Percolation and Deconfinement
In SU(2) Gauge Theory

Santo Fortunato

PhD Thesis

Physics Faculty
University of Bielefeld







Acknowledgements

At the end of a long and intense experience like a PhD in physics, there is normally a long queue
of people to thank.

My first thanks go to my supervisor, Prof. Dr. Helmut Satz, for giving me this chance in a
delicate moment of my life in which I had started to have doubts on myself. The challenging
tasks he gave me and the many discussions we had about the related topics awaked a passion
for physics I thought I had lost. I am happy to have the possibility to keep working with him
also after the PhD.

A key role in my educational process during these three years has also been played by Prof.
Dr. Jirgen Engels, who introduced me into the computational aspects of my research work,
providing me most of the tools I needed to get numerical results safely and efficiently. As far
as this is concerned, T would also like to thank Dr. Marzia Nardi, Dr. Manfred Oevers and Dr.
Piotr Bialas for their patience in assisting me during my early steps in the world of computer
programming.

I am particularly indebted to Prof. Dr. Dietrich Stauffer, whom I owe most of what I know
about percolation theory and to Prof. Dr. Daniel Gandolfo, who let me become acquainted
with analytical results about percolation which turned out to be very useful in my work.

I gratefully acknowledge several interesting discussions with Prof. Dr. Frithjof Karsch, Prof.
Dr. Philippe Blanchard, Dr. Sanatan Digal, Dr. Peter Petreczky, Dr. Tereza Mendes, Dr.
Attilio Cucchieri. The presence of such a high number of experts in lattice gauge theory and
Monte Carlo simulations has allowed me to grow very quickly in this field.

I would like to express all my gratefulness to the whole staff of the Physics Faculty of Bielefeld, for
the help and support I received in all circumstances. I thank the secretaries, Gudrun Eickmeyer,
Karin Lacey and Susi von Reder, for their sympathy and for facilitating my life especially at
the beginning of my stay, when many things had to be properly arranged. T thank the younger
members of the staff, undergraduate and PhD students, including some of those who are no
longer here, for allowing me to get easily integrated in a reality which is quite different from the
Italian one. Without them it wouldn’t have been possible for me to learn quickly a complicated
language like German, which is of course an essential step towards a cultural integration. I cannot
write all names because of the limited space, but I would like to mention the ones with whom
I spent most of my time: Ines Wetzorke, Daria Ahrensmeier, Matthias Buse, Peter Schmidt,



II ACKNOWLEDGEMENTS

Olaf Kaczmarek, Andreas Peikert, Burkhard Sturm, Christian Legeland, Manfred Oevers, Sven
Stickan, Olaf Leonhard, Markus Dirks.

Dedico questa tesi alla mia famiglia, che ha sempre avuto un ruolo insostituibile nella mia vita e
nella mia carriera. I’amore e la comprensione dei miei cari sono stati essenziali, soprattutto nei
momenti difficili che ho dovuto affrontare. Li ringrazio soprattutto per avermi sempre lasciato
libero di decidere cosa fare, anche quando cido comportava dei sacrifici notevoli per me e per loro,
come quando ho deciso di continuare i miei studi all’estero. Vorrei chiudere con un ringrazia-
mento speciale per il mio amico e relatore Prof. Antonio Insolia, per 'amicizia e la pazienza che
ha dimostrato nel seguire ed assecondare le mie decisioni, pensando solo a cio che ¢ meglio per
me e non ad interessi personali.

Santo Fortunato



Contents

Acknowledgements

Tables of

Contents . . . . . . . . . e

Figures . . . . . . . . . .
Tables . . . . . . . e

Introduction

1 Introduction to Percolation Theory

1.1
1.2

1.3

1.4
1.5

Definition of the problem . . . . . ... ... ... ...
Cluster Size . . . . . . . . . . . . e
1.2.1  Cluster Distribution . . . .. ... ... ... ..
1.2.2  Average Cluster Size . . . . . . ... .. ... ..
1.2.3 Percolation Strength . . . . .. ... .. .. ...
Cluster Structure . . . . . .. ... ... ... . .....
1.3.1 Perimeter of a Cluster . . . . ... ... ... ..
1.3.2  Cluster Radius and Fractal Dimension . . . . . .
1.3.3 Correlation Length . . . . ... .. ... .....
Real Space Renormalization . . . . . . . ... ... ...

Finite Size Scaling . . . . . ... ... ... ... ...,

2 Percolation and Critical Behaviour in the Ising Model

2.1
2.2
2.3
2.4
2.5
2.6

Critical Behaviour . . . ... ... ............
Percolation vs Second Order Thermal Phase Transitions
The Ising Model . . . .. .. .. ... ... .. ... ..
The Random Cluster Model . . . . . .. ... ... ...
Percolation of Fortuin-Kasteleyn clusters . . . . . . . ..
The Kertész Line . . . . . . ... .. ... ... .....

I11
111

11
11
12
14
15
15
16
18
21
25



v

CONTENTS

3 Percolation and Magnetization in Continuous Spin Models

3.1 The Continuous Spin Ising Model . . . . . . ... ... ... .....
3.2 Extension to Generalized Continuous Ising-like Models . . . . . . . .
3.2.1 Model A: Next-to-Nearest Neighbour Interactions. . . . . . .
3.2.2 Model B: Extension to Three Dimensions . . . . . ... ...
3.2.3 Model C: Adding Self-Interactions . . . . . . ... ... ...
3.3 Cluster Percolation in O(n) Spin Models . . . . . ... ... .....

4 Polyakov Loop Percolation in SU(2) Gauge Theory

4.1 Finite Temperature SU(N) on the lattice . . . . ... ... ... ...
4.2 7Z(N) Symmetry and Deconfinement . . . . ... ... ... ... ..
4.3 SU(N) Gauge Theories vs Z(N) Spin Models . . . . . . ... ... ..
4.4 Polyakov Loop Percolation. . . . . . ... ... ... ... ......
4.5 First Approach: Strong Coupling Expansions . . . . . .. . ... ..
4.5.1 The Green-Karsch Effective Theory . . .. .. .. ... ...
4.5.2  Numerical Results for (2+1)-d SU(2) . . . ... ... ... ..
4.5.3 Numerical Results for (3+1)-d SU(2) . . . ... ... ... ..
4.6 Second Approach: Projection on Ising-like Spin Models . . . . . . .
4.6.1 Beyond the Strong Coupling Limit . . . . . .. ... ... ..
4.6.2 Numerical Results for (3+1)-d SU(2), N,=2 . ... ... ..
4.6.3 Numerical Results for (3+1)-d SU(2), N,=4 . ... ... ..

Summary

A Cluster Labeling
Bibliography
Publications

Declaration

101

105

109

115

117



List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

2.1

2.2
2.3
2.4

2.5
2.6

3.1

3.2
3.3

3.4

3.5

Scheme of a random resistor network . . . . . . ... .. L oL 7
Pure site percolation on a square lattice . . . . .. ... ... .. ... ... ...

Site percolation on a 1-dimensional linear chain . . . . . . ... .. ... ... ..

Scheme of a triangular lattice . . . . . . . . . ... Lo Lo 10
Cluster distribution for site percolation on a simple cubic lattice . . . ... ... 11
Average cluster size S for pure site percolation on a square lattice . . .. .. .. 13
Percolation strength P for pure site percolation on a square lattice . . . . . . .. 14
Perimeter of a small cluster . . . . . . . . . . . .. .. ... .. 15
Determination of the fractal dimension . . . . . . . . ... ... L. 17
Real space renormalization on a triangular lattice . . . . . . .. ... ... .. .. 22
Possible "percolation states” of a triangularcell . . . . . . ... ... ... ... 23
Percolation cumulant for pure site percolation on a square lattice . . . . . . . .. 28

Behaviour of the specific magnetization of the Ising model as a function of the

temperature T . . . . . L L e e e e 36
Configuration of the 2D Ising model near the critical temperature 7, . . . . . . . 37
Scheme of the Swendsen-Wang cluster update for the 2D Ising model . . . . . . . 42
Percolation cumulant as a function of 8 = J/kT for Fortuin-Kasteleyn clusters of

the 3D Ising model . . . . . . . . .. L 44
Scheme of the Kertész line . . . . . . ... ... ... .. .. . . .. 45
Kertész line of the 2D Ising model for small values of the external field A . . . . . 46

Binder cumulant as a function of k = J/kT for the classical continuous Ising

model of Griffiths . . . . . . . ... 52
Rescaling of the Binder cumulant curves of Fig. 3.1. . . . . .. ... ... .. .. 52
Percolation cumulant as a function of k = J/kT for the classical continuous Ising

model of Griffiths . . . . . . . ... 53
Comparison of the thermal and the geometrical critical point for the continuous

Ising model with spin amplitudes distribution f(o) =v1—-02. . ... ... ... 54
Rescaled percolation cumulant using the 2D Ising exponent v;g =1 . . . . . . .. 55

\Y%



VI

LisT OF FIGURES

3.6

3.7
3.8
3.9

3.10
3.11

3.12

3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

4.10

4.11

4.12

4.13

4.14

Rescaled percolation cumulant using the 2D random percolation exponent vpp =
P

Scheme of the spin-spin interactions in the continuous spin models A, B and C' .
Comparison of the thermal and the geometrical critical point for Model A . . . .

