (∆F1,8(r, T )/T ) as functions of the

distance rT . The lattice data we summarize in these figures are related to the free ener-

gies only up to renormalization. It can be seen from these figures that the color singlet

and color octet free energies indeed signal confinement at large distances as they increase

with increasing distances. Thus, the color octet contributions to the color averaged free

energies turn out to be quite important in a confined medium [82]. Similar findings are

reported for color SU(2) [23, 69].

Deviations from a common behavior of the color singlet and octet free energies can be

seen at intermediate and small distances. While the color singlet free energies behave

attractive in the entire distance range covered by the lattice data, the color octet free

energies signal the beginning of a repulsive behavior at small distances. A repulsive color

octet free energy is indeed expected from perturbation theory through (1.9). We thus

expect to find agreement with perturbation theory at smaller distances.

It follows from our discussion given above that deviations of the free energies at some fixed

temperature from a common behavior in all three color channels indicate an incompati-

bility with the Gaussian string picture. From a closer inspection of the free energies in

Fig. 1.9 it follows that the color singlet, octet and averaged free energies start to coincide

at distances rT >∼ 2.5 which thus gives a lower limit for the validity of the Gaussian string

picture. At those large distances also the predicted term ln(rT ) from Eq. (1.5) can be

well identified with the predicted strengths in the color singlet and octet free energies.

For instance, when subtracting this term from the color singlet, octet and averaged free

energies (not explicitly shown here) one can clearly observe that the free energies describe

a simple linear behavior at such large distances. At smaller distances the color averaged

8This property may change when analyzing the cyclic Wilson loop in the string picture instead of

〈TrLL†〉. In fact, in the case of the cyclic Wilson loop, one would in addition to the usual boundary

conditions demand that the fluctuations of the string vanish on the (straight) gauge link connection between

the two loops. This condition will indeed not affect the leading order term, which is still given by σrT−1,

but may change the sub-leading corrections to ∆F1/T . In spirit of (1.32), also the sub-leading terms to

∆F8 may change. It is an interesting question whether the different properties of the color singlet and octet

free energies can be reproduced at intermediate distances. Obviously, however, such a kind of investigation

will run into problems at small and large distances as the cyclic Wilson loop is bound to short distances

while the string picture is to large ones.
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Figure 1.9: The color singlet (A) and the color octet (B) free energies (up to renormalization)

as functions of rT at several temperatures below Tc. The couplings β and the corresponding

temperatures are given in Tab. A.1. These data summarize our calculations on lattices of size

323 × 4.

free energies still follow this behavior while the color singlet and octet free energies signif-

icantly deviate from the linear behavior. In fact, the color averaged free energies can be

well fitted to the string picture [33, 54] at much smaller distances than rT ≃ 2.5. In view

of our discussions above, however, this agreement at small distances is quite surprising as

the Gaussian string formation will clearly take place only at larger distances.



Chapter 2

Lattice-Renormalization of the

Polyakov loop

Universal properties of the confinement deconfinement phase transition in QCD are often

discussed in its quenched approximation (∼ SU(3)) where the Polyakov loop is treated as

an order parameter although it is affected by UV divergences and thus requires renormal-

ization. Moreover, 〈TrL〉 is said to be related to the change in free energy ∆Fq due to the

presence of a single test color charge put into a gluonic heat bath [9],

〈TrL〉 ≃ exp(−∆Fq/T ). (2.1)

Implicitly, this assumes that it is possible to go from the bare Polyakov loop expectation

value to its renormalized counterpart. However, although the Polyakov loop is known to

be a renormalizable quantity for a long time [43, 91], how to do this explicitly on the lattice

is still an outstanding problem. Actually, using the lattice formulation, 〈TrL〉 vanishes

due to the presence of these divergences in the continuum limit at fixed temperature and

consequently the heavy quark free energy in (2.1) gets physically ill-defined. Recently we

suggested [92, 93] a new concept of a non-perturbative renormalization prescription for the

Polyakov loop and its n-point correlation functions, which, for instance, works on a lattice.

In this chapter we discuss this non-perturbative renormalization scheme for the 2-point

Polyakov loop correlation functions which will lead us to a proper evaluation of the

Polyakov loop expectation value. As the Polyakov loop is a (non-local) composite op-

erator, one expects1 its renormalization through

LR(x) = ZL

Nτ∏

x0=1

ZUU(x0,x) = ZLZ
Nτ

U

Nτ∏

x0=1

U(x0,x), (2.2)

where the renormalization constant ZU is introduced in order to renormalize the field and

the gauge coupling while ZL respects the composition of the lattice link variables. While

1Or one would think of an even more complicated renormalization structure as composite operators in

general mix with other operators under renormalization. However, this is not the case with the Polyakov

loop [43].

41
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the renormalization of the correlation functions is performed in our scheme in the short

distance regime, the renormalized Polyakov loop expectation value follows from the infi-

nite distance limit of the renormalized 2-point correlation functions. In fact, as in this

approach we rather estimate the renormalized counterpart of |〈TrL〉| rather than of 〈TrL〉,
the relation (2.1) can be formulated properly. Moreover, since ∆Fq signals confinement at

temperatures below Tc while, consistent with deconfinement, it approaches finite values at

T > Tc, it follows that the renormalized Polyakov loop expectation value works as an order

parameter for the confinement deconfinement phase transition which is indeed physically

meaningful through (2.1).

This second chapter is organized as follows: In the first section we discuss the problems

with the renormalization of the Polyakov loop and review what is known so far. We then

outline the theoretical background for our new renormalization concept for the 2-point

Polyakov loop correlation functions and the Polyakov loop. Following this discussion we

present a detailed analysis of the thermal properties of the Polyakov loop correlation func-

tions in the three color channels. For instance, we relate the color singlet, octet and

averaged qq̄ free energies to each other and show that the temperature effects on the color

singlet and octet free energies become negligible at short distances. The properties of the

correlation functions at short distances lead us to a proper renormalization prescription

for the 2-point Polyakov loop correlation functions and we analyze their properties in the

continuum limit. We then re-analyze the thermal features in terms of the renormalized fi-

nite temperature heavy quark free energies in all color channels. In the last sections of this

chapter we present the non-perturbatively renormalized Polyakov loop expectation value

and deduce from it the corresponding effective renormalization constant for the Polyakov

loop. Finally, we comment on the structure of divergences present in n-point Polyakov

loop correlation functions. Indeed, we conclude that the renormalization prescription for-

mulated by us can be generalized to any n-point Polyakov loop correlation function once

the renormalization constants in spirit of (2.2) are fixed. We close this chapter after a final

discussion of the things done so far and comment on related problems with the Polyakov

loop which are discussed in the current literature.

We note that we analyze the color singlet, octet and averaged quark antiquark free energies

down to distances r >∼ 0.01 fm and in a temperature range from T ≃ 0.9Tc to about 12Tc.

Actually, the shortest distance which can be resolved on a lattice with finite temporal

extent Nτ is rT = 1/Nτ . Thus, in order to analyze such small distances on the lattice it

is mandatory to use lattices with large temporal extent. For instance we use lattices of

size 323 ×Nτ with Nτ = 4, 8 and 16. This is the first time that we have utilized lattices of

that large temporal extent for an analysis of the free energy at finite temperature. In fact,

the shortest distances resolved by us are of about 5 to 10 times smaller than the distances

studied in current lattice studies of other observables at finite temperature [33, 69].
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(A) (A′) (B)

Figure 2.1: The perturbative contributions in (2.6) to the Polyakov loop expectation value in the

diagram language. The double line represents the time-like closed propagation of the static quark

including the one (A′) and two (B) gluon exchange (wavy lines). The blob in the left diagram (A)

indicates the O(g2) radiative part of the gluon self energy.

2.1 On the problem addressed and on current concepts

We are interested in the evaluation of the expectation value of a special thermal Wilson

line, the Polyakov loop expectation value 〈TrL〉, defined through

〈TrL〉 ≡ 〈TrT exp



ig

β∫

0

dx0A0(x0,x)



〉, (2.3)

where we assume that the dynamics of the gauge fields Aµ is given by the pure gauge

theory with SU(N) gauge group. In (2.3) we consider the trace to be normalized to unity,

Tr11 = 1, and β denotes the inverse temperature, β = 1/T . Due to the finite integration

in the time direction the gauge fields obey the usual periodic boundary conditions, i.e.

Aµ(0,x) = Aµ(β,x), and T in (2.3) is the usual time ordering operator. In this section we

consider the problem with divergences which are present in (2.3) and discuss the problem

of their cancellation through regularization and renormalization, which is indeed far from

trivial since L is a non-local composite operator (see for instance [94, 95]). We note,

however, that we are in a somewhat ’lucky’ position as earlier studies have succeeded to

solve this problem (starting with [43]) at least partly.

The best way to get a first insight into this problem is to analyze (2.3) in the framework of

perturbation theory (g → 0) in the continuum and we should therefore first clarify what

we mean with 〈...〉, namely

〈...〉 ≡ 1

Z0

∫

DAµDC̄DC (...) e−
∫ β
0 dx0

∫
dxL(x)

with L(x) =
1

4
F a

µνF
a
µν +

1

2ξ

(
∂µA

a
µ

)2
+ ∂µC̄

a
(

∂µC
a − gtabcAb

µC
c
)

. (2.4)

In this Lagrangian we denote with C, C̄ the ghost fields and for convenience we assume

that the partition function is normalized such that 〈1〉 = 1. In order to stay close to the

current literature (for instance [96]), we work in the ∂µAµ = 0 gauge. The Polyakov loop,

TrL, in Eq. (2.4) is, however, a gauge invariant quantity.

In order to calculate the first two non-vanishing orders in the (bare) coupling constant g,

one expands the exponential function in (2.3) to O(g4) and averages over the gauge and
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ghost fields with respect to (2.4),

〈TrL〉 ≃ 〈1〉 − g2Tr
(

λaλb
)

〈
β∫

0

dτ1

β∫

0

dτ2A
a
0(τ1,x)Ab

0(τ2,x)〉 (2.5)

−ig3Tr
(

λaλbλc
)

〈
β∫

0

dτ1

β∫

0

dτ2

β∫

0

dτ3A
a
0(τ1,x)Ab

0(τ2,x)Ac
0(τ3,x)〉

+g4Tr
(

λaλbλcλd
)

〈
β∫

0

dτ1

β∫

0

dτ2

β∫

0

dτ3

β∫

0

dτ4A
a
0(τ1,x)Ab

0(τ2,x)Ac
0(τ3,x)Ad

0(τ4,x)〉,

where we have separated the color structure from the gauge field according to the represen-

tation Aµ(x) = λaAa
µ(x). Since the O(g3)-term vanishes after the averaging for symmetry

reasons of the 3-gluon vertex, one finds a series expansion of the form [43, 96]

〈TrL〉 = 1 − g2L2 +
1

2

(
g2L0

2

)2
+ g4L4 + ... . (2.6)

Let us first consider the lowest order term denoted with L2: It is given by the diagram

A in Fig. 2.1, where the blob represents the gauge field self energy including the O(g2)

radiative corrections, Π(q2). (In order to be precise, Π(q2) is given through the 1-loop

diagrams of the gluon propagator. These are the gluon loop, the ghost loop as well as the

tadpole diagram shown in Fig. 3e-3g of Ref. [91].) In momentum space, after performing

the frequency sum at finite T , L2 reads

g2L2 ≃ g2 1

T
Tr
(

λaλb
)∫ d3q

(2π)3
1

q2 + Π(q2)
. (2.7)

It follows that this term is (UV) divergent and thus needs a regularization: In fact, the

insertion of Π(q2) produces logarithmic divergences. The second term in (2.6), L0
2, is given

by single one gluon exchange which is shown in Fig. 2.1 through the diagram A′. As the

wavy line represents the usual gluon propagator (∼ 1/q2), its evaluation leads to

(g2L0
2)

2 ≃
(

g2 1

T

∫
d3q

(2π)3
1

q2

)2

. (2.8)

From power counting it follows that this integral is linear divergent and therefore also

needs a regularization. Moreover, L4 produces in parts linear divergences which have to

be regulated, too. An example for this kind of diagram is shown in Fig. 2.1 as diagram B.

The questions which arise now are how to handle the divergences and, more importantly,

how to remove them. At this point of the discussion two2 basic properties of the divergent

structures are important: First of all this discussion includes the degree of the divergences

2The discussion in the present literature concerns rather five than two topics. In addition to the two

topics which we examine it is also discussed:

3) Renormalization in general includes the reference to the space-time dimension (D) in which the theory

is incorporated into. In our discussion we ignore this reference as we are rather interested in the physical

case, D = 4, from which we know that the theory is (strictly) renormalizable. This property has been
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as this property is closely related to the question which kind of regularization prescription

is the most comfortable one. And secondly, the discussion of the renormalization gets com-

plicated as TrL is a composite operator. The last property usually leads to a complicated

renormalization procedure as composite operators in general need their own renormaliza-

tion constants and additional renormalization conditions. Moreover, the renormalization

procedure becomes even more difficult as a proper renormalization of composite operators

in general requires a calculation of a matrix of renormalization constants since such oper-

ators can mix under renormalization with any other operator that has the same quantum

numbers and a (canonical) dimension equal or smaller than the initial composite opera-

tor. This shows that the discussion of the renormalization of the Polyakov loop is indeed

complex.

It was Polyakov who first conjectured a surprisingly ’simple’ fragmentation of the dif-

ferent divergent structures (logarithmic/linear) of 〈TrL〉 [43]: The linear divergent parts

appear in any order perturbation theory and could be collected together forming a factor

exp(−Kf(l/a)), where f(l/a) is a linear function in l/a (here l denotes the length of the

loop and a the (lattice) cut-off parameter),

〈TrL〉 ≃ e−Kf(l/a) ×Gren, (2.10)

while Gren consists only of the logarithmic divergences and of the finite contributions.

The most striking statement of Polyakov’s suggestion, however, is that it claims that all

logarithmic divergences can be removed in perturbation theory, order by order, within

the standard field and coupling renormalization. Indeed, Polyakov’s suggestion has been

discussed extensively in the current literature; see [43, 97, 98].

4) The geometric structure of the loop contour plays a role: In our considerations we refer only to smooth

contours without self interactions. Otherwise, assuming that the contour has a corner with an angle γ (see

Fig. 2 of Ref. [43]), divergences will appear which depend on this angle. For instance, in leading order one

finds [43]

f (1)(l/a) = π
l

a
+ (γ cot γ − 1) log

l

a
, (2.9)

where l denotes the length of the loop and a is the lattice spacing. The first term originates from the

smooth part of the contour and the second part is produced at the corner. Its qualitative nature can be

related to the bremsstrahlung which gets emitted from the color charge through the rapid change of motion

at the corner [43, 91]. It is worth noting that such γ-divergences will not cancel out within the standard

renormalization procedure. As they are rather ’anomalous’ we restrict our discussion to the case of smooth

loops.

5) Furthermore, the problem of divergences which appear in higher powers of L is discussed. For instance,

1-loop calculations of k-powers in the Polyakov loop, 〈TrLk〉, k = 1, 2, ...,N − 1, in a background gauge

field are presented in [99]. The result is that they are finite by renormalization, but real, 〈TrLk〉 ∈ R.

More important in that discussion, however, is the statement that the untraced counterparts are infinite,

and the corresponding matrices become diagonal which are neither unitary nor special. From some point

of view one may argue that the (untraced) Polyakov loop is not a gauge invariant quantity and therefore

its renormalization would be without any relevance. It is argued in that reference, however, that a gauge

transformation cannot remove the infinity. In this sense, there are even unsolved problems in the continuum

renormalization of the Polyakov loop. We note, however, that we will not go into a discussion of such kind

of divergences. Note that L is a non-local operator while k-powers in L with k > 1 build up local composite

operators.
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proven to fourth order in perturbation theory [98] and to any order in perturbation theory,

too [91]: In the case of a smooth contour, the (renormalized) quantum average of the

quantity

TrT exp



iZgZ
−1
A g

β∫

0

dx0A0(x0,x)



 (2.11)

is free from logarithmic divergences in any order perturbation theory, where Zg and Z−1
A

denote the renormalization constants associated with the coupling (Zg) and with the field

(Z−1
A ) renormalization. Disregarding the linear divergences, this expression shows that the

Polyakov loop, although it is a composite operator, does not mix with any other operator

under renormalization. In conclusion, it is proven that the Polyakov loop expectation

value is a (standard) renormalizable object and we should calculate it.

In practice now, the question arises which is the most suitable regularization scheme. In-

deed, the divergence structure of (2.10) invites to use the dimensional regularization, as

the linear divergence simply cancels out (eKf(l/a) = 1). Using this regularization method,

there only remain the parts denoted by Gren in (2.10), but which are known to be renormal-

izable. Then, at finite temperature, the essential thing is to include the effects from Debye

screening. In fact, the HTL re-summation suggests Π(q2 = 0) = m2
D, where mD ∼ gT is

the typical scale of the Debye mass. An evaluation of 〈TrL〉 to fourth order in g using this

method can be found in [96]. They calculate the coefficients in (2.6) being:

〈TrL〉 = 1 + 2π2Q0

{(2

3
N

) 1
2
(
g2

8π2

) 3
2

+N

(
g2

8π2

)2(

ln

(
g2

8π2

)

+ ln(
2π2N

3
) +

3

2

)}

,

(2.12)

where Q0 = Tr
∑

a λ
aλa, which is (N2 − 1)/(2N) in the fundamental representation and

N in the adjoint case. Some comments are in order: Firstly, the power-enhancement

in g of the first term compared to the initial expansion (2.6) - and its change in sign -

follow from the insertion of Π(q2 = 0) = m2
D: (2.7) leads to a power behavior in g like

−g2×(−mD) ≃ +g3. Secondly, 〈TrL〉 ≃ 1+f(g) with f being a (positive) decreasing func-

tion with decreasing coupling. Following the discussion above, the renormalized Polyakov

loop expectation value (〈TrLR〉) is given by replacing the bare coupling g with the renor-

malized coupling, gR. Strictly speaking, at this order, the renormalized coupling is given

by a constant and consequently 〈TrLR〉 ≃ 1+c, where c is some positive number. However,

disregarding the possible effects from the Linde problem [15, 11], higher order corrections

to (2.12) are known to be renormalizable by renormalization of the coupling and will lead to

a running (renormalized) coupling, gR(T ) ≃ 1/ ln(T 2/Λ2
QCD). Therefore (2.12) can be esti-

mated as giving the leading order behavior of the renormalized Polyakov loop expectation

value when replacing g with its renormalized quantity, gR(T ) [96]. For this reason, 〈TrLR〉
is supposed to approach its high temperature limit from above, limT→∞〈TrLR〉 = 1. Being

a perturbative expansion, (2.12) is supposed to estimate 〈TrLR〉 in the high temperature

limit, β → 0, while at temperatures close to Tc, or even below Tc, the validity of (2.12) will
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break down as one runs into a non-perturbative temperature regime. Moreover, the usual

uncertainties are present in the perturbative estimate (2.12). In conclusion, in this tem-

perature range one requires non-perturbative methods in order to evaluate 〈TrLR〉 properly.

One possibility to get non-perturbative insights into the Polyakov loop is to apply MC

simulation techniques on the lattice (for a related discussion see [100, 101]). Within the

lattice regularization method, however, one has to face the problem which results from the

linear divergence in (2.10): As it stands, for any finite lattice spacing a one will find finite

results while 〈TrL〉 will vanish in the continuum limit where a→ 0. We note that our MC

lattice data indeed show this effect. We have calculated the Polyakov loop expectation

value in terms of |〈TrL〉| at fixed physical temperature T using lattices with different Nτ

(see Fig. 2.2). The data indeed show that |〈TrL〉| calculated on lattices with larger Nτ (∼
smaller a) approach smaller values than the results calculated on lattices with smaller Nτ

at a fixed T (see also Fig. 2.2). This suppression of 〈TrL〉 with vanishing lattice spacing

a is indeed due to the presence of the linear divergence.

It is worth noting that this property is visible in lattice perturbation theory, too. SU(N)

1-loop (O(g4)) calculations on the lattice are presented in [102, 103]. They compute the 1-

loop correction terms to the Polyakov loop using finite lattices in pure gauge theory defined

with the standard Wilson gauge action. On a lattice one expects a rather straightforward

power series in the bare coupling, 〈TrL〉 ≃ 1 +
∑

i cig
2i. To O(g4) the perturbative

coefficients are

〈TrL〉 = 1 − g2N
2 − 1

N
Q(2) − g4(N2 − 1)Q(4a) − g4 (2N2 − 3)(N2 − 1)

N2
Q(4b) + O(g6),

(2.13)

where the N -independent coefficients Q(i) are listed in Tab. 5 of Ref. [102]. In fact,

these coefficients reflect the linear divergence; For instance, the first coefficient in (2.13) is

constant in units of Nτ , Q(2)/Nτ ≃ 0.057.... In conclusion, the perturbative expansion of

〈TrL〉 on a lattice given in (2.13) is not only a function of the temperature but in addition

depends on the lattice extent Nτ ≡ 1/Ta, i.e. on the cut-off.

In order to remove the lattice dependence of 〈TrL〉 one is forced to eliminate the linear

divergence. For instance, we checked whether the subtraction of the perturbative expan-

sion from the MC data compensates the lattice effect. We note, however, that subtracting

the leading order part from our MC measurements does not bring the data with Nτ = 4

and Nτ = 8 on a common curve. We have also subtracted the (in spirit of (2.10)) re-

exponentiated leading order term from our MC data. Also in this case the dependence of

the data on the temporal extent of the lattice is not removed. This indeed indicates that

the leading order term in (2.13) does not resolve the linear divergence completely on the

lattice in the coupling regime which is analyzed by us.

Let us finally remark that the interest in a proper renormalization of the Polyakov loop

is not only pure academic but also physically motivated, for instance through (2.1) (more

background notes and links to related problems which motivate the non-perturbative

renormalization of TrL were given in the introduction of this thesis). Thus, not only
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a non-perturbative renormalization concept for 〈TrL〉 is required, but also the question

how to relate 〈TrL〉 to the free energy is important to answer. In our approach3 we are

rather interested in a renormalization of |〈TrL〉| than of 〈TrL〉 as the relation (2.1) can be

formulated properly with |〈TrL〉| once the renormalization works.

2.2 Outline of the non-perturbative renormalization con-

cept

Recently we suggested that the renormalization of the Polyakov loop on a lattice can

be obtained by first renormalizing the quark antiquark free energies calculated at small

quark antiquark separations [92]. At short distances the finite temperature free energy is

given by the zero temperature heavy-quark potential. From this property we concluded

that the divergent self energy contribution in the finite temperature free energy can be

removed through a matching of its short distance behavior to that of the heavy-quark

potential at zero temperature, which is known from lattice studies [87, 104, 55] and in

perturbation theory [105, 106, 107]. As it is usually the case in the renormalization

process of quantities at finite temperature, their renormalization takes place at energy

scales µ (renormalization scale) where the temperature does not influence the theory, so

that µ ≫ T [11, 12]. According to our suggestion, the 2-point Polyakov loop correlation

functions can be renormalized at short distances, where for example 1/r ≫ T (r ≪ 1/T ).

In conclusion, we suppose that

T
d∆Fi(r, T )

dT
= 0 (i = 1, 8) (2.14)

is fulfilled at sufficiently small distances r. This equation can be considered as the renor-

malization group equation for the renormalized free energies. We note here, that in general

the temperature variation of the free energy yields the entropy. Relation (2.14) is thus

closely related to the term T∆Si in the free energies and tells us that the finite tempera-

ture free energy at short distances is indeed given by the potential energy. Therefore we

pay attention to the short distance behavior of the correlation functions as we expect that

at small distances its renormalization can be obtained.

Once having performed the renormalization of the Polyakov loop correlation function at

short distances, also the large distance behavior of the finite temperature part of the free

energy is fixed through

|〈TrL〉| = lim
|x−x̄|→∞

(

〈TrL(x)TrL†(x̄)〉
)1/2

. (2.15)

3A different way how to relate the Polyakov loop to the free energy is suggested in Ref. [22]. In

this approach, the Polyakov loop L is estimated as the propagator of an infinitely heavy test charge in

a background gauge field. Although the particle is infinitely heavy, which means static, it will carry

the Aharonov-Bohm phase factor. This is the Polyakov loop. Thus, the expectation value of the traced

Polyakov loop, 〈TrL〉, is the expectation value of the trace of the propagator. For instance, confinement

then means that the trace of this propagator vanishes.

In chapter 4 of this reference one also finds a comfortable review of what is known on the renormalization

of TrL.
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In general no additional divergences get introduced in (2.15) at finite temperature once the

correlation function on the right hand side of (2.15) is properly fixed at small distances.

We suggest that this property can be utilized to extract the renormalized Polyakov loop

from the large distance behavior of the renormalized 2-point Polyakov loop correlation

function.

