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Chapter 1

Introduction

Nuclear matter is build from hadronic bound states of quarks, hold together by the strong in-

teraction, mediated via gluon exchange. The study of strongly interacting matter under extreme

conditions, i.e. temperatures that have been reached in the early universe or densities like in the

core of neutron stars, is one of the most exciting topics in contemporary physics. It deals with fun-

damental questions like “What happens if you make things hotter and hotter?” or “What happens

if you keep squeezing and squeezing?”. The understanding of matter under extreme conditions is

mandatory for cosmology and astrophysics. Moreover during the last decade, much effort has been

devoted to experimentally detecting the quark-gluon plasma (QGP) state in high energy heavy-ion

collisions. The QGP is the expected state of matter at high temperatures and densities, after

melting away the hadronic structure of matter and liberating the quarks and gluons. Experiments

are running at BNL and CERN with the goal to observe experimentally the creation of this new

state of matter [1, 2]. On the theoretical site, novel color superconducting and superfluid phases

have been conjectured at high baryon densities [3]. For these reasons numerical studies of strongly

interacting quarks and gluons, that obey the laws Quantum Chromo Dynamics (QCD), with both

temperature T 6= 0 and quark chemical potential µq 6= 0, are more urgent than ever. Precise

information about the QCD phase diagram and the QCD equation of state are indispensable to

the understanding of heavy-ion collision experiments.

The nature of the QCD transition from a gas of hadronic resonances to the QGP is one of the

most important aspects of the QCD phase diagram. One expects that there exists a large region in

the parameter space of quark masses (mu,md,ms), temperature (T ) and chemical potential (µq),

where the transition is a true thermodynamical phase transition, which is of first order. Moreover

at the boundary of this region, the transition is expected to be of second order, which should lead

to critical behavior in the vicinity of this surface. At fixed physical quark masses, this is known
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Figure 1.1: Schematic view of the QCD phase diagram [4]. ALICE, RHIC and SPS are names of

relativistic heavy-ion accelerators or experiments at BNL and CERN, and 2SC and CFL refer to

diquark condensates.

as the second order end point of a line of first order phase transitions, as shown in Figure 1.1.

Detailed studies of the QCD phase diagram and critical phenomena are thus of great theoretical

interest. Furthermore, it is a fascinating feature, that these studies may influence our thinking

about observable effects of the critical point in the BNL Relativistic Heavy-ion Collider (RHIC)

or future GSI experiments, for instance in event-by-event fluctuations [5]. An example of a critical

point, which one was already able to study in nuclear collisions, is the end point of the nuclear

liquid-gas transition (boiling of the nuclear matter liquid to yield a gas of nucleons). It can be

observed in low energy multi-fragmentation experiments [6, 7] and occurs at a temperature of

10 MeV, much lower than the one we are studying here. Of course we not only expect observable

effects when the evolution trajectory of a system created in a heavy-ion collision passes near or

through the QCD critical point, but also expect consequences, when the evolution trajectory of

the early universe itself would have done this. In cosmological scenarios the inhomogeneities of

the universe we can observe today are sensitive to the nature of the QCD phase transition which

occurred in the early universe shortly after the big bang.

In this work we estimate the QCD critical point and determine its universality class. Besides

a first approximation of the critical temperature (T crit ≈ 165 MeV) and the critical chemical

potential (µcritq ≈ 152 MeV) fixing its location in 3-flavor QCD, we also give a numerical “proof”

that the QCD critical point belongs to the universality class of the 3d-Ising model [8] and investigate
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the dependence of its location on independent variations of two degenerate light quark masses and

one heavier strange quark mass. Moreover, we calculate the curvature of the transition line Tc(µq)

as a function of the quark chemical potential (Tc(d
2Tc/dµ

2
q)|µq=0 ≃ −0.14(6)) and obtain results

consistent with earlier calculations [9, 10].

Also the equation of state belongs to the most basic category of information needed in phe-

nomenological investigations of heavy-ion collisions. The non-perturbative study of QCD ther-

modynamics at small but non-zero baryon density are directly applicable to the density regime

currently investigated experimentally at RHIC. Here corrections to quantities evaluated at µq = 0

are both small and calculable. In a relativistic heavy ion collision of duration ∼ 10−22s, thermal

equilibration is possible only for processes mediated by the strong interaction, rather than the full

electroweak equilibrium achievable, say, in the core of a neutron star. This means that each quark

flavor is a conserved charge, and conditions at RHIC are thus approximately described by

µu = µd = µq 6= 0 ; µI ≡ 2(µu − µd) = 0 ; µs = 0 , (1.1)

with µq ≈ 15 MeV [11] when we relate the quark and baryon number chemical potentials via

µB = 3µq. We will present numerical results for the equation of state, i.e. pressure p(µq, T ) and

quark density nq(µq, T ), obtained from lattice QCD simulations with two flavors of equal mass

quarks, which should give a qualitatively correct description of RHIC physics, and provide a useful

starting point for quantitative studies of the physical case of 2+1 flavor with realistic light and

strange quark masses.

Trying to quantify non perturbative aspects of the QCD phase diagram requires non pertur-

bative calculations within the framework of lattice regularized QCD, which was shown to be the

most powerful approach to QCD thermodynamics at zero chemical potential [12, 13, 14]. The great

problem one is confronted with lattice QCD at finite density is the so called “sign problem”. Direct

simulations using standard Monte Carlo importance sampling is hampered because the QCD path

integral measure detnf M , where M(µq) is the Euclidean space fermion kinetic operator, is com-

plex once µq 6= 0. Recently progress has been made to circumvent this problem for small chemical

potentials. In the studies which have appeared to date two fundamentally distinct approaches∗

have emerged. In the reweighting method results from simulations at µq = 0 are reweighted on

a configuration-by-configuration basis with the correction factor [detM(µq)/ detM(0)]nf yielding

formally exact estimates for expectation values. Indeed, it is found that if reweighting is performed

∗Another interesting method to study lattice QCD at small but finite density is the canonical approach for small

but exact baryon number. This has been done up to now in the static limit of QCD [15] only, but should in principle

work in full QCD as well.
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simultaneously in two or more parameters, convergence of this method on moderately-sized sys-

tems is considerably enhanced [16]. This method has been used on lattice sizes up to 123 × 4 to

map out the pseudo critical line and estimate the location of the critical endpoint. In QCD with

tow light and a heavier strange quark this led to the estimate µcritq ≃ 240 MeV, T crit ≃ 160 MeV

[9]. In this study unimproved staggered fermions have been used with only semi-realistic quark

masses. More recently the equation of state in the entire region to the left of the endpoint has

been calculated this way [17]. However, it remains questionable whether the thermodynamic limit

can be reached using this technique.

Analytic approaches use data from regions where direct simulations are possible, either by

calculating derivatives with respect to µq (or more precisely with respect to the dimensionless

combination µq/T ) to construct a Taylor expansion for quantities of interest [18, 19, 20, 21], or

more radically by analytically continuing results from simulations with imaginary µq (for which

the integration measure remains real) to real µq. The second technique has been used to determine

Tc(µq) for QCD with both nf = 2 [10] and nf = 4 [22], in the latter case one finds evidence

that the line is first order in nature. Fortunately, the pseudo critical line found in [10] is in

reasonable agreement with that found by reweighting; moreover the radius of convergence within

which analytic continuation from imaginary µq is valid corresponds to µq/T ≤ π/3 [23]. The

leading non-trivial term of quadratic order in the Taylor expansion appears to provide a good

approximation throughout this region. In general though, while such approaches have no problem

approaching the thermodynamic limit, it is not yet clear if and how they can be extended into

the region around the critical endpoint and to observables that vary strongly with µq like e.g. the

pressure or energy density.

In our investigation of the phase diagram we use a hybrid of the two techniques, by making

a Taylor series estimate of the reweighting factor [detM(µq)/ detM(0)]nf to O(µ2
q). Since this is

considerably cheaper than a calculation of the full determinant, we are able to explore a larger

163 × 4 system, and also exploit an improved action in both gauge and fermion [24] sectors, thus

dramatically reducing discretization artifacts on what at Tc(µq = 0) ≃ 170 MeV is still a coarse

lattice. For the evaluation of the equation of state we extend the Taylor series to the next order

O(µ4
q) but this time remain entirely within the analytic framework, using derivatives calculated at

µq = 0 to evaluate non-zero density corrections to the pressure p and quark number susceptibility

χq ≡ ∂nq/∂µq, as well as the quark number density nq itself. In fact, since the correction ∆p

can be evaluated at fixed temperature, it turns out to be considerably easier to calculate than

the equation of state at µq = 0 [12, 14]. Since we now have the first two non-trivial terms in the

Taylor expansion, we are also able to estimate its radius of convergence as a function of T , and

confirm that close to Tc(µq = 0) the results for the critical line curvature can be trusted out to
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O(100 MeV), whereas at higher temperatures a considerably larger radius of convergence is likely

to be found. Finally we consider mixed derivatives with respect to both µq and the other bare

parameters β and m, which are required to estimate energy ǫ and entropy s densities. Due to the

presence of a critical singularity, these latter quantities appear considerably harder to calculate in

the critical region using this approach.

This thesis summarizes and extents previous work [8, 19, 25, 26, 27, 28] on the QCD phase

diagram and equation of state at non-zero chemical potential. It is organized as follows: In

Chapter 2 we recall the basic concepts of lattice QCD and the improvement of lattice actions.

We also introduce the reweighting method and discuss the cutoff dependence of improved and

unimproved actions at finite µq. In Chapter 3 we study the phase diagram and nature of the QCD

phase transition. We investigate the chiral critical point in 3-flavor QCD and estimate its quark

mass and chemical potential dependence. After an analysis of the transition temperature Tc as

function of µ 6= 0, we conclude with a mean-field calculation of an effective chiral Hamiltonian. In

Chapter 4 we study the equation of state . We give p(T, µq), nB(T, µq) and investigate in how far

the results can be understood in terms of the hadronic resonance gas. We summarize and conclude

in Chapter 5. The appendices contain further technical details to the discussion of cutoff effects,

the linear sigma model, and the Monte Carlo simulations.
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Chapter 2

Lattice QCD

In this chapter we will recall the basic steps for thermodynamic investigations of strongly interacting

quarks and gluons on the lattice. The key step is the regularization of the path integral by the

introduction of appropriate lattice versions of the QCD Lagrangian and the interpretation of the

Boltzmann factor as a probability distribution. Furthermore we will argue that improved actions

are of great importance for the high temperature and density regime and will present a possible

improvement scheme. Finally we will outline the first steps toward a finite chemical potential

formulation. It is, however, not the aim of this chapter to give a detailed introduction to lattice

gauge theory, here we refer to standard text books like [29, 30, 31].

2.1 Quarks and gluons on the lattice

The starting point for all thermodynamic investigations is the partition function. The grand

canonical partition function of QCD can be represented in terms of an Euclidean path integral

over the fermion fields (ψ, ψ̄) and the gauge field (A),

Z(T, V, µ) =

∫

DψDψ̄DA exp{−SE(T, V, µ)} , (2.1)

were A and ψ, ψ̄ obey periodic and anti-periodic boundary conditions in the Euclidean time,

respectively. Here the external control parameters are the temperature (T ), the volume (V ) and

the chemical potential (µ). The Euclidean action (SE) contains a purely gluonic contribution (SG)

and a fermionic contribution (SF ) which includes the coupling between the fermionic and gluonic

sector

SE(T, V, µ) ≡ SG(T, V ) + SF (T, V, µf ) , (2.2)
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SG(V, T ) =

1/T
∫

0

dx4

∫

V

d3x
1

2
Tr FµνFµν , (2.3)

SF (T, V, µ) =

1/T
∫

0

dx4

∫

V

d3x

nf
∑

f=1

ψ̄f (γµ [∂µ − igAµ] +mf − µfγ4)ψf . (2.4)

For the gluons we have only a dynamical contribution, essentially given by the square of the field

strength tensor (Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]) whereas for the fermions we have a sum over

all different quark flavors with quark mass mf concerning a dynamical term (ψ̄fγµ∂µψf ), a mass

term (mf ψ̄fψf ), an interaction term (−igAµψ̄fγµψf ) with the QCD coupling constant g and a

term coupling to the chemical potential (µf ψ̄fγ4ψf ).

The introduction of a four dimensional space time lattice of size N3
σ ×Nτ regularizes the path

integral given in Equation (2.1). Volume and temperature of the system are then related to the

lattice spacing a by

V = (aNσ)
3, T = (aNτ )

−1 . (2.5)

To discretize both, the gluon and the fermion action, we have to deal with link variables Uµ(x)

which are associated with the link between two neighboring sites of the lattice and describe the

parallel transport from site x to x+ µ̂a,

Uµ(x) = P exp







ig

x+µ̂a
∫

x

dxµAµ(x)







, (2.6)

where P denotes the path ordering. The link variables are elements of the SU(3) color group. As

one can easily see, a product of link variables around an elementary plaquette will give a discretized

version of the gauge action, we find

W (1,1)
µν (x) = 1 − 1

3
Re = 1 − 1

3
Re Tr Uµ(x)Uν(x+ µ̂a)U †

µ(x+ ν̂a)U †
ν (x)

=
g2a4

2
Tr FµνFµν + O

(

a6
)

. (2.7)

Or to be more precise, the discrete gauge action is given by the Wilson action [32, 33], which is

the sum over all elementary plaquettes in the space time lattice,

SG =
∑

x

∑

1≤µ<ν≤4

β W (1,1)
µν (x) , (2.8)

with the gauge coupling β = 6/g2. This action reproduces the continuum version up to cutoff

errors of order O(a2).
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For a lattice action of free fermions, one can simply replace the derivative in the fermion

Lagrangian by a finite difference scheme, i.e. ∂µψf (x) = (ψf (x+µ̂a)−ψf (x−µ̂a)/2a. It is however

well known, that this naive discretization scheme does not reproduce the correct particle content

in the continuum limit. The massless fermion propagator has poles not only at zero momentum,

but also at all other corners of the Brillouin zone. Thus one is left with 16 rather than one fermion

species. There are essentially three ways known to circumvent this “fermion doubling problem”.

One solution is the introduction of a term which is proportional to a ∂2
µψf (x) (Wilson fermions

[32, 33]). This term vanishes in the continuum limit (a → 0) and eliminates all fermion doublers

for any finite a. Unfortunately this term also breaks the global chiral symmetry SU(nf )L ×
SU(nf )R completely, which is supposed to play an important role for QCD thermodynamics.

Another solution is to distribute the Dirac and flavor indices over several lattice sites (staggered

fermions [34]). This solution reduces the fermion doublers to four degenerate species, which can be

interpreted as four different flavors of quarks. Here a continuous subgroup of the chiral symmetry

(U(1)L×U(1)R) is preserved. The interplay between fermion doublers and chiral symmetry can be

understood in terms of a No-Go theorem [35]. Within this theorem it has been shown that a lattice

regularization with an exact chiral symmetry but without fermion doublers cannot be achieved.

Nevertheless, progress has been made with chiral fermions, for instance one can circumvent the No-

Go theorem by introducing an extra fifth dimension (domain wall fermions [36], overlap fermions

[37]). At present, however, very little has been done to study QCD thermodynamics on the lattice

with chiral fermions [38, 39, 40].

Here we concentrate on the staggered fermion formulation introduced by Kogut and Susskind

[34]. Also the numerical results we present in Chapter 3 and Chapter 4 are results from calculations

performed with dynamical staggered fermions. The fermion action can be written as

SKSF =
∑

x,y

χ̄(x)MKS(x, y)χ(y) , (2.9)

were the staggered fermion matrix MKS is given by

M(mq) =
1

2

∑

µ

ηµ(x)
[

δ(x+ µ̂a, y)Uµ(x) − δ(x, y + µ̂a)U †
µ(x)

]

+ δ(x, y)mq . (2.10)

Through the distribution of Dirac and flavor components over the lattice, we are left with a

Grassman valued fermion field (χ, χ̄), which carries color indices only. The only remnant of the

gamma structure of the fermion action is the staggered phase (ηµ(x)), which takes the values ±1

and thus naturally divides the lattice in even and odd sites,

ηµ(x) = (−1)

(

x1

a + · · · + xµ−1

a

)

. (2.11)

9



Another possibility to write down the fermion matrix is to absorb the bare quark mass (mq)

in the lattice fermion fields:

M(K) = K
∑

µ

ηµ(x)
[

δ(x + µ̂a, y)Uµ(x) − δ(x, y + µ̂a)U †
µ(x)

]

+ δ(x, y) . (2.12)

Now the bare quark mass is given by mq = 1/(2K) with the hopping parameter K. To repro-

duce the conventional continuum normalization we need to rescale the fermion fields, χlattice =
√

1/2Kχcontinuum.

Since the action is quadratic in the fermion fields, they can be integrated out and we end up

with the following lattice partition function,

Z(Nσ, Nτ , β,mq) =

∫

∏

x,µ

dUµ(x)
(

detMKS(mq)
)nf/4

eSG(β) . (2.13)

Here the important parameters are the lattice size (Nσ, Nτ ), the quark mass (mq) and the lattice

gauge coupling (β). The introduction of the chemical potential on the lattice will be discussed in

Section 2.3. The fourth root of the fermion determinant was taken to embrace the fact that the

staggered fermion matrix as written in Equation (2.10) corresponds to nf = 4 in Equation (2.13).

We use nf = 2 and nf = 3 for simulations of two and three flavors of degenerate quarks and split

the power of the determinant to allow for simulations, with different quark masses for two light

(u,d) and a heavier strange quark (s),

Z(Nσ, Nτ , β,mq,2,mq,1) =

∫

∏

x,µ

dUµ(x)
(

detMKS(mq,2)
)2/4 (

MKS(mq,1)
)1/4

eSG(β) . (2.14)

The quark mass of the two degenerate quark flavors is mq,2, while mq,1 is the quark mass of the

additional quark flavor. This procedure is, of course, correct in the continuum limit, where the

quark flavors fully decouple, whereas at finite lattice spacing a the staggered fermion action (2.9)

breaks the flavor symmetry. However, it has been shown [41] that these flavor symmetry breaking

terms enter at order O(a2) only.

An important point to mention is that on the lattice all observables are dimensionless quan-

tities and are thus calculated in appropriate units of the lattice spacing a. This has two major

consequences. First of all the continuum limit at fixed temperature, i.e. the limit (a→ 0, Nτ → ∞)

for fixed T = 1/aNτ , is for bulk thermodynamic quantities quite cumbersome. Since observables

like pressure and energy density have dimension [T 4], a measurement of e.g. the pressure p will

provide pa4 and thus yields a result which decreases as N−4
τ in magnitude. Lattice data are how-

ever always expectation values based on a finite set of gauge field configurations and thus include a

statistical error. It therefore rapidly becomes difficult to calculate bulk thermodynamic quantities

10



on lattices with large temporal extent Nτ . This is the reason why it is of particular importance

to use improved actions with small discretization errors for finite temperature calculations as de-

scribed in the next section. The second consequence is that we have on the lattice no other scale

than the lattice spacing a. The conversion of lattice units to physical units thus is non-trivial.

Additional zero temperature calculations with the same value of the cutoff (bare couplings) are

required to determine an observable which is known in physical units. Of course, we have exper-

imental results only for physical quark masses, i.e. two light quark flavors (up and down quark)

and one heavier strange quark. Nonetheless certain observables are quite insensitive to changes in

the quark masses, e.g. quenched hadron masses∗ (m̃H) or the string tension (σ̃) are believed to

be suitable observables to set a physical scale. We thus may use calculations of these quantities to

define a temperature scale,

T/
√
σ = 1/

√
σ̃Nτ or T/mH = 1/m̃HNτ . (2.15)

In the limit of infinite quark masses (pure SU(3) gauge theory) as well as in the massless limit

(chiral limit) we have only one bare coupling (β) in the Euclidean action which controls the lattice

spacing a. Asymptotically a and β are then related through the leading order renormalization

group equation,

aΛL ∼ (6b0/β)−b1/2b
2
0 e−β/12b0 , (2.16)

where the two universal coefficients are given by,

b0 =
1

16π2

[

11 − 2

3
nf

]

, b1 =

(

1

16π2

)2 [

102 −
(

10 +
8

3

)

nf

]

, (2.17)

and ΛL is a scale parameter which unambiguously can be related to the scale parameter in other

regularization schemes, e.g. to ΛMS . The continuum limit thus is reached with increasing β.

2.2 From standard to improved actions

As mentioned above the lattice actions suffer from errors due to the finite lattice spacing (cutoff

effects). Therefore observables which are sensitive to the ultraviolet cutoff show a strong a depen-

dence and one is forced to perform simulations at quite small lattice spacing to be able to extract

continuum results or to extrapolate to the continuum limit reliably. Unfortunately this increases

∗We denote here dimensionless lattice observables by Õ, the corresponding physical observable by O. Quite

often, however, we will also adopt the customary lattice notation, which explicitly specifies the cutoff dependence

in the continuum limit, e.g. m̃H ≡ mHa or σ̃ ≡ σa2.
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the computational effort dramatically. Various procedures to reduce those systematic errors have

been suggested in the past, including the early Symanzik improvement program [42, 43], renor-

malization group improved actions [44, 45] as well as classically perfect actions [46, 47, 48]. Here

we will introduce the improvement scheme we also use for our numerical calculations presented in

Chapter 3 and Chapter 4. A quantitative analysis of the cutoff effects at least for the fermionic

sector is given in Section 2.4. The corresponding analysis for the gauge part of the action can be

found in [49].

2.2.1 Improved gauge actions

In order to eliminate the O(a2) and higher order corrections to the lattice version of the Euclidean

gauge action one can add appropriately chosen large loops to the basic 4-link plaquette term

appearing in the standard Wilson action (2.8). As the only condition is to reproduce the correct

continuum limes, this is a great deal of freedom. A simple class of improved actions is, for instance,

obtained by adding larger planar loops, i.e. we will consider the generalized Wilson actions,

SI =
∑

x,ν>µ

∞
∑

l=1

l
∑

k=1

ak,lW
(k,l)
µ,ν ≡

∑

x,ν>µ

SIµ,ν(x) , (2.18)

where W
(k,l)
µ,ν denotes a symmetrized combination of k × l Wilson loops in the (µ̂, ν̂)-plane of the

lattice,

W (k,l)
µ,ν (x) = 1 − 1

6
Re Tr

(

L(k)
µ (x)L(l)

ν (x+ kµ̂a)L(k)†
µ (x+ lν̂a)L(l)†

ν (x) + (k ↔ l)
)

. (2.19)

Here we have introduced the short hand notation for straight links of length l in the direction µ̂,

L(l)
µ (x) =

l−1
∏

i=0

Uµ(x+ iµ̂a) . (2.20)

With a suitable choice of the coefficients ak,l it can be achieved that the generalized Wilson actions

reproduce the continuum action up to some order O(a2n) [42, 43]. To get an action with corrections

starting at O(a2n) one has to add loops up to length n in at least one direction. After expanding

the link variables Uµ(x) in powers of a one finds for the non-vanishing coefficients of some simple

improved actions,

cutoff effects start at:

I ≡ (1, 1) : a1,1 = 1, O(a2)

I ≡ (1, 2) : a1,1 =
5

3
, a1,2 = −1

6
, O(a4)

I ≡ (2, 2) : a1,1 =
4

3
, a2,2 = − 1

48
, O(a4)

I ≡ (3, 3) : a1,1 =
3

2
, a2,2 = − 3

80
, a3,3 =

1

810
. O(a6)

(2.21)
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Within this nomenclature the action S(1,1) denotes the standard one-plaquette action. The actions

S(1,2), originally proposed by Symanzik† [42, 43], includes planar 2 × 1 loops in addition to the

standard plaquette term. In S(2,2) we added the 2 × 2 loops only and S(3,3) includes planar 2 × 2

and 3 × 3 loops.

Throughout this thesis we will use the Symanzik improved 2 × 1 action S(1,2), which is the

simplest extension of the Wilson action. It has been shown in [49] that a remarkable reduction of

the cutoff effects is achieved with this action already onNτ = 4 lattices. To quantify this statement,

in the ideal gas limit the gluonic energy density achieves already 98.7% of the Stefan-Boltzmann

value on Nτ = 4 lattices.

One should note, that the improvement discussed so far is tree-level improvement on the

classical level O(g0). The generalized Wilson actions may be further improved perturbatively by

eliminating the leading cutoff effects also at O(g2), i.e. ak,l → a
(0)
k,l + g2a

(1)
k,l , or by introducing

non-perturbative modifications. In most cases the structure of the improved actions is the same as

that of the generalized Wilson actions (2.18), only the determination of the coefficients changes.

Nevertheless the general case of course also can involve non-planar Wilson loops.

2.2.2 Improved staggered fermions

Improving fermion actions is at least a twofold problem. On the one hand one faces cutoff effects

(short distance properties of the observables). Here the effects are even larger than in the gluonic

sector, which can for instance be observed when comparing results for Nτ = 4 [52] and Nτ = 6 [53]

lattices. On the other hand also the global symmetries of the continuum Lagrangian are explicitly

broken at finite lattice spacing a. This influences the long distance properties of the observables,

e.g. the light particle sector of the lattice regularized theory is modified (Goldstone modes). Both

effects alter the thermodynamics of lattice QCD. The use of improved actions thus is mandatory

in the fermionic sector.