Rescaled percolation cumulant curves for model A, using the 2D Ising exponent
Vis = 1 o o o e e e e

Comparison of the thermal and the geometrical critical point for Model B . . . .

Rescaled percolation cumulant curves for model B, using the 3D Ising exponent
vrs = 0.6294. L L L

Rescaled percolation cumulant curves for model C, using the 3D Ising exponent
vrs = 0.6294 . L Lo

Percolation cumulant as function of § for Wolff clusters in O(2) . . . . . .. ...
Percolation cumulant as function of § for Wolff clusters in O(4) . . . . . .. ...
Rescaling of the percolation cumulant with the thermal exponent for O(2) . . . .
Rescaling of the percolation cumulant with the thermal exponent for O(4) . . . .
Finite size scaling plot at T, of the percolation strength P for O(2) and O(4)

Finite size scaling plot at T, of the average cluster size S for O(2) and O(4) . . .

Polyakov loop as a function of 3 = 4/g? for pure gauge SU(2) on a 363 x4 lattice
Polyakov loop as a function of 3 = 6/ for pure gauge SU(3) on a 32%x4 lattice
Average cluster size S for (2 4+ 1)-d SU(2), N; = 2: first approach . . . . . ...

Critical exponents’ ratios of finite size scaling fits for P and S in (2 + 1)-d SU(2),
N, =2: first approach . . . . . . . ...

Physical susceptibility x as function of g for (3 + 1)-d SU(2), N, =2. . ... ..
Binder cumulant as function of g for (3 +1)-d SU(2), N, =2 . . ... ... ...
Average cluster size as function of g for (3 + 1)-d SU(2), N, = 2: first approach

75
75
81

83
84
85

Percolation cumulant as a function of 3 for (34 1)-d SU(2), N, = 2: first approach 85

Rescaling of the percolation cumulant curves of Fig. 4.8 with the 3D Ising expo-
nent vrs = 0.6294 . . . . L e e e

Rescaling of the percolation cumulant curves of Fig. 4.8 with the 3D random
percolation exponent vpp = 0.8765 . . . . . . ... L o

Comparison of the magnetization histograms derived from the Polyakov loop con-
figurations and the effective theory: N, =2 . . . . . ... ... ... . .

Percolation cumulant as a function of g for (3 + 1)-d SU(2), N, = 2: second
approach . . . . . . L e e e

Rescaling of the percolation cumulant curves of Fig. 4.12 with the 3D Ising
exponent vy, = 0.6294 . . .. Lo e

Rescaling of the percolation cumulant curves of Fig. 4.12 with the 3D random
percolation exponent vrp = 0.8765 . . . . . . . ... Lo



LisT OF FIGURES VII

4.15

4.16

4.17

Al

Percolation cumulant as a function of 5 for (3 + 1)-d SU(2), N, = 4: second
approach . . . . . . L e e e 97
Rescaling of the percolation cumulant curves of Fig. 4.15 with the 3D Ising
exponent vy, = 0.6294 . . . L L 98
Rescaling of the percolation cumulant curves of Fig. 4.15 with the 3D random
percolation exponent vpp = 0.8765 . . . . . . ... oo 98

Sample configuration for the cluster labeling . . . . . ... ... ... ... .... 106



VIII LisT OF FIGURES




List of Tables

1.1
1.2

2.1
2.2

3.1

3.2

3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

4.4
4.5

4.6

Percolation thresholds for various lattices . . . .. . ... ... ... ... .... 10
Percolation critical exponents in d dimensions . . . . . . . .. ... ... ... .. 21
Behaviour of thermal variables at criticality . . . . . ... ... ... ... .... 33
Critical exponents of the Ising model in two and three dimensions . . . . .. .. 37

Thermal and percolation critical indices for the classical continuous Ising model

of Griffiths . . . . . . .. 53
Thermal and percolation critical indices for the continuous Ising model corre-

sponding to the amplitudes distribution f(6) =v1—02 . . . . .. ... .. ... 56
Thermal and percolation critical indices for model A . . . . .. . ... ... ... 59
Thermal and percolation critical indices for model B . . . . . . .. ... ... .. 60
Thermal and percolation critical indices for model C . . . . . . .. ... ... .. 62
Comparison of the thermal and percolation thresholds and exponents for O(2) . 68
Comparison of the thermal and percolation thresholds and exponents for O(4) . 68

Thermal and percolation critical indices for (24 1)-d SU(2), N; = 2: first approach 82
Thermal and percolation critical indices for (34 1)-d SU(2), N, = 2: first approach 87
Couplings of the effective theory for the Ising-projected Polyakov loop configura-

tions of (34+1)-d SU(2), N: =2 . . . . . .. 91
Percolation critical indices for (3 + 1)-d SU(2), N; = 2: second approach . ... 95
Couplings of the effective theory for the Ising-projected Polyakov loop configura-

tions of (34+1)-d SU(2), Nr =4 . . . . . . . e 96
Percolation critical indices for (3 + 1)-d SU(2), N; = 4: second approach . ... 97

IX



LisT OoF TABLES




Introduction

The study of critical phenomena has always been one of the most challenging and fascinating
topics in physics. One can give many examples of systems which undergo phase transitions,
from familiar cases like the boiling of water in a kettle or the paramagnetic-ferromagnetic tran-
sition of iron at the Curie temperature, to the more complicated case of the transition from
hadronic matter to quark-gluon plasma which is likely to be obtained by high-energy heavy-ion
experiments in the coming years. In all cases, one observes big changes of some properties of
the system caused by small variations of some parameter (usually the temperature) around a
particular value of the parameter (critical point).

In spite of the wide variety of systems in which such phenomena are observed, one has only two
main types of phase transitions: first order and continuous (basically second-order) transitions.
One of the most attractive features is the fact that whole classes of systems, ruled by dynamics
which look very different from each other, happen to have the same behaviour at the phase tran-
sition. This is particularly striking for second-order phase transitions, as one can define a set of
critical indices (exponents, amplitudes’ ratios), which rule the behaviour of the thermodynamic
variables near the critical point: all systems belonging to a class are characterized by the same
set of critical indices (universality). It is not clear which common elements ”unify” different
systems so that they have the same critical behaviour; however, it seems that the number of
space dimensions plays an important role. This connection to geometry is at the basis of our
future considerations.

In general, a phase transition corresponds to a change in the order of the system. Going from a
phase to another, the microscopic constituent particles of the system ”choose” a different way of
staying together. The interesting thing is the fact that the order is a macroscopic feature, while
the fundamental interactions which are responsible of the physics of the system, including the
phase change, are microscopic interactions between the particles. How can parts of the system
which are far from each other know about their respective situations, so that they switch all
together to the same state of order?

The usual interpretation of this fact is that the interplay of the microscopic interactions all
throughout a system at thermal equilibrium gives rise to a correlation between the states of the
particles. The extent of this correlation depends on the thermal parameters (i.e. the temper-
ature, eventual external fields, etc.) and it is expressed by the so-called correlation length ¥,
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which is the distance over which the fluctuations of the microscopic degrees of freedom (position
of the atoms, spin orientation, etc.) are significantly correlated with each other.

The correlation creates thus ”"ordered” regions which drive the behaviour of the whole system.
Because of that, it is natural to consider such regions as the leading characters of the phenomenon
and describe phase transitions in terms of the properties of compound objects. The interaction
"builds” these objects: the phase transition is related to the geometry of the resulting structures.

This picture has, among other things, two big advantages. First, it would justify the connection
between critical phenomena and geometry that we have stressed above. Second, if the degrees of
freedom relevant for the phase change are the ones of sets of particles, and not of single particles,
it is likely that they do not depend on the details of the microscopic interaction, but only on its
gross features (e.g. symmetries): this could explain the universality of the critical indices.

On these grounds, it is easy to understand why several attempts have been made to find a
geometrical description of phase transitions. The first ideas date back to the end of the 40’s,
when Onsager [1] proposed an interpretation of the A-transition in liquid *He based on the
behaviour of one-dimensional strings, whose size would change dramatically from one phase to
the other: whereas in the superfluid phase only finite strings are present, at the critical point
infinite strings appear.

This kind of picture is analogous to the well known phenomenon of percolation [2, 3], which
takes place when geometrical clusters, formed by elementary objects of some system, stick to
each other giving rise to an infinite network, that spans the whole system. Here, criticality is
reached when the density of the elementary objects is sufficiently high. The onset of percolation
marks a distinction between two different phases of the system, characterized by the presence
or the absence of an infinite cluster. The percolation phenomenon turns out to have astonishing
analogies with ordinary second order thermal phase transitions. In particular, the behaviour
of the percolation variables at criticality is also described by simple power laws, with relative
exponents; the values of the exponents, related to each other by simple scaling relations, are
fixed only by the number of space dimensions of the system at study, regardless of its structure
and of the special type of percolation process one considers.