Clearly, this renormalization prescription corresponds to some effective renormalization

constant ZR(g2) for the Polyakov loop (which in general will depend on the color and

flavor group of the theory) and it is worth noting that the Polyakov loop and its n-point

correlation functions are composite operators and as such need their own renormalization

constants and conditions on the lattice. It turns out, however, that once having fixed this

effective renormalization constant for the Polyakov loop operator on the lattice, the renor-

malization scheme applies to any n-point Polyakov loop correlation function calculated at

finite temperature on the lattice. This important feature follows from the hierarchic diver-

gence structure of the n-point Polyakov loop correlation functions, which allows to remove

the divergences through one single renormalization constant. Therefore it is indeed suffi-

cient to calculate only 2-point Polyakov loop correlation functions at finite temperature in

order to extract both, the renormalized Polyakov loop and the renormalization constant.

In order to avoid here any misunderstandings, however, we note that the renormalization

constant ZR(g2), that will be determined by us4, renormalizes the operator while the ac-

tion in our MC calculation is still the bare lattice gauge action. We therefore have called

ZR(g2) the effective renormalization constant for the Polyakov loop.

In the renormalization scheme described above, however, the renormalized quantities are

defined only up to an arbitrary overall constant (c) which fixes the heavy quark potential

at zero temperature. In the case of 2-point correlation functions we will fix this constant

through a definite (but arbitrary) choice of the zero temperature heavy quark potential

relatively to the potential of the string picture at large quark antiquark separations. The

exact definition, however, of the zero temperature heavy quark potential used in our dis-

cussions will be presented in the analysis of Sec. 2.3.2. We simply clarify here, that any

renormalization group equation contains operations in terms of derivatives with respect

to some scales (T, r, ...), see for instance (2.14), and thus a constant shift will not affect

the dynamics of such kind of equations. In this sense, c = 0 (Cornell potential) appears

as a ’natural’ choice.

In order to be definite now, we introduce the renormalized Polyakov loop LR and its

effective renormalization constant ZR(g2) on the lattice in spirit of (2.2) through

LR(x) ≡ ZL

Nτ∏

x0=1

ZUU(x0,x) =
(
ZR(g2)

)Nτ
L(x), (2.16)

where (ZR(g2))Nτ = ZL(ZU )Nτ . In this notation g is the bare coupling which is related to

4A different renormalization concept from ours has recently been suggested in Ref. [101]. They calculate

the renormalized Polyakov loop from the divergence structure given through Eq. (2.10) using different

temporal lattice spacings. They find, in contrast to us, explicit temperature dependent renormalization

constants.
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the lattice coupling β via β = 2N/g2. We note that the multiplication of the renormaliza-

tion constant in the lattice operator respects the center symmetry of SU(N). Moreover,

(2.16) implies (x 6= x̄)
〈

TrLR(x)TrLR†(x̄)
〉

=
(
ZR(g2)

)2Nτ
〈

TrL(x)TrL†(x̄)
〉

= exp

(

−∆Fqq̄(r, T )

T

)

. (2.17)

The behavior of (2.17) at infinite separations of the quark and antiquark sources leads

to the renormalized Polyakov loop expectation value as the large distance behavior is

controlled by (2.15). In the language of the renormalized quantities this relation can be

rewritten as

∆F∞
qq̄ (T )

T
≡ lim

r→∞

∆Fqq̄(r, T )

T
= − ln |〈Tr

(
ZR(g2)

)Nτ
L〉|2 = − ln |〈TrLR〉|2. (2.18)

At this point of our discussion some comments are in order: First of all we note that

(2.18) respects the usual color structure of a quark antiquark pair. In fact, it can form

a color singlet or a color octet state (N ≡ 3). However, if the separation between the

quark sources becomes large, the relative orientation of the charges in color space will not

influence the screening of the individual charges. Consequently, the expectation value of

the renormalized Polyakov loop, which, with respect to (2.18), can be estimated from

|〈TrLR〉| = exp(−∆F∞
qq̄ (T )/2T ) = exp(−∆Fq(T )/T ), (2.19)

does not reflect a particular color structure. Moreover, its magnitude is properly related

to the difference in free energy ∆Fq(T )/T due to the presence of one single heavy-quark

placed into the gluonic heat bath. In this spirit the renormalized Polyakov loop is related

to the confining/deconfining properties of the free energies rather than to the formal ZN

symmetry properties5 of TrL. The expectation value of the renormalized Polyakov loop

defined in (2.19) will vanish below Tc as ∆Fqq̄(r → ∞, T ) will signal confinement in the

pure gauge theory while in the case of full QCD |〈TrLR〉| will lead to finite values even in

the confinement phase. In this case, ∆Fqq̄(r, T ) will reflect the string breaking property.

However, as ∆Fq/T will diverge in the limit T → 0 in any case, a vanishing expectation

value of the renormalized Polyakov loop will follow at T = 0 also in full QCD.

Secondly we note, that due to (2.18) also the renormalization constant can be deduced.

If one is interested in a renormalization prescription of the Polyakov loop in the high

temperature phase only, one may estimate ZR(g2) in terms of (|〈TrLR〉|/|〈TrL〉|)1/Nτ [93].

It is more convenient, however, to estimate the renormalization constant for the Polyakov

loop correlation functions from

ZR(g2) = exp

(

−∆Fqq̄(r, T ) − T ln〈TrL(x)TrL†(x̄)〉
2TNτ

)

, (2.20)

as this relation is properly defined also below Tc. In fact, (2.20) is related to the shift

Cqq̄ of the bare quark antiquark free energy that leads to the renormalized free energy,

5A recent discussion of the Z3 symmetry and its relation with the confinement deconfinement phase

transition is given in [108].
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Figure 2.2: The bare Polyakov loop expectation value as a function of the physical temperature.

The data points show the bare lattice results deduced in MC studies of SU(3) gauge theory on

lattices of size 323 × Nτ with Nτ = 4, 8, 16. The black line illustrates the universal curve of

the renormalized Polyakov loop that we expect from a multiplicative renormalization, |〈TrLR〉| =

|〈ZNτ TrL〉|.

Cqq̄ ≡ ∆Fqq̄ −∆F bare
qq̄ . It can therefore also be used to give a renormalization prescription

for the Polyakov loop correlation function below Tc, as for instance

Cqq̄ = −2TNτ lnZR(g2) (∀T ). (2.21)

In conclusion, the renormalization prescription suggested by us can be used to renormalize

the 2-point Polyakov loop correlation function below and above Tc once the renormalization

constant ZR(g2) is known. And thirdly we note that the projection operators introduced

in (1.30) do not act on the renormalization constant. This leads to the fact, that the

renormalization constant cancels out not only the divergence in the 2-point Polyakov loop

correlation functions of the traced Polyakov loop, but in the same way also renormal-

izes 2-point Polyakov loop correlation functions of the untraced Polyakov loop. It follows

from (1.27) and (1.28) that the color singlet, the color octet and the color averaged quark

antiquark free energies will stay finite and well-behaved in the continuum limit through

the introduction of the effective renormalization constant in the untraced Polyakov loop,

ZR(g2)L. In conclusion, the 2-point Polyakov loop correlation functions for the color sin-

glet, color octet and color averaged free energy produce equal divergent structures.

Let us finally discuss Fig. 2.2 as it illustrates the renormalization scheme we have suggested
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above. The data points in that figure show the (bare) Polyakov loop expectation values,

|〈TrL〉|, calculated in MC studies on lattices of size 323×Nτ with Nτ = 4, 8 and 16. It can

be seen from that figure, that the expectation values of the bare Polyakov loop calculated

on the lattices with larger temporal extents (Nτ = 8, 16) results in smaller values than

the data from the lattice with a smaller temporal extent (Nτ = 4). This suppression of

the bare lattice values with increasing Nτ is due to the presence of linear UV divergences

as described through (2.10). We suggest here that this effect can be absorbed through

a multiplicative renormalization with a renormalization constant ZR(g2) introduced in

(2.16). Following the discussion above, a proper renormalization of the 2-point correlation

function at short distances will result in a unique behavior of the renormalized Polyakov

loop expectation value, |〈ZR(g2)TrL〉|, on lattices with finite temporal extent Nτ as the

Nτ dependence of |〈TrL〉| gets removed through renormalization. In Fig 2.2 we have

illustrated this property through the black line: From the definition (2.19) it follows that

the renormalized Polyakov loop expectation value is identical to zero at temperatures

below Tc, as the free energy is controlled by confinement, while |〈TrLR〉| will approach

finite values due to the presence of color screening, which is consistent with deconfinement.

Usually the (bare) Polyakov loop expectation value is used as an order parameter for

the confinement deconfinement phase transition and as such its temperature dependence

should not only indicate the phase transition but should also indicate the order of the

phase transition. Since the renormalized Polyakov loop is related to the free energy ∆Fq

through Eq. (2.18) we indeed expect that 〈TrLR〉 is also sensible to the order of the phase

transition. In the case of SU(3), the first (or weakly first) order phase transition will result

into a discontinuity of |〈TrLR〉| at Tc. This feature is shown in Fig. 2.2 through the jump of

the black line at Tc. Moreover, we expect that the renormalized Polyakov loop expectation

value will lie above the bare lattice data, |〈TrLR〉| >∼ |〈TrL〉|, as the suppression through

the divergence in spirit of (2.10) is removed. Because of this reason we have drawn the

line that illustrates the renormalized Polyakov loop expectation value above the bare data.

In this spirit, the bare data in Fig. 2.2 tell us already that the discontinuity of |〈TrLR〉|
will be larger than 0.1 at Tc.

In the following we discuss this issue in more detail.

2.3 Renormalization prescription for 2-point Polyakov loop

correlation functions

At distances much shorter than the inverse temperature, rT ≪ 1, the dominant scale is

set by the distance r and the running coupling will be controlled by this scale, g(r, T ) ≃
g(r, T = 0) ≡ g(r). As the quark antiquark separation becomes smaller than the inverse

QCD-Λ-scale, r ≪ 1/ΛQCD, ordinary zero temperature perturbation theory should be

valid. In this limit, the color singlet and color octet free energies are dominated by one-

gluon exchange [9, 58]. In the following subsections we analyze different aspects of the

short distance properties of the finite temperature heavy quark free energy which show us

that the quark antiquark free energies are indeed dominated by the distance scale. In fact,

we deduce some (new) features and relations which will lead us to the renormalization
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prescription for the Polyakov loop correlation functions and the Polyakov loop.

2.3.1 Relations between ∆F1, ∆F8 and ∆Fqq̄

As we have seen in the first chapter of this thesis, the lattice data for the color singlet

free energy are attractive while the data for the color octet free energy behave repulsive

at small r. These properties are indeed expected in leading order (zero temperature)

perturbation theory. Due to this feature, the color averaged free energy will be dominated

by the contribution of the color singlet free energy as in this limit the repulsive contribution

from the color octet free energy gets exponentially suppressed in the 2-point correlation

function and thus also in the color averaged free energy determined from the logarithm

of this correlation function. Since additional linear terms in the free energies, which

signal confinement below Tc, become negligible at short distances, too, we conclude from

Eq. (1.33)

lim
r→0

(∆Fqq̄(r, T ) − ∆F1(r, T )) = T lnN2 (2.22)

at all temperatures [73]. This is a remarkable relation: First of all it is important to

realize that this relation indeed holds for the finite contributions to the correlation func-

tions 〈TrL(x)TrL†(x̄)〉 and 〈TrL(x)L†(x̄)〉 as the divergences are eliminated by identical

renormalization constants in both operator correlations. Secondly we note, that from this

relation it follows that the color averaged as well as the color singlet free energies will

behave similar at small distances, δF1 ≃ δFqq̄. This property implies that, up to the tem-

perature dependent constant shift in (2.22) and exponentially suppressed terms, the color

averaged free energy will agree with the zero temperature heavy quark potential, Vqq̄(r),

too. For instance, from the leading order perturbative contribution to the color singlet

free energy we expect a Coulomb-like behavior at short distances,

δFqq̄ ≃ δF1 ≃ − g2

3πr
+ O(g4). (2.23)

Note that this power-like behavior at short distances is quite different from the pertur-

bative high temperature behavior of the color averaged free energy at large distances

(rT ≫ 1), where the dominant scale is set by the temperature. In this case, high temper-

ature perturbation theory is used to show that the leading order contribution to the color

averaged free energy is given by two-gluon exchange [57, 9]. In a somewhat loose sense

it thus often is argued that ∆Fqq̄/T ≃ (∆F1/T )2 [57, 9] (instead of δFqq̄/T ≃ (δF1/T )2)

at large quark antiquark separations. In spirit of our previous discussion, however, this

statement has to be formulated a bit more carefully as ∆F (r → ∞, T ) in general will not

be zero. When fixing the overall renormalization of the free energies at short distances one

no longer has the freedom to assume that they approach zero at large distances. Actually,

the color averaged as well as the color singlet and color octet free energies will approach

a finite value as function of temperature at large quark antiquark separations. Moreover

we note that due to (2.22) it is obvious that both, the color singlet and color averaged

free energies, will coincide at zero temperatures. In this limit both finite temperature free
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Figure 2.3: The difference of the color averaged and color singlet heavy quark free energies in

units of the temperature calculated at temperatures below and above the critical temperature.

This figure includes lattice data from simulations with lattices of size 323 ×Nτ with Nτ = 4, 8 and

16.

energies will coincide with the heavy quark potential as the entropy contribution to the

free energy cancels out at T = 0 (F = U − TS).

Let us finally discuss the physical interpretation of the difference in free energies at short

distances. We argue that the difference T lnN2 in the free energies is due to a difference

in the entropy contributions in the free energies: lnN2 has the typical form of an entropy

if one identifies N2 with the sum over the possible color configurations. More precisely, we

expect ∆S1(r → 0, T )−∆Sqq̄(r → 0, T ) = ln 9. Indeed this follows from standard thermal

relations as in general the entropy (S) is related to the free energy (F ) via S = −∂F/∂T .

As we do not expect thermal modifications from the medium on the quark antiquark state

at short distances, this difference in entropy is supposed to equal the difference in entropy

of the quark antiquark state at zero temperature. A recent discussion of the entropies of

quark states can be found in [109].

Before we analyze Eq. (2.22) with our lattice data for the free energies, let us also briefly

comment on our expectations about the large distance behavior of ∆Fqq̄ −∆F1: As men-

tioned above, we do not expect that the different orientations of the charges in color space

will influence the screening of the individual charges. Consequently, we expect that the

finite contributions of the color singlet and color averaged free energies as well as of the

color octet free energy will coincide at large separations of the color charges. In conclusion
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we expect

lim
r→∞

(∆Fqq̄(r, T ) − ∆F1(r, T )) = 0 (2.24)

at all temperatures. Note that a vanishing difference in free energy below Tc, implies that

the color averaged, singlet and octet free energies signal confinement, too.

We have analyzed the relation (2.22) in Fig. 2.3 using SU(3) lattice data for ∆Fqq̄(r, T )/T−
∆F1(r, T )/T at distances 1/16 <∼ rT <∼ 2 and temperatures close to the critical temper-

ature (below and above Tc). As can be seen in that figure, the difference in free energy

approaches zero values at large quark antiquark separations while in the short distance

range we find a behavior as described in (2.22): The difference in free energies indeed

approaches the value ln 9, which indeed shows that the color averaged free energy is dom-

inated by the contribution of the color singlet free energy at small rT . Thus the lattice

data confirm our expectations formulated within (2.22) and (2.24). In fact, deviations

from the asymptotic value ln 9 are of less than 10% at rT <∼ 0.1.

What are the consequences of our studies for the renormalization of the finite temperature

heavy quark free energies? As we have stressed in our discussion above, the relations (2.22)

and (2.24) equally well apply to the finite parts of the 2-point Polyakov loop correlation

functions. In conclusion, the relative normalization of the renormalized quantities is such

that ∆Fqq̄(r, T ), ∆F1(r, T ) and ∆F8(r, T ) coincide at large separations of the color sources

while the different color structures will influence their properties in the short distance

regime. Moreover, as the difference in the free energies turns out to be positive at all

distances analyzed by us, ∆Fqq̄ − ∆F1>∼0, we conclude

∆F1 <∼ ∆Fqq̄ <∼ ∆F8 ∀T. (2.25)

We stress again that this relation also implies a confining color octet free energy at tem-

peratures below Tc.

Another instructive way to study the behavior of the finite temperature free energies at

short distances was outlined in Sec. 1.3.3 by means of derivatives with respect to r, as

undetermined additive renormalization constants cancel in this case. In fact, we separated

from the finite temperature free energies the zero temperature part at small distances

in terms of the effective coupling. In conclusion, temperature effects from the thermal

medium on the color singlet quark antiquark free energies get suppressed in the limit

of short distances. Actually, our finite temperature lattice data do not show significant

dependencies on any other scale beside the distance scale r. Consequently, the renormal-

ization group equation (2.14) is indeed fulfilled and thus the entropy contributions in the

finite temperature free energies are supposed to vanish at small distances. This property

suggests that the finite temperature color singlet free energies are given at small distances

by the heavy quark potential at zero temperature.

In the following subsection we thus directly compare the finite temperature free energies

with the heavy quark potential at short distances. This study will lead us to the formu-
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lation of the renormalization prescription for the finite temperature quark antiquark free

energies.

2.3.2 Renormalization prescription and continuum limit

In order to compare our lattice data with the heavy quark potential (Vqq̄(r)) at zero tem-

perature, we first have to specify Vqq̄(r). So far, we used the potential at zero temperature

in terms of derivatives with respect to distance as undetermined renormalization constants

cancel out by this way. In terms of the potential, however, we have to fix this constants.

Using lattices with small lattice spacing Vqq̄(r) has recently been calculated for SU(3)

gauge theory for distances larger than 0.05 fm and the results have been extrapolated to

the continuum limit [55]. At distances larger than r0 (Sommer scale) which is defined

through the slope of the heavy quark potential [110]

r20

(
dVqq̄(r)

dr

)

r=r0

= 1.65, (2.26)

it is known that Vqq̄(r) is well described by a simple linear confining potential corrected

by a Coulomb-like term arising from string fluctuations,

Vqq̄(r) = − π

12r
+ σr for r > r0 with σr20 = 1.65 − π

12
. (2.27)

For distances smaller than r0 ≃ 0.5 fm we use a polynomial interpolation of the lattice

data of Ref. [55] normalized such that the resulting potential smoothly joins the con-

finement potential for r > r0, i.e. we fix the free constant in the lattice results such

that r0Vqq̄(r = r0) = 1.65 − π/6. In fact, this fixing results into the standard Cornell

form (2.27). In some cases, however, we also need the potential at smaller distances than

r = 0.1r0 ≃ 0.05 fm. Here we use the perturbative 3-loop calculation of the potential

in the so-called qq scheme6 [107] which agrees well with the lattice calculations up to dis-

tances 0.25r0 [107]. For the following discussion we present the distance in physical units

[fm] while sometimes we also will give the results in units of
√
σ, which is straightforward

as both units are related through Eq. (2.27) (since r0 = 0.5 fm). This zero temperature

heavy quark potential is shown in Fig. 2.4 as the black line.

A comparison of free energies calculated at finite temperature and short distances with

the heavy quark potential at zero temperature is shown in Fig. 2.4. In this figure we have

normalized the color singlet quark antiquark free energy such that it lies on top of Vqq̄ at

the shortest distance which can be resolved on the lattice with temporal extent Nτ . From

our discussion above it follows that rather than the color averaged free energy the color

singlet free energy is supposed to become directly comparable to Vqq̄(r). Therefore in that

figure we refer to lattice data for ∆F1(r, T ) at short distances and several temperatures

below and above the critical temperature, for instance 0.9 >∼ T/Tc >∼ 12. As can be seen

in Fig. 2.4, the lattice data of the finite temperature color singlet quark antiquark free

energies agree well in the range of short distances with the zero temperature heavy quark

6Specifying the scheme is necessary here as the 3-loop contribution is scheme dependent.
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Figure 2.4: Comparison of the finite temperature quark antiquark free energy ∆F1(r, T ) to the

heavy-quark potential at zero temperature. In this figure we have matched the finite temperature

free energy at the shortest distance attainable on the lattice to the heavy quark potential at zero

temperature, Vqq̄(r), from [55] (see the text). Vqq̄ is shown through the black line. The distance

scale r is set to logarithmic (in fm) while the free energy is given in units of the string tension.

The grey line indicates the Cornell potential from the string picture [40]. The lattice data at

temperatures which are indicated with a star do not contain all data we have calculated on the

lattice. We have excluded data as they lie on top of Vqq̄. The inserted figure at the top corner

shows all data we have calculated at T = 12Tc. The other inserted figures is explained in the text

(in these figures the distance is not logarithmically scaled).

potential once they are normalized to Vqq̄ at r = 1/TNτ . We conclude from this that the

finite temperature color singlet free energy can indeed be renormalized by matching the

data at short distances to the heavy quark potential at zero temperature. As no additional

divergences are introduced at finite temperature once the free energy is renormalized

properly, all divergent self energy contributions are removed [92, 73]. We therefore infer

that the matching prescription at small distances,

∆Fmatch
1 (r = 1/TNτ , T )

∣
∣
∣
Nτ

= Vqq̄(r = 1/TNτ ) (2.28)

provides a proper renormalization prescription for the finite temperature color singlet

quark antiquark free energy. As this renormalization prescription fixes the difference

C ≡ ∆F1 − T ln〈TrL(x)L†(x̄)〉, equally well the color octet and color averaged quark

antiquark free energy are fixed at finite temperature. Moreover, the asymptotic large dis-
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tance behaviors of the free energies are fixed, too, which leads to the renormalization of

the Polyakov loop expectation value on the lattice through (2.19).

In general, a proper renormalization of some quantity on the lattice is equivalent to a

well-behaved continuum limit of this quantity. In terms of the color singlet free energy,

we expect that

lim
Nτ→∞

(

∆Fmatch
1 (r, T )

∣
∣
∣
Nτ

)

= ∆F ren
1 (r, T ) (2.29)

is well behaved. Actually, this limit defines the continuum limit of the renormalized finite

temperature free energy. In order to analyze the behavior of the finite temperature free

energy in the continuum limit, we have calculated the color singlet free energy at fixed

physical temperatures on lattices with different temporal extensions. As an example we

show in the insertion of Fig. 2.4 the free energy ∆F1 (black symbols) and ∆Fqq̄ (grey

symbols) at a fixed temperature T/Tc = 1.5 calculated on lattices with different temporal

extensions, Nτ = 4, 8 and 16. The color singlet free energy has been normalized to the

zero temperature potential at rT = 1/Nτ for each Nτ separately. The resulting shift of the

bare lattice free energy to the normalized one also normalizes the lattice data for the color

averaged free energy shown in that figure. It can be seen from that figure that both, the

color singlet and color averaged free energy, coincide separately for each channel at small

and large distances although lattices with different Nτ were used. In fact, this implies a

well-behaved continuum limit as β = 1/T is fixed while Nτ grows.

For Nτ = 8 we have studied the properties of ∆F1 in the continuum limit more closely

by varying the distance (rmatch) at which the finite temperature color singlet free energy is

matched to the heavy quark potential, for instance rmatchT = 1/Nτ ,
√

2/Nτ ,
√

3/Nτ , 2/Nτ , ....

This is quite similar to calculating the renormalized free energy on lattices with different

Nτ . For instance, the shortest distance that can be resolved on a lattice with Nτ = 4

coincides with the distance at rT = 2/Nτ on a lattice with Nτ = 8, and so on. We

have analyzed the influence of the different matching conditions on the free energy at the

largest distance that can be resolved on the lattice with spatial extent Nσ, ∆F1(Nσ/2, T ).

From that kind of analysis we draw mainly two conclusions: First of all, calculations with

Nτ = 4 do not show significant deviations from calculations with Nτ = 8 as the value

∆F1(Nσ/2, T ) stays unaffected from the variation of rmatch. Indeed, the deviations of

∆F1(Nσ/2, T ), deduced by matching at rmatchT = 1/Nτ ,
√

2/Nτ ,
√

3/Nτ , 2/Nτ on the lat-

tice with Nτ = 8, from ∆F1(Nσ/2, T ) deduced from a matching at rT = 1/Nτ with Nτ = 4

are smaller than the statistical errors on ∆F1(Nσ/2, T ) at a temperature T = 1.5Tc. Sim-

ilar properties can be seen at all temperatures analyzed by us. Moreover, we note that

the continuum limit is approached from above. This property follows from a comparison

of the values ∆F1(Nσ/2, T ) on lattices with different Nτ and larger matching distances.

In fact, a matching of the free energy at larger distances to the heavy quark potential

in general leads to an enhancement of ∆F1(Nσ/2, T ). This property can indeed be de-

duced from Fig. 2.4. In other words, lattice calculations with smaller Nτ than 4 may result

in an enhancement of the renormalized free energy in the temperature range covered by us.
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In conclusion, a proper renormalization of the finite temperature free energy at high tem-

peratures in general requires lattice calculations with lattices of large temporal extent, Nτ .

This property is closely related to the renormalization condition r ≪ 1/T , at which the

thermal system effectively behaves zero temperature like. It follows from the discussion

above that Nτ = 4 is indeed close to this limit.

In the remaining three sections of this chapter we first discuss the renormalized 2-point

Polyakov loop correlation functions below and above the critical temperature, present

our lattice results for the renormalized Polyakov loop expectation value and generalize

our approach to n-point functions. We furthermore deduce the corresponding effective

renormalization constant as a function of the bare lattice coupling.

