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Introduction
Two aspects of the strong interaction between quarks and gluons are investigated in thepresent thesis. On the one hand it covers the exploration of the H-dibaryon stability,a six quark state with equal content of the light u, d and s quarks. In cold and densematter this particle may be formed as a condensate of two � baryons due to strongattractive interactions between quarks with maximal symmetry in the 
avor, spin and colorquantum numbers. On the other hand changes of meson properties in a thermal mediumare investigated for a large temperature range. This constitutes the �rst application ofthe Maximum Entropy Method in the spectral analysis of thermal meson correlators.The phase diagram of QCD at vanishing baryon density is already well explored by latticesimulations. Starting at low temperature in the con�ned hadronic phase and increasingthe temperature, a phase transition to the decon�ned quark-gluon plasma (QGP) phasecan be observed. Recent experiments at CERN SPS gave �rst evidence that such a newstate of almost freely propagating quarks and gluons might exist. In the near future thecolliders RHIC in Brookhaven and LHC at CERN will hopefully open the possibility toexplore the features of this plasma phase in more detail. Experimental signatures at hightemperature like dilepton production rates are directly related to meson spectral functions,in this case to the vector channel. The spectral analysis of meson correlation functionsbecame recently accessible with the Maximum Entropy Method (MEM), which permits tostudy the temperature dependent modi�cations of the spectral shape from �rst principles.A similarly detailed theoretical understanding of the high density region of the QCDphase diagram at low temperature is of physical relevance in heavy ion collisions as wellas in astrophysics. An interesting phase structure is expected to arise in this case fromquantum statistic e�ects, which e.g. favor bosonic forms of matter over fermionic states.At high densities the SU(3) color symmetry might be spontaneously broken, giving riseto a color superconducting phase characterized by the formation of diquark condensates.Furthermore dibaryons or even larger quark clusters may play an important role as Bosecondensates in hypernuclear matter at increasing density. In the current analysis previ-ously obtained diquark correlators are explored more precisely with the Maximum EntropyMethod, whereas the stability of larger quark clusters is examined in a detailed analysisof the smallest object of this kind, the H-dibaryon.7



8 IntroductionThe investigation of these phenomena in lattice QCD is at present restricted to simulationsat an average baryon density of zero, since the probabilistic interpretation of the QCDpartition function in the path integral representation breaks down for non-zero chemicalpotential. Such calculations provide nevertheless an insight to the dominant quark-quarkinteractions in this region.In the �rst chapter QCD is described as SU(3) gauge theory in the Euclidean path integralformalism. The current knowledge about the QCD phase diagram at �nite temperatureand density is summarized with the focus on the changes of hadronic properties at thedi�erent phase boundaries. After a short introduction to the relevant aspects of strangematter in the cold and dense region of the phase diagram the previous experimental andtheoretical searches for a stable H-dibaryon are reviewed.The second chapter describes the lattice regularization of the Euclidean path integralwhich includes the speci�cation of the improved discretizations of the gauge and fermionaction used for the Monte Carlo simulation in the present thesis. In the following somenumerical details of the lattice calculation are explained, which includes the generation ofgauge �eld con�gurations, the inversion of the fermion matrix, the gauge �xing procedurefor gauge-variant observables as well as the error analysis for correlated data sets.The lattice study of the strange hadron spectrum and the investigation on the stabilityof the H-dibaryon is the content of the third chapter. After a few general considerationsabout the hadron multiplet structure and the underlying interactions between quarks thelattice setup is illustrated with the appropriate observables for the investigated hadronchannels. Moreover the extrapolation of the particle masses to physical quark masses isexplained. Finally results obtained on four di�erent lattice sizes are presented for severalstrange hadron masses as well as for the H-dibaryon mass.The fourth chapter gives an introduction to the Maximum Entropy Method and describesthe actual numerical implementation in the QCD context. After the exploratory study ofthe (in-)dependence of the approach under changes of the input parameters the spectralanalysis is performed for meson and diquark correlation functions at zero temperature.Furthermore the applicability of the approach at �nite temperature is tested with freemeson spectral functions. Finally, a lattice investigation of the scalar, pseudo-scalar andvector meson correlators at �nite temperature and their spectral analysis with the Maxi-mum Entropy Method is presented.



Chapter 1
QCD and the Phase Diagram
The starting point of the present investigation is the formulation of QCD as a non-abelianSU(3) gauge theory, which is presented in the �rst section 1.1. The current knowledgeabout the QCD phase diagram and the properties of hadronic matter at �nite temperatureare summarized in section 1.2, while the rich phase structure at �nite density is describedin section 1.3. This paragraph is followed by some considerations about the H-dibaryon inthe context of strange quark matter and a short review of previous investigations on thestability of such a particle in section 1.4.1.1 Quantum Chromo DynamicsIn the framework of the StandardModel of elementary particle physicsQuantumChromoDynamics (QCD) is the fundamental theory of the strong interaction. As a non-abeliangauge theory it is locally gauge invariant under SU(3) color transformations. The basicconstituents, namely the two light u and d quarks, the s quark with intermediate massas well as the heavier c, b and t quarks interact through the exchange of gluons, thegauge bosons of the theory. This is re
ected in the fermionic and gluonic part of thegauge-invariant QCD Lagrangian for Nf quark 
avors with mass mfLQCD(x) = LF (x) + LG(x)LF (x) = NfXf=1 �	f�(x)(i
�D� �mf )��	f�(x)LG(x) = �12 Tr F��(x)F ��(x); (1.1)where the Greek letters denote the Dirac indices of the quark �elds 	. The covariantderivative D� as well as the �eld strength tensor F�� involve the bare gauge coupling g9



10 Chapter 1. QCD and the Phase DiagramD� � @� + igA�(x)F��(x) � @�A�(x)� @�A�(x) + ig [A�(x); A�(x)]: (1.2)The gauge �elds A� are related to the N2c �1 = 8 generators �a of the gauge group SU(3)A�(x) = 8Xa=1Aa�(x)�a2 : (1.3)Due to the non-abelian character of QCD the gauge �elds do not commute, which ismanifest in the self-interaction between the gluons.The quantization of the �eld theory is realized in the Euclidean path integral formulation.The QCD partition function explicitly depends on the volume and the temperatureZE(V; T ) = Z DAD	D �	 e�SEQCD(V;T;A;	;�	); (1.4)while a possible dependence on a non-zero chemical potential � is neglected herein. Thethermal expectation value of an observable O in the Euclidean representation can becalculated as followsh O i = 1ZE(V; T ) Z DAD	D �	 O(A;	; �	) e�SEQCD(V;T;A;	;�	): (1.5)The Euclidean action SEQCD at �nite temperature is de�ned through the integral over theQCD Lagrangian in imaginary time �SEQCD(V; T ) = Z 1=T0 d� ZV d3x LEQCD withLEQCD = NfXf=1 �	f�(x)(
�ED� +mf )��	f�(x) + 12 Tr F��(x)F ��(x): (1.6)The Euclidean 
 matrices, which ful�ll the anti-commutation relation f
�; 
�g = 2��� ,are given in appendix A. Note that the index E will be omitted from now on, since onlyquantities in the Euclidean metric are utilized.Apart from the local SU(3) color gauge symmetry, the QCD Lagrangian possesses ad-ditional global symmetries. In the massless continuum theory, the chiral symmetry forNf quark 
avors is described classically by SUL(Nf ) � SUR(Nf ) � UV (1) � UA(1). Theaxial UA(1) symmetry is explicitly broken already at quantum level, whereas the preservedUV (1) symmetry implies the global baryon number conservation due to Noether's Theo-rem. The chiral SUL(Nf )�SUR(Nf ) symmetry for the two lightest quark 
avors mu;d ' 0is spontaneously broken at zero temperature, which is associated with the appearance of(N2f �1) nearly massless Goldstone bosons, the pseudo-scalar isospin triplet (�+, �0, ��).



1.2. Phenomena at Finite Temperature 11
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Figure 1.1: Schematic QCD phase diagram.
The strong interaction is characterized bytwo general features: Quarks and gluons arevery weakly coupled at small distances andthus behave as freely propagating particles(asymptotic freedom), whereas the cou-pling gets strong for large separations andsmall momenta. As a consequence quarkshave only been observed in hadronic boundstates (con�nement). These propertiesare re
ected in our basic picture of the QCDphase diagram in �gure 1.1. When increas-ing the temperature T and/or the baryonchemical potential � the non-perturbativestructure of the QCD vacuum, which is characterized by con�nement and chiral symmetrybreaking, gets lost and eventually will end in an asymptotically free quark gluon plasma.1.2 Phenomena at Finite TemperatureIn lattice simulations the phase diagram has quite successfully been explored by varyingthe temperature T at vanishing baryon chemical potential �. The chiral symmetry isbroken in the con�nement phase at low temperature, where the quarks and gluons formbound states within a hadron gas. A phase transition to a plasma phase with restoredchiral symmetry is observed by increasing the temperature. Strictly speaking, one has todistinguish between the decon�nement and the chiral symmetry restoring phase transition.In the quenched limit with in�nite quark masses the Polyakov loop expectation value isan order parameter for the decon�nement transition, whereas the chiral condensate is theorder parameter for the chiral symmetry restoration in the limit of vanishing quark masses.In QCD, where the fermions belong to the fundamental representation of the SU(3) colorgroup, these two phase transitions seem to occur simultaneously at a common criticaltemperature Tc [1]. However, they are well separated in theories where the fermionsbelong to the adjoint representation [2].The critical temperature as well as the order of the phase transition depend on the numberof colors Nc and quark 
avors Nf , respectively. Furthermore, the occurrence of a transitiondepends on the magnitude of the quark masses. In the quenched theory (Nc = 3, Nf = 0)with in�nitely heavy quarks the decon�nement phase transition is �rst order [3] and occursat about Tc=270 MeV [4]. For two massless quark 
avors, the chiral phase transition issecond order at Tc '175 MeV [5]. It is expected to change with increasing chemicalpotential to �rst order at a tricritical point (tc) as indicated in �gure 1.1. Introducing asmall quark mass mud > 0, the second order transition turns into a smooth crossover andthe tricritical point becomes a critical endpoint, which may be determined quantitativelyin heavy ion collision experiments [6]. A more realistic strange quark massms <1 resultsin a shift of the tricritical point towards the temperature axis. As a consequence the chiralphase transition becomes �rst order even at zero chemical potential in the limit of three



12 Chapter 1. QCD and the Phase Diagrammassless quark 
avors. The critical temperature Tc '155 MeV in the case Nf = 3 wasobtained in a recent lattice simulation [5].
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Figure 1.2: UA(1) and chiral symmetryrestoration of (pseudo-)scalar mesons [7].

The light hadron spectrum is sensitive tothe changes of the chiral condensate and thechiral symmetry restoration in the vicinityof the critical temperature. In the chirallysymmetric phase above the critical tempera-ture the pseudo-scalar meson is no longer aGoldstone boson. For Nf = 2 the thermalcorrelation function in this quantum num-ber channel should coincide with that of theisospin singlet scalar meson �. Such a be-havior is similarly anticipated for the (axial-)vector mesons a1 and �. On the other handan e�ective restoration of the UA(1) symme-try would involve a degeneracy of the 
avortriplet (pseudo-)scalar � and � as well as of the singlet � and �0 meson correlators [8]. Fig-ure 1.2 shows results of (pseudo-)scalar susceptibilities, i.e. integrated meson correlationfunctions in the Euclidean time interval [0,1/T] obtained in a lattice simulation with stag-gered fermions [9] (similar in [10]). The inverse of these susceptibilities may be viewed asthe square of e�ective thermal masses. The � and � meson masses become degenerate nearTc, while the � approaches the other masses slowly with increasing temperature, whichimplies that the UA(1) symmetry remains broken at Tc. This behavior was con�rmed byrecent lattice simulations with overlap [11] and domain wall fermions [12].So far information on thermal masses has either been obtained from susceptibilities likethose in �gure 1.2 or from spatial correlators which de�ne screening masses. Both ap-proaches do not yield direct information about thermal hadron masses. In particular thee�ective masses extracted from susceptibilities have no well-de�ned counterpart in thecontinuum limit. In order to get access to the temperature dependence of pole masses onehas to analyze thermal correlators in Euclidean time. Information on masses is then en-coded in the respective spectral functions, where a dominant ground state mass is manifestas a sharp �-function like peak. Moreover, the spectral representation allows the distinc-tion between pole and continuum contributions, which becomes increasingly important at�nite temperature. A detailed investigation of hadronic correlators and spectral functionsat several temperatures below and above the phase transition is presented in chapter 4.Previous lattice simulations with staggered [13] as well as Wilson fermions [14] gave noevidence for signi�cant changes of the meson masses below the critical temperature. Dueto the limited extent of the lattice in the Euclidean time direction � 2 [0; 1=T ] most of thementioned studies investigated only spatial correlation functions. The screening and polemasses are expected to coincide below the critical temperature, if the T = 0 dispersionrelation still holds true at T < Tc. At temperatures well above Tc the behavior of thespatial meson correlators can be explained by the propagation of two weakly interactingquarks in the plasma. Thus the screening masses will approach the lowest Matsubara



1.3. Phases at Finite Density 13frequency 2�T , induced by the anti-periodic boundary conditions for fermions in the tem-poral direction. Nevertheless, collective phenomena may still be present in the plasmaphase for temperatures close to Tc [15].In a recent simulation withWilson fermions on anisotropic lattices [16] it has been observedthat the pole masses are considerably smaller than the screening masses above Tc, whichled to the interpretation that mesonic excitations or metastable bound states persist upto at least 1.5 Tc. These conclusions, however, have been obtained by using standardexponential �tting procedures, which are suitable at zero temperature. At T > 0 such anapproach should be applied carefully, because the continuum contributions may have aconsiderable in
uence on the resulting pole masses in the short temporal direction. Sincethe spectral representation allows to distinguish between the di�erent contributions, theanalysis of correlation functions with the Maximum Entropy Method (MEM) [17, 18] willprovide new insight in the temperature dependence of pole masses. A �rst applicationof MEM for pseudo-scalar, scalar and vector meson correlators at �nite temperature ispresented in section 4.7.1.3 Phases at Finite DensityNow the focus is on the conjectured phase diagram (�g. 1.1) at low temperatures and highdensities. Moving away from the temperature axis towards larger densities an additional�rst order phase transition line is observed, separating the hadron gas with zero baryondensity from a nuclear liquid phase with density n0 = 0:17=fm3. At zero temperature thisjump in the density is expected to occur at a baryon chemical potential of the nucleonmass minus its binding energy [19]. The endpoint of this �rst order phase transition linewas estimated experimentally at GSI [20] to lie in the region of 0.15-0.3 times the nucleardensity and a temperature of O(10 MeV), which is characteristic for the binding energyof nuclei.At even higher densities an additional color superconducting phase is indicated in �gure1.1. In the theory of superconductivity the BCS-mechanism [21] leads to the formation ofa Bose condensate of electron Cooper pairs for an arbitrarily weak attractive interaction.A phonon-induced interaction is needed in this case to reduce the repulsive electrostaticforce between the electrons. In QCD the occurrence of a BCS-like mechanism is even morestraightforward. Since quark momenta are large in the region of high density, asymptoticfreedom implies that the coupling between the particles is weak. Unlike in the case ofelectrons the fundamental interaction between quarks is already attractive for u and dquarks with di�erent color and anti-parallel spin. This can be deduced from the per-turbative one-gluon-exchange [22] as well as from the instanton liquid model [23, 24].At high densities it is thus energetically favorable for the weakly coupled quarks to form adiquark Bose condensate. In this color superconducting phase the local SU(3) color gaugesymmetry is broken to SU(2) [25]. Since the chiral symmetry is restored and none of theglobal symmetries of QCD is broken, no order parameter distinguishes the two 
avor colorsuperconducting phase from the quark gluon plasma.



14 Chapter 1. QCD and the Phase DiagramIn the case of three massless quarks such diquark condensates cannot be 
avor singlets. Inaddition to a condensate of ud quark pairs also us and ds Cooper pairs may occur, whichare only invariant under a correlated color/
avor symmetry. Such a superconductingcolor-
avor locked (CFL) phase [26] is thus characterized by the broken baryon numberand chiral symmetrySU(3)C � SU(3)L � SU(3)R � UV (1) �! SU(3)C+L+R:This allows a distinction to the other phases, since the breaking of global symmetriesprovides an order parameter for the phase transition. Such an order parameter for thebaryon number symmetry breaking would carry the quantum numbers of the H-dibaryon[27]. The symmetries of the CFL phase are the same as expected for hypernuclear matter,where hyperons (strange baryons) are expected to pair into a SU(3) 
avor singlet statelike the H-dibaryon (��), (��) or (N�). Di�erent from the phase transition at hightemperatures and low baryon density where many new degrees of freedom arise, theirnumber may remain the same with increasing baryon density at low temperature. Thehadronic degrees of freedom might be followed continuously from hypernuclear matter tothe CFL phase of quark matter without a phase transition. Such a behavior has beenrecently described as quark-hadron continuity [27].1.4 Strange Matter and the H-DibaryonA somewhat di�erent context, in which the H-dibaryon might be important, is the physicsof strange quark matter [28, 29]. At very high density and low temperature the propertiesof quarks and gluons in the decon�ned phase are expected to di�er from those of thequark gluon plasma at high temperature, therefore this state was given the name quarkmatter. Since the pressure gets higher at increasing density, the quarks have to occupyhigher energy states due to the Pauli exclusion principle. Then it could be energeticallyfavorable for u and d quarks to convert into s quarks via weak interaction processes. Aftersuch an equilibration process of the quark 
avor content a �nite number of strange quarksis left, which motivated the name strange quark matter, or simply strange matter. Itis suspected that such a state of matter could exist in the core of neutron stars, whereordinary quark matter built from neutrons may be converted to strange quark matterunder the in
uence of the enormous pressure [30].It was suggested by Witten in 1984 [31] that strange matter might be more stable thanordinary nuclei. Strange matter could exist in small lumps called strangelets, having lowerenergy than a nucleus with the same amount of quarks. This was the starting point forthe disaster scenarios for the new relativistic heavy ion collider (RHIC) in Brookhaven.Concerns were raised that a transition to a lower vacuum state could be initiated due to theformation of stable strangelets. The arguments against such a scenario were summarizedin a recent review article [32] and were not proven false by the actual experiments at RHICin the meanwhile.