For these reasons, percolation seems to be an ideal framework for the geometrical description
of phase transitions we are looking for. One could try to map the thermal transition into a
geometrical percolation transition. In order to do that, one must require that the two critical
thresholds coincide, and that the thermal variables can be expressed in terms of corresponding
percolation quantities.

The first studies in this direction started at the beginning of the 70’s, and concentrated on the
Ising model. The main problem was to look for a suitable cluster definition. The first structures
which were investigated were the ordinary magnetic domains, i.e. clusters formed by nearest-
neighbouring spins of the same sign. In two dimensions such clusters happen indeed to percolate
at the thermal critical temperature T, [4]. Nevertheless, the values of the critical exponents differ
from the corresponding Ising values [5]. Besides, in three dimensions, the magnetic domains of
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the spins oriented like the magnetization percolate at any temperature; the domains formed by
the spins opposite to the magnetization percolate for T' > T,, with T, # T, [6].

The problem was solved when it became clear that, to define the ‘physical’ islands of a thermal
system, one must take into account correctly the degree of correlation between the spins. The
size of the ordinary magnetic domains, in fact, happens to be too large because of purely
geometrical effects, which operate independently of the spins’ correlation. In order to get rid of
these disturbing effects, Coniglio and Klein introduced a bond probability p = 1 — exp(—2.J/kT)
(J is the Ising coupling, T' the temperature). The new islands are site-bond clusters, i.e. clusters
formed by nearest neighbouring like-signed spins, which are connected with a probability p, and
not always like in the previous definition (p = 1). These clusters had actually been introduced
some years before by Fortuin and Kasteleyn. They had shown that, by means of such objects,
one can reformulate the Ising model as a geometrical model [7]. This result indicates that
these apparently artificial structures are strictly related to the Ising dynamics. Coniglio and
Klein showed that the new clusters percolate at the thermal threshold and that the percolation
exponents coincide with the Ising exponents [8].

So, it is possible to describe the paramagnetic-ferromagnetic transition of the Ising model as a
percolation transition of suitably defined clusters. The paramagnetic-ferromagnetic transition
is due to the spontaneous breaking of the Z(2) symmetry of the Ising Hamiltonian, i.e., the
symmetry under inversion of the spins. The spontaneous breaking of the Z(2) symmetry is also
responsible of the confinement-deconfinement transition in SU(2) pure gauge theory. Because
of that, it was conjectured that SU(2) has the same critical behaviour of the Ising model [9],
i.e., it undergoes a second order phase transition with Ising exponents, as it was successively
confirmed by lattice simulations [10].

It is then natural to see whether the SU(2) confinement-deconfinement phase transition can be
described as a percolation transition like for the Ising model: this is the aim of this work.

The analogue of the spin variable in SU(2) pure gauge theory is the Polyakov loop L, a real
number which is a well defined function of the gauge fields. The deconfined region is the ordered
phase of the system, characterized by a non-vanishing lattice average of the Polyakov loop. In
this way, regions of the space where the Polyakov loop has the same sign can be viewed as local
"bubbles” of deconfinement. In each of these regions, in fact, the average of the Polyakov loop is
necessarily non-zero. If we put a test colour charge into a bubble, it will be free to move within
the portion of space occupied by the bubble. But to have a real deconfined phase, the test charge
must be able to move freely all throughout the system, so that there must be bubbles whose size
is of the same order of the volume of the system. A working percolation picture would support
the proposal of such a mechanism for the deconfinement transition.

The question is, again, what clusters to choose. From what we have said, it is simple to deduce
that the clusters must be formed by sites at which the Polyakov loops have the same sign. But
it is not clear if and how we can extract the other necessary ingredient for the cluster building,
namely the bond probability.

The search of the right bond probability is affected by two problems:
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e The Polyakov loop is not a two-valued variable like the spin in the Ising model but a
continuous one; its values vary in a range that, with the normalization convention we use,

is [—1,1].

e The SU(2) Lagrangian is a function of the gauge fields which cannot in general be expressed
only in terms of the Polyakov loop L.

The first point led us to investigate continuous spin models, i.e. models where the spin is a
continuous variable, to check whether the Coniglio-Klein result can be extended to such more
general cases. We began by analyzing the continuous spin Ising model, which is an Ising model
with continuous spins. We will see that, in this case, an equivalent percolation picture can
be obtained by introducing a bond weight which is similar to the Coniglio-Klein one, with the
difference that it contains an explicit dependence on the spins connected by the bond. This local
bond probability solves the first of the two afore-mentioned problems. Besides, the result can
be further extended to models with several spin-spin interactions, if ferromagnetic. We will also
show that eventual spin distribution functions and self-interaction terms do not influence the
percolation picture. Finally, we will analyze O(n) spin models and find again that their critical
behaviour can be easily described by means of cluster percolation.

The second difficulty is hard to overcome. In fact, it seems clear that the percolation picture of
a model is strictly related to the interactions of the model. In particular, a bond is associated
to each spin-spin interaction, with a probability which depends on the value of the coupling
strength of the interaction. But, if the SU(2) Lagrangian is not simply a function of L, we
cannot exactly specify how the ”gauge spins”, i. e., the Polyakov loops, interact with each
other. It seems then impossible to derive rigorously the corresponding percolation scheme.

However, we can try to solve the problem by using suitable approximations. The best thing to
do is to try to approximate SU(2) pure gauge theory by means of an effective theory, hoping
that the effective model admits a percolation picture.

We shall first exploit a strong coupling expansion derived by Green and Karsch [11], which
shows that the partition function of SU(2) can be reduced to the partition function of one of
the continuous spin models we have analyzed. This approximation is valid only in the strong
coupling limit, more precisely in the cases N; = 1,2 (N,=number of lattice spacings in the
temperature direction). We will analyze the case N, = 2, both in two and in three space
dimensions, and show that the percolation picture derived by the effective theory describes well
the thermal transition of SU(2).

Next, we will try to find a procedure which can be also applied to the more interesting weak
coupling case. This time we shall construct the effective theory starting not from the SU(2)
Lagrangian, but from the Polyakov loop configurations. Actually we shall consider the Ising-
projected configurations, i.e. the distributions of the signs of the Polyakov loops. This is
done assuming that the Z(2) symmetry is the only relevant feature at the basis of the critical
behaviour.
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We will essentially look for a model which can reproduce the Ising-projected Polyakov loop
configurations. The effective model must be necessarily chosen inside the group of spin models
for which a working percolation picture exists. Our ansatz will be an Ising-like model with just
ferromagnetic spin-spin interactions, to which the Coniglio-Klein result can be trivially extended
by associating a bond to each coupling. The couplings of the effective theory are calculated
following a method used in Monte Carlo renormalization group studies of field theories [12, 13].
We will examine SU(2) in 3 + 1 dimensions, for N; = 2 and N, = 4. The results will be shown
to be satisfactory in both cases.

Our results are entirely obtained by means of lattice Monte Carlo simulations of the various
models we have studied. We have always used workstations except for some lenghty SU(2)
simulations which were performed on a Cray T3E (ZAM, Jilich).

This work is structured as follows. Chapter 1 is devoted to a presentation of the main concepts
of percolation theory with a special attention to numerical techniques. In Chapter 2 we focus on
the analogies between percolation and thermal phase transitions, which lead to the percolation
formulation of the Ising model of Coniglio and Klein. Chapter 3 collects all percolation studies
on continuous spin models that we have mentioned above. In Chapter 4 we show the results for
SU(2) pure gauge theory. Finally, the conclusions of our investigation are drawn. In Appendix
A we present the procedure we have adopted to perform the so-called cluster labeling, i.e. the
identification of the cluster configurations.
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Chapter 1

Introduction to Percolation Theory

1.1 Definition of the problem

Let us suppose to have a piece of some
material X which is given by the mix-
ture of two different substances A and
B. Substance A is a metal, substance
B an insulator. One could ask oneself
whether the material X is insulating or
conducting. Fig. 1.1 schematizes the sit-
uation, assuming for simplicity our sys-
tem to be two-dimensional. The geom-
etry of the sample X is the one of a
regular square lattice, represented by the
black points. If we assume that the mix-
ing process is disordered, we can visualize
the presence of the metal by distribut-
ing randomly resistors between pairs of
nearest neighbouring sites. If we set a
voltage between the upper and the lower
edge of our sample, electric current will
flow through the substance if the resis-
tors form a connected structure from top
to bottom (red path in the figure). Let p
be the concentration of the metal in the
substance. Our problem can be reformu-
lated in the following way: what is the
minimum value of p which is necessary

F o

Figure 1.1: Scheme of a two-dimensional random re-
sistor network. The spanning structure formed by
the resistors (marked in red) allows electric current
to flow all through the material.

to have a connected bridge of resistors all through the lattice?
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The system we have presented here is a random resistor network, and represents only one of
the many applications of percolation theory [2, 3]. The original problem which gave rise to this
theory was studied by Flory and Stockmayer [14] during the Second World War. They had a
set of small branching molecules and increased the number of chemical bonds between them. In
this way larger and larger macromolecules are formed. At some stage it may happen that the
chemical bonds form a structure which spans the whole system (gelation).