Again one has a lot of freedom in choosing the operators which can be added to the standard

staggered fermion action in order to take into account higher orders in the discretization of the

derivative. However, for full QCD simulations one also has to keep the computational effort on a

relatively low level, thus one is restricted to use simple bilinear operators only. We consider here a

generalized form of the staggered fermion action consisting of terms which respect the hypercube

structure of the staggered fermion action. In addition to the standard 1-link terms this action

also includes all possible 3-link terms resulting either from the introduction of a higher order

†The action S(1,2) was invented by Symanzik for φ4-theory and generalized to SU(3) lattice gauge theory by

Weisz and Wohlert [50, 51]
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difference scheme for the discretization of the fermion action or from the smearing of the 1-link

term (fat-links):

SF =
∑

x

χ̄(x)
∑

µ

ηµ(x)

×
{

c1,0

[

U fat
µ (x)χ(x + µ̂a) − U fat†

µ (x − µ̂a)χ(x− µ̂a)
]

+ c3,0

[

U (3,0)
µ (x)χ(x + 3µ̂a) − U (3,0)†

µ (x − 3µ̂a)χ(x− 3µ̂a)
]

+ c1,2
∑

ν 6=µ

[

U (1,2)
µ,ν (x)χ(x + µ̂a+ 2ν̂a) − U (1,2)†

µ,ν (x− µ̂a− 2ν̂a)χ(x− µ̂a− 2ν̂a)

+U (1,−2)
µν (x)χ(x + µ̂a− 2ν̂a) − U (1,−2)†

µ,ν (x− µ̂a+ 2ν̂a)
]

}

+m
∑

x

χ̄(x)χ(x) , (2.22)

were we denote the long links as

U (3,0)
µ (x) = Uµ(x)Uµ(x+ µ̂a)Uµ(x+ 2µ̂a),

U (1,2)
µ,ν (x) =

1

2

[

Uµ(x)Uν(x+ µ̂a)Uν(x + µ̂a+ ν̂a) + Uν(x)Uν(x+ ν̂a)Uµ(x+ 2ν̂a)
]

U (1,−2)
µ,ν (x) =

1

2

[

Uµ(x)U
†
ν (x + µ̂a− ν̂a)U †

ν (x+ µ̂a− 2ν̂a)

+U †
ν (x− ν̂a)U †

ν (x− 2ν̂a)Uµ(x− 2ν̂a)
]

U fat
µ (x) =

1

1 + 6ω

{

Uµ(x) + ω
∑

ν 6=µ

[

Uν(x)Uµ(x + ν̂a)U †
ν (x + µ̂a)

+U †
ν (x− ν̂a)Uµ(x− ν̂a)U †

ν (x+ µ̂a− µ̂a)
]

}

. (2.23)

When replacing the spin-diagonalized quark fields χ(x), χ̄(x) by a four-component Dirac spinor

ψ(x), ψ̄(x) and the staggered phases ηµ(x) by the Dirac matrices γµ, one recovers an action with 16

fermion doublers in the continuum limit. We will refer to this as the naive form of the action. The

concept of a fat link, i.e. replacing a link by a weighted sum of the link itself and the surrounding

staples, was first introduced in [54] and analyzed in more detail way in [55]. It has been shown,

that fat links significantly improve the flavor symmetry. Together with the fat-link-weight (we

use ω = 0.2) there are thus 4 parameters in the action. In order to reproduce the correct naive

continuum limit the coefficients have to satisfy the normalization condition

c1,0 + 3 c3,0 + 6 c1,2 =
1

2
. (2.24)

More constraints on the coefficients can be derived by improving, for instance, the rotationally

symmetry of the fermion propagator. This has been discussed in [24]. To insure that the free

propagator is rotational invariant up to order O(p4) one finds the constraint

c1,0 + 27 c3,0 + 6 c1,2 = 24 c1,2 . (2.25)
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Two simple choices which eliminate the bended or straight 3-link terms in the action (2.22) re-

spectively, are to set either c1,2 ≡ 0 which yields the familiar Naik action [56]

c1,0 =
9

16
, c3,0 = − 1

48
, (2.26)

or to set c3,0 ≡ 0 which leads to

c1,0 =
3

8
, c1,2 =

1

48
, (2.27)

which we will call the p4 action. Since for the Naik action the O(p4) terms are completely eliminated

one even gets an O(a2) improvement, which seems quite accidental in this approach. We, however,

decided to use the p4 action, which becomes clear from the high temperature limit discussed in

Section 2.4.

Of course this strategy of improvement can be systematically extended to order O(g2). Such

an action would involve a large number of new terms, including 4-fermion operators, thus it is

impractical for numerical calculation. Fat links, however, modify cutoff dependent terms in ther-

modynamic observables at O(g2a2) and can reduce the flavor symmetry breaking in the staggered

formulation.

2.3 Lattice QCD at non-zero density

2.3.1 Introducing the chemical potential on the lattice

The commonly used way to introduce a finite chemical potential on the lattice [57, 58] is to modify

the temporal links appearing in the Euclidean lattice action as follows‡:

U4(x) → exp{aµ}U4(x) (forward temporal link) ,

U †
4 (x) → exp{−aµ}U †

4(x) (backward temporal link) .
(2.28)

‡The naive way to introduce a chemical potential is to proceed in analogy with the continuum expression. Thus

one may think a similar term as in Equation (2.4), a modification of every forward temporal link with a factor

aµ and every backward temporal link with a factor −aµ, will do the job. However it has been shown by Karsch

and Hasenfratz [57] that the naive generalization of the continuum prescription leads to quadratic divergences even

for free fermions: in the continuum limit (a → 0) the energy density ǫ is proportional to (µ/a)2 instead of the

correct finite result ǫ ∼ µ4 (for massless fermions). The above discussed modification (2.28) yields the correct

Stefan-Boltzmann value. Moreover the definition of the chemical potential on the lattice is not unique, it appears

that Equation (2.28) is a special case of a whole class of actions introduced by Gavai [59].
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This can be easily seen to be correct by writing the quark propagator§ as a sum over world lines

∆ab
αβ(x, y) =

∑

path Γ

K |Γ|
{

∏

Γ

γµ

}

αβ

{

∏

Γ

Uµ

}

ab

, (2.29)

where K is the hopping parameter and Γ denotes all possible paths on the lattice, connecting

the space-time points x and y. The modification (2.28) now automatically encourages time-like

forward propagation and inhibits time-like backward propagation. In closed fermion loops one

obtains factors of exp{±Nτaµ} = exp{±µ/T }. Notice that only those fermion loops which actually

wind around the toroidal lattice pick up factors of exp{±µ/T }. All others which double back have

factors that cancel, i.e. as long as the gluonic action is made of Wilson loops, it remains constant

under the transformation (2.28). With these loops we can form the grand canonical partition

function

Z(T, V, µ) =

∫

DψDψ̄DU exp{SF (T, V, µ) + SG(T, V )}

= Tr (exp{µN/T −H/T }) . (2.30)

Here N are the eigenvalues of the charge operator (Q), which correspond to the number of baryons

in the system and H is the QCD Hamiltonian. (In the low energy hadronic phase non-zero net

quark number density appears as non-zero net baryon number density, which is a third of the quark

number density.) To achieve this result, the anti-periodic boundary conditions of the fermion fields

are mandatory. Differentiating the action with respect to µ reveals the operator form of the charge

[58]:

Q(x4) =
∑

x1,x2,x3

J4(x)

J4(x) = K
[

ψ̄(x)γ4e
aµU4(x)ψ(x + 4̂a) − ψ̄(x+ 4̂a)γ4e

−aµU †
4 (x)ψ(x)

]

. (2.31)

The J4 operator looks like the kinetic term (in the limit a → 0), but counts a factor −K instead

of K for a downward path whenever it is used. In this way one sees that 〈J4(x)〉 is the expectation

value of the number of paths through x in the +4̂ direction. The rest of the vector,

Ji = K
[

ψ̄(x)γiUi(x)ψ(x + ı̂a) − ψ̄(x+ ı̂a)γiU
†
i (x)ψ(x)

]

, (2.32)

together with J4 forms a conserved vector current which again counts the flux of world lines through

x. The generalization to improved staggered fermion actions is straightforward. The quark matrix

§We use here naive fermions for reasons of simplicity. Staggered fermion as discussed above are expressed in

a spin-diagonal basis. In order to connect the staggered fields to the physical quark fields one has to introduce a

transformation matrix, which acts on hypercubic blocks and makes the expression a bit more complicated
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we finally use (p4 action) writes

M(x, y) =
∑

i

ηi(x)

{

3

8

[

U fat
i (x) δ(x + ı̂a, y) − U fat†

i (x− ı̂a) δ(x− ı̂a, y)
]

+
1

48

∑

j 6=i

[

U
(1,2)
i,j (x) δ(x + ı̂a+ 2̂a, y) − U

(1,2)†
i,j (x− ı̂a− 2̂a) δ(x− ı̂a− 2̂a, y)

+U
(1,−2)
i,j (x) δ(x + ı̂a− 2̂a, y) − U

(1,−2)†
i,j (x− ı̂a+ 2̂a) δ(x− ı̂a+ 2̂a, y)

]

+e2aµU
(1,2)
i,4 (x) δ(x + ı̂a+ 24̂a, y) − e−2aµU

(1,2)†
i,4 (x− ı̂a− 24̂a) δ(x− ı̂a− 24̂a, y)

+e2aµU
(1,−2)
i,4 (x) δ(x + ı̂a− 24̂a, y) − e−2aµU

(1,−2)†
i,4 (x− ı̂a+ 24̂a) δ(x − ı̂a+ 24̂a, y)

]

}

+η4(x)

{

3

8

[

eaµU fat
4 (x) δ(x + 4̂a, y) − e−aµU fat†

4 (x − 4̂a) δ(x− 4̂a, y)
]

+
1

48

∑

i

[

eaµU
(1,2)
4,i (x) δ(x + 4̂a+ 2ı̂a, y) − e−aµU (1,2)†

4,i (x− 4̂a− 2ı̂a) δ(x− 4̂a− 2ı̂a, y)

+eaµU
(1,−2)
4,i (x) δ(x + 4̂a− 2ı̂a, y) − e−aµU (1,−2)†

4,i (x− 4̂a+ 2ı̂a) δ(x− 4̂a+ 2ı̂a, y)
]

}

+mδ(x, y) , (2.33)

where the link matrices are as defined in Equation (2.23). Note that for any improved action

involving terms in which ψ̄(x) and ψ(y) are separated by more than a single link, there is no longer

a local conserved baryon number current bilinear Jν(x) such that
∑

ν 〈Jν(x) − Jν(x− ν̂)〉 = 0 for

non-zero lattice spacing.

2.3.2 The complex action problem

Having now a satisfactory definition of the chemical potential on the lattice, there are still great

problems that remain when one wants to simulate QCD at non zero chemical potential (µ 6= 0).

Standard Monte Carlo techniques make use of the positivity of the integrand in Equation (2.13)

by interpreting the Boltzmann factor

exp{S(m, µ, β)} = det
(

MKS(m, µ))
)nf/4

exp{SG(β)}

= exp
{nf

4
Tr lnMKS(m, µ) + SG(β)

}

(2.34)

as probability distribution. At µ = 0 the positivity of the Boltzmann factor is guaranteed by the

γ5-hermiticy of the quark matrix¶:

M †(m, 0) = γ5M(m, 0)γ5 . (2.35)

¶Actually for staggered fermions we have M†
x,y(m, 0) = ǫ(x)Mx,y(m, 0) ǫ(y), with the phase ǫ(x) =

(−1)(x1+x2+x3+x4)/a.
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This property of the quark matrix implies detM(m, 0) = (detM(m, 0))
∗
, i.e. a real determi-

nant. Positivity of the determinant follows from the fact, that the eigenvalues of the matrix occur

in complex conjugated pairs. Monte Carlo simulations can then, for instance, be performed by

using the positive definite matrix M †M within the pseudo fermion method [60]. For µ > 0 the

Equation (2.35) does not hold any longer, instead we have the property

M †(m, µ) = γ5M(m, −µ)γ5 . (2.36)

For a purely imaginary chemical potential iµI , with µI ∈ R, the determinant persists to be positive

and real. In the general case it is quite illuminative to analyze the spectrum of eigenvalues of the

quark matrix. For free naive fermions we find in momentum space

λp = m± i

√

√

√

√

3
∑

k=1

sin2(pk) + sin2(p4 + iaµ) . (2.37)

The mass shifted spectrum (λp−m) now deviates from the imaginary axis (µ = 0) by a maximum

of max | Re λp−m| = sinh(aµ). In the interacting case the same general picture holds except that

eigenvalues only occur in pairs, λ and −λ they do no longer occur in complex conjugate pairs.

This means that the fermion determinant develops a complex phase and in turn also the trace of

the fermion matrix. Also many physical observables, for instance quantities such as
〈

ψ̄ψ
〉

or 〈J4〉
are no longer real gauge configuration by gauge configuration — although their averages are.

In general the determinant can be factorized into a modulus ρ and a phase θ. The phase can

then be added to the observable O in a Monte Carlo simulation which only uses ρ to generate

statistically distributed configurations with a Boltzmann factor ρeSG . Expectation values are then

defined via

〈O〉 ≡
〈

Oeiθ
〉

ρ
/
〈

eiθ
〉

ρ
. (2.38)

Here we denote by 〈 〉ρ an expectation value with the measure | detM |eSG. Unfortunately we

have
〈

eiθ
〉

ρ
∝ e−const.·V , where V is the system volume. Acquiring sufficient statistics therefore

becomes exponentially difficult as the thermodynamic limit is approached. This is known as the

“Sign Problem” and has plagued the study of µ 6= 0 since its inception. There are essentially two

approaches that promise to circumvent the problem to a large extent. For a recent overview see

[61]. The approach we will follow here is to perform QCD simulations at µ = 0 and attempt to

continue the results to µ 6= 0. This can be done either by calculating terms in the Taylor expansion

about µ = 0 or by directly reweighting configurations.
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2.3.3 The reweighting method

The reweighting method developed by Ferrenberg and Swendsen [62, 63] is a very useful technique

to investigate critical phenomena. In lattice QCD, one can in principle calculate any observable

O(w) from a data set obtained in simulations at w0. Here w is to be understood as the set of all

lattice parameters w = {m, µ, β}. The reweighting is possible by introducing a reweighting factor

R(w,w0) in the expectation value,

〈O〉w = 〈OR(w,w0)〉w0
/ 〈R(w,w0)〉w0

. (2.39)

Here 〈 〉w denotes in contrast to Equation (2.38) the expectation value at the point w in parameter

space. The reweighting factor splits into a fermionic and a gauge part and is given by

R(w,w0) = [detM(w)/ detM(w0)] exp {SG(w) − SG(w0)} . (2.40)

First attempts to obtain results for µ 6= 0 on the basis of this formula are due to Barbour and

collaborators, which became famous as the “Glasgow method” [64]. However, since all configu-

rations were collected at T = 0, the necessary overlap between the true ensemble at T = 0 and

the interesting transition region‖ could not be achieved and only unphysical results were produced.

Multi-parameter reweighting was first applied to the problem of finite density QCD by [16]. This is

mandatory to follow the critical line in the (T, µ) plane and ensures the overlap between both the

quark-gluon and the hadronic phase on each side of the transition line. Note that the reweighting

method suffers form the same general problem that leads to the sign problem, i.e. since both

nominator and denominator in Equation (2.39) become exponentially small in the thermodynamic

limit, the maximal reweighting distance rapidly shrinks with increasing volume. Nevertheless one

is able to achieve interesting results on small volumes and a narrow region around µ = 0 which

is accessible by reweighting. This also allows to compute terms in the Taylor series for suitable

observables. Of course derivatives with respect to µ can also be calculated at µ = 0 without

reweighting, this only complicates the expectation value which has to be evaluated. However the

advantage is that the region of applicability of a Taylor series in µ is not influenced by the sign

problem. It may nonetheless be limited by a finite radius of convergence, dictated by the presence

of the critical point in the (T, µ) plane or an unphysical critical point in the complex µ plane.

The reweighting factor of the gauge part is easy to compute. Since the generalized Wilson

actions are linear in the lattice coupling β we have

S
(1,2)
G (β) − S

(1,2)
G (β0) = (β − β0)

∑

x,µ>ν

(

5

3
W (1,1)
µν (x) − 1

6
W (1,2)
µν (x)

)

. (2.41)

‖At T = 0 every observable should be independent of µ until the onset of nuclear matter at µ̄q ≈ mB/3.
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To compute the fermion part, in principle a calculation of the fermion determinant is required

for each point (m, µ) one wants to study. Such a calculation is quite expensive. Fodor and Katz

have performed such calculations, and have succeeded in tracing out the critical line and locating

the critical end point on small lattices [9]. As far as one is interested in the first derivatives of

thermodynamic observables with respect to µ, the fermionic part of the reweighting factor can

also be expanded [19]. In fact, one expands in the lattice chemical potential µ = aµq while the

physically relevant parameter which ultimately governs the convergence of the series is µq/T ≡ Nτµ

or the fugacity exp{µq/T }. The Taylor expansion for the fermionic part of the reweighting factor

around µ = 0 is

nf
4

ln

(

detM(µ)

detM(0)

)

=
nf
4

∞
∑

n=1

µn

n!

∂n ln detM(µ)

∂µn

≡
∞
∑

n=1

Rnµ
n . (2.42)

We similarly expand fermionic observables such as the chiral condensate, which is given by the

trace of the inverse of the fermion matrix:

〈

ψ̄ψ
〉

=
nf
4

〈

Tr M−1
〉

. (2.43)

Using the following identity for the derivative of the inverse of a matrix

∂M−1

∂x
= −M−1∂M

∂x
M−1 , (2.44)

expressions for ∂n(ln detM)/∂µn and ∂n( Tr M−1)/∂µn in terms of traces over products of local

operators and inverse matrices can be developed:

∂(ln detM)

∂µ
= Tr

(

M−1 ∂M

∂µ

)

, (2.45)

∂2(ln detM)

∂µ2
= Tr

(

M−1 ∂
2M

∂µ2

)

− Tr

(

M−1∂M

∂µ
M−1∂M

∂µ

)

, (2.46)

∂ Tr M−1

∂µ
= − Tr

(

M−1 ∂M

∂µ
M−1

)

, (2.47)

∂2 Tr M−1

∂µ2
= − Tr

(

M−1 ∂
2M

∂µ2
M−1

)

+ 2 Tr

(

M−1∂M

∂µ
M−1 ∂M

∂µ
M−1

)

. (2.48)

Further derivatives of ln detM up to ∂4/∂µ4 are given in the Chapter 4. This notation is quite

useful because it now is possible to apply the random noise method, which enables us to compute

on rather large volumes in comparison with other studies of QCD with µ 6= 0 [9, 17]. Using

N random noise vectors ηki, where the index k labels the noise vector and the index i is the
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internal index of the vector running over the lattice points, we rewrite the traces appearing in the

Equations (2.45)-(2.48) as

Tr

(

∂n1M

∂µn1
M−1 ∂

n2M

∂µn2
· · ·M−1

)

= lim
N→∞

1

N

N
∑

k=1

η†k
∂n1M

∂µn1
M−1 ∂

n2M

∂µn2
· · ·M−1ηk . (2.49)

Here the random vectors have to satisfy the condition limN→∞(1/N)
∑N

k=1 η
∗
kiηkj = δij . The

expressions M−1ηk ≡ x and M−1(∂M/∂µ) · · · ηk ≡ x are then obtained by solving Mx = ηk and

Mx = (∂M/∂µ) · · · ηk. The right-hand site (RHS) of Equation (2.49) can be approximated by

using a finite number of noise vectors N . The error is expected to decrease as (N × Nconf)
−1/2,

where Nconf is the number of configurations.

By using the derivatives of both the reweighting factor and fermionic observable up to n-th

order in µ we obtain the observable as a continuous function for small µ, which is correct up

to the n-th order. To be more specific, let us define the Taylor expansion of an operator O by

O(µ) ≡∑∞
n=0Onµ

n. Then to O(µ2) the expression 2.39 for 〈O〉(β, µ) can be written as

〈O〉β, µ =

〈

(O0 +O1µ+O2µ
2) exp{R1µ+ R2µ

2 − ∆SG}
〉

〈exp{R1µ+ R2µ2 − ∆SG}〉
, (2.50)

where expectation values on the RHS are measured with respect to an ensemble generated at

(β0, 0) and ∆SG is the gauge action difference corresponding to Equation (2.41). The extension

to multi-histogram reweighting, i.e. using several ensembles generated on different points (βi, 0)

is straightforward [63]. For pure gluonic operators such as the Polyakov loop, we do not need the

expansion of the operator itself, since it does not depend on the chemical potential. Furthermore,

we should note that at µ = 0 the odd order derivatives of both ln detM and Tr M−1 are purely

imaginary and the even order derivatives are real, we find

(

∂n ln detM

∂µn

)∗
= (−1)n

∂n ln detM

∂µn
,

(

∂n Tr M−1

∂µn

)∗
= (−1)n

∂n Tr M−1

∂µn
. (2.51)

Using this property and the fact that Z is a real function of β, m, and µ we can explicitly confirm

that all odd order derivatives of expectation values of physical observables are zero at µ = 0. This

is what we expect from the invariance of physics under changing µ to −µ, i.e. by interchanging

particles and anti-particles.

In order to discuss the region of applicability of the reweighting approach we have to analyze

the complex phase of the determinant. It can be expressed in terms of odd order derivatives:

θ =
nf
4

Im

[

µ
∂ ln detM

∂µ
+
µ3

3!

∂3 ln detM

∂µ3
+ · · ·

]

. (2.52)
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Figure 2.1: The suppression factor 〈cos(θ)〉 from the complex phase θ of the determinant of the

quark matrix for three degenerate flavors and several lattice sizes and simulation points (β,m), as

a function of the up and down quark chemical potential (aµu,d).

The reweighting factor is suppressed with Re (eiθ). We thus consider first the expectation value

〈cos(θ)〉 in Figure 2.1, which gives an impression of the maximal reweighting distance. A small value

for the expectation value 〈cos(θ)〉 indicates that frequent changes of the sign of the reweighting

factor occur. The phase was approximated by cutting the series (2.52) after the first term. Although

all the data we show in Figure 2.1 are form simulations with three degenerate flavors of quarks,

the lattice chemical potential on the x axis is only the up and down quark chemical potential, the

strange quark chemical potential was taken to be zero during the reweighting. We find, however,

no difference in the magnitude of the suppression factor 〈cos(θ)〉 when simulating either nf = 2 or

nf = 3 quark flavors with the large quark mass am = 0.1, but reweighting a two flavor chemical

potential in both cases. This can be seen in Table 2.1, where we analyze the fluctuations of the

phase in detail. Although the average of the phase remains zero, its fluctuations increase with

the chemical potential and force the suppression factor 〈cos(θ)〉 to decrease (sign In). problem

Table 2.1 we give the standard deviation (STD) of (N3
σNτ )

−1 Im Tr [(∂M/∂µ)M−1]. From this

value we can estimate when the sign problem becomes serious. This is when the fluctuations of the

leading term in Equation (2.52) become of order O(1). We define a maximal chemical potential

by aµmax
2 which is reached when the fluctuations become π/2. The index 2 denotes that the

flavor factor in Equation (2.52) was set to two, independent of the number of dynamical flavors

used for the simulation. We find values from 0.08 − 0.09 for am = 0.1 on a 163 × 4 lattice. For

decreasing masses and increasing volume these numbers become smaller. Nevertheless in all cases

the reweighting range is broad enough to extract physical results in the RHIC regime. Moreover
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123 × 4, nf = 3

m β
〈

Im Tr [(∂M/∂µ)M−1]
〉

〈ǫ〉 STD STD(impr.) aµmax
2

0.005 3.250 2.00 · 10−4 1.11 · 10−2 1.14 · 10−2 8.46 · 10−4 0.040

3.260 −2.28 · 10−4 1.01 · 10−2 1.06 · 10−2 2.42 · 10−3 0.043

3.270 1.22 · 10−4 8.19 · 10−3 8.67 · 10−3 1.92 · 10−3 0.052

3.280 1.90 · 10−4 6.67 · 10−3 7.02 · 10−3 1.36 · 10−3 0.065

163 × 4, nf = 3

m β
〈

Im Tr [(∂M/∂µ)M−1]
〉

〈ǫ〉 STD STD(impr.) aµmax
2

0.005 3.250 −9.48 · 10−8 7.09 · 10−3 7.43 · 10−3 1.72 · 10−3 0.026

3.260 −1.24 · 10−4 6.49 · 10−3 6.94 · 10−3 2.07 · 10−3 0.028

3.265 −6.89 · 10−5 6.00 · 10−3 6.32 · 10−3 1.54 · 10−3 0.030

3.270 8.52 · 10−5 5.39 · 10−3 5.69 · 10−3 1.43 · 10−3 0.034

3.275 1.68 · 10−5 4.90 · 10−3 5.22 · 10−3 1.47 · 10−3 0.037

0.100 3.460 −1.39 · 10−5 2.09 · 10−3 2.38 · 10−3 1.03 · 10−3 0.081

3.470 −2.00 · 10−5 2.04 · 10−3 2.28 · 10−3 0.89 · 10−3 0.084

3.480 −1.39 · 10−5 1.98 · 10−3 2.19 · 10−3 0.79 · 10−3 0.088

3.490 3.12 · 10−5 1.93 · 10−3 2.08 · 10−3 0.64 · 10−3 0.092

163 × 4, nf = 2

m β
〈

Im Tr [(∂M/∂µ)M−1]
〉

〈ǫ〉 STD STD(impr.) aµmax
2

0.100 3.640 −1.15 · 10−4 1.99 · 10−3 2.33 · 10−3 1.10 · 10−3 0.082

3.650 1.02 · 10−5 1.94 · 10−3 2.23 · 10−3 0.99 · 10−3 0.086

3.660 −3.06 · 10−5 1.89 · 10−3 2.12 · 10−3 0.77 · 10−3 0.090

3.670 −1.40 · 10−5 1.85 · 10−3 2.06 · 10−3 0.85 · 10−3 0.093

Table 2.1: The average of
〈

Im Tr [(∂M/∂µ)M−1]
〉

, its error for each configuration 〈ǫ〉, its stan-

dard deviation (STD) and improved standard deviation (STD(impr.)) and the maximal chemical

potential for two flavor reweighting (aµmax
2 ).
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we note once again, that the analytic continuation of physical quantities is not restricted by the

reweighting range. This is also true in the case when the analytic coefficients of the Taylor series

are obtained from reweighted data.