1.4. Strange Matter and the H-Dibaryon 15In the context of strange quark matter the H-dibaryon is the lightest possible strangelet[28, 29]. Such a six quark state (udsuds) is the lightest SU(3) 
avor singlet state withspin zero, strangeness -2 and JP = 0+. It has the smallest energy per baryon number,since both color and spins cancel pairwise to the greatest possible extent. A stable H-dibaryon was �rst predicted in 1977 by Ja�e [33] in a bag model calculation. He obtaineda mass of mH=2150 MeV, which is 81 MeV below the �� threshold for strong decay.This observation had inspired many theoretical and experimental searches for a stableH-dibaryon during the following decades.Various QCD motivated models were applied in the theoretical search for a stable H-dibaryon. Calculations were performed in the bag model, the non-relativistic quark clustermodel, the Skyrme model and with QCD sum rules. References on all of these investiga-tions can be found in a recent review article [34]. In general perturbative calculations ofthe hadron mass splittings are based on spin-dependent quark-quark interactions, whichincludes color-spin coupling for the one-gluon-exchange (OGE) and 
avor-spin couplingfor instanton induced interactions (III) and Goldstone-boson-exchange (GBE). This isillustrated more explicitly in the �rst section of chapter 3.
GeVMass (         )

3.0

ΝΝ (1.88)

ΣΣ (2.38)

ΝΞ (2.26)

ΛΛ (2.23)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8Figure 1.3: Theoretical predictions of the H-dibaryon mass [35].Combining the previous theoretical investigations a slightly bound or unbound H-dibaryonis predicted. This is visualized in �gure 1.3, where the thresholds for strong (��; N�;��)and weak decay (NN) are indicated in addition. In the case of a bound state a de�nitecon�rmation could be expected from experimental searches in a range of a few hundredMeV below the 2231 MeV �� threshold for strong decay. The H-dibaryon may be producedin several processes, such as heavy ion collisions, (K�;K+) reaction or ��-capture. Thepresence of a bound state can only be detected from the products of the weak decay,for example H ! ��p, H ! �0n or H ! �n. The key reaction processes for eachof the several experiments are listed in the review article of Sakai et. al. [34], while thedetails about the experimental setup can be found in the references therein. Most of thereported investigations provided no evidence for a stable H-dibaryon. Nevertheless, a fewcandidate events for a slightly bound H-dibaryon were detected, but it remained unclearif these observations could be explained by other than the expected processes.Finally, the previous attempts to calculate the H-dibaryon mass on the lattice shouldbe reviewed. The simulation parameters chosen by the di�erent groups are summarized



16 Chapter 1. QCD and the Phase DiagramRef. Gauge/Fermion Action a[fm] mq[MeV] Lattice Size NC mH [MeV][36] standard 0.13 90-200 62x12x18 20 unbound[37] RG-imp./standard 0.11 105-590 163x48 15 1450-1710[38] standard 163x48 15 larger[39] standard 0.13 30-300 163x32 56 1950(60)243x32 40 2340(20)Table 1.1: Summary of simulation parameters for the previous attempts to determine themass of the H-dibaryon on the lattice.in table 1.1. The two earlier investigations of Mackenzie and Thacker [36] and Iwasakiet. al. [37] gave contradicting results on the basis of limited statistics and relatively largequark masses. Moreover, deviations could be observed for di�erent discretizations of thegauge action [38]. A more precise study of Negele et. al. [39] provided recently some insightin the volume dependence of the obtained results. Considerable �nite size e�ects couldnot be ruled out by the authors for the smaller lattice size. The subsequent analysis on alarger lattice led to the conclusion that the H-dibaryon is unbound in the in�nite volumelimit.In the present study the volume dependence of the H-dibaryon mass is investigated onseveral lattices sizes with a relatively large lattice spacing, which opens the possibility toexamine a physical volume comparable and even larger than in the recent study of Negeleet. al. [39]. Preliminary results on two of the lattice sizes were already reported in [40].They have indicated an unbound H-dibaryon state with the mass of two � baryons. Thedetailed analysis of the strange hadron spectrum and in particular the H-dibaryon stabilityis provided in chapter 3.



Chapter 2
Lattice Gauge TheoryHaving illustrated QCD in the Euclidean path integral formulation in the �rst chapter,we can now proceed to the representation as a regularized gauge theory on the lattice.The basic aspects of lattice QCD are introduced in section 2.1 including an overview ofimproved discretizations of the gauge and fermion actions. This section is completed by aparagraph about the continuum limit of the lattice formulation. For a general overview oflattice gauge theories the interested reader is referred to the textbooks of Rothe [41] andMontvay/M�unster [42].The following sections deal with the numerical details of the simulation. First of all this isthe Monte Carlo integration method in section 2.2, which enables us to carry out the highdimensional QCD path integral. An e�cient inversion of the fermion matrix is important inorder to calculate the hadronic operators (see sec. 2.3). For some gauge-variant observablesa gauge �xing of the gauge �eld con�gurations is necessary. This procedure is explainedin section 2.4. The last section 2.5 of this chapter contains a short description of the erroranalysis for correlated data sets.2.1 Lattice RegularizationSince the Euclidean path integral introduced in formula (1.4) is mathematically not wellde�ned, a regularization scheme has to be implemented. Perturbative methods usuallylimit the magnitude of the momenta through the cut-o� parameter �. Another possibilityis to ensure the regularization in coordinate space by introducing a four dimensional space-time lattice of size N3� �N� with a small, but �nite lattice spacing a. The volume as wellas the temperature on this hyper-cubic lattice are determined through its spatial andtemporal extents in terms of the lattice cut-o� aV = (N�a)3 and T = 1N�a: (2.1)The lattice regularization requires the discretization of integrals and derivatives, whichtransform into �nite sums and di�erences. The fermion �elds, which are positioned on the17



18 Chapter 2. Lattice Gauge Theorylattice points, and observables like the string tension and particle masses can be rescaledto dimensionless quantities via the lattice spacing (see 2.1.3 for details). The gauge �eldsare identi�ed with the link matrices U� 2 SU(3)C , which are de�ned between neighboringlattice sites in the �̂ direction by the parallel transporterU�(x = na) = exp [ ig Z x+�̂ax dy�A�(y)]: (2.2)The discretized formulas for the gluon and fermion sector of the Euclidean action on thelattice are provided in the following two sections. Moreover, the construction of improvedactions with reduced cut-o� e�ects will be illustrated for both parts.2.1.1 Gluonic Part of the ActionThe lattice gauge action should be gauge-invariant like the respective continuum expres-sion. The simplest object on the lattice which ful�lls this requirement is the plaquette,i. e. the closed loop of four link variables around a squareU��(x) � U�(x)U�(x+ �̂)U y�(x+ �̂)U y� (x) = ��(x): (2.3)The gluonic part of the action can thus be written in terms of U��(x)SG(U) = � Xx;�<��1� 1Nc Re Tr U��(x)� ; (2.4)where the coupling � = 2Ncg2 is related to the gauge coupling and the number of colors Nc.In the limit of vanishing lattice spacing a! 0, the gluon action (2.4) should reproduce thecontinuum representation. In order to show that this is indeed the case an expansion withrespect to the lattice spacing a is necessary. After the application of the Baker-Hausdor�formula and a Taylor expansion around the center of the plaquette, the following equationis obtained SG = lima!0 a4 Xx;�<� h Tr F��F �� +O(a2)i+O(g2a2)= 12 Z 1=T0 d� ZV d3x Tr F��F �� +O(g2): (2.5)It can easily be observed that this simple parametrization of the gluonic action reproducesthe continuum expression correctly up to O(g2), but nevertheless yields cut-o� e�ectsof O(a2) on the lattice. Following the Symanzik scheme [43], these deviations can beeliminated by additional gauge-invariant terms. For instance the (1� 2)-improved latticegauge action is correct to O(a4)S(1;2)G = � Xx;�<� 53 �1� 1Nc Re Tr ��(x)�� 16 0@1� 12Nc Re Tr 8<: ��(x) + ��(x)9=;1A : (2.6)



2.1. Lattice Regularization 19The coe�cients of the 1 � 1 plaquette term and the additional 1 � 2 and 2 � 1 loopcontribution are chosen such that the O(a2) deviations eliminate each other. By addingfurther terms consisting of larger loops, the cut-o� e�ects can be reduced up to anydesirable order.2.1.2 Fermionic Part of the ActionThe naive discretization of the fermionic part of the Euclidean action (1.6) can be obtainedsimply by substituting the derivative with a �nite di�erence of the rescaled fermion �elds	i�. Moreover one introduces the link matrices U ij� instead of the gauge �elds (2.2), whichyields the following form of the fermion actionSNF = Xx;y;i;j;�;� �	i�(x)MN��;ij(x; y)	j�(y) with the fermion matrixMN��;ij(x; y) = X� 12 (
�)�� [ U ij� (x) �x+�̂;y � U yij� (x� �̂) �x��̂;y] + ma �xy����ij ; (2.7)where i; j refer to the color degrees of freedom. By expanding this discretized expressionin powers of the lattice spacing and the coupling constant, it can be veri�ed that the naivefermion action reproduces its continuum counterpart up to O(a2) corrections.Since the fermion �elds 	i� obey the anti-commutation relation, they are realized as Grass-mann variables living on the lattice sites. The calculation of expectation values of fermionicobservables involves the evaluation of the path integral over these Grassmann �elds, whichcan be easily performed by means of the Grassmann integration rulesh	y1 �	x1 : : :	yn �	xni = 1Z Z DUD	D �	 (	y1 �	x1 : : :	yn �	xn) e��	M	�SG= 1Z Z DU ( Xz1:::zn �z1:::zny1:::yn M�1z1x1 : : :M�1znxn) detM e�SG ; (2.8)where � denotes the total anti-symmetric tensor. The integral of the n-particle observable	y1 �	x1 : : :	yn �	xn leads to a product of the inverse fermion matrix components, while theintegration of the fermionic part of the action SF = �	M	 results in the determinant ofthe fermion matrix M .Setting this determinant equal to one is a simpli�cation commonly used for the com-putation of expectation values. The so-called Quenched Approximation neglects thecontributions of internal quark loops and thus considers static quarks and dynamical gluonbackground �elds. This procedure appears to be very restrictive at �rst sight, but it couldbe demonstrated that most of the properties of QCD can be investigated qualitatively inthis approximation. For instance, the obtained hadron masses agree with the experimentalspectrum in an average 10% range [44]. Since the path integral (2.8) can now be evaluatedin updating only the dynamical gauge �elds, an enormous amount of computer time canbe saved by the application of fast local algorithms (see section 2.2 for details).



20 Chapter 2. Lattice Gauge TheoryA severe problem of the naive discretization (2.7) becomes obvious in the momentum spacerepresentation of the free fermion action for one quark 
avorSNF = Z +�a��a d4p(2�)4 �	(p) X� i
� 1a sin(p�a) +m!	(p): (2.9)The free quark propagator can thus be obtained by employing the Grassmann integrationrules (2.8) as the inverse of the above fermion matrixh�	(p)	(q)i =  X� i
� 1a sin(p�a) +m!�1�� �(p� q)= ��iP� 
�~p� +m���P� ~p2� +m2 �(p� q) with ~p� = 1a sin(p�a): (2.10)It can easily be observed that this propagator has poles not only at zero momentum butalso at all other corners of the Brillouin zone. This phenomenon is referred to as fermiondoubler problem, since a doubling of the particle content occurs in every dimension d. Inthe continuum limit this yields 2d�1 = 15 unwanted particles in addition to the physicallyrelevant one. Hence the naive fermion discretization would produce 2d � Nf particles forNf quark 
avors, which do not vanish in the limit a! 0.In a No-Go theorem [45] Nielsen and Ninomiya have shown that a lattice regularizationof QCD with exact chiral symmetry but without fermion doublers cannot be achieved.The next few paragraphs deal with various methods which were developed to circumventor at least reduce the fermion doubler problem through the sacri�ce of the exact chiralsymmetry.Wilson FermionsThe aim of the Wilson fermion formulation is to increase the masses of the unwanteddoublers in a way which ensures that they diverge in the continuum limit. This can bereached by adding a term proportional to the second derivative of the quark �eld to thenaive fermion actionSWF = SNF � r2 Xx;�;i �	i�(x)2	i�(x) = Xxy;��;ij �	i�(x)MW��;ij(x; y)	j�(y); (2.11)which breaks explicitly the chiral symmetry. The parameter r controls the strength of thisauxiliary term. In the following r = 1 will be chosen for convenience, since this yields theprojection operators (1l� 
�) in the Wilson fermion matrixMW��;ij(x; y) = (ma+ 4) �xy����ij � 12X� [ (1l� 
�)�� U ij� (x) �x+�̂;y+ (1l + 
�)�� U yij� (x� �̂) �x��̂;y]; (2.12)which results in advantages in the explicit numerical implementation.



2.1. Lattice Regularization 21The free quark propagator in the momentum space can be calculated similarly to (2.10)as inverse of the Wilson fermion matrix, which leads to the momentum dependent massde�ned below h�	(p)	(q)i = ��iP� 
�~p� +m(p)���P� ~p2� +m(p)2 �(p� q)m(p) � m+ 2aX� sin2(p�a=2): (2.13)This mass term ensures the divergence of the redundant particle masses in the limit a! 0for non-zero momenta. For instance a fermion with p = (0; 0; 0; �=a) would acquire a massm(p) = m+ 2a , while the mass of the physical particle at p = (0; 0; 0; 0) remains the same.In the Wilson formulation the bare quark mass experiences an additive renormalizationthrough the introduction of the chiral symmetry breaking term. Therefore the quark massis controlled by the hopping parameter � = 12(ma+4) . This causes a severe tuning problem,since the quark mass now vanishes at varying �-values for di�erent couplings. In the caseof the free theory (g ! 0) this occurs at �c = 1=8, while the critical value is reached at�c = 1=4 in the strong coupling limit.In the intermediate coupling range �c has to be determined with the aid of other observ-ables in the numerical simulation. In leading order perturbation theory the quark masson the lattice m̂q = mqa = 12 �1� � 1�c� (2.14)can be related to the square of the pion mass mq � m2� by the PCAC hypothesis in chiralperturbation theory. The value of � at which the pion becomes the massless Goldstoneboson thus de�nes the point of zero bare quark mass. An alternative de�nition can beestablished on the basis of the axial Ward identity. The quark mass is then obtained fromthe ratio of the axial vector current combined with the pseudo-scalar density and the pioncorrelator MPS(x; �) (see sec. 3.2) through2mqZA = Pxh@�A�(x; �)MyPS(0)iPxhMPS(x; �)MyPS(0)i ; (2.15)where ZA is a multiplicative renormalization factor for the axial current. Having obtainedthe bare quark masses for di�erent �-values, they have to be extrapolated to zero again.Note that these two estimates of �c can di�er by O(a) corrections.Finally the remark should be added that the auxiliary Wilson term changes the dis-cretization errors from O(a2) in the naive formulation to O(a) corrections for free Wilsonfermions. The previous situation can be restored by introducing the Clover fermion for-mulation.



22 Chapter 2. Lattice Gauge TheoryClover FermionsA further supplementary term proportional to the �eld strength tensor was added to theWilson fermion action by Sheikholeslami and Wohlert [46] in order to ensure that theClover action shows only O(a2) discretization errors. Rescaling the fermion �elds withrespect to the hopping parameter 	0(x) = 1p2�	(x) yieldsSCF = SWF � ig cSW �2 Xx;�;i �	0�;i(x)F��(x)���	0�;i(x)= 12� Xxy;��;ij �	0�;i(x)M ij��(x; y)	0�;j(y): (2.16)The Clover fermion matrix is de�ned through the Clover term A and the �-operatorM ij��(x; y) = A ij��(x) �xy � � � ij��(x; y) (2.17)A ij��(x) = 1l� ig cSW �2 F��(x) ���� ij��(x; y) = X� [ (1l� 
�)�� U ij� (x) �x+�̂;y + (1l + 
�)�� U yij� (y) �x��̂;y ]; (2.18)where the �eld strength tensor on the lattice is given by F��(x) = 18ig Pj[U j��(x)�U y;j�� (x)].The sum is de�ned over the four plaquettes in the ��-plane around the site x, the so-calledClover term. The numerical processing of the fermion matrix (2.17) is described in detailin section 2.3. Altogether the O(a) improved Clover fermion action can be visualized inthe following waySCF = 12� Xx;y �	0(x)8<:241l� cSW �2 X�;� Im ��(x)���35 �x;y � � � ij��(x; y)9=;	0(y): (2.19)The clover coe�cient cSW in the action has to be chosen appropriately. For the tree-levelimproved gauge action it is simply set to one [46], but this parameter can also be optimizedin a non-perturbative way. Simulations with di�erent clover coe�cients and couplings gshould obey the PCAC relation up to order a2 corrections. This leads to the followingexpression for cSW in the quenched approximation obtained with the Wilson plaquettegauge action [47]cSW = 1� 0:656 g2 � 0:152 g4 � 0:054 g61� 0:922 g2 for 0 � g � 1: (2.20)An analogous result for simulations with dynamical fermions was reported in [48]. Thecalculations for this thesis were performed with the (1�2)-improved gauge action and theClover fermion action with a tree-level clover coe�cient at zero temperature, while thesimulations at �nite temperature were carried out with the plaquette gauge action andthe non-perturbatively improved Clover fermion action.



2.1. Lattice Regularization 23Staggered FermionsAnother commonly used fermion discretization is the Kogut-Susskind [49] or staggeredfermion formulation, where the spinor degrees of freedom are distributed over hypercubesof the lattice. This reduces the fermion doubler problem, but four degenerate quark 
avorsare still included in the continuum limit. The advantage of staggered fermions is mani-fested in the preserved U(1) � U(1) symmetry as remnant of the global chiral symmetry.Therefore the chiral condensate serves as an order parameter of the phase transition at�nite temperature. This is the reason why the staggered formulation is mostly used forthe calculation of thermodynamic observables in the vicinity of the critical temperature.Chiral FermionsIn recent years fermion discretizations with approximate chiral symmetry became avail-able. The starting point is the Ginsparg-Wilson relation 
5D + D
5 = aD
5D [50] forthe Dirac operator D, which implies that the chiral symmetry as well as the axial UA(1)anomaly are preserved for vanishing quark mass mq on a lattice with �nite lattice spacing[51]. This general idea led to two di�erent formulations, known as domain wall [52] andoverlap discretization [53, 54] of the fermion matrix. The domain wall approach is basedon the introduction of a �fth dimension in addition to the four dimensional space-timelattice. Then the chiral symmetry breaking is suppressed exponentially with the extentLs of this extra dimension. Exact chiral symmetry can thus be obtained theoreticallywith an in�nite extent Ls. The overlap formulation however works in an in�nite 
avorspace, which is equivalent to the domain wall approach in the limit Ns ! 1. Althoughthese realizations of chiral fermions in lattice simulations seem very promising, the actualcalculations su�er nevertheless from the increase in the required computer time, whichrises linearly with the extent of the �fth dimension.2.1.3 Continuum LimitAs already addressed before the observables on the lattice O (g(a); a) can be rescaledto dimensionless quantities Ô through the lattice spacing in the appropriate dimensiondim(O). They are related to their corresponding physical value Ophys in the continuumlimit via O (g(a); a) = a�dim(O)Ô (g(a); a) �!a!0 Ophys: (2.21)This relation is only valid if the coupling on the lattice g(a ! 0) approaches the criticalcoupling g�, which is de�ned at the point of diverging correlation length � � 1m in analogyto statistical models. In QCD the limit � !1 is reached with increasing �, or equivalentlyg ! 0 due to the asymptotic freedom. In this weak coupling regime perturbative methodsprovide the dependence between the lattice spacing and the couplinga(@g@a ) = b0g3 + b1g5 +O(g7) (2.22)



24 Chapter 2. Lattice Gauge Theorywith the universal coe�cientsb0 = 116�2 �113 Nc � 23Nf� and b1 = 1(16�2)2  343 N2c �Nf [103 Nc + N2c � 1Nc ]!The integration of the function (2.22) then yields directly the lattice spacing in terms ofthe coupling a(g) = 1�L (b0g2)� b12b20 exp(� 12b0g2 ): (2.23)Here the integration constant �L de�nes the invariant scale for the lattice theory, which isrelated by a multiplicative factor to the scale parameter in other regularization schemes,like �MS or �MOM [55].Given the dimensionless results from lattice simulations, they have to be properly rescaledin terms of the lattice spacing. The physical scale can be inferred from the determinationof the string tension or hadron masses on the lattice, which are related to their well-knownexperimental valuesm� = m̂� a�1 = 770 MeV or p� = p�̂ a�1 = 420MeV: (2.24)Alternatively the ratio of two physical quantities can be used to set the scale. Thisapproach is employed in section 3.3 in order to obtain the physical quark mass values �uand �s in the Wilson quark formulation.2.2 Monte Carlo IntegrationAfter the basic concepts of lattice QCD the focus is now on the numerical implementationof the formerly described methods. The Euclidean path integral formalism was alreadyintroduced in section 1.1. After the analytic integration over the fermion �elds (equation2.8), the expectation value of an operator O in the quenched approximation is given byhOi = 1Z Z Yx;� dU�(x)O[U ]e�SG[U ]: (2.25)Nevertheless this leaves us with a high dimensional integral of order O(106), which canonly be evaluated approximately by Monte Carlo integration.In generating gauge �eld con�gurations with the Boltzmann distribution in the thermalequilibrium, one can ensure to consider the most signi�cant contributions to the path inte-gral (importance sampling). A new con�guration U 0 is produced from its predecessor Uin a so-calledMarkov chain with a certain transition probability. The following approxi-mate expression for the expectation value is thus valid for a large number of con�gurationsNC hOi ' 1NC NCXi=1O[Ui]: (2.26)