Nowadays the set of problems which can be modelled by using percolation theory is big and
various: diffusion in disordered media [15], critical behaviour of systems undergoing second
order phase transitions (the topic of this work), fractality [16], spread of epidemics or fires in
large orchards [17], stock market fluctuations [18]. In this chapter we want to introduce the
percolation problem and illustrate its main features.

Suppose to have some infinite periodic lattice’ in d dimensions. For simplicity, we consider
here a two-dimensional square lattice. We start by distributing randomly objects on the lattice,
something like placing pawns on a chessboard. At this stage we have two possibilities: we can
place our pawns on the edges of the lattice, or on its vertices. If we work on the edges we have
the so-called bond percolation: our random resistor network is an example of it. If we instead
place our pawns on the sites we are in the site percolation case. Other choices are allowed, but
they are given by combinations of site and bond percolation (for example one can use edges and
sites together). Every bond model may be reformulated as a site model on a different lattice
[20], but the converse is false. Therefore site models are more general than bond models and
in what follows we will deal essentially with the former ones. We assume that an edge (site)
is occupied with some probability p (0 <p<1), independently of the other edges (sites). To
complete the picture we only need to establish a rule to form compound structures (clusters)
out of our pawns. Percolation theory deals with the properties of the clusters thus formed.

If we increase the probability p, the clusters at the beginning will increase in number and size.
Successively most of them will stick to each other to form bigger and bigger clusters until, for
some value p. of the occupation probability, an infinite spanning structure is formed (percolating
cluster). Further increases of p lead to an increase of the size of the percolating cluster which
slowly embodies the remaining ones until, for p = 1, it invades every edge (site) of the lattice.

Fig. 1.2 shows three “pictures” of this phenomenon for the so-called pure site percolation case,
for which two nearest neighbouring sites always belong to the same cluster. Fig. 1.2a shows a
lattice configuration corresponding to a small value of p, in Fig. 1.2b p is higher but below p,
and in Fig. 1.2c p is slightly above p,.

Particularly interesting is what happens for values of p near p.. The aspects related to that are
called critical phenomena and we will focus mainly on that. Indeed, at the percolation threshold
pe a sort of phase transition takes place, because our system changes dramatically its behaviour

TWe remark that the percolation phenomenon does not require a lattice structure, but it can be also studied
on continuous manifolds. However, since our work is centered on lattice systems, we will disregard continuum
percolation. The interested reader is invited to look at [19].
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(a) (b) (c)

Figure 1.2: Pure site percolation on a 2-dimensional square lattice. In (a) the density of occupied
sites is low and the clusters small. In (b) the density is increased and the corresponding clusters
are larger. For a still higher density many clusters stick together to form a spanning structure
(red cluster in (c)).

at one particular value of a continuously varying parameter. For an occupation probability p.—e
(e is an arbitrarily small numer) there is no percolating cluster, for p. + € there is (at least) one.

We have defined the percolation process on a regular lattice in d dimensions. It is easy to see
that d must be at least 2 in order to have a critical phenomenon. Let us suppose that d = 1.
Our system can be represented by an infinitely long linear chain, as shown in Fig. 1.3.

X000 <0 <000 oo |

Figure 1.3: Site percolation on a 1-dimensional linear chain. Nearest-neighbouring black circles
form the clusters. The crosses indicate vacancies, which separate the clusters from each other.
Percolation can take place only if all sites are occupied (p = 1).

The black circles in the figure represent the occupied sites. If the occupation probability p
is smaller than 1, there will be holes along the chain. But a spanning cluster in this special
case must include all sites, therefore there can be percolation only for p = 1. There is no
separation in two phases, and that makes the one-dimensional case not as interesting as the
higher-dimensional ones. We shall thus always assume that d>2. The lattice structures on
which we can play our percolation game are not restricted to the simple square (cubic) ones: we
can use as well triangular, honeycomb lattices (Fig. 1.4). Besides, we can use the same structure
in different ways, like in the case of the simple 3-dimensional cubic lattice, from which we can
get three lattices: we can consider as sites just the vertices of the cubic cells, the vertices plus
the centers of the cubes (body centered cubic or bee lattice), or the vertices plus the centers of
the six faces of each cube (face centered cubic or fec lattice).
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Figure 1.4: Scheme of a triangular lattice. If we consider as sites the centers of the triangles we
get the so-called honeycomb lattice.

Because of the different lattice structures, the critical values of the occupation probability p.
will be in general different in each case. In Table 1.1 we have listed the values corresponding
to the most studied systems. We notice that, for a fixed lattice structure, p. gets smaller the
higher the dimension d of the lattice.

Lattice Site Bond

d = 2 honeycomb | 0.6962 | 1-2sin(n/18)

d = 2 square 0.592746 1/2
d = 2 triangular 1/2 2sin(m/18)

d = 3 simple cubic | 0.31160 0.2488
d =3 bcc 0.246 0.1803
d =3 fcc 0.198 0.119
d = 4 hypercubic 0.197 0.1601
d = 5 hypercubic 0.141 0.1182
d = 6 hypercubic 0.107 0.0942
d = 7 hypercubic 0.089 0.0787

Table 1.1: Selected percolation thresholds for various lattices.



1.2. CLUSTER SIZE 11

1.2 Cluster Size

1.2.1 Cluster Distribution

Once we have defined the problem, we have to see how it is possible to study the percolation
phenomenon quantitatively. Percolation is a random process, because random is the way in
which we occupy the sites (bonds) of the lattice. If we repeat the procedure over and over we
will have clusters of different sizes and shapes and therefore it makes sense to study the averages

of quantities related to the clusters. In order to do that, we must study the statistics of these
clusters.

In general we define as size s of a cluster the number of sites (bonds) belonging to it. It is
interesting to see how the clusters are distributed according to their size. This information is
expressed by a function ng, which depends both on s and on the density p. We define n; as the
number of clusters of size s per lattice site, according to the following formula
Ny ()
= 1i 1.1
=i Ty Y

where V' is the volume (number of sites) of a finite lattice and Ny (s) the number of clusters of
size s on that lattice.

10
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(a) (b)

Figure 1.5: (a) Cluster distribution for site percolation on a 100% simple cubic lattice in corre-
spondence of the critical density p. = 0.3116. (b) Log-log plot of the cluster distribution shown
in (a). The data are stored in bins to reduce the fluctuations. The slope of the straight line
gives an approximated estimate of the critical exponent 7.

It is generally found that, near the critical density p. and for sufficiently big values of the size
s, the distribution ng has the scaling form:

Ng X sin[(p _pc) SJL (12)
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where f is a function to be determined in each specific case and 7, o are critical exponents.
The function f(z), however, has some general features: it is basically constant for |z| < 1 and
it decays rapidly for |z| > 1. That means that, for a fixed value of the density p, ns; will be
appreciably different from zero for those values of the size s for which

s < p—pel V7. (1.3)
For p = p. the distribution is a simple power law:
ngox s . (1.4)

Fig. 1.5a shows the cluster number distribution for pure site percolation on a cubic lattice at
the critical threshold p, = 0.3116. The lattice size is 100® and we have analyzed 100 samples
in order to get a satisfactory statistics. The values on the y axis are the unrenormalized cluster
numbers Ny (s). We can see the main features of the cluster distribution, in particular the rapid
decrease with the size s. To check whether ng has really the power law behaviour of Eq. (1.4),
we have plotted our distribution in log-log scale. To obtain a good quality of the plot we have
tried to reduce the fluctuations which are visible in Fig. 1.5a. An efficient method to do that
consists in dividing the s axis in bins and calculating the average of nsV in each bin. The
result can be seen in Fig. 1.5b, where all our data are represented by few points: they look
rather stable. Eq. (1.4) is valid only for big values of s, therefore we have excluded the points
corresponding to low values of s (s < 20) and performed a linear best fit on the remaining ones.
The straight line we have drawn is in good agreement with the data points, which confirms the
correctedness of Eq. (1.4). The slope of the straight line is 2.13, which is a fair approximation
of the exponent 7 for this system (7 = 2.18).

1.2.2 Average Cluster Size

If we know the cluster distribution function ns, we may ask ourselves how big on average a
cluster is. We must be careful in specifying what we exactly mean by "average” in this case.
Let us suppose that we point randomly to a lattice site and want to know how big the cluster
to which that site belongs is. If the size of the cluster is s, the number of clusters of that size
(per site) is ns. Therefore, the quantity ngs is just the probability of picking up a site belonging
to one of those clusters. On the other hand the probability that a site of the lattice taken at
random belongs to any finite cluster is given by

> ngs (1.5)

(the sum excludes the eventual percolating cluster). So, if we hit some occupied site of the
lattice, the probability ws that it belongs to a cluster of size s is given by

Wg =

(1.6)

NgS
5

5158
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Our procedure will thus lead us to the following definition of average cluster size S:

3 ngs?
S = Wg S = =S 7 — . (]‘7)
zs: Y5 N5S
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Figure 1.6: (a) Average cluster size S as a function of the density p for pure site percolation on
a 2-dimensional square lattice. The curves correspond to four different lattice sizes and peak
near the infinite volume threshold p, = 0.592746, which is represented by the dotted line. (b)
Average cluster size S as a function of [p — p.| for pure site percolation on a 300% square lattice.
In the logarithmic scale of the plot the scaling behaviour of S is clearly indicated by the two
straight lines, which correspond to the different branches of the curve around the peak.