2.4 Renormalized quark antiquark free energy

It follows from our discussion in the last sections that the matching to the zero temperature

heavy quark potential can be performed much easier with the color singlet free energies

than with the color averaged ones. In particular, they allow to perform the matching

to the heavy quark potential at zero temperature already with finite temperature free

energies calculated on lattices with temporal extent Nτ = 4. In this section, and if not

explicitly noted differently throughout the whole thesis, we fix the free constant in the

heavy quark potential as described above. It should be obvious that we refer from now

to the renormalized free energies. Therefore, we will not explicitly indicate this in our

notations.

2.4.1 A consistent picture of renormalized PLCs

Lattice results for the renormalized quark antiquark free energies in each color channel

are shown in Fig. 2.5 as an example at one temperature below and one above Tc. Here we

may distinguish three different distance regions characterized through different behaviors

of the free energies at both temperatures [111]:

At large quark antiquark distances, i.e. for r >∼ 4
√
σ ≃ 2 fm, the renormalized color

singlet (∆F1), the color octet (∆F8) and the color averaged (∆Fqq̄) quark antiquark free

energies coincide at both temperatures. This property of the renormalized free energies is

consistent with our discussion presented above (see section 2.2). At the temperature below

Tc, this figure once more shows that the quark antiquark free energies are dominated by

one single, temperature dependent string tension for all color channels at large separations.

In the intermediate distance regime, i.e. for 0.5 <∼ r
√
σ <∼ 4 (0.25 fm <∼ r <∼ 2 fm), the

different color structures of the free energies become visible. At temperatures below Tc

we note that the renormalized free energies lead in all color channels to an enhancement

compared to the heavy quark potential at zero temperature. This feature is consistent

with the observations in current studies of the free energies in SU(2) [23, 69]. At small

distances, i.e. for r
√
σ <∼ 0.5 ≃ 0.25 fm, the different color structures of the free energies

begin to dominate the picture. In our renormalization prescription the color singlet free

energy coincides with the potential at zero temperature at both temperatures while the
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Figure 2.5: The renormalized quark antiquark free energies in SU(3) as a function of rσ1/2 (σ

being the string tension at T = 0). The filled black symbols indicate the color singlet free energies

and the open symbols the color octet ones. The color averaged free energies are given by the grey

(filled) symbols. The black curve denotes the heavy quark potential; for the definition of Vqq̄(r) see

the text. In this figure we summarize lattice data from simulations on lattices of size 323 × 4, 8, 16

and 643 × 4.

color octet free energy behaves repulsive. The latter property is in fact expected from

leading order perturbation theory. The renormalized color averaged free energy respects

the relation ∆FR
qq̄ − ∆FR

1 = T ln 9 at short distances. In Fig. 2.5 we have indicated this

property with the bracket shown at small distances.

In Fig. 2.5 we have selected temperatures which characterize the behavior of the free en-

ergies close to Tc. The fragmentation in the distance ranges presented above, however,

depends substantially on the temperature ranges which are under consideration. In gen-

eral, the limits given above will be shifted to larger distances at lower temperatures while

they will be shifted to smaller values when analyzing higher temperatures.

Finally we note that the ordering of free energies suggested in Eq. (2.25) is indeed realized

for the renormalized free energies: It can be seen from Fig. 2.5 that the color octet free

energy provides an upper limit for the color averaged free energy which itself gives an

upper boundary for the color singlet free energy at any finite T and r. This property can

be observed at any temperature analyzed by us. In fact, in (2.25), the statement ’>∼’ can

be replaced with ’=’ in the asymptotic case, r → ∞, while in the zero temperature limit,

T → 0, we expect ∆F8(r, 0) > ∆Fqq̄(r, 0) = ∆F1(r, 0) = Vqq̄(r) at any finite distance r.
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2.4.2 More on renormalized PLCs

In order to analyze the influence of the thermal medium on the quark antiquark free en-

ergies in each color channel in more detail, we have plotted in Fig. 2.7 the free energies

separated in the different color channels at several temperatures above and below Tc. We

discuss first the thermal effects on the free energies below Tc (see the left column of that

figure) and will then analyze the temperature effects above Tc (see the right column of

this figure).

We discuss the color singlet (A), the color octet (B) and the color averaged free energy (C)

at temperatures below the deconfinement phase transition temperature: At short distances,

the temperature dependence of the color singlet free energy appears to be much smaller

than in the case of the color octet and color averaged free energies. In fact, the influence

of the thermal medium on ∆F1(r, T ) almost vanishes at separations r
√
σ smaller than 1.5,

while at such small distances ∆F8(r, T ) still shows a strong temperature dependence. We

argue, however, that these effects at small distances result from the finite temperature

averaging involved through Eq. (1.32). In fact, we have noted in Sec. 1.3.3 that the finite

temperature color octet free energies (in terms of derivatives with respect to distance)

do not show temperature effects at small distances. Thus, the observed temperature

dependencies at small distances are specific to our matching condition. Actually, we also

expect to find a temperature dependence in the color averaged free energy arising from

the constant shift, T ln 9 (see (2.22)). This effect, however, appears to be rather small at

small distances at the temperatures below Tc. This can be explained by the fact that the

difference in the temperatures of the shown free energies is small, 0.9 >∼ T/Tc >∼ 0.98. We

analyze the color averaged free energies separately in the next subsection with Fig. 2.6 in

more detail.

At intermediate distances we realize that the enhancement in the finite temperature free

energy compared to the heavy quark potential is visible in all color channels and at all

temperatures analyzed by us. Moreover, while the color singlet free energy shows an

almost temperature independent enhancement up to r
√
σ >∼ 2, the enhancement7 of the

color octet and color averaged free energies show strong temperature dependencies. When

going to large distances, however, the free energies cross the zero temperature heavy quark

potential and the differences in the different color channels vanish. In fact, at such large

distances, i.e. for r
√
σ >∼ 2, the naively expected temperature ordering of the free energies,

∆Fi(r, T1) > ∆Fi(r, T2) for T1 < T2 (i = 1, 8, qq̄), (2.30)

is found for the temperatures below Tc.

Lattice results for the renormalized color singlet, color octet and color averaged free en-

ergies at temperatures above the phase transition temperature are shown in Fig. 2.7 (D),

(E) and (F), respectively. From our studies in the last sections it follows that the color

7Again this is due to the small temperature interval covered below Tc. Of course we expect ∆F1 to

approach the T = 0 potential at all distances in the small T limit.
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Estimate of the screening radius rscreen

T/Tc β ∆Fqq̄(r → ∞, T )/T rscreenT rscreen[fm]

1.03 4.5592 1.460 (42) 0.77 (1) 0.56 (1)

1.20 4.6605 0.914 (16) 0.74 (1) 0.46 (1)

1.50 4.8393 0.506 (24) 0.77 (1) 0.39 (1)

3.00 5.4261 -0.030 (10) 0.94 (2) 0.24 (1)

6.00 6.0434 -0.184 (16) 1.05 (5) 0.13 (3)

9.00 6.3910 -0.200 (06) 1.12 (2) 0.09 (1)

12.0 6.6450 -0.202 (08) 1.14 (3) 0.07 (2)

Table 2.1: Change in free energy due to the presence of a heavy quark antiquark pair in a thermal

heat bath. The table gives results for ∆Fqq̄(r → ∞, T )/T obtained in calculations on a 323 × 8

lattice and the screening radius rscreen defined through (2.31). In order to set the physical scale

we used Tc/
√
σ = 0.635 [86] and

√
σ ≃ 420 MeV.

singlet free energy is temperature independent at short distances and coincides with the

heavy quark potential Vqq̄(r). This feature can be seen in (D). It can also clearly be seen

from Fig. 2.7 (E) that the color octet free energies at short distances show temperature

effects. This is, however, in main parts due to the matching condition in our renormal-

ization scheme. From the same argument it follows that also temperature effects in the

color averaged free energy are expected at short distances. These effects are clearly seen

in Fig. 2.7 (F).

At intermediate distance we note the break-away of the color singlet free energy from Vqq̄.

In contrast to this, the color averaged and color octet free energy show an enhancement

compared to the heavy quark potential. In the case of the color octet free energy this

results from its repulsive behavior at short and intermediate distances. In the case of the

color averaged free energy this is due to the shift by T ln 9.

On the other hand, at large quark antiquark separations, the color sources get screened by

the medium which leads to the finite values ∆Fi(r → ∞), i = 1, 8, qq̄. As can be seen in

Fig. 2.7 (D, E, F), at asymptotic large distances the free energies in the different color chan-

nels coincide defining an only temperature dependent finite value ∆F∞
qq̄ (T ). We note that

the temperature ordering of this value is unique, i.e. ∆F∞
qq̄ (T1) > ∆F∞

qq̄ (T2) for T1 < T2.

Let us finally pay attention to a quite different aspect that can be studied in terms of the

renormalized free energy above Tc. In [92] we have argued that the study of free energies

can be used to give a rough estimate of the onset radius rscreen for color screening. As can

be seen in Fig. 2.7, the color singlet quark antiquark free energy changes rapidly from the

zero temperature pure Coulomb like behavior at short distances to the constant behavior

at large distances. This property reflects the exponential suppression of the free energy

due to screening of the two static charges. As this change is so rapid, we suggest to use

∆Fqq̄(r → ∞, T )/T to define a screening radius rscreen, which characterizes the onset of
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the screening through the relation

Vqq̄(rscreen)

T
≡ ∆Fqq̄(r → ∞, T )

T
. (2.31)

Clearly, the values of the free energies in the infinite distance limit do not depend on the

color structures. The values of rscreen defined in this way are listed in Tab. 2.1. As can

be seen, rscreen ≃ 0.5 fm in the vicinity of the critical temperature, Tc ≃ 270 MeV, while

rscreen drops to 0.1 fm at T/Tc = 9. In fact, we expect that the screening radius rscreen

will drop asymptotically like the inverse Debye mass, i.e. rscreen ∼ 1/g(T )T .

2.4.3 Short distance properties of the color averaged qq̄ free energy

We have stressed in the previous sections that the renormalized color averaged quark

antiquark free energy still shows temperature effects in the short distance limit although

the color singlet and color octet free energies will not show temperature dependencies. In

the following discussion we pay detailed attention to this property. From Eq. (2.22) we

concluded that the color averaged free energy will show a Coulomb-like behavior at short

distances, and moreover, that the temperature effect in the color averaged free energy will

be given by T ln 9. In order to analyze both properties we subtract the expected temperature

effect T ln 9 from the renormalized color averaged free energies. In the following we thus

study the quantity

∆F̃qq̄(r, T ) = ∆Fqq̄(r, T ) − T ln 9. (2.32)

rather than the renormalized color averaged free energy. This quantity is shown in Fig. 2.6

at several temperatures below and above Tc. We also show in that figure the heavy quark

potential, Vqq̄(r) (black line). From that figure it can be seen that the subtraction of T ln 9

from the renormalized color averaged free energy indeed compensates the temperature

effects at small distances as the data for ∆F̃qq̄(r, T ) lie on top of each other at short

distances although they are calculated at different temperatures. Moreover, a comparison

of this finite temperature quark antiquark free energy defined in this way with the heavy

quark potential at short distances shows that the shortest distances that can be resolved

in our lattice studies lie indeed on top of Vqq̄(r). It thus follows that the color averaged

finite temperature free energy shows the pure (unscreened) Coulomb-like behavior in the

short distance limit. It is worth noting that the drop of the color averaged free energy

at such small distances is thus not related to screening. In fact, the quantity defined

in (2.32) will stay comparable with the heavy quark potential in the asymptotic limit

r → 0. In conclusion, the temperature effects in the renormalized color averaged free

energy, ∆Fqq̄(r, T ), can be absorbed at small r in a simple term given by T ln 9.

Finally we note that the free energy ∆F̃qq̄(r, T ) defined in (2.32) does not show an enhance-

ment compared to the heavy quark potential at temperatures below Tc and intermediate

distances. Moreover, the temperature ordering of this quantity, ∆F̃qq̄(r, T ), is quite simple

at all temperatures and distances:

Vqq̄(r) >∼ ∆F̃qq̄(r, T1) >∼ ∆F̃qq̄(r, T2) for T1 < T2. (2.33)
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Figure 2.6: The shifted color averaged free energy ∆F̃qq̄ = ∆Fqq̄ − T ln 9 at temperatures below

and above the phase transition temperature compared to the heavy quark potential (line). In this

figure we utilize data from lattice simulations with lattices of size 323 ×Nτ with Nτ = 4, 8 and 16.

In conclusion, the temperature effect in the color averaged free energy becomes trivial at

small distances, although it is quite complex at intermediate and large distances.

From our discussion it follows that the matching of the finite temperature free energy to

the heavy quark potential can also be performed using the color averaged free energies. In

order to get the relative normalization of the different color channels right when doing the

matching with these free energies instead of using the color singlet free energy, one has to

refer to (2.22). It follows, however, that the matching with the color singlet free energy

can be performed much easier than with the color averaged free energy, as ∆F1 shows a

proper Coulomb-like behavior even at larger distances than the color averaged free energies.

Indeed, it can be seen in Fig. 2.6 that the finite temperature color averaged free energy

breaks away from the heavy quark potential at relatively small distances. Nonetheless

it should be conceptually satisfying that the renormalization process discussed here in

terms of the color singlet free energy could be equally well be performed in terms of an

observable, ∆Fqq̄(r, T ), which is given in terms of a manifestly gauge invariant operator.
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Figure 2.7: The renormalized quark antiquark free energies in the color singlet (A, D), color octet

(B, E) and the color averaged channels (C, F) below and above Tc compared to Vqq̄(r).
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2.5 Towards renormalized n-point PLCs

The analysis of the quark antiquark free energies presented in the previous sections shows

that all three, the color singlet, the color octet as well as the color averaged free energies can

be renormalized by matching ∆F1(r, T ) at small quark antiquark separations to the heavy

quark potential at zero temperature. In this way all divergent self energy contributions

can be removed. Moreover, we have argued that at asymptotic large distances the free

energies yield the value ∆F∞(T ) defined in (2.18). This value, now only a function of the

temperature, leads to a proper estimate of the renormalized Polyakov loop via (2.19), as

no additional divergences get introduced at finite temperature once the renormalization

has been performed at short distances, i.e. at zero temperature. In order to determine the

asymptotic value ∆Fqq̄(r → ∞, T ) we have used the property that all free energies coincide

at asymptotic large separations of the color sources. We have used ∆F1(r → ∞, T )

rather than the color averaged free energy to determine the asymptotic value at several

temperatures above Tc using lattices with different temporal extent, Nτ = 4, 8 and 16.

In order to avoid any fits, we have, in fact, used the value of ∆F1(r, T ) at maximal

on-axis separation of the color sources on a lattice with spatial extent Nσ. We thus

define ∆F∞(T ) ≡ limNσ→∞ ∆F1(Nσ/2, T ). In order to estimate systematic errors on the

renormalized free energies we have performed the matching at rT = 1/Nτ as well as at

rT =
√

2/Nτ . In fact, in this way cut-off effects arising from broken rotational symmetry

at non-zero lattice spacing are taken into account as a systematic error and |〈TrLR〉| should

allow to estimate the convergence to the continuum limit value within statistical as well

as systematic errors.

2.5.1 The renormalized Polyakov loop

Lattice results for the renormalized Polyakov loop calculated from lattices with the differ-

ent temporal extents Nτ are shown in Fig. 2.8 and listed in Tab. 2.2. From the figure it

can be seen that the expectation value of the renormalized Polyakov loop does not show

any systematic effects arising from the different finite lattices although lattices with dif-

ferent temporal extent were used. Indeed, the lattice data form a smooth function of the

physical temperature. It follows that the renormalized Polyakov loop expectation value

defined through our renormalization prescription is well behaved in the continuum limit.

This property is of course closely related to the behavior of the 2-point Polyakov loop

correlation functions in the continuum limit. Thus a well-behaved |〈TrLR〉| in the a → 0

limit once more shows that the renormalization prescription for the 2-point correlation

functions works well at short distances. Indeed, as also the data from the smallest lattice

(Nτ = 4) lie on the curve, this property shows that the matching of these data works

well in the temperature range analyzed by us. In other words, the values for |〈TrLR〉|
deduced at finite a for Nτ = 4 show no significant deviations from the continuum limit

values extracted on larger lattices.

It also follows from that figure that the expectation value of the renormalized Polyakov loop

acts as an order parameter for the confinement deconfinement phase transition as |〈TrLR〉|
is zero below Tc, where the free energy signals confinement, but approaches finite values
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Figure 2.8: The renormalized Polyakov loop expectation value |〈TrLR〉| defined in (2.18) calcu-

lated on lattices of size 323 × 4, 8, 16. The matching to the zero temperature potential utilizes the

standard Cornell form. The dotted lines give the perturbative result from Eq. (2.12) where we

have promoted the coupling to a 1-loop running coupling with Tc/ΛMS = 1.14(4) [87, 86]. The

scale is set by the low Matsubara frequencies, πT, ..., 4πT .

above Tc. We have indicated a vanishing Polyakov loop expectation value below Tc with the

thick black line in that figure; it follows directly from (2.19). Moreover, the renormalized

order parameter is related to the difference in free energy arising from the presence of

a single colored test charge in the gluonic heat bath, |〈TrLR〉| ≡ exp(−∆Fq/T ). In

this sense, the renormalized Polyakov loop expectation value works as an order parameter

which indeed has a physical meaning. Finally we note that approaching Tc from above the

renormalized Polyakov loop expectation value approaches a finite value. This property

signals a (weakly) first order phase transition. We note that the discontinuity of |〈TrLR〉|
at Tc is about 0.4 which indeed is much larger than the jump at Tc which the bare lattice

data show (see Fig. 2.2). We thus find ∆Fq ≃ 0.9Tc ≃ 240 MeV.

The (free) energies are defined only up to an additive normalization which has been fixed

at zero temperature. In fact, the renormalized Polyakov loop is only fixed up to a mul-

tiplicative constant that results from the arbitrary fixing of the zero temperature heavy

quark potential, i.e. through the convention of not including a non-zero constant in the

Cornell potential.

At high temperatures, T >∼ 3Tc, we note that the free energy ∆Fq(T ) gets negative and

correspondingly |〈TrLR〉| attains values larger than unity (see also Tab. 2.2). At asymptoti-

cally high temperatures, perturbation theory suggests limT→∞ |〈TrLR〉| = 1 (see Eq. (2.12)



68 Lattice-Renormalization of the Polyakov loop

The renormalized Polyakov loop expectation value (T > Tc)

Nτ = 4 Nτ = 8

T/Tc ∆Fq/T |〈TrLR〉| T/Tc ∆Fq/T |〈TrLR〉|
1.01 0.867 (34) 0.420 (51) 1.03 0.730 (21) 0.482 (68)

1.03 0.759 (32) 0.468 (53) 1.18 0.457 (08) 0.633 (58)

1.05 0.684 (37) 0.504 (61) 1.48 0.253 (12) 0.776 (38)

1.10 0.564 (30) 0.569 (56) 3.00 -0.015 (05) 1.015 (18)

1.15 0.486 (31) 0.615 (57) 6.00 -0.092 (08) 1.096 (08)

1.20 0.427 (29) 0.653 (52) 9.00 -0.100 (03) 1.105 (07)

1.24 0.387 (26) 0.679 (48) 12.0 -0.101 (04) 1.106 (07)

1.30 0.339 (28) 0.713 (47)

1.50 0.226 (19) 0.798 (32)

1.55 0.206 (16) 0.814 (28)

1.60 0.185 (17) 0.831 (28)

1.68 0.157 (12) 0.855 (22)

2.21 0.053 (01) 0.948 (07)

3.00 -0.02 (01) 1.017 (11)

Table 2.2: The heavy quark free energy ∆Fq/T of a single test quark and the renormalized

Polyakov loop expectation value 〈TrL〉 calculated from lattices 323×Nτ with Nτ = 4, 8. The error

of |〈TrLR〉| includes the systematic error as described in the text.

with g → 0).

We have analyzed the dependence of |〈TrLR〉| on the overall fixing of the zero temperature

heavy quark potential in [93]. In order to do so, we performed a constant shift (c) on the

heavy quark potential, Vqq̄ + c, where Vqq̄ is defined in Sec. 2.3.2. We then also extracted

the renormalized Polyakov loop, |〈TrLR
(c)〉|, from a matching of the free energy to this po-

tential in the same way as described above. A comparison of both renormalized Polyakov

loops, |〈TrLR
(c=0)〉|, which is the original value, and |〈TrLR

(c=−Tc)
〉|, which refers to a shift of

the energy scale by c = −Tc, is shown in Fig. 1 of Ref. [93] (inserted figure). We have also

included in that figure the (continuum) perturbative estimate of 〈TrLR〉 presented in [96]

(see also Eq. (2.12)), where we have promoted the coupling g to a 1-loop running (renor-

malized) coupling gR(T ) (see the dotted line in that figure). First of all we note that in the

language of continuum perturbation theory the high temperature limit 1 is approached

from above (see also the discussion in [96]). In fact, this behavior can also be seen in

the shifted data, |〈TrLR
(c=−Tc)

〉|, which in the temperature regime analyzed by us decrease

with increasing temperatures. We note, however, that a constant shift of the zero temper-

ature heavy quark potential results in a non-perturbative multiplicative constant in the

renormalized Polyakov loop expectation value, i.e. |〈TrLR
(c6=0〉| = exp(−c/T )|〈TrLR

(c=0〉|,
which nonetheless approaches unity in the large temperature limit. In fact, although the

renormalized Polyakov loop expectation value at finite temperatures is only fixed up to

an arbitrary multiplicative renormalization, it will approach a universal value at infinite
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temperature, as

lim
T→∞

|〈TrLR
(c6=0)〉| = lim

T→∞
exp(−c/T )|〈TrLR

(0)〉| = lim
T→∞

|〈TrLR
(0)〉|. (2.34)

We therefore expect that contact with perturbation theory can be established unam-

biguously at high temperatures where the magnitude of the renormalized Polyakov loop

(defined in our renormalization scheme) is unaffected by a shift of Vqq̄(r). Strictly speak-

ing, this is, however, the case only at infinitely high temperatures where we expect

limT→∞ |〈TrLR
(c)〉| = 1.

In the other limit, for instance at temperatures close to Tc, a constant shift will indeed

affect the magnitude of |〈TrLR〉|. However, once the value of |〈TrLR〉| is non-zero in a

representation (c), the renormalized Polyakov loop expectation value will remain finite for

all finite shifts. We thus conclude that the renormalized Polyakov loop expectation value

works as an order parameter in SU(3).

In conclusion, |〈TrL〉| signals not only the confinement deconfinement phase transition,

but is indeed also sensible to the order of the phase transition. Moreover, it approaches a

universal value (which we expect to be 1) in the infinite temperature limit. Both properties

are independent of the normalization of the heavy quark potential at zero temperature.

2.5.2 The effective renormalization constant ZR(g2)

We are now in the position to discuss the renormalization constant which corresponds to

our renormalization prescription. It is given through (|〈TrLR〉|/|〈TrL〉|)Nτ or can alterna-

tively be estimated from (2.20). However, it follows from the discussion above that the

renormalization constant ZR(g2) can be more suitably extracted from the color singlet

free energy than from ∆Fqq̄. In contrast to (2.20) we thus determine ZR(g2) from

ZR(g2) = exp

(

−∆F1(r, T ) − T ln〈TrL(x)L†(x̄)〉
2TNτ

)

. (2.35)

ZR(g2) is related to the shift C which relates the bare Polyakov loop correlation functions

to the renormalized quantities, i.e. C ≡ ∆FR
i (r, T ) − ∆Fi(r, T ) = −2TNτ lnZR(g2),

i = 1, 8, qq̄. This definition allows us to give a renormalization prescription for the free

energies and the Polyakov loop.

Our lattice results for ZR(g2) (at temperatures above Tc) are shown in Fig. 2.9 as a function

of the bare coupling g2 = 6/β, where β denotes the lattice coupling (see Tab. A.1). Our

results obtained on lattices with temporal extent Nτ = 4 and Nτ = 8 are listed in Tab. 2.3

and Tab. 2.4. As the discussion of the renormalization constant is closely related to the

discussion of the renormalized Polyakov loop given above, we present here only some brief

comments.