We should also mention that the value of Im Tr [(∂M/∂µ)M−1] calculated on each con-

figuration also contains an error due to the finite number N of noise vectors. For N = 10 −
15 this error is not small compared to the STD, as seen in Table 2.1. The phase fluctua-

tion discussed above includes the error due to finite N , and we suspect that the true fluctu-

ations become smaller as N increases. To confirm this, we reanalyzed the standard deviation

STD=

√

〈{ Im Tr [(∂M/∂µ)M−1]}2〉 − 〈 Im Tr [(∂M/∂µ)M−1]〉2 by treating the calculation of
〈

{ Im Tr [(∂M/∂µ)M−1]}2
〉

more carefully. Since the noise sets must be independent, we sub-

tract the contributions from using the same noise vector for each factor. Details are given in the

Appendix C.2. The results are quoted as STD(impr.) in Table 2.1. They are expected to be closer

to the N = ∞ limit and indeed suggest that the STD becomes considerably smaller for larger N

and the region of applicability becomes wider as N increases.

The above outlined method for reweighting in the chemical potential can also be used for

quark mass reweighting. In that case the corresponding Taylor series in the quark mass m around

the simulation point (β0, m0, 0) have to be used in Equation (2.50).

2.4 Analyzing the cutoff dependence

In this Section we discuss the influence of a non-zero chemical potential µq on the cutoff effects

present in calculations of bulk thermodynamic observables on a lattice with finite temporal extent

Nτ . For µq = 0 this issue has been discussed extensively for both gluonic and fermionic sectors

of QCD. In particular, it has been shown that the use of improved actions is mandatory if one

wants to ensure that discretization errors in the calculation of quantities like the pressure p or

energy density ǫ are below the 10% level already on moderately sized lattices Nτ<∼(8 − 10) [24].

We now want to extend these considerations to the case µq 6= 0, which affects the quark sector

only. Following [24] we will concentrate on an evaluation of the pressure. As we will be evaluating

thermodynamic quantities using a Taylor expansion in µq/T we want to understand the cutoff

dependence of p(µq) and its expansion coefficients in terms of µq/T .

In the limit of high temperature or density, due to asymptotic freedom thermodynamic ob-

servables like p or ǫ are expected to approach their free gas, ie. Stefan-Boltzmann (SB) values. In

this limit cutoff effects become most significant as the relevant momenta of partons contributing

to the thermodynamics are O(T ) and thus of similar magnitude as the UV cutoff a−1. Short
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distance properties thus dominate the ideal gas behavior and cutoff effects, which are controlled

by the lattice spacing expressed in units of the temperature, Ta ≡ 1/Nτ , are expected to become

important. In the continuum the pressure of an ideal gas of quarks and anti-quarks is given by

p

T 4

∣

∣

∣

∞
=

3nf
π2T 3

∫ ∞

0

dk k2 ln
[

(1 + z exp{−ε(k)/T })(1 + z−1 exp{−ε(k)/T })
]

, (2.53)

with the fugacity z ≡ exp{µq/T } and the relativistic single particle energies ε(k) =
√
k2 +m2. For

massless quarks one finds from an evaluation of the integral the pressure as a finite polynomial in

µq/T :

p

T 4

∣

∣

∣

∞
=

7nfπ
2

60
+
nf
2

(µq
T

)2

+
nf
4π2

(µq
T

)4

. (2.54)

For m non-zero the pressure is a series in the fugacity:

p

T 4
=
(m

T

)2 nf
2π2

∞
∑

ℓ=1

(−1)ℓ+1 ℓ−2K2(ℓm/T ) (zℓ + z−ℓ) , (2.55)

where K2 is a Bessel function. Of course, Equation (2.55) can also be reorganized as a power series

in µq/T . It is well known that the straightforward lattice representation of the QCD partition

function in terms of the standard Wilson gauge and staggered fermion actions leads to a systematic

O(a2) cutoff dependence of physical observables. In the infinite temperature limit this gives rise

to O((aT )2 ≡ 1/N2
τ ) deviations of the pressure from the SB value (2.54);

p

T 4

∣

∣

∣

Nτ

=
p

T 4

∣

∣

∣

∞
+

d

N2
τ

+O(N−4
τ ) . (2.56)

Using improved discretization schemes it is possible to ensure that cutoff effects only start to

contribute at O(N−4
τ ) [56], or to considerably reduce the magnitude of the coefficient d relative to

the standard discretization scheme for staggered fermions [24].

For µq = 0 the pressure of free staggered fermions on lattices with infinite spatial volume

(Nσ = ∞) but finite temporal extent Nτ is given by

p

T 4

∣

∣

∣

Nτ

=
3

8
nfN

4
τ

1

(2π)3

∫ 2π

0

d3~p

[

N−1
τ

∑

p4

ln
(

ω2(p) + 4f2
4 (p)

)

− 1

2π

∫ 2π

0

dp4 ln
(

ω2(p) + 4f2
4 (p)

)

]

. (2.57)

In the first term the sum
∑

p4
runs over all discrete Matsubara modes, i.e. p4 ∈ {(2n+1)π/Nτ |n =

0, . . . , Nτ − 1}, whereas in the second term we have an integral over p4 which gives the vacuum

contribution. For quarks of mass m the function ω2(p) is given by ω2(p) ≡ 4
∑3
µ=1 f

2
µ(p) +
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Figure 2.2: The pressure calculated on lattices with temporal extent Nτ in units of the continuum

ideal Fermi gas value. (a) shows results for the standard, Naik and p4 actions at (µq/T, m/T ) =

(0, 0), (0, 1), (1, 0) and (1, 1); (b) the coefficients C0, C2, C4 of the µq/T expansion of p(m/T = 0)

divided by the corresponding SB constant as a function of Nτ .

N−2
τ (m/T )2. Here we have introduced functions fµ(p) to describe the momentum dependence of

the propagator for the standard, Naik [56] and p4 staggered fermion actions [24]:

fµ(p) =
1

2
sin pµ (standard staggered action) , (2.58)

fµ(p) =
9

16
sin pµ −

1

48
sin 3pµ (Naik action) , (2.59)

fµ(p) =
3

8
sin pµ +

2

48
sin pµ

∑

ν 6=µ
cos 2pν (p4 action) . (2.60)

The introduction of a non-zero chemical potential is easily achieved by substituting every temporal

momentum p4 by p4−iµ ≡ p4−iN−1
τ (µq/T ). The integrals in Equation (2.57) have been evaluated

numerically for different Nτ . Results for different values of µq/T and m/T are shown for the

different fermion actions in Figure 2.2. For the standard action cutoff effects remain ≥ 10% out

to Nτ ≈ 16, whereas both improved actions are hard to distinguish from the continuum result at

Nτ = 10. We note that lines for different µq/T values but the same quark mass fall almost on top

of each other. Cutoff effects are thus almost independent of µq. The effect of µq 6= 0 on the cutoff

dependence of the pressure is even smaller than the effect of quark mass m 6= 0.

As can be seen from Equation (2.54) for moderate values of µq/T the µ-dependence of the

continuum ideal gas pressure is dominated by the leading O((µq/T )2) contribution. In order to
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control the cutoff dependence of the various expansion terms we have expanded the integrand of

Equation (2.57) up to order O((µq/T )6). For the standard action the series starts with

ln

(

ω2(p) + sin2

(

p4 −
i

Nτ

µq
T

))

= lnD

− 2i cosp4 sin p4

DNτ

(µq
T

)

− −1 + 4D cos 2p4 + cos 4p4

4D2N2
τ

(µq
T

)2

− i
(

−1 + 4D2 + 6D cos 2p4 + cos 4p4

)

sin 2p4

6D3N3
τ

(µq
T

)3

+ O

(

(µq
T

)4
)

. (2.61)

Here we use the shorthand notation D = 4
∑4
µ=1 f

2
µ(p). The remaining orders as well as the series

for Naik and p4 actions are given in Appendix A. A common feature of these expansions is that

the odd terms are pure imaginary and the integral and sum over p4 of those terms vanish due to

a factor sin(np4) which always appears. To be more precise, this factor always forms the pattern

sin(np4) cos(mp4) which can be shown to vanish, either after summation over the discrete set of p4

values, or integration from 0 to 2π, for n, m ∈ N. Performing the momentum integration and the

summation over Matsubara modes we obtain the coefficients of the µq/T expansion of the pressure;

p

T 4

∣

∣

∣

Nτ

= nf

∞
∑

i=0

Ci
∣

∣

∣

Nτ

(µq
T

)i

. (2.62)

We checked numerically that with increasing Nτ the coefficients C0, C2 and C4 do indeed converge

to their corresponding SB values,

lim
Nτ→∞

C0 =
7π2

60
; lim

Nτ→∞
C2 =

1

2
; lim

Nτ→∞
C4 =

1

4π2
. (2.63)

Figure 2.2(b) shows C0, C2 and C4 for the standard, Naik and p4 actions with massless quarks,

normalized to the corresponding SB value. We see here again that the cutoff dependence of the

pressure at µ 6= 0 is qualitatively the same as at µ = 0.

For massless quarks the coefficient C6 should vanish with increasing Nτ , as checked in Fig-

ure 2.3(a). It is expected that this term will approach zero like N−2
τ in the large Nτ limit. In

order to define the numerical factor, we plot C6N
2
τ over N−2

τ . A fit yields C6 ≈ −0.015N−2
τ for the

standard action. This is at least an order of magnitude larger than for the p4 improved action, for

which the dominant cutoff dependence seems to be O(N−4
τ ) as for the Naik action.

In the case of massive quarks the expansion (2.62) no longer terminates at O(µ4
q). After

expanding (2.53) in terms of µq/T and performing a numerical integration we find for the expansion
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Figure 2.3: (a) The coefficients C6 in the massless case, multiplied with N2
τ as a function of N−2

τ

(results for standard staggered fermions are divided by 10) and (b) the ratio C6(Nτ )/C6(∞) at

m/T = 0.4 for the standard, Naik and p4 actions.

coefficients Ci(m/T ) up to i = 6 the values given in Table 2.2. The mass value m/T = 0.4 is the

value we use in our numerical calculations, corresponding to Nτ = 4 and am = 0.1. We note

that the coefficient C6 no longer vanishes. As shown in Figure 2.3(b), for Nτ finite there are large

deviations from the continuum value. Even atNτ = 4, however, the absolute value of this coefficient

is still a factor of about 10−4 smaller than the leading term C0. The deviations thus do not show

up in the calculation of the complete expression for the pressure shown in Figure 2.2(a). These

terms, however, become more important in higher derivatives of the pressure such as the quark

number susceptibility χq. In summary, for a gas of free quarks we find that the µq/T expansion

up to O((µq/T )4) is sufficient for µq/T < 1 and m/T < 1. In the continuum the deviation from

the full expression over this range is smaller than 0.01%. On the lattice, however, cutoff effects

lead to deviations of approximately 10% on coarse (Nτ = 4) lattices.
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m/T = 0.4 m/T = 1.0

i Ci(m/T ) Ci(m/T )/Ci(0) Ci(m/T ) Ci(m/T )/Ci(0)

0 1.113632 0.967 9.528163 · 10−1 0.827

2 4.880455 · 10−1 0.976 4.313914 · 10−1 0.863

4 2.531101 · 10−2 0.999 2.471397 · 10−2 0.976

6 1.877659 · 10−6 — 5.036816 · 10−5 —

Table 2.2: Continuum values for the coefficients Ci of the µq/T expansion of the pressure of a

massive gas of quarks for the mass values m/T = 0.4 and m/T = 1.0.
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Chapter 3

The phase diagram

The properties of the QCD phase transition depend on the number of flavors and their masses.

We do expect that the nature of the transition, e.g. its order and details of the critical behavior,

are controlled by global symmetries of the QCD Lagrangian. Exact global symmetries only exist

in the limits of either infinite or vanishing quark masses. For any non-zero, finite value of quark

masses the global symmetries are explicitly broken. In fact, in the case of QCD the explicit global

symmetry breaking induced by the finite quark mass is very much similar to that induced by an

external ferromagnetic field in spin models. We thus expect that a continuous phase transition,

which may exist in the zero or infinite quark mass limit, will turn into a non-singular crossover

behavior for any finite value of quark mass. On the other hand a possible first order transition

may persist for some time before it ends in a continuous transition. The question is whether or

not the QCD physical point, which is QCD with the physically realized spectrum of quark masses,

is near a true phase transition. Note that also in the most likely case of a smooth crossover the

fluctuations in an appropriate order parameter, induced by a nearby critical point, could be large

enough to provide measurable effects in heavy ion collisions in terms of event-by-event fluctuations

[5]. This question is however a quantitative question, which we have to answer through direct

numerical calculations.

3.1 The deconfinement and chiral phase transition

The most important observables we should analyze in order to map out the QCD phase diagram

are the order parameters of the deconfinement and chiral phase transitions occurring in the infinite

mass and zero mass limit, respectively. As already mentioned, we have exact global symmetries only
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in these two limiting cases. In the limit of infinitely heavy quarks, the pure gauge limit, the QCD

Lagrangian is invariant under generalized gauge transformations. These are gauge transformations,

which are periodic in time direction up to an element of the center of the gauge symmetry group.

This is the so called Z(3)-center symmetry of the pure gauge theory. Sensitive to this symmetry

is the Polyakov loop, which winds around the lattice in time direction,

L(~x) = Tr

Nτ
∏

k=0

U4(~x, ka) . (3.1)

The Polyakov loop has a physical interpretation also. It describes the world line of a static quark

source at the point ~x. The large distance behavior of the heavy quark free energy, Fq̄q, provides a

unique distinction between confinement below Tc and deconfinement for T > Tc. The heavy quark

free energy∗ can be calculated from the expectation value of the Polyakov loop correlation function

exp

{

−Fq̄q(r, T )

T

}

=
〈

Tr L(~x) Tr L†(~y)
〉

. (3.2)

For large separations (r = |~x − ~y| → ∞) the correlation function approaches | 〈L〉 |2, where

〈L〉 = 〈∑~x Tr L(~x)〉 denotes the Polyakov loop expectation value which therefore characterizes

the behavior of the heavy quark free energy at large distances and is an order parameter for

deconfinement in the SU(3) gauge theory,

〈L〉







= 0 ⇔ confined phase, T < Tc

> 0 ⇔ deconfined phase, T > Tc
. (3.3)

In the limit of vanishing quark masses the classical QCD Lagrangian is invariant under chiral sym-

metry transformations; for nf massless quark flavors the symmetry is UV (1)×UA(1)×SUL(nf )×
SUR(nf ). Only the SU(nf ) flavor part of this symmetry is spontaneously broken in the vacuum,

which gives rise to (n2
f − 1) Goldstone particles, the pions. The axial UA(1) symmetry is real-

ized in the classical Lagrangian, but not a property of the QCD partition function. There it is

explicitly broken due to quantum corrections, the axial anomaly, and is replaced by a discrete

Z(nf ) symmetry. The basic observable which reflects the chiral properties of QCD is the chiral

condensate,

〈

ψ̄ψ
〉

=
∂

∂mq
lnZ =

nf
4

〈

Tr M−1
〉

. (3.4)

∗In the T → 0 limit this is just the heavy quark potential; at non-zero temperature Fq̄q does, however, also include

a contribution from the overall change of entropy that arises from the presence of external quark and anti-quark

sources.
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It is thus an obvious order parameter in the chiral limit,

〈χ̄χ〉







> 0 ⇔ symmetry broken phase, T < Tc

= 0 ⇔ symmetric phase, T > Tc
. (3.5)

Closely related to the two order parameters 〈L〉 and
〈

ψ̄ψ
〉

are the corresponding susceptibilities,

the Polyakov loop susceptibility (χL) and the chiral susceptibility (χψ̄ψ)†,

χL = N−3
σ

(

〈

L2
〉

− 〈L〉2
)

= N−3
σ

〈

(δL)2
〉

, (3.6)

χψ̄ψ = N−3
σ N−1

τ

(

〈

(ψ̄ψ)2
〉

−
〈

ψ̄ψ
〉2
)

= N−3
σ N−1

τ

〈

(δψ̄ψ)2
〉

. (3.7)

Here we introduce the normalized operator, δX = X − 〈X〉, for any operator X . Note that 〈L〉
and

〈

ψ̄ψ
〉

are defined to be extensive quantities. The susceptibilities measure the fluctuations

of the related operator and in case of χL and χψ̄ψ peaks in the susceptibilities thus signal a

sudden change in the order parameters 〈L〉 and
〈

ψ̄ψ
〉

. χL and χψ̄ψ are expected to diverge at

a true phase transition point. Away from the thermodynamic limit, i.e. in a finite volume, or

at a quark mass which corresponds to the crossover regime, those divergencies weaken to a well

pronounced peak. This is shown in Figure 3.1 for the case of 3-flavor QCD with light quarks. The

simulations have been performed with the p4 improved action on a 163 × 4 lattice and a quark

mass of m = 0.005. This is an almost realistic quark mass value, which corresponds to a pion mass

of mπ ≈ 170 MeV. We calculate the observables for 7 different values of the gauge coupling in the

interval β ∈ [3.25, 3.285]. We then made use of the reweighting formula (2.39) to obtain results for

different quark masses. The logarithm of the reweighting factor was Taylor expanded in the quark

mass up to order O(∆m2), which gives in analogy to Equation (2.42)

nf
4

ln

(

detM(m)

detM(m0)

)

=
nf
4

(

Tr
(

M−1
)

(m−m0) − Tr
(

M−1M−1
)

(m−m0)
2/2

+ O
(

(m−m0)
3
)

)

. (3.8)

The Polyakov loop itself is independent of the quark mass, while the chiral condensate was expanded

up to order O(∆m),

ψ̄ψ =
nf
4

(

Tr
(

M−1
)

− Tr
(

M−1M−1
)

(m−m0) + O
(

(m−m0)
2
)

)

. (3.9)

Hence the error in 〈L〉 and χL is of order O(∆m3) and that of
〈

ψ̄ψ
〉

and χψ̄ψ is of order O(∆m2).

Due to this truncation error and additional finite size effects the susceptibilities shown in Figure 3.1

remain finite in the plotted quark mass regime.

An interesting feature is, that the location of the maxima in both susceptibilities, χL and χψ̄ψ

occur at the same temperature (gauge coupling β) within statistical accuracy, although the height

of these susceptibilities is strongly quark mass dependent. This has also been confirmed in lattice

simulations for a much wider range of quark masses [13].

†Throughout this work we consider only the disconnected part of the chiral susceptibility.
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Figure 3.1: Deconfinement and chiral symmetry restoration in 3-flavor QCD: (a) the Polyakov loop

〈L〉, which is the order parameter for deconfinement in the pure gauge limit, and (b) the chiral

condensate
〈

ψ̄ψ
〉

, which is the order parameter in the chiral limit, for different quark masses. Also

shown are the corresponding susceptibilities χL (c) and χψ̄ψ (d) as a function of the gauge coupling

β. The lattice simulations were performed with a quark mass of m=0.005, while results with other

quark masses are obtained from mass reweighting. The lattice size is 163 × 4.
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Figure 3.2: (a) Anticipated first order regime and line of second order phase transitions in the

quark mass plane of degenerate (u,d)-quark masses and a strange quark mass ms for vanishing

chemical potential. (b) A sketch of the first order regime and critical surface at non-zero µq.

3.2 The critical surface

Our current understanding of qualitative aspects of the QCD phase diagram is based on universality

arguments for the symmetry breaking patterns in the heavy [65] as well as the light quark mass

regime [66, 67]. For the light quarks the global chiral symmetry is expected to control the critical

behavior of the QCD phase transition. In particular the order of the transition is expected to

depend on the number of light or massless flavors. With the help of a renormalization group

analysis of the chiral Lagrangian (3.23) Pisarski and Wilczek derived the basic aspects of the nf -

dependence of the phase diagram. At vanishing baryon number density (or zero chemical potential)

the transition is first order for nf ≥ 3 and second order for nf = 2. This basic pattern has indeed

been observed in lattice calculations [8, 68, 69]. The anticipated phase diagram of 3-flavor QCD

at vanishing baryon number density is shown in Figure 3.2(a). An interesting aspect of the phase

diagram is the occurrence of a second order phase transition line in the light quark mass regime,

the boundary of the region of first order transitions. On this line the transition is controlled by an

effective 3-dimensional theory with global Z(2) symmetry [8, 67], which is not a symmetry of the

QCD Lagrangian. Thus it is obvious that here neither the Polyakov loop nor the chiral condensate

will serve as an order parameter on this line. As this boundary lies in the light quark mass regime

it may well be that this second order transition is equally important for the critical or crossover

behavior of QCD with a realistic quark mass spectrum as the critical point in the chiral limit of

2-flavor QCD. In particular, we note that the critical exponent α, which characterizes the singular

behavior of the specific heat, is positive for the 3-d, Z(2) model, whereas it is negative for the O(4)

model. A nearby Z(2) symmetric critical point in the QCD phase diagram will thus induce larger
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energy density fluctuations than would be expected in the vicinity of the chiral critical point. It

therefore will be important to determine in detail the location of the physical point in the QCD

phase diagram.

For non vanishing chemical potential the second order phase transition line in the light quark

mass regime is expected to become a critical surface, which bends over the quark mass plane, still

separating the first order phase transition form the crossover regime. This is shown in Figure 3.2(b).

It suggests that a system of strongly interacting quarks and gluons, which only has a smooth

crossover transition at µq = 0, will nonetheless undergo a thermal phase transition at µq > 0,

which is of first order above a certain critical chemical potential.

3.2.1 Scaling fields and the chiral critical point

It is part of the problem of analyzing the universal behavior on the critical surface, that one has

to identify the relevant operators and the corresponding scaling fields (couplings) of the effective

theory. The construction of appropriate scaling fields has been discussed in detail in the case of the

liquid-gas phase transition [70, 71]. The concepts developed in this context have recently also been

used to locate and explore the properties of the electro-weak phase transition [72, 73] as well as the

critical point in the ferromagnetic, 3-d, 3-state Potts model [74]. In the case of three degenerate

quark masses and zero chemical potential, the lattice formulation of QCD depends on two bare

couplings, the bare quark mass m and the gauge coupling β. The generic phase diagram in the

plane of these two bare couplings is shown in Figure 3.3 for the small quark mass region. In the

vicinity of the second order endpoint, (βc(m̄), m̄), the dynamics and the universal critical behavior

is controlled by an effective Hamiltonian, which can be expressed in terms of two operators E , M,

i.e. the energy-like and ordering-field like operators that couple to the two relevant scaling fields

τ and ξ,

Heff (τ, ξ) = τE + ξM . (3.10)

Under renormalization group transformations the multiplicative rescaling of the couplings ξ and τ

is controlled by the two relevant eigenvalues that characterize the universal critical behavior in the

vicinity of the second order critical point. The singular part of the free energy density thus scales

like

fs(τ, ξ) = b−3fs(b
ytτ, byhξ) , (3.11)
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Figure 3.3: Generic phase diagram in the low mass regime of 3-flavor QCD.

where the dimensionless scale factor b ≡ LT = Nσ/Nτ gives the spatial extent of the lattices in

units of the inverse temperature. Susceptibilities constructed from E and M will show the standard

finite size scaling behavior

χE ≡ N−3
σ 〈(δE)2〉 ∼ aEb

α/ν , χM ≡ N−3
σ 〈(δM)2〉 ∼ aMbγ/ν . (3.12)

As the symmetry of Heff that characterizes the critical behavior at the chiral critical point

is not shared in any obvious way by the QCD Lagrangian we also may expect that in the vicinity

of the chiral critical point the operators appearing in the QCD Lagrangian are mixtures of the

energy-like (E) and ordering-field like (M) operators. Similarly the couplings appearing in the

QCD Lagrangian are linear combinations of the scaling fields as we have indicated in Figure 3.3.

In the vicinity of the critical point one may use a linear ansatz for the couplings

τ = β − βc +A (m− m̄) , ξ = m− m̄+B (β − βc) , (3.13)

as well as for E and M which are constructed in terms of operators appearing in the original QCD

Lagrangian,

E = SG + r ψ̄ψ , M = ψ̄ψ + s SG . (3.14)

Here SG and ψ̄ψ denote the gauge action and the chiral condensate on a given gauge field config-

uration.