If the sums included the eventual percolating cluster, S would become infinite above the critical
threshold. In this way instead the average cluster size is divergent only at the critical density
pe. Besides, its behaviour near p. is again expressed by a power law:

Soc|p—pe[™” (1.8)

where v is another critical exponent. The behaviour of S as a function of p is illustrated in Fig.
1.6a, where we present the results of simulations for pure site percolation on a square lattice
in correspondence of different lattice sizes. The divergence of S can be seen through the peaks
of the curves, which become higher and narrower the larger is the size of the lattice. Besides,
increasing the lattice volume, the position of the peaks approaches the critical point of the
geometrical transition (dotted line). To check the scaling behaviour of S expressed by Eq. (1.8)
we use other data relative to pure site percolation on a square lattice. In general, scaling relations
are clearer for big volumes because the effects due to the finite size of the lattice are small (see
Section 1.5). In Fig. 1.6b we have plotted S as a function of |p — p.| for a 3002 lattice. The
branches of the curve to the right and to the left of the peak are represented by the two straight
lines in the figure. They are approximately parallel, which confirms the fact that both branches
have a power law behaviour with the same exponent vy as in (1.8). Actually the condition of
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best parallelism of the two lines is in general obtained for a value of p. which is slightly different
from the infinite volume one also for relatively large lattices: that shows that the infinite volume
limit is a condition that is hard to simulate even using modern supercomputers.

1.2.3 Percolation Strength

In introducing the average cluster size S we stressed the fact that to evaluate this variable we
don’t need any information about the eventual percolating cluster. But such information is
of course very important for a thorough understanding of the percolation phenomenon. We
thus introduce another variable, the percolation strength P, defined as the probability that an
arbitrarily chosen site of the lattice belongs to the spanning cluster. P is then basically the
fraction of the lattice volume which is occupied by the percolating cluster. On an infinite lattice
P is zero for any density p below the critical value p. (no percolation), and a number between
zero and one above p.. P is the order parameter of the percolation transition, as its value allows
us to distinguish the two phases of the system.
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Figure 1.7: (a) Percolation strength P as a function of the density p for pure site percolation on
a square lattice. The lattice sizes are the same as in Fig. 1.6a. The tail of the curves to the left of
the critical threshold (dotted line) is smaller the greater the lattice size. (b) Percolation strength
P as a function of (p — p.) for pure site percolation on a 600? square lattice. Excluding the
closest values of p to p., for which the results are strongly affected by the finite size of the lattice,

our data points follow approximately a straight line, which confirms the scaling behaviour of
Eq. (1.9).

Near the critical density p. the behaviour of the percolation strength as a function of the density
p is again expressed by a power law:

P (p—pc)g, (19)
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relation which is obviously valid for p > p.. Fig. 1.7a shows the P curves corresponding to the
S curves of Fig. 1.6a. The finite size of our lattices allows percolation to occur also at values of
p which are smaller than p., but the tails of the P curves to the left of p. get smaller the bigger
the lattice size is. In Fig. 1.7b we show a plot in logarithmic scale of the percolation strength
as a function of p for 600% lattice. Disregarding the closest points to the threshold, which feel
strongly the effects of the finite size of the system (see Section 1.5), the scaling behaviour of Eq.
(1.9) is clearly represented by the straight line to the right of the figure.

1.3 Cluster Structure

1.3.1 Perimeter of a Cluster

Most of what we have discussed so far has to do with the size of the clusters. But there are also
other aspects that can be studied. In particular, we can examine the cluster structure, which
can let us know the geometrical properties of our objects. For example, how can we define the
perimeter of a cluster? The easiest thing to think of is the number of empty sites neighbouring a
cluster. In Fig. 1.8 the crosses around the cluster mark its perimeter according to this definition.
If we count the sites of the perimeter of Fig. 1.8 we find that they are approximately as many as
the sites of the cluster (15 vs 12). However, from geometry we know that, in a d-dimensional

X
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Figure 1.8: Perimeter of a small cluster. We see that the number of sites of the perimeter is of
the same order as the size of the cluster. This fact is also valid for large clusters.

space, the perimeter of an object of linear dimension L is proportional to L4~!, while its volume
is proportional to L% the ratio perimeter /volume goes then like L™'. We might object that this
fact is due to the small size of the cluster we have taken in our example, and that going to larger
structures we would recover the right behaviour. As strange as it may seem, this objection is
not correct. We should not forget that our clusters are random structures; because of that, large
clusters have in general holes in their body (like the holes in a Swiss cheese). The empty sites
of these holes contribute to the perimeter as well. We can take as example the big spanning
cluster of Fig. 1.2c. There are more than forty holes in it, some of which are so big that other
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clusters are contained in them. On these grounds it isn’t surprising that even the perimeter
of large clusters is proportional to their size. One could still say that the real perimeter is
only the external one, i.e., it is given by the empty sites surrounding the cluster, excluding the
contribution of eventual inner holes. But even in this case, the result remains valid. We can
easily convince ourselves in the case of site percolation on a simple cubic lattice. If we take a
density p between 0.4 and 0.6, we have percolation both for the occupied and for the empty
sites of the cube. In fact, both the density of occupied sites p and the one of empty sites 1 —p
are above the critical threshold (p. = 0.3116). Nearly every occupied (empty) site belongs to
the infinite network of occupied (empty) sites. Thus everywhere in the lattice, each occupied
site has with high probability at least one neighbour belonging to the infinite cluster of empty
sites. Such empty site contributes to the external perimeter, since inner holes are, of course,
disconnected from the infinite network. This simple example shows clearly that the perimeter
of a cluster is proportional to its size s and not to s(@1/d,

1.3.2 Cluster Radius and Fractal Dimension

To examine the cluster structure it is also important to define the linear dimension of the
cluster, i.e., its radius. To define the radius of such complicated objects may not be that easy.
The need to focus on some features of the cluster geometry instead of others may lead to different
definitions. We will define the radius R of a cluster of size s through

|1 — ro?
RA=% 42 .
S s ) (1 10)
i=1
where
S rs
— -1
rg = 2.5 (1.11)
i—=1

is the position of the center of mass of the cluster and r; the coordinates of the site i. If we
relate R to the average distance between two cluster sites we get the formula:

-
R2=Y Lk (1.12)

— 252
17J

(We put the origin of the coordinates at the cluster centre-of-mass.) It is interesting to check
whether the radius R of a cluster is related in some simple way to the cluster size s. One finds
that for large values of s the following simple power law is valid

R, x s'/P. (1.13)

The number D is called fractal dimension. An interesting feature of Eq. (1.13) is the fact that
D varies with the density p. In particular, it may take non integer values. To evaluate the
fractal dimension D in correspondence of some density p we just need to test the scaling relation
(1.13). However, there is a special case in which D is relatively easy to determine.
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In fact, at the critical density p., the radius of the largest clusters on a lattice of linear dimension
L is with good approximation just L. On big lattices one can thus write

s o LP, (1.14)
being s the size of the largest cluster. Fig. 1.9 illustrates a numerical test of Eq. (1.14). The
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Figure 1.9: Test of the scaling relation (1.14) for 2-dimensional site percolation on a square lat-
tice. Except the points corresponding to the smaller lattice sizes, our data points fall remarkably
well on a straight line. The slope is the fractal dimension D at p,.

clusters are again the ones of pure site percolation on a square lattice. We have drawn our data
points on a log-log plot, and it is clear that, apart from little deviations for the smaller lattices,
the behaviour expressed by Eq. (1.14) is correct. The slope of the straight line is 1.89(1), in good
agreement with the exact value 91/48 = 1.896. Since D is smaller than the space dimension d of
the system, we say that large clusters at criticality are fractal objects. This is not true at higher
densities. One can easily argue that, for px~ 1, large clusters do not present holes in their body
and therefore they are ‘real’ objects, i.e., s x Ry?. One finds that this result is more general,
namely

D(p>pc) =d (1.15)

So, there is a jump in the value of the fractal dimension when one goes from p. to p > p.. Large
clusters have again the same fractal dimension at any p < p.. In general

D(p <pe) < D(p=p:) < D(p>p) = d. (1.16)

What we have just said about the fractal dimension allows us to illustrate an important point
that we have on purpose neglected till now. We have so far spoken of ”percolating cluster”,
assuming that, at p > p., only one spanning network can be formed. This fact is not at all
trivial, and it has been a source of hot debates inside the percolation community. Nowadays the
situation seems to be clear and we present it here, without going into the details. One has to
distinguish two cases:
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e p > p.. The fractal dimension of a percolating cluster is, from Eq. (1.15), equal to the
number of space dimensions of the lattice. That means that their density inside the lattice
is finite, no matter how small, i.e. the clusters cover a finite fraction of the whole lattice.