First of all we note that the (non-perturbative) values for the effective renormalization

constant shown in Fig. 2.9 are indeed independent of the temporal lattice extent. In fact,

the data from lattice calculations with different Nτ show a common behavior as a function

of the bare coupling g2. It can be seen that the renormalization constants ZR(g2) decrease
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The renormalization constant (T > Tc)

Nτ = 4 Nτ = 8

β g2 ZR β g2 ZR

4.080 1.471 1.3725 (54) 4.5592 1.316 1.3583 (28)

4.090 1.467 1.3717 (71) 4.5600 1.315 1.3585 (26)

4.100 1.463 1.3715 (79) 4.5951 1.306 1.3553 (28)

4.127 1.454 1.3721 (88) 4.6290 1.296 1.3523 (29)

4.154 1.444 1.3724 (87) 4.6605 1.287 1.3496 (31)

4.179 1.436 1.3730 (81) 4.6619 1.286 1.3495 (34)

4.200 1.429 1.3734 (74) 4.6874 1.280 1.3473 (33)

4.229 1.419 1.3734 (68) 4.7246 1.270 1.3441 (36)

4.321 1.389 1.3717 (47) 4.8393 1.240 1.3344 (24)

4.343 1.384 1.3708 (41) 4.8661 1.233 1.3319 (23)

4.365 1.375 1.3700 (39) 4.8921 1.227 1.3297 (21)

4.400 1.364 1.3685 (34) 5.4261 1.106 1.2863 (10)

4.600 1.304 1.3531 (09) 6.0434 0.993 1.2438 (04)

4.839 1.240 1.3330 (13) 6.3910 0.939 1.2238 (03)

6.6450 0.903 1.2108 (02)

Table 2.3: The renormalization constant ZR(g2) at various lattice couplings β obtained from

lattice calculations with lattices of size 323 × 4, 8. Listed are the lattice couplings β and the bare

coupling g2 defined through g2 = 2N/β. The values of ZR(g2) were estimated from a matching

to the zero temperature heavy quark potential fixed to the standard Cornell form (c ≡ 0). All

couplings correspond to temperatures above Tc.

The renormalization constant (T < Tc)

Nτ = 4 Nτ = 8

β g2 ZR β g2 ZR

4.000 1.500 1.3748 (72) 4.3212 1.389 1.3767 (22)

4.020 1.493 1.3771 (66) 4.4231 1.357 1.3711 (16)

4.040 1.485 1.3788 (61) 4.4472 1.349 1.3696 (23)

4.050 1.482 1.3792 (58) 4.4551 1.347 1.3692 (19)

4.060 1.478 1.3798 (54) 4.4784 1.340 1.3675 (18)

4.070 1.474 1.3777 (19) 4.4862 1.337 1.3667 (15)

4.4937 1.335 1.3661 (11)

Table 2.4: Same as in Tab. 2.3: The renormalization constant ZR(g2) at lattice couplings β below

Tc calculated on lattices of size 323 × 4, 8. Also given are the bare couplings g2 = 6/β.
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Figure 2.9: The renormalization constant ZR(g2) from SU(3) MC studies as a function of the bare

lattice coupling g2 = 6/β from lattices of size 323 ×Nτ with Nτ = 4 (triangles) and 8 (squares).

The lines in this figure are different estimates of ZR(g2) in spirit of (2.13). They are explained

in the text. The non-perturbative values of the renormalization constant shown in this figure are

listed in Tab. 2.3.

with decreasing coupling. This behavior is indeed expected from lattice perturbation

theory [102]. As the renormalization constant ZR(g2) calculated by us is supposed to

cancel the divergence in (2.10), we expect from (2.13) a leading order perturbative behavior

like

ZR(g2) ≃ 1 + g2N
2 − 1

N
Q(2) + O(g4), (2.36)

where we take Q(2)/Nτ = 0.057(2) [102] in our case. This estimate (including the error

on Q(2)/Nτ ) is shown in Fig. 2.9 as black dotted lines. As can be seen from that figure,

the data cannot be described by this estimate in the coupling regime analyzed by us.

Moreover we note that the non-perturbative renormalized lattice data show a weakening

of its increase with increasing g2 at large couplings. This property cannot be described by

leading order lattice perturbation theory.

As it stands, (2.13) describes only the first few terms of an infinite series which (may)

reconstruct the exponential function in (2.10). In spirit of the leading order term in (2.13)

one will thus rather think of

〈TrL〉 ≃ exp(g2(N2 − 1)/NQ(2) + O(g4)) (2.37)

than of (2.36). This estimate is shown in Fig. 2.9 as grey lines. However, it can be seen
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from the figure that the re-exponentiation of the 1-loop term does not change much the

values of 〈TrL〉 in the coupling regime analyzed by us. In conclusion, the leading order

term in (2.13), although it is re-exponentiated in spirit of (2.10), does not fit the data on

ZR(g2) in the coupling range analyzed by us. It follows that higher order contributions to

the renormalized Polyakov loop - and consequently to the renormalization constant - are

still important in the perturbative series in this coupling regime.

On the other hand, using the parametric form of the re-exponentiated leading order ex-

pression as an ansatz for a fit to our lattice data leads to a quite different value for Q(2)/Nτ

from the value deduced in [102]. Actually, from a best fit analysis we find that the lat-

tice data can be described with Q
(2)
fit/Nτ = 0.107(1) and a pre-factor of the O(g4)-term

−0.065(3). The fit result is shown in Fig. 2.9 with the single black line which matches

the data. Note that the value Q
(2)
fit/Nτ is roughly two times larger than the value deduced

from lattice perturbation theory [102].

In conclusion - and in accordance with our discussion of the renormalized Polyakov loop

- we expect contact with perturbation theory at smaller couplings than analyzed by us.

2.5.3 Essay on the divergence structure in n-point PLCs

Let us consider a Polyakov loop correlation function which involves more than two Polyakov

loops. For example, we consider the renormalization of the n-point Polyakov loop corre-

lation functions,

〈
n∏

i=1

TrL(xi)
n̄∏

i=1

TrL†(x̄i)

〉

≃ exp (−∆Fnq,n̄q̄(T,x1, ...,xn, x̄1, ..., x̄n̄)/T ) . (2.38)

It follows8 that also higher correlation functions than those estimated in the previous

sections require renormalization. However, as we have introduced the effective renor-

malization constant multiplicatively for the Polyakov loop, the renormalization program

can easily be generalized to renormalize any n-point Polyakov loop correlation function.

Indeed, Eq. (2.17) suggests [93]

〈
n∏

i=1

TrLR(xi)
n̄∏

i=1

TrLR†(x̄i)

〉

=
(
ZR(g2)

)(n+n̄)Nτ

〈
n∏

i=1

TrL(xi)
n̄∏

i=1

TrL†(x̄i)

〉

= exp (−∆Fnq,n̄q̄(T,x1, ...,xn, x̄1, ..., x̄n̄)/T ) . (2.39)

In conclusion, it is enough to calculate only 2-point Polyakov loop correlation functions

on the lattice to extract the renormalization constant as all n-point Polyakov loop corre-

lation functions are fixed through ZR(g2). In fact, the shift which is needed to yield the

renormalized free energy from the bare lattice data, Cnq,n̄q̄ = ∆Fnq,n̄q̄ − ∆F bare
nqn̄q̄, can be

written in terms of the renormalization constant as

Cnq,n̄q̄ = −(n+ n̄)TNτ lnZR(g2) (∀T ). (2.40)

8For instance, in leading order perturbation theory the n-point correlation functions are directly related

to the 2-point functions which are divergent. 3-point correlation functions, which are related to the qqq

free energy after renormalization, are subject of [112, 113].
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This is the more general formulation of the renormalization prescription for the free energy

we have given in (2.21). Thus, in spirit of (2.39), the divergence structure in the Polyakov

loop correlation functions has indeed a hierarchic structure.

We should clarify, however, that our renormalization prescription is restricted to the case

that the Polyakov loops in the correlation functions appear at some distance x only with

power one. Otherwise, for instance constructions like L2, L3, ..., will introduce additional

divergences which will not cancel out in the renormalization scheme introduced by us. This

can be seen from the following argument: Such kind of divergences are usually discussed

in the framework of the operator product expansion (OPE) [114, 115, 94]. Following the

structure which is suggested by the OPE, for instance in terms of L2, one finds

L(x + ξ)L(x− ξ)
ξ→0
=

∑

i

Ci(ξ) Oi

(
L2(x)

)
, (2.41)

where Oi(L
2) is a complete set of local composite operators. The crucial difference of the

renormalization process for objects like (2.41) from the renormalization process analyzed

by us is that on the right hand side of (2.41) (after performing the limit ξ → 0) one has a

local composite operator while on the left hand side of (2.41) (before doing the limit) one

has a non-local composite operator. Consequently, the renormalization of local composite

operators deals with a set of new divergences which are not subject of our discussion. In

fact, due to this fatal property of 〈TrL(x)TrL†(x̄)〉 in the limit x → x̄, we have explicitly

imposed the boundary condition, x 6= x̄, in (2.17). A discussion of the renormalization

of the Polyakov loop in higher powers than one can be found in Ref. [99] (a related note

is given in footnote 2 of this chapter).

Let us finally allow for the question whether we have calculated a renormalization constant

which is specific to the Polyakov loop or not. For this discussion let us assume that we

were also interested in the renormalization of the more general Green’s function, G, which

introduce mixtures of the Polyakov loop and the elementary fields U (lattice link variable),

G(TrL,L, U0, Ui). (2.42)

For instance, the cyclic Wilson loop [57] is an example for a correlation function which

mixes the Polyakov loop, L, with the link variables U . Indeed, also such kind of objects

need renormalization as the counter terms, which are present in the Lagrangian in order to

renormalize the Green’s functions which involve only the elementary fields, are in general

not enough (only the gauge links in time direction (U0) should require renormalization, i.e.

a multiplication with ZU (g2)). As the Polyakov loop does not mix under renormalization,

the renormalized Polyakov loop can be obtained from (2.16), LR = ZL(ZU )NτL. In the

following discussion we show that most likely ZL = 1.

A convenient way to consider the divergence structure of objects like (2.38) or (2.42) is

to do so in terms of the generating functional formalism. The usual formalism can be

extended to generate the n-point Polyakov loop correlation functions on the lattice by

introducing appropriate sources ηL and η†L (here for N > 2) which couple to the compos-

ite (untraced) operators L and L†. As usual, functional derivatives with respect to these
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sources lead to the higher Green’s functions (on the lattice) and one can then set the

sources to zero9. We are now interested in the counter terms which have to be included

in such a generating functional in order to ensure a proper renormalization of all higher

correlation functions, including also the usual Green’s functions which involve only the el-

ementary fields U and U †. In order to analyze the counter terms, we may assume that the

generating functional, W , is already properly renormalized from the beginning, W →WR.

Excluding local composite operators from the following discussion the renormalization of

W can be achieved by introducing the renormalization constant (Z̃R)Nτ = Z̃L(Z̃U )Nτ for

the Polyakov loop in addition to the usual renormalization constants Z̃U for the gauge link

variable and Z̃g, which is associated with the coupling renormalization. Let us now con-

sider 〈TrLR〉R obtained from the generating functional in the renormalized language, WR.

It can be generated in two different ways, once in terms of one single functional deriva-

tive with respect to η†L, but it can equally well be generated from Nτ derivatives with

respect to the sources which couple to the elementary gauge links. In fact, the Polyakov

loop can be considered as an Nτ -point U(x) field correlation function, which indeed is

not supposed to require extra renormalization. Moreover, any correlation function which

involves the Polyakov loop, for instance the n-point Polyakov loop correlation function,

can be obtained from WR in these two different ways. On the other hand, any Green’s

function which does not introduce the Polyakov loop is definitely generated from WR. By

construction all Green’s functions are renormalized as we started from the renormalized

9In order to be more precisely consider

W [J, J†, ηL, η†
L] =

1

W0

∫
∏

xµ

dUµ exp

(

−S[U ] −
∑

x

(

J†
µUµ + U†

µJµ + η†
LL + L†ηL

)
)

,

(2.43)

which is supposed to generate the new (bare) Green’s functions on the lattice. The connected Green’s

functions follow from ln W while the 1PI Green’s functions follow from the Legendre transformation of the

(original) sources J and J† of ln W with respect to their associated fields, U and U†. Moreover, Feynman

rules for the original field (Uµ) which interacts between the composite operators L and L† can be obtained

from that expression. As usual, functional derivatives with respect to the sources lead to the higher Green’s

functions. For example

Tr
δ

δη†
L(x)

Tr
δ

δηL(x̄)
W [J, J†, ηL, η†L]

∣
∣
∣
∣
∣
∣
J=...=η

†
L

=0

= 〈TrL(x)TrL†(x̄)〉,

Tr
δ2

δη†
L(x)δηL(x̄)

W [J, J†, ηL, η†L]

∣
∣
∣
∣
∣
∣
J=...=η

†
L

=0

= 〈TrL(x)L†(x̄)〉 (2.44)

generate the well-known 2-point Polyakov loop correlation functions which are related to the color averaged

and color singlet qq̄ free energies. But also the general thermal Wilson line as well as the n-point Polyakov

loop correlation function (2.38) can be obtained from (2.43). Any Green’s function, however, which contains

the Polyakov loop L can be obtained from (2.43) in two different ways. The simplest case is

〈TrL〉 = −Tr
δW

δη†
L

∣
∣
∣
∣
∣
∣
J=...=0

= Tr
δNτ W

δJ†...δJ†

∣
∣
∣
∣
∣
∣
J=...=0

. (2.45)

(Assume Nτ to be an even number.)



2.6 Further remarks on renormalization 75

generating functional. This shows that the introduction of the source terms ηLL
† and

η†LL in the generating functional is gratuitous for the renormalization of L. In fact, ex-

plicitly comparing the counter term structure of the Green’s functions which is obtained

by introducing the Polyakov loop in the two ways discussed above, one finds
〈

n∏

i=1

TrLR(xi)
n̄∏

i=1

TrLR†(x̄i)

〉

R

=
(

Z̃R(g2)
)(n+n̄)Nτ

〈
n∏

i=1

TrL(xi)
n̄∏

i=1

TrL†(x̄i)

〉

R

=
(

Z̃U

)(n+n̄)Nτ

〈
n∏

i=1

TrL(xi)
n̄∏

i=1

TrL†(x̄i)

〉

R

.

This indeed leads to the identification Z̃R(g2) = Z̃U . Like in the continuum, on the lattice

L has a privileged status, too: Its renormalization only requires the renormalization of the

coupling and (elementary) gauge field, i.e. Z̃U ≃ exp(Z̃g
∑N2−1

i=1 Z̃A). More importantly,

however, this identification shows that it is most likely that we have calculated Z̃U rather

than some renormalization constant which is specific to the Polyakov loop. In fact, we

have checked with our lattice data that the 2-point Polyakov loop correlation functions

and the cyclic Wilson loop have the same divergence structure.

Unfortunately, we point out here, that the renormalization constants introduced here (Z̃L,

Z̃U , Z̃R), are related to the effective renormalization constant we calculated on the lattice

(ZR) via a rather non-trivial equation: The expectation value 〈...〉R respects the fact that

in this case also the gauge action is renormalized, 〈...〉R ≡
∏

x Ux... exp(SR), with SR being

the renormalized gauge action. In contrast in the MC approach we applied on the lattice,

this is not the case and therefore ZR and Z̃R are related via

|〈ZRTrL〉| = |〈Z̃RTrL〉R|. (2.46)

This relation, however, is indeed far from trivial. The knowledge, however, of a solution

of (2.46), for instance Z̃R = f(ZR), would lead to a powerful tool in lattice MC methods

as it would open the possibility to perform MC simulations with a non-perturbatively

renormalized lattice gauge action. For instance, lattice operators (in pure gauge theory),

which do not require extra renormalization, would become calculable renormalized from

the beginning by simply rescaling the lattice link variable U with Z̃U .

We add that research on renormalized lattice gauge actions is not new and the present

knowledge on this research field is summarized and reviewed regularly at lattice confer-

ences. Nonetheless we note that most investigations so far use perturbative relations. A

related discussion of an equation like (2.46) can be found in [116]. At this level, we have

to leave further details concerning a solution of (2.46) open for future studies.

We close this chapter with a discussion of the things done so far and relate the renormalized

Polyakov loop to present problems which are subject of current investigations in the field.

2.6 Further remarks on renormalization

The study of the renormalized Polyakov loop correlation functions at small distances has

led us to a proper renormalization prescription for the Polyakov loop expectation value. In
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fact, the concept we followed is not new and has already been anticipated in the discussion

of the heavy quark antiquark free energies presented in [117]. Nonetheless the question

arises why this concept of the renormalization leads to success. In order to analyze this

question it appears helpful to point out parallels of our non-perturbative concept to the

renormalization of TrL in the continuum perturbative approach.

The renormalizability of the finite temperature field theory, in the perturbative approach

in the continuum, in general requires the renormalizability of the theory at zero tem-

perature. For instance, the usual renormalization of objects at finite temperature takes

place in the zero temperature limit as at finite temperature no additional divergences get

introduced. In fact, a proper renormalization of finite temperature quantities requires

a proper separation of the zero temperature part from the matter contribution as only

the T = 0 piece is supposed to contain the UV divergences. In the case of the Polyakov

loop correlation function we have shown that this separation can be performed at short

distances, r ≪ 1/T , where the finite temperature free energy is much less affected by

the thermal medium. Indeed, from a heuristic point of view one will not expect thermal

modifications of the finite temperature quark antiquark free energy at distances which are

small compared to the length scale defined through the thermal gluon wave length. This

property led us indeed to the separation of the heavy quark potential at zero temperature

from the finite temperature free energy at short distances (see Fig. 1.8). The separation of

the zero temperature part from the finite temperature free energy thus is closely related to

the usual separation of the UV divergence in continuum perturbation theory. Nonetheless,

this is only the separation of the divergence - we still have to remove it.

The cancellation of the divergence is defined in our renormalization prescription by simply

matching the finite temperature free energy to the heavy quark potential at short distances.

The zero temperature potential is fixed by the definition of the overall constant in the

energy scale. For a proper cancellation of the divergence it is mandatory to use the

perturbative estimate for the heavy quark potential as it contains the r-running of the

coupling at small distances. We note that this statement is quite similar to Polyakov’s

suggestion, as it claims that the renormalization of the Polyakov loop will follow from the

usual coupling renormalization.

Finally we gave some insights into the Polyakov loop as a composite operator on the lattice.

We showed that it is most likely that - once more in accordance with Polyakov’s suggestion

- the Polyakov loop on the lattice will not require extra renormalization. Indeed, in our

renormalization scheme the renormalization of the Polyakov loop on the lattice appears

to be similar to the renormalization prescription which is proven to work in perturbation

theory in the continuum. Thus the renormalization prescription suggested by us is quite

similar to the standard renormalization program of continuum perturbation theory at fi-

nite temperature, implemented on the lattice and solved with non-perturbative methods.

We note that our renormalization prescription is different from the normalization condition

we have frequently used in the first chapter,

δFqq̄(r, T ) = −T ln
〈TrLTrL†〉
|〈TrL〉|2 . (2.47)
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Figure 2.10: A comparison of the renormalized Polyakov loop expectation value |〈TrLR〉| cal-

culated in different thermal heat bathes. The open symbols show results in SU(2) from [118],

the closed black circles are our data and the triangles show a first estimate of full QCD (from

[119, 120]). The closed triangles correspond to 2-flavor QCD and the open triangles to the 3-flavor

case. More details are given in the text.

While within this normalization (at temperatures above Tc) the linear divergence cancels

out in Eq. (2.10), a proper renormalization of the finite parts is still missing. The use of

this condition on the lattice is somewhat similar to the use of a dimensional regularization

scheme in the continuum perturbative approach without renormalization of the finite parts.

It should be obvious that the renormalization concept analyzed by us can easily be gen-

eralized to any SU(N) gauge theory and to full QCD, for instance to QCD with light

dynamical quarks. It will be of even greater interest in the latter case as the renormalized

quark antiquark free energies at temperatures below Tc will show string breaking free en-

ergy. In fact, our renormalization prescription has recently been applied in SU(2) [69] and

investigations of full QCD [120] are currently being performed. In order to compare results

from these studies with the renormalized Polyakov loop in SU(3) we show in Fig. 2.10 the

lattice results from investigations in SU(2), SU(3) and full QCD (2- and 3-flavor QCD)

at temperatures close to Tc
10.

10It is well-known, that the Polyakov loop expectation value acts as an order parameter for the confine-

ment deconfinement phase transition in the case of SU(N) while it does not in the case of full QCD. The

confinement phase transition in SU(2) is found to be second order [65, 121], while in the case of SU(3) it
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In fact, a well behaved scaling behavior for the case of SU(2) is expected at criticality and

is indeed observed [69]. The line in Fig. 2.10 shows the scaling behavior with a critical

exponent β = 0.3265 (see also the discussion in [69]). One can see from that figure that the

confinement deconfinement phase transition in terms of the renormalized Polyakov loop

in SU(2) indeed appears as a second order one, while in the case of SU(3) the data points

cannot be described with this scaling behavior. Rather than critical behavior the SU(3)-

values show a discontinuity at Tc which indeed is expected from the first order transition.

The situation changes when one includs dynamical quarks into the theory. In this case

the global Z(3) symmetry is broken through the mass term in the QCD-Lagrangian and

string breaking takes place at temperatures below Tc. One therefore does not expect that

〈TrLR〉 will act as an order parameter in the strict sense, but still is expected to indicate

the transition to the high temperature phase as it is supposed to change from small values

below Tc to larger values above the deconfinement point. From the data points of full

QCD calculations shown in Fig. 2.10 it can clearly be seen that the renormalized Polyakov

loop in this case changes continuously from small to large values. Due to string breaking,

the value of the renormalized Polyakov loop does, however, not vanish below Tc. In fact,

only in the limit T → 0 we expect a vanishing value for the renormalized Polyakov loop

as limT→0 e
−∆Fq/T = 0.

Finally we note that having solved the problem of a proper renormalization of the Polyakov

loop on the lattice opens the possibility to analyze various aspects of finite temperature

QCD which are considered to be related to properties of the Polyakov loop. These are,

for instance, the pressure and the free energy of the plasma [125] where perturbative

calculations fail, at least at temperatures close to Tc. Different Polyakov loop models

[27, 25] have been investigated and it is argued that ’Polyakov loop condensation’ can

overcome these problems. In these models the renormalized Polyakov loop is an important

input parameter. In fact, a detailed analysis along the spirit of these models using the

renormalized Polyakov loop will lead to a better understanding of the thermodynamics

close to Tc. Such kind of studies do not exist but can be developed now on the basis of our

analysis. In the following we turn, however, to a quite different aspect of the renormalized

free energies which is supposed to be important for the understanding of confining forces

in finite temperature QCD. The separation of the potential energy and entropy from the

finite temperature free energies is subject of the following chapter.

is a weakly first order transition [122, 123] and it is an ordinary first order transition for N > 3 (see [124]).

The renormalized Polyakov loop expectation value should mirror the order of the phase transition.



Chapter 3

From free energy to the QCD

force at finite T

The investigation of medium effects on the color averaged quark antiquark free energies,

calculated from the Polyakov loop correlation functions, has become an important topic in

the analysis of the thermal properties of hadrons [18], as such kind of investigations have

been utilized to analyze the temperature dependence of bound state problems in heavy

quarkonium physics at temperatures below and above Tc. For instance, the suppression of

charmonium production has been proposed as a probe for the creation of the quark gluon

plasma in high energy nucleus-nucleus collisions [31]. Thus, these studies are of impor-

tance not only for the confirmation of theoretical models through experimental findings on

the quark gluon plasma, but also for an understanding of the different plasma signals in

current experiments (see for instance Ref. [7]). Consequently, many different theoretical

studies in this field have been performed since the early work on charmonium suppression

[31, 126, 32].

One essential input in most of these considerations is the behavior of quarkonium states in

a deconfined medium. This problem can in principle be addressed directly in finite temper-

ature lattice QCD. Until quite recently, however, computer performance and techniques

did not allow such studies, as the expected small size of quarkonium requires very small

lattice spacings. One therefore resorted to potential theory, starting from the Schrödinger

equation,

Hψi = Eiψi , (3.1)

with the Hamiltonian

H ≡ 2mi −
▽2

mi
+ V (r) , (3.2)

where ψi specifies the wave function of the bound state under consideration, Ei its mass,

and V (r) the heavy quark potential [126]. In absence of a thermal medium (T = 0), the

potential between the heavy quark pair is known to be of standard Cornell form at large

distances while this parameterization needs perturbative corrections at short distances due

79
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to the weakening of the coupling. The presence of the thermal medium, however, modifies

the potential, so that we now have V (r, T ) in Eq. (3.1). Actually, however, the present

studies make use of the thermal properties of the quark antiquark free energies in order

to define an appropriate finite temperature potential. Moreover, most of these studies

concentrate on the thermal modifications of the color averaged free energies at rather large

distances.

The conclusions we draw are thus threefold: Firstly, of even greater relevance than the

quark antiquark free energy for heavy quark physics is the quark antiquark potential en-

ergy at finite temperature, as this quantity appears in the quantum mechanical and field

theoretical relations of the potential models. Secondly, in order to analyze thermal prop-

erties of bound state problems it appears to be more appropriate to do so in terms of the

color singlet and color octet channels rather than utilizing the color averaged free energies.

In fact, these color channels are supposed to be related to the properties of real, physical

hadrons. Finally one should analyze the finite temperature potential energies in the full

distance and temperature range as the potential at small distances and temperatures close

to Tc is of importance in the heavy quark physics.

The difficulty of a proper separation of the potential energies (E) and entropies (S) from

the Polyakov loop correlation functions arises from the fact that the r-dependence of the

quark antiquark free energies results from the r-dependence of E and S [73, 92]. Actually,

the r-dependence in the free energy is given by

∆Fi(r, T ) = ∆Ei(r, T ) − T∆Si(r, T ), (3.3)

with i = 1, 8, qq̄. The feature that also the entropies are r-dependent quantities makes

this relation quite non-trivial. Unfortunately, over the years it has become customary to

denote the logarithm of the Polyakov loop correlation functions itself as the heavy quark

potential at finite temperature. Thus the role of any additional entropy contribution in

the Polyakov loop correlation functions has been ignored at finite temperature, so far.