37



As the operators of the QCD Lagrangian, e.g. SG and ψ̄ψ or related observables like the

Polyakov loop expectation value, are mixtures of E and M, the corresponding susceptibilities will

all receive contributions from fluctuations of E as well as M. Asymptotically therefore all of them

will show identical finite size scaling behavior which will be dominated by the larger of the two

exponents α/ν and γ/ν, respectively. For the symmetry groups of interest in the QCD context,

e.g. the symmetry of three dimensional Z(2) or O(N) spin models, this will be γ/ν. A finite size

scaling analysis of susceptibilities constructed from the basic operators of the QCD Lagrangian

thus will give access only to the ratio γ/ν, which unfortunately is quite similar for all the above

mentioned symmetry groups and thus is not a good indicator for the universality class controlling

the critical behavior in the vicinity of the chiral critical point.

The situation is different for cumulants constructed from linear combinations of ψ̄ψ and SG,

B4(x) =
〈
(

δM(x)
)4〉

〈
(

δM(x)
)2〉2

, M(x) = ψ̄ψ + x SG . (3.15)

From Equation (3.11) it follows that for arbitrary values of x the cumulants are renormalization

group invariants which in the infinite volume limit take on a universal value at the critical point

(τ, ξ) ≡ (0, 0). For all values of x different from 1/r the cumulants behave asymptotically like the

Binder cumulant for the order parameter; cumulants calculated on different size lattices for different

quark masses will intersect at some value of the quark mass. In the infinite volume limit these

intersection points will converge to a universal value which is characteristic for the universality

class of the underlying effective Hamiltonian and, in fact, is quite different for the classes of three

dimensional Z(2) and O(N) symmetric spin models; e.g. B4 = 1.604 for Z(2) [75], 1.242(2) for

O(2) [76] and 1.092(3) for O(4) [77]. The cumulants B4(x) thus seem to be appropriate observables

to locate the chiral critical point as well as to determine its universality class without knowing in

detail the correct scaling fields. We are going to use this observable for our further analysis of the

critical surface. As argued above the optimal choice of the parameter x, which is x = s, can be

used to minimize the finite size effects. In the following we will set however x = 0 and present

only the analysis of B4(0), which is the Binder cumulant of the chiral condensate. In a detailed

analysis of the quantity B4(x) for the standard action [8] we have shown that the influence of the

parameter x on the determination of the critical point is rather small.

3.2.2 Locating the line of second order phase transitions

As outlined above the Binder cumulant of the chiral condensate B4(0) is the appropriate quantity

to localize the critical point. The method proceeds in two steps. First we determine for fixed
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values of quark masses mu,d, ms pseudo-critical couplings βpc(mu,d,ms). These are defined as

the position of the maxima in the susceptibilities of ψ̄ψ, the gauge action SG and the Polyakov

loop, which we find, however, to coincide within statistical accuracy. We then make use of the

finite size scaling properties of B4(x) evaluated at βpc(mu,d,ms). When analyzed as function of

the bare quark masses, the Binder cumulants calculated on different lattice sizes Nσ1 and Nσ2 will

intersect at that points (mu,d,ms)Nσ1,Nσ2
, which will converge to points on the critical line for

(Nσ1, Nσ2) → (∞,∞).

Analyzing B4(0) for standard staggered fermions first, i.e. using the standard gauge and the

standard staggered fermion action, has many advantages, although it provides no reliable value of

a critical quark mass due to large cutoff effects. Since the standard action is much simpler than

the p4 improved action, high precision Monte Carlo simulations are possible. The evaluation of

the quantity B4(0) requires much more statistics than the chiral condensate, because it measures

the fourth moment of the distribution of the chiral condensate. The universal properties of the

chiral critical line are independent of the details of the action, thus the universality class can

be determined. Furthermore, the critical quark mass in 3-flavor QCD appears to be not too

small‡, therefore numerical simulations are possible directly at the chiral critical point in 3-flavor

QCD with a hybrid molecular dynamics algorithm [78]. To do so we performed simulations with

unimproved fermions on N3
σ × 4 lattices, with Nσ = 8, 12 and 16 for nf = 3 and Nσ = 12 for

nf = 2+1. From previous studies [69] one knows that the 3-flavor critical point is located close to

m = 0.035, thus we performed the 3-flavor calculations for four different values of the quark mass

in the interval m ∈ [0.03, 0.04]. The additional 2 + 1 flavor calculations are for the fixed value of

up and down quark mass mu = md = 0.03 and a strange quark mass of ms = 0.045, 0.06. The

results for the peak heights of the susceptibilities, pseudo-critical couplings, and Binder cumulants

are summarized in Table 3.1. The pseudo-critical couplings βpc given in Table 3.1 are extracted

from the location of the peak in
〈

(δψ̄ψ)2
〉

. We checked that the Binder cumulants calculated at

βpc indeed attain their minimum for each value of quark mass and volume.

As expected, the peak heights of the susceptibilities are not useful for the determination of the

universality class. In 3-flavor QCD all three susceptibilities show identical finite size scaling close

to the critical point. At m = 0.035, the ratio of the susceptibilities calculated on lattices of size

N3
σ×4 with Nσ = 12 and 16 takes on the value 1.69(23), 1.66(22) and 1.66(24) for chiral, Polyakov

loop and action susceptibilities, respectively. This corresponds to a ratio of critical exponents

γ/ν = 1.8(5), which is consistent with the 3-dimensional Ising as well as O(2) and O(4) values

‡In the chiral limit, i.e. for vanishing quark masses, the fermion matrix becomes singular. Since the inversion

of the fermion matrix is necessary for the hybrid-R-algorithm [78], the numerical effort increases with decreasing

quark masses.
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nf = 3

m Nσ V −1
〈

(δψ̄ψ)2
〉

V −1
〈

(δL)2
〉

V −1
〈

(δSG)2
〉

βpc B4(0)

0.0300 8 13.4(2) 1.32(3) 3.21(10) 5.1403(5) 1.637(37)

12 32.5(1.4) 3.08(12) 7.34(31) 5.1411(4) 1.524(53)

16 65.0(4.7) 6.27(44) 14.8(1.0) 5.1396(1) 1.454(87)

0.0325 8 12.9(4) 1.32(4) 3.21(12) 5.1456(6) 1.623(51)

16 50.5(3.0) 5.00(29) 11.72(70) 5.1458(2) 1.535(69)

0.0350 8 11.9(5) 1.34(5) 3.05(14) 5.1524(5) 1.640(45)

12 23.5(1.5) 2.52(16) 5.73(40) 5.1508(5) 1.664(55)

16 39.8(2.8) 4.19(28) 9.52(64) 5.1499(1) 1.72(10)

0.0400 12 16.8(8) 2.05(11) 4.45(24) 5.1598(4) 1.896(63)

16 23.4(2.1) 2.84(23) 6.03(54) 5.1593(5) 2.02(12)

nf = 2 + 1

mu,d ms Nσ V −1
〈

(δψ̄ψ)2
〉

V −1
〈

(δL)2
〉

V −1
〈

(δSG)2
〉

βpc B4(0)

0.03 0.045 12 22.6(1.5) 2.46(16) 5.43(35) 5.1500(5) 1.624(79)

0.03 0.060 12 14.5(1.4) 1.74(16) 3.78(34) 5.1565(7) 1.93(14)

Table 3.1: Mass and volume dependence of the susceptibilities, critical couplings and the fourth

order cumulants. The chiral condensate, which was used to calculate the chiral susceptibilities

and fourth order cumulants in the case of nf = 2 + 1, is the flavor averaged chiral condensate

ψ̄ψ = 2ψ̄ψu,d + ψ̄ψs.

flavor mu,d ms βpc

3 0.0334(34) 0.0334(34) 5.1475(68)

2+1 0.0300 0.0378(83) 5.1459(64)

Table 3.2: Critical points in the quark mass plane; calculated under the assumption of the 3d-Ising

universality class form the B4(0) data of the 123 × 4 lattice.
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Figure 3.4: The Binder cumulant of the chiral condensate B4(0) for standard staggered fermions,

(a) with 3 degenerate quark flavors and (b) with two light flavors (mu = md = 0.03) and one

heavier strange quark mass ms. The solid lines are straight line fits to the data. Also indicated

are the universal values of the Binder cumulant for the 3d-Ising and the 3d-O(2) model.

(γ/ν ≃ 1.96).

The cumulant of the chiral condensate B4(0) is shown in Figure 3.4(a) along the 3-flavor line in

the quark mass plane. We note that the cumulants calculated on different lattice sizes intersect at

a quark mass close to m = 0.035. After fitting the data with the linear function B4(0) = a0 +a1m,

a jackknife analysis yields the critical quark mass of m̄ = 0.0331(12) from the intersection point of

the 83 × 4 and the 163 × 4 lattice. The value of B4(0) at the intersection point is compatible with

the universal value of the Binder cumulant for the 3-dimensional Ising model. In addition, the

universal value for the Binder cumulant within the 3-dimensional O(2) symmetric spin model is

shown, which is however significantly smaller than the intersection point. This strongly suggests,

that the 3-flavor critical point indeed belongs to the universality class of the 3-dimensional Ising

model.

We can now use the information about the universality class and follow the line of constant

B4(0) = 1.604 in the (mu,d,ms) quark mass plane. Rather than performing finite size scaling

analyses for non-degenerate quark masses we may perform a simulation with non-degenerate quarks

and determine the critical line as that of quark mass values at which B4(0) = 1.604. For that

purpose, we plot in Figure 3.4(b) the Binder cumulant of the chiral condensate for the 123 × 4

lattice along the line of constant up and down quark mass mu,d = 0.03. At a critical strange quark
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mass of ms ∼ 0.038 we hit the universal value of B4(0) = 1.604. From straight line fits, of the

B4(0) data along the 3-flavor line and the line of constant mu,d = 0.03, calculated on the 123 × 4

lattice we thus can extract the two critical points given in Table 3.2. The pseudo critical couplings

βpc given in Table 3.2 are linearly interpolated from the Nσ = 12 results given in Table 3.1.

Furthermore, one can also apply the method of approximate mass reweighting, via Taylor

expansion of reweighting factor and observable (Equations (3.8)-(3.9)). In our standard action

calculations we measured no further operators than the chiral condensate, the Polyakov loop and

the gluonic action. Mass reweighting can thus only be done up to order O(∆m) in the reweighting

factor and the mass dependence of the chiral condensate had to be dropped at all. We, how-

ever, generalized our reweighting formula (3.8) to 2-dimensional mass reweighting and use the

reweighting factor

ln (R) =
2

4
Tr
(

M−1
)

(mu,d −mu,d 0) +
1

4
Tr
(

M−1
)

(ms −ms 0)

+ O (∆mu,d,∆ms) . (3.16)

Using this reweighting technique, we can calculate the line of constant B4(0) = 1.604 in the quark

mass plane over a wide range of quark mass values. The result from the data set calculated at

nf = 3 and m = 0.03 is plotted in Figure 3.5. This line is an approximation of the line of second

order phase transition points in the quark mass plane in the vicinity of the 3-flavor critical point.

Its validity range is not known, nevertheless it is in agreement with the results of [68, 69]. The

slope of the line is −2 within errors, which is the expected value for the slope at the 3-flavor critical

point. Also indicated in Figure 3.5 are the two critical points from Table 3.2 and the linear sigma

model results from Section 3.4. Due to the unknown mass renormalization factor of the bare lattice

quark mass, we rescaled the line of second order phase transitions from the linear sigma model, to

bring the 3-flavor critical point from the model on top of the 3-flavor critical point from the lattice

calculations. The model calculations suggest a straight line of slope −2 for a wide range of quark

mass values. Deviations are visible only for up and down quark mass smaller than mu,d<∼0.01.

3.2.3 The physical scale at the chiral critical line

The lattice parameters mu,d and ms are bare quark masses, thus we rather should discuss the

scale at the chiral critical line in terms of hadron masses. To do so we performed additional zero

temperature calculations on a 164 lattice at (βpc, m̄) = (5.1452, 0.0325). For the pseudo-scalar

and vector meson mass we find mps = 0.463(1) and mV = 1.387(38), respectively. Expressing

the pseudo-scalar mass in units of the critical temperature, and using estimates of the critical
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Figure 3.5: Line of constant B4(0) = 1.604 in the quark mass plane, calculated from mass reweight-

ing of the nf = 3 results obtained with standard staggered fermions at quark mass m = 0.03. Also

shown are the lattice results form other groups [68, 69] and the rescaled line of second order phase

transitions from a mean field analysis of the linear sigma model.

temperature in 2 and 3-flavor QCD [13] we estimate for the pseudo-scalar meson mass at the chiral

critical point mps ≃ 290 MeV.

The entire analysis of the chiral critical line discussed so far has been performed with unim-

proved gauge and fermion actions on rather coarse lattices. Improved actions are not expected

to modify the results on the universal properties of the chiral critical point, which have been

presented above. They may, however, well influence the quantitative determination of the chiral

critical point. It has been found in studies of the first order deconfinement transition occurring in

the pure gauge sector that the gap in physical observables like the latent heat or surface tension is

cutoff dependent. Improved actions generally lead to smaller gaps and a reduced cutoff dependence

of these observables [79]. One thus may expect that also in the region of first order chiral transi-

tions the gap in the chiral condensate gets reduced when calculated with improved actions. This

will shift the critical point to smaller values of the pseudo-scalar meson mass. We therefore should

redo the whole analysis with improved gauge and staggered fermion actions (p4-action). Here we

are limited by the huge numerical effort, which is needed to perform calculations with small quark

masses. In previous studies no evidence for a first order transition has been found down to bare

quark masses m = 0.01 [13]. We thus performed Monte Carlo simulations of p4 improved fermions

at m = 0.005, on lattice sizes 123 × 4 and 163 × 4. At quark mass m = 0.005 we do, however, still
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Figure 3.6: Finite size scaling of the peak height of chiral susceptibility (a) and the Binder cumulant

of the chiral condensate B4(0) (b). Shown are the 123 × 4 and the 163 × 4 lattice as function of

the quark mass. The results are achieved by mass reweighting from the m = 0.005 data set.

find no evidence for a first order phase transition. The chiral susceptibilities, evaluated on lattices

with spatial extent Nσ = 12 and 16 agree within errors. Using the mass reweighting formulas

(3.8)-(3.9) we plot the finite size scaling behavior of the chiral condensate and its Binder cumulant

B4(0) in Figure 3.6. A sizeable volume dependence of the chiral condensate can only be observed

for quark masses smaller than m<∼0.003. At the same quark mass of m ≈ 0.003 the Binder cumu-

lant on the 163 × 4 lattice begins to decrease linearly and crosses the universal value of the Ising

model at m ≈ 0.001. This is where we also find a factor of roughly 2 between the peak heights of

the two chiral susceptibilities (γ/ν ≈ 1.96). On the other hand the Binder cumulant evaluated on

the 123 × 4 lattice stays in the whole quark mass range rather flat and well above the universal

value of 1.604. This could be due to the small statistics. Whereas for the standard action we were

able to collect (3 − 4) · 104 trajectories with a trajectory length of τ = 0.675 for each combination

of m,β, we have here only (2 − 3) · 103 trajectories with τ = 0.4. Another source of error is the

finite number of random vectors used for the calculation of Tr M−1 (Equation (2.49)). For the

standard action 25 random vectors were used, here we have generated only 15 random vectors

for each configuration. Also not known is the validity range of the mass reweighting around the

simulation point at m = 0.005. We checked, however, that direct measurements of ψ̄ψ, χψ̄ψ and

βpc at m = 0.01 are well reproduced by the reweighted data from m = 0.005.

Ignoring the results of the 123 × 4 lattice we can estimate the chiral critical point of 3-flavor
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QCD by the intersection point of the Binder cumulant B4(0), evaluated on the 163×4 lattice, with

the universal value of the Ising model 1.604. A jackknife analysis yields m̄ = 0.00071(38). Using

the hadron spectroscopy presented in [13], i.e. assuming that the pion mass in units of the string

tension
√
σ is well described by the parameterization mπ/

√
σ = 5.71(9) · √m for quark masses

below m<∼0.01, this gives a critical pion mass of mπ = 67(17) MeV, with
√
σ = 425 MeV. This is

only about 24% of the value found in the calculations with unimproved staggered fermions but is

close to the mean field results from the linear sigma model, which we will present in Section 3.4,

and which are shown in Figure 3.8(a). There we plot the phase diagram in the plane of the pion

mass, mπ, and kaon mass, mK . Also indicated is the physical point, which appears to be well

separated from the critical line in the crossover region.

3.2.4 The curvature in µ direction

The same finite size scaling pattern of the chiral condensate and its Binder cumulant is expected

when extrapolating from the simulation point at µ = 0,m = 0.005 not towards the chiral limit

(m → 0), but forwards increasing chemical potential at constant m = 0.005. We plot the peak

heights of χψ̄ψ and the value of B4(0) evaluated at βpc as a function of the up and down chemical

potential µu,d in Figure 3.7. The results are obtained by using the reweighting formulas (2.42)

and (2.48), i.e. using the Taylor expansion of reweighting factor and observable up to O(µ2).

Unfortunately, in the chemical potential direction we are not only limited by the validity of our ap-

proximated (Taylor expanded) reweighting method, but also by the sign problem. In Section 2.3.3

we estimated the maximal chemical potential above which the sign problem becomes serious. Thus

the results form the 163×4 lattice are plotted only up to µu,d ≈ 0.03. In this region the peak height

of χψ̄ψ and the Binder cumulant B4(0) stay constant. The 163 × 4 lattice is thus too large for the

determination of the 3-flavor critical point within our approximations. The maximal reweighting

distance for the 123 × 4 lattice is much larger. We show here the results up to µu,d ≈ 0.06. At

µu,d ≈ 0.05 the peak heights of the susceptibility begins to increase, while the Binder cumulant de-

creases linearly. When fitting the Binder cumulant in the interval µu,d ∈ [0.05, 0.06] with a straight

line, we can estimate the intersection point of B4(0) with the universal value of the Ising model

1.604. A jackknife analysis yields µ̄u,d = 0.074(13), which corresponds to µ̄u,d/Tc = 0.296(52).

Using the estimate of the critical temperature Tc/
√
σ = 0.40(1) + 0.039(4)(mπ/

√
σ) [13], we ob-

tain µ̄u,d = 52(10) MeV, since the simulation point at m = 0.005 corresponds to a pion mass of

mπ = 172(3) MeV.

Having now estimated two critical points in 3-flavor QCD, both lying on the critical surface,

we are able to approximate the critical surface by an appropriate extrapolation ansatz. Since
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Figure 3.7: Finite size scaling of the peak height of chiral susceptibility (a) and the Binder cumulant

of the chiral condensate B4(0) (b). Shown are the 123×4 and the 163×4 lattice as function of the

up and down quark chemical potential. The results are achieved by reweighting in the chemical

potential from the µ = 0,m = 0.005 data set.

all physical observables have to be functions of µ2
q and the up and down quark mass mu,d is

proportional to m2
π, we use the quadratic interpolation ansatz

m̄2
π(µq) = m̄2

π(0) +Aµ2
u,d . (3.17)

For the parameter A we obtain A = 0.109(36). The physical pion mass value fixes the location

of the chiral critical point in 3-flavor QCD, we obtain µ̄u,d = 40(9) MeV. At µ = 0 the critical

strange quark mass in the vicinity of the 3-flavor point ms = m̄u,d is given by m̄s = 3m̄u,d−2mu,d.

Using the lowest order chiral perturbation theory relation [80] m2
K/m

2
π = (mu,d +ms)/2mu,d this

translates to

m2
K =

3

2
(m̄π)

2 − 1

2
m2
π . (3.18)

The Equations (3.17) and (3.18) define a plane in the (m2
π ,m

2
K , µ

2
q) space, which can be parame-

terized by

µ̄2
u,d =

(

m2
π + 2m2

K − 3m̄2
π(0)

) A

3
. (3.19)

The chiral critical point at the physical values of light and strange quark masses is to be found on

this surface. For its location we estimate µ̄u,d = 135(21) MeV, or in terms of the baryon chemical

potential µ̄B = 404(62) MeV.
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Figure 3.8: (a) The phase diagram in the plane of pion mass (mπ) and kaon mass (mK). Indicated

is the line of second order phase transitions from the linear sigma model, the 3-flavor critical points

from improved and unimproved lattice simulations and the physical point. (b) Curvature of the

critical surface in the µu,d direction for 3-flavor and 2+1 flavor QCD. Also shown are the critical

points from improved lattice calculations and the physical point.

In Figure 3.8(b) we show the curvature of the critical surface as a function of µ2
u,d. The 3-flavor

line corresponds to the line of degenerate pion and kaon mass, whereas the line indicated as 2 + 1

flavor corresponds to the physical ratio of pion and kaon mass. A critical quark chemical potential

of µ̄u,d = 135(21) MeV appears to be a bit small in comparison with the results of Fodor and Katz

[9]. In [9] a critical quark chemical potential of µ̄q ≃ 240 MeV was obtained from simulations with

unimproved staggered fermions at the mass point (mπ ≈ 300 MeV,mK ≈ 500 MeV). At this point

we estimate µ̄q = 144(22) MeV, thus the difference cannot be understood by the larger pion mass

alone. Cutoff effects due to the unimproved action, which was used in [9], certainly play a role.

However, also our approach involves approximations and assumptions on the extrapolation ansatz,

which can lead to systematic errors which are difficult to estimate. In any case, both approaches

certainly will be refined in future calculations.

3.3 The critical temperature

Finally we turn our attention to the dependence of the critical temperature on the chemical po-

tential, which can be obtained from the pseudo critical couplings. As outlined above we calculate
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observables consistently up to O(µ2) and thus expect the results to obtain errors at O(µ4). In our

pervious study of βpc(µ), in the case of nf = 2 and quark masses m = 0.1 and m = 0.2 [19]. At

those large quark masses, no significant mass dependence has been observed. One expects, how-

ever, that the transition line becomes steeper with decreasing quark masses, we thus concentrate

here on our 3-flavor simulations with small quark masses.

Because the first derivative of βpc(µ) is expected to vanish due to symmetry reasons (2.51)

we fitted the βpc data by a straight line in µ2. The ranges in µ2 are chosen small enough to

avoid a phase problem. This means that the range for the 163 × 4 lattice at m = 0.005 has

to be much smaller than for the other measurements. The results are summarized in Table 3.3.

As expected we find no volume dependence for the derivative dβpc/dµ
2 at the small quark mass

m = 0.005. A bit more distinct are the differences between dβpc/dµ
2 estimated from the peak

position of either the Polyakov loop or the chiral condensate, here |dβpc/dµ
2| generally tends to be

larger when estimated form the chiral condensate. The two values, however, always agree within

statistical accuracy in our fit range. As expected we find for the large quark mass m = 0.1 much

smaller values for |dβpc/dµ
2|, since this derivative should vanish in the static limit (m→ ∞). The

statistics for m = 0.005 is much smaller than for m = 0.1, thus we have errors of about 50% at

m = 0.005, while they are ≈ 25% at m = 0.1.

Besides the usual up and down quark chemical potential µu,d we also investigate systems with

a non-zero 3-flavor chemical potential µu,d,s and a non-zero isovector chemical potential µI . For

the 3-flavor chemical potentials we find generally larger values of |dβpc/dµ
2|, which is reasonable,

since in the case of three degenerate quarks, the 3-flavor chemical potential is only a shift in the

up and down chemical potential scale towards more dense systems. Not so obvious are, however,

the results for the isovector chemical potentials µI . Apparently the slope of βpc(µ) is only half

as large as in the isoscalar case. A non-zero isovector chemical potential is achieved by choosing

opposite signs for up and down quark chemical potentials, i.e. µu = −µd. The quark determinant

is then real and positive, and thus allows also to perform simulations using standard Monte Carlo

methods [81, 82, 83]. This motivates a comparison between systems with the usual isoscalar

chemical potential and the isovector chemical potential. In the framework of a Taylor expansion,

terms even in µ are identical for both up and down quarks, but odd terms cancel for the case of

µI 6= 0. This means for µI 6= 0 we set terms proportional to O1,R1 in equation (2.50) to zero.