2.3. Inversion of the Fermion Matrix 25The detailed balance condition is required to obtain the equilibrium probability distri-bution: e�S[U ]P (U ! U 0) = e�S[U 0]P (U 0 ! U): (2.27)Furthermore ergodicity is needed, which means that any possible con�guration U 0 shouldbe obtainable with �nite probability from every con�guration U .The �rst and simplest algorithm which ful�lls these requirements was the one developedby Metropolis et. al. [56]. For the simulations reported in this thesis the pseudo-heatbathupdate method [57, 58] was utilized, improved by 4-5 overrelaxation steps [59, 60] aftereach heatbath step. Both are local update routines which produce a new con�gurationby a sweep over all lattice sites. The pseudo-heatbath algorithm consists of the successiveapplication of the heatbath algorithm on all SU(2) subsets, where the local equilibrationresembles the contact with an in�nite heatbath.The overrelaxation update is an e�cient method to reduce the correlations between thegenerated con�gurations. Since it is desirable to analyze nearly uncorrelated gauge �eldcon�gurations, the observables are measured only on con�gurations separated by severalhundred sweeps.2.3 Inversion of the Fermion MatrixThe most fundamental fermionic observable in lattice QCD is the expectation value of thequark propagator G(x; y), which can be calculated using the analytic integration over thefermion �elds (see formula (2.8)):G(x; y) = h	(x) �	(y)i= 1Z Z DUD	D �	 	(x) �	(y) e��	M	�SG= 1Z Z DU M�1(x; y) detM e�SG : (2.28)The important quantity which is thus needed, is the inverse of the fermion matrixM�1(x; y)evaluated on every gauge �eld con�guration in the quenched approximation (detM = 1).This requires the solution of the inhomogeneous equationM(x; y) (y) = �(x) (2.29)with point-like sources �(x) for every color-spin combination of the quark �elds.Since the fermion matrix is a very large� but particularly sparse matrix, the above equation(2.29) can only be solved approximately with an iterative method. The rapidness ofconvergence is determined by the distribution of the eigenvalues of this matrix. Thenumber of iterations needed for the inversion is proportional to the ratio of the largest to� N �N fermion matrix with N = (lattice size) � (color) � (spinor) degrees of freedom � O(105�106)



26 Chapter 2. Lattice Gauge Theorythe smallest eigenvalue, which is divergent for vanishing quark mass mq ! 0, respectively� ! �c below the critical temperature. An optimized inversion of the fermion matrixcan be reached in a twofold way. On the one hand a fast and e�cient algorithm shouldbe used to solve the equation (2.29) within a minimum of iteration steps, on the otherhand a preconditioning procedure can further reduce the number of steps required forconvergence.Most of the common algorithms developed for the inversion of the fermion matrix stemfrom the conjugate residual method [61, 62]. For the simulations described in this thesisthe BiCGstab algorithm [63] was employed. It was developed and improved from theConjugate Gradient (CG) method [64], which guarantees convergence in N iteration stepsfor a N �N fermion matrix. It could be shown [65] that the BiCGstab converges muchfaster than other algorithms, in particular in the region of small quark masses.The even-odd preconditioning technique [66] uses the property of the Clover fermion matrix(2.17), that it only connects lattice sites of opposite parity. The equation M = � (2.29)decouples into separate parts for the (e)ven and the (o)dd sites~Mee  e = �e + � �eo A�1oo �o = ~�e (2.30) o = A�1oo (�o + � �oe e) (2.31)with a di�erent source vector ~�e and a modi�ed fermion matrix ~Mee = Aee��2 �eo A�1oo �oeon the even sites of the lattice. After the BiCGstab inversion on the even sites (2.30), thesolution for the odd sites can simply be obtained by a back substitution in (2.31). Themajor advantage of this preconditioning procedure is the new matrix ~Mee, which is nowsecond order in �. Approaching the chiral limit (�! �c), the number of required iterationsteps is considerably lower, since the �-dependent smallest eigenvalue of ~Mee is about twotimes larger than the one of the original fermion matrix M .2.4 Gauge FixingSome of the interesting operators in lattice QCD, like the quark or diquark propagators,are gauge-variant quantities. They form color (anti-)triplet or sextet states in contrast tothe color singlet mesons and baryons. Therefore it is necessary to perform gauge �xing inorder to calculate quark and diquark correlation functions.The invariance of the gluonic action under local gauge transformations UG� = G(x)U�(x)Gy(x+ �̂) with a matrix G(x) 2 SU(3) is the basis for the gauge �xing procedure in latticeQCD. After the generation of the gauge �eld con�gurations with the Monte Carlo methodthey can be transformed separately into the desired gauge [67]. A whole bunch of gaugesis de�ned through the �-gauges [68]. The �-gauge condition in the continuum requires4X�=1��@�A�(x) = �@4A4(x) + 3X�=1 @�A�(x) = 0 (2.32)



2.5. Error Analysis 27with the de�nition �� � � for � = 4 and �� � 1 for � = 1 : : : 3. The gauge independenceof the observables can thus be studied by varying the � parameter. � = 1 corresponds tothe Landau gauge, whereas �! 0 yields the Coulomb gauge.Evaluating the gauge condition on the lattice corresponds to minimizing the followingfunctional [69]F�U [G] � � Tr Xx;� ��UG� (x) = � Tr Xx;� ��G(x)U�(x)Gy(x+ �̂): (2.33)After choosing the gauge transformation matrix G(x) appropriately, the functional F canbe driven to a minimum in an iterative process. Two common algorithms developed forthis purpose are the Cornell [70] and the Los Alamos method [71, 72]. Both algorithmssu�er from a considerable slowing down e�ect: The more precisely the gauge condition isful�lled the nearer the transformation G(x) resembles the unitary transformation, whichmakes the algorithm less and less e�cient.Various methods have been proposed to speed up the convergence, for example the overre-laxation procedure [73] or the time-consuming Fourier acceleration [70]. In contrast to allother algorithms mentioned above, the Fourier acceleration is a non-local procedure whichinvolves wide range communications on parallel machines. Therefore the numerically op-timized fast Fourier transformation (FFT) is commonly used for the implementation.For the previous simulations at zero temperature, which were already reported in [74, 75],the Landau gauge was used. It was implemented with the Cornell method and acceler-ated by a FFT procedure. For the new con�gurations above the critical temperature theCoulomb gauge condition was applied, realized through the Los Alamos algorithm com-bined with the overrelaxation method. The Coulomb gauge was chosen with regard tothe maximum entropy method (MEM), which is described in detail in chapter 4. The aimwas to yield a positive de�nite spectral function for the quark propagator, respectively aplateau for the e�ective quark mass which is reached from above (see section 3.3). This isde�nitely not the case for the Landau gauge, where no transfer matrix can be constructed.2.5 Error AnalysisThe gauge �eld con�gurations generated by Monte Carlo integration (sec. 2.2) are notcompletely uncorrelated. The Jackknife procedure takes the autocorrelation betweenthe observables on di�erent con�gurations into account and provides an improved estimateof the mean values and errors.For this purpose the complete data set is divided into N subsamples of equal length.Leaving out one subsample respectively, the mean value on each reduced sample Dk can



28 Chapter 2. Lattice Gauge Theorybe calculated. The improved mean value and the corresponding error are then obtainedby the statistical averageO ' J = 1N NXk=1 Jk with Jk = ND � (N � 1)Dk�O ' �J = sPNk=1(Jk � J)2N(N � 1) ; (2.34)where D denotes the mean value on the whole sample.Furthermore strong correlations between di�erent time slices �i are observed for hadroniccorrelation functions. The standard �2-�t for a function F (�i; ~p) which depends on theparameters ~p, �2 =Xi �F (�i; ~p)�D(�i)�(�i) �2 ; (2.35)includes only the standard deviation �(�i) for each time slice independently and neglectsthe correlations among them completely. Therefore it is essential to take the inverse ofthe covariance matrix Cij into consideration, which results in a modi�ed �t ansatz�2 =Xi;j [F (�i; ~p)�D(�i)] C�1ij [F (�j ; ~p)�D(�j)]; (2.36)where the symmetric covariance matrix is given byCij = 1NC(NC � 1) NCXm=1 [Dm(�i)�D(�i)] [Dm(�j)�D(�j)]: (2.37)This approach is contained in the Likelihood function of the Maximum Entropy Method,which will be described in chapter 4. Setting all o�-diagonal components of the covariancematrix to zero then corresponds to the uncorrelated �2-�t in (2.35).In the case of a limited number of con�gurations one is sometimes confronted with verysmall or nearly zero eigenvalues of the covariance matrix, which results in unreasonablelarge eigenvalues of the inverse. One solution is to calculate the inverse with a singularvalue decomposition (SVD), which corresponds to omitting the smallest eigenvalues. Aless restrictive procedure, the eigenvalue smoothing, was proposed by Michael andMcKerrel [76]. Thereby the smaller eigenvalues are replaced by the average of them,whereas the larger ones remain the same. The eigenvectors of the covariance matrix andthus of its inverse are kept unchanged.Considering N� eigenvalues �i of the covariance matrix with �i � �i+1, the smoothingmethod can be implemented as follows�0i = max (�i; �min) with �min = 1N� �NR N�Xi=NR+1�i; (2.38)where NR denotes the number of retained large eigenvalues. This procedure often providesa more stable model of the correlation matrix from the sample data (see section 4.6).



Chapter 3
Strange Hadron Spectrum
After a short introduction to the symmetries of the particle spectrum and the underlyingquark interactions in section 3.1 the appropriate operators and correlation functions forthe simulations are summarized in 3.2. The subsequent paragraph 3.3 explains how theparticle masses are extracted from the correlation function, while section 3.4 describes theextrapolation to physical quark masses. The following section 3.5 illustrates the improve-ment through the application of the fuzzing technique. The last part 3.6 of this chapterdescribes the present lattice simulation and provides the results obtained for the strangehadron masses and the H-dibaryon stability.3.1 Hadron MultipletsConsidering the three lightest quark 
avors to be mass degenerate mu ' md ' ms,the SU(3) isospin symmetry accounts for the multiplet structure of the observed lighthadron spectrum. The three (anti-)quarks u, d and s form a 
avor (anti-)triplet in theframework of the SU(3) symmetry group, which is generated by the eight Gell-Mannmatrices �a; a = 1 : : : 8.In order to construct a meson (q�q) the product of a SU(3) triplet and an anti-triplet hasto be evaluated. It separates into irreducible singlet and octet representation3� �3 = 1+ 8: (3.1)In �gure 3.1 the octets of the pseudo-scalar and vector mesons are visualized, where I3denotes the third component of the isospin and S is the strangeness quantum number.The pseudo-scalar singlet is approximately the �0 meson, whereas a mixing of singlet andoctet states contributes to the vector mesons ! and �.29
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Figure 3.1: Multiplet structure for the pseudo-scalar and vector mesons (left) as well asfor the spin 12 baryons (right).Alternatively two quarks can be assembled in a diquark state. The nine possible (qq)combinations group themselves into an anti-triplet and a sextet according to3� 3 = �3+ 6: (3.2)This leads to the anti-symmetric anti-triplet states and the symmetric sextet states shownin �gure 3.2. The splitting in irreducible representations works similarly in the SU(3) colorgroup. Combining two color triplets results likewise in a color anti-triplet and a sextet.Note that in contrast to the ordinary mesons and baryons no color singlet is obtained forsuch a two quark state. Therefore the diquarks are color carrying objects, which may onlyoccur in the color superconducting phase of QCD at high densities (see �g. 1.1).In order to construct a total anti-symmetric wave function for the diquark state, thecolor and 
avor representations have to be combined appropriately with a total spinzero or one of the two quarks. The possible diquark states are summarized in table 3.1.
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The last two columns give the relativestrength of the q-q interaction due to a
avor-spin or a color-spin coupling, whichcan be calculated via two-body matrix ele-ments with the potential [77, 78]V � (�ai �aj )(sisj): (3.3)The �ai denote the generators of the SU(3)
avor or color symmetry group, respectively.The q-q interaction is attractive for the 
avoranti-triplet diquarks considering the color-spin coupling, which arises in perturbativeQCD from one-gluon-exchange (OGE) [22].In contrast to that the instanton liquidmodelpredicts an attractive interaction in the color



3.1. Hadron Multiplets 31(F,S,C) diquark state FS coupling CS coupling(�3; 0; �3) �abc(C
5)�� uya;�dyb;� -2 -2(6; 1; �3) �abc uya;�uyb;� -1/3 2/3(�3; 1; 6) uyc;�dyc;� 2/3 -1/3(6; 0; 6) (C
5)�� uyc;�uyc;� 1 1Table 3.1: Diquark states in the color anti-triplet and sextet representation.anti-triplet channel [23, 24]. Such a spin and 
avor dependent coupling between the con-stituent quarks is needed to describe the �ne structure of the experimentally observedhadron spectrum correctly [78].Our previous analysis of diquark correlation functions in lattice QCD [74, 75] providedevidence that the diquark splitting at zero temperature and density follows the order givenby the 
avor-spin interaction. For the lightest �30�3 state a mass compatible with twice theconstituent quark mass was found. A more sophisticated investigation of the diquarkcorrelators will be given in section 4.6 by applying the Maximum Entropy Method. Sincethe one-gluon-exchange (CS coupling) gains in importance at increasing baryon density,a reversal of the order for the spin 1 states and a slightly bound �30�3 diquark state seemspossible, which would support the existence of a color superconducting diquark phase athigh density (see section 1.3).Adding a further quark (q) to the diquark state (qq) leads to the formation of the baryons(qqq), which belong to the following multiplets [79](3� 3)� 3 = (�3+ 6)� 3 = 1A + 8M + 8M + 10S: (3.4)The spin 32 baryons build the symmetric decuplet, while the spin 12 baryon octet (see�gure 3.1) is described by a mixed representation. The anti-symmetric singlet state canbe identi�ed with the heavier �(1405) baryon. In the lattice simulation reported in thisthesis, the correlation functions for the nucleon, sigma and lambda baryons as well asfor the pion, rho, K and K� mesons were calculated. The particles in the same isospinmultiplet are mass degenerate, since the states carry no charge quantum number on thelattice.As already discussed in section 1.4 the main purpose of the analysis of the strange hadronspectrum is to examine the stability of the six quark state called H-dibaryon. This particleis built of two quarks of each light 
avor u, d and s and forms the anti-symmetric SU(3)F
avor singlet state. In order to obtain a total anti-symmetric wave function, color andspin have to be symmetrized in the combined SU(6)CS group. The H-dibaryon belongsto the 490 representation of this group, which contains the anti-symmetric color and spinsinglets. This is the most attractive channel for the q-q interaction in formula (3.3) arisingfrom one-gluon-exchange [33, 80].



32 Chapter 3. Strange Hadron Spectrum3.2 Hadron Operators and Correlation FunctionsIn lattice calculations the particle masses can be obtained from the exponential decay ofthe two-point correlation functions. This paragraph provides the appropriate operatorsand corresponding correlators for mesons, diquarks, baryons and �nally the H-dibaryon.A general meson operator is constructed from the quark and anti-quark �elds with thedesired quantum numbers combined with one of the matrices � = 1l; 
5; 
�; 
5
� or ���M(~x; �) = �	c;f1� (~x; �) (�)�� 	c;f2� (~x; �): (3.5)Given the operator, the connected 
avor non-singlet part of the two-point correlationfunction G(~x; �) = hM(~x; �)My(0)i can be evaluated according to (2.8) in analogy tothe quark propagator in formula (2.28). Moreover, the anti-commutation relations of thefermion �elds and the 
-matrices have to be taken into account. The speci�c operators andresulting correlators for the scalar, pseudo-scalar and vector mesons are summarized below:Scalar Meson (JPC = 0++) MS(~x; �) = �	c;f1� (~x; �)	c;f2� (~x; �)GS(~x; �) = h (
5)��U c1c2�
 (
5)
�D�c1c2�� iU ; (3.6)where U � M�1(�u; x; 0) and D � M�1(�d; x; 0) denote the inverse fermion matrix forthe quark 
avors f1 = u and f2 = d, which are usually chosen to be degenerate. Theexpression h iU should be understood as average over the gauge �eld con�gurations Uaccording to (2.25), respectively (2.26).Pseudo-scalar Meson (JPC = 0�+) MPS(~x; �) = �	c;f1� (~x; �) (
5)�� 	c;f2� (~x; �)Here the additional 
5-matrix is eliminated in the correlator via the relation Dy = 
5D
5,which was already used for the scalar mesonG�(~x; �) = h U c1c2�
 D�c1c2�
 iUGK(~x; �) = h U c1c2�
 S�c1c2�
 iU ; (3.7)Hence the choice of the quark 
avors f1;2 determines the particle described with the abovecorrelation function, which is the pion for u and d and the K meson for u and s quark
avors, where S �M�1(�s; x; 0).Vector Meson (JPC = 1��) MV (~x; �) = �	c;f1� (~x; �) (
k)�� 	c;f2� (~x; �)For u and d quark 
avors this operator characterizes the � meson, while the K� meson isgiven by u=d and s quark content. Since the operator includes the matrices 
1, 
2 or 
3,the total correlator is obtained by summing over all three combinationsG�(~x; �) = 13 3Xk=1h (
k
5)��U c1c2�
 (
k
5)
�D�c1c2�� iUGK�(~x; �) = 13 3Xk=1h (
k
5)��U c1c2�
 (
k
5)
�S�c1c2�� iU : (3.8)



3.2. Hadron Operators and Correlation Functions 33The four possible diquark states with a total anti-symmetric wave function were alreadyintroduced in table 3.1. Instead of the 
-matrices appearing in the meson operators thespin zero diquark states involve the combination of the charge conjugation matrix C with
5, which ensures the appropriate combination of the spinor indices. The �-tensor providesthe anti-symmetric color distribution for two quarks in the anti-triplet representation. Inthe following the fermion �eld notation is abbreviated according to the 
avor contentas ua�(x) � 	a;u� (~x; �). The diquark correlators can be obtained in analogy to those formesons, but unlike in the case of color singlet states they are gauge-variant observables.Therefore these correlation functions have to be calculated on gauge �xed con�gurations(see section 2.4). Note that for the 
avor sextet diquarks with two u quarks two possiblecombinations for the quark propagator arise. This leads to a second term with negativesign due to the anti-commutation relation for the quark �elds. The resulting correlationfunctions are listed below:Diquark (Flavor �3, Spin 0, Color �3) D�30�3(~x; �) = �abc(C
5)��ua�(x)db�(x)G�30�3(~x; �) = h �abc�def (C
5)��(C
5)
�Uad�
Dbe�� iU (3.9)Diquark (Flavor 6, Spin 1, Color �3) D61�3(~x; �) = �abcuas(x)ubs(x)G61�3(~x; �) = h �abc�def (Uads1s2U bes1s2 � Uaes1s2U bds1s2) iU (3.10)Diquark (Flavor �3, Spin 1, Color 6) D�316(~x; �) = ucs(x)dcs(x)G�316(~x; �) = h U c1c2s1s2Dc1c2s1s2 iU (3.11)Diquark (Flavor 6, Spin 0, Color 6) D606(~x; �) = (C
5)��uc�(x)uc�(x)G606(~x; �) = h (C
5)��(C
5)
�(U c1c2�
 U c1c2�� � U c1c2�� U c1c2�
 ) iU : (3.12)Combining the �30�3 diquark operator with an additional quark �eld yields the general formfor the spin 12 baryon operatorB(~x; �) = �abc	a;f1� (~x; �)[	b;f2� (~x; �)(C
5)�
	c;f2
 (~x; �)]: (3.13)As described before, the anti-symmetric �-tensor takes care of the color neutrality of thebaryon, while the (C
5)-matrix ensures the correct spinor distribution of the quarks �elds.Accordingly, the operators of the nucleon and the strange sigma baryon together with thecorresponding correlators can be written asNucleon BN (~x; �) = �abcua�(x)[ub�(x)(C
5)�
dc
(x)]GN (~x; �) = h Tr��[�abc�def (C
5)�
(C
5)�� (Uad��U be��Dcf
� � Uae��U bd��Dcf
�)] iU (3.14)