It is thus mandatory for the further analysis of the thermal properties of bound states

via potential models to get control over the entropy contributions in the Polyakov loop

correlation functions from short to large distances. The non-trivial r-dependence of the

free energies in (3.3) shows that it may be misleading to use the thermal properties of the

free energies in potential models.

In this chapter we will analyze (3.3) in terms of thermodynamic relations which are well-

known from Statistical Mechanics. Indeed, these relations allow us to extract ∆Ei(r, T )

and ∆Si(r, T ) non-perturbatively from the renormalized free energies [92, 93]. As it stands,

these relations do not depend on the color structure. We suggest to use these new finite

temperature potentials (in future) in potential models for an analysis of the thermal prop-

erties of the heavy quarkonium spectra in finite temperature QCD.
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3.1 A new look at the QCD potential and force at finite T

We discuss here the thermodynamic properties of the renormalized heavy quark free en-

ergies in more detail. In fact, having fixed the free energies through renormalization is

equivalent to having fixed the partition functions for the thermal system. For instance,

we have

∆Fnq,n̄q̄ = −T ln
Znq,n̄q̄(V, T,x1, ..., x̄n̄)

Z(V, T )
. (3.4)

In contrast to (1.15) the free energies are now directly related to the corresponding par-

tition functions. Consequently, all thermodynamic information about the system is fixed

and can be deduced from the renormalized free energies. Our study thus opens the possi-

bility to refer to thermal relations in order to separate the excess energies (potentials) and

excess entropies from the renormalized free energies. We suggest that this can be done

through

∆Enq,n̄q̄(T,x1, ..., x̄n̄) = −T 2 ∂∆Fnq,n̄q̄(T,x1, ..., x̄n̄)/T

∂T
, (3.5)

∆Snq,n̄q̄(T,x1, ..., x̄n̄) = −∂∆Fnq,n̄q̄(T,x1, ..., x̄n̄)

∂T
. (3.6)

As it stands, these thermodynamic relations are neither bound to some specific tem-

perature nor to some specific distance range. In fact, they allow us to study the finite

temperature potential energies and entropies non-perturbatively in all color channels. In

this section we are interested in analyzing the thermal relations (3.5) and (3.6) using the

renormalized heavy quark antiquark free energies ∆F1(r, T ), ∆F8(r, T ), ∆Fqq̄(r, T ) as well

as ∆Fq(T ).

From the definitions above it follows that ∆Ei and ∆Si determine the difference in energy

and the difference in entropy due to the presence of static charges which are put into the

thermal heat bath. They thus also contain the potentials and entropies of the thermal heat

bath alone. These quantities have been calculated in Ref. [127] and could be subtracted

from the renormalized free energies. We note, however, that they do not show any r-

dependence and therefore the r-dependencies of the finite temperature potentials and

entropies are indeed given by Ei and Si in ∆Ei and ∆Si. It thus follows that also the finite

temperature force, Ki(r, T ), can be calculated from these finite temperature potentials,

Ki(r, T ) = −d∆Ei(r, T )

dr
. (3.7)

In terms of forces, confinement is supposed to lead to non-vanishing Ki(r, T ) at large dis-

tances while deconfinement should yield a vanishing force at large distances. In vacuum

physics the force is thus often used to analyze the coupling as undetermined constants

get removed in the force. At finite temperature, however, the force defined in Eq. (3.7)

is complicated through screening effects. As the finite temperature force is not affected

from the arbitrary overall fixing of the zero temperature potential we expect that (3.7)

can similarly be used to estimate the running coupling. Hence we expect that the finite
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temperature force defined in Eq. (3.7) will not change its sign, i.e. K1(r, T ) ≥ 0.

The approach we suggested above can easily be generalized to full QCD. In fact, as the

renormalization concept we refer to is supposed to work also in this case [128, 119], and

as the thermal relations are not specific to the choice of action S, the program we outline

is supposed to lead to the finite temperature potential and to the entropy also in QCD.

It will be of even greater importance in this case as these potentials will reflect the string

breaking energy. In this thesis, however, we are interested in the analysis of the finite

temperature potential energies and entropies which are contained in the free energies of

the pure SU(3) gauge theory. In the following we discuss this issue in more detail.

3.1.1 Thermodynamics with heavy quark free energies

For the discussion of the thermal properties of the renormalized free energies it appears

convenient to reanalyze the r- and T -dependence of the renormalized quark antiquark

free energies defined in the r-T -plane. In Fig. 3.1 we show an illustrative example of the

functional dependencies of the renormalized color singlet free energies. In that figure we

try to indicate that the finite temperature color singlet free energies become temperature

independent at small distances while the explicit temperature dependence becomes visible

at large distances. The free energies below Tc signal confinement and the free energies

above Tc show the color screening property as they approach finite values at large dis-

tances. At Tc we have included in that figure the feature that the free energies will show

the first order phase transition. This kind of phase transition is supposed to lead to a

discontinuity in the free energies at Tc. We have indicated this property with the hatched

plane at the critical temperature. For instance, unlike in SU(2), it follows that for the

SU(3)-case there does not exist a definite choice for the free energies at the critical tem-

perature. Note, however, that the specific fine structure of the renormalized color singlet

free energies is not shown in Fig. 3.1. For instance, the color singlet free energies below

Tc in this figure do not illustrate the enhancement compared to the heavy quark potential

at zero temperature and intermediate distances which we noted in the previous chapter.

Fig. 3.1 also illustrates that the entropy contributions to the free energy are r-dependent

quantities. This property can easily be deduced from the thermal relations as follows:

Since the color singlet quark antiquark free energy at asymptotically small quark antiquark

separations becomes temperature independent, dF1(r → 0, T )/dT = 0, this relation also

implies via (3.6) that the entropy contribution ∆S1 vanishes in this limit. However, for

large separations, the color singlet free energy is temperature dependent and it thus follows

that ∆S1 6= 0 at large distances. The other color channels (octet, averaged1) show similar

1In order to be precise we note here that the argument presented does strictly speaking not apply to

the color averaged free energy, as we have stressed before that ∆Fqq̄(r, T ) will not become temperature

independent at small r. Consequently, the argument given does not apply to this case. Therefore it might

be possible that the r-dependencies of the entropy contributions to ∆F1 and ∆F8 compensate each other,

which may result in ∆Sqq̄ 6= ∆Sqq̄(r). In the following we will, however, provide evidence that this is not

the case. In fact, the relation ∆Fqq̄ −∆F1 = T ln 9 indeed tells us that ∆Sqq̄(r → 0, T ) = − ln 9 instead of
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temperature  T
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Figure 3.1: A schematic figure of the renormalized static quark antiquark free energies in the color

singlet channel at finite temperatures. We show here the free energies ∆F1 as a function of r and

T over the r-T -plane. This figure only shows the basic properties of the renormalized singlet free

energies, i.e. the temperature independence at small r, the confinement signal below Tc, the first

order phase transition at Tc and the deconfinement signal above Tc. Details like the enhancement

of the finite temperature color singlet free energies at temperatures below Tc compared to the heavy

quark potential at intermediate distance, are not explicit shown here. In this figure we consider

∆F1 rather than ∆F1/T , the change in free energy with temperature at fixed distance r is related

to the entropy. For further discussions of this figure see the text.

behavior.

Let us discuss the physical meaning of the excess finite temperature entropies as we have

seen that they will play an important role in the free energies. In general, entropies are

given by the sum over all possible thermal configurations of the system. In our case we

expect that the zero temperature statistical contributions [109] as well as the thermal

properties of the medium, for instance the gluon density in the heat bath, are supposed to

modify these entropies. As the entropies defined through (3.6) refer to the difference of the

entropies in the presence and absence of static charges in the thermal bath, it follows that

in general the positivity of entropies, ∆Si >∼ 0, is not required. The differences in entropies

is related to a destruction or generation of thermal configurations when the quarks get

introduced into the heat bath. In general one can say that large absolute values (|∆Si|)
indicate that the configuration of the thermal system changes much when color charges

get introduced into the heat bath.

Nonetheless, the questions remain how to understand an r-dependent potential and en-

∆Sqq̄(r → 0) = 0, i.e. it turns out to approach a T -independent constant.
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Figure 3.2: A schematic figure that illustrates the possibility of the r-dependence of the energies

and entropies at finite temperature. The grey clouds represent a higher gluon density around the

quarks (black points) compared to the rest frame of the gluon density in the pure gluonic heat

bath. In the confinement phase the gluon density is supposed to form a thin flux tube [53] while

in the deconfinement phase the clouds can be separated through screening. We suggest that the

geometric structures of these gluon clouds are related to the values of ∆Ei(r, T ) and ∆Si(r, T ) in

the free energies.

tropy contribution and what causes this property in the free energies. We may resort here

to a well-known heuristic picture in which this r-dependence gets more transparent: The

potentials and entropies in the free energies estimate the difference in the configurations

due to the presence of the static quarks. In general, placing the quarks into the thermal

heat bath will lead a polarization of gluons which will surround the color charges. From

this rather heuristic view there will be a kind of gluon cloud which screens the color charges

of the quarks. In conclusion, placing the static color charges into the thermal heat bath

will change the configuration of the system and thus will change the entropy and energy

compared to the entropy and energy of the pure thermal heat bath. Thus, in this heuristic

figure, the value of ∆Ei and ∆Si is, though not closer specified, somehow related to the

geometric structure of the gluon density (clouds) in the thermal heat bath. It follows, that

these gluon clouds will overlap at short distances while at large distances the geometric

structure of these clouds depends on the screening properties of the thermal medium in

the different phases. For instance, at temperatures below Tc it is well-known that the

gluons form a thin flux tube between the two color charges [53] while at temperatures

above Tc the clouds of both charges can be separated from each other. This property is

shown in Fig. 3.2. It can be seen in this figure that we expect the values of the entropies

at temperatures below Tc to change continuously with increasing distances as the flux

tube enlarges while in the case of a deconfined medium the change in entropy will stop

at some value as the clouds get separated at some distance. As at large separations the

relative orientation of the different color charges in the color space do not influence the

screening properties we indeed expect that the potentials and entropies in the different

color channels will coincide.

At short distances the gluon clouds wash out as the color charges screen each other. This

is expected to take place at distances which are smaller than the thermal wave length
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of the gluons. At such small distances the difference in potential energy is not modified

from the heat bath and the entropy is supposed to vanish or will approach finite values.

We do not expect that the entropy is modified by the temperature and thus is supposed

to be given through the statistical formulation at zero temperature. A related discussion

of these entropies has recently been given [109]. They calculated the quantum statistical

entropy of one single quark to be Sstat
q = ln 3. This suggests that the vacuum entropy of

a quark antiquark pair is given by Sstat
qq̄ = ln 9.

3.1.2 On expectations and uncertainties

As this is the first time that a non-perturbative analysis of the finite temperature potential

energies and entropies is performed, the present knowledge on the thermal properties of

these quantities is quite limited. We thus concentrate in this section on the expectations

and uncertainties which follow from the use of the renormalized free energies in thermody-

namic relations for Ei and Si. We first discuss consequences for the r-dependence of the

potentials and entropies at large distances in both phases and then turn to a discussion of

their short distance properties. Finally we remark on thermal properties of the potentials

and entropies at asymptotically large distances in the deconfinement phase. This will also

be the starting point of our discussions of the lattice results.

The (asymptotic) string pictures are supposed to describe the r-dependence of the quark

antiquark free energies at large distances, for instance, at distances where the free en-

ergies in the different color channels approximately coincide. Following Eq. (1.5), the

r-dependence of the finite temperature potentials and entropies at low temperatures is

given by (r ≫ 1/T ≫ 1/Tc)

∆Ei(r, T ) ≃ σE(T )r − T + O(T 2), (3.8)

∆Si(r, T ) ≃ σS(T )r − ln 2rT − 1 + O(T ), (3.9)

where we have used ’≃’ in these relations in order to indicate that these relations are

supposed to describe the finite temperature potentials and entropies up to additive renor-

malization. The temperature dependencies of the string tensions σE(T ) and σS(T ) are

defined through

σE(T ) = σ +
π

3
T 2 + O(T 3), (3.10)

σS(T ) = 2
π

3
T + O(T 2). (3.11)

It follows that the finite temperature potentials signal confinement at large distances as

σE(T ) is positive. Moreover, as this string tension is increasing with increasing temper-

atures, the finite temperature potentials appear to increase with increasing temperature

at large distances. As σ in (3.10) denotes the string tension of the heavy quark poten-

tial at zero temperature it follows that the finite temperature potentials are supposed to

be larger than Vqq̄ at large distances. It is worth noting that the string tensions of the

finite temperature potentials smoothly approach the zero temperature value in the limit
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T → 02. We also note that (3.8) suggests a linear potential at finite temperatures at this

level. Actually, approximations of the string fluctuations to higher accuracy are expected

to add r-dependent corrections with powers lower than one. A similar statement is proven

for the heavy quark potential at zero temperature [129] by using a mathematically more

rigorous argument. Both properties are indeed quite different from the thermal features

that the quark antiquark free energies show. For instance, the temperature dependence

of the string tension in the free energies is in contrast to (3.10) decreasing with increasing

temperatures and the typical logarithmic corrections to the linear term in the free energies

disappear in the potential.

The finite temperature entropies are supposed to increase with increasing distance, too.

This property is indeed conform with the statement we gave in the discussion of Fig. 3.2

as we noted that the entropies below Tc will continuously change with changing distances

as the geometric structure of the flux tube changes continuously. We note that the string

tension of the heavy quark potential at zero temperature is missing in (3.11). This indi-

cates that confinement indeed originates from potential energy rather than from entropy.

Note, that the typical logarithmic correction to the finite temperature free energies ap-

pear here as entropy contributions. They originate from the transverse fluctuations of the

finite temperature string. Actually, these fluctuations turn out to reduce the difference

in entropy. Nonetheless, as rT ≫ 1, the linear term in (3.9) is the leading term at large

distances. Consequently, the entropy reduces the confining signal, i.e. the effective string

tension in the free energies.

The approximation of the string fluctuations given above for the free energies cannot be

applied when going to higher temperatures [46, 130]. Instead of this approximation, at

temperatures close to Tc, a large D-expansion is supposed to lead to the temperature

dependence of the string tension in the free energies [46, 130] (see for instance Eq. (1.6)).

Following this expression, one finds

∆Ei(r, T ) ≃ σ̃E(T )r, (3.12)

∆Si(r, T ) ≃ σ̃S(T )r, (3.13)

where in this case the string tensions σ̃E,S(T ) are given by

σ̃E(T ) = σ
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. (3.15)

Actually, both string tensions are divergent3 in the limit T → Tc. Clearly, the temper-

ature dependence of the string tensions in the potentials characterize the temperature

2The limit T → 0 in this string picture is ill-defined as rT ≫ 1 is required. Moreover, (3.5) cannot be

applied in this limit as ∆Fi/T diverges.
3Such a divergent behavior of the entropy (and potential energy) in the case of the string picture in the

limit T → Tc should not be confused with the so-called roughening transition which is known from the solid-
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dependence of the color forces. Consequently the asymptotic string picture suggests an

increasing force with increasing temperatures at large distances which may diverge at Tc.

At small distances the different color structures lead to a different behavior of the potentials

and entropies in the different color channels. We discuss here only the case of the color

singlet potentials and entropies. At small distances the color singlet free energy is given

by the heavy quark potential at zero temperatures. It thus follows

∆S1(r → 0, T ) ≃ 0 and ∆E1(r → 0, T ) ≃ Vqq̄(r). (3.16)

From our discussion above it follows that these relations are expected to be true at all

temperatures. Indeed, similar relations can be deduced for the other color channels.

Let us turn to the finite temperature potentials and entropies in the deconfined phase.

Although we have seen in the first chapter that leading order perturbation theory is most

likely not applicable for the description of the color averaged free energies at temperatures

a few times the critical temperature, more reliable information seems to be given by

perturbation theory for the color singlet and color octet free energies at large distances.

We thus mainly discuss here the r- and T -dependencies of the potentials and entropies in

these two color channels.

At large distances, one expects that the color singlet and color octet free energies are of

color screened Coulomb form. From leading order high temperature perturbation theory

(r ≫ 1/T ) one thus expects (up to renormalization)

∆E1,8(r, T ) ≃ C1,8
α(T )e−m(T )r

r

(

1 + rT
dm(T )

dT
− T

α(T )

dα(T )

dT

)

, (3.17)

∆S1,8(r, T ) ≃ C1,8
α(T )e−m(T )r

r

(

r
dm(T )

dT
− 1

α(T )

dα(T )

dT

)

. (3.18)

From these relations it follows that the finite temperature potentials and entropies signal

deconfinement as both approach finite values at large distances. This property is consistent

with our discussion of the r-dependence of the entropies given above, for instance with

the feature that the gluon clouds which screen the static color charges can be separated

at high temperatures. We organized the relations (3.17) and (3.18) in a way that the pre-

factors in both relations give the leading order perturbative estimate for the free energies,

i.e. ∆E1,8 ≃ ∆F1,8(1 + ...) and ∆S1,8 ≃ ∆F1,8(...). This simplifies a comparison of

the behavior of the free energies with the behavior suggested by these relations for the

potentials and entropies.

on-solid (SOS) models or from the more general random surface models [131] (see also [46]). Actually,

although this kind of phase transition is indeed observed to take place in the strong coupling range of

SU(N) gauge theories [132, 41], and has been studied in detail in terms of the string tension [52, 133, 134],

it is well-known that the roughening transition provides a potential barrier for extrapolations of strong

coupling expansions in SU(N) down to the weak coupling regime as there appears a singularity of the

string tension as a function of the bare lattice coupling [18]. The lattice results we analyze in the context

of our present studies, which are quite close to Tc, are supposed to have just undergone this transition [46].

Moreover, the roughening transitions does not imply deconfinement as the string tension is not vanishing

after this kind of phase transition (when going from strong to rather weak couplings).



88 From free energy to the QCD force at finite T

The differentiation of the Debye-mass m(T ) ≃ gT and the coupling α(T ) = g2/4π is given

by the β-function which in leading order perturbation theory is supposed to be negative.

Consequently, in leading order perturbation theory the change of these quantities with a

change in temperature is given by

dm(T )

dT
≃

√

N

3
(g + β(g)) ≃

√

N

3

(
g − β0g

3
)

≃ +

√

N

3
g, (3.19)

dα(T )

dT
≃ 1

T

1

2π
gβ(g) ≃ − 1

T

1

2π
β0g

4. (3.20)

This shows that the r- and T -dependence of the potentials and entropies is quite complex.

In general, however, we expect that the terms in brackets in Eqs. (3.17) and (3.18) are

positive at large distances as we expect that the sign of the screened Coulombic behavior

is given by the Casimirs, C1,8. Indeed, in this approach the influence of the different color

structures on the potentials and entropies only enters through Ci. It should be obvious,

however, that the behavior of the potentials and entropies at intermediate and small dis-

tances will deviate from (3.17) and (3.18) as, for instance, the entropy given (3.18) is

supposed to show a color screened Coulombic behavior at small distances (see Eq. (3.16)).

This cannot be correct as we have deduced on quite general grounds that ∆S1(r, T ) will

vanish at small distances. This also shows that it is mandatory for an analysis of the

color singlet and octet potentials and entropies to respect the r-running of the coupling

at intermediate and small distances.

Let us finally discuss the properties of the potentials and entropies at asymptotically large

quark separations in the deconfinement phase. In fact, as we have seen that they are

supposed to approach finite values at temperatures above Tc, it is of interest to analyze

their behavior in the high temperature limit (T → ∞). From perturbation theory it

follows that the finite temperature free energies at large distances are supposed to become

describable by ∆Fqq̄(r → ∞, T ) ≃ −g2T . While ∆Eq/Tc at the temperatures analyzed by

us seems to vanish at high temperatures, high temperature perturbation theory predicts

negative values for the internal energy, too. Indeed, assuming ∆Fq ≃ −g2T from high

temperature perturbation theory, it follows

∆Eq ≃ −2β0Tg
4 while ∆Sq ≃ g2 − 2β0g

4, (3.21)

where β0 is the first coefficient in the perturbative β-function, β(g) = β0g
3+O(g5)4. Lead-

ing order perturbation theory would suggest limT→∞ ∆Eq/T = 0 and limT→∞ ∆Eq/Tc =

−∞. Note that the leading order coefficient in the entropy in this perturbation theory

inspired approach is positive. In conclusion, we expect ∆Sq >∼ 0 at high temperatures.

The situation described above will change when referring to full QCD. Although the behav-

ior of the finite temperature potentials and entropies in the high temperature, deconfined

4An arbitrary power in the coupling, which may result in perturbation theory from resummation tech-

niques, will not influence the general properties of our statement. For instance, the ansatz ∆Fq ≃ gnT

(with an arbitrary power n) leads to similar relations like (3.21).
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phase is supposed to be quite similar to that of corresponding quantities in SU(3), quali-

tative changes will occur. In particular, in the presence of dynamic quarks (full QCD) at

temperatures below the deconfinement point string breaking will appear. While it should

be obvious that in this case the finite temperature potentials will indeed signal the string

breaking energy as they are flattening at large separations, it is a quite interesting and

so far unanswered question whether these energies will increase with temperature similar

to the case of SU(3). In fact, our studies in Ref. [119] indicate that the string breaking

energy will increase with increasing temperatures.

3.2 The asymptotic behavior of ∆Fq, ∆Eq and ∆Sq

In order to analyze the temperature dependence of the potential energies and entropies

at asymptoticly large distances (r → ∞), it is convenient to study first the asymptotic

properties of the renormalized free energies. For instance, this can be done in terms of the

simplest free energy given by

∆Fq ≡ lim
r→∞

∆Fqq̄(r, T )/2 (T > Tc) . (3.22)

Moreover, the discussion of ∆Fq is closely related to the discussion of the renormalized

Polyakov loop expectation value. While ∆Fq defined in this way is finite above Tc, it is

infinite below Tc due to confinement. In order to include in our discussion also the free

energies in the low temperature phase, instead of (3.22) we will estimate

∆Fq(r
√
σ = 2, T ) ≡ ∆Fqq̄(r

√
σ = 2, T )/2 (T < Tc) (3.23)

at temperatures smaller than Tc where r
√
σ = 2 (r ≃ 1 fm) is supposed to be close to the

physical extent of heavy quarkonium [135]. The free energies ∆Fq defined in this way are

shown in Fig. 3.3 as function of temperature. In this figure we estimate both, the values

for ∆Fq/Tc, as they are related to the single quark entropies (∆Sq), and the values for

∆Fq/T , since the change of this quantity with a change in temperature reflects the single

quark potential energies (∆Eq) (see Eqs. (3.5) and (3.6)).

3.2.1 Temperature dependence of the asymptotic free energy ∆Fq

Let us first comment on the temperature dependence of the single quark free energies at

temperatures close to Tc. It can clearly be seen from Fig. 3.3 that the free energy changes

monotonic with temperature in both phases, ∆Fq(T1) >∼ ∆Fq(T2) for T1 <∼ T2. This state-

ment, however, is true only for the data shown in this figure. We will see that it will be

different in certain distance and temperature intervals. In addition we note that the free

energy is not only discontinuous at Tc but also exhibits some kind of inflection point as

function of temperature at Tc. It thus follows that the entropies and also the potential

energies will show a more complicated temperature dependence at temperatures close to

Tc.
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Figure 3.3: The behavior of ∆Fq/Tc (open symbols) and ∆Fq/T (filled symbols) as function of

T/Tc in the high and low temperature phase. The definitions of ∆Fq we used here are given in

Eqs. (3.22) and (3.23). The arrow in this figure points at the heavy quark potential for a single

quark, Vq ≡ Vqq̄/2, given in units of Tc at distance r
√
σ = 2. In this figure we summarize results

from calculations on lattices with sizes 323 ×Nτ = 4 and 8.

At temperatures below Tc the values for ∆Fq/T and ∆Fq/Tc decrease with increasing tem-

perature in the temperature range analyzed by us. However, the corresponding value of

the heavy quark potential at zero temperature, Vqq̄(r
√
σ = 2)/2Tc ≃ 1.6, lies significantly

below the values for ∆Fq/Tc shown in Fig. 3.3 (the arrow at the left frame in that figure

points at Vqq̄(r
√
σ = 2)/2Tc). As we expect the finite temperature quark antiquark free

energies in the color singlet and color averaged channels to approach the heavy quark

potential smoothly in the limit of vanishing temperature, i.e. limT→0 F1,qq̄(r, T ) = Vqq̄(r),

this property indicates that ∆Fq will exhibit a maximum at some temperature. In fact,

this property is closely related to the enhancement of the renormalized finite temperature

quark antiquark free energies compared to the heavy quark potential which we have no-

ticed at intermediate distances in Sec. 2.4.1. Consequently, a maximum in free energy as

function of temperature will lead to a change in sign of the entropy. It is worth noting

that this statement is restricted to the entropy as the behavior of ∆Fq/Tc is quite different

from the behavior of ∆Fq/T in the limit T → 0: While ∆Fq/Tc will stay well-defined and

finite at some finite distance and is supposed to approach smoothly the corresponding

zero temperature heavy quark potential in this limit, ∆Fq/T will diverge in this limit.