This leads to smaller values of |dβpc/dµ
2|, which is unexpected since the onset of matter at T = 0

is predicted to appear at µI0 ≃ mPS/2 [84] in form of a pion condensate. At our small quark mass

this should be clearly separated and in particular smaller than the onset of baryonic matter for

isoscalar chemical potentials at µ0 = mN/3. One thus could have expected that the transition line

is more strongly curved for µI 6= 0 than for µu,d 6= 0.
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µ ≡ µu = µd, µs = 0

from peak in χL from peak in χψ̄ψ fit-range

m Nσ dβpc/dµ
2 βpc(0) dβpc/dµ

2 βpc(0) [µ2
min, µ

2
max]

0.005 16 -0.907(648) 3.2661(12) -1.037(620) 3.2658(11) [0,0.0006]

12 -1.039(517) 3.2654(11) -1.363(504) 3.2649(8) [0,0.0006]

-1.003(538) 3.2653(11) -1.362(689) 3.2649(8) [0,0.002]

-0.967(639) 3.2652(11) -1.437(705) 3.2650(8) [0,0.003]

0.1 16 -0.257(64) 3.4792(26) -0.281(55) 3.4795(23) [0,0.0006]

-0.273(64) 3.4792(25) -0.295(60) 3.4796(23) [0,0.002]

-0.302(65) 3.4793(25) -0.315(68) 3.4796(23) [0,0.003]

µ ≡ µu = µd = µs

from peak in χL from peak in χψ̄ψ fit-range

m Nσ dβpc/dµ
2 βpc(0) dβpc/dµ

2 βpc(0) [µ2
min, µ

2
max]

0.005 16 -1.823(1.520) 3.2662(12) -2.048(1.451) 3.2658(11) [0,0.0003]

12 -2.030(1.169) 3.2653(11) -2.667(1.360) 3.2649(8) [0,0.0006]

-1.944(1.419) 3.2653(11) -2.861(1.631) 3.2649(8) [0,0.0012]

0.1 16 -0.329(101) 3.4792(26) -0.380(129) 3.4795(23) [0,0.0006]

-0.488(117) 3.4792(25) -0.512(167) 3.4796(23) [0,0.002]

-0.617(164) 3.4793(25) -0.644(231) 3.4797(23) [0,0.003]

µ ≡ µI

from peak in χL from peak in χψ̄ψ fit-range

m Nσ dβpc/dµ
2 βpc(0) dβpc/dµ

2 βpc(0) [µ2
min, µ

2
max]

0.005 16 -0.406(68) 3.2661(12) -0.381(60) 3.2658(11) [0,0.0006]

12 -0.435(103) 3.2653(11) -0.423(74) 3.2650(8) [0,0.0006]

-0.399(99) 3.2653(11) -0.397(70) 3.2649(8) [0,0.002]

-0.393(96) 3.2653(11) -0.392(70) 3.2650(8) [0,0.003]

0.1 16 -0.265(93) 3.4791(26) -0.319(55) 3.4796(24) [0,0.0006]

-0.301(91) 3.4791(26) -0.306(53) 3.4796(23) [0,0.002]

-0.305(88) 3.4792(25) -0.307(53) 3.4796(23) [0,0.003]

Table 3.3: The pseudo critical coupling and its derivative with respect to the chemical potentials

µu,d, µu,d,s and µI . We fit the data with βpc(0) + cµ2, where c = dβ/d(µ2) = 1
2d2β/dµ2. In some

cases we show results for different fit ranges which are given in the last column.
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Of course, it is desirable to translate the observations from the pseudo critical couplings into

physical units to discuss the dependence of the critical temperature Tc on µ. The derivative of Tc

with respect to µ2 can be estimated by

d2Tc
dµ2

= − 1

N2
τ Tc

d2βc

dµ2

/(

a
dβc
da

)

, (3.20)

where a is the lattice spacing. Unfortunately this requires the knowledge of the β-function (the

dependence of the lattice spacing a on the gauge coupling β). This information may be obtained

from the string tension data in Reference [12] at bare quark mass m = 0.1 for nf = 2, 3. The string

tension data was fitted with an ansatz [85]

√
σa2(β) =

R(β)

c0

[

1 + c2
R(β)

R(β̄)
+ c4

R(β)

R(β̄)

]

, (3.21)

where R(β) is the usual two-loop scaling function (2.16) and β̄ = 3.7 for nf = 2 and β̄ = 3.5

for nf = 3. c0, c2 and c4 are fit parameters with c0 = 0.0570(35), c2 = 0.669(208) and c4 =

−0.0822(1088) for nf = 2 and c0 = 0.0448(15), c2 = 0.507(115) and c4 = −0.0071(677) for nf = 3.

Differentiating the interpolation functions yields a−1(da/dβ) = −2.08(43),−2.26(26) for nf = 2, 3

respectively. Using dβpc/dµ
2
u,d calculated form the chiral condensate as given in Table 3.3 with

fit-range [0 : 0.003], we then find Tc(dTc/dµ
2
u,d) = −0.070(35), 0.045(10)§ for nf = 2, 3 at m = 0.1.

At the small quark mass m = 0.005 we do not have the β-function. This would require additional

and very costly zero temperature calculations. We thus estimate the β-function perturbatively by

the two-loop scaling function (2.16). Here we get a−1(da/dβ) = −1.4 for nf = 3 and m = 0.005.

Although this perturbative estimate tends to be too small, we still find a larger curvature for Tc(µ)

at the small quark mass with Tc(dTc/dµ
2) = −0.11(5), this time using the fit-range [0 : 0.002].

The quark mass dependence of Tc becomes significant if we compare for our two quark mass values

based on perturbative β-functions only. We then find

Tc(µu,d)

Tc(0)
=











1 − 0.025(6)
(

µq

Tc(0)

)2

, m = 0.1

1 − 0.114(46)
(

µq

Tc(0)

)2

, m = 0.005 .
(3.22)

Note that also Tc(0) depends on the quark mass [13]. In Figure 3.9(a) we compare these results

for the transition temperature in units of the transition temperature at µ = 0 (T0 ≡ Tc(µ = 0)).

Also shown in Figure 3.9(a) are the results of [10], which have been obtained from simulations

with two flavors of unimproved quark masses, for rather large quark masses at imaginary chemical

potential. Both methods agree remarkably well. Of course, when µ/T = O(1), higher-order

terms in the expansion become relevant. However, in [10] it has been shown, that the µ4 term is

statistically insignificant for µ/T0<∼1.

§The value for nf = 2 is from Reference [19]
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Figure 3.9: Dependence of the transition temperature Tc on the up and down quark chemical

potential (µu,d) in units of (a) the transition temperature at µ = 0 (T0) and (b) in physical

units. In (a) we show results for different bare quark masses and number of flavors, also shown

are the result of de Forcrand and Philipsen [10]. In (b) we compare the transition line with the

phenomenological freeze-out line from statistical models [86], also indicated are estimates of the

critical point from our calculations (blue box) and Fodor and Katz [9].

In Figure 3.9(b) we compare the transition line for nf = 2 and m = 0.1 in the T, µ plane with

the phenomenological freeze-out curve form statistical models (4.36) [86]. This suggests that at

sufficiently large µB there is the chance to observe experimentally a strongly interacting hadron

gas phase, whereas for small µB hadrons seem to freeze out right after the phase transition from

QGP to the hadronic phase. However, assuming that the transition line is parabolic all the way

down to T = 0, clearly cannot be correct. The curvature is to small to be consistent with the

phenomenological expectation that at T = 0 a transition from hadronic to quark matter occurs

for µ̄B some 0.1-0.6 GeV larger than the onset of nuclear matter at µB0 ≃ mN ≃ 0.94 GeV.

The situation is similar for the results of Fodor and Katz [9], and hints at contributions from

higher-order derivatives, or even nonanalytic behavior, at larger values of µ.

3.4 The SU(3)L × SU(3)R linear sigma model

In this Section we investigate in how far the basic pattern of the QCD phase transition, i.e.,

its nature and nf -dependence can be understood by the global chiral symmetry of the QCD
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Lagrangian. For that reason, we present a mean-field calculation of an effective chiral Hamiltonian,

the so called linear sigma model, that incorporates the correct symmetries of the QCD Lagrangian

and thus has the chance to predict the universal properties, e.g. the order of the transition in the

chiral limit.

During the last years the linear sigma model was studied by many groups. For a recent and

detailed study see, e.g., [87]. For simplicity, however, we decided to use the method of [88]. In

the SUL(2) × SUR(2) case of the linear sigma model a finite chemical potential has already been

considered by [89]. The chiral Lagrangian, we use, is given by (in Euclidean notation)

L(Ψ,Φ) = Ψ̄
(

γν∂ν +
c

2

[

(Φ + Φ†) + (Φ − Φ†)γ5

]

)

Ψ − µΨ̄γ4Ψ

+
1

2
Tr
(

∂νΦ
†∂νΦ −m2

0 Φ†Φ
)

+ f1
[

Tr
(

Φ†Φ
)]2

+ f2 Tr
(

Φ†Φ
)2

+ g
[

Det (Φ) + Det
(

Φ†)]− Tr

[

H

2
(Φ + Φ†)

]

. (3.23)

Here, the Ψ(x) field is a three-component fermion field. It can either be identified with nucleons,

as it was done in the original sigma model [90], or with constituent quarks [89]. We will, however,

restrict our discussion here to a pure mesonic system, which corresponds to the limit c → ∞.

Thus we drop the first line of equation 3.23, i.e. the fermionic sector of the Lagrangian. The

(3×3)-matrix field Φ(x) represents the mesons and is written as

Φ(x) =
1√
2

8
∑

a=0

[σa(x) + iπa(x)] λa . (3.24)

In this parameterization the σa and πa denote the nonets of scalar and pseudoscalar mesons, and

the λa are the Gell-Mann matrices, with λ0 =
√

2/3 [diag(1, 1, 1)]. One can easily verify that

(Φ ± Φ†)/2 indicate the scalar, pseudoscalar part of Φ, respectively. All terms in Equation (3.23)

are invariant under chiral transformations except the terms in the last line. The determinant is

introduced to represent the axial anomaly in QCD and the symmetry breaking (mass) term which

is linear in Φ and is coupled to an external matrix field H which is parameterized by

H =
1√
2

8
∑

a=0

haλa . (3.25)

Two simple symmetry breaking patterns, that can be compared with lattice simulations, are the

cases h0 6= 0, h1, . . . , h8 = 0 and h0 6= 0, h8 6= 0, h7, . . . , h8 = 0, which will be referred to as the

nf = 3 and nf = 2 + 1 cases. If one assumes h1, . . . , h7 = 0, the symmetry breaking term can

be written as −h0σ0 − h8σ8. Thus the temperature dependent order parameters are 〈σ0〉 (T ) and

〈σ8〉 (T ). For nf = 3 one has a degenerate (pseudo)scalar meson octet, whereas for nf = 2 + 1 one

can adjust the fields to reproduce a realistic mass splitting inside the octet.
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The unknown constants of the model have to be fitted to the experimentally measured meson

masses. For m2
0, f1, f2, g we use the values that are given in Table II of [88]. With these values the

physical point appears at (h0, h8) ≈ (0.0265GeV3,−0.0345GeV3) at which the experimental masses

are reproduced quite well. All coupling constants are treated as be temperature independent.

Through an identification of the symmetry breaking term in the sigma model on the meson

(−h0σ0 − h8σ8) and in QCD on the quark level (muūu +mdd̄d +mss̄s), a mapping of the pairs

of couplings (h0, h8) and the condensates (〈σ0〉 , 〈σ8〉) to the quark level is possible. Using a linear

ansatz

−h0 = α(2mu,d +ms)

−h8 = β(mu,d −ms)
and

ασ0 = 2q̄q + s̄s

βσ8 = q̄q − s̄s
, (3.26)

one deduces the following linear mappings





h0

h8



 7−→





mu,d

ms



 =





− 1
3α − 1

3β

− 1
3α

2
3β









h0

h8



 , (3.27)

and





〈σ0〉
〈σ8〉



 7−→





〈q̄q〉
〈s̄s〉



 =





α 1
2β

α −β









〈σ0〉
〈σ8〉



 . (3.28)

Here the quantities on the quark level are the quark mass mu,d and the condensate 〈q̄q〉 of two

degenerate light quark flavors, the strange quark mass ms, and the strange quark condensate

〈s̄s〉. With the above mentioned physical point and the values for realistic current quark masses,

(mu +md)/2 = 11.25 MeV, ms = 205 MeV [91], the parameters α and β were determined to be

α = −0.1164 GeV2 , β = −0.178 GeV2 . (3.29)

We assume the temperature independence of these mappings and use them to compare the sigma-

model results with results from lattice simulations of staggered fermions.

In order to study the thermodynamics of the model, we define the thermodynamical potential

Ω as a function of the temperature T ¶

Ω(T ) = lim
V→∞

(

−T

V
lnZ

)

, (3.30)

¶As long as we consider a pure mesonic system we have no baryon chemical potential (µ ≡ 0). In the canonical

ensemble Ω is called the free energy density (Ωcanonical ≡ f), whereas here in the grand canonical ensemble we have

the identity Ω = −p, with p denoting the pressure.
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where the partition function Z is defined as the path integral

Z =

∫

DΦ exp











−
1/T
∫

0

dτ

∫

d3x L(Φ)











. (3.31)

All thermodynamic quantities can be derived from Ω in the standard way. In practice, however

we did not perform the path integral but approximated the thermodynamical potential Ω by an

effective potential Ωeff which is given in terms of averaged σ0 and σ8 fields, i.e. constant fields in

space-time‖. The order parameters are then defined to be those values of σ0 and σ8, that minimize

the effective potential

∂Ωeff

∂σ0

∣

∣

∣

∣

σ0=〈σ0〉(T )

= 0 ,
∂Ωeff

∂σ8

∣

∣

∣

∣

σ8=〈σ8〉(T )

= 0 . (3.32)

The first thing one usually does to derive the effective potential is to shift the σa(x) and πa(x) by

their expectation values

σa(x) → σa + σ
′

a(x) , πa(x) → πa + π
′

a(x) . (3.33)

As long as one has only non-vanishing external fields h0 and h8 the expectation values σ1, . . . , σ7 and

π0, . . . , π8 should vanish. Now one expands the Lagrangian in terms of the quantum fluctuations

σ
′

a(x) and π
′

a(x). All terms that are independent of σ
′

a(x) and π
′

a(x) define the classical part of

the effective potential

Ωclass(σ0, σ8) = −m
2
0

2

(

σ2
0 + σ2

8

)

+
g

3
√

3

(

2 σ3
0 −

√
2 σ3

8 − 3 σ0 σ
2
8

)

+ −2
√

2

3
f2 σ0 σ

3
8 +

(

f1 +
f2
3

)

σ4
0 +

(

f1 +
f2
2

)

σ4
8

+ 2 (f1 + f2)σ
2
0 σ

2
8 − h0 σ0 − h8 σ8 . (3.34)

All terms that are linear in σ
′

a(x) and π
′

a(x) vanish by definition. The quadratic terms are mass

terms which define the tree-level masses of the mesons mQ. In our parameterization the pion mass,

for instance, is given by

m2
π = −m2

0 +
2g√

3
σ0 −

2
√

2g√
3
σ8 +

(

4f1 +
4f2
3

)

σ2
0

(

4f1 +
2f2
3

)

σ2
8 +

4
√

2f2
3

σ0σ8 . (3.35)

All nonzero elements of the scalar and pseudoscalar mass matrix are given in Appendix B. The

other terms are interaction terms and much harder to handle. The two quartic terms can be

‖Formally σ0 and σ8 are the Legendre conjugates of c-number sources coupled linearly to the quantum fields in

the theory.

54



quadratized by introducing an auxiliary matrix field Σ(x) which allows to formulate a matrix

version of a Hubbard-Stratanovich transformation [92]; we apply the identity

exp
{

−A
[

f1(TrΦ
′†Φ

′

)2f2Tr(Φ
′†Φ

′

)2
]}

= const ×
∫ c+i∞

c−i∞
DΣ(x) exp

{

TrΣ2 + 2BTr(ΣΦ
′†Φ

′

) + 2CTr(Φ
′†Φ

′

)TrΣ
}

, (3.36)

where

B2 = Af2 with 2BC + 3B2 = Af1 . (3.37)

In the saddle point approximation used in [93], one makes the SU(3) symmetric ansatz Σ(x) =

diag(s, s, s) and replaces the path integral
∫

DΣ by the maximum of the integrant. We are left

with the approximation

L(4) = f1(TrΦ
′†Φ

′

)2 + f2 Tr(Φ†Φ)2 ≈

− 3

8(3f1 + f2)

(

s2

2
+m2

0s

)

+
1

2

(

s+m2
0

)

Tr(Φ
′†Φ

′

)2 . (3.38)

The parameter s has to be chosen appropriately to maximize the effective potential. Thus we get

another term that is independent of Φ
′

,

Ωsadd(s) = − 3

8(3f1 + f2)

(

s2

2
+m2

0s

)

, (3.39)

and additional modifications in the tree level meson masses,

m2
Q → m̃2

Q = m2
Q + s+m2

0 . (3.40)

The reason for this approximation, which corresponds to the leading order in a 1/N∗∗ expansion

[94], is that problems with tachyonic masses are reduced. Unfortunately they are not completely

eliminated, i.e. one finds m̃2
Q < 0 at the saddle point of the effective potential for high temperatures

above the transition. The self-consistent resummation scheme as proposed by Cornwall, Jackiw

and Tomboulis (CJT) [95] is believed to provide a much better approximation, which compleatly

avoids tachionic masses. This method will, however, require a solution of a 12 dimensional non-

linear equation, rather than the determination of a saddle point in a three dimensional parameter

space. All other interaction terms were neglected. Thus all interactions are now encoded in the

∗∗In the special case of f2 = 0 = g the model becomes an O(16) model, which is invariant under O(18) rotations.

We have N = 18 = 2n2
f , where nf denotes the number of quark flavors, while N labels the number of mesonic

modes. Terms of order O(1/N) are dropped, as long as fluctuations in the auxiliary field are neglected.
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meson masses, and we can use the formula of an ideal gas given in Equation (2.55). We finally

have

Ωeff(σ0, σ8, s) = Ωclass(σ0, σ8) + Ωsadd(s)

+
T 4

2π2

8
∑

Q=1

g(Q)

{

−
(

m̃Q

T

)2 ∞
∑

l=1

1

l2
K2

(

lm̃Q

T

)

}

. (3.41)

In the second and third line of Equation (3.41) one finds the thermodynamic potential of a free

Bose and Fermi gas, respectively, where g are the particle multiplicities and K2 is a modified Bessel

function. In the integration
∫

DΦ the ultraviolet divergent zero-point energies have been neglected.

The method to compute the order parameters 〈σ0〉 (T ) 〈σ8〉 (T ) is now the following: for a

given temperature T one minimizes Ωeff(σ0, σ8, s
∗(σ0, σ8)), where s∗(σ0, σ8) denotes the maximum

of Ωeff for constant (σ0, σ8). We determine a critical point in the (h0, h8)-plane via the mixed

susceptibilities χ0 and χ8, which we define as

χ0 ≡ ∂2Ωeff

∂T∂h0

∣

∣

∣

∣

saddle point

=
∂

∂T
〈σ0〉 (T ) ,

χ8 ≡ ∂2Ωeff

∂T∂h8

∣

∣

∣

∣

saddle point

=
∂

∂T
〈σ8〉 (T ) . (3.42)

These quantities should diverge as the system undergoes a phase transition of second order. For

fixed values of (h0, h8) we compute 〈σ0〉 and 〈σ8〉 for different temperatures. Then we interpolate

in temperature by the use of Chebycheff polynomials. The derivative of these polynomials yields

the mixed susceptibilities as a function of temperature. We find that χ0(T ) and χ8(T ) peak at the

same temperature Tps. From the peaks we determine the pseudo critical temperature Tps and the

peak heights as

∂χ0(T )

∂T

∣

∣

∣

∣

T≡Tps

= 0 , χc0 ≡ χ0(Tps) , χc8 ≡ χ8(Tps) . (3.43)

By plotting χc0 along a straight line in the (h0, h8)-plane, starting at a point where no phase

transition occurs and going towards lower external fields, one finds a power like decrease in the

quantity χc0. For the nf = 3 case this is shown in Figure 3.10(a). We parameterize several lines by





h0

h8



 =





hoffset

0

hoffset

8



+ x





cosϑ

sinϑ



 , (3.44)

and perform least square fits with the power law

χc0 = a(x− xc)
−d . (3.45)
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Figure 3.10: (a) Mixed susceptibility χc0 as a function of h0 in the nf = 3 case, i.e. h8 = 0. The

solid line is a power law fit. (b) The critical line of second order phase transitions in the quark

mass plane. The green line shows the nf = 3 case, whereas the blue line indicates the line of

physical quark mass ratio.

For the exponent d we find values, which are very close to the mean field exponent d = 0.5. From

the value of xc we get a critical point in the (h0, h8)-plane, which we map into the (mu,s,ms)-plane

according to Equation (3.27). The results are shown in Figure 3.10(b). For the nf = 3 case we find

a critical external field of hc0 = 2.23(3) × 10−4 GeV3, which coincides with that which was found

in [88] by analyzing the discontinuities of the order parameter. Our error however is an order of

magnitude smaller. Qualitatively very similar lines, as shown in Figure 3.10(b), have also been

found in [96] within the CJT formalism. In [96] a strong dependence on the sigma mass was found,

which was not investigated here.

Figure 3.10(b) suggests, that the critical line in the (mu,d,ms)-quark mass plane can be

approximated by a straight line over a wide range of quark mass values. A comparison with the

critical line in the bar quark mass plane of staggered fermions is shown in Figure 3.5. Of course,

the values for the critical external fields hc8(h0) also specify critical values for the meson masses

at T = 0. The critical line in the pseudo scalar (mπ ,mK)-plane is plotted in Figure 3.8. In the

nf = 3 case we find critical pion mass of mπ ≈ 44 MeV, which is not in contradiction with that

value found from simulations with improved staggered fermions.

This model can be extended to µ > 0 when using the full Hamiltonian given in 3.23. Moreover

one can investigate not only the chiral phase transition but also transitions to color superconduct-
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ing phases, when adding also quark-quark condensates to the Hamiltonian in a chiral invariant way.

This has been done, for instance, in [97, 98]. One should, however, not for get, that those calcula-

tions are model calculations which do not involve gluons or contributions from heavier resonances.

The need for the latter becomes clear form the resonance gas calculations in Section 4.4.
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Chapter 4

The equation of state∗

One of the central goals of studies of the QCD thermodynamics on the lattice is the calculation of

the equation of state for QCD with a realistic mass spectrum. In particular the influence of the

heavier strange quark mass on bulk thermodynamic observables is of fundamental importance for

the analysis and interpretation of heavy ion experiments. This is so, since one of the signatures

which is being discussed for the formation of a quark-gluon plasma within heavy-ion experiments

is the increase of the relative abundance of strange particles (strangeness enhancement) [2]. The

influence of the strange quark on the equation of state at vanishing chemical potential (µq = 0)

was discussed in [12], when calculating the pressure for two and three flavor of p4 improved quarks

with mass mq/T = 0.4, and for 2 + 1 flavor with an additional strange quark of mass ms/T = 1.

We will study here corrections to the two flavor results from Reference [12], for non-zero chemical

potential, by calculating the first two non-trivial terms in the Taylor series of the pressure p(T, µ).

The most fundamental quantity in equilibrium thermodynamics is, of course the partition

function itself, or within the grand canonical ensemble the thermodynamic grand potential

Ω(T, V, µ) = −T

V
lnZ(T, V, µ) . (4.1)

All basic bulk thermodynamic observables can be derived from the thermodynamic potential via

Maxwell relations. In the thermodynamic limit we obtain directly the pressure, p = −Ω and

subsequently also other quantities like the quark number (nq) and energy (ǫ) densities

nq =
∂p

∂µq
,

ǫ− 3p

T 4
= T

∂

∂T

( p

T 4

)

, (4.2)

∗Based on Reference [25]
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In order to make use of the basic thermodynamic relations in numerical calculations on the lattice

we have to go through an additional intermediate step. The grand canonical potential itself is

not directly accessible in Monte Carlo calculations; e.g. only expectation values can be calculated

easily. One thus proceeds by calculating derivatives of lnZ with respect to the parameters of the

action (β,m, µ), followed by an integration [99]. This way the pressure is given up to an unknown

integration constant (Cint.) by

p

T 4
(β,m, µ) =

1

T 3V

(β,m,µ)
∮

(β0,m0,µ0)

d(β
′

,m
′

, µ
′

)

(〈

∂ lnZ

∂β′

〉

,

〈

∂ lnZ

∂m′

〉

,

〈

∂ lnZ

∂µ′

〉)

+ Cint. . (4.3)

Here the integration is to be understood as the integration along an abitrary path from point

(β0,m0, µ0) to point (β,m, µ), while d(β
′

,m
′

, µ
′

) is the line element of the path. The integration

constant is usually set to zero at (T = 0, µq = 0). The integral method was used to compute the

pressure at µq = 0 [12, 14] and at µq 6= 0 [17].

4.1 The pressure at finite density

We proceed by performing a Taylor expansion of the pressure about µq = 0, in powers of the

dimensionless quantity µq/T ,

∆
( p

T 4
(µq)

)

≡ p

T 4

∣

∣

∣

∣

T,µq

− p

T 4

∣

∣

∣

∣

T,0

=
1

2!

µ2
q

T 2

∂2(p/T 4)

∂(µq/T )2
+

1

4!

µ4
q

T 4

∂4(p/T 4)

∂(µq/T )4
+ · · ·

≡
∞
∑

p=1

cp(T )

(

µq
T

)p

, (4.4)

where derivatives are taken at µq = 0. Note that calculating ∆(p/T 4) is considerably easier than

p(T, µq = 0) itself, because whereas lnZ must be estimated by integrating along a trajectory in the

bare parameter plane [12, 14, 17], its derivatives can be related to observables which are directly

calculabel at fixed (β,m), where β is the gauge coupling parameter and m the bare quark mass.

Only even powers appear in (4.4) because as discussed in Section 2.3.3, odd derivatives of the free

energy with respect to µq vanish at this point. Note also that we will work throughout with fixed

bare mass, implying that our computation of ∆(p/T 4) is strictly valid along a line of fixed m/T .