34 Chapter 3. Strange Hadron SpectrumSigma B�(~x; �) = �abcua�(x)[ub�(x)(C
5)�
sc
(x)]G�(~x; �) = h Tr��[�abc�def (C
5)�
(C
5)�� (Uad��U be��Scf
� � Uae��U bd��Scf
�)] iU : (3.15)The lambda baryon consists of the three light quark 
avors u, d and s. Hence the operatorcontains the three possibilities to combine the spin of a quark pair to zeroLambda B�(~x; �) = �abc(C
5)�
 [ua�(x)db�(x)sc
(x)+da�(x)sb�(x)uc
(x)�2sa�(x)ub�(x)dc
(x)]G�(~x; �) = h Tr��[�abc�def (C
5)�
(C
5)��� (Uad��Dbe��Scf
� +Dad��U be��Scf
� + 4Sad��U be��Dcf
�� Uad��Dbe��Scf
� �Dad��U be��Scf
� � 2Uad��Dbe��Scf
��2Dad��U be��Scf
� � 2Sad��Dbe��U cf
� � 2Sad��U be��Dcf
�)] iU= h Tr��[�abc�def (C
5)�
(C
5)��(2Uad��U be��Scf
� + 4Sad��U be��U cf
��2Uad��U be��Scf
� � 4Uad��U be��Scf
� � 4Sad��U be��U cf
� )] iU : (3.16)It is obvious from the above correlation function that the nine original components reduceto only �ve if the masses of the light quark 
avors u and d are degenerate.Finally, the H-dibaryon correlator is needed for the investigation of this particle on thelattice. As SU(3)F 
avor singlet this six quark state contains two of each light quark
avors u, d and s. The explicit construction of the operator requires the symmetrizationof the color and spinor indices of two triplets of quarks in order to obtain color and spinsinglets as described in the last section. This procedure can be illustrated most suitablewith the following operator notation for the di�erent six quark combinations(abcdef) = �abc�def (C
5)��(C
5)
�(C
5)��aa�(x)bb�(x)cc�(x)dd
(x)ee�(x)ff�(x):The quark pairs ab, de and cf couple to spin zero, while the �rst three quarks (abc) andthe last three ones (def) form each a colorless state. Using this notation the H-dibaryonoperator can be written as [81]H(~x; �) = (udsuds) + (usdusd) + (dsudsu)� 2(ussudd)� 2(dssduu)� 2(usudsd)= 3(udsuds) � 3(ussudd)� 3(dssduu);where the additional relations(usdusd) = (udsuds)� (dssduu) + (usudsd)(dsudsu) = (udsuds)� (ussudd) + (usudsd)were employed to reduce the number of contributions to the H-dibaryon operator. Sincetwo quarks �elds of each 
avor are contained in each part, the corresponding correlationfunction GH(~x; �) = hH(~x; �)Hy(0)i involves terms of the structure(U11U22 � U12U21)(D11D22 �D12D21)(S11S22 � S12S21): (3.17)



3.3. Extracting Masses from Correlation Functions 35Each quark can be combined with the �rst or the second one of the same 
avor in theconjugate operator. The second term gets a minus sign due to the anti-commutationrelations of the quark �elds as already shown in the simple case of the diquarks. Takingthe symmetry properties of the �-tensor and the (C
5)-matrix under the interchange oftwo indices into account and considering only degenerate u and d quark 
avors then yieldsthe H-dibaryon correlation function in the compacti�ed representationGH(~x; �) = h �abc�def�ghi�jkl(C
5)��(C
5)
�(C
5)��(C
5)��(C
5)��(C
5)��� f (Uag��Udj
� � Uaj��Udg
�) [ (U bh��U ek�� � U bk��U eh�� )(Sci��Sfl�� � Scl��Sfi��)+2 (U bk��U el�� � U bl��U ek�� )(Sch��Sfi�� � Sci��Sfh��)+2 (U eh��Ufk�� � U ek��Ufh�� )(Sbi��Scl�� � Sbl��Sci��)+2 (U ek��Ufl�� � U el��Ufk�� )(Sbh��Sci�� � Sbi��Sch��) ]+2 (Uaj��Udl
� � Ual��Udj
�)(U eg��Ufk�� � U ek��Ufg��)(Sbh��Sci�� � Sbi��Sch��) g iU :Note that the actual calculation of this correlator in a lattice simulation involves loopsover all the color and spinor indices, which is naturally very time consuming. Therefore itis absolutely necessary to consider that three out of four combinations of the spinor indicesgive no contribution to the correlation function due to the structure of the (C
5)-matrix(see appendix A). Moreover only 6 of 27 possible combinations of the color indices in the�-tensor yield a non-zero result. Nevertheless the evaluation of the H-dibaryon correlationfunction involves the calculation of O(108) independent terms and requires a factor 150more CPU-time than the calculation of a lambda baryon correlator.3.3 Extracting Masses from Correlation FunctionsAs mentioned before particle masses can be obtained from the long range behavior of thecorrelation functions. In the case of the temporal correlator this yields the pole mass, whilethe exponential decay of the spatial correlator (usually in the z direction) determines thescreening mass G(�) = Z dx dy dz G(x; y; z; �)G(z) = Z 1=T0 d� Z dx dy G(x; y; z; �): (3.18)The following considerations about the temporal correlation function and the pole masscan also be translated correspondingly for the spatial correlator and the screening mass.Once the correlation function is calculated, a �rst estimate of the particle mass can beobtained from its e�ective mass at Euclidean time � , which is de�ned asmeff (�) = log� G(�)G(�+1)� : (3.19)



36 Chapter 3. Strange Hadron SpectrumFor small time separations the e�ective mass usually shows contributions of excited states,while it turns into a plateau of a constant ground state mass at larger times. For thisreason one usually de�nes correlations functions which project onto states with de�nitemomentum. Performing a Fourier transformation one obtainsG(~p; �) = Xx G(~x; �)e�i ~p ~x= Xn �An(~p)e�En(~p)� +Bn(~p)e�En(~p)(N���)� : (3.20)At large time separations this correlator at �xed momentum is dominated by the groundstate energy E0(~p) = qm20 + ~p2. The projection onto zero momentum then yields simplythe reduction to the ground state mass E0(0) = m0. The amplitudes obey the relationBn(~p) = �An(~p) if the correlator G(~p; �) is even (odd) in the temporal direction. Hencethe correlation function for ~p = 0 is (anti-)symmetric around N�=2, which is expressed inthe di�erent functional formsGsym(�) = 2A0 e�m0 N�2 cosh�m0 �N�2 � ��� (3.21)Gasym(�) = 2A0 e�m0 N�2 sinh�m0 �N�2 � ��� : (3.22)By using the appropriate ansatz as �t function, a Jackknife analysis (see section 2.5)of the particle mass can be performed. Ideally this procedure is completed by a two-mass�t according toGsym(�) = 2A0 e�m0 N�2 cosh�m0 �N�2 � ���+ 2A1 e�m1 N�2 cosh�m1 �N�2 � ��� ;in order to eliminate e�ciently the contributions of excited states at the �rst few timeslices. Furthermore a stable plateau of the ground state mass should be obtained byleaving out successively data points at small time separations.3.4 Extrapolation to the Physical PointThe resulting particle masses at di�erent values of the bare quark mass have to be ex-trapolated to the chiral limit or to the physical quark mass value, respectively. As alreadyintroduced in section 2.1.2 the quark mass (2.14) is related to the squared mass of thepseudo-scalar meson in leading order chiral perturbation theory. Therefore a linear de-pendence of m2PS on the quark mass can be assumedm2PS = bPS �1� � 1�c� ; (3.23)where �c is the critical hopping parameter at which the pseudo-scalar meson mass vanishes.For all other particle masses a similar relation is applicablem = a+ b� 1� � 1�c� : (3.24)



3.5. Improvement through the Fuzzing Technique 37In the case of particles consisting of di�erent quark 
avors, like the strange hadrons inves-tigated in the present study, the linear functions are understood in terms of the averagequark mass 1� = 12 � 1�ud + 1�s� : (3.25)This leads to a modi�ed version of the relation (3.23) for the mass of the strange pseudo-scalar K meson m2K = bPS2 �� 1�ud � 1�c�+ � 1�s � 1�c�� (3.26)and similarly to a modi�cation of (3.24) for the other particles. Obviously an extrapolationto the physical values of the degenerate u and d quark mass as well as to the s quark massis necessary. By keeping �s �xed, the second term in (3.26) becomes simply a constant,which allows to perform a linear �t in 1/�ud and an extrapolation to the physical barequark mass. The latter can be determined from the ratio of two non-strange hadrons, likethe pion, rho or nucleon, or alternatively from the ratio of one of these with the stringtension.Having �xed the physical �ud, the �rst term of the relation (3.26) is only a constant.Therefore a linear extrapolation in 1/�s leads to the physical point. The physical �s canbe determined from the ratio of a strangeness carrying particle to a non-strange one. Inthe quenched approximation the di�erent choices of the input particle masses producedeviations in a 10% range compared to the experimental values [44], whereas this e�ectcan be reduced in simulations with dynamical fermions [82].3.5 Improvement through the Fuzzing TechniqueIt was already mentioned that the excited states interfere with the clean exponentialdecay of the ground state in the correlation function. This observation inspired Guptaet. al. [83] to develop an improvement procedure, which was further explored by theUKQCD collaboration [84]. The so-called fuzzing technique provides a better overlapwith the ground state, since it takes into account to some extent the physical size of theparticle. The separation of a quark (anti-)quark pair by a suitable distance R thus willmaximize the ground state contribution relative to the ones of the excited states alreadyat small Euclidean times. The fuzzed quark �eld is constructed to be symmetric in allspace directions (see �gure 3.3)	R(x) = 16 X�=1::3( U y(x� �̂) :: U y(x�R�̂)	(x�R�̂)+U(x) :: U(x+ (R � 1)�̂)	(x+R�̂) ): (3.27)Such a fuzzed quark �eld is only used at the sink, while the one at the source remains local.For a general meson the fuzzed operator and the corresponding correlator can be written as
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Figure 3.3: Fuzzed fermionoperator with radius R.
G(~x; �) = hMR(~x; �)My(0)i with (3.28)MR(~x; �) = �	R�;c;f1(~x; �) (�)�� 	�;c;f2(~x; �):This combination is referred to as local-fuzzed (LF) corre-lator. It would not be appropriate to use a fuzzed-fuzzed(FF) correlator, since some of the fuzzed links cancel eachother, which would resemble the purely local correlator [84].For the baryons two possible combinations arise, the (LLF)single-fuzzed and the (LFF) double-fuzzed correlator. Theyare visualized in �gure 3.4, where each of the extended linksis understood as a sum over the six spatial orientations. Doubling the quark content of abaryon leads to a dibaryon operator in the (LLLLFF) and the (LLFFFF) representation.
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Figure 3.4: Fuzzing for mesons, baryons and dibaryons.In addition to the quark �elds also the distribution of the gluon �elds can be improved.The desired approach should imitate the gluon cloud which surrounds the quark �elds.This is commonly achieved by the iterative APE smearing procedure [85]Unew(x; �) = PSU(3)0@c Uold(x; �) + X�� 6=�<4Ustaples(x; �)1A ; (3.29)where the staples ( ) with three links perpendicular to the gauge �eld and the timedirection are added to the simple link. This is followed by the back projection to theSU(3) symmetry group. Some trials with di�erent parameters c and varying number ofiteration steps have shown [84], that the choice of c = 2 and at least eight iteration stepsleads to an e�cient smearing of the gauge �elds.The e�ect of the fuzzing and smearing procedures is now further explored for the H-dibaryon correlation function. It is obvious from the correlator as well as from the e�ec-tive mass plot in �gure 3.5, that already the fuzzing of two quarks yields a considerablereduction of contributions from excited states. The best results were obtained by applyingthe fuzzing technique for four of the six quarks, where an almost constant value for up to�ve time separations could be achieved. The remaining contributions of excited states atsmall time separations were e�ciently absorbed in the �ts with two exponentials.
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Figure 3.5: In
uence of the fuzzing technique on the H-dibaryon correlation function andthe e�ective masses.3.6 Hadron SpectrumFor the detailed analysis of the stability of the H-dibaryon a spectrum calculation wasperformed in quenched QCD with improved gauge and fermion actions. In the gauge sectorthe (1,2) Symanzik improved action (2.6) was used with a gauge coupling � = 4:1. Thelattice spacing was determined from the string tension to a=0.177(8)fm [4], or equivalentlya�1=1.11(5) GeV. The Clover fermion action was used with tree-level clover coe�cient,since non-perturbatively improved coe�cients are not yet available for the employed gaugeaction (see also section 2.1.2). In order to study the �nite size e�ects, simulations of thestrange hadrons as well as the H-dibaryon were performed on four lattice sizes (8�24)3�30.The number of con�gurations ranges from 120 for the smallest to 20 for the largest lattice.They are separated by 100 sweeps of four overrelaxation and one heatbath step each. Thecorrelators were calculated for three di�erent �ud and up to �ve �s values. On these fairlycoarse lattices a fuzzing radius R = 4 has been chosen in order to obtain a broad plateaufor e�ective masses as an approximation for the H-dibaryon ground state mass.The physical �ud value was determined from a previous simulation of the light hadronspectrum [74, 75] with the same parameters as above, but on a 163�32 lattice and on thebasis of in total 292 quark propagators. Adjusting the particle ratiosm�=mN , m�=p� andmN=p� to the experimental values leads to very similar results for the hopping parameter�ud = 0:1490(1), which corresponds to the physical value of the light quark masses.3.6.1 Strange Particle MassesThe strange particle masses were determined with one- and two-state �ts during a Jack-knife analysis (see sec. 2.5) as illustrated the section 3.3. The masses obtained in this wayare summarized in the tables B.1-B.4 of the appendix. The strange particle masses for all
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3.6. Hadron Spectrum 41lattice sizes are displayed in �gure 3.6, where the linear extrapolation to the physical �ud-value was already performed. Hence the particle masses depend only on the strange quarkmass. The lines should guide the eye and indicate the results of linear �ts for the 163� 30lattice data.In general one observes a good agreement of the strange hadron masses on the di�erentlattice sizes. Only the results of the smallest 83�30 lattice are slightly overestimated. Thise�ect is more pronounced for the baryons in comparison to the mesons, since the �nitesize e�ects increase with the size of the simulated particle. That is even more obviousfrom �gure 3.6 (bottom), where strong deviations can be observed for the H-dibaryon onthe smallest lattice which has an spatial extension of only L = 1:4 fm.Before the di�erence between the H-dibaryon and two � masses is investigated in detail,the plotted region for the physical s quark mass should be explained. In order to absorbas many quenching e�ects as possible, the physical �s should be set by the ratio m�/mN .Here the contact to physical units was made by the nucleon massmN = m̂Na�1 = 939 MeVas an input, which yields a�1=1.12(1) GeV. This procedure leads to only small deviationsin the range 2-5% compared to the experimental values of the � baryon and the K� mesonon the largest lattices, while the K meson was found to be about 20% heavier. This e�ectcould also be observed in a similar study [39].Inspired by the good agreement of the � and K� meson masses with the experimentalvalues, the scale was set alternatively by the ratios m�/mN and mK�/mN . The obtainedparticle masses for di�erent input choices are collected in table B.5. Since it is desirable tode�ne a common physical �s-value for a comparison of the results on all lattice sizes, theaverage over the �s-values on the two larger lattices was taken, which yields deviations ofno more than 5% for the non-adjusted particle masses. The mean value �s = 0:1417(2) isindicated as physical �s-region in the plots 3.6 and 3.7. The particle masses for this mean�s-value can also be found in table B.5.3.6.2 H-Dibaryon StabilityNow all prerequisites are available to discuss the investigation of the H-dibaryon stability.The di�erence between the H-dibaryon and twice the lambda mass is illustrated in detailin �gure 3.7. The slope of a linear �t in 1=�s would be quite di�erent for varying latticesizes. For the largest lattice almost a constant behavior can be observed, whereas thevalues of the 163 � 30 lattice are rising with increasing strange quark mass. On thecontrary the data points of the two smaller lattices exhibit a negative slope �tted linearin 1=�s. Nevertheless the results on all lattice sizes have in common that a value aroundzero is expected in the physical region. This would mean that the examined H-dibaryonstate is simply the unbound composition of two lambda baryons.Finally, the dependence of this result on the di�erent choices of the input particle massshould be investigated. Figure 3.8 shows the di�erence in mass (mH � 2m�)=2m� at the
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3.6. Hadron Spectrum 43physical u=d and s quark values for the experimental input of the �, � and K� massesas well as for the formerly described mean value of �s. The �nite size e�ects are obviousfor the smallest lattice with L = 1:4 fm, especially for the � input. On the intermediatelattices the values scatter around zero depending on the di�erent input masses, while thepoints for the largest lattice with L = 4:2 fm lie slightly above. Here the limited statisticsof only 20 con�gurations on the 243 � 30 lattice should be taken into account.Taking the results on all lattice sizes into account leads to the conclusion, that an unboundH-dibaryon state consisting of two lambda baryons has been observed. Otherwise a lighterH-dibaryon should have been found, as in the case of the smaller lattice (L = 2:1 fm) ofthe study of Negele et. al. [39], which is also indicated in �gure 3.8. The authors could notrule out considerable �nite size e�ects on this lattice. Therefore a further investigationon a larger 243 � 30 lattice with L = 3:1 fm had been performed, which is in much betteragreement with the results of the present thesis. Hence a common conclusion arises fromthe recent and present studies: The H-dibaryon does not exist as stable particle in thevacuum. It seems to be unbound at least within quenched QCD.Two previous attempts to calculate the H-dibaryon mass on the lattice were reported in theliterature more than a decade ago (see also table 1.1). The �rst calculation of Mackenzieand Thacker [36] on a fairly small lattice resulted also in an unbound H-dibaryon, whileIwasaki et. al. [37] observed a strongly bound H-dibaryon in a further simulation with therenormalization group improved gauge action. This calculation su�ered from the limitedstatistics of only 15 con�gurations and quite large bare quark masses. In a subsequentpaper [38] the authors realized that the di�erence in mass 2m� �mH was considerablydecreased in a simulation with the standard plaquette action, which sheds a di�erent lighton the observation of a strongly bound H-dibaryon.
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44 Chapter 3. Strange Hadron SpectrumIn order to complete this section about strange hadronic matter, a short outlook on furtherlattice simulations in this �eld should be added. In �gure 3.9 the relative error of the H-dibaryon and lambda correlators are illustrated. It can be observed that the error rises onlylinearly with the baryon number of the investigated state. Therefore it seems possible inthe future to examine larger strangelets or even multi-quark clusters in lattice simulations,once the e�ciency of the available parallel machines has increased su�ciently.



Chapter 4
Hadron Spectral Functions
So far only hadron spectra at zero temperature have been discussed. Now the focus is onthe modi�cations of spectra which may arise from the presence of a thermal medium. Inthis last chapter the possibilities of the spectral analysis of hadronic correlation functionswith the Maximum Entropy Method (MEM) are described. The �rst section 4.1 givesan introduction into the relevance of spectral functions in QCD. After a presentation ofthe main principles of MEM in section 4.2, the numerical algorithm will be explained ingreater detail in 4.3.Section 4.4 shows the (in)dependence of the obtained spectral function under changes ofthe input parameters. The following two parts illustrate the resulting spectral functions formeson (sec. 4.5) and diquark (sec. 4.6) correlation functions at zero temperature, whereasthe last section 4.7 demonstrates the applicability of this method to mesonic correlationfunctions at �nite temperature.4.1 Spectral Functions in QCDRecent lattice calculations of static observables, like hadron masses and decay constantsat zero temperature, have reached a quite satisfactory precision [82, 86]. At �nite temper-ature it is desirable to get access to dynamic quantities, in particular spectral functionsand real-time correlation functions, starting from the temporal correlators in Euclideantime calculated on the lattice. Furthermore modi�cations of hadronic properties at �nitetemperature and density could be studied in terms of changes of the spectral shape. Theanalysis of temporal as well as spatial correlation functions in the vicinity of the criticaltemperature gives evidence of substantial changes in the properties of hadronic states be-tween the con�ned phase and the hot plasma phase of QCD [13, 14, 16, 87]. In order tojudge if the observed modi�cations of hadron correlators are indeed related to the disap-pearance of hadron bound states a detailed study of the structure of spectral functions isrequired. 45



46 Chapter 4. Hadron Spectral FunctionsMoreover, spectral functions are directly related to the experimental annihilation crosssections. For example, a temperature dependence of the vector meson mass and widthis linked to changes of the dilepton spectrum, whereas thermal e�ects on the pseudo-scalar correlator in
uence the chiral condensate. These phenomena can be examined inrelativistic heavy ion collisions [88, 89].At very high temperatures beyond the phase transition thermodynamic observables canbe calculated perturbatively in the framework of the hard thermal loop (HTL) resummedtheory [90]. In a recent study [91] the HTL-resummed scalar spectral function was cal-culated for vanishing momentum. In comparison with the free thermal spectral functionan enhancement at low energies as well as a suppression in the high energy regime can beobserved. The former is due to the interaction between quarks and gluons in the heatbath,whereas the latter results from the in
uence of the thermal quark mass (Debye screening).The obtained mesonic correlation functions can be compared to lattice results for tem-peratures larger than T ' 2Tc. The HTL-resummed vector spectral function diverges forsmall energies, hence the corresponding correlator is divergent. Therefore a direct com-parison of the vector correlation function calculated on the lattice with HTL-resummedperturbation theory is not possible. This makes it even more important to perform latticecalculations on large spatial lattices in order to explore the non-perturbative part of thespectral functions at low momenta.In general the thermal two-point function for a speci�c hadronic observable O at Euclideantime � 2 [0; 1=T ] in coordinate space is given by the in�nite sumG(�; ~x) = hO(�; ~x)Oy(0;~0)i= T +1Xn=�1 Z d3p(2�)3 e�i(!n��~p~x) Ĝ(!n; ~p): (4.1)The Fourier transformed correlation function Ĝ(!n; ~p) depends on the discrete Matsubaramodes, i. e. !n = 2n�T for bosons. The spectral function A(!; ~p) can be determined fromthe imaginary part of the momentum space correlatorĜ(!n; ~p) = Z +1�1 A(!; ~p)! � i!n d! =) A(!; ~p) = 1� Im Ĝ(!n; ~p): (4.2)Using both the equations (4.1) and (4.2) together with the identityT Xn e�i!n�! � i!n = e��!1� e�!=T with 0 � � < 1T (4.3)for the Fourier transform of the free boson propagator, the spectral representation of thethermal correlation function in the coordinate space at �xed momentum can be writtenas G(�; ~p) = T Xn e�i!n� Ĝ(!n; ~p)= Z +1�1 T Xn e�i!n�! � i!n A(!; ~p) d!