Correspondingly, the behavior of ∆Sq will be quite different from that of ∆Eq in the low
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temperature phase. We note, however, that in the limit of vanishing temperatures the

term T∆Si in Eq. (3.3) will vanish, and we thus expect ∆Eq = Vq at T = 0 although (3.5)

cannot be applied.

Let us finally turn to the free energies in the high temperature phase (T > Tc). It can

be seen from Fig. 3.3 that the free energy indeed changes rapidly with temperature close

to Tc. This rapid change in free energy will lead to quite large potential energies and

entropies in the temperature range close to Tc. We also note that both, ∆Fq/T and

∆Fq/Tc, change their sign from positive to negative values at some temperature close

to 3Tc. In fact, ∆Fq/Tc seems to decrease continuously at high temperatures, while the

values for ∆Fq/T remain close below zero. In fact, from high temperature perturbation

theory one would expect ∆Fq ≃ −g2T . Consequently, in the high temperature limit one

would expect ∆Fq/Tc → −∞ and ∆Fq/T ≃ −g2 → 0. In fact, if ∆Fq ≃ −g2T turns out

to be correct, the data shown in Fig. 3.3 suggest a change in sign of the potential energies.

This, however, would show up only at temperatures larger than those analyzed by us. In

contrast to this, the entropies would not change their sign at high temperatures.

We note, however, that the behavior of ∆Fq/T in the temperature range shown in Fig. 3.3

is still consistent with ∆Fq ≃ −cT , where c is some small (positive) constant. In fact, a

running of the coupling with the temperature, g = g(T ), would become visible in Fig. 3.3

in terms of vanishing values for ∆Fq/T at higher temperatures than analyzed by us. Fol-

lowing our discussion of the high temperature limit of the renormalized Polyakov loop, we

indeed expect limT→∞ ∆Fq/T = 0 rather than limT→∞ ∆Fq/T = −c.

Let us finally comment on the properties of the free energies at small distances. In this

limit the enhancement in the free energies over the heavy quark potential which we no-

ticed above is expected to develop differently in different color channels. In fact, we do

not expect this enhancement in the limit of asymptotic small distances in the case of the

color singlet free energy, as ∆F1 will approach the heavy quark potential, while the en-

hancement will persist at r → 0 in the color averaged and color octet channels. In the

latter channels we rather expect ∆F8 → ∞ as it is repulsive, and the enhancement in the

color averaged free energy over Vqq̄ is given by T ln 9 according to (2.22).

We thus find that the behavior of the free energies as function of temperature is quite

complex at short and intermediate distances. Correspondingly, the properties of the finite

temperature potential energies and entropies are expected to be quite complex, too. It

is worth noting that this statement is not limited to some temperature range and thus

equally well applies to quantities below the deconfinement point.

3.2.2 The asymptotic behavior of ∆Eq and ∆Sq

We discuss now the asymptotic behavior (r → ∞) of the single quark entropies (∆Sq)

and potential energies (∆Eq). We have calculated ∆Sq and ∆Eq separately from each

other applying Eqs. (3.6) and (3.5) to the renormalized free energies defined through Eqs.
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(3.22) and (3.23). The derivatives in these relations are approximated by finite differences.

The statistical error of these differences is calculated via the Jack-knife analysis. Further

details on our calculations will be presented in the next section. Our results are listed

in Tab. 3.1 in terms of ∆Eq/Tc and ∆S versus the temperature scale, T/Tc. We have

checked that the recombination of the values for ∆Eq/Tc and for ∆Sq to the free energies,

for instance the values Tc/T (∆Eq/Tc − (T/Tc) × ∆Sq), match to the initial free energies

given in Tab. 2.2 at all temperatures, although both, ∆Eq and ∆Sq, are calculated sep-

arately from the free energies. Our results are summarized in Fig. 3.4 in terms of ∆Sq

(open circles) and ∆Eq/Tc (filled circles) as function of temperature below and above Tc.

We first discuss our results at temperatures close to Tc on both sides of the phase transi-

tion. It can be seen from Fig. 3.4 that the potential energies and entropies indeed approach

surprisingly large values on both sides of the phase transition. For instance, at temper-

ature about 0.97Tc, the finite temperature potential energy ∆Eq/Tc is about three times

larger than the corresponding value for the heavy quark potential (defined for a single

quark, Vq(r) ≡ Vqq̄(r)/2). This value is indicated in the figure through the arrow on the

left hand side. The enhancement of the finite temperature potential energies compared to

the heavy quark potential (Vq) is caused by the rapid change in free energy with a change

in temperature close to Tc. Moreover, despite the discontinuity in free energy at Tc, we

also observed that the free energies exhibit some kind of inflection point as function of

temperature located at Tc which leads to a maximum in energy and entropy at Tc
5.

We now concentrate on the properties of the entropies at temperatures below Tc. From

Fig. 3.4 it can be seen that the entropies drop quite rapidly when going from the phase

transition temperature down to smaller temperatures. For instance, ∆Sq ≃ 2.7 at T ≃
0.97Tc, while it is indeed smaller than one at 0.9Tc. Actually, from our discussion of

Fig. 3.3 we deduced that ∆Fq/Tc will have a maximum as function of temperature (if

taking the value from ∆Fqq̄(r, T ) at intermediate distances). This feature will indeed lead

to a change in sign of ∆Sq as function of temperature below Tc. It follows that ∆Sq will

be negative at smaller temperatures than analyzed by us. We stress again, that ∆Sq refers

to the difference in entropies due to the presence of the static charge, i.e. ∆Sq = Sq − S.

It thus follows that the relevant thermodynamic configuration of the system changes a lot

when a static quark is placed into the heat bath at temperatures close to Tc where ∆Sq is

quite large.

5The question which indeed arises now is, whether the potential energies and entropies will diverge in

the limit T → Tc or not (see our discussions in Sec. 3.1.2). We have analyzed this question for the color

averaged entropies as they are statistically better determined and, moreover, the temperature dependence

of the string tension in the entropies is expected to be less complicated than in the potentials. We have

analyzed whether

lim
T→Tc

∆Sqq̄(r, T )

r
≃ − lim

T→Tc

dσ̃S(T )

dT
(3.24)

is finite or not. At the temperatures and distances analyzed by us we could not find a signal for a divergent

behavior at Tc. Unfortunately, however, we could not go to large enough distances and temperatures close

to Tc to demonstrate this clearly. However, deviations from a divergent behavior are clearly expected [33].
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Figure 3.4: The asymptotic values of ∆Eq/Tc (filled symbols) and ∆Sq (open symbols) as function

of T/Tc in the high and low temperature phase. ∆Eq and ∆Sq are estimated from the thermal

relations (see Eqs. (3.5) and (3.6)) applied to the single quark free energies ∆Fq defined in Eqs.

(3.22) and (3.23). The arrow points at the value for the heavy quark potential defined on Vqq̄(r
√
σ =

2)/2. The values shown in this figure are also summarized in Tab. 3.1.

We also note here, that there are no particular boundary conditions on the entropies which

require ∆Sq(T = 0) = 0. The fact that the free energies at zero temperature will coincide

with the heavy quark potential rather follows from the vanishing term T∆Sq in the free

energies at T = 0.

We finally turn to the properties of ∆Sq and ∆Eq/Tc in the high temperature phase. First

of all, it can be seen from Fig. 3.4 that, although the entropies start with large values at

temperatures close to Tc, they rapidly decrease with increasing temperatures. In fact, the

entropy decreases by a factor 5 from its value close to Tc when increasing the temperature

by about 15%. This rapid change of ∆Sq from large to small values reflects the rapid

change in free energy with increasing temperatures close to Tc. We note, however, that

at high temperatures a weakening in the decrease of ∆Fq/T was observed by us which

may result from a weakening of the coupling g(T ). Indeed, in the limit of infinitely high

temperatures we expect a vanishing entropy contribution, limT→∞ ∆Sq = 0. In view of

our discussions in Sec. 3.1, vanishing entropies at high temperatures indicate that the

thermodynamic configuration of the system does not change much at high temperatures

although color charges get introduced into the heat bath. Note that we have deduced a
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The asymptotic values ∆Eq and ∆Sq

T/Tc ∆Eq/Tc ∆Sq T/Tc ∆Eq/Tc ∆Sq

0.89 2.70 (14) 0.58 (16) 1.02 6.22 (39) 5.34 (39)

0.92 3.29 (15) 1.23 (16) 1.04 4.26 (46) 3.42 (45)

0.96 4.06 (43) 2.05 (46) 1.10 2.37 (07) 1.59 (06)

0.97 4.67 (87) 2.70 (91) 1.13 1.96 (06) 1.23 (05)

1.18 1.64 (05) 0.95 (04)

1.22 1.45 (06) 0.79 (05)

1.27 1.27 (05) 0.64 (04)

1.40 1.12 (02) 0.52 (01)

1.52 0.95 (08) 0.42 (05)

1.57 0.97 (04) 0.43 (03)

1.64 0.94 (03) 0.40 (02)

1.95 0.74 (01) 0.28 (01)

2.61 0.61 (01) 0.22 (01)

Table 3.1: The asymptotic values for the potential energies, ∆Eq/Tc, and the entropies, ∆Sq, at

several temperatures in the low and high temperature phase. The data which are given for the

low temperature phase are calculated from the free energies at fixed finite distance, r
√
σ = 2. The

values we present here are calculated within the method described in Sec. 3.3 on lattices of size

323 × 4.

similar property in Sec. 2.4.2 where we have studied the extent of the gluon clouds which

surround and screen the color charges. In analogy to a vanishing entropy, we claimed that

the screening radius (rscreen) will vanish in the high temperature limit.

As one would expect from Fig. 3.3, the behavior of ∆Eq/Tc at high temperatures is

supposed to be more complicated. While ∆Eq/Tc at the temperatures analyzed by us

seems to vanish at high temperatures, high temperature perturbation theory suggests

negative values for the internal energy, too.

3.3 The r- and T -dependence of the potential energies

We are now interested in an appropriate formulation of (3.5) and (3.6) in terms of lattice

data at arbitrary distances. The differentiation with respect to the temperature in the

continuum, d/dT , will be replaced by us with the difference quotient,

df(T̃ )

dT
→ DT̃ (f) ≡ f(T1) − f(T2)

T1 − T2
with T̃ = (T1 + T2)/2 . (3.25)

This approximation is natural for small temperature steps, ∆T = T1−T2. In order to real-

ize small temperature steps, we calculated the color averaged, color singlet and color octet

(renormalized) free energies on the lattice using temperature steps about ∆T ≃ 0.05Tc

at temperatures close to Tc, as in this temperature range the change in free energies is

large already for small changes in temperature. At high temperatures we used appropriate
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Figure 3.5: The influence of the finite spatial lattice volume on the (renormalized) free energies.

We show here the color averaged (squares) and color singlet (circles) free energies at fixed distance

r = 2 fm as function of temperature. The open symbols denote our results from simulations on

lattices of size 643 × 4 and the filled symbols show results from lattices of size 323 × 4.

larger temperature steps at high temperatures. The grid we used for the discretization of

the free energies in the temperature direction is given in Tab. A.1.

More difficult to control, however, are the systematic errors which arise from the uncer-

tainty of the temperature scale and from the finite volume effects on the lattice. Especially

the latter has to be handled with care as (3.5) and (3.6) require the infinite volume limit.

In general one expects that the dependence of spatial correlation functions on the finite

lattice volume are stronger at large separations of the correlated operators than at small

separations. In order to get an estimate for the dependence on the finite lattice volume we

used MC simulations on lattices of size 323 × 4 (in the following we call the data from this

lattice set I) and of size 643×4 (set II). We run the simulations on both lattices at several

lattice couplings below and above Tc and compared the renormalized quark antiquark free

energies from both lattices.

In Fig. 3.5 we compare the finite temperature quark antiquark free energies from set I

with the results from set II at fixed distance, r ≃ 2 fm, at several temperatures below

Tc. At large distances the free energies below Tc will be more strongly influenced by the

finite lattice volume as they signal confinement than the free energies above Tc which are

controlled by deconfinement. In this figure we show results for the color singlet (grey

symbols) and for the color averaged quark antiquark free energies (black symbols). Re-
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sults from set I (323 × 4-lattice) are denote by closed symbols and the results from set II

(643 × 4-lattice) are shown with open symbols. Unfortunately, the statistical significance

of the color singlet free energies is about ten times lower than the significance of the color

averaged free energies. Consequently, the results for the color singlet free energies still

have large statistical errors. This can be seen from the data in Fig. 3.5. While the data

for the color singlet free energies from set I and set II show deviations from each other

they still agree within statistical errors and, moreover, the data for the color averaged free

energies indeed coincide from both sets. We thus draw the conclusion that finite volume

effects are negligible in our data at the distances considered by us. However, the low sta-

tistical significance of the color singlet free energies will affect the predictive power of the

derivatives calculated through Eq. (3.25). Fortunately, the statistical significance of the

color singlet data is much better at shorter distances. Thus we restrict our present analysis

to distances r <∼ 1.5 fm. In fact, in this distance regime we do not expect significant finite

volume effects and the statistical errors allow for reliable results for Eq. (3.25). This can

indeed be followed from the data we presented in Sec. 3.2 as data at ’asymptotic’, large

distances.

The calculation of the potential energies and the entropies from Eqs. (3.5) and (3.6) at

arbitrary distances needs interpolation of the free energies in the r-direction as the thermal

relations require a comparison of free energies at different temperatures but fixed physical

distances. In order to avoid any fit6 to the complicated structure of the heavy quark

antiquark free energies, we used a cubic spline which interpolates between the lattice data

in the r-direction. We divided the lattice data at each temperature into subsamples and

calculated the spline interpolations on each of these subsamples. The error estimate of

the spline interpolation at a given distance is calculated by using the Jack-knife analysis

on the subsamples. The differentiation with respect to the temperature is approximated

by the difference quotient (3.25) defined on the spline approximations. In order to min-

imize the systematic error involved in the spline approximation, we calculated (3.25) at

the distance sample {ri} which is given by the input data of the free energy with the

lower temperature. This means, that only the r-dependence of the free energy with the

correspondingly higher temperature is interpolated by the spline. Finally we note that we

also calculate the derivatives at short distances where the free energy is less influenced by

the temperature and consequently the values of DT are supposed to vanish. In order to

get reasonable results at short distances we thus have partly set by hand the values of DT

to zero. It is worth noting that the analysis described above can be performed in each

6A different calculation method from ours could be to perform a best-fit analysis of the renormalized

free energies and to calculate Eqs. (3.6) and (3.5) with respect to the temperature dependence of the fit

parameters. This method could allow to calculate the potentials and entropies at arbitrary temperature. It

is, however, mandatory for such analysis to find an appropriate fit-function which respects the complicated

r-dependence of the free energies from short to large distances. From our discussions in the first chapter it

follows that a parameterization of the free energies, however, is not that easy to find. Moreover, it is still

quite unclear whether the temperature dependencies of the fit parameters will in parts lead to a divergent

temperature dependence at Tc or not. The ansatz suggested in Eq. (1.51) (with appropriate modifications)

maybe a reasonable candidate for such studies. A similar analysis in full QCD, however, indeed requires

the fit method as the general experience shows that these free energies behave quite noisy.
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color channel.

In the following discussions we refer to data for the finite temperature potentials and

entropies calculated with these methods. For instance, we have calculated the potentials

and entropies from the finite temperature free energies by using (3.5) and (3.6) separately

from each other in all three color channels. We have checked that the potentials and

entropies calculated in this way recombine to reasonable corresponding free energies which,

for instance, match well the originate (renormalized) finite temperature free energies. In

parts we also checked our results with a fit method (similar to the method described in the

footnote below). We do not find significant deviations from our results. In conclusion we

expect that our lattice data for the potentials and entropies yield statistically significant

values up to distances about r <∼ 1.5 fm (corresponding to r
√
σ <∼ 3).

3.3.1 The finite temperature quark antiquark potential energies

We discuss here the general properties of the finite temperature quark antiquark potential

energies in the different color channels below and above Tc. As an example we summarize

our results in Fig. 3.6 for the color singlet, color octet and color averaged potential ener-

gies at T = 0.92Tc and T = 1.4Tc. The filled symbols indicate the color singlet potential

energies while the open symbols refer to the color octet and the grey symbols to the color

averaged potentials. The black line shows the heavy quark potential at zero temperature.

We first consider the finite temperature potentials in the confined medium (given by the

triangles): It can clearly be seen that the large distance behavior of the potential energies

in each color channel is controlled by confinement as the potential energies increase con-

tinuously with increasing distances. Moreover, at large separations the finite temperature

potentials approach values which are significantly larger than the heavy quark potential

at zero temperature. We have discussed this property in the last section. We note here,

however, that in contrast to the color octet and color averaged potentials, the finite tem-

perature color singlet potential energy still stays close to the heavy quark potential at

relatively large distances. In fact, the finite temperature color singlet potential below Tc

is comparable to the zero temperature potential up to distances about r
√
σ <∼ 1.7. The

enhancement of the finite temperature color singlet free energies compared to the heavy

quark potential thus vanishes in terms of the singlet potential (at intermediate distances).

At larger distances, however, the singlet potential clearly breaks away from Vqq̄(r). In fact,

it follows from our discussions of the string picture in Sec. 3.1.2 that the potential energies

will coincide at large distances and will show a unique r-dependence. At distances about

r
√
σ >∼ 2.5 the color averaged and color octet potential energies indeed coincide within

statistical errors. Indeed, at such distances we have observed (in chapter 1) that the free

energies start to show unique behavior. The color singlet quark antiquark potential en-

ergy in Fig. 3.6 is still below the color octet and averaged potentials. In terms of the

color singlet potential, however, we could not go to such large distances to demonstrate

clearly that also the color singlet potential will coincide with them. We also note that
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Figure 3.6: The potential energies at 0.92Tc and at 1.40Tc defined on (3.5) in the color singlet,

octet and averaged channel as function of the distance r
√
σ. The black filled symbols summarize

the color singlet potentials and the open symbols the color octet ones. The grey filled symbols

show the color averaged finite temperature potentials.

within statistical errors the color averaged potential energy can be described as linearly

increasing with increasing distances. This property is consistent with Eq. (3.8) and also

with our observation that the color averaged free energies in general fit into the string

picture at smaller distances than the singlet and octet free energies.

At short distances the different color structures control the behavior of the finite tempera-

ture potential energies (below Tc). The color singlet potential energy remains comparable

to the heavy quark potential and also the color averaged potential approaches Vqq̄(r) in

this limit. This property signals that the difference in color singlet and color averaged free

energies is indeed given by the difference in the entropy contributions in both free energies.

This feature is suggested from Eq. (2.22). The color octet internal energy, however, stays

significantly above the zero temperature potential. In fact, in the short distance limit we

expect that the color octet potential will be repulsive. However, we could not go to short

enough distances in order to demonstrate this property clearly in Fig. 3.6.

The finite temperature potentials in the deconfined medium are also summarized in Fig. 3.6

using circles as symbols. The potentials in this phase indeed coincide in all color channels

at large distances and, more importantly, they signal the deconfinement feature. Both

properties are consistent with our discussions in Sec. 3.1.2, for instance with Eq. (3.17).

Moreover, it can clearly be seen from Fig. 3.6 that the finite temperature potential energies



3.3 The r- and T -dependence of the potential energies 99

-500

0

500

1000

1500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆
E

1
(r

,T
) 

[M
e
V

]

r [fm]

Nτ=4

Nτ=8

T/Tc
0.89
0.92
0.95
0.81
0.83
0.89
0.92

Figure 3.7: The color singlet potentials ∆E1(r, T ) in physical units [MeV] as a function of the

physical distance r [fm] at temperatures below Tc. This figure contains results from lattice MC

simulations on lattices of size 323×Nτ with Nτ = 4, 8. The black line is the heavy quark potential

at zero temperature.

do not vanish in the limit of large distances. We have discussed this quite important prop-

erty in the sections above. At small distances the finite temperature color singlet quark

antiquark potential as well as the color averaged potential approach the zero temperature

heavy quark potential. Moreover, we can indeed find evidence that the color octet poten-

tial energy signals a repulsive behavior at small r. At intermediate distances we observe

a small enhancement of the finite temperature color singlet potential compared to Vqq̄(r).

3.3.2 Thermal properties of the potential energies

We show in Fig. 3.7 our non-perturbative results for the color singlet potentials at several

temperatures below Tc in physical units (MeV) as function of the distance r in fm. We

summarize here our data of ∆E1(r, T ) from lattice MC calculations with Nτ = 4 and

8 at small distances, r <∼ 1 fm. We have noted above that the statistical significance

of our potential energies at larger distances is strongly decreasing in this color channel.

We thus note here only two properties which follow from this figure: With respect to

the statistical uncertainties which still dominate the potentials we do not see evidence

for (strong) temperature dependencies at distances r <∼ 0.7 fm and the temperatures
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Figure 3.8: Similar to Fig. 3.7, however, here we show the color singlet potentials in a deconfined

medium (T > Tc).

analyzed in that figure, T <∼ 0.95Tc. In fact, at small distances the finite temperature color

singlet potentials become comparable to the heavy quark potential. However, temperature

effects become important at larger distances. In fact, the data in Fig. 3.7 and Fig. 3.6

clearly indicate that the finite temperature color singlet energies will break away from the

heavy quark potential at r >∼ 0.7 fm. Moreover, it can be deduced from Fig. 3.7 and the

discussions in Sec. 3.1.2 that the potentials will increase with increasing temperatures at

large distances.

This property implies that the finite temperature color singlet force defined in (3.7) will

be stronger the higher the temperature. As the slopes of the finite temperature poten-

tials is increasing with increasing temperatures this property indeed implies confinement,

K1(r, T ) > 0. Correspondingly the force has no zeros at temperatures below Tc. This

important feature was discussed in Sec. 3.1.2. In the small distance regime it can be fol-

lowed from Fig. 3.7, however, the finite temperature forces will become comparable to the

confining force at zero temperature.

In Fig. 3.8 we summarize our lattice data for the color singlet potentials in the deconfined

medium. In this figure we mainly discuss the thermal properties of the finite temperature

potentials at intermediate and small distances, r <∼ 0.8 fm. First of all we note that

the color singlet internal energies at finite temperature indeed approach the heavy quark
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potential at small distances while at large distances they signal deconfinement, but they

do not vanish. In fact, the asymptotic (r → ∞) values of the potential energies are indeed

quite large, i.e. ∆E1 >∼ 250 MeV at the temperatures shown in Fig. 3.8. These values

depend strongly on the temperature, for instance ∆E1(r, T1) >∼ ∆E1(r, T2) for T1 < T2.

This property was discussed in detail by us in the sections above.

This temperature ordering at large distances, however, changes when going to small dis-

tances. It can clearly be seen from Fig. 3.8 that the potential energies approach Vqq̄(r)

from above. In fact, this property is seen at all temperatures analyzed by us. Conse-

quently, the finite temperature internal energies show an enhancement at short distances

compared to the heavy quark potential. In fact, at short distances, for instance at r ≃ 0.25

fm, the potential energies show a temperature dependence like

∆E1(r, T1) >∼ ∆E1(r, T2) for 1.9Tc <∼ T1 < T2 <∼ 5Tc , r ≃ 0.25 fm . (3.26)

In conclusion, the color singlet potential energies above Tc show strong temperature de-

pendencies at quite small distances. This may indicate that the color singlet potential

energies get modified due to color screening as the r-dependence of the potentials changes

strongly in the short distance regime.

Consequently, also the finite temperature color singlet force will show a complicated r-

and T -dependence at small distances. While at quite small distances the finite tempera-

ture forces will coincide with the force at zero temperature, the enhancement of the color

singlet potentials at intermediate distances compared to the heavy quark potential will

lead to an enhancement of the forces at finite temperatures. In fact, as the slope in the

potentials at small distances is increasing with increasing temperatures also the force at

small distances will increase with increasing temperatures. At large distances, however,

the finite temperature forces will vanish as the potentials flatten. This property is con-

sistent with deconfinement. It can be followed from Fig. 3.8 that the finite temperature

forces will signal deconfinement at smaller distances the higher the temperatures. This

property, however, in general does not imply that it will be favorable to separate the static

color charges at some high temperature rather than at a lower deconfining temperature.

Further finite temperature potentials at several temperatures below and above the de-

confinement point are summarized in Fig. 3.9. In these figures we also show the color

averaged potentials at several temperatures. We will not elaborate here any further on a

discussion of the potential energies as the thermal properties discussed above can clearly

be seen these figures. In conclusion, the basic properties of the finite temperature poten-

tials above Tc are indeed in accordance with our discussions outlined in Sec. 3.1.2. We

finally turn to a discussion of the finite temperature entropies.
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Figure 3.9: The finite temperature potential energies obtained from (3.5) using the renormalized

free energies in the color singlet (A, C), and color averaged (B, D) channels at temperatures below

and above Tc. The black line indicates in each figure the heavy quark potential.
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3.4 Remarks on the entropy contributions in Polyakov loop

correlation functions

We have calculated the finite temperature entropies separately independently from the

potentials from (3.6) using the methods discussed above. We present here results for the

color singlet and color averaged entropies at temperatures below and above the deconfine-

ment point. Similarly to the data for the color octet potentials also the data for the octet

entropies are still too noisy for a proper discussion.