Equation (4.4) then becomes

∆
( p

T 4

)

=
1

2

N3
τ

N3
σ

µ2 ∂
2 lnZ

∂µ2
+

1

24

N3
τ

N3
σ

µ4 ∂
4 lnZ

∂µ4
+ · · · . (4.5)

The derivatives may be expressed as expectation values evaluated at µ = 0:

∂2 lnZ

∂µ2
=

〈

nf
4

∂2(ln detM)

∂µ2

〉

+

〈

(

nf
4

∂(ln detM)

∂µ

)2
〉

, (4.6)

60



∂4 lnZ

∂µ4
=

〈

nf
4

∂4(ln detM)

∂µ4

〉

+ 4

〈

(nf
4

)2 ∂3(ln detM)

∂µ3

∂(ln detM)

∂µ

〉

(4.7)

+3

〈

(nf
4

)2
(

∂2(ln detM)

∂µ2

)2
〉

+ 6

〈

(nf
4

)3 ∂2(ln detM)

∂µ2

(

∂(ln detM)

∂µ

)2
〉

+

〈

(

nf
4

∂(ln detM)

∂µ

)4
〉

− 3

[

〈

nf
4

∂2(ln detM)

∂µ2

〉

+

〈(

nf
4

∂(ln detM)

∂µ

)2〉
]2

.

All expectation values are calculated using the measure Z−1(µ = 0)DU(detM [µ = 0])nf/4e−Sg and

in deriving (4.6) and (4.7) we used the fact that 〈∂n(ln detM)/∂µn〉 = 0 for n odd. To evaluate

these expressions we need the following explicit forms:

∂(ln detM)

∂µ
= Tr

(

M−1 ∂M

∂µ

)

, (4.8)

∂2(ln detM)

∂µ2
= Tr

(

M−1 ∂
2M

∂µ2

)

− Tr

(

M−1 ∂M

∂µ
M−1 ∂M

∂µ

)

, (4.9)

∂3(ln detM)

∂µ3
= Tr

(

M−1 ∂
3M

∂µ3

)

− 3 Tr

(

M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2

)

(4.10)

+2 Tr

(

M−1∂M

∂µ
M−1∂M

∂µ
M−1∂M

∂µ

)

,

∂4(ln detM)

∂µ4
= Tr

(

M−1 ∂
4M

∂µ4

)

− 4 Tr

(

M−1 ∂M

∂µ
M−1 ∂

3M

∂µ3

)

(4.11)

−3 Tr

(

M−1∂
2M

∂µ2
M−1 ∂

2M

∂µ2

)

+ 12 Tr

(

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2

)

−6 Tr

(

M−1∂M

∂µ
M−1∂M

∂µ
M−1∂M

∂µ
M−1∂M

∂µ

)

.

The traces can be estimated using the stochastic method reviewed in Section 2.3.3. Since ∂nM/∂µn

is a local operator, expressions containing k powers of M−1 require k operations of matrix inversion

on a vector.

We applied this formalism to numerical simulations of QCD with nf = 2 quark flavors on a

163 × 4 lattice, using both Symanzik improved gauge and p4-improved staggered fermion actions.

The bare quark mass was ma = 0.1 for which the pseudocritical point for zero chemical potential

is estimated to be βc ≃ 3.649(2). In order to cover a range of temperatures on either side of

the critical point we examined 16 values in the range β ∈ [3.52, 4.0]. The simulation employed a

hybrid molecular dynamic ‘R’-algorithm with discrete time step δτ = 0.025, and measurements

were performed on equilibrated configurations separated by τ = 5. In general for each β value

500 configurations were analyzed, with 1000 used in the critical region β ∈ [3.58, 3.66]. On each

configuration 50 stochastic noise vectors were used to estimate the required fermionic operators.

For each noise vector, 7 matrix inversions are required to estimate the required operators (2.45-4.11)

and (C.6-C.9).
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Figure 4.1: Coefficients of (a) (µq/T )2 and (b) (µq/T )4 in the Taylor expansion of ∆(p/T 4) as

functions of T/T0.

To set the temperature scale we again follow the procedure used for the equation of state at

µ = 0 [12], and we translate to physical units using the scaling ansatz (3.21). We find that our

simulations span a temperature range T/T0 ∈ [0.76, 1.98], where T0 is the critical temperature at

µq = 0.

In Figure 4.1 we show the first two coefficients, (a) c2 and (b) c4, of the Taylor expansion of

∆(p/T 4) introduced in (4.4) as functions of T/T0. Also shown are the corresponding SB limits: (a)

nfC2(Nτ ) and (b) NfC4(Nτ ), where the coefficients Ci are defined in (2.62), with values relevant for

both the lattice used (Nτ = 4) and the continuum limit (Nτ = ∞) plotted. Both c2 and c4 vary

sharply in the critical region, but except in the immediate vicinity of the transition the quadratic

term dominates the quartic. This is consistent with the results of [17] where data at varying µ

obtained by reweighting was found to lie on an almost universal curve when plotted as a fraction

of the SB prediction. The asymptotic value of c4 appears to be approached from above.

A notable feature is that in the high-T limit our data lies closer to the continuum SB prediction

rather than their values Ci(Nτ = 4) corrected for lattice artifacts, c2 assuming 80% of the continuum

value for T/T0 = 2 whereas c4 is almost coincident with its continuum value. By contrast recent

calculations with unimproved staggered fermions [17, 21] find that the high-T limit of the data lie

close to the lattice-corrected SB value. This situation can be modeled by making the coefficient d of

the O(N−2
τ ) correction appearing in (2.56) temperature dependent. In thermodynamic calculations

performed with pure unimproved SU(3) lattice gauge theory [100], where extrapolations to the
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Figure 4.2: ∆(p/T 4) as a function of (µq/T )2 for various temperatures, increasing upwards from

the lowest curve with T/T0 = 0.812 to the highest with T/T0 = 1.980.

continuum limit are currently practicable, it is found that d(T ) ≃ 0.5d(T = ∞) for T ∼ 3T0,

becoming even smaller closer to T0. The behavior of c2 and c4 we have observed using p4 fermions

is broadly consistent with this behavior.

In Figure 4.2 we plot ∆(p/T 4) defined in (4.4) as a function of (µq/T )2 for various temper-

atures. In most cases c4 ≪ c2 and the relation thus almost linear. The strongest departures

from linearity are for T ≃ T0, but even here the quadratic term is dominant for (µq/T )2<∼0.4,

corresponding to µq<∼100MeV. Given enough terms of the Taylor expansion in µq/T , one could

determine its radius of convergence ρ via†

ρ = lim
n→∞

ρn ≡ lim
n→∞

√

∣

∣

∣

∣

cn
cn+2

∣

∣

∣

∣

. (4.12)

Data from the pressure at µq = 0 [12] and the current study enable us to plot the first two

estimates ρ0 and ρ2 on the (µq, T ) plane along with the estimated pseudocritical line Tc(µq) found

in Section 3.3 in Figure 4.3. Also shown are the corresponding values from the SB limit (2.54).

For T > Tc one finds that ρn increases markedly as n increases from 0 to 2; if the SB limit is a

†The argument of [10] that ρ ≤ π
3

due to the presence of a phase transition as imaginary chemical potential is

increased beyond this value [101] does not hold for calculations with µq real; in this case the pressure p0 corresponding

to the unit element of the Z(3) sector is always the maximum and hence dominates the partition function in the

thermodynamic limit – hence the issue concerns the analytic properties within this physical unit sector.
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Figure 4.3: Estimates for the radius of convergence ρ(µq, T ).

good predictor for the QGP phase we might expect c6 to be very small, and the next estimate ρ4

correspondingly very large in this regime. Close to the transition line, however, the thermodynamic

singularities appear to restrict ρ ∼ O(1); this in turn gives an approximate lower bound for the

position of the critical endpoint. From the figure we deduce µcritq
>∼(1 − 1.2)T0, not inconsistent

with the result of [9]. The new results at O(µ4) are important because they justify in retrospect

our neglect of fourth order reweighting factors in our calculation of the transition line which has

been discussed in Chapter 3. Indeed, also simulations with imaginary µ suggest that neglect of

these terms in the analytic continuation to physical µq is justified for µq<∼170MeV [10].

Figure 4.4 plots the dimensionless correction ∆(p/T 4) to the equation of state as a function of

both µq/T and µq. In the latter case the correction rises steeply across the transition and peaks for

T ≃ 1.1T0, before rapidly approaching a form ∆(p/T 4) = αT−2 characteristic of the SB limit, with

the coefficient α having 82% of the continuum SB value. Comparison with the equation of state

results at µq = 0 from Reference [12] suggest that the correction will give a significant correction to

the pressure for 0.9<∼T/T0<∼1.3, µq/T0>∼0.5, but will decrease in importance as T rises further. The

curves of Figure 4.4b are in good qualitative agreement with those of References [17, 21], although

we consider any quantitative agreement to be somewhat accidental as the numerical data obtained

in [17, 21] with unimproved actions have large discretization errors which have been corrected for

by renormalizing the raw data with the known discretization errors in the infinite temperature
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limit. Experience gained in calculations of thermodynamic quantities in the pure SU(3) gauge

theory suggests that in the temperature range of a few times T0 this procedure overestimates the

importance of cutoff effects by a factor two or so [100].

4.2 The quark number density

Next we discuss the quark number density nq and its fluctuations. Starting from the definition (4.2),

we can write an equation for the quark number density nq analogous to (4.5):

nq
T 3

=
N2
τ

N3
σ

µ
∂2 lnZ

∂µ2
+

1

6

N2
τ

N3
σ

µ3 ∂
4 lnZ

∂µ4
+ · · · . (4.13)

It is also possible to interpret derivatives of p with respect to µq in terms of the various susceptibil-

ities giving information on number density fluctuations [20]. We define quark number (q), isospin

(I) and charge (C) susceptibilities as follows:

χq
T 2

=

(

∂

∂(µu/T )
+

∂

∂(µd/T )

)

nu + nd

T 3
, (4.14)

χI

T 2
=

1

4

(

∂

∂(µu/T )
− ∂

∂(µd/T )

)

nu − nd

T 3
, (4.15)

χC

T 2
=

(

2

3

∂

∂(µu/T )
− 1

3

∂

∂(µd/T )

)

2nu − nd

3T 3
. (4.16)

Quark and baryon number susceptibilities are related by χB ≡ ∂nB/∂µB = 3−2χq. Any difference

between χq and 4χI is due to correlated fluctuations in the individual densities of u and d quarks.

With the choice µu = µd = µq = µa−1, mu = md, which approximates the physical conditions at

RHIC, χq can then be expanded in terms of quantities already used in the calculation of p and nq:

χq
T 2

∣

∣

∣

∣

µq=0

≡ 1

T 2

∂nq
∂µq

=
Nτ
N3
σ

∂2 lnZ

∂µ2
;

∂2(χq/T
2)

∂(µq/T )2

∣

∣

∣

∣

µq=0

=
1

NτN3
σ

∂4 lnZ

∂µ4
, (4.17)

whereas the expansion of χI is determined by the following expectation values:

χI

T 2

∣

∣

∣

∣

µq=0

=
Nτ
4N3

σ

〈

2

4

∂2(ln detM)

∂µ2

〉

, (4.18)

∂2(χI/T
2)

∂(µq/T )2

∣

∣

∣

∣

µq=0

=
1

4N3
σNτ

[

〈

2

4

∂4(ln detM)

∂µ4

〉

+ 2

〈

(

2

4

)2
∂3(ln detM)

∂µ3

∂(ln detM)

∂µ

〉

+

〈

(

2

4

)2(
∂2(ln detM)

∂µ2

)2
〉

+

〈

(

2

4

)3
∂2(ln detM)

∂µ2

(

∂(ln detM)

∂µ

)2
〉

−
[

〈

2

4

∂2(ln detM)

∂µ2

〉

+

〈

(

2

4

∂(ln detM)

∂µ

)2
〉]

〈

2

4

∂2(ln detM)

∂µ2

〉

]

, (4.19)
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where we have explicitly set nf = 2. Charge fluctuations are then given by the relation

χC

T 2
=

1

36

χq
T 2

+
χI

T 2
+

1

6

(

∂(nu/T
3)

∂(µu/T )
− ∂(nd/T

3)

∂(µd/T )

)

, (4.20)

where the third term vanishes for µu = µd, mu = md.

Figure 4.5a shows the quark number density nq evaluated using Equation (4.13). As µq

increases, nq rises steeply as the QGP phase is entered; for reference, if the quark number density

in nuclear matter is denoted n̄q, then the ratio n̄q/T
3
0 ≈ 0.75. Our results are numerically very

similar to those obtained using exact reweighting in [17], where a mass ma ≈ 0.1 for the light quark

flavors was used. Note that a significant quark mass dependence for nq was observed in [19], and

indeed is present even in the SB limit as described in Section 2.4; however analysis of the SB limit

suggests that the difference between the chiral limit and m/T = 0.4 is about 4%. In Figure 4.5(b)

we show the result of eliminating µq in favour of nq via

∆
( p

T 4

)

=
1

4c2

( nq
T 3

)2

− 3c4
16c42

(nq
T 3

)4

+O
( nq
T 3

)6

. (4.21)

The relation (4.21) approximates the “true” equation of state in terms of physically measurable

quantities; we have plotted the resulting ∆(p/T 4) against (nq/T
3)2 up to the point where the ratio

of the magnitude of the second term of (4.21) to that of the first is 40%: the point nq/T
3 =

√

2c32/3c4 where the ratio is 50% marks a mechanical instability ∂p/∂nq = 0, which is an artifact

due to the truncation of the series. Stability of the equilibrium state under local fluctuations δnq

requires ∂p/∂nq > 0, an example of Le Châtelier’s principle. As T/T0 increases through unity, the

equation of state changes from a form resembling the low-T SB limit p ∝ n
4/3
q to the stiffer p ∝ n2

q

characteristic of the high-T SB limit. Interestingly enough, to the order we have calculated the

instability artifact sets in at µq/T ≃ 1.4 for T large, but at µq/T ≃ 0.4 for T ≈ T0, thus providing

an independent, and more stringent, limit to the physical validity of our approach, and reflecting

the importance of contributions from higher orders in the Taylor expansion close to Tc(µq).

Next, in Figure 4.6 we plot the expansion coefficients corresponding to the various suscepti-

bilities defined in (4.14-4.16). For T<∼T0 there is a significant difference between χq(µq = 0) and

4χI(µq = 0), implying anti-correlated fluctuations of nu and nd which rapidly decrease in magni-

tude above T0 and vanish as T approaches the infinite temperature SB limit‡. In the same limit the

‡There has recently been a discussion whether the difference (4χI−χq)/T 2 is exactly zero in the high temperature

phase, as suggested by some lattice calculations [102], or just small but non-zero, as found in perturbative calculations

[103]. We find that the difference stays non-zero but decreases by one order of magnitude between T ≃ T0 and

T ≃ 1.5T0. At T ≃ 1.36T0 we find a value of 0.0066(28) for this difference calculated in 2-flavor QCD which clearly

disagrees with the quenched result (2±4) ·10−6 presented in [102] as well as the recent 2-flavor results of this group

[21]. Our results are, however, in agreement with the findings of Reference [104]. At T ≃ 2T0 the numerical value
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Figure 4.4: The equation of state correction ∆(p/T 4) vs. T/T0 for (a) various µq/T , and (b)

various µq/T0.
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Figure 4.6: Susceptibilities (a) χi/T
2|µq=0, and (b) ∂2χi/∂µ

2
q|µq=0 as functions of T/T0.

charge susceptibility χC approaches the value 5
18χq. The critical singularity in 4χI and χC is weaker

than that of χq, which can be traced back to the differing coefficients of 〈(∂2 ln detM/∂µ2)2〉, the

dominant term in the vicinity of Tc, in the definitions (4.7) and (4.19). The dimensionless quan-

tity TχC/s, where s = (ǫ + p − µqnq)/T is the entropy density, can be related to event-by-event

fluctuations in charged particle multiplicities in RHIC collisions, and has been proposed as a signal

for QGP formation [106]. Event-by-event fluctuations in baryon number have also recently been

discussed in [107].

In Figure 4.7 the relation (4.17) and data of Figure 4.1 have been used to plot the dimensionless

quark number susceptibility χq/T
2 as a function of T/T0 for various µq/T . The peak which develops

in χq as µq increases is a sign that fluctuations in the baryon density are growing as the critical

endpoint in the (µ, T ) plane is approached. Physically, this shows that at the critical point, as

well as strong fluctuations in the (ψ̄ψ) bilinear expected at a chiral phase transition there are

also fluctuations in (ψ̄γ0ψ) since Lorentz symmetry is explicitly broken by the background baryon

charge density. For quantities such as nq and χq defined as higher derivatives of the free energy

with respect to µq, the relative importance of the higher order terms in the Taylor series expansion

is increased; for example, at T ≃ T0 and µq/T = 1 the quadratic contribution to χq(µq) is about

3 times that of the leading order term. For this reason we do not expect the data of Figure 4.7

of this difference drops below our current error level of about 2 · 10−3. In the high temperature limit this error is

thus not yet small enough to discuss numerical effects at the level of 10−4 as suggested in the discussion presented

in [105].
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Figure 4.7: χq/T
2 as a function of T/T0 for various µq/T .

to be quantitatively accurate in the critical region. Note, however, that at each temperature the

expansions for p, nq and χq all have the same radius of convergence.

4.3 The energy density

Finally we discuss the energy density ǫ, most conveniently extracted using the conformal anomaly

relation

ǫ− 3p

T 4
= − 1

V T 3

[

a
∂β

∂a

∂ lnZ

∂β
+ a

∂m

∂a

∂ lnZ

∂m

]

, (4.22)

where β and m are the bare coupling and quark mass respectively. In fact, for µ 6= 0 the derivation

of this expression needs careful discussion. Start from the defining relation

Ω = E − TS − µqNq = −pV = −T lnZ , (4.23)

where S is entropy. For a Euclidean action S = S(β,m, µ) defined on an isotropic lattice of spacing

a we have the identity

a
dS

da
= 3V

∂S

∂V
− T

∂S

∂T
. (4.24)
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It follows that

V
∂Ω

∂V
= V T

〈

∂S

∂V

〉

= −pV (4.25)

T
∂Ω

∂T
= Ω + T 2

〈

∂S

∂T

〉

= −TS = Ω − E + µqNq (4.26)

implying

ǫ− 3p− µqnq =
T

V

〈

a
∂S

∂a

〉

= −T

V

[

a
∂β

∂a

∂ lnZ

∂β
+ a

∂m

∂a

∂ lnZ

∂m
+ a

∂µ

∂a

∂ lnZ

∂µ

]

(4.27)

where we have allowed for the dependence of the lattice action on all bare parameters. Since

however µ ≡ µqa, and a parameter multiplying a conserved charge experiences no renormalization,

the third terms on each side cancel leaving the relation (4.22).

Taylor expansion of (4.22) about µ = 0 leads to the expression

∆

(

ǫ− 3p

T 4

)

= − a
∂β

∂a

N3
τ

N3
σ

[

1

2
µ2 ∂

3 lnZ

∂β∂µ2
+

1

24
µ4 ∂

5 lnZ
∂β∂µ4

+ · · ·
]

− a
∂m

∂a

N3
τ

N3
σ

[

1

2
µ2 ∂

3 lnZ

∂m∂µ2
+

1

24
µ4 ∂

5 lnZ
∂m∂µ4

+ · · ·
]

. (4.28)

The beta function a(∂β/∂a) may be estimated by measurements of observables at (T, µq) = (0, 0);

the factor a(∂m/∂a) is poorly constrained by current lattice data but vanishes in the chiral limit,

so is frequently neglected. In order to assess the magnitude of the resulting error, it is nonetheless

useful to calculate all the derivative terms. They may be estimated using the formulæ

∂〈O〉
∂β

=

〈

O
(

−∂Sg
∂β

)〉

− 〈O〉
〈

−∂Sg
∂β

〉

; (4.29)

∂〈O〉
∂m

=

〈

∂O
∂m

〉

+

〈

Onf
4

∂(ln detM)

∂m

〉

− 〈O〉
〈

nf
4

∂(ln detM)

∂m

〉

. (4.30)

The derivative ∂Sg/∂β is, of course, simply the combination of plaquettes comprising the gauge

action itself, and derivatives with respect to m can be evaluated using

∂n+1(ln detM)

∂m∂µn
=
∂n( Tr M−1)

∂µn
. (4.31)

The implementation of the second square bracket in (4.28) in terms of lattice operators is straight-

forward but unwieldy; for reference the non-vanishing terms are listed in Appendix C.3.

The Taylor expansion of the energy density involves derivatives of the expansion coefficients

cp(T ) used to calculate the pressure,

∆

(

ǫ− 3p

T 4

)

=
∞
∑

p=1

c′p(T )

(

µq
T

)p

, (4.32)
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Figure 4.8: Derivatives necessary for calculating the response of the energy density ǫ to in-

creasing chemical potential (µq): (a) (2V T 3)−1 · ∂3 lnZ/∂β∂(µq/T )2 (circles) and −(2V T 3)−1

· ∂3 lnZ/∂m∂(µq/T )2 (diamonds), and (b) (24V T 3)−1 · ∂5 lnZ/∂β∂(µq/T )4 (circles) and

−(24V T 3)−1 · ∂5 lnZ/∂m∂(µq/T )4 (diamonds).

with c′p(T ) = T (dcp(T )/dT )|µq=0. It is apparent from the temperature dependence of the expansion

coefficients c2(T ) and c4(T ) shown in Figure 4.1 that the coefficients c′p(T ) can become large in

the vicinity of T0. On the other hand that figure also shows that c′p(T ) will be small, i.e. close to

zero, at high temperature as expected in the ideal gas limit. A comparison with Equation (4.28)

shows that the numerical evaluation of c′p(T ) requires the knowledge of lattice beta-functions and a

calculation of mixed derivatives of lnZ with respect to µ as well as β and m. In Figure 4.8 we plot

these derivative terms; the signals in this case are much noisier than for ∂n lnZ/∂µn, although we

have been able to check that the numerical values for ∂3 lnZ/∂β∂µ2 are consistent with the slope

of the curve in Figure 4.1(a). It is clear firstly that with the exception of ∂3 lnZ/∂m∂µ2 the signal

only differs significantly from zero in the immediate neighborhood of the transition, and secondly

that derivatives with respect to m are strongly anti-correlated with those with respect to β. The

latter suggests it might be possible to learn something from Equation (4.28) about the shape of

the ∆((ǫ− 3p)/T 4) curve as a function of T/T0 away from the chiral limit even in the absence of

quantitative information about a∂m/∂a.

Consider however ignoring mass derivatives and focusing on those performed with respect to

coupling. In this case all derivatives are consistent with zero for T>∼1.2 T0; i.e. the difference

∆
(

(ǫ− 3p)/T 4
)

is to a good approximation independent of µq for these high temperatures. This
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observation is consistent with the results obtained by using exact reweighting in [17]. Consider now

temperatures close to T0. The beta function at the critical βc has the value a−1da/dβ = −2.08(43)

[12]; substituting the derivatives from Figure 4.8 in Equation (4.28) we find at T0

∆

(

ǫ− 3p

T 4

)

≈ (4.8 ± 1.2) ×
(µq
T

)2

− (5 ± 4) ×
(µq
T

)4

+ · · · (4.33)

Taking the central values of the coefficients in this expansion one may conclude that the ratio

c′2/c
′
4 is comparable with c2/c4. At present the large error on the coefficient of the (µq/T )4 term,

however, does not allow a firm conclusion on the convergence radius of the expansion of ǫ−3p. We

also note that the coefficient c′4 will change sign for T ∼ T0. This suggests that large cancellations

can occur for µq/T ∼ O(1) and indicates that higher order terms are needed to determine this

difference reliably. In any event, it would appear that extending our current analysis to determine

energy and entropy densities (ǫ, s) in the critical region will be far more demanding.

4.4 The resonance gas

A realistic description of the hadronic phase (T < T0) is achieved by a hadronic resonance gas.

The resonance gas was shown to provide a quite satisfactory description of particle production in

heavy ion collisions [11, 86, 108, 109, 110], and recently also of the equation of state at µq = 0 [111]

and µq 6= 0 [112]. It contains the relevant degrees of freedom of the confined, strongly interacting

matter and implicitly includes interactions that result in resonance formation [113].

Since the resonance gas is non interacting, the partition function can be expressed as a sum

over one-particle partition functions Z1
i of all massive states,

lnZ(T, V, µ) =
∑

i

lnZ1
i (T, V, µ) . (4.34)

Due to this factorization of the partition function the energy density and the pressure of the hadron

resonance gas are also expressed as a sum over single particle contributions ǫ1i and P 1
i respectively:

ǫ =
∑

i

ǫ1i , P =
∑

i

P 1
i . (4.35)

To complete the discussion of the single particle contributions, we give here the energy density ǫ1i ,

the interaction measure ∆1
i and the particle density n1

i of particle i,

ǫ1i
T 4

=
gi

2π2

(mi

T

)3 ∞
∑

l=1

(−η)l+1l−1

[

3K2(lmi/T )

lmi/T
+K1(lmi/T )

]

(zl + z−l) ,

∆1
i ≡ ǫ1i − 3P 1

i

T 4
=

gi
2π2

(mi

T

)3 ∞
∑

l=1

(−η)l+1l−1K1(lmi/T ) (zl + z−l) ,

n1
i

T 3
=

gi
2π2

(mi

T

)2 ∞
∑

l=1

(−η)l+1l−1K2(lmi/T )(zl − z−l) , (4.36)
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the pressure was given in Equation (2.55). Here, mi is the particle mass, gi the isospin degeneracy

factor, and K1, K2 are modified Bessel functions. Note that the formulation (4.36) is for both,

bosons and fermions. Thus we have η = −1 for all mesonic states and η = 1 for all baryonic states;

consequently the fugacity z is given by z = exp{Biµ/T } with baryon number Bi. By taking only

the first term of the series (4.36) one obtains the Boltzmann approximation, respectively. Although

the interaction is implicitly encoded in the resonance formation, the implementation of a hard core

repulsion, i.e., a van der Waals-type interaction, is rather easy to achieve, by taking corrections

from the excluded volume into account. The thermodynamically consistent approach proposed in

[114, 115] is

P excl.(T, µ) = P id.gas(T, µ̂) , with µ̂ = µ− veigen p
excl.(T, µ) , (4.37)

where veigen = 4 4
3πR

3 is the eigenvolume of a particle with radius R.