4.2. Principles of the Maximum Entropy Method 47= Z +1�1 e��!1� e�!=T A(!; ~p) d!= Z 10 e��! + e(��1=T )!1� e�!=T A(!; ~p) d!= Z 10 cosh(!(� � 1=2T ))sinh(!=2T ) A(!; ~p) d!� Z 10 K(�; !) A(!; ~p) d!: (4.4)The function K(�; !) is the integral kernel in the continuum representation, which isessential for the MEM analysis. It can easily be veri�ed that this kernel reduces toK(�; !) = e��! at zero temperature (T ! 0). This version will be referred to as exponen-tial kernel. In the following only correlation and spectral functions at �xed momentum~p = 0 will be considered, therefore the label ~p is omitted from now on.The last line of equation (4.4) shows that a given data set D(�) � G(�; 0) for the correlatorand the corresponding spectral function A(!) are related by an inverse Laplace transform.Unfortunately lattice calculations can only provide the correlation function for a discreteset of Euclidean times � . The number of data points is much smaller than the desirednumber of sampling points needed to reconstruct the spectral function. This is a typicalexample for an ill-posed problem, where the standard �2-�tting procedure is inapplicable.Furthermore the data are noisy due to the Monte Carlo sampling.So far the analytic continuation from imaginary to real-time correlation functions wasperformed by strict assumptions on the spectral shape, for example a �-function repre-senting the pole mass plus a continuum-like structure [92, 93, 94]. Such an approachinhibits to probe the �ne structure of the spectral function. Further di�culties arise at�nite temperature, where very little is known about the spectral shape. The MaximumEntropy Method is a new approach to tackle this problem by use of Bayesian methods ofinterference. It provides a procedure to estimate suitable spectral functions from givendata in Euclidean time which requires no a priori assumptions on the spectral shape.4.2 Principles of the Maximum Entropy MethodThe Maximum Entropy Method is a well known technique in condensed matter physics,image reconstruction and astronomy [17, 95, 96]. In lattice QCD it has recently beenapplied to analyze meson correlation functions at zero temperature [18]. It could bedemonstrated that this method correctly detects the location of poles in the correlationfunction and, moreover, is sensitive to the contribution of higher excited states in thecorrelators [97, 98]. Furthermore the spectral functions allow the determination of decayconstants from the area below sharp peaks [98].The framework of Bayesian interference in probability theory provides a powerful tool to�nd the most probable spectral function. The basic formula is given by the Bayes Theorem



48 Chapter 4. Hadron Spectral Functionsof conditional probability P [XjY ] for the event X given YP [XjY ] = P [Y jX] P [X]P [Y ] : (4.5)The posterior probability for the spectral function A(!) given the data points D(�) fora correlation function in imaginary time is now accordingly determined asP [AjDH] = P [DjAH] P [AjH]P [DjH] with P [DjAH] � exp(�L)P [AjH] � exp(�S); (4.6)where P [DjH] is only a normalization factor, which is independent of the spectral function.P [DjAH] is called the likelihood function and P [AjH] the prior probability [17].H includes all prior knowledge about the spectral function, such as the positivity A(!) � 0for ! � 0 [99].The central limit theorem provides the functional form of the likelihood function P [DjAH]in (4.6) for the case of a large number of measurements. It can be expressed in terms ofthe usual �2 distributionL = 12�2 = 12Xij (F (�i)�D(�i))C�1ij (F (�j)�D(�j)); (4.7)where D(�i) is the average over all measurements. Cij denotes the symmetric covariancematrix, which has already been de�ned in equation (2.37). Employing equation (4.4), the�t function F (�i) = Z 10 K(�i; !)A(!) d! =̂Xj KijAj (4.8)is obtained in the discretized version by means of a prede�ned kernel Kij � K(�i; !j) andthe spectral function Aj � A(!j)�!.Maximizing the likelihood function P [DjAH] corresponds to minimizing �2, which is thecommonly used �tting procedure, where only a few parameters are adjusted. But for theaddressed ill-posed problem, the in
uence of the prior probability plays an important role.At variance with the maximum likelihood method, in addition one has to maximize theprior probability P [AjH] � exp(�S), which depends on the factor � and the entropy S.The Shannon-Jaynes entropy can be constructed from axiomatic requirements such assubset and system independence, coordinate invariance and scaling [18, 100]. This leadsto the following expression for the entropyS = Z 10 �A(!)�m(!)�A(!) log�A(!)m(!)�� d!=̂ Xj "A(!j)�m(!j)�A(!j) log A(!j)m(!j)!# �!; (4.9)
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Figure 4.1: Sharply peaked posterior distribution P [�jDm] of the weight factor � giventhe data (left) and its logarithm log(P [�jDm]) (right) for the pion at 0.6 Tc at � = 0:1346.where the default model m(!) incorporates any a priori knowledge about the spectralfunction A(!). In the absence of any information about the data, the entropy is maximizedwithA(!) � m(!). For the studies of meson correlation functionsm(!) = m0 !2 is used asthe initial ansatz for A(!) � �(!) !2. This default model is motivated by the asymptoticbehavior of the spectral function at high energies, which can be studied in perturbativeQCD. The in
uence of the choice of the model on the �nal spectral function is analyzedin section 4.4.The real and positive factor � in the prior probability P [AjH] = P [Aj�m] � e �S controlsthe relative weight between the entropy and likelihood function. For large � the �t ismostly in
uenced by the default model, whereas for small � the spectral function tends to�t the lattice data. The �nal result is independent of � because an integration over thisparameter is performed.The most probable spectral function Â�(!) for given � is then obtained by maximizingP [AjDH] = P [AjD�m]. It can easily be seen from (4.6) that this is equivalent to �nding amaximum of Q � �S�L. The �nal spectral function �A(!) is determined from a weightedaverage over ��A(!) = Z DA Z d� A(!)P [AjD�m]P [�jDm] ' Z d� Â�(!)P [�jDm]: (4.10)The above approximation is valid for a sharply peaked distribution P [AjD�m]. The weightfactor P [�jDm] can be obtained in applying Bayes Theorem (4.6)P [�jDm] � Z DA P [DjA�m] P [Aj�m] P [�jm]� P [�jm] Z DA exp(�S � L) (4.11)It usually turns out that the weight factor P [�jDm] is sharply peaked around a uniquevalue �̂ for data with a small error (see �gure 4.1). Therefore a Gaussian approximationof P [�jDm] can be used, which will be explained in the next section.



50 Chapter 4. Hadron Spectral FunctionsThe most probable spectral function can be found from the condition for an extremum(maximum) making use of the Bryan algorithm ([101], see also sec. 4.3)rAQ = �rAS �rAL = 0: (4.12)The uncertainty of the solution is then contained in the second derivative of Q withrespect to the spectral function A, namely (rrQ)�1. Since one is interested in error barsfor certain regions (peaks) of A(!), the average spectral function in the frequency rangeI = [!k; !l] must be calculated for a given � [18]hA�iI ' RI A�(!) d!RI d! = Pj2I A�(!j) �!(l � k + 1) �! : (4.13)The error in this region is then obtained from the varianceh(�A�)2iI ' �RI�I (rrQ)�1 d! d!0RI�I d! d!0 ; (4.14)where (rrQ)�1 is given by equation (4.25). Having calculated the mean and variancefor the spectral function in the desired !-ranges at every given �, the �nal result can becalculated via the integration over � similar to equation (4.10)h �A(!)iI ' Z d� hA�iI P [�jDm]h(�A)2iI ' Z d� h(�A�)2iI P [�jDm]: (4.15)4.3 Details of the AlgorithmThis section should serve as a guideline through the algorithmic details described in [101]by R. K. Bryan. The most complicated part of MEM is maximizing Q = �S � L, orequivalently solving rQ = �rS �rL = 0 in order to obtain a global maximum. First ofall, the derivatives with respect to the spectral function A can be calculatedrS = Xj � log (Aj=mj) with Aj=mj � A(!j)=m(!j)rL = @F@A @L@F = KT @L@F : (4.16)For the kernel K a singular value decomposition (SVD) is performed. The N� �N! kernelmatrix can be written as product K = V � UT , where U and V are orthogonal matricesand � is a diagonal matrix with the ordered singular values �i. Since some of the singularvalues are very small or even zero for an ill-conditioned matrix, the space can be reduced tothe singular space with the dimension Ns � N� . Using a condition like �min > 10�6 �maxto determine the size of this space, one obtains the Ns singular values, the N!�Ns matrixU (s) and N� �Ns matrix V (s) in the reduced space.



4.3. Details of the Algorithm 51Since the spectral function is positive semi-de�nite, it now can be parametrized using theorthogonal matrix U � U (s) and a vector u in the singular spaceAj = mj exp NsXk=1Ujkuk: (4.17)This yields the enormous advantage that the N! = O(102) dimensional discretized spectralfunction can be expressed in terms of an only Ns dimensional vector u.Inserting the formulas (4.16) and (4.17) into equation (4.12), the condition for an ex-tremum in the singular space can be rewritten as�� u = � V T @L@F � g: (4.18)Now a standard Newton search can be performed for the function f(u) = ��u�g, startingwith any arbitrary u-vector�@f(u)@u �u = f(u) =) � � 1l + @g@u� �u = �� u� g: (4.19)The derivative of g with respect to u can be calculated by@g@u = � V T @2L@F 2 V � UT diagfAg U with @2L@F 2 = C�1: (4.20)In the context of MEM it is more suitable to set u = 0 in the beginning, which correspondsto a start with the default model (see equation (4.17)). In order to guarantee the lowestorder approximation of the Newton search, the step size �u must be restricted. Thereforean auxiliary parameter � is introduced in formula (4.19)� (�+ �) 1l + @g@u� �u = �� u� g; (4.21)such as �uT UT diagfAg U �u � O(Pj Aj) is ful�lled. The iteration starts with � = 0and proceeds e.g. in multiplying � by 10, beginning with � = �=10000 [18]. If the normcondition is satis�ed, the step size is small enough for a reasonable update of the solutionvector u0 = u+ �u. This procedure is then iterated until the general stopping criterion forconvergence is reached, which checks for equal length of the gradients2 ����� @S@u � @L@u ����2������ @S@u ����+ ����@L@u �����2 < 10�5 with @S@u = �UT diagfAg U u@L@u = UT diagfAg U g: (4.22)Once the convergence is reached, the solution vector u can be substituted back in equation(4.17) in order to obtain the most probable spectral function Â�(!) for given �.The numerical e�ort can be further reduced, if the matrix (@g=@u) in the Newton search(4.21) is diagonalized. The addressed procedure involves quite a number of new matricesand a subspace division, because some of the required eigenvalues can become very smallor even negative. Since this section should only be an outline of the Bryan algorithm, theinterested reader is referred to the detailed description in [101].



52 Chapter 4. Hadron Spectral FunctionsAfter the solution Â�(!) was obtained, the probability P [�jDm] and the covariance matrix�rrQ are still to be calculated. Applying a Gaussian approximation to (4.11), theprobability can be rewritten in terms of the eigenvectors �i of �ij = pAi @2L@Ai@AjpAj jA=Â�(see [17] for details)P [�jDm] = P [�jm] exp(12Xi log� ��+ �i�+ �S � L) : (4.23)The �rst factor can be chosen as P [�jm] � 1=�, which is absorbed in the integration mea-sure d�! d log(�). The probability must be correctly normalized to R P [�jDm] d� = 1,alternatively the �nal spectral function in equation (4.10) can be divided by R P [�jDm] d�,which yields in the discretized version�A(!) = P�min�max Â�(!) expn12 Pi log � ��+�i�+ �S � Lo�log(�)P�min�max expn 12Pi log � ��+�i�+ �S � Lo�log(�) : (4.24)Numerically it is convenient to start at �max with P [�jDm] < 10�8Pmax[�jDm]. Thenthe contributions Â�(!) P [�jDm] for each � are summed up in steps of � log(�), until asimilar probability as the initial one is reached for �min at the other side of the sharplypeaked distribution (see �gure 4.1).For the calculation of the error on the spectral function in a certain !-range, the covariancematrix in the Gaussian approximation is needed. It can be calculated in terms of thesingular space quantities [101]�(rrQ)�1 = diagfAg U Y diag� 1�+ �� Y T UT diagfAg; (4.25)where the matrix Y can be derived from the diagonalized matrix (@g=@u) in the Newtonsearch. Inserting equation (4.25) in (4.15) yields �nally the desired spectral function witherror bars in speci�c regions.4.4 Dependence on Input ParametersAfter having implemented the MEM code described in the last section it is important toexamine the in
uence of the input parameters as well as the statistics on the resultingspectral function. Such a test was performed with a data set for the pion correlatorwhich is described in the beginning of section 4.5. First of all a large number of almostindependent gauge �eld con�gurations is needed to obtain a reliable data set for theobservable. The in
uence of the number of con�gurations is displayed in �gure 4.2(a) forthe ground state peak of the pion at zero temperature. It can easily be seen, that aninsu�cient number of con�gurations results in a 
attening and broadening of the peak.Furthermore the position of the peak is shifted slightly towards smaller masses. Thiscan be best observed in comparison with the black line, which indicates the pion massobtained with a conventional two-exponential �t. The masses extracted from the spectral
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Figure 4.2: In
uence of the input parameters on the spectral function, (a) number ofcon�gurations NC , (b) number of time slices N� , (c) discretization interval �!, (d) kernelde�nition, displayed for the enlarged ground state region for the zero temperature pionwith � = 0:146; the black line indicates the position obtained from the 2-exponential �t.functions with 292 and 146 con�gurations clearly agree with the simple �t result, whereasboth spectral functions with less statistic would lead to a somewhat smaller value.A second parameter which is restricted by the limited available computer time is thelattice volume. It is certainly desirable to perform lattice calculations on large lattices,but in practice most of the calculations were carried out on relatively small lattices. Thevolume dependence on the correlation and spectral functions will be further explored insection 4.7. Here I only want to direct the attention to the in
uence of the temporalextent of the lattice. Since no data sets with various number of time slices were available,the situation could be simulated in leaving out data points for larger time separations inthe MEM analysis. This would correspond to data with the same lattice spacing, but asmaller number of time slices. The resulting ground state peaks for the pion can be foundin �gure 4.2(b). The position of the peak is only shifted for the smallest N� . In generalthe peak broadens and is reduced in its height for decreasing number of time slices. Thise�ect is especially visible for N� = 20.



54 Chapter 4. Hadron Spectral FunctionsThe MEM analysis works with a spectral function determined at discrete frequencies.Since the computer time rises exponentially with the number of points N! in the !-rangeexplored, it is necessary to compromise between a fast computation and a good resolution.This is of particular importance for the exact analysis of peak positions. Keeping themaximal frequency on the lattice �xed at about �=a, the frequency range was divided into70-700 discrete points. The ground state peak of the pion can easily be resolved for the twosmallest frequency separations in �gure 4.2(c). For larger �! the correct determination ofthe peak position becomes increasingly complicated and would result in an overestimatederror on the particle mass. Therefore it is advisable to use several hundred points for thediscretization of the frequency range.Another important aspect of the MEM analysis is the choice of the integral kernel inequation (4.4). At zero temperature, respectively N� !1, the periodic continuum kernelreduces to the simple exponential kernel exp(��!). Note that this kernel does not takeinto account the periodicity on a lattice with �nite N� . The peak of the spectral functionobtained with the continuum kernel is well positioned on the black line of the conventional�t in �gure 4.2(d), whereas the one from the exponential kernel is clearly shifted to theright. The correct peak position for this kernel could only be obtained with the smoothingtechnique for the covariance matrix (see section 2.5 for details). A further possibility tochoose the integral kernel arises from the special lattice kernel, which should compensatethe e�ects of the �nite lattice spacing. The discrete frequencies for a boson propagator onthe lattice !n;lat = 2 sin(n�=N� ) can be inserted in formula (4.4)D(�) = Z 10 TXn 2!!2n;lat + !2 e�i!n� A(!) d!: (4.26)Then the lattice kernel is determined throughK lat(�; !) = 2!=N� N��1Xn=0 exp(�i 2n��=N� )4 sin2(n�=N� ) + !2 : (4.27)Using the lattice kernel in the MEM procedure results in a spectral function very similarto the one obtained with the continuum kernel, which can be observed in �gure 4.2(d).The e�ect of the lattice kernel is more important for the �nite temperature spectral func-tions, where the continuum part gets more dominant compared to the ground state peak.Short distance distortions in the correlation function due to the lattice discretization thusare enhanced. Since the number of time slices is usually smaller at high temperatureT = (N�a)�1, the height of the peaks is reduced additionally in analogy to �gure 4.2(b).At �nite temperature it is convenient to express the spectral functions in units of !0 = !=T .Accordingly the correlation functions should be divided by a factor T 3. The in
uence ofthe di�erent integral kernels is shown in �gure 4.3(a/b). The spectral function of the pionat 0.6 Tc is a bit smoother for the lattice kernel, in particular the broad continuum bumphas 
attened out, whereas the ground state peak nearly remains the same. The e�ect ofthe lattice kernel is even more pronounced for the spectral function of a free meson. In thiscase all unphysical bumps and hills disappear and the well-known tanh-like spectral shapeis obtained. Further details about the free spectral functions are described in section 4.7.
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Figure 4.3: In
uence of the input parameters on the spectral function at �nite temperature,kernel dependence for the pion at 0.6 Tc (a) and for the free scalar meson (b); dependenceon the default model parameter m0 = fmf (c) and !max = N! �! (d).The last two parameters which in
uence the �nite temperature spectral functions are thefactor m0 of the default model and the maximal frequency !max. Since the default modelis assumed to have the functional form m(!) = m0!2, which is motivated by perturbativecalculations [18], the only freedom is contained in the variation of m0. Therefore thein
uence of a factor f on m0 = fmf with 1=5 � f � 5 is explored in �gure 4.3(c). Thisfactor alters only the height of the peaks, but not their position. The correct normalizationconstant is mf = 3=(8�2) for the (pseudo-)scalar and mf = 1=(4�2) for the (axial-)vectormeson [92, 102], which yields the free correlation function for a massless meson withD(N�=2) � 1. Multiplying the data and the default model with the same factor only resultsin the enhancement of the amplitude of the spectral function by this factor. Furthermorethe relevant �-range is shifted towards smaller values for a factor f > 1, which couldsometimes be advantageous in the numerical calculation.In �gure 4.3(d) it is shown that the spectral functions for smaller !max exhibit a behav-ior similar to that obtained with a small m0. Moreover, the peaks are shifted towardslower frequencies. For values !max=T ' 128 or larger the spectral functions display onlyneglectable di�erences. Such a value of !max=T roughly corresponds to the maximal avail-