Starting from this, it was proved rigorously that there can be only one percolating cluster
[21].

e p = p.. In this case, as we have seen, the fractal dimension of a percolating cluster is
smaller than d. The relative density of such a cluster inside the lattice is zero, like the
density of a straight line on a plane. This would allow, in principle, the existence of
several percolating clusters at p.. Aizenman proved that there is indeed a small but finite

probability to have more that one spanning cluster, even in two and three space dimensions
[22].

On the grounds of these results, we shall keep assuming that there is a single percolating cluster,
meaning a spanning cluster with a finite density.

1.3.3 Correlation Length

If we take a site of a cluster, the probability that an occupied site put at some distance r from
the first one belongs to the same cluster is non-negligeable as long as r is of the same order of
the cluster radius Rs. The average value of this probability is the correlation function g(r). If
we sum g(r) over all distances r, we get the average number of sites connected to some occupied
site of the lattice. The equivalence of ) g(r) and the average cluster size S is clear. So, in
general:

pS =Y ngs® =py_g(r), (1.17)

relation that is valid for p < p. because, above p., g(r) would take into account the spanning
cluster as well, whereas S excludes it. Eq. (1.17) can, however, be extended also to the region
p > pe. For that it is enough to subtract the contribution of the spanning cluster from the
definition of the correlation function g(r). The probability p;,s that an occupied site so taken
at random belongs to the infinite cluster is given by P/p, where P is the percolation strength
P. In fact, let S, be the size of the infinite cluster, N the number of occupied sites and V' the
lattice volume. The probability p;,; is given by
Sp S,V o 1

Pinf = N =T N = ij- (1.18)
Now, the probability that another randomly selected site s, (occupied or not), distant r from
50, belongs as well to the infinite cluster is simply given by p;,; P = P?/p. The contribution
of the spanning cluster to the correlation function is thus P?/p. In this way, if we replace g(r)

by g(r) — P?/p, we get

pY lg(r) = P2/pl = p> g(r) =p>_ P*lp = ngs® — PV =Y ngs? =pS  (1.19)
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(the sum over s’ runs over non-percolating clusters), which is the generalization of Eq. (1.17)
for any value of the occupation probability p.

We define the correlation or connectivity length & as some average distance of two sites belonging
to the same cluster:

&= 2, r9(r) (1.20)

>rg(r)
The sum over r can be written as a sum over the cluster size s following this reasoning. If we
point to an occupied site of the lattice, the probability g(r) will be zero for all sites which do
not belong to the same cluster. So, we have basically to perform a sum only within each cluster
and average over all clusters of the lattice. Now we have to express Eq. (1.20) in terms of
s-quantities. Let us take at random a site i of the lattice. Supposing it belongs to a cluster of
size s, we have

> () :PZEZZ\H—Q\ZHSS (1.21)
r s i

where the indices ¢ and j run over all sites of the cluster. The probability that any site belongs
to a cluster of size s is nys, and that weighs the distance |r; — rj|? in our equation. The second
sum (divided by s) corresponds to averaging over the site ¢ picked up at the beginning. From
Eq. (1.12) we get

Z r; —rj? = 2R,%s%. (1.22)
i

by which we can write
> g(r)=p> 2Rns” . (1.23)
T 8§

The denominator of Eq. (1.20) can be easily rewritten using Eq. (1.17), so that we finally obtain

2. .2

9 D.s2Rs“ngs
== — — 1.24
¢ > N2 (1.24)

Eq. (1.24) shows that the correlation length is basically determined by those clusters which give
the main contribution to the average size S: ¢ is essentially the average radius of those clusters.

Approaching the critical density, the correlation length as well as S are thus divergent at p..
From what we have said it is not surprising that, for p ~ p., also £ has a power law behaviour,

£ |p—pe ™ (1.25)

with v as critical exponent. There is, however, much more than that. It is rather easy to argue
that all divergencies we have encountered so far are also due to the clusters which are responsible
for the divergencies of the average size S and the correlation length £. For all variables, indeed, a
key role is played by the cluster number distribution ng, which is explicitly or implicitly present
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in all our definitions. We have actually seen above (Eq. (1.3)) that there is a sort of cutoff for the
size of the clusters for which ng is non negligible: the properties of these clusters determine the
critical behaviour of the percolation phenomenon. In particular, the divergence of the correlation
length is at the basis of the scaling laws we have met up to now, as we will explain more in
detail in the next section. If the behaviour of all variables we have introduced is determined by
the few properties of some special clusters, it is easy to deduce that the corresponding critical
exponents, which fix the functional dependence on p of the variables at criticality, are somehow
related to each other. The distribution n, at criticality is ruled by the two critical exponents 7
and o (see Eq. (1.2)), so that we expect that all other exponents are simple combinations of 7
and o. That turns out to be true: below we show how one can calculate all exponents starting
from the two fundamental ones
T—1 T—2 3—71 T—1 B 1 d

a:2— s e y == y V= s = —
o B o " o od ov T—1

(1.26)

(We indicate with d the space dimension of the lattice.) If we play a bit with Eqgs. (1.26) we
can derive other useful relations: particularly important is

280 g
v 14

(1.27)

The relations containing the dimension d are called hyperscaling relations. It is believed that
the hyperscaling relations are valid only for values of d satisfying d < d,,, for some d,, called the
upper critical dimension. When d > d,, one finds that the percolation process behaves roughly
in the same manner as percolation on an infinite regular tree, like the Bethe lattice. The values
of the critical exponents for this problem are analytically known: 7 =5/2, 0 = 1/2, v = 1/2.
We can ask ourselves for which value of d the hyperscaling relation

T—1

- 1.28
v=— (1.28)

is satisfied by such exponents. According to what we have said, the solution is just the upper
critical dimension d,,. From Eq. (1.28) one obtains d,, = 6.

The fact that the space dimension d of the lattice is present in Eqs. (1.26) means that the scaling
relations are well-defined once we fix the value of d, independently of the type of percolation
(site, bond) and (or) the lattice structure we are studying. It is actually remarkable that the
dimension d seems to fix not only the scaling relations (1.26) but even the values of the single
exponents. This property is called universality and so far all tests which have been performed,
both analytically and numerically, haven’t found exceptions to it. In Table 1.2 we have reported
the values of the critical exponents for several values of the space dimension d.
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Exponent | d=2 d=3t d=4 | d=5
o -2/3 | -0.6295(53) | -0.72 | -0.86
6 5/36 | 0.4181(8) | 0.64 | 0.84
5y 43/18 | 1.793(4) | 1.44 | 1.18
v 4/3 | 0.8765(17) | 0.68 | 0.57
o 36/91 | 0.4522(9) | 0.48 | 0.49
T 187/91 | 2.18906(8) | 2.31 | 2.41

D(p=p.) | 91/48 | 2.5230(2) | 3.06 | 3.54

D(p <pc) | 1.56f 2 12/5 | 2.8

D(p > p.) 2 3 4 5

Table 1.2: Percolation critical exponents in d dimensions.

1.4 Real Space Renormalization

As we have seen up to now, the behaviour of all percolation variables at criticality is described
by simple power laws. Apart from the simplicity of their form, power laws have a remarkable
property: they are scale free. To understand this feature, we take the simple function f(z) =
2'/2, and focus on two intervals of the z-axis, namely [1,2] and [10,20]. The ratio of the extremes
of the intervals is the same (2 : 1 = 20: 10 = 2) in both cases: the corresponding ratios of the
values of the function is also the same (2'/2 : 1 = 20'/2 : 101/2 = 2/2). That means that if
we perform a change of scale, from z to z' = ax, the y-axis will be correspondingly rescaled,
and the curve will look identical after the transformation. That does not happen if we use,
for example, an exponential function. In fact, taking g(z) = e® and the same intervals of our
example, we would find two different ratios for the values of the function at the extremes of the
ranges (e? : e! = e#£e?0 : 'Y = ¢!0): if we go from a range to another through a scale change,
the function will look different after the transformation. In this sense we say that there is no
characteristic length for a phenomenon described by a power law: it will look identical in each
scale.

!The values of the critical indices for d = 3 are taken from a recent study of random percolation on a simple
cubic lattice [23].