Already in 1965 it was noticed by Hagedorn [113] that an exponentially increasing density

of states would lead to a divergent partition function, which is known as the Hagedorn limiting

temperature. By using all mesonic and baryonic resonances up to 1.8 GeV and 2.0 GeV respectively,

which amounts to 1026 resonances, one has no divergence but finds a rapid rise of the energy

density at a temperature of about 160 MeV. The temperature dependence of the energy density

and interaction measure from Equations (4.35)-(4.36) at µq = 0 are plotted in Figure 4.9(a),(b).

Moreover it was recently shown in [111] that the lattice data from [74] agree quite well with the

resonance gas, although the lattice calculations are not yet performed with the correct quark mass

spectrum realized in nature. To compare the resonance gas with the lattice data a parameterization

of the hadron spectrum was introduced in [111], based on the MIT-bag model [116, 117]. Using this

parameterization the unphysical hadron spectrum on the lattice can be modeled in the resonance

gas.

In Figure 4.9(c) we show the resonance gas results for χq/T
2 in comparison with the Taylor

expanded lattice data for various values of µq/T . Here also the resonance gas was calculated in

next-to-leading order in µq/T . An interesting feature is, that the Boltzmann approximation is

applicable in the regime µq<∼T<∼200 MeV. The heavy baryonic bound states are thus the relevant

degrees of freedom for the finite µq corrections to the equation of state. This becomes clear from the

fact that form>∼mN and T<∼200 MeV the Bessel functions appearing in Equations (4.36) can always

be approximated by the expansion valid for large arguments, e.g., K2(x) ≃
√

π/2x exp{−x}. This

shows, that higher order terms in the fugacity expansion are suppressed by factors exp{−l(m −
µB)/T }. As long as (mN − µB)>∼T the contribution of baryons to the resonance gas partition

function is well approximated by the leading term in the fugacity expansion.
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Figure 4.9: Comparison of the QCD equation of state from the lattice (points) and from the

resonance gas (lines): (a) The energy density ǫ at µq = 0 in units of T 4 calculated on the lattice

with (2+1) quark flavors [13] as a function of the T/Tc ratio and (b) the corresponding results for

the interaction measure (ǫ−3P )/T 4. The baryon number susceptibility χq/T
2 for various values of

quark chemical potential (µq/T = 0, 0.4, 0.6, 0.8, 1.0) and in next-to-leading order approximation

in µq/T (c), and the comparison between the full expression and the next-to-leading approximation

for µq/T = 1, as a function of T/T0.
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Further on, the resonance gas results suggests that the truncation error is about 15% for

∆(p/T 4). The truncation of the Taylor expansion is, however, more severe in the calculations of

the quark number susceptibility as the expansion stops here already at O((µq/T )2). Here errors of

about 80% occur at µq/T = 1, as can be seen in Figure 4.9(d). The major part of this truncation

error could be removed by calculating the O((µq/T )6) contribution to ∆p/T 4. More important

seem to be systematic errors resulting from the distortion of the hadron mass spectrum due to the

use of too heavy quarks in the present lattice calculation of the equation of state.

The resonance gas and resulting statistical models have been able to describe much more

characteristics of particle production in heavy ion collisions, for a recent review see for instance

[118]. Finally note, that the resonance gas is only a description of the hadronic phase and does

not incorporate a phase transition in any way. A simple phenomenological model that includes a

parameterization of the confinement effect, and thus contains a phase transition, was proposed in

Reference [119]. In the high temperature plasma phase (T > Tc), the lattice data for the equation

of state from Reference [17] was recently successfully described in the framework of quasi-particle

models [120, 121, 122].
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Chapter 5

Summary and Conclusions

In this thesis we studied QCD thermodynamics and investigated the QCD phase diagram. In

this context, existing results for vanishing quark chemical potential (µq) have been verified and

extended to small but non-zero µq via Taylor expansion or reweighting.

Through an analysis of Binder cumulants we have verified that the chiral critical point in three

flavor QCD belongs to the universality class of the three dimensional Ising model. Although the

chiral condensate itself is not the order parameter at this critical point one has reasons to believe

[8] that Binder cumulants constructed from it are little influenced by finite volume effects and are

good observables to locate the critical point as well as the universality class. This study has been

done with unimproved staggered fermions, however, the universal properties of the QCD critical

point are not expected to change with the reduction of cutoff effects.

Having determined the universality class of the chiral critical point for three degenerate quark

masses we could use this information to determine the critical parameters also for non-degenerate

quarks from calculations of Binder cumulants on finite lattices. As the chiral critical line corre-

sponds to those sets of quark masses where the Binder cumulant attains the 3-d Ising value one has

to determine the line on which B4(0) stays constant in the (mu,d,ms)-plane. A first order Taylor

expansion of B4(0) in terms of degenerate up/down quark masses mu,d and a strange quark mass

ms around the three flavor critical point m̄ = 0.033 made it possible to confirm that to leading

order the critical line is indeed given by

ms = m̄− 2 (mu,d − m̄) , (5.1)

or in terms of the pseudoscalar meson masses mπ and mK ,

m2
K = m̄2

π − 1

2
(m2

π − m̄2
π) . (5.2)
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This is consistent with the results of [68] where no sign for a first order transition has been found

for (mu,d,ms) = (0.025, 0.1) and is also not in contradiction with [123] where a “weak first order

like behavior” at (mu,d,ms) = (0.025, 0.05) was reported as opposed to two state signals at lower

ms values. Higher order terms in the Taylor expansion of the critical line are easily accessible

by measuring higher order derivatives of Tr M−1 with respect to the quark masses. With those

terms it will be possible in future to study the validity range of the leading order approximation of

the critical line. Furthermore, it might be possible to investigate how the critical line approaches

the strange quark axis, in the chiral limit of up and down quark mass. This could provide a first

estimate for the location of the QCD tri-critical point.

The 3-flavor chiral critical point has been determined in calculations with unimproved as well

as improved gauge and staggered fermion actions on lattices with temporal extent Nτ = 4. The

physical scale extracted from calculations of the pseudoscalar meson mass at these endpoints is

quite different in both cases. We obtain with the p4 improved action a critical pion mass of mπ =

67(17) MeV, which is only about 24% of the value found in calculations with unimproved actions.

This indicates that cutoff effects are still significant and calculations closer to the continuum limit

are definitely needed to fix a physical scale for the location of the chiral critical point. A critical

pion mass of mπ = 67(17) is, however, compatible with the result we obtained from a mean-field

calculation within the SU(3)L × SU(3)R linear sigma model. Our findings thus strongly suggest

that the transition in the physically realized case of two light and a heavier strange quark is

neither first nor second order, but a smooth crossover between the high temperature and the low

temperature phase.

Moreover, we have proposed a new method to investigate the thermodynamic properties of

QCD at non-vanishing chemical potential µ. This method, which is based on a Taylor expansion

in µ, enabled us to extend our discussion of the critical line to non vanishing chemical potential.

The critical line then becomes a critical surface of constant B4(0), in the parameter space of quark

masses and chemical potential. From an analysis of the Binder cumulant B4(0) as a function of

chemical potential, for 3-flavor calculations at mπ ≈ 172 MeV, we obtained a critical up and down

quark chemical potential of µ̄u,d = 52(10) MeV. Assuming the slope of −1/2 for the critical line in

the (m2
π,m

2
K)-plane at µ = 0, we could approximate the critical surface by the parameterization

µ̄2
u,d = 0.109(36) · 1

3

(

m2
π + 2m2

K − 3m̄2
π(0)

)

. (5.3)

From this estimate we obtained at the physical point a critical chemical potential of µu,d = 135(21)

MeV, corresponding to a baryon chemical potential of µB = 404(62) MeV. For the mass point

(mπ,mK) = (300, 500) MeV, we obtain µq = 144(22) MeV, while in Reference [9] µq = 240 MeV
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was found from calculations with unimproved actions. This again indicates the importance of

cutoff effects.

By computing the chiral susceptibility and the Polyakov loop susceptibility for two and three

flavors of p4 improved staggered fermions, we have been able to estimate the dependence of βc,

and hence the critical temperature Tc, on µ on moderately large volumes, thus reinforcing the

recent advances of lattice QCD calculations in the interior of the (µq, T ) plane [61]. We find that

Tc decreases as µ increases, i.e., it can be described by

Tc
T0

= 1 − 0.070(35)
(µu,d
T

)2

, (5.4)

for 2-flavor of p4 improved fermions on a 163 × 4 lattice and m = 0.1. This is in broad agreement

with estimates based on exact reweighting [9] and analytical continuation of results obtained by

simulation with imaginary µ [10]. Between 2 and 3-flavor QCD no significant difference was found

for Tc(µ), however, we have hints that the slope of the transition line indeed becomes steeper

with decreasing quark masses. The results suggest that the deviation of Tc from its value at

µ = 0 is small in the interesting region for heavy-ion collisions at RHIC. Moreover, there exists a

large region in the (T, µ)-parameter space for µB>∼0.4 GeV where the phenomenological freeze-out

temperature Tf (µ) [86] is significantly lower than the critical temperature Tc(µ). This gives the

chance to experimentally observe a strongly interacting hadron gas and is a strong motivation for

future GSI experiments.

An unresolved issue is the validity range of our Taylor expanded reweighting method. We have

been able to estimate the complex phase of the fermion determinant for a 163×4 lattice and found

that the sign problem is not serious in the range µu,d/T < 0.1-0.4 for m = 0.005-0.1, covered by

this study. This region rapidly shrinks with increasing volume, and it is not yet clear if a reliable

extrapolation to the thermodynamic limit can be performed on the basis of reweighted data.

Furthermore, we have presented the first Monte Carlo calculation of the QCD equation of state

at non-zero quark chemical potential within the analytic framework, here no reweighting has been

performed. As in our investigations of the phase diagram, we have exploited the relative simplicity

of a Taylor expansion in µ to explore larger physical volumes than those used in comparable studies

[17, 21]. In addition, the compatibility of our method with the use of an improved lattice fermion

action has meant that our results suffer from relatively mild discretization artifacts, our data for

the pressure correction ∆p(µq) reach 80% of the Stefan-Boltzmann value by T ≃ 2T0.

Our results for ∆p and its µ-derivatives, nq and the various susceptibilities χi, are in good

qualitative agreement with those of [17, 21]. Higher derivatives suffer from larger truncation errors,

and are inherently noisier when estimated by Monte Carlo simulation. Since we have calculated
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the Taylor series for ∆p up to O((µq/T )4), the series for, say, χq already terminates at O((µq)
2).

Resonance gas calculations suggest truncation errors for ∆p of about 15% while they can reach

about 80% for χq. Thus the results for χq are thus less quantitatively reliable than those for ∆p;

nonetheless the singularity developing in χq as µq is increased, seen in Figure 4.7, is evidence for

the presence of a critical endpoint in the (µq, T ) plane, and for the importance of quark number

fluctuations in its vicinity.

The calculation of fourth order derivatives has enabled us to estimate the limitations of our

method, both analytically through the radius of convergence of the Taylor expansion in µq/T , and

physically via the requirement of mechanical stability (Le Châtelier’s principle). For both criteria

the most stringent bounds are reached unsurprisingly in the vicinity of the critical line, where the

convergence of the series limits us to µq/T<∼1, and mechanical stability of the equilibrium state to

µq/T<∼0.5. Of course, the picture should change with the inclusion of still higher derivatives since

on physical grounds we expect stability of the equilibrium state everywhere within the domain of

convergence. We are currently investigating the feasibility of including the relevant O(µ6) terms

in our calculation.

Other quantities of phenomenological importance such as the energy ǫ and entropy s densities,

which require mixed derivatives with respect to the other bare parameters β and m, appear more

difficult to calculate with quantitative accuracy with this approach. It remains an open question

whether the radius of convergence for these quantities is the same as that for quantities defined by

series in ∂nΩ/∂µn.

Finally, it is necessary to stress the importance of refining the current calculation, firstly by

simulating systems withNτ ≥ 6 so that a reliable extrapolation to the continuum can be performed,

and secondly by repeating it with a realistic spectrum of 2+1 fermion flavors.
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Appendix A

The pressure of free staggered

fermions

Expanding the quantity p/T 4 as discussed in section 2.4 one finds

p

T 4

∣

∣

∣

Nτ

= nf

∞
∑

i=0

Ci
∣

∣

∣

Nτ

(µ

T

)i

=
3

8
nf

[ ∞
∑

i=0

(

N3−i
τ

(2π)3

∫ 2π

0

d3~p
∑

p4

ci(p)

)

(µ

T

)i

− N4
τ

(2π)4

∫ 2π

0

d4p c0(p)

]

. (A.1)

Here only the even expansion coefficients give non-vanishing contributions. Introducing the abbre-

viation,

D = 4
∑

µ

f2
µ(p) , (A.2)

with fµ(p) as given in (2.60), the even expansion coefficients for the standard action are given by:

c0 = ln(D) , (A.3)

c2 =
1

4D2

(

1 − 4D cos(2p4) − cos(4p4)
)

, (A.4)

c4 =
1

96D4

(

− 9 + 8D2 − 8D(−3 + 4D2) cos(2p4)

+(12 − 56D2) cos(4p4) − 24D cos(6p4) − 3 cos(8p4)
)

, (A.5)

c6 =
1

2880D6

(

150 − 180D2 + 32D4 − 8D(45 − 60D2

+16D4) cos(2p4) + (−225 + 960D2 − 992D4) cos(4p4)

+540D cos(6p4) − 1440D3 cos(6p4) + 90 cos(8p4)

−780D2 cos(8p4) − 180D cos(10p4) − 15 cos(12p4)
)

. (A.6)
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For the Naik action we introduce an additional function,

g4(p) ≡ −idf4(~p, p4 − iµ)

dµ

∣

∣

∣

∣

µ=0

= − 9

16
cos(p4) +

3

48
cos(3p4) . (A.7)

The even expansion coefficients can then be written as:

c0 = ln(D) , (A.8)

c2 =
−2

3D2

(

− 6Df2
4 (p) + 6Dg2

4(p) − 48f2
4 (p)g2

4(p)

+Df4(p) sin(3p4)
)

, (A.9)

c4 =
1

36D4

(

48
(

− 768f4
4 (p)g4

4(p) +D3
(

f2
4 (p) − g2

4(p)
)

−192Df2
4 (p)g2

4(p)
(

f2
4 (p) − g2

4(p)
)

+D2
(

− 6f4
4 (p)

+44f2
4 (p)g2

4(p) − 6g4
4(p)

))

− 24D2
(

D − 8f2
4 (p)

)

g4(p) cos(3p4)

−32Df4(p)
(

D2 − 3Df2
4 (p) + 9Dg2

4(p) − 48f2
4 (p)g2

4(p)
)

sin(3p4)

+D2
(

D − 8f2
4 (p)

)

sin2(3p4)
)

, (A.10)

c6 =
1

1620D6

(

− 720D2g4(p)
(

D3 + 768f4
4 (p)g2

4(p) +D2
(

− 26f2
4 (p)

+6g2
4(p)

)

+ 96D
(

f4
4 (p) − 2f2

4 (p)g2
4(p)

))

cos(3p4)

−45D4
(

D − 8f2
4 (p)

)

cos2(3p4) − 96Df4(p)
(

8D4 + 46080f4
4 (p)g4

4(p)

−75D3
(

f2
4 (p) − 3g2

4(p)
)

+ 60D2
(

3f4
4 (p) − 50f2

4 (p)g2
4(p) + 15g4

4(p)
)

+2880D
(

3f4
4 (p)g2

4(p) − 5f2
4 (p)g4

4(p)
))

sin(3p4) + 15D2
(

5D3

+4608f4
4 (p)g2

4(p) +D2
(

− 76f2
4 (p) + 36g2

4(p)
)

+ 192D
(

f4
4 (p)

−6f2
4 (p)g2

4(p)
))

sin2(3p4) + 10D3f4(p)
(

3D − 16f2
4 (p)

)

sin3(3p4)

+72
(

4
(

245760f4(p)
6
g6
4(p) +D5

(

f2
4 (p) − g2

4(p)
)

+92160Df4
4 (p)g4

4(p)
(

f2
4 (p) − g2

4(p)
)

− 2D4
(

15f4
4 (p) − 94f2

4 (p)g2
4(p)

+15g4
4(p)

)

+ 120D3
(

f6
4 (p) − 23f4

4 (p)g2
4(p) + 23f2

4 (p)g4
4(p) − g6

4(p)
)

+960D2
(

9f6
4 (p)g2

4(p) − 34f4
4 (p)g4

4(p) + 9f2
4 (p)g6

4(p)
))

−5D3f4(p)
(

3D − 16f2
4 (p)

)

g4(p) sin(6p4)
)

)

. (A.11)

To simplify the expressions for the p4 action we define the expansion coefficients recursively and

thus also list the odd expansion coefficients. However, after integration over the momenta also in

this case only even powers of µ/T contribute to the expansion of the pressure. Introducing further

abbreviations,

Sµ =
∑

ν 6=µ
sin2(pν) and c̄k = −ick , (A.12)
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the expansion coefficients for the p4 action can be written as

c0 = ln(D) , (A.13)

c1 = − i

6D

(

− S1 − S2 − S3 + 6S2
4 + S1 cos(2p1) + S2 cos(2p2)

+S3 cos(2p3)
)

sin(2p4) , (A.14)

c2 =
1

18D

(

9Dc̄21 + 6
(

3S2
4 − S1 sin2(p1) − S2 sin2(p2)

−S3 sin2(p3)
)

sin2(p4) − 2 cos2(p4)
(

9S2
4

+ sin2(p1)
(

− 3S1 + sin2(p4)
)

+ sin2(p2)
(

− 3S2 + sin2(p4)
)

+ sin2(p3)
(

− 3S3 + sin2(p4)
)))

, (A.15)

c3 =
i

18D

(

3Dc̄1
(

c̄21 − 6c2
)

−
(

− 3 + cos(2p1) + cos(2p2)

+ cos(2p3)
)

cos3(p4) sin(p4) − 2 cos(p4) sin(p4)
(

12S2
4

+ sin2(p1)
(

− 4S1 + sin2(p4)
)

+ sin2(p2)
(

− 4S2 + sin2(p4)
)

+ sin2(p3)
(

− 4S3 + sin2(p4)
)))

, (A.16)

c4 =
1

216D

(

6 cos4(p4)
(

sin2(p1) + sin2(p2) + sin2(p3)
)

−3
(

3D
(

c̄41 − 12c̄21c2 + 12c22 − 24c̄1c̄3
)

+ 8
(

− 3S2
4 + S1 sin2(p1)

+S2 sin2(p2) + S3 sin2(p3)
)

sin2(p4) +
(

− 3 + cos(2p1)

+ cos(2p2) + cos(2p3)
)

sin4(p4)) − 4 cos2(p4)
(

18S2
4

+ sin2(p1)
(

− 6S1 + 11 sin2(p1)
)

+ sin2(p2)
(

− 6S2 + 11 sin2(p2)
)

+ sin2(p3)
(

− 6S3 + 11 sin2(p3)
)))

, (A.17)

c5 = − i

360D

(

3D
(

c̄51 − 20c31c2 − 60c̄21c̄3 + 120c2c̄3 + 60c̄1
(

c22 + 2c4
))

+20
(

− 3 + cos(2p1) + cos(2p2) + cos(2p3)
)

cos3(p4) sin(p4)

+8 cos(p4) sin(p4)
(

12S2
4 + sin2(p1)

(

− 4S1 + 5 sin2(p4)
)

+ sin2(p2)
(

− 4S2 + 5 sin2(p4)
)

+ sin2(p3)
(

− 4S3 + 5 sin2(p4)
)))

, (A.18)

c6 = − 1

6480D

(

6 − 9Dc̄61 + 270Dc̄41c2 − 1620Dc̄21c
2
2 + 1080Dc32

+1080Dc̄31c̄3 − 6480Dc̄1c2c̄3 − 3240Dc̄23 − 3240Dc̄21c4

+6480Dc2c4 − 6480Dc̄1c̄5 − 2 cos(2p1) − 2 cos(2p2) − 2 cos(2p3)

+31 cos(2(p1 − 2p4)) + 31 cos(2(p2 − 2p4)) + 31 cos(2(p3 − 2p4))

+24S1 cos(2(p1 − p4)) + 24S2 cos(2(p2 − p4)) + 24S3 cos(2(p3 − p4))

−48S1 cos(2p4) − 48S2 cos(2p4) − 48S3 cos(2p4) + 288S2
4 cos(2p4)

−186 cos(4p4) + 24S1 cos(2(p1 + p4)) + 24S2 cos(2(p2 + p4))

+24S3 cos(2(p3 + p4)) + 31 cos(2(p1 + 2p4))
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+31 cos(2(p2 + 2p4)) + 31 cos(2(p3 + 2p4))
)

. (A.19)

Note that we have defined here the coefficients ci without Nτ factors, which can be found in front

of the integrals in (A.1).
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Appendix B

Tree-level masses in the

SU(3)L × SUR(3) linear sigma model

In Section 3.4 we investigate the chiral Lagrangian given in Equation (3.23). We parametize the

matrix fields Φ(x) according to

Φ(x) =
1√
2

8
∑

a=0

[σa(x) + iπa(x)] λa , (B.1)

where λa are the Gell-Mann matrices with λ0 =
√

2/3diag(1, 1, 1). The σa fields are members of

the scalar (JP = 0+)-nonet and the πa fields are members of the pseudoscalar (JP = 0−)-nonet.

The matrix of scalar fields (Φ + Φ†)/2 is given by

Φ + Φ†

2
=











1√
2
a0
0 + 1√

3
σ0 + 1√

6
σ8 a−0 K∗−

a+
0 − 1√

2
a0
0 + 1√

3
σ0 + 1√

6
σ8 K∗0

K∗+ K∗0 1√
3
σ0 − 2√

3
σ8











, (B.2)

while the matrix of pseudoscalar fields (Φ − Φ†)/2 is

Φ − Φ†

2
=











1√
2
π0 + 1√

3
π0 + 1√

6
π8 π− K−

π+ − 1√
2
π0 + 1√

3
π0 + 1√

6
π8 K

0

K+ K0 1√
3
π0 − 2√

3
π8











. (B.3)

Here, π± ≡ (π1 ± iπ)/
√

2 and π0 ≡ π3 are the charged and neutral pions, respectively. K± ≡
(π4 ± iπ5)/

√
2, K0 ≡ (π6 + iπ7)/

√
2 and K

0 ≡ (π6 − iπ7)/
√

2 are the kaons. In general, because
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the strange quark is much heavier than the up or down quark, the π0 and π8 are admixtures of

the η and the η
′

meson.

The situation with the scalar nonet is not as clear. The parity partner of the pion is the

a0(980) meson, i.e., a±0 ≡ (σ1 ± iσ2)/
√

2 and a0
0 ≡ σ3. We identify the parity partner of the kaon

with the K∗
0 (1430) meson. Finally, in general the σ0 and σ8 are admixtures of the σ [now also

referred to as the f0(400 − 1200)] and f0(980) mesons. Instead of the f0(980) meson, one could

have choosen the f0(1370) meson also.