56 Chapter 4. Hadron Spectral Functionsable momentum on the lattice. In general a reasonably large !-range should be chosen toobtain reliable spectral functions.After studying the in
uence of the various input parameters on the �nal spectral function,one can proceed to the systematic analysis of correlation functions with the MaximumEntropy Method. The next three sections deal with a detailed analysis of meson anddiquark spectral functions at zero temperature as well as meson spectral functions at�nite temperature.4.5 Meson Spectral FunctionsPreviously produced data samples in quenched QCD with Wilson fermions could be usedto analyze meson correlation functions at zero temperature. The gauge �eld con�gurationshave been generated on a lattice of size 163�32 with a tree-level Symanzik improved actionat a gauge coupling � = 6=g2 = 4:1. The lattice cut-o� a�1 � 1:1 GeV was determinedby means of the string tension [4]. In total 73 con�gurations were �xed to Landau gauge(see sec. 2.4), which opens the possibility to calculate correlation functions for the colorcarrying diquark operators. For the fermion sector the Sheikholeslami-Wohlert action witha tree-level clover coe�cient [46] was used. The fermion matrix has been inverted for eightdi�erent quark mass values and with source vectors at four di�erent lattice sites. Thereforethe data sample is based on 292 quark propagators, which provides su�cient statistics forthe Maximum Entropy analysis. The meson masses obtained from conventional two-exponential �ts were already published in [74, 75].The meson correlation functions at zero temperature (see �gure 4.4(a)) show a cleanexponential decay, therefore a sharp �-like peak in the spectral function is expected. Thisis indeed the case for the pseudo-scalar meson spectral function displayed in �gure 4.4(b).A much stronger in
uence of excited states can be observed for the vector meson, whichis already visible in the curvature of the correlation function at small time separations.
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Figure 4.4: Correlation functions (left) and corresponding spectral functions (right) forthe zero temperature pseudo-scalar and vector meson at � = 0:146



4.5. Meson Spectral Functions 57In the spectral function this is re
ected by the continuum-like structure at high energies.Recently it has been proposed [98] that this broad peak at high energies (about 1.7 GeV(2 GeV) for the pion (rho)) can be interpreted as bound state of two fermion doublers ofthe Wilson quark action. Therefore this state may be a lattice artifact with a divergentmass in the continuum limit. Since the data set at zero temperature was only generated forone lattice spacing, this assumption could not be veri�ed in the framework of the presentanalysis. The error bars shown in �gure 4.4 need a little explanation. Each horizontal barmarks the !-range within which the average of the spectral function was taken and itsheight re
ects this average value. The vertical error bar then indicates the variance of theaverage spectral function in this range. Mean and variance were calculated by applyingequation (4.15).Another important point is to understand the peak width and height of the reconstructedspectral functions, since the area under the peaks is related to the decay constants of therespective particle [98]. The simulations were carried out in the quenched approximation,which only admits interactions of the fermions with the gluonic background �elds. Inthis case the expected width of the ground state peak would be zero in the pseudo-scalarchannel and very small for the vector meson [98], but this assumption holds true only for anin�nite number of gauge �eld con�gurations and an in�nite temporal extent of the lattice.In �gure 4.2(a/b) it was already shown that an insu�cient number of con�gurations anda limitation on the number of time slices results in a 
attening and broadening of thepeaks. Nevertheless the width of the pion ground state peak is much smaller than theone of the rho meson (see �g. 4.4). The statistical noise has more in
uence for the vectormeson operator, therefore a larger number of con�gurations is needed to obtain a similaraccuracy in the rho meson mass. This e�ect is also visible in the larger error bars for therho masses obtained in two-exponential �ts.Figure 4.5 displays a whole set of pseudo-scalar and vector meson spectral functions atseveral quark mass values. They were obtained with the continuum kernel in a frequencyrange up to !maxa = 3:5 with separations of �!a = 0:01. The pseudo-scalar spectralfunctions show very sharp pion ground state peaks and only small contributions of excited
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Figure 4.6: Comparison of the MEM results (diamonds) with conventional two-exponential�t results (squares).states. The peaks for smaller quark masses are more pronounced in this representationof the spectral function, but they are of approximately equal height in the full spectralfunction A(!) = �(!)!2.On the other hand, the broadening and drop of the low mass contributions seen for thelightest quark masses in the vector spectral function can be addressed to insu�cient statis-tics for this correlator. This is also apparent from conventional exponential �ts, which inthese cases lead to large errors on the lightest vector meson masses in �gure 4.6. In generalthe pion and rho meson masses obtained with MEM are in very good agreement with theresults from two-exponential �ts. For the lightest rho meson mass even an improvementcould be achieved. Instead of a drop of the mass with a large error bar a much morereasonable point with a smaller error could be obtained with MEM.An error on the peak position of the spectral functions can be obtained in di�erent ways.One possibility is to employ a �t with a Gaussian form to extract the position and the vari-ance of the peak, but this procedure usually overestimates the error on the particle masses.For the results quoted in this thesis a Jackknife analysis with six blocks was utilized. Thismethod includes the MEM analysis for the whole data set as well as for six reduced datasets. After the determination of the peak position on each of the reconstructed spectralfunctions, the Jackknife error could easily be obtained as described in section 2.5. A lin-ear extrapolation in 1=� leads to a vanishing pion mass at �c=0.14922(1), which perfectlycoincides with the value 0.14923(2) obtained from a conventional exponential �t. Extrap-olating the rho meson mass for the �ve lowest quark masses to the chiral limit, one obtainsm�(MEM)=0.56(2) in lattice units, which is compatible with m�(exp-�t)=0.58(2). Thevalues for each quark mass can be found in table B.6 of appendix B.
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Figure 4.7: In
uence of the fuzzing technique on the spectral functionsConcluding this section about meson spectral functions at zero temperature the in
uenceof the fuzzing technique (see section 3.5) on the contributions of excited states to thespectral functions is investigated. In this case a smaller data set of 57 con�gurations on a163 � 30 lattice was available. All other parameters remain the same as described at thebeginning of this section.The fuzzing technique was applied for spatially extended operators with a radius R=0.7fm. In �gure 4.7 the pseudo-scalar and vector meson spectral functions with and with-out fuzzing can be examined. After the fuzzing procedure the height of the ground statepeaks remains almost the same, whereas their width is considerably reduced. Moreoverthe contributions of excited states at higher energies vanish. As a consequence only thesharp ground state peaks are left in the spectral functions. They thus uncover unambigu-ously that the application of the fuzzing technique eliminates the excited states almostcompletely.4.6 Diquark Spectral FunctionsThis section deals with diquark correlation and spectral functions at zero temperatureobtained from the 292 quark propagators mentioned at the beginning of the previoussection. The correlation functions were calculated for four di�erent diquark operators,namely the lighter color anti-triplet states �30�3 and 61�3 as well as the color sextet states�316 and 606. These abbreviations correspond to the (
avor, spin, color)-representation asalready introduced in section 3.1.
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Figure 4.8: Correlation functions (top) and corresponding spectral functions (bottom)for the zero temperature diquarks at � = 0:146.



4.6. Diquark Spectral Functions 61The diquark correlation functions obtained from this data set are shown in �gure 4.8(a). Itcan clearly be observed that the �30�3 diquark correlation function exhibits the characteristicexponential decay known from mesons. To a certain extent this is also the case for the61�3 diquark. The correlation functions of the color sextet diquarks are strongly in
uencedby higher excited states. Furthermore larger error bars are attached to the points, whichalready indicates the insu�cient statistics for these noisy correlators.The spectral functions for the color anti-triplet diquarks are similar to the ones for mesons(see �gure 4.8(b)). In particular the �30�3 diquark spectral function shows a pronouncedground state peak and is therefore reduced by a factor 10 in the plot. However, alreadyin the case of the 61�3 diquark the ground state peak broadens and becomes comparablein magnitude to the continuum structure found at higher energies. This broad continuumbecomes even more dominant in the color sextet channels. Although it is unclear to acertain degree whether a bound state exists in these quantum number channels, this seriesof diquark states is an excellent example to study the possible variations from bound toprobably unbound states in terms of the spectral functions.Nevertheless the ground state peak position for all diquark states could be determinedby a Jackknife error analysis at all quark masses. These results are summarized intable B.7 of appendix B. Note that the smoothing of the covariance matrix becomes
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Figure 4.9: In
uence of the covariance matrixsmoothing procedure; NR denotes the num-ber of retained eigenvalues (see sec. 2.5).

increasingly important for the analysis ofthe color sextet spectral functions. Thismethod was described in detail in sec-tion 2.5. Figure 4.9 visualizes the in-
uence of the procedure on the spec-tral function of the 606 diquark. Sincethe number of con�gurations is insu�cientfor this noisy correlator, the covariancematrix has several too small eigenvalues.Using the full covariance matrix for theMEM analysis results in an unphysicalstate below the ground state peak. More-over the ground state peak is shifted tohigher frequencies. By retaining only the5-6 largest eigenvalues, the unphysical peakcan be eliminated or at least reduced.Having obtained the diquark masses from a Jackknife analysis of the spectral functions,they can directly be compared with the ones obtained from conventional two-exponential�ts. For the color anti-triplet diquarks this is displayed at the top of �gure 4.10. The MEMvalues lie systematically a bit lower than the exponential �t results, but they clearly agreewithin their error bars. This leads to slightly lower masses in the chiral limit, extrapolatedfrom the values at the �ve lightest quark masses. Table 4.1 can be consulted for the exactvalues.
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4.7. Thermal Spectral Functions 63Diquark state �30�3 61�3 �316 606ma(FSC): MEM result 0.60(2) 0.70(3) 0.77(8) 0.89(13)ma(FSC): 2-exp. �t 0.62(2) 0.73(4) 0.77(17) 0.50(15)Table 4.1: Comparison of diquark masses in the chiral limit.The color anti-triplet as well as the sextet states have in common that their masses areclose to each other at larger bare quark mass and split up at smaller quark masses dueto the 
avor-spin interaction. The q-q interaction is attractive (repulsive) for the coloranti-triplet (sextet) diquark states (see table 3.1 or in detail [74, 75]). This behavior wascovered in statistical noise of the correlators for the heavier sextet states and could notbe resolved by exponential �ts. The masses of the �316 diquark state were only slightlyunderestimated but had large errors, whereas the exponential �t results for the 606 diquarkwere misled through the unphysical state visible in �g. 4.9. For the color sextet diquarksan enormous improvement could be achieved with the Maximum Entropy Method.Extrapolating the masses to the chiral limit, the same value as in the exponential �tis obtained for the �316 diquark, but with an error half as large as before. Note thatthis value has changed in comparison to the publication [103], where the in
uence of thecovariance matrix smoothing had not yet been explored. The mass values of the 606diquark now extrapolate to a considerably higher value in the chiral limit, which is inmuch better agreement with the strong repulsion between the two quarks expected fromthe 
avor-spin q-q interaction in this channel. In general, one may question for all butthe �30�3 diquark state whether the leading peak in the spectral function at all correspondsto a bound state. The spectral function favors an interpretation in terms of a thresholdfollowed by a broad continuum. This question could be resolved in a more detailed spectralanalysis with higher statistics.4.7 Thermal Spectral FunctionsIn the last two sections the spectral functions at zero temperature were analyzed andresults on masses were compared to conventional two-exponential �ts. This gave someinsight into the parameter dependence of the maximum entropy analysis and has shownhow the spectral functions vary with di�erent content in the correlation function. It couldbe shown that the MEM analysis correctly detects bound states like the pion as well asthe more unbound and continuum-like states in the color sextet diquark channel. Sincethis experience is very encouraging an application of the method at �nite temperaturecould be ventured. In this case it is absolutely mandatory that MEM needs no previousassumptions about the spectral shape, because very little is known about thermal spectralfunctions so far.



64 Chapter 4. Hadron Spectral Functions4.7.1 Free Meson Spectral Functions in the ContinuumIn the high temperature limit the meson correlation functions are expected to re
ect thedynamics of freely propagating quark anti-quark pairs. This can be described to leadingorder by the free spectral function in the degenerate (pseudo-)scalar channel [104]A(!)= Nc8�2 !2 tanh(!=4T ): (4.28)As a �rst step it thus is important to test whether such a spectral shape can be reproducedon lattices with �nite temporal extent. Using the continuum expression (see equation (4.4))D(�)=Z 10 cosh(!(� � 1=2T ))sinh(!=2T ) A(!) d!; (4.29)the free meson correlation function can be calculated for an arbitrary number of timeslices N� . The prefactor Nc=8�2 of the spectral function (4.28) ensures that the obtainedcorrelation function is normalized to one at � = 1=2T . This is shown in �gure 4.11(a) forseveral number of time slices. Note that the correlation functions at �nite temperature aredisplayed in units of T 3; the spectral functions are determined correspondingly in termsof !=T .For the purpose of constructing a suitable mock data set for the MEM analysis of freemeson correlators, a Gaussian noise with the variance [99]�(�) = ( b D(�) � for � = 0; : : : ; N�=2b D(�) (N� � �) for � = N�=2; : : : ; N� (4.30)was added to the exact data values obtained from equation (4.28) and 4.29). The prefactorb controls the noise level. In order to guarantee a compatible noise level for data sets withdi�erent temporal extent, the product b N� should be kept �xed.The reconstructed spectral functions for di�erent N� and noise level are combined in �gure4.11(b). All curves are in good agreement with the free spectral function, except the onewith the largest noise level b = 0:1. They were obtained with the continuum kernel andquite a large frequency range !max=T ' 10N� . The resulting spectral functions withsmaller !max=T would have some bumps in addition to the free curve. For the spectralfunctions with N� = 32 it can clearly be observed that the decrease of the noise levelfrom 0.1 to 0.005 results in a reduction of the di�erence between the reconstructed andthe original free spectral function. Even with only N� = 16 points and comparable lownoise level the spectral shape can be reconstructed almost perfectly. Sometimes it maybe useful to combine data sets on smaller lattices in order to get additional temporal gridpoints by varying N� . This is illustrated in �gure 4.11(b) for a combination of N� = 10; 12and 16, which also yields a convincing reconstruction of the free spectral function.
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Figure 4.11: Discretized free thermal meson correlation function (top) and reconstructedspectral functions (bottom) with di�erent noise level b.



66 Chapter 4. Hadron Spectral Functions4.7.2 Free Meson Spectral Functions on the LatticeA step further towards the examination of thermal spectral functions is the calculation offree meson correlation functions on the lattice, which are restricted to the Euclidean timeinterval [0; 1=T ]. In the high temperature limit the coupling g vanishes and the gauge�elds approach unit matrices in color space. This allows the analytic calculation of thequark propagators (see eq. (2.13)) and thus the free meson correlators for any given latticesize. Alternatively lattice calculations may be performed with a unit con�guration.These free correlation functions on the lattice can be used to explore the �nite volume andcut-o� e�ects which are expected to modify the results obtained on small lattices. Figure4.12(a) displays the free (pseudo-)scalar correlation functions for various spatial extents ofthe lattice. At equal spatial and temporal extension the curve is enhanced and 
attenedin the middle. This leads to modi�cations at low frequencies in the corresponding spectralfunction. It can be observed that a ratio of N�=N� = 2 � 4 is needed to eliminate the�nite volume e�ects almost completely.The in
uence of the �nite lattice cut-o� is illustrated in �gure 4.12(b) for several latticesizes. The largest deviations from the continuum free curve are visible for small Euclideantimes, in particular for the �rst two points � = 0; 1=N� . Unlike in the continuum limitthe lattice correlation function is not divergent at � = 0 for N� < 1. The free mesoncorrelation function on the N� = 16 lattice was utilized at �rst in a MEM analysis withthe continuum kernel. However, this attempt to reconstruct the spectral shape failedunexpectedly. Even leaving out the points at � = 0 and 1, which have the strongest cut-o�e�ects, yields the curve with two bumps visible in �gure 4.13. In this case the lattice kernelde�ned in equation (4.27) is a resource to reproduce the free spectral function correctly.Instead of the fairly large !-range which is used for the continuum kernel, the maximalfrequency is restricted to !max=T ' 4N� for the lattice kernel, which corresponds to themaximal available momentum on the lattice. The spectral shape could be reproduced
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Figure 4.13: Reconstructed free lattice spectral functions with �xed noise level b N� = 0:16.well already with the correlators obtained on lattices with small temporal extent, N� =8and 12. Apparently the cut-o� e�ects are compensated e�ciently in applying the latticekernel.At �rst sight an accurate reconstruction should also be possible for a combined data set,e.g. for N� =12 and 16. This attempt fails unfortunately since only the cut-o� e�ects fora special N� -value can be absorbed in the choice of the lattice kernel and an appropriatechoice of !max=T . It is obvious from �gure 4.12(b) that correlators with evidently di�eringpoints at the same time separation cannot be represented by an unique spectral function.For the combined data set analyzed with the continuum kernel (�g. 4.11) this was nohindrance, since all correlators with di�erent N� lay on a single smooth curve.Considering the success of the fuzzing technique for an optimized projection onto theground state at zero temperature (see �gure 4.7), one might be tempted to use this methodalso at �nite temperature, where the peaks are less pronounced compared to the continuumcontribution. However, the entire concept of fuzzing has to fail when a single state is notwell separated from higher excited states. The situation will naturally be even worse whenonly a continuum exists. In the case T > Tc one can no longer be sure to project on anactual ground state, since even the fuzzing of the free meson correlation function leads tosharp peaks instead of the broad continuum. This is illustrated in �gure 4.14 for di�erentfuzzing radii R. The fuzzing causes the reduced curvature of the correlator at small timeseparations, which is correspondingly translated into the de�nitely unphysical peaks in thespectral function. Therefore it is mandatory for T > Tc to use the unmodi�ed point-pointcorrelator in the MEM analysis to preserve the full information about ground and excitedstates as well as the continuum contribution.
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Figure 4.14: Fuzzing of the free spectral function4.7.3 Meson Spectral Functions at Finite TemperatureHaving tested the Maximum Entropy Method with continuum and lattice free mesoncorrelation functions, we can proceed to the analysis of data sets from lattice simulationsat �nite temperature. Instead of using anisotropic lattices, which involves the precisecalibration of the anisotropy parameters [16], we decided to perform simulations on fairlylarge isotropic lattices in quenched QCD. As shown before for the free meson correlationfunction on the lattice, already data sets with temporal extents N� = 12 : : : 16 seemsu�cient to obtain reliable spectral functions. Table 4.2 summarizes the parameters usedfor the simulations below the critical temperature, performed on the APE machines inBielefeld, and those employed above Tc within our project [105] on the Cray T3E in J�ulich.T=Tc � a�1[GeV] N3� �N� NC �-values �c-value0.4400 6.000 1.901 243 � 16 60 0.1324 0.1332 0.1342 0.1348 0.135200.5625 6.136 2.430 163 � 16 240 0.1346 0.1354 0.13571243 � 16 60 0.1330 0.1340 0.1346 0.1354323 � 16 30 0.1330 0.1340 0.1346 0.13540.9357 6.499 4.042 163 � 16 40 0.1345 0.13558243 � 16 120 0.1330 0.1340 0.1346 0.1354323 � 16 60 0.1330 0.1340 0.1346 0.13541.5000 6.640 4.860 483 � 12 25 0.13536 0.135366.872 6.480 643 � 16 40 0.13495 0.134953.0000 7.192 9.720 483 � 12 40 0.13440 0.134377.457 12.96 643 � 16 40 0.13390 0.13396Table 4.2: Summary of simulation parameters, T=Tc and a�1 are determined from thestring tension on lattices with N�=8, 12 [4], �c-values interpolated from [47].