In this section we first discuss the thermal properties of the entropies and verify, for

example the relation ∆S1 − ∆Sqq̄ = − ln 9 at short distances predicted from Eq. (2.22).

The physical meaning of the entropies we discuss in the following was discussed in Sec. 3.2.

The lattice results for the finite temperature entropies calculated from the thermal relation

(3.6) are summarized in Fig. 3.10. In theses figures we show the dimensionless quantities

∆S1,qq̄(r, T ) as a function of the distance in units of the square root of the string tension,

r
√
σ. Each of these figures shows separately the different color channels at temperatures

below and above Tc. In the left column of that figure we show the results at several tem-

peratures in the confinement phase while the figures on the right show our results in the

deconfinement phase.

We first discuss the excess entropies at temperatures below Tc. Fig. 3.10 (A) shows lattice

results for the finite temperature entropies in the color singlet channel. It can be seen from

that figure that the entropy contributions in this color channel indeed vanish in the short

distance range while at large distances the entropies increase with increasing distances. A

vanishing entropy ∆S1(r, T ) at short distances is consistent with the property we deduced

in the last chapter, as at small r the finite temperature free energy is dominated by

the potential energy. We note that the entropy contributions increase with increasing

temperatures at large distances. This feature was predicted in Sec. 3.1.2 and was verified

with our analysis in Sec. 3.2.

The finite temperature entropies in the color averaged channel are shown in Fig. 3.10 (B)

at temperatures below Tc. It can be seen that these entropies approach negative values at

small distances. Actually, relation (2.22) in combination with the renormalization group

equation (2.14) predicts ln 9 at short distances for the color averaged finite temperature

entropies, i.e. limr→0 ∆Sqq̄(r, T ) = − ln 9 (for all temperatures). This limit is indicated in

that figure with a black line. It can be seen from that figure that the lattice data seem to

approach this limit at small r. Unfortunately, however, we could not go to small enough

distances in order to demonstrate this rigorously. From our discussions in Sec. 3.1.2 it

follows that the entropies in this channel are supposed to diverge linear with increasing

distances. The data in this figure approximately show this behavior.

Let us now discuss the results for the entropies at temperatures above Tc. They are shown

in the right column of Fig. 3.10 sorted with the different color channels. Lattice results of

our investigations of the entropies in the color singlet channel are shown in figure (C). It

can be seen from that figure that the finite temperature color singlet entropies do indeed
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approach zero values at small distances. This property is consistent with our discussions

above. At intermediate distances, however, the entropies increase with increasing distances

and approach finite values at large distances. We note that the plateau values at large

distances decrease with increasing temperatures. Actually, we have suggested this behavior

in Sec. 3.2. From that discussion it follows that we expect a vanishing entropy in the limit

of high temperatures. Our results thus confirm this property.

Lattice results for the finite temperature color averaged entropies are summarized in

Fig. 3.10 (D). Here we note that the entropies approach indeed negative values at small

distances. This property is in accordance with our remarks made above. Actually we

expect that the finite temperature color averaged entropies approach − ln 9 in the limit

of small r. This limit is indicated with a black line in that figure. At large distances the

entropies approach finite values. From a comparison of Fig. 3.10 (C) and (D) it clearly

follows that the plateau values of ∆S1 indeed equal the values of ∆Sqq̄ for each tempera-

ture.

In general one can say that the finite temperature entropies behave in the way we have

deduced in the previous sections. From our discussion of the physical interpretation of the

finite temperature entropies in Sec. 3.2 we concluded that the thermal configuration of

the system does not change much when a color singlet quark antiquark pair is introduced

in the heat bath close to each other. This property is observed by us at all temperatures

as ∆S1 vanishes at small distances. Otherwise, when placing the quark antiquark pair

separated with large distances from each other into the thermal heat bath, the thermal

configuration gets strongly affected due to the presence of these quarks. Moreover, at

temperatures below Tc, the values of the difference in entropy due to the presence of the

static charges approach large values and indeed diverges at infinite quark antiquark sepa-

rations. This feature signals confinement. In contrast to this, at temperatures above the

phase transition temperature the difference in entropy due to the presence of the charges

approaches finite values which are supposed to vanish at (infinitely) high temperatures.

The screening property of the thermal gluons thus allows to separate the quark antiquark

pair and consequently, this property is consistent with deconfinement.

Taking the relation between the color screening property and the entropies at finite tem-

perature seriously, the behavior of the r-dependence of the entropies can be used to analyze

the physical extent of the gluon clouds which surround the color charges. For instance,

from the figures in Fig. 3.10 it follows that the plateau values of the entropies at temper-

atures above Tc are approached at smaller distances the higher the temperature is. This

property suggests that the radius of this clouds decreases with increasing temperatures.

A similar quantity (rscreen) was deduced by us in the previous chapter. We note, however,

that by construction rscreen estimates the beginning of screening effects at small distances

while the plateau value of entropies rather estimates the extent of the gluon clouds.
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Figure 3.10: The r- and T -dependence of the finite temperature entropy contributions in Polyakov

loop correlation functions at several temperatures below and above the deconfinement point. In

these figures we show ∆S1,qq̄(r, T ) as functions of the distance r
√
σ separately for the color singlet

and color averaged channels.



Summary and outlook

Throughout this thesis we have analyzed the thermal properties of the static quark an-

tiquark free energies in the SU(3) gauge theory at finite temperatures. While the color

averaged free energies are well-known from various earlier studies at large distances [33],

we presented here a detailed analysis of the finite temperature free energies in the color

singlet, color octet (N = 3) and color averaged channels from large to rather short dis-

tances. Especially the short distance properties of the free energies were analyzed in detail

in this thesis. In order to go to small distances, r ≃ 0.01 fm, it was mandatory to use

lattices of quite large temporal extent (Nτ ). We therefore used in our calculations lat-

tices of size 323 × Nτ with Nτ = 4, 8 and 16. In some cases we were also interested in

the thermal properties of the free energies at rather large distances. We thus also used

lattices of size N3
σ × 4 with Nσ = 32, 48 and 64. Actually, this allowed us not only to

analyze the free energies at quite short distances (rT >∼ 1/Nτ ) but also at large distances

(rT <∼ Nσ/(2Nτ )). In fact, the shortest distances analyzed by us were about 5 times

smaller than those used in calculations of the free energies in other existing studies at

finite temperatures and about 10 times smaller than those used in corresponding lattice

studies of the heavy quark potential at zero temperature [55, 54]. We used in our lattice

simulations the tree level improved Symanzik gauge action and corrected our data for lat-

tice artifacts by using the gluon propagator method [55]. By minimizing lattice artifacts

in our analysis of the free energies we extracted continuum properties from our lattice

data even at distances of the order of the lattice spacing, r ≃ a.

For our analysis of the free energies we used lattice simulations at several lattice spac-

ings covering the temperature range from T ≃ 0.85Tc up to temperatures several times

the deconfinement point. For instance, the highest temperature resolved by us is about

12Tc. We should note here that the analysis in chapter 3 required derivatives of the free

energies with respect to temperature and thus the knowledge of the free energies in small

temperature steps in the whole temperature range was needed. In parts we calculated the

free energies in temperature steps of about ∆T ≃ 0.05Tc.

The data for the color singlet and color octet free energies were calculated from gauge

dependent correlation functions and thus required gauge fixing. However, it has recently

been shown that the free energies from correlation functions we used coincide with a gauge

independent formulation of the free energies when fixing the Coulomb gauge [23]. By fix-

ing this gauge we indeed presented a first gauge independent analysis of the color SU(3)

singlet and octet free energies.
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In the first chapter we analyzed the free energies from large to short distances. In the

spirit of high temperature perturbation theory we defined the so-called screening functions

[74] for the color singlet free energies which were used by us to separate the large distance

behavior (rT ≫ 1) of the free energies from their short distance behavior (rT ≪ 1). We

used this separation for the analysis of non-perturbative effects related to screening at large

distances. In fact, we found evidence that the large distance high temperature behavior of

the color singlet free energies are dominated by one gluon exchange predicted from high

temperature perturbation theory. This allowed us to extract the screening masses from the

color singlet free energies in terms of correlated fits. The temperature dependence of the

masses (mD) we obtained from these studies can be well described by mD/mpert ≃ 1.5(1)

at temperatures down to T >∼ 2Tc, where mpert was defined in spirit of high temperature

perturbation theory, i.e. mpert(T ) = g(T )T .

For our analysis of the short distance properties of the free energies we resorted to methods

frequently used at zero temperature [55, 54]. In order to cancel undetermined constants

from the free energies at small distances we calculated the effective coupling from the color

singlet free energies, i.e. αeff(1) ≡ d∆F1/dr. We compared this quantity to the force at

zero temperature. We concluded that at short distances the color singlet free energies

become comparable to the heavy quark potential (at zero temperature) in terms of the

effective coupling.

We closed the first chapter with notes on the free energies below the deconfinement point.

We observed that the different free energies signal confinement and behave uniquely at

large distances, i.e. also the color octet free energies signal confinement. Similar findings

have been reported in earlier studies by us [82] and for SU(2) in Refs. [23, 69]. At small

distances we found evidence for a repulsive color octet free energy. This is expected from

high temperature perturbation theory.

In the second chapter we turned to the renormalization of the Polyakov loop and its cor-

relation functions on the lattice. A well suited starting point for that discussion was the

observation of dominant vacuum physics in the 2-point Polyakov loop correlation func-

tions at small distances. We concluded that a proper renormalization could be obtained by

matching the free energies at small distances to the heavy quark potential. This renormal-

ization prescription fixes some effective renormalization constant, ZR(g2), in the Polyakov

loop, i.e.

LR(x) ≡ ZL

Nτ∏

x0=1

ZUU0(x0,x) =
(
ZR(g2)

)Nτ
L(x).

We have shown that the 2-point Polyakov loop correlation functions for the color singlet,

octet and averaged free energies can be fixed through renormalization with one single

renormalization constant. In fact, we showed that the relative normalization of the free

energies is such that they coincide at large distances while in the intermediate and short

distance regime the color structure dominates the behavior of the free energies. At short

distances, we have shown that the difference in color singlet and averaged free energy is

determined by some entropy-like, temperature dependent constant, which for color SU(N)
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is given by T lnN2. This shows that the color averaged free energies are indeed quite

different from a two gluon exchange dominated contribution at small distances.

Our renormalization prescription indeed cancels the linear divergence on the lattice and

the renormalized Polyakov loop and its correlation functions do not show any dependences

from the finite temporal lattice extent. This property has been investigated by us with

using lattices of different temporal extent. For instance, we showed that in this way the

Polyakov loop expectation values deduced from simulations with Nτ = 4, 8 and 16 lie on

a universal, temperature dependent curve. The renormalized Polyakov loop is thus well-

behaved in the continuum limit and can be used as an order parameter for the confinement

deconfinement phase transition.

Having fixed the Polyakov loop on the lattice through renormalization, i.e. having fixed

the renormalization constant ZR(g2), opens the possibility for different studies of related

problems. A quite interesting study in future will be to analyze the relation of the ef-

fective renormalization constant with renormalization constants which are specific to the

gauge field and coupling renormalization, as this could lead to a strictly non-perturbative

renormalized lattice gauge action. A discussion of Polyakov loops models [25, 26] and

the equation of state [27, 28] with renormalized Polyakov loops can now be performed.

Moreover, the renormalization constant ZR(g2) fixes any n-point Polyakov loop correlation

function. An analysis of the renormalized 3-point functions based on the the constants

deduced by us is subject of present and future studies (see for instance [112, 113]).

In the last chapter we suggested that the renormalized free energies could be used to calcu-

late the finite temperature potentials and entropies. We calculated these quantities using

thermodynamic relations, i.e. we extracted ∆Ei(r, T ) and ∆Si(r, T ) non-perturbatively

from

∆E1,8,qq̄(r, T ) = −T 2 ∂∆F1,8,qq̄(r, T )/T

∂T
and ∆S1,8,qq̄(r, T ) = −∂∆F1,8,qq̄(r, T )

∂T
.

The properties of these potentials (and entropies) are quite complex and in parts differ-

ent from the usual expectations. Although we have shown that the potentials below Tc

signal confinement in the different color channels, we observed that the effective string

tension in the confining potentials increases with increasing temperatures. However, the

temperature dependence of the color singlet confining potentials turns out to be small,

i.e. they are comparable to the heavy quark potential at distances of about r <∼ 0.7 fm

and T <∼ 0.95Tc. This property, however, may change when going to higher temperatures.

Our calculations of the potentials in the deconfined medium also show new properties. For

instance, in contrast to a vanishing potential in the deconfined medium at large distances

we have quantified a non-vanishing, however clearly deconfining potential. Only in the

high temperature limit we expect a vanishing potential at large distances. Moreover, the

behavior of the potentials at small distances is quite complex and is different in different

color channels. For instance, the color singlet potentials approach the heavy quark poten-

tials at small r while the color octet potentials signal a repulsive behavior.

The physical relevance of the finite temperature potentials determined by us is evidently



Summary and outlook 109

0

1

2

3

4

5

6

7

0.7 0.8 0.9 1 1.1 1.2 1.3

∆
F

q
q
/T

T/Tc

QCD (Nf=2)
QCD (Nf=3)

Figure 3.11: The (renormalized) free energy in full QCD at asymptotic large distances

(∆Fqq̄(T )/T ≡ limr→∞

∆Fqq̄(r,T )
T ) as function of the temperature. This figure summarizes first

(preliminary) lattice results for light dynamic fermions in color SU(3)-QCD with 2 (closed circles)

and 3 (open squares) flavors.

large as model calculations allow to discuss binding properties of heavy quark bound states.

Up to now only phenomenologically inspired potentials could be used in such analyses to

define potentials at finite temperature. We suggest here to use these new potentials in

model calculations in future. Such kind of analyses are in progress by us (see Ref. [136]).

Of even greater relevance than the potentials in SU(3) are, however, the finite temperature

potentials in full QCD. Their calculation can follow from now on. Indeed, the conceptual

approach we developed in this thesis is subject of several different investigations in full

QCD at finite temperature (see Fig. 3.11 and Ref. [119]) and is also in progress at finite

densities [128]. In conclusion, the study of thermal properties of renormalized Polyakov

loop correlation functions has opened many new directions for future studies.



Appendix A

Lattice simulation parameters and

results

This appendix is organized as follows:

A1. Lattice gauge action

A2. Temperature scale and the string tension

A3. Tables of simulation parameters and results

A1. Lattice gauge action

We refer to the tree level improved Symanzik lattice gauge action [81, 79] consisting of

1 × 1 and 2 × 1 loops given by

S(2,1) = β
∑

x,ν>µ

5

3

(

1 − 1

N
Re Tr

µν
(n)
)

−1

6

(

1 − 1

2N
Re Tr

(

µν
(n) +

µν

(n)
)

. (A.1)

This reconstruction of the continuum gauge action on the lattice is known to correct for

the ultra-violet properties of the action in the continuum limit. In our simulation we used a

pseudo heat bath algorithm with FHKP updating [137, 138] in the SU(2) subgroups. Each

heat bath updating is supplemented by 4 over-relaxation steps. Details on this methods

can be found in [81, 139] and in the standard textbooks, for instance [18].

A2. Temperature scale and string tension

The relation (in QCD/SU(N)) between the coupling g and the lattice spacing is in general

given by the renormalization group equation,

a
dg

da
= β(g), with β(g)

g→0
= β0g

3 + β1g
5 + O(g7) (A.2)
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where β(g) denotes the renormalization group β-function. In the limit g → 0 the relation

between coupling and lattice spacing a can be calculated perturbatively (see right part of

Eq. (A.2)). The first two universal coefficient for SU(3) are given by β0 = 11/(16π2) and

β1 = 102/(16π2)2 (see for instance [1]). Integrating (A.2) using the low g approximation

of β(g) leads to

aΛL ≡ R(β) =

(
2Nβ0

β

)−β1
2β2

0 exp

(

− β

4Nβ0

)

. (A.3)

Note that in this relation β = 6/g2 is the lattice coupling in (A.1).

In order to set the scale in lattice calculations one is forced to relate the lattice spacing a

to a physical quantity. This can be done in terms of the zero temperature string tension√
σ that appears in the heavy quark potential. One than uses the renormalization group

inspired ansatz [140]

√
σ a(β) = R(β)

(
1 + c2â

2(β) + c4â
4(β)

)
/c0, (A.4)

where â ≡ R(β)/R(β̄). β̄ is a normalization constant. In [141] this ansatz has been

fitted to the string tension data from [86] in the coupling range β ∈ [4, 5] with β̄ = 6.0.

We take the values given in Tab. C3 of Ref. [141]: c0 = 0.0693(7), c2 = 0.00392(51),

c4 = 0.0000146(45). The temperature scale T/Tc is then fixed through (A.4). For instance,

we refer to the temperature given by

√
σa(β)√
σa(βc)

= T/Tc, (A.5)

where βc is the critical lattice coupling. βc is specific to the temporal extent of the lattice,

Nτ , and to the parameterization of the continuum action on the lattice. The critical

couplings for the lattice gauge action we use are presented in [86].

A3. Tables of simulation parameters and results

We list our results for the Polyakov expectation values from simulations on lattices of size

323 × 4, 8 and 16. In these tables (see Tabs. A.2,A.3,A.4) we also give the number of inde-

pendent configurations used in our calculations. The color singlet and octet free energies

are calculated by using each tenth of these configurations. In parts of our analyses we

also use the high statistics calculations used in the presentations of the color averaged free

energies in Ref. [33]. For a corresponding list of results on the Polyakov loop expectation

value see Tab. A.1 of Ref. [142]. Our results coincide with the results given in that table.
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Tree level improved action

Nτ = 4 Nτ = 8 Nτ = 16

β T/Tc Nσ β T/Tc Nσ β T/Tc Nσ

3.950 0.792(5) 32,64 4.3212 0.75(1) 32 4.9898 0.90(3) 32

3.974 0.830(5) 32 4.4231 0.86(1) 32 5.2333 1.20(4) 32

4.000 0.874(4) 32,64 4.4472 0.90(1) 32 5.4261 1.50(5) 32

4.020 0.907(3) 32,64 4.4551 0.91(1) 32

4.040 0.942(3) 32,64 4.4784 0.93(1) 32

4.050 0.959(1) 32,64 4.4862 0.95(1) 32

4.060 0.977(1) 32,64 4.4937 0.96(1) 32

4.070 0.9948(5) 32 4.5592 1.04(1) 32

4.080 1.0128(5) 32 4.5951 1.10(1) 32

4.090 1.031(1) 32 4.6290 1.14(2) 32

4.100 1.049(2) 32 4.6605 1.19(2) 32

4.127 1.100(3) 32 4.6619 1.20(2) 32

4.154 1.151(1) 32 4.6874 1.23(1) 32

4.179 1.200(7) 32 4.7246 1.29(1) 32

4.200 1.24(1) 32 4.8393 1.49(2) 32

4.229 1.30(1) 32 4.8661 1.55(2) 32

4.321 1.50(2) 32 4.8921 1.60(2) 32

4.343 1.55(2) 32 5.4261 3.00(3) 32

4.365 1.60(2) 32 6.0434 6.00(3) 32

4.400 1.68(2) 32 6.3910 9.00(3) 32

4.600 2.21(5) 32 6.6450 12.0(5) 32

4.839 3.00(9) 32

Table A.1: Parameters of the simulations of pure SU(3) gauge theory with tree level improved

gauge action. The values for the critical couplings are βc(Nτ = 4) = 4.0729(3) from [86] and

βc(Nτ = 8) = 4.5237, βc(Nτ = 16) = 5.0781. The latter critical couplings follow from Eq. (A.5)

with βc(Nτ = 4) = 4.0729(3).
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Tree level improved action, Nτ = 4

β measurements |〈TrL〉|
4.080 2220 1.2008566e-01 8.1083231e-04

4.090 1930 1.3414046e-01 6.3148293e-04

4.100 1340 1.4427162e-01 6.6221075e-04

4.127 1730 1.6244043e-01 3.5053976e-04

4.154 1000 1.7582385e-01 2.7351872e-04

4.179 1000 1.8602197e-01 2.3329379e-04

4.200 1176 1.9356189e-01 2.9427799e-04

4.229 1000 2.0279890e-01 2.7679876e-04

4.321 1000 2.2809273e-01 3.0906480e-04

4.343 1000 2.3340925e-01 1.7000425e-04

4.365 1000 2.3869007e-01 1.7026784e-04

4.400 1000 2.4672793e-01 1.3478539e-04

4.600 1000 2.8610242e-01 2.1345168e-04

4.839 1000 3.2553036e-01 1.8535734e-04

Table A.2: The Polyakov loop expectation values from calculations with lattices of size 323 × 4.

Tree level improved action, Nτ = 8

β measurements |〈TrL〉|
4.5592 3881 4.2185466e-02 5.7273022e-04

4.5600 1600 4.2025716e-02 9.1828924e-04

4.5951 1550 4.9586602e-02 5.1584666e-04

4.6290 1358 5.4031650e-02 5.2602321e-04

4.6605 3600 5.8694668e-02 3.0582187e-04

4.6619 1384 5.8744140e-02 3.5625746e-04

4.6874 1200 6.2664022e-02 3.2919255e-04

4.7246 1200 6.6610751e-02 3.1329866e-04

4.8393 4343 7.8954616e-02 2.1751524e-04

4.8661 1200 8.1658141e-02 4.8953539e-04

4.8921 1200 8.4482984e-02 3.4995984e-04

5.4261 4000 1.3747933e-01 1.8004744e-04

6.0434 4502 1.9359154e-01 2.1537250e-04

6.3910 1400 2.2213405e-01 2.8557959e-04

6.6450 1000 2.4220532e-01 3.6100557e-04

Table A.3: The Polyakov loop expectation values from calculations with lattices of size 323 × 8.
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Tree level improved action, Nτ = 16

β measurements |〈TrL〉|
5.233300e+00 3350 1.014034e-02 2.574962e-04

5.426100e+00 1692 1.454373e-02 2.373886e-04

Table A.4: The Polyakov loop expectation values from calculations with lattices of size 323 × 16.



Appendix B

Details on the computations in

chapter 1

In this appendix we give notes on the 1-loop perturbative calculations that we referred to

in chapter 1. They are organized as follows:

B1. Feynman rules and calculation methods at finite T

B2. The non-static contributions

B3. Diagram calculations of Πns
00

B4. IR and UV properties

B5. Low- and high-T approximation

B6. Fourier transformation to position space

The first part (B1) is aimed to provide an introduction into the calculation techniques of

finite temperature Feynman diagrams. It is therefore rather pedagogic. The parts that

follow are specific to our calculation and summarize our results.

B.1 Feynman rules and calculation methods at finite T

By involving the auxiliary fields C, C̄ (being the ghost fields) and ξ (being the gauge fixing

parameter), the gauge action (in static gauge, ∂0A0 = 0) can be rewritten with respect to

the gauge field boundary conditions as [143]

S[Ai, A0, C, C̄] =

∫

dx0

∫

d3x
{

− 1

2
∂0A

a
i (x)∂0A

a
i (x) −

1

2
∂iA

a
0(x)∂iA

a
0(x)

−1

4
F a

ij(x)F
a
ij(x) + gfabcAa

i (x)A
b
0(x)∂iA

c
0(x) + gfabcAa

0(x)A
b
i(x)∂0A

c
i (x)

−1

2
g2fabcfadeAb

i(x)A
c
0(x)A

d
i (x)A

e
0(x) −

1

2ξ

3∑

i=1

(∂iA
a
i (x))

2

+LGI(x)
}

. (B.1)

where LGI(x) contains the ghost-field interaction with only static fields. The relations

between the static fields (Ai) and the non-static fields (A0) can be read-off from this
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expressions and define the Feynman rules. Here we list our results:

k
i a j b = δab

(

δij +
kikj

k2
0

)
1

k2
(1 − δk0,0)

+δab 1

k2

(

δij − (1 − ξ)
kikj

k2

)

(B.2)

k
0 a 0 b = δab 1

k2
δk0,0 (B.3)

p

k
q

0 b

0 c

i a =
1

2
igfabc(p− q)i (B.4)

p

k
q

i b

j c

0 a =
1

2
igfabc(p− q)0δij (B.5)

i b

0 c

i d

0 e

= −1

2
g2fabcfade (B.6)

We note that the non-static modes are not affected by the details of the gauge fixing.

More details on this field can be found in [144, 145].

Let us finally give some useful formulas that may help to evaluate Feynman diagrams at

finite temperatures. In general, the calculation procedure is the following: In an Euclidean

D-dimensional thermal field theory in thermal equilibrium at finite temperature the finite

time integration from 0 to β = 1/T , together with the resulting periodic (anti-periodic)

boundary conditions that obey the fields, are often arranged by expanding the fields in
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eigenmodes, the so-called Matsubara frequencies. This causes that the finite time integra-

tion is replaced by a sum over an infinite number of fields which appears in additional to

the remaining (D − 1)-dimensional integrals. In general, the computation of such objects

can be performed in three steps: In the first step the summation of the frequencies is

handled by using the so-called frequency sum rules. We only need bosonic rules, i.e.