S0mne could wonder why we have given a numerical estimate of D(p < pc) in two dimensions, whereas for
d = 3,4 analytical results are known. The percolation clusters below p. belong to the universality class of lattice
animals. In 1980 Parisi and Sourlas showed that the d-dimensional lattice animal problem corresponds to a
(d — 2)-dimensional different problem, solvable in one and two dimensions: that is why exact results are known
for d =3 and d = 4.
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We have stressed in the previous section that the correlation length ¢ is the characteristic length
of the percolation phenomenon, expressing the average radius of those clusters which give the
greatest contribution to the percolation variables. So, at some density p, the value of £ fixes the
scale of the phenomenon: the (large) clusters of radius R, smaller than ¢ determine the percola-
tion variables. The correlation length thus divides all clusters in two distinct categories. At the
critical density p., £ becomes infinite. Therefore, in a sense, there are no longer fundamental
distinctions between two large clusters A and B at criticality, even if A is much bigger/smaller
in size than B. If we take out a medium size piece of a big lattice, the linear dimensions of the
lattice and of the piece are both much smaller than ¢ at p.. The original lattice and its part
will then be similar as far as their average properties are concerned. A nice example of this is
represented by Fig. 1.9: the average size of the largest cluster for all lattice sizes above 1002
scales clearly with the linear dimension L, which means that all lattices are basically equivalent
to each other. In this respect, the lattice 100? contains all the information that can be extracted
by 10002, 100002, etc. Going from a lattice size A to B we just need to rescale properly the
values of the variables in A to obtain the values we would measure in B. This feature is called
self-similarity at the critical point and, according to what we have said at the beginning of this
section, it naturally leads to the power law behaviour of the percolation variables.

Self-similarity is the basis of the renormalization group treatment of percolation. This ap-
proach was historically first applied to thermal phase transitions by K. G. Wilson [24] to jus-
tify the scaling assumptions and to calculate the critical exponents. We will briefly present
the extension to percolation, introduced by Reynolds et al. [25, 26]. It is based on the so-
called real space renormalization, by which one performs transformations on the position co-
ordinates in ordinary space. The first step consists in blocking the lattice, i.e. dividing the
sites of the lattice into groups or blocks, and then replacing each block by just one single site.
Fig. 1.10 shows an example of this oper-
ation on the 2-dimensional triangular lat-
°_° tice. We block the sites in triangles and re-
° place them by the red sites put in the center
e o o of each triangle. One of the requirements of
the blocking procedure is that one must get
[ ) [ ) the same lattice structure after any trans-
¢ formation. In our case we clearly see that
the new structure we have formed is again a
e o triangular lattice, and it contains one third
° of the sites there were at the beginning. In

order to complete the transformation, we
Figure 1.10: Real space renormalization on a tri- must decide which of the new sites are oc-

angular lattice (blue structure). The new sites, cupied and which are not. We need that
marked in red, replace the triangles which surround the renormalized lattice keeps some essen-

them. The new lattice, which is still triangular, has  tja] features of the old one, because the lat-
therefore one third of the sites of the original one. ter is the system we want to analyze. That
means that the status of each new site (oc-
cupied, free) must be related to the status
of the three sites it replaces. There is no unique way of doing that. If we take a group of



1.4. REAL SPACE RENORMALIZATION 23

three sites, we can get four possible configurations, since we may have zero, one, two or three
occupied sites (Fig. 1.11). What we want to keep is the essential physics of percolation of the
initial configuration. Since percolation involves the formation of an infinite connected network,
by which one gets across the whole lattice, a sensible choice could be to define a cell as occupied
if and only if it contains a set of sites such that the cell ‘percolates’.

(1-p)? 3p (1 —p)? 3p* (1 —p) p°

Figure 1.11: Possible states of a group of three sites. In black we mark the free sites, in red the
occupied ones. Apart from irrelevant permutations, there are only four different combinations.
Under each scheme we have written the corresponding probability.

As we can see in Fig. 1.11, the first and the second schemes are not percolating, and the relative
super-site will be set free, the last two are percolating and the relative super-site will be occupied.
Since the occurrence of the four triangular schemes of Fig. 1.11 is a different function of p in
each case, the density of the blocked configuration will be in general some p’ # p. In our example
it is easy to calculate p': it is just the probability for a triangular block of the unblocked lattice
to be either the third or the fourth triangle of Fig. 1.11. The probability for a triangle to have
two occupied sites is 3p? (1 — p), to have three p?. Then

p=3p*(1—p)+p° (1.29)

At p = p. we expect our operation to be basically equivalent to a rescaling of the structures of
the original lattice and, because of self-similarity,

P =3p"(1—p)+p° =p=0p (1.30)

The equation p’ = p has three solutions: 0, 1/2, 1. Discarding the trivial 0 and 1, we find
pe = 1/2, which is indeed the exact value of the percolation threshold on a two dimensional
triangular lattice (see Table 1.1).

Moreover, by means of the renormalization group approach, we can evaluate the critical expo-
nents. If we start from a density p close to p., the correlation length ¢ of the initial configuration
is much bigger than the linear dimension b of the blocks (in our case b = v/3). That means that
the blocking introduces changes only at a scale which is by far smaller than . The correlation
length of the renormalized configuration ¢’ has thus the same functional dependence of &, i.e.

§'=clp —p™ (1.31)

with the same constant ¢ and exponent v of £. Moreover, since all the lengths of the initial
system are rescaled by a factor b, we have ¢ = £/b, which establishes the following relation
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between p, p’ and v

|—V

b|pl_pc = |p_pc‘_ya (1'32)

from which we derive

log (4
1 log[(p' = pe)/(p—pe)] _ ° (dp ),,C
log b log b

, (1.33)

R

where the last step is justified since we assume that both p and p’ are very close to p.. In our
case, knowing the function p’ from Eq. (1.30) and p. = 1/2, we get finally

y = loa(v3) _ 1.355, (1.34)

log(3/2)

which is a good approximation of the exact value 4/3.

We have then shown the power of the renormalization group approach. We must admit, however,
that we have chosen a particularly suitable example, and that the agreement between the values
derived in this way and the exact values is seldom as good as in our case. As we have said, in
fact, there is some freedom in the procedure that leads to the renormalized configurations: we
may choose several ways of blocking the lattice, and the rule to establish which of the sites of
the renormalized lattice are occupied and which are free is not fixed either. In general, each
of the possible ways we may adopt to renormalize the initial lattice leads to different results,
which could also be rather far from the exact ones. The original assumption that, around the
critical point, we can ‘rescale’ the lattice structures by simply replacing groups of sites by single
super-sites is indeed quite strong and not completely legitimate. It is easy to convince oneself
that, for instance, a cluster of the initial lattice could be broken into pieces in the renormalized
lattice or, vice versa, separate clusters can be fused together after the blocking transformation.
Since the crucial feature is the fact that the average properties of the initial configuration are
not changed, sometimes we can be lucky enough to choose a procedure that induces a sort
of compensation of these two effects: our case of the triangular lattice is an example of that.
However, generally speaking, renormalizing a configuration involves correlations between sites
at a block distance b from each other. After the transformations, in fact, the relative super-sites
can become neighbours and form structures. But, if we want to preserve the initial cluster
distribution after any transformation, we must forbid that new structures are formed or that
some of the old ones disappear. Reynolds et al. showed that using large cells one can reduce
very much this drawback and get quite precise results for several systems [26].

From what we have said it emerges that blocking the lattice does not only imply a new oc-
cupation density p’ for the sites of the renormalized configuration, but also some probability x
that neighbouring sites are connected to each other. This probability is introduced to eliminate
correlations among sites which are not neighbour in the initial configuration. If we start from a
pure site percolation problem, we will thus end up with a site-bond one. Repeating the transfor-
mation over and over, longer range correlations will be introduced, and, in order to cancel them,
the number of parameters which characterize the percolation system after any transformation
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will increase. But, around criticality, as long as the range of the correlation between sites can
be, it will be always negligible compared to the (basically) infinite correlation length and, fol-
lowing the same reasoning of our example, we deduce that the exponent v is the same for all the
percolation systems mapped onto each other by renormalization transformations. Analogously,
if we consider other percolation variables, instead of the correlation length &, it is easy to show
that each critical exponent is not changed by blocking transformations. At some stage, one
finds that the set of parameters does not vary after performing blocking transformations. In an
ideal parameter space where all percolation systems can be represented by points according to
the values of p, z, etc., the final set of parameters represents the so-called fized point of the
renormalization transformation. If one starts from some percolation system at criticality in d
space dimensions, successive blockings will lead to the same fixed point. From what we have
said, a consequence of that is the fact that the critical exponents are the same for all percolation
systems in d dimensions, which explains the universality for the percolation phenomenon. In
so far, we can say that the local differences between the various percolation systems can be
smoothed out by means of renormalization transformations without changing the main features
(e.g. the exponents) of the phenomenon. These features remain unchanged all the way up to
the fixed point and are, because of that, equal for all possible systems.

1.5 Finite Size Scaling

As we said at the beginning, the percolation problem is relatively old. The simplicity of its
formulation and the useful symmetries of several lattices have allowed to derive a number of
results by means of rigorous analytic proofs: the demonstration that the critical density for
bond percolation on a square lattice is 1/2 is probably the most spectacular achievement [27].
Indeed, percolation as a critical phenomenon makes sense only on an infinite lattice, and such an
ideal system can be properly handled by probability theory, which is at the basis of the proofs
we mentioned. Many features of apparently simple systems are, however, still out of reach. For
instance, nobody could so far find an analytical expression for the value of the critical density
(pe = 0.592746) for the site percolation problem on a square lattice.

The study of percolation systems received new impulse since fast computers became available.
Monte Carlo simulations are, in fact, a powerful tool to analyze complex systems. The data we
have shown in our plots so far have been derived by means of this numerical approach. Computer
simulations are experiments: they reproduce the system one wants to study by creating a big
number of possible copies of it, and obtain the results by averaging the values corresponding
to the different configurations. In this way, one can investigate any system with a degree of
accuracy which depends mainly on the computer time one invests in the project. The results
can then be made, in principle, arbitrarily precise.

By simulating a system, however, we are forced to use finite lattices. The infinite lattice, which
is the ideal system we would like to investigate, remains an unreachable limit for a computer, as
big as it can be. The rapid evolution of fast machines in the last years has allowed to push the
size of the lattices that can be realistically studied up to values which were unthinkable only ten
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years before. Any progress in this direction is always welcome, but the fundamental problem
of computer simulations is always the same: how can we extrapolate the infinite volume results
out of values relative to finite lattices? One could assume that a huge lattice is already ‘infinite’
in the sense that the difference between the critical indices (threshold, exponents) that one can
derive from it and the exact ones is smaller than the degree of accuracy we want to reach. For
some random percolation systems this turns out to be a good assumption. But in most cases,
especially when one wishes to perform percolation studies on interacting systems, it does not
work. Because of the dynamics, in fact, the simulations are by far more time consuming than for
ordinary random percolation, and the largest lattices one can use for the latter are out of reach.
As a matter of fact, there is a way to extract the required infinite volume information out of
values calculated on finite lattices: instead of using a single lattice size, one has to take several
ones, and exploit the scaling behaviour of the percolation systems. This procedure is called finite
size scaling and is usually applied to all systems which undergo second order phase transitions.
In this section we shall describe finite size scaling, focusing in particular on the techniques we
adopted to extract the final results for the systems we have investigated all through this work.

If we take a look at the plots we have presented in this chapter, we can already see a number of
characteristic finite size effects, i.e. features due to the finite size of the system. In Fig. 1.6a, for
example the divergence of the average cluster size S becomes a finite peak, which gets sharper
and higher for bigger systems; the corresponding percolation strength curves (Fig. 1.7a) show
a little tail to the left of the critical point, whereas on an infinite lattice P = 0 for p < p..
The main reason of these perturbations is obviously the finite number of sites of the lattice,
which introduces a cut-off for the upper size of the clusters. Another problem is the fact that
the configuration looks different at the boundaries of the system than far from them. We can
see it in Fig. 1.2c: the edges of the lattice cut the clusters close to them. This factor can be
considerably reduced by using periodic boundary conditions, i.e., by connecting opposite sides
(surfaces) of the lattice to each other in some way, so that each site is always surrounded by
other sites. Such a trick is regularly adopted in simulating systems on the lattice but in all our
cluster analyses we will dispense with it (free boundaries).

We have seen that the scaling laws are effective already for rather small lattices. In the previous
section we pointed out that self similarity at the critical point is responsible of that. From
renormalization group theory it is possible to find out what the scaling laws look like on finite
lattices. In general, if a variable O is supposed to scale as [p — p.| ”, on a finite lattice of linear
dimension L at a density p close to p., one observes the following behaviour:

Ol —pei 1) = 17" Qo () 1", gi1¥ (1.35)

C

where v is the critical exponent we have already met and QQp is a function related to the
variable O whose form does not depend on the dimension L of the lattice. Besides, one could
have an eventual dependence on other parameters, which we indicate by g;: y; are the exponents
correspondent to these other parameters. The further dependence of O on g; is the main source
of the so-called corrections to scaling, since it modifies the otherwise simple scaling assumption
expressed by Eq. (1.35). Such perturbations are sometimes relevant and one should take them
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into account. However, for all the systems we have investigated in this work, we will disregard
them f. We shall thus always make use of the simple scaling assumption

O(p —pe, L) = LI Qo[(%) Ll/“]. (1.36)

Eq. (1.36) shows that the infinite volume information we look for (p. and the exponent p) is
‘hidden’ in the finite size results: we have only to extract it in some clever way. At the critical
density p., Eq. (1.36) becomes

O(L),. = /" Qol0]. (1.37)

We notice that there is no L-dependence in the values of the function Q». By plotting O as
a function of L at p., we can then obtain the exponents’ ratio p/v directly from the slope of
the data points in a log-log plot. If we have an idea of where the critical point could be, e.g.
from the positions of the peaks of the average cluster size curves, we can evaluate O at different
values of p for several lattices and check for which value of the density we get the best x? for
the simple linear fit in the log-log plot. In this way we would be able to evaluate p. as well. The
errors on p. and on the exponents are calculated by determining the p-range containing p, such
that for each value of p one still gets a good x? for the scaling fit!.

As a matter of fact, there is also another method to determine quite precisely the critical point
of the percolation transition. Because of the finite size of the lattices we may find spanning
clusters at any value of the density p of occupied sites, in particular also for p < p.. For the
same reason there may be lattice configurations at densities above the critical threshold for which
percolation does not occur. The probability of finding a spanning cluster on a finite lattice of
linear dimension L at a density p is a well defined function I1, which we call percolation cumulant
[28]: for p~p. and big values of L, it has the following behaviour

= @[(%) Ll/”}. (1.38)

We recognize the typical functional dependence of an observable O given by Eq. (1.36) with
p = 0. The function II is not a real variable for percolation because it has a non-trivial meaning
only on finite lattices. On an infinite lattice it reduces itself to a step function: it is zero for
p < pc and one p > p.. Nevertheless the special features of II make it a powerful tool to extract
information about critical properties of the percolation phenomenon. In particular, for p = p.,
II = ®(0) for any value of L. That means that if we calculate the percolation cumulant as
a function of p for different lattice sizes, all curves will cross in correspondence of the critical
density p. (Fig. 1.12a). Besides, if we replot the different curves as a function of X = (’%)Ll/”,
the result must be just the function ®(X) for each lattice size and all curves will fall on top of
each other (Fig. 1.12b). This represents a good technique to determine the critical point and
we will adopt this method all through our calculations. Once we have determined the position
of the critical threshold p. with its error o, we examine the range [p. — o, p. + o]: by exploiting

iThis point will be discussed more extensively in the summary.
YA common criterion is that the value of the x> must be within the 95 % confidence level.



28 CHAPTER 1. INTRODUCTION TO PERCOLATION THEORY
0.8 : 08 ‘
,,,,,,,,,,, 3007 . 3002
. 07 = 3882 8 07 . . 2002
£ 2 ’ £ o 6002
£ 06 ° 1000 1 T 06 5
< x® > o 1000 -
g 05 « . | Eos
T x - 3
5 %4 ' 1 504
k5] H |l =
g o3 g 03
o o 8
s 027 ) 1 9 02 .
o1t - i = E 0.1 v *

0
0.586 0.588

0.59

0.592

0.594 0.596 0.598

0
-0.6

I_1/\)

Density of occupied sites p (P-pc)pe

(a) (b)

Figure 1.12: (a) Percolation cumulant as a function of the density p for pure site percolation
on a square lattice. The curves cross remarkably well at the same point, in excellent agreement
with the infinite volume threshold, whose value is marked by the dotted line. (b) The data
points in (a) are plotted as a function of (”;fc)Ll/”. Both p. and v for this problem are well
known from the literature: p. = 0.592746 and v = 4/3. All data points fall on the same curve,
which is the scaling curve ®(X) of equation (1.38) for our system.

the scaling of the percolation variables one can see how the exponents’s ratios p/v of Eq. (1.37)
vary with p within the range. In this way one determines the errors on p/v.

To get the scaling function ®(X), one needs also to know the value of the exponent v: if we don’t
know this value we can evaluate it by making some guesses until we find the best scaling for
the percolation cumulant curves. This method can indeed help to restrict the range of possible
values of v; unfortunately ® varies quite slowly with v and the errors on its value can be rather
big (~5% in some of our investigations).

An alternative way of evaluating the exponent v consists in determining, for a given lattice of
dimension L, the so-called pseudocritical point. Looking at Fig. 1.6a we notice that the peaks
are not centered at the same value of p. In fact, because of the finite size, each lattice ‘feels’
itself at criticality when the correlation length & reaches the dimension of the lattice. Since,
around the critical point, { varies with p according to Eq. (1.25), the condition £ &~ L is reached
for the density p (L) for which

(L) = pe| oc L7 (1.39)
The value of p is called pseudocritical point: we stress that it depends on the linear dimension
L of the lattice. Plotting in logarithmic scale the values of the ‘distances’ from the critical point
|p(L) — p¢| as a function of L, we should then get a straight line, whose slope gives 1/v. If we
have a precise value for the critical density p., Eq. (1.39) allows us then to derive the exponent
v. Anyway, if our determination of the critical point is not accurate enough but we have data
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in correspondence of several lattice sizes, we could obtain p. by considering it a parameter of
the fit like 1/v and the proportionality constant of the power law of Eq. (1.39). This method