4.7. Thermal Spectral Functions 69The gauge �eld con�gurations are separated by 500 sweeps of 5 overrelaxation and oneheatbath step each. They were generated with the standard plaquette action, which allowsus to apply the improved Clover fermion action with non-perturbatively determined clovercoe�cients (see sec. 2.1.2). Temporal and spatial meson correlators were calculated for upto four quark mass values below Tc and at almost zero quark mass (at estimated �c(T = 0))above the critical temperature. The Coulomb gauge was �xed on the con�gurations aboveTc in applying the Los Alamos algorithm combined with the overrelaxation method (seesec. 2.4 for details). This opened the possibility to calculate gauge-variant quark and gluoncorrelators.A temperature of 1.5 Tc is reachable in heavy ion collisions, whereas the larger temperatureof 3 Tc was chosen to allow a comparison with previous results from HTL-resummedperturbation theory [91]. Furthermore the results in this high temperature region canbe compared to the free meson correlation and spectral functions discussed above. Thesimulations below the critical temperature were performed in order to analyze the changesin meson spectral functions in the whole range between the well known zero temperaturecase and the decon�ning phase transition as well as to study �nite volume and cut-o�e�ects.Mesons at 0:4 Tc in comparison with T = 0Having explored the zero temperature correlators and spectral functions in the sections4.5 and 4.6, the results can be compared to the ones at 0.4 Tc well below the phasetransition. The spectral functions obtained for the pseudo-scalar, scalar and vector mesonare displayed in �gure 4.15 for several values of the bare quark mass. The behavior of thepseudo-scalar and vector meson spectral functions is qualitatively the same as observed forzero temperature (�g. 4.5). In general the height of the ground state peaks is reduced, theirwidth is increased and the errors on the peaks are enlarged due to the limited statisticsand the cut-o� e�ects, since the number of con�gurations is only a �fth and the numberof time slices N� = 16 is halved in comparison to the T = 0 simulation. These e�ects wereinvestigated in section 4.4 and are summarized in the �gures 4.2(a) and (b). Nevertheless,a slight temperature e�ect could play a role in the changes of the spectral shape.
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Figure 4.15: Meson spectral functions at 0.4 Tc for di�erent �-values.



70 Chapter 4. Hadron Spectral FunctionsThe spectral functions of the scalar meson in the middle of �gure 4.15 show a much lesssystematic behavior. The continuum structure dominates for all bare quark masses, similarto the color sextet diquark states which were investigated in section 4.6 (see e.g. �gure4.8). The spectral shape resembles the scalar spectral function at low temperature in asimulation of the O(4) linear � model [106]. Since only the connected 
avor non-singletparts of the scalar correlator were calculated in the lattice QCD simulation, the scalarchannel corresponds to the � meson introduced in section 1.2. The present MEM resultssuggest that no bound state exists in this channel at low temperatures, which needs to becon�rmed by additional simulations with larger statistics.
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Figure 4.16: Meson masses at 0.4 Tc obtained with MEM and two-exponential �ts, theband indicates the 1=�c range obtained for the di�erent data sets.The ground state peak positions of the pseudo-scalar and vector meson can be estimatedin a Jackknife analysis of the spectral function. The MEM results for the meson masses atall temperatures below Tc are combined in table B.8 of the appendix. The extrapolationto the chiral limit is visualized in �gure 4.16. The points indicated as T = 0 are adoptedfrom a simulation of G�ockeler et. al. [107] on a 243 � 32 lattice at � = 6:0 and similar�-values. In addition to the MEM analysis conventional �ts with one and two exponen-tials were performed for the temporal and the spatial correlator (see table B.9). For thepseudo-scalar meson mass a good agreement is obtained between the MEM and T = 0results. The masses from the exponential �ts of the spatial and temporal correlator lieslightly above the others, but extrapolate to similar values of the critical hopping param-eter. The deviations are more pronounced for the vector meson. The exponential �t ofthe temporal correlator tends obviously to overestimated values due to the in
uence ofcontinuum contributions. Since the MEM analysis allows a distinction between the pole



4.7. Thermal Spectral Functions 71and continuum contributions, much more reasonable values can be extracted from thesame correlation function. In the chiral limit the extrapolated screening mass obtainedfrom exponential �ts in the more extended spatial direction as well as the T = 0 datapoint coincide with the MEM values within the error bars. This leads to the implicationthat the observed behavior at 0.4 Tc is not di�erent from the one at T = 0.Finite size e�ects below Tc
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Figure 4.17: Finite size e�ects on thepseudo-scalar spectral function at 0.6 Tc.

At the somewhat higher temperature of 0.6 Tcdata sets on three di�erent lattice sizes openthe possibility to study the �nite size e�ects onthe lattices investigated below Tc. Figure 4.17shows the pseudo-scalar spectral functions atthe smallest quark mass value � = 0:1354 fora lattice size (16 � 32)3 � 16 with the indi-cated number of con�gurations. The groundstate peak gets narrower and is increased bychanging the spatial extent of the lattice fromN� = 16 to 24. Only marginal di�erences areobserved enlargingN� = 24 to 32, which couldbe a�ected by the limited statistics of only 30con�gurations on the largest lattice. However,a shift of the ground state peaks towards lighter pion masses can be observed continuouslyby enlarging the lattice volumes. The indicated error bars belong to the spectral functionof the 243 � 16 lattice data set. The larger one illustrates mean and variance calculatedwith relation (4.15) in the given !-range, whereas the smaller one represents solely thestatistical error, which is obtained in a Jackknife analysis of the average spectral functionin this range. The divergence at very small frequencies can be traced back to insu�cientstatistics. In such a case the spectral function approaches ! ! 0 not strictly propor-tional to !2, which leads to the unphysical behavior for the displayed spectral function�(!) = A(!)=!2.In the following the spectral functions below Tc refer to the 243 � 16 lattice. In generalgood agreement of the meson masses on lattices with N�=24 and 32 could be observed,but due to the limited statistics at N�=32 the errors are still at least twice as large aswith N�=24. For example the resulting masses extracted in a Jackknife error analysis ofthe above mentioned spectral functions yield m24PSa = 0:20(1) and m32PSa = 0:18(3).Pseudo-scalar and vector mesons at 0:4 Tc < T < 3 TcThe in
uence of increasing temperature on the spectral functions in the pseudo-scalarand vector channel can be illustrated more clearly in a combined plot such as �gure 4.18.Below the critical temperature the spectral functions are shown at similar quark masses(m� ' 790 MeV), while the ones above Tc have been obtained at mq ' 0 which waschecked with the relation (2.15). The spectral functions at 0.4 and 0.6 Tc remain very
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Figure 4.18: Spectral functions of the pseudo-scalar (left) and vector meson (right) forseveral temperatures.similar in both channels, whereas a doubling of the width and a reduction in height of theground state peak is visible at 0.9 Tc. Furthermore the peak of the vector meson is shiftedtowards larger frequency values. At present it is not clear whether this e�ect is an actualtemperature induced modi�cation of the spectral shape or only an artifact due to limitedstatistics, since the exponential �t of the spatial correlator yields an almost unchangedscreening mass from 0.4 Tc up to 0.9 Tc (see table B.9).Above the critical temperature the broad peak in the vector channel vanishes almostcompletely in favor of a continuum structure. However, better statistics is clearly desirablefor the spectral functions at 0.9 - 3 Tc. In the pseudo-scalar channel the sharp ground statepeak broadens considerably above Tc and is shifted towards larger energies. Nevertheless,deviations from the shape of the free spectral functions can be still observed, which willnow be illustrated in more detail.At high temperatures a scaling of the spectral function with the temperature is expected.Therefore it is more appropriate to investigate the changes of the spectral shape in unitsof the temperature rather than in physical units like Tc. The correlators and correspond-ing spectral functions in the pseudo-scalar and vector channel are illustrated in �gure4.19. Note that in the vector channel the sum of the contributions with all 
k-matrices(k = 1 : : : 4) is shown, which yields twice the (pseudo-)scalar correlator in the free case. At1.5 and 3 Tc the 
4-component of the correlation functions is simply a constant <� -1, whicheliminates the divergence at !=T = 0 in the vector meson spectral function. Furthermorethe (non-)perturbative renormalization factors for each �-value in the pseudo-scalar (vec-tor) channel were taken into account [108, 109], which are summarized in table B.10. Thecorrelation functions of the vector meson at 1.5 and 3 Tc lie almost on top of each otherand agree very well with the free meson correlator indicated as solid black line. Slightdeviations can be observed at intermediate time separations, which are also evident fromthe corresponding spectral functions at smaller frequencies. Such a modi�cation of thespectral shape is expected in HTL-resummed perturbation theory [91]. In this case thespectral function in the vector channel is even linear divergent at low frequencies, whichrenders the temporal correlator infrared divergent.
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Figure 4.19: Meson correlation (left) and spectral functions (right) above Tc.For the pseudo-scalar correlator a gradual approach towards the corresponding free me-son correlation function can be observed by increasing the temperature from 1.5 to 3 Tc.Nevertheless quite large deviations from the free quark behavior still persist at the highesttemperature investigated, which con�rms the previous �ndings of Boyd et. al. [87]. Thisobservation is even more emphasized considering the pseudo-scalar spectral functions in�gure 4.19. In addition to a continuum-like structure a broad peak at lower frequenciesis still evident. The position of this bump is quite sensitive to the number of retainedeigenvalues in the covariance matrix smoothing procedure (see sec. 2.5). Higher statisticsthus is needed to clarify this aspect of the spectral function in more detail. The largedeviations from the free spectral functions found in the scalar channel cannot be su�-ciently explained by HTL medium e�ects like thermal quark masses and Landau damping[91]. In the (pseudo-)scalar channel this leads to the conclusion that the behavior in thedecon�ned plasma phase is characterized by strongly correlated quarks and gluons in thetemperature range up to 3 Tc. The QCD-TARO collaboration [16] reported similar �nd-ings in a recent lattice simulation with Wilson fermions on anisotropic lattices. Since theyhave used smeared meson propagators the results however might be strongly in
uencedby the continuum contributions and might project on unphysical ground states as shownin the end of section 4.7.2 with the application of the fuzzing technique for the free mesonspectral function.The temperature dependence of the obtained correlation functions can be investigatedmore directly after normalizing them with the corresponding free meson correlator onthe lattice. Such ratios are displayed in �gure 4.20 for the pseudo-scalar, scalar andvector channel and the same quark masses as described before. At low temperaturesthey can be compared to previous investigations with Wilson fermions [92] and over-lap fermions [110] as well as to predictions of the interacting instanton liquid model[111] for T < Tc. In general a good qualitative agreement with the reported resultscan be observed in all channels. The deviations from one at time � = 0 could bereduced by taking the (non-)perturbative renormalization factors into account. Since theZ-factors are only available in the chiral limit, they cannot be obtained for the correlatorsbelow the critical temperature. In order to allow a comparison of the correlator ratios for
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Figure 4.20: Ratio of meson and free thermal meson correlator on the lattice.



4.7. Thermal Spectral Functions 75di�erent temperatures no renormalization factors were used in �gure 4.20. In the followingthe correlators will be referred to as attractive if the ratio is larger than one, while a ratiosmaller than one corresponds to a repulsive interaction. Such an interpretation is inspiredby the operator product expansion of these ratios presented in [112].In the pseudo-scalar channel the strong attractive interaction between the quarks isvisible in the steep rise of the ratio (note the logarithmic scale), which re
ects the propertyof the pion as Goldstone boson below Tc. The 
attening of the ratio at larger distancescould also be observed in [110] at a similar value of the quark mass (m�=m� ' 0:75).Above the critical temperature the ratio is considerably decreased but still well aboveone, which con�rms the expectations of the instanton liquid model [111]. Such a behaviorindicates the persistent attractive interaction in this channel even above Tc as alreadyobserved in the analysis of the corresponding spectral function. Note that at such hightemperatures mainly the short distance behavior of the correlators can be investigated,since the extent of the temporal direction shrinks with increasing temperature, which isobvious from the left panels of �gure 4.20.The situation is clearly di�erent in the scalar channel. Apart from a weak attractiveinteraction similar to the pseudo-scalar channel at small distances the general behaviorbelow Tc can be characterized by a strong repulsion in the range r ' 0:3 � 0:9fm, whichwas also found in [92]. The strength of the repulsive interaction is increasingly reducedwhen approaching the critical temperature. Above Tc the ratio is very similar to the one inthe pseudo-scalar channel, indicating the restoration of the chiral symmetry (see sec. 1.2).This phenomenon is further explored below in terms of the spectral functions.Although the ratio in the vector channel looks similar to the scalar ratio at low tem-peratures, it remains much closer to one (note the di�erent scale). The ratio 
attens evenmore with increasing temperature and reaches almost a constant at 3 Tc. This behavioris consistent with the picture of a rapidly melting resonance contribution [111], indicatingthe free propagation of the quarks at T > Tc described solely by the continuum contribu-tion, which is in accordance with the analysis of the vector meson spectral functions at1.5 and 3 Tc in �gure 4.19 and the respective annotations.Chiral symmetry restoration in the (pseudo-)scalar channelFinally a somewhat closer look is addressed to the development of the (pseudo-)scalarcorrelation and spectral function for increasing temperature. For a simulation with dy-namical quarks it is expected that the pseudo-scalar (�) and scalar (�) correlators becomedegenerate at the critical temperature if the axial UA(1) symmetry is e�ectively restored(see sec. 1.2). The correlators and spectral functions are shown in �gure 4.21 for nearlyequal quark masses at 0.6 and 0.9 Tc as well as for almost zero quark mass at 1.5 Tc. Thebehavior of the correlation functions at 0.6 Tc resembles the behavior at zero temperature.A clear pion ground state peak can be observed in the corresponding spectral function ofthe pseudo-scalar meson, while the one of the scalar meson is characterized by a muchbroader continuum-like structure.
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Figure 4.21: Restauration of the chiral symmetry between the scalar and pseudo-scalarmeson (error bars indicate statistical errors obtained in a Jackknife analysis).



4.7. Thermal Spectral Functions 77At 0.9 Tc �rst changes of the scalar correlator can be recognized, since the values around�T = 0:5 are increased and approach the pseudo-scalar correlation function. The scalarspectral function remains essentially the same, while the ground state peak of the pseudo-scalar spectral function broadens and is reduced in height. Above the critical temperatureat 1.5 Tc the pseudo-scalar and scalar correlator are very similar. One therefore can observethe restoration of the chiral symmetry already in the quenched spectrum calculations. Thedegeneracy of the (pseudo-)scalar mesons is also re
ected in the corresponding spectralfunctions which show a good agreement. Since only the correlators for the 
avor non-singlets mesons � and � were calculated in the present lattice simulations the observedchiral symmetry restoration at 1.5 Tc actually refers to the axial UA(1) symmetry in the(pseudo-)scalar channel. Predictions about the SU(Nf )L � SU(Nf )R chiral symmetryrestoration could be obtained in simulating the 
avor singlet mesons � and �0, whichwould involve the calculation of disconnected propagators. Such investigations are still atan exploratory stage [113, 114], since the signal is hidden in a high level of statistical noiseand thus requires the application of stochastic variance reduction techniques.Outlook on future applicationsThe quark and gluon propagators above the critical temperature calculated with the gauge�eld con�gurations in Coulomb gauge (see table 4.2) are currently under investigation.Preliminary results obtained for temporal correlators at zero and �nite momenta will bepresented in the near future [115]. Although the propagators are quite noisy MEM iscapable to extract the position of the poles. In addition it would be desirable to exploretheir properties in other gauges, e.g. the Landau gauge, where the propagators are lessin
uenced by the statistical noise. Such a study would require the adaptation of MEMfor non-positive spectral functions. First suggestions for modi�ed versions of the entropy(4.9) were reported recently [116].Another interesting �eld of application for MEM would be lattice simulations in full QCD.In this case the properties of the peaks in the reconstructed spectral functions are directlyrelated to the resonance widths and decay constants in experimental spectra, such as�! ��. For this purpose it is mandatory to understand the non-zero width of the groundstate peaks obtained in the MEM analysis of quenched lattice data. It is evident from thepresent investigation that insu�cient statistics and a limited temporal extent of the latticein
uence the height and width of the peaks considerably. A more quantitative analysis ofthese dependencies is certainly still needed in quenched lattice QCD calculations beforeone can proceed to QCD simulations with light dynamical quarks.
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Conclusions
Two aspects of QCD were considered in the present thesis. In the �rst part the strangehadron spectrum was investigated, which was calculated in quenched QCD on four di�erentlattice sizes covering a large physical volume of (1:4� 4:2 fm)3� 5:3 fm. Strong �nite sizee�ects could be observed for the smallest lattice, which was manifest in overestimatedhadron masses especially for the strange baryons and the H-dibaryon.A good agreement of the strange hadron masses could be found on the three larger lattices.Compared to experimental values the obtained K�, � and � masses show a maximaldeviation below 10%, dependent on the particle used to set the physical scale. Such abehavior is common for simulations in the quenched approximation.The mass of the H-dibaryon is compatible with twice the mass of the � baryon on allinvestigated lattice sizes. Moreover a quantitative agreement with previous studies on asimilarly large lattice could be reached. No evidence for a bound H-dibaryon is apparentfrom the current calculations in quenched QCD, therefore such six quark state may beconsidered as unbound assembly of two � baryons.The experience gained with the spectrum calculations at T = 0 also form the basis forstudies of the hadron spectrum at �nite temperature, which has been performed in thesecond part of this thesis. An essential new feature of this study is the application ofthe Maximum Entropy Method, which made an investigation of hadron spectral functionsobtained from correlators on the lattice possible for the �rst time. This approach includedthe implementation, test and application of the method for the spectral analysis of hadroncorrelation functions in the vacuum as well as in a thermal medium.For the meson correlators at zero temperature it could be demonstrated that the positionof the pole mass is reproduced correctly in the corresponding spectral function. Moreover,the application of MEM yields useful additional information in comparison to conventionalexponential �ts as is evident from the analysis of the diquark correlators. The color anti-triplet diquark states exhibit similar clean ground state peaks as the mesons, but for thecolor sextet diquarks the continuum contribution dominates the spectral function, whichexplains the severe problems observed in �ts with two exponentials.79



80 ConclusionsThe applicability of MEM for �nite temperature correlation functions was examined forthe �rst time. It could be shown for the free thermal meson correlator that the continuumstructure is indeed reproducible. For the analysis of the thermal correlation functioncalculated on the lattice a specially adapted lattice kernel is required to absorb the cut-o�e�ects.The investigation of pole and screening masses obtained from temporal and spatial corre-lators revealed that MEM is capable to extract the correct pole mass value even when theconventional exponential �ts tend to overestimate the mass due to the short extent of thetime direction in simulations at �nite temperature. The spectral representation facilitatesthe distinction between the pole and continuum contributions, which makes the MEManalysis superior to conventional �t methods.At the lowest investigated temperatures 0.4 and 0.6 Tc the properties of the meson spectralfunctions remain qualitatively the same as at zero temperature. Deviations of the spectralshape can be explained by the short extent of the time direction and limited statistics. Firstchanges in the spectral functions like a broadening of the peaks and a shift towards highermasses could be observed at 0.9 Tc in the vector channel. Whether this e�ect persistswith larger statistics is still unclear and should be further clari�ed on larger lattices withreduced �nite volume and cut-o� e�ects.The spectral function of the scalar meson is dominated by the continuum contribution atlow temperatures, which might indicate that no bound state exists in this channel at leastat low temperatures. At 0.9 Tc the scalar correlator approaches already the one of thepseudo-scalar meson, giving �rst evidence of chiral symmetry restoration. Finally at 1.5Tc the spectral functions in the (pseudo-)scalar channel are almost perfectly in agreement.This observation leads to the prediction that the UA(1) symmetry between the � and �meson gets approximately restored in this temperature range.At the highest temperature of 3 Tc the behavior of the correlation and spectral functionsin the vector channel are comparable with the propagation of almost free quarks. Onlya slight enhancement is visible at large time separations and correspondingly small fre-quencies. In contrast to that considerable deviations from the free spectral function canbe observed in the (pseudo-)scalar channel. A broad bump in the low energy regime stillpersists at 1.5 and even 3 Tc, indicating only a gradual approach towards the free quarkbehavior. The spectral functions obtained with MEM con�rm the earlier �ndings in lat-tice simulations and are in qualitative agreement with the predictions of the interactinginstanton liquid model. On a more quantitative level their structure cannot be su�cientlyexplained by medium e�ects taken into account in HTL-resummed perturbation theory.In this exploratory application of the Maximum Entropy Method at �nite temperature itcould clearly be shown that such an analysis of lattice correlators leads to new insights intothe thermal modi�cation of hadronic properties. MEM provides a sensitive tool to studythermal e�ects in hadron spectra without making a priori assumptions on the spectralshapes. Nevertheless, more statistics and larger lattices are needed to gain more experi-ence with this new approach. Furthermore it would be desirable to study the interactingphysical medium e�ects more quantitatively.
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82 Chapter A. Conventions
Dirac MatricesThe euclidian 
 matrices in the non-relativistic representation are selfadjoint (
� = 
y�)and obey the anti-commutation relation f
� ; 
�g = 2��� .