After shifting the Φ field by its vacuum expectation value (Φ(x) → Φ+Φ
′

(x)), the Lagrangian

can be written as

L = Ωclass(σa, πa)+
1

2

[

∂µσ
′

a∂µσa + ∂µπ
′

a∂µπa + σa(m
2
S)abσb + σa(m

2
P )abσb

]

+L(3)+L(4) ,(B.4)

where Ωclass is the classical tree-level potential and L(3) and L(4) are additional interaction terms,

which are cubic and quartic in the vacuum expectation values. The nonzero elements of the scalar

mass matrix (m2
S)ab are:

(m2
S)00 = −m2

0 +
4 g√

3
σ0 + (12 f1 + 4 f2) σ0

2 + (4 f1 + 4 f2) σ8
2 , (B.5)

(m2
S)11 = (m2

S)22 = (m2
S)33 = −m2

0 −
2 g√

3
σ0 + (4 f1 + 4 f2) σ0

2

+2

√

2

3
g σ8 + 4

√
2 f2 σ0 σ8 + (4 f1 + 2 f2) σ8

2 , (B.6)

(m2
S)44 = (m2

S)55 = (m2
S)66 = (m2

S)77 = −m2
0 −

2 g√
3
σ0 + (4 f1 + 4 f2) σ0

2

−
√

2

3
g σ8 − 2

√
2 f2 σ0 σ8 + (4 f1 + 2 f2) σ8

2 , (B.7)

(m2
S)88 = −m2

0 −
2 g√

3
σ0 + (4 f1 + 4 f2) σ0

2 − 2

√

2

3
g σ8 − 4

√
2 f2 σ0 σ8

+ (12 f1 + 6 f2) σ8
2 , (B.8)

(m2
S)08 = (m2

S)80 =
−2 g√

3
σ8 + (8 f1 + 8 f2) σ0 σ8 − 2

√
2 f2 σ8

2 . (B.9)

While the masses of the a0 and the K∗ meson are given by the (11) and the (44) elements of

the mass matrix, m2
a0

= (m2
S)11, m

2
K∗ = (m2

S)44 the σ and f0 meson masses are obtained by

diagonalising the (08) sector of the mass matrix. We have

m2
σ = (m2

S)00 cos2(θS) + (m2
S)88 sin2(θS) + 2(m2

S)08 cos(θS) sin(θS) , (B.10)

m2
f0 = (m2

S)00 sin2(θS) + (m2
S)88 cos2(θS) − 2(m2

S)08 cos(θS) sin(θS) , (B.11)

where the scalar mixing angle θS is given by

tan(2θS) =
2(m2

S)08
(m2

S)00 − (m2
S)88

. (B.12)
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The nonzero elements of the pseudoscalar mass matrix (m2
P )ab are:

(m2
P )00 = −m2

0 −
4 g√

3
σ0 +

(

4 f1 +
4 f2
3

)

σ0
2 +

(

4 f1 +
4 f2
3

)

σ8
2 , (B.13)

(m2
P )11 = (m2

P )22 = (m2
P )33 = −m2

0 +
2 g√

3
σ0 +

(

4 f1 +
4 f2
3

)

σ0
2

−2

√

2

3
g σ8 +

4
√

2 f2
3

σ0 σ8 +

(

4 f1 +
2 f2
3

)

σ8
2 , (B.14)

(m2
P )44 = (m2

P )55 = (m2
P )66 = (m2

P )77 = −m2 +
2 g√

3
σ0 +

(

4 f1 +
4 f2
3

)

σ2
0

+

√

2

3
g σ8 −

2
√

2 f2
3

σ0 σ8 +

(

4 f1 +
14 f2

3

)

σ2
8 , (B.15)

(m2
P )88 = −m2

0 +
2 g√

3
σ0 +

(

4 f1 +
4 f2
3

)

σ0
2 + 2

√

2

3
g σ8 −

4
√

2 f2
3

σ0 σ8

+ (4 f1 + 2 f2) σ8
2 , (B.16)

(m2
P )08 = (m2

P )80 =
2 g√

3
σ8 +

8 f2
3

σ0 σ8 −
2
√

2 f2
3

σ2
8 . (B.17)

While the masses of the pion and the kaon are given by the (11) and the (44) elements of the mass

matrix, m2
π = (m2

P )11, m
2
K = (m2

S)44 the η
′

and η meson masses are obtained by diagonalising the

(08) sector of the mass matrix. We have

m2
η′

= (m2
P )00 cos2(θP ) + (m2

P )88 sin2(θP ) + 2(m2
P )08 cos(θP ) sin(θP ) , (B.18)

m2
η = (m2

P )00 sin2(θP ) + (m2
P )88 cos2(θP ) − 2(m2

P )08 cos(θP ) sin(θP ) , (B.19)

where the scalar mixing angle θP is given by

tan(2θP ) =
2(m2

P )08
(m2

P )00 − (m2
P )88

. (B.20)
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Appendix C

Simulation details

C.1 Simulation parameters

We used for our simulations the hybrid-R-algorithm [78]. The step size was set to ∆τ = 0.015

for our unimproved calculations and to ∆τ = 0.0025, 0.025 for our p4 improved calculations with

quark mass m = 0.005, 0.1, respectively. In calculations concerning the structure of the QCD phase

diagram, discussed in Chapter 3, the molecular dynamical trajectory length was chosen to τ = 0.675

for the standard action and τ = 0.4, 0.5 for the p4 action at quark mass m = 0.005, 0.1. Within

the calculations of the equation of state (Chapter 4) the analyzed configurations were separated by

τ = 5. The simulation points (m,β), lattice sizes (N3
σ × 4) and number of configurations (Nconf)

are given in Table C.1-C.2. The number of Z2 noise vectors per configuration which have been used

to calculate derivatives of lnZ with respect to quark mass (m) and quark chemical potential (µ)

was set to Nnoise = 25 for calculations with unimproved actions and Nnoise = 15, 50 for calculations

with improved actions. Here the larger number of noise vectors has been used to calculate operators

needed at 4th order in the Taylor expansion (O(µ4), Chapter 4) while the smaller number was

used to calculate the 2nd order expansion coefficients discussed in Chapter 3.

C.2 Remark on the noise method

The calculation of an operator such as ( Tr A)2, where A is a matrix, using the noise method has to

be treated carefully. Because the random noise vectors should be independent for each calculation

of Tr A,

( Tr A)2 = lim
N→∞

1

N

N
∑

a=1

η†aAηa
1

N

N
∑

b=1

η†bAηb = lim
N→∞

1

N(N − 1)

∑

a6=b
η†aAηaη

†
bAηb . (C.1)
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nf = 3

m Nσ β Nconf

0.0300 8 5.138 30000

5.141 34000

5.145 26000

12 5.128 21200

5.140 21200

5.142 21200

5.144 21200

16 5.135 5000

5.140 30000

5.141 10000

5.145 13000

5.150 30000

0.0325 8 5.145 40000

5.147 30000

16 5.145 45000

5.146 43000

0.0350 8 5.148 8000

5.150 30000

5.152 8000

12 5.147 19700

5.149 19700

5.150 19700

5.152 19700

16 5.147 9000

5.1485 25000

5.1495 28000

5.150 30000

nf = 3

m Nσ β Nconf

0.0400 12 5.158 20000

5.160 20000

5.162 20000

5.164 20000

16 5.157 10000

5.159 15000

5.161 10000

nf = 2 + 1

mu,d ms Nσ β Nconf

0.03 0.045 12 5.140 2000

5.150 21850

5.152 25000

5.155 10000

0.03 0.060 12 5.150 2650

5.155 5000

5.160 4700

Table C.1: Simulation points (m,β), lattice sizes (N3
σ × 4) and number of configurations (Nconf)

that have been used for unimproved calculations.
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nf = 3, O(µ2)

m Nσ β Nconf

0.005 12 3.250 3290

3.260 3520

3.270 3610

3.280 3580

16 3.250 4100

3.255 4200

3.260 4500

3.265 5250

3.270 5050

3.275 4000

3.285 2075

0.1 16 3.460 20200

3.470 42300

3.480 40200

3.490 30200

nf = 2, O(µ2)

m Nσ β Nconf

0.1 16 3.640 20000

3.650 38000

3.660 40000

3.670 30000

nf = 2, O(µ4)

m Nσ β Nconf

0.1 16 3.520 1000

3.550 1000

3.580 1000

3.600 1000

3.630 1000

3.650 1000

3.660 1000

3.680 800

3.700 800

3.720 500

3.750 500

3.800 500

3.850 500

3.900 500

3.950 500

4.000 500

Table C.2: Simulation points (m,β), lattice sizes (N3
σ × 4) and number of configurations (Nconf)

that have been used for p4 improved calculations.

This equation can be rewritten as

( Tr A)2 = lim
N→∞





(

1

N

N
∑

a=1

η†aAηa

)2

− ε2(A)



 , (C.2)

where ε(A) is the error due to finite N :

ε2(A) =
1

N − 1







1

N

N
∑

a=1

(

η†aAηa
)2 −

(

1

N

N
∑

a=1

η†aAηa

)2






. (C.3)
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The error decreases as (N − 1)−1 as N increases, but can be significant for small N . Moreover,

ε2(A) is found to be negligible for an operator which always has the same sign such as Tr M−1;

in this case its contribution is about 0.001% for 〈( Tr M−1)2〉 with N = 10. However, for an

operator which changes sign frequently such as Tr [M−1(∂M/∂µ)], the effect of the additional

term is important. We calculate the quark number susceptibility and the value of “STD(Imp.)”

given in Table 2.1 by taking this additional term into account. The difference between “STD” and

“STD(Imp.)” shown in Table 2.1 is the contribution from the additional term.

C.3 Derivatives needed to calculate the energy density

Here we present the non-vanishing terms in the expressions for ∂n+1 lnZ/∂m∂µn:

∂3 lnZ
∂µ2∂m

=

〈

nf
4

∂2 Tr M−1

∂µ2

〉

+ 2

〈

(nf
4

)2 ∂(ln detM)

∂µ

∂ Tr M−1

∂µ

〉

(C.4)

+

〈

(nf
4

)2 ∂2(ln detM)

∂µ2
Tr M−1

〉

+

〈

(nf
4

)3
(

∂(ln detM)

∂µ

)2

Tr M−1

〉

−
[

〈

nf
4

∂2(ln detM)

∂µ2

〉

+

〈

(

nf
4

∂(ln detM)

∂µ

)2
〉]

〈nf
4

Tr M−1
〉

,

∂5 lnZ
∂µ4∂m

=

〈

nf
4

∂4( Tr M−1)

∂µ4

〉

+ 4

〈

(nf
4

)2 ∂3( Tr M−1)

∂µ3

∂(ln detM)

∂µ

〉

(C.5)

+4

〈

(nf
4

)2 ∂3(ln detM)

∂µ3

∂( Tr M−1)

∂µ

〉

+ 6

〈

(nf
4

)2 ∂2(ln detM)

∂µ2

∂2( Tr M−1)

∂µ2

〉

+6

〈

(nf
4

)3 ∂2( Tr M−1)

∂µ2

(

∂(ln detM)

∂µ

)2
〉

+12

〈

(nf
4

)3 ∂2(ln detM)

∂µ2

∂(ln detM)

∂µ

∂( Tr M−1)

∂µ

〉

+4

〈

(nf
4

)4
(

∂(ln detM)

∂µ

)3
∂( Tr M−1)

∂µ

〉

+

〈

(nf
4

)2 ∂4(ln detM)

∂µ4
Tr M−1

〉

+4

〈

(nf
4

)3 ∂3(ln detM)

∂µ3

∂(ln detM)

∂µ
Tr M−1

〉

+3

〈

(nf
4

)3
(

∂2(ln detM)

∂µ2

)2

Tr M−1

〉

+6

〈

(nf
4

)4 ∂2(ln detM)

∂µ2

(

∂(ln detM)

∂µ

)2

Tr M−1

〉

+

〈

(nf
4

)5
(

∂(ln detM)

∂µ

)4

Tr M−1

〉

−
[

〈

nf
4

∂4(ln detM)

∂µ4

〉

+ 4

〈

(nf
4

)2 ∂3(ln detM)

∂µ3

∂(ln detM)

∂µ

〉
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+3

〈

(nf
4

)2
(

∂2(ln detM)

∂µ2

)2
〉

+

〈

(

nf
4

∂(ln detM)

∂µ

)4
〉

+6

〈

(nf
4

)3 ∂2(ln detM)

∂µ2

(

∂(ln detM)

∂µ

)2
〉]

〈nf
4

Tr M−1
〉

−6

[〈

nf
4

∂2( Tr M−1)

∂µ2

〉

+ 2

〈

(nf
4

)2 ∂(ln detM)

∂µ

∂( Tr M−1)

∂µ

〉

+

〈

(nf
4

)2 ∂2(ln detM)

∂µ2
Tr M−1

〉

+

〈

(nf
4

)3
(

∂(ln detM)

∂µ

)2

Tr M−1

〉

−
(

〈

nf
4

∂2(ln detM)

∂µ2

〉

+

〈

(

nf
4

∂(ln detM)

∂µ

)2
〉)

〈nf
4

Tr M−1
〉

]

×
[

〈

nf
4

∂2(ln detM)

∂µ2

〉

+

〈

(

nf
4

∂(ln detM)

∂µ

)2
〉]

.

As explained above, all terms involving the expectation value of an odd number of derivations

with respect to µ have been set to zero. The evaluation of Equations (C.4) and (C.5) requires the

following expressions for the derivatives of trM−1:

∂ Tr M−1

∂µ
= − Tr

(

M−1 ∂M

∂µ
M−1

)

, (C.6)

∂2 Tr M−1

∂µ2
= − Tr

(

M−1 ∂
2M

∂µ2
M−1

)

+ 2 Tr

(

M−1∂M

∂µ
M−1∂M

∂µ
M−1

)

, (C.7)

∂3 Tr M−1

∂µ3
= − Tr

(

M−1 ∂
3M

∂µ3
M−1

)

+ 3 Tr

(

M−1∂
2M

∂µ2
M−1 ∂M

∂µ
M−1

)

(C.8)

+3 Tr

(

M−1∂M

∂µ
M−1∂

2M

∂µ2
M−1

)

− 6 Tr

(

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1

)

,

∂4 Tr M−1

∂µ4
= − Tr

(

M−1 ∂
4M

∂µ4
M−1

)

+ 4 Tr

(

M−1∂
3M

∂µ3
M−1 ∂M

∂µ
M−1

)

(C.9)

+6 Tr

(

M−1∂
2M

∂µ2
M−1 ∂

2M

∂µ2
M−1

)

+ 4 Tr

(

M−1∂M

∂µ
M−1 ∂

3M

∂µ3
M−1

)

−12 Tr

(

M−1 ∂
2M

∂µ2
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1

)

−12 Tr

(

M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2
M−1 ∂M

∂µ
M−1

)

−12 Tr

(

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2
M−1

)

+24 Tr

(

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1

)

.
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Appendix D

Tables of results

from 〈L〉 from
〈

ψ̄ψ
〉

m βpc χ(βpc) B4(0) βpc χ(βpc) B4(0)

0.0000 3.2404(38) 0.344(93) 2.66(54) 3.2443( 5) 25.1(4.0) 2.30(24)

0.0005 3.2456(51) 0.349(82) 2.69(45) 3.2472(25) 23.8(3.8) 2.35(22)

0.0010 3.2528(57) 0.351(77) 2.75(42) 3.2496(29) 22.6(3.7) 2.34(24)

0.0015 3.2572(59) 0.354(72) 2.78(37) 3.2525(29) 21.4(3.5) 2.33(25)

0.0020 3.2599(52) 0.358(70) 2.78(33) 3.2549(28) 20.3(3.3) 2.34(26)

0.0025 3.2595(30) 0.360(68) 2.78(31) 3.2574(25) 19.3(3.2) 2.36(27)

0.0030 3.2600(20) 0.362(67) 2.78(31) 3.2590(23) 18.3(3.1) 2.39(27)

0.0035 3.2611(20) 0.363(66) 2.78(30) 3.2610(20) 17.3(3.0) 2.42(28)

0.0040 3.2630(20) 0.362(65) 2.79(30) 3.2630(18) 16.4(2.9) 2.46(28)

0.0045 3.2644(21) 0.361(64) 2.80(30) 3.2647(18) 15.5(2.8) 2.50(28)

0.0050 3.2663(23) 0.359(63) 2.82(29) 3.2660(18) 14.6(2.6) 2.55(29)

0.0055 3.2675(27) 0.355(62) 2.84(29) 3.2676(19) 13.8(2.5) 2.60(29)

0.0060 3.2690(33) 0.352(61) 2.87(29) 3.2694(21) 13.0(2.4) 2.65(30)

0.0065 3.2689(42) 0.347(61) 2.90(29) 3.2704(25) 12.2(2.2) 2.71(30)

0.0070 3.2691(55) 0.342(60) 2.93(29) 3.2712(32) 11.4(2.1) 2.77(30)

Table D.1: Mass reweighted data for pseudo critical couplings (βpc), peak heights of the suscepti-

bilities (χ(βpc)) and Binder cumulants (B4(0)), calculated from the Polyakov loop (L) and chiral

condensate (ψ̄ψ). Simulations have been performed with p4 improved fermions on the 123 × 4

lattice and quark mass m = 0.005.
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from 〈L〉 from
〈

ψ̄ψ
〉

m βpc χ(βpc) B4(0) βpc χ(βpc) B4(0)

0.0000 3.2442(16) 0.510(105) 0.79(68) 3.2444(14) 49.1(16.0) 1.14(39)

0.0005 3.2463(14) 0.474( 90) 1.28(43) 3.2468(12) 48.3(15.0) 1.39(31)

0.0010 3.2486(12) 0.448( 75) 1.64(30) 3.2493(10) 45.1(13.5) 1.64(26)

0.0015 3.2509(10) 0.428( 61) 1.92(22) 3.2516( 9) 39.3(11.1) 1.93(22)

0.0020 3.2535( 9) 0.412( 50) 2.15(16) 3.2540( 8) 32.6( 8.1) 2.21(21)

0.0025 3.2558( 9) 0.398( 43) 2.33(13) 3.2560( 8) 26.7( 5.5) 2.40(25)

0.0030 3.2579(10) 0.385( 39) 2.46(13) 3.2580( 9) 22.6( 3.8) 2.46(27)

0.0035 3.2603(11) 0.374( 36) 2.55(14) 3.2599( 9) 19.8( 2.9) 2.46(25)

0.0040 3.2622(12) 0.365( 34) 2.62(15) 3.2619(11) 17.8( 2.4) 2.47(23)

0.0045 3.2641(13) 0.357( 33) 2.67(16) 3.2639(12) 16.2( 2.1) 2.48(21)

0.0050 3.2658(14) 0.351( 32) 2.73(17) 3.2657(13) 14.9( 1.9) 2.51(20)

0.0055 3.2679(14) 0.346( 31) 2.79(18) 3.2674(14) 13.8( 1.7) 2.54(19)

0.0060 3.2696(15) 0.343( 30) 2.85(20) 3.2696(14) 12.9( 1.5) 2.56(18)

0.0065 3.2711(15) 0.341( 29) 2.94(23) 3.2712(14) 12.1( 1.4) 2.59(18)

0.0070 3.2725(15) 0.341( 29) 3.03(26) 3.2726(14) 11.5( 1.3) 2.61(16)

0.0075 3.2736(15) 0.344( 29) 3.11(29) 3.2744(14) 10.9( 1.2) 2.63(15)

Table D.2: Mass reweighted data for pseudo critical couplings (βpc), peak heights of the suscepti-

bilities (χ(βpc)) and Binder cumulants (B4(0)), calculated from the Polyakov loop (L) and chiral

condensate (ψ̄ψ). Simulations have been performed with p4 improved fermions on the 163 × 4

lattice and quark mass m = 0.005.
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from 〈L〉 from
〈

ψ̄ψ
〉

Nσ µu,d βpc χ(βpc) B4(0) βpc χ(βpc) B4(0)

12 0.000 3.2654(11) 0.372(58) 2.84(27) 3.2650( 8) 15.4(2.7) 2.51(28)

0.005 3.2648(10) 0.372(58) 2.85(27) 3.2652( 8) 15.4(2.7) 2.51(28)

0.010 3.2648(10) 0.372(58) 2.84(27) 3.2646( 8) 15.5(2.7) 2.52(28)

0.015 3.2655(10) 0.373(59) 2.84(27) 3.2643( 8) 15.5(2.7) 2.53(28)

0.020 3.2648( 9) 0.374(59) 2.84(28) 3.2650( 8) 15.5(2.8) 2.53(28)

0.025 3.2646( 9) 0.375(60) 2.84(28) 3.2642( 7) 15.6(2.8) 2.54(28)

0.030 3.2646( 8) 0.376(61) 2.83(29) 3.2633( 7) 15.8(2.9) 2.56(29)

0.035 3.2644( 7) 0.377(62) 2.81(29) 3.2635( 9) 16.0(2.9) 2.57(29)

0.040 3.2635( 8) 0.378(63) 2.79(30) 3.2626(11) 16.3(3.0) 2.58(30)

0.045 3.2633( 8) 0.380(64) 2.76(32) 3.2617(14) 16.9(3.0) 2.58(30)

0.050 3.2630(11) 0.381(65) 2.72(34) 3.2610(16) 17.8(3.0) 2.55(30)

0.055 3.2618(15) 0.384(69) 2.66(38) 3.2606(18) 19.1(3.2) 2.46(31)

0.060 3.2616(18) 0.391(79) 2.59(44) 3.2596(19) 20.9(3.6) 2.29(33)

16 0.000 3.2661(11) 0.345(34) 2.73(18) 3.2658(11) 14.6(1.9) 2.49(22)

0.010 3.2659(11) 0.345(34) 2.71(18) 3.2657(11) 14.6(1.8) 2.49(22)

0.020 3.2656(12) 0.345(34) 2.68(18) 3.2654(12) 14.6(1.8) 2.49(22)

Table D.3: In up and down quark chemical potential (µu,d) reweighted data, for pseudo critical

couplings (βpc), peak heights of the susceptibilities (χ(βpc)) and Binder cumulants (B4(0)), calcu-

lated from the Polyakov loop (L) and chiral condensate (ψ̄ψ). Simulations have been performed

with p4 improved fermions on the 123 × 4 and 163 × 4 lattice and quark mass m = 0.005.
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β T/T0 c2 c4

3.52 0.7623 0.0218(40) 0.0342(160)

3.55 0.8122 0.0444(43) 0.0383(167)

3.58 0.8652 0.0638(52) 0.0404(153)

3.60 0.9024 0.0917(61) 0.0793(200)

3.63 0.9608 0.2057(67) 0.1397(474)

3.65 1.0017 0.3512(77) 0.2251(324)

3.66 1.0226 0.4129(83) 0.2563(384)

3.68 1.0658 0.5790(54) 0.1382(151)

3.70 1.1104 0.6554(40) 0.1019(76)

3.72 1.1566 0.7092(38) 0.0817(64)

3.75 1.2289 0.7481(31) 0.0661(50)

3.80 1.3576 0.7873(21) 0.0599(25)

3.85 1.4966 0.8065(17) 0.0548(22)

3.90 1.6464 0.8156(16) 0.0509(14)

3.95 1.8073 0.8200(13) 0.0493(13)

4.00 1.9796 0.8234(13) 0.0477(10)

Table D.4: Coefficients of (µq/T )2 and (µq/T )4 in the Taylor expansion of ∆(p/T 4). For the pres-

sure (p), quark number density (nq) and quark number susceptibility (χq) the following approxi-

mative relations hold: ∆p/T 4 ≃ c2(T )(µq/T )2 + c4(µq/T )4, nq/T
3 ≃ 2c2(T )(µq/T ) + 4c4(µq/T )3

and χq/T
2 ≃ 2c2(T ) + 12c4(T )(µq/T )2.
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β T/T0 ρ0 ρ2 (µq/T )instability

3.52 0.762 1.436(133) 0.799(252)

3.55 0.812 1.300( 62) 1.078(299) 0.585

3.58 0.865 1.328( 55) 1.257(260) 0.395

3.60 0.902 1.257( 42) 1.076(134) 0.347

3.63 0.961 1.021( 17) 1.214(274) 0.401

3.65 1.002 0.914( 10) 1.249( 99) 0.414

3.66 1.023 0.927( 9) 1.269(105) 0.412

3.68 1.066 0.949( 4) 2.047(121) 0.683

3.70 1.110 1.056( 3) 2.536(100) 0.822

3.72 1.157 1.161( 3) 2.947(120) 0.984

3.75 1.229 1.310( 3) 3.364(135) 1.123

3.80 1.358 1.487( 2) 3.626( 77) 1.211

3.85 1.497 1.604( 2) 3.838( 78) 1.281

3.90 1.646 1.686( 2) 4.004( 55) 1.337

3.95 1.807 1.747( 1) 4.078( 53) 1.361

4.00 1.980 1.794( 1) 4.155( 43) 1.387

Table D.5: Estimates for the radius of convergence in the µq/T expansion of ∆p/T 4 from ρn(T ) ≡
√

|cn(T )/cn+2(T )| and from the requirement of mechanical instability (µq/T )instability .
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β T/T0
1

2V T 3
∂3 lnZ

∂β∂(µq/T )2 − 1
2V T 3

∂3 lnZ
∂m∂(µq/T )2

1
24V T 3

∂5 lnZ
∂β∂(µq/T )4 − 1

24V T 3
∂5 lnZ

∂m∂(µq/T )4

3.52 0.762 1.12(72) 1.15(37) 0.67(2.95) 0.37(1.08)

3.55 0.812 0.36(92) 1.04(48) -4.31(6.06) -1.17(3.22)

3.58 0.865 1.37(78) 2.14(43) 0.88(3.12) -0.26(1.51)

3.60 0.902 2.07(1.14) 3.62(68) 9.49(4.46) 9.93(2.41)

3.63 0.961 3.84(1.25) 6.69(1.15) -16.38(13.26) -10.93(13.59)

3.65 1.002 10.06(1.51) 13.46(1.48) -11.23(8.33) -6.51(6.62)

3.66 1.023 11.29(1.91) 15.25(1.93) -4.70(9.60) 0.92(9.12)

3.68 1.066 5.26(94) 8.89(85) -3.01(3.04) -3.59(3.42)

3.70 1.110 4.21(69) 7.28(60) -2.25(1.91) -2.34(1.62)

3.72 1.157 2.64(51) 5.13(29) -0.08(1.10) -0.21(0.45)

3.75 1.229 0.83(35) 3.85(19) -0.12(51) -0.26(0.39)

3.80 1.358 0.33(20) 3.18(8) 0.08(25) -0.15(0.12)

3.85 1.497 0.41(22) 2.90(7) -0.04(31) -0.16(0.13)

3.90 1.646 0.22(22) 2.63(4) -0.56(26) -0.13(0.04)

3.95 1.807 0.26(17) 2.42(4) -0.39(23) -0.11(0.07)

4.00 1.980 -0.08(16) 2.19(3) -0.11(13) -0.05(0.03)

Table D.6: Derivatives necessary for calculating the response of the energy density (ǫ) to increasing

quark chemical potential (µq).
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