T
+∞∑

n=−∞

1

p2 + ω2
n

=
1

|p|
(

1 + 2n(|p|)
)

(B.7)

T
+∞∑

n=−∞

1

[p2 + ω2
n][q2 + ω2

n]
=

1

2|p||q|
[1 + n(|p|) + n(|q|)

|p| + |q| +
n(|q|) − n(|p|)

|p| − |q|
]

.(B.8)

In these relations the four-dimensional momentum (p) is rewritten as p = (p0,p) where

p0 = ωn = 2πnT denotes the Matsubara frequencies. n(x) is the Bose-Einstein distribu-

tion function, n(x) = 1/(exp(−x/T ) − 1). In fact, n(x) represents all the temperature

dependence of the finite temperature integrals. In conclusion, there is a temperature de-

pendent part, which is (by construction) convergent in the ultra violet regime and there

exists a zero temperature part, which can be divergent in this regime. In general, so, both

parts are well separated through (B.7) and (B.8).

This is the initial point for the second step: The calculation of the zero temperature part.

The zero temperature part, in general divergent, has to be regularized. Regularization

means that we separate the divergence from the finite contributions. We make use of the

dimensional regularization. In this regularization scheme, the dimension of the divergent

integral (now d = 3) gets continuously reduced to an arbitrary dimension, d = 3 → 3−2ǫ,

in which the integral is supposed to be convergent. In order to ensure a dimension-less

(bare) coupling g, it is necessary to introduce a so-called regularization scale, ν, on which

all dimensions are put, g → gνǫ. In principle, the calculation of divergent diagram integrals

works, once more, in two steps: In the first step, the divergent integrand is prepared to be

of the form that the standard formula of dimensional regularization can be used. This can

be achieved by applying to the Feynman parameterization and, if necessary, symmetric

integrations. For instance, the Feynman parameterization formula is given by

1

aαbβ
=

Γ(α+ β)

Γ(α)Γ(β)

1∫

0

dx
xα−1(1 − x)β−1

[b+ x(a− b)]α+β
. (B.9)

One then applies to the standard formula in d arbitrary dimensions:
∫

ddp

(2π)d

(p2)α

[p2 +R2]β
=

1

(4π)
d
2

Γ(α+ d
2 )Γ(β − α− d

2)

γ(d
2 )Γ(β)

[R2]
d
2
−β+α. (B.10)

In order to split-off the divergence from the finite contributions one enlarges the reduced

dimension to the initial one, ǫ→ 0. In general, in this limit one results into an expression

like ∼ 1/ǫ+ O(ǫ)+finite parts. In this way, the divergence (∼ 1/ǫ) is well separated from

the finite contributions. Useful Laurent expansions for the Γ- and Riemann-Zeta-functions

around ǫ = 0, which find application in our calculation (see below), are

Γ(ǫ) =
1

ǫ
− γE + O(ǫ), (B.11)



118 Details on the computations in chapter 1

Γ(ǫ− 1) = −1

ǫ
+ γE − 1 + O(ǫ), (B.12)

Γ(ǫ+
1

2
) =

√
π −

√
π(γE + 2 ln 2)ǫ+ O(ǫ2), (B.13)

ζ(1 + ǫ) =
1

ǫ
+ γE + O(ǫ), (B.14)

where γE denotes the Euler constant, γE ≃ 0.577215.... The separated divergence can

be subtracted by renormalization. As we use a dimensional regularization, we use in our

calculations the MS-scheme.

The third step, unfortunately, is the most expensive part of the calculation of diagrams at

finite temperature. It is the calculation of the remaining finite temperature contribution.

Indeed we have to work out a d-dimensional finite integral that contains no UV divergences.

In general, it is most suitable to introduce spherical coordinates and to apply to numerical

integration methods. However, in order to do so, one has to ensure that the integrals

behave finite in the low momentum (infra-red) regime. It should be obvious, that the

third and second steps can be exchanged.

B2. The non-static contributions

The connected parts of the 2-point Polyakov loop correlation function given in (1.33)

define the quark antiquark free energy δFqq̄(r, T ). We rewrite

Π00(k) ≡ Π̃00(k) + Π00(k → 0)

= Π̃00(k) +m2
D, (B.15)

and expand in perturbation theory (g ≪ 1)

1

k2 +m2
D + Π̃00(k)

=
1

k2 +m2
D

(

1 +
Π00(k) −m2

D

k2 +m2
D

+ ...

)

. (B.16)

In general, in a thermal field theory the polarization tensor Π00(k) to 1-loop order is given

by integrals of the form

Π1−loop
00 (k) ≃ T

∑

n=0,±1,±2,...

∫
d3p

(2π)3
f(p, k, ωn), (B.17)

where f represents the contributions of various 1-loop diagrams1 and ωn = 2πnT de-

note the Matsubara frequencies. The contributions with vanishing frequencies, n = 0,

are related to the static contributions while the terms with non-vanishing frequencies

n = ±1,±2, ...,±∞, produce the non-static contributions. As discussed above we are

here interested in the infinite set of non-static contributions: According to the general

decomposition given in (B.17), we refer to the static polarization tensor, Πst
00(k), and to

the non-static polarization tensor, Πns
00(k), via

Π00(k) = Πst
00(k) + Πns

00(k). (B.18)

1We will suppress the index ’1-loop’ from now on as our computations in this chapter are restricted to

the 1-loop level.
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Due to this separation the free energy consists of a static part, which is known, and of a

non-static part, which we aim to work out in the following. In the language of Feynman

diagrams, the non-static gauge field polarization tensor to 1-loop order is given by

Πns
00(k) = −

[

k

p

q

+

p

+
k

p

q

]

.

(B.19)

The first diagram in (B.19) vanishes because of energy-momentum conservation as the

straight lines denote the non-static fields. The involved δ-functions, which guaranty the

conservation laws, lead to a loop integration over zero. Secondly, the ’tadpole’ diagram

reduces to the well-known formula (see for instance Refs. [11, 12])
∑∫

p 1/p2 = T 2/12.

As a consequence this tadpole diagram does not participate in the dynamics of the field

propagation: it is given by −2Nδabg2T 2/12. The calculation of the remaining diagram

and further details are summarized in B3.

As it is usually the case in a finite temperature field theory, the calculation of Πns
00(k)

leads to an evaluation of ultraviolet (UV) divergent zero temperature contributions from

the vacuum and to UV convergent thermal contributions from the gluonic heat bath. In

other words,

Πns
00(k) = Π

ns(0)
00 (k) + Π

ns(T )
00 (k) + Π

ns(T )g
00 (k)

︸ ︷︷ ︸

thermal part: Π
ns(m)
00

, (B.20)

where we have split-off from Π
ns(m)
00 (matter part) the piece Π

(T )g
00 (k) which is specific to

our gauge. In conclusion, the contributions from the non-static gauge field sector to the

free energy in momentum space result from the quantity

1

k2 +m2
D + Π̃00

=

1

k2 +m2
D

︸ ︷︷ ︸

LO

+
Πst

00(k)

(k2 +m2
D)2

︸ ︷︷ ︸

static

+
−m2

D + Π
ns(0)
00 (k) + Π

ns(T )
00 (k) + Π

ns(T )g
00 (k)

(k2 +m2
D)2

︸ ︷︷ ︸

non-static

+...(B.21)

As we are rather interested in the free energy in position space, δFqq̄(r, T ), than in the

free energy in momentum space, the Fourier transformation of (B.21) will lead to the

contributions of the non-static fields. According to the decomposition above, we will refer

to them as δF
ns(0)
qq̄ , δF

ns(T )
qq̄ and δF

ns(T )g
qq̄ . The term arising from the Debye mass m2

D in

the non-static contribution will produce the resummed leading order term. Unfortunately

it is not possible to get an analytic expression for Πns
00(k) in general. However, this can be

achieved in two limits of k: The low temperature approximation with k ≫ p≫ T and the

high temperature approximation where k ≪ p≪ T .
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In the low temperature limit we expect for dimensional reasons

Πns
00(k ≫ T ) = c0k

2 + c1kT + c2T
2, (B.22)

with constants c0, c1 and c2. We identify the coefficient proportional to k2 with contribu-

tions from the vacuum which can be taken from [143, 105]:

c0 = − g2N

16π2

(
11

3
ln

4πν2

k2
− 11

3
γE +

31

9

)

. (B.23)

The thermal contributions in this approximation lead to

c1 =
1

4
Ng2 and c2 = − 1

18
Ng2. (B.24)

In the other limit, the limit of vanishing k, one expects to find the Debye mass, i.e.

Πns
00(k ≪ T ) = m2

D. In fact we find

m2
D ≡ Πns

00(k = 0) =
Nc

3
g2T 2. (B.25)

Thus our 1-loop computation recovers the well-known gauge independent non-abelian

screening mass (see Refs. [57, 24, 60]). We expect, however, that higher order corrections

will involve gauge dependent terms.

Our results of the computations presented above are summarized in Fig. B.1 for the case

of SU(3). In that figure we show the numerical (full) computation of the matter part of

Πns
00(p) as a function of the momentum p in units of the temperature T . For the numerical

analysis shown in that figure we calculated the matter contributions in steps p/T = 1.

Fig. B.1 also contains our results from the low (indicated with the dashed line) and the

high temperature expansion (see the black line) taken from (B.22) and (B.25). In order

to analyze the limits of the validity of the low and high temperature approximation we

show Π
ns(m)
00 in the range of rather high temperatures, p/T <∼ 15. It can be seen from

that figure, that the high temperature approximation of the finite temperature part works

indeed quite well at high temperatures. In fact, the high temperature expansion lies on

top of the full calculation up to p/T <∼ 11. At larger values, however, the high temperature

expansion rapidly deviates from the numerical, exact data. In the low temperature regime

the low temperature expansion becomes valid. Indeed, the low temperature expansion

works quite well at p/T >∼ 11. Although we cannot present an analytic expression for the

non-static gauge field polarization tensor, it can be quite well described in terms of its

low and high T approximations in the whole p/T regime. In fact, we will use the analytic

approximations rather than the full expression in the following considerations.

The color averaged quark antiquark free energy δFqq̄(r, T ) can be written in the 1-loop

perturbative approximation as

δFqq̄(r, T ) = δF
(0)
qq̄ (r, T ) + δF (1)(r, T ). (B.26)

We denote by δF
(0)
qq̄ (r, T ) the leading order term (see also [57]) and with δF

(1)
qq̄ (r, T ) the

1-loop (O(g6)) corrections. Due to the fragmentation of Π00(k) in (B.18), the 1-loop
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Figure B.1: The matter contribution to the non-static polarization tensor Π
ns(m)
00 in the static

gauge as a function of the dimension-less momentum p/T . We have chosen the gauge group to

be SU(3), (N = 3). The black squares show the numerical computation while the black line

denotes the high temperature approximation of Π
ns(m)
00 defined in (B.25). The dashed line is the

low temperature expansion given in (B.22). In this figure we show the results in terms of Π00/g
2

which allows a study of the polarization tensor independent of the scale in the coupling.

correction term consists of a static (denoted with δF st
qq̄(r, T )) and of a non-static (denoted

with δFns
qq̄ (r, T )) part:

δF
(1)
qq̄ (r, T ) = δF st

qq̄(r, T ) + δFns
qq̄ (r, T ). (B.27)

It should be obvious that the leading order term does not distinguish between static and

non-static contributions. Therefore it is not necessary to indicate explicitly the loop order

in the r.h.s. of (B.27). The static contribution δF st
qq̄(r, T ) is well-known [57]. Our results

for Eq. (B.26) are shown in Fig. 1.3.

B3. Diagram calculations of Πns
00

We are now prepared to go in detail. We need to calculate:

k

p

q

= 2Ncg
2δabT

+∞∑

n=−∞

∫
ddp

(2π)d
p2
0D̃ij(p)D̃ij(q)
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= 2Ncg
2δab

[3

2

T 2

12
− 2I1 + I2 +

1

2
I3 +

1

4
I4

]

. (B.28)

We have indicated (B.2) in this relation as δabD̃ij(p). The integrals, Ii (i = 1, ..., 4), which

appear in (B.28) are defined on

I1 ≡ ∑
∫

p

p2

p2q2
, I2 ≡∑

∫

p

k2

p2q2
, I3 ≡∑

∫

p

q2

p2p2
, I4 ≡∑

∫

p

k4

p2q2p2
0

. (B.29)

In these notations we have used the short-cut notation Σ
∫

= T
∑

n 6=0

∫ d3p
(2π)3

. Note that

the zero modes (n = 0) are missing in this convention. Thus, in order to apply to the

frequency sum rules (B.7) and (B.8), we have to add and subtract the zero modes. From

power counting of the integrand functions in three dimensions we find that I1, I2 and I3
behave divergent in the ultra violet momentum limit while I4 is ultra violet convergent.

We calculate I1,2,3 with the methods introduced above (P ≡ |p|/T ):

I1(k) = I
(T=0)
1 (k) + I

(T )
1 (k), with: (B.30)

ν2ǫI
(T=0)
1 (k) =

k2

(4π)2

[ 1

12ǫ
+

1

12
ln

4πν2

k2
+

2

3
γE +

2

9

]

+ O(ǫ), (B.31)

I
(T )
1 (k) =

T 2

(2π)2K

∫ ∞

0
dPP 2n(P )

{

|P +K|2 − |P −K|2
2P 2

+ ln
P + |P +K|
P + |P −K| + ln

P − |P +K|
P − |P −K|

}

, (B.32)

I2(k) = I
(T=0)
2 (k) + I

(T )
2 (k), with: (B.33)

ν2ǫI
(T=0)
2 (k) =

k2

(4π)2

[1

ǫ
+ ln

4πν2

k2
+ 2 − γE

]

+ O(ǫ), (B.34)

I
(T )
2 (k) =

KT 2

(2π)2

∫ ∞

0
dP

{

n(P )

(

ln
P + |P +K|
P + |P −K| + ln

P − |P +K|
P − |P −K|

)

− 1

P
ln

|P +K|
|P −K|

}

, (B.35)

ν2ǫI3(k) =
k2

(4π)2

[2

ǫ
+ 2 ln

4πν2

k2
+ 2 ln

k2

(2πT )2
+ 2γE + 4 − ln 4

]

+ O(ǫ).(B.36)

Let us give some notes: Firstly, the finite temperature integrals I
(T )
1 and I

(T )
2 are infra-red

(IR) finite which allows us to handle them with standard numerical methods. Secondly,

a straight forward separation of the temperature and the zero temperature contributions

in (B.30) and (B.33) is obvious, however, the separation in (B.36) is rather problematic.

Fortunately, a separation of the thermal contributions from the vacuum contributions can

be done as the vacuum part is well-known (see f.i. [105, 143]).

We now compute I4. In order to perform the frequency summations it is convenient to

rewrite I4 for in terms of I4 ≡ I4a − I4b − I4c, with

I4a ≡
∑
∫

p

k4

p2q2p2
0

, I4b ≡
∑
∫

p

k4

p2q2q2
, I4c ≡

∑
∫

p

k4

p2p2q2
.
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By performing the frequency sums in I4a, I4b and I4c and integrating out the angular

dependence we obtain:

I4a =
K3T 2

12(2π)2

∫ ∞

0
dP

1

P
ln

|P +K|
|P −K| =

k3

96
, (B.37)

I4b =
K3T 2

(2π)2

∫ ∞

0
dP

(
1 + 2n(P )

2P 2
− T

P 3

)

ln
|P +K|
|P −K| , (B.38)

I4c =
K3T 2

(2π)2

∫ ∞

0
dP

[

1

2P 2
ln
P + |P +K|
P + |P −K| −

1

P 3
ln

|P +K|
|P −K|

+
n(P )

P 2

(

ln
P + |P +K|
P + |P −K| + ln

P − |P +K|
P − |P −K| + ln

|P −K|
|P +K|

)
]

. (B.39)

We identify I4a being the term which is specific to our gauge; we have extracted this term

in (B.20). While I4 does not produce ultra violet divergences, we note here however, that

I4 contains non-trivial vacuum contributions.

B4. IR and UV properties

One may check the ν-scale independence of the zero temperature parts. We find
(

Πns
00

)

ν−dep
=

11

3
Ng2k2δab ln ν2 (B.40)

This factor, 11N
3 , appears indeed in the perturbative β-function for Nf = 0.

We check the convergence in the infra-red limit p → 0. We give a detailed proof of the

convergence of I
(T )
4 . Infra-red behaviour, this means P ≪ K ≪ T, |P −K| = K − P , of

I4a:

I4a =
1

(2πT )2K

1

12

∞∫

0

dP
1

P
ln
P +K

K − P

=
1

(2πT )2K

1

12

∞∫

0

dP
1

P

{

2
P

K
+

2

3

(P

K

)3
+ ...

}

=
1

(2πT )2K

1

12

∞∫

0

dP
{P

K
+ O(P 2)}. (B.41)

I4a is infra-red convergent.

Now: I4b is convergent in the infra-red limit:

I4b =
1

(2π)2K

∞∫

0

dP
(1 + 2n(P )

2P 2
− 1

P 3

)

ln
|P +K|
|P −K|

=
1

(2π)2K

∞∫

0

dP
( 1

2P 2
+
n(P )

P 2
− 1

P 3

)(

2P + ...
)

. (B.42)
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In the last expression we have only expand the logarithm. By expanding n(P ) we are led

to only convergent contributions:

I4b =
1

(2π)2K

∞∫

0

dP
(1

6
+ O(P )

)

(B.43)

We finally show that I4c ≡ A+B +C −D is itself convergent in the infra-red limit with:

A :=
1

(2π)2K

∞∫

0

dP
1

2P 2
ln
P + |P +K|
P + |P −K| (B.44)

B :=
1

(2π)2K

∞∫

0

dP
n(P )

2P 2

(

ln
P + |P +K|
P + |P −K| + ln

P − |P +K|
P − |P −K|

)

(B.45)

C :=
1

(2π)2K

∞∫

0

dP
n(P )

2P 2

(

2 ln
|P −K|
|P +K| + ln

P + |P +K|
P + |P −K| + ln

P − |P +K|
P − |P −K|

)

(B.46)

D :=
1

(2π)2K

∞∫

0

dP
1

P 3
ln

|P +K|
|P −K| . (B.47)

We proof: C is alone infra-red convergent and A+B−D is infra-red convergent. In order

to do so, we expand C in the limit P/K ≪ 1. This leads to

C =
1

(2π)2K

∞∫

0

dP
n(P )

2P 2

{

2
[

− P

K
− 2

3

(P

K

)3
+ ...

]

+ 4
P

K
+

16

3

(P

K

)3
+ ...

}

=
1

(2π)2K

∞∫

0

dP
n(P )

2P 2

{

4
(P

K

)3
+ ...

}

. (B.48)

Now we only need to expand n(P ) in this regime to get the convergent expression

C =
1

(2π)2K

∞∫

0

dP
[ 2

K3
+ O(P )

]

. (B.49)

Finally we show: A+B −D is convergent for P → 0:

A+B −D =
1

(2π)2K

∞∫

0

dP
{ 1

PK
− 2

P 2K
+ 2

n(P )

KP
+ O(P 0)

}

(B.50)

By expanding the Bose Einstein distribution the divergent parts cancel out:

A+B −D =
1

(2π)2K

∞∫

0

dP O(P 0). (B.51)
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B5. Low- and high-T approximation

In the low temperature approximation of the finite temperature integrals we make use of

some integrals that are calculated in [146].

In the high temperature limit we find (k ≪ p≪ T ), Π̃m
00 = Πm

00/g
2:

Π̃m
00(k ≪ p≪ T ) = 1 + 0.01192947179834837 k2 + 0.015625 k3

−0.00044347934570314947 k4 + 6.470230045218389 10−7 k6

−2.1929620925010094 10−9 k8 + 9.453105666167652 10−12 k10

−4.541986644640096 10−14 k12 + 2.3191838919038833 10−16 k14

−1.231059165419055 10−18 k16 + 6.7129162217446455 10−21 k18

−3.7335965865922323 10−23 k20 + 2.1082165069000592 10−25 k22

−1.2047473535474273 10−27 k24 + 6.951585898777381 10−30 k26

−4.043428554828764 10−32 k28 + 3.2370809486341554 10−35 k30

−2.767372364279353 10−36 k32

+0.06965831375410722 k2 ln(39.47841760435743/k2) (B.52)

This parameterization is shown in Fig. B.1.

B6. Fourier transformation to position space

At HTL-like re-summed 1-loop level we identify in accordance with (B.16)

βδFns
qq̄ (r, T ) = −g4β2 2(N2 − 1)

8N2

(
e−mDr

4πr

)∫
d3k

(2π)3
(
Πns

00(k) −m2
D

) eikr

(k2 +m2
D)2

, (B.53)

where we have included the Fourier transformation to position space. Because of the

segmentation of Πns
00(k) defined in (B.20) we have:

βδFns
qq̄ (r, T ) = βδF

ns(0)
qq̄ (r, T ) + βδF

ns(T )
qq̄ (r, T ) + βδF

ns(T )g
qq̄ (r, T )

+g4β2 2(N2 − 1)

8N2

(
e−mDr

4πr

)∫
d3k

(2π)3
m2

D

(k2 +m2
D)2

eikr

︸ ︷︷ ︸

=
mD
8π

e−mDr

, (B.54)

where the integral in the under-bracket follows from the residual calculi. We first concen-

trate on the 1-loop vacuum corrections defined on

βδF
ns(0)
qq̄ (r, T ) ≡ −g4β2 2(N2 − 1)

8N2

(
e−mDr

4πr

)∫
d3k

(2π)3
Π

ns(0)
00 (k)

eikr

(k2 +m2
D)2

, (B.55)

where we take Π
ns(0)
00 (k) from [103]. By inserting the scale ν̄2 ≡ 4πe−γEν2, with ν defined

in the MS scheme, we rewrite Π
ns(0)
00 (k) in the form

Π
ns(0)
00 (k) = −g

2Nk2

(4π)2

(11

3
ln ν̄r2 +

31

9
+

11

3
ln

1

k2r2

)

. (B.56)
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After some basic steps we are led to:

βδF
ns(0)
qq̄ (r, T ) = g6β2N

2 − 1

64Nπ2

(
e−mDr

4πr

)[

11

3

∫
d3k

(2π)3
eikr

(k2 +m2
D)2

k2 ln
1

k2r2
︸ ︷︷ ︸

≡ J0(r, T )

+

(
11

3
ln ν̄2r2 +

31

9

)(∫
d3k

(2π)3
eikr

k2 +m2
D

−
∫

d3k

(2π)3
m2

De
ikr

(k2 +m2
D)2

)]

, (B.57)

where J0(r, T ) defined in (B.57) can be reduced to

J0(r, T ) =
1

2π2r

∫ ∞

0
dp̃
p̃3 ln 1

p̃2(rT )2

(p̃2 + m̃2
D)2

sin (p̃rT ) (B.58)

with m̃D ≡ mD/T . We calculate this integral with numerical methods.

The 1-loop contributions specific to our gauge is given by

βδF
ns(T )g
qq̄ (r, T ) ≡ −g4β2 2N2 − 1

8N2

(
e−mDr

4πr

)∫
d3k

(2π)3
Π

(T )g
00 (k)

eikr

(k2 +m2
D)2

, (B.59)

with

Π
(T )g
00 = −Ng

2

2
I4a = −Ng

2

2

k3

96
. (B.60)

In order to perform the Fourier transformation we re-organize

1

(k2 +m2
D)2

=
1

k4
+

(
1

(k2 +m2
D)2

− 1

k4

)

(B.61)

as the first term cancels the k3 in (B.60). We then arrive at:

βδF
ns(T )g
qq̄ (r, T ) = g6β3N

2 − 1

768N

(
e−mDr

4πr

)2

Jg(r, T )

+g6β3N
2 − 1

96N
e−mDr

(
1

4πr

)3

. (B.62)

(The factor (N2 − 1)/(768N) results from N/96× 2(N2 − 1)/(8N2)× 1/4, where the first

term is from (B.60), the second term is from (B.53) and the last factor results from angular

integration and some re-organizations.) Jg(r, T ) appearing in (B.62) originates from the

second term in (B.61) and can be written as

Jg(r, T ) = emDr 2

π

∫ ∞

0
dp̃

(
p̃4

(p̃2 + m̃2
D)2

− 1

)

sin(p̃rT ) (B.63)

where we refer to the notations as clarified above. We have solved this integral by applying

numerical methods - and even the remaining thermal contribution δFns(T ) defined on

βδF
ns(T )
qq̄ (r, T ) ≡ −g4β2 2N2 − 1

8N2

(
e−mDr

4πr

)∫
d3k

(2π)3
Π

ns(T )
00 (k)

eikr

(k2 +m2
D)2

(B.64)

has to be computed with numerical methods since Π
ns(T )
00 (k) is non-analytic in our pre-

sentation.
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