1 = 0BBB@ 0 0 0 i0 0 i 00 �i 0 0�i 0 0 0 1CCCA 
2 = 0BBB@ 0 0 0 10 0 �1 00 �1 0 01 0 0 0 1CCCA 
3 = 0BBB@ 0 0 i 00 0 0 �i�i 0 0 00 i 0 0 1CCCA

4 = 0BBB@ 1 0 0 00 1 0 00 0 �1 00 0 0 �1 1CCCA 
5 = 0BBB@ 0 0 1 00 0 0 11 0 0 00 1 0 0 1CCCA = 
1
2
3
4
Charge Conjugation MatrixFor the diquark, baryon and dibaryon operators the charge conjugation matrix C isneeded in combination with 
5 to ensure the appropriate combination of the spinor indices(see section 3.2).

C = 0BBB@ 0 0 0 10 0 �1 00 1 0 0�1 0 0 0 1CCCA = 
4
2 = �
1
3
5
C
5 = 0BBB@ 0 1 0 0�1 0 0 00 0 0 10 0 �1 0 1CCCA
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84 Chapter B. Numerical ResultsK-Meson�un�s 0.147 0.146 0.145 0.1425 0.1400.146 0.510(6) 0.550(5) 0.588(5) 0.678(5) 0.760(4)0.147 0.467(6) 0.510(6) 0.552(5) 0.644(5) 0.730(4)0.1475 0.443(6) 0.490(6) 0.532(6) 0.628(5) 0.715(5)0.149 0.366(15) 0.424(15) 0.472(14) 0.575(12) 0.667(10)K*-Meson�un�s 0.147 0.146 0.145 0.1425 0.1400.146 0.752(14) 0.776(12) 0.800(10) 0.859(8) 0.917(7)0.147 0.728(17) 0.752(14) 0.776(12) 0.836(10) 0.895(8)0.1475 0.717(18) 0.739(15) 0.763(14) 0.824(11) 0.884(10)0.149 0.683(34) 0.703(29) 0.727(25) 0.790(20) 0.852(18)Sigma-Baryon�un�s 0.147 0.146 0.145 0.1425 0.1400.146 1.15(3) 1.17(2) 1.20(2) 1.28(2) 1.35(1)0.147 1.09(3) 1.12(3) 1.15(3) 1.23(2) 1.30(2)0.1475 1.06(4) 1.09(3) 1.13(3) 1.20(2) 1.27(2)0.149 0.98(7) 1.01(6) 1.05(5) 1.13(4) 1.20(3)Lambda-Baryon�un�s 0.147 0.146 0.145 0.1425 0.1400.146 1.15(3) 1.17(3) 1.20(3) 1.26(3) 1.33(2)0.147 1.09(4) 1.12(4) 1.15(3) 1.21(3) 1.27(3)0.1475 1.06(4) 1.09(4) 1.11(4) 1.17(4) 1.24(4)0.149 0.98(8) 1.01(7) 1.03(7) 1.09(7) 1.15(7)H-Dibaryon�un�s 0.147 0.146 0.145 0.1425 0:140�0.146 2.45(18) 2.49(12) 2.54(10) 2.61(8) 2.70(15)0.147 2.54(36) 2.52(29) 2.50(21) 2.53(12) 2.54(24)0.1475 2.72(67) 2.60(46) 2.60(39) 2.61(21) 2.59(43)0.149 2.83(88) 2.64(65) 2.52(51) 2.48(30) 2.33(60)� extrapolated valuesTable B.1: Particle masses on the 83 � 30 lattice (120 con�gurations).



85K-Meson�un�s 0.147 0.146 0.145 0.1425 0:140�0.146 0.479(5) 0.521(5) 0.560(4) 0.651(4) 0.733(6)0.147 0.432(5) 0.479(5) 0.521(5) 0.617(4) 0.702(6)0.1475 0.407(5) 0.456(5) 0.501(5) 0.599(5) 0.687(6)0.149 0.321(14) 0.383(12) 0.435(11) 0.544(11) 0.640(14)K*-Meson�un�s 0.147 0.146 0.145 0.1425 0:140�0.146 0.735(13) 0.758(11) 0.781(9) 0.838(7) 0.899(12)0.147 0.712(15) 0.735(13) 0.758(11) 0.817(7) 0.878(14)0.1475 0.702(16) 0.723(14) 0.746(12) 0.805(8) 0.865(14)0.149 0.668(30) 0.690(26) 0.713(22) 0.772(15) 0.833(28)Sigma-Baryon�un�s 0.147 0.146 0.145 0.1425 0:140�0.146 1.09(2) 1.13(1) 1.16(1) 1.24(1) 1.33(2)0.147 1.02(2) 1.06(2) 1.10(2) 1.18(1) 1.28(2)0.1475 0.98(3) 1.02(2) 1.06(2) 1.15(2) 1.25(3)0.149 0.86(4) 0.92(4) 0.96(4) 1.06(3) 1.17(5)Lambda-Baryon�un�s 0.147 0.146 0.145 0.1425 0:140�0.146 1.10(2) 1.14(2) 1.16(2) 1.23(2) 1.31(3)0.147 1.03(2) 1.07(2) 1.10(2) 1.17(2) 1.26(3)0.1475 0.98(3) 1.02(2) 1.06(2) 1.13(2) 1.22(3)0.149 0.86(5) 0.91(4) 0.96(4) 1.04(4) 1.15(7)H-Dibaryon�un�s 0.147 0.146 0.145 0.1425 0:140�0.146 2.22(9) 2.28(8) 2.34(7) 2.49(5) 2.65(9)0.147 2.16(13) 2.21(12) 2.25(10) 2.37(5) 2.49(10)0.1475 2.10(16) 2.13(13) 2.18(12) 2.30(6) 2.42(12)0.149 2.00(27) 2.01(23) 2.04(21) 2.12(11) 2.20(22)Table B.2: Particle masses on the 123 � 30 lattice (60 con�gurations).



86 Chapter B. Numerical ResultsK-Meson�un�s 0.147 0.146 0.145 0.1425 0.1400.146 0.481(4) 0.523(3) 0.562(3) 0.654(3) 0.737(3)0.147 0.435(4) 0.481(4) 0.524(4) 0.620(4) 0.706(4)0.1475 0.410(4) 0.459(4) 0.503(4) 0.602(4) 0.690(4)0.149 0.327(11) 0.387(10) 0.438(9) 0.547(9) 0.641(9)K*-Meson�un�s 0.147 0.146 0.145 0.1425 0.1400.146 0.730(7) 0.754(7) 0.778(6) 0.837(6) 0.895(5)0.147 0.704(8) 0.730(7) 0.754(7) 0.815(6) 0.874(6)0.1475 0.690(8) 0.716(8) 0.742(7) 0.803(7) 0.862(7)0.149 0.652(15) 0.680(15) 0.707(13) 0.770(13) 0.830(13)Sigma-Baryon�un�s 0.147 0.146 0.145 0.1425 0.1400.146 1.06(1) 1.09(1) 1.12(1) 1.20(1) 1.27(1)0.147 0.99(2) 1.02(1) 1.06(1) 1.14(1) 1.22(1)0.1475 0.95(2) 0.98(2) 1.02(2) 1.11(2) 1.19(2)0.149 0.84(3) 0.88(3) 0.93(3) 1.02(3) 1.10(3)Lambda-Baryon�un�s 0.147 0.146 0.145 0.1425 0.1400.146 1.06(1) 1.09(1) 1.13(1) 1.20(1) 1.27(1)0.147 0.99(2) 1.02(2) 1.06(2) 1.14(1) 1.21(1)0.1475 0.95(2) 0.98(2) 1.02(2) 1.10(2) 1.17(2)0.149 0.84(4) 0.88(4) 0.92(3) 1.01(3) 1.08(3)H-Dibaryon�un�s 0.147 0.146 0.145 0.1425 0:140�0.146 2.17(9) 2.24(9) 2.34(8) 2.49(7) 2.68(12)0.147 1.95(11) 2.06(10) 2.14(9) 2.33(7) 2.55(12)0.1475 1.78(15) 1.91(12) 2.02(10) 2.24(7) 2.50(13)0.149 1.45(25) 1.63(22) 1.72(19) 2.00(14) 2.31(26)Table B.3: Particle masses on the 163 � 30 lattice (57 con�gurations).



87K-Meson�un�s 0.1475 0.146 0.145 0.1425 0:140�0.146 0.458(6) 0.522(6) 0.561(6) 0.654(6) 0.735(8)0.1475 0.384(6) 0.458(6) 0.503(6) 0.602(6) 0.690(8)0.148 0.355(6) 0.435(6) 0.482(6) 0.585(6) 0.675(8)0.149 0.291(10) 0.385(9) 0.438(9) 0.548(9) 0.644(11)K*-Meson�un�s 0.1475 0.146 0.145 0.1425 0:140�0.146 0.705(16) 0.743(12) 0.768(11) 0.828(9) 0.892(16)0.1475 0.662(19) 0.705(16) 0.732(16) 0.796(15) 0.867(25)0.148 0.647(19) 0.692(19) 0.720(19) 0.785(19) 0.860(30)0.149 0.619(25) 0.667(23) 0.696(22) 0.765(22) 0.843(35)Sigma-Baryon�un�s 0.1475 0.146 0.145 0.1425 0:140�0.146 1.05(2) 1.10(2) 1.13(2) 1.21(2) 1.29(3)0.1475 0.96(2) 1.02(2) 1.05(2) 1.13(2) 1.23(3)0.148 0.92(2) 0.99(2) 1.03(2) 1.11(2) 1.21(3)0.149 0.86(2) 0.93(2) 0.97(2) 1.06(2) 1.17(4)Lambda-Baryon�un�s 0.1475 0.146 0.145 0.1425 0:140�0.146 1.07(2) 1.10(2) 1.13(2) 1.20(2) 1.27(3)0.1475 0.96(2) 1.00(2) 1.03(2) 1.09(2) 1.16(3)0.148 0.92(2) 0.96(2) 0.98(2) 1.05(2) 1.12(3)0.149 0.85(2) 0.89(2) 0.92(2) 0.98(2) 1.05(4)H-Dibaryon�un�s 0.1475 0.146 0.145 0.1425 0:140�0.146 2.25(8) 2.35(7) 2.42(6) 2.58(5) 2.75(9)0.1475 2.05(12) 2.17(10) 2.22(8) 2.37(8) 2.54(13)0.148 1.97(13) 2.08(11) 2.14(10) 2.28(9) 2.44(15)0.149 1.84(16) 1.97(14) 2.01(12) 2.15(11) 2.30(18)Table B.4: Particle masses on the 243 � 30 lattice (20 con�gurations).



88 Chapter B. Numerical Results83 � 30 lattice (120 con�gurations)� input � input K� input mean�s = 0:1464 �s = 0:1442 �s = 0:1420 �s = 0:1417H 2976(450) 2852(267) 2725(283) 2708(304)2� [2231(103)] 2344(74) 2460(90) 2476(95)� 1120(39) [1193(26)] 1269(24) 1279(24)K� 774(20) 833(13) [894(12)] 902(13)K 446(10) 564(6) 663(7) 676(8)123 � 30 lattice (60 con�gurations)� input � input K� input mean�s = 0:1437 �s = 0:1423 �s = 0:1413 �s = 0:1417H 2326(92) 2371(101) 2405(128) 2391(115)2� [2231(46)] 2355(62) 2446(79) 2407(72)� 1126(19) [1193(23)] 1243(29) 1222(27)K� 830(11) 867(13) [894(16)] 882(15)K 551(6) 617(8) 661(9) 642(9)163 � 30 lattice (57 con�gurations)� inputz � inputz K� inputz mean�s = 0:1425 �s = 0:1411 �s = 0:1412 �s = 0:1417H 2240(118) 2432(164) 2415(159) 2342(140)2� [2231(34)] 2343(44) 2333(43) 2290(38)� 1132(18) [1193(24)] 1188(24) 1164(21)K� 857(8) 897(10) [894(10)] 878(9)K 612(5) 673(7) 668(7) 645(6)243 � 30 lattice (20 con�gurations)� inputz � inputz K� inputz mean�s = 0:1418 �s = 0:1424 �s = 0:1414 �s = 0:1417H 2445(97) 2405(85) 2477(108) 2452(100)2� [2231(47)] 2195(41) 2261(52) 2238(48)� 1220(20) [1193(18)] 1242(22) 1226(21)K� 878(19) 858(17) [894(21)] 882(19)K 641(7) 615(6) 662(7) 646(7)z�s-values averaged to mean value �s=0.1417(2)Table B.5: Physical particle masses on all lattice sizes in [MeV ].



89MEM 2-exp. �t�ud m� m� m� m�0.140 0.909(6) 1.025(3) 0.910(1) 1.025(2)0.142 0.794(4) 0.930(3) 0.794(1) 0.932(2)0.144 0.667(2) 0.836(4) 0.667(1) 0.836(3)0.145 0.597(1) 0.788(4) 0.596(1) 0.787(4)0.146 0.520(1) 0.738(10) 0.519(1) 0.739(7)0.147 0.431(1) 0.675(19) 0.430(2) 0.688(15)0.1475 0.380(1) 0.643(24) 0.379(2) 0.661(18)0.148 0.318(1) 0.619(28) 0.316(3) 0.595(66)�c 0.557(21) 0.579(18)Table B.6: Comparison of meson masses obtained from MEM and two-exponential �ts;vanishing pion mass m2� at �c(MEM)=0.14922(1) and �c(exp)=0.14923(2).MEM 2-exp. �t�ud m�30�3 m61�3 m�316 m606 m�30�3 m61�3 m�316 m6060.140 1.18(2) 1.20(1) 1.33(1) 1.33(3) 1.19(1) 1.21(1) 1.33(3) 1.37(3)0.142 1.07(1) 1.10(1) 1.22(3) 1.22(5) 1.08(1) 1.10(1) 1.10(16) 1.25(3)0.144 0.95(2) 0.98(1) 1.06(5) 1.15(8) 0.96(1) 0.99(1) 0.97(13) 1.11(4)0.145 0.89(1) 0.93(1) 0.97(6) 1.11(9) 0.90(2) 0.94(2) 0.92(14) 1.03(6)0.146 0.83(1) 0.87(2) 0.96(5) 1.05(9) 0.84(2) 0.88(3) 0.86(14) 0.93(8)0.147 0.76(1) 0.81(3) 0.88(6) 0.99(9) 0.77(2) 0.83(3) 0.82(12) 0.79(10)0.1475 0.72(1) 0.79(4) 0.85(6) 0.98(11) 0.74(2) 0.81(4) 0.82(15) 0.69(13)0.148 0.67(2) 0.77(3) 0.84(9) 0.96(15) 0.70(2) 0.81(5) 0.84(18) 0.60(37)�c 0.60(2) 0.70(3) 0.77(8) 0.89(13) 0.62(2) 0.73(4) 0.77(17) 0.50(15)Table B.7: Comparison of diquark masses obtained from MEM and two-exponential �ts.
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0.94 Tc, a=0.049 fm, a�1=4.042 GeV, L=1.176 fm, NC=120�ud m�[a] m�[GeV ] m�[a] m�[GeV ] m�[a] m�[GeV ]0.1330 0.442(7) 1.787(28) 0.591(14) 2.389(57) 0.523(5) 2.113(21)0.1340 0.347(8) 1.403(33) 0.488(14) 1.972(57) 0.463(9) 1.873(38)0.1346 0.281(11) 1.136(44) 0.422(14) 1.706(57) 0.424(13) 1.715(52)0.1354 0.201(11) 0.812(44) [0.429(35)] [1.734(141)] 0.355(17) 1.437(68)�c = 0.13589(8) 0.290(26) 1.172(105) 0.336(14) 1.360(55)
0.56 Tc, a=0.081 fm, a�1=2.430 GeV, L=1.944 fm, NC=60�ud m�[a] m�[GeV ] m�[a] m�[GeV ] m�[a] m�[GeV ]0.1330 0.473(11) 1.149(26) 0.697(35) 1.694(85) 0.562(8) 1.365(20)0.1340 0.379(11) 0.921(26) 0.647(30) 1.572(73) 0.490(9) 1.190(22)0.1346 0.311(12) 0.756(29) 0.634(26) 1.541(63) 0.446(12) 1.084(28)0.1354 0.198(7) 0.481(18) [0.737(41)] [1.791(100) ] 0.391(17) 0.951(41)�c = 0.13592(5) 0.580(54) 1.409(131) 0.354(14) 0.860(35)
0.44 Tc, a=0.104 fm, a�1=1.901 GeV, L=2.496 fm, NC=60�ud m�[a] m�[GeV ] m�[a] m�[GeV ] m�[a] m�[GeV ]0.1324 0.506(7) 0.962(13) 0.718(53) 1.365(101) 0.649(12) 1.234(23)0.1332 0.428(11) 0.814(21) 0.623(77) 1.184(146) 0.590(12) 1.121(23)0.1342 0.315(16) 0.599(30) 0.468(98) 0.890(186) 0.512(15) 0.973(27)0.1348 0.231(23) 0.439(44) [0.240(140)] [0.456(266)] 0.462(19) 0.878(36)�c = 0.13541(13) 0.316(153) 0.601(291) 0.419(18) 0.797(34)Table B.8: MEM results below Tc on the 243 � 16 lattice.
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0.94 Tc, a=0.049 fm, a�1=4.042 GeV, L=1.176 fm, NC=120�ud mt�[a] mz�[a] mt�[a] mz� [a] mt�[a] mz�[a]0.1330 0.481(7) 0.412(7) 0.598(28) 0.543(18) 0.528(9) 0.452(7)0.1340 0.397(8) 0.326(8) 0.543(22) 0.438(16) 0.474(9) 0.378(6)0.1346 0.356(8) 0.273(8) 0.462(18) 0.385(16) 0.440(10) 0.339(9)0.1354 0.278(16) 0.177(17) [0.648(92)] [0.353(121)] 0.417(17) 0.284(15)�zc = 0.13592(11) 0.358(39) 0.255(31) 0.380(14) 0.246(12)
0.56 Tc, a=0.081 fm, a�1=2.430 GeV, L=1.944 fm, NC=60�ud mt�[a] mz�[a] mt�[a] mz� [a] mt�[a] mz�[a]0.1330 0.526(17) 0.488(3) 0.763(21) 0.716(26) 0.603(11) 0.572(7)0.1340 0.440(8) 0.398(5) 0.703(23) 0.622(35) 0.549(12) 0.506(11)0.1346 0.368(11) 0.337(6) 0.680(30) 0.579(47) 0.497(12) 0.464(10)0.1354 0.269(12) 0.237(9) [0.719(49)] [0.695(107)] 0.462(21) 0.424(21)�zc = 0.13613(6) 0.599(52) 0.442(78) 0.411(19) 0.369(16)
0.44 Tc, a=0.104 fm, a�1=1.901 GeV, L=2.496 fm, NC=60�ud mt�[a] mz�[a] mt�[a] mz� [a] mt�[a] mz�[a]0.1324 0.557(13) 0.534(5) 0.769(47) 0.733(52) 0.679(13) 0.637(6)0.1332 0.477(14) 0.458(5) 0.721(51) 0.633(81) 0.621(8) 0.576(7)0.1342 0.362(15) 0.342(6) 0.704(70) 0.545(167) 0.548(10) 0.495(14)0.1348 0.273(12) 0.254(8) [0.638(189)] [0.808(101)] 0.506(12) 0.453(31)�zc = 0.13551(5) 0.645(116) 0.387(226) 0.456(13) 0.398(18)Table B.9: Two-exponential �t results below Tc on the 243 � 16 lattice.
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Temperature �-value ZPS ZV1.5 Tc 6.872 0.7523 0.82923.0 Tc 7.457 0.7833 0.8512Table B.10: Renormalization factors calculated non-perturbatively for the vector channeland in tadpole-improved perturbation theory (cSW = 1) for the pseudo-scalar channel[108, 109].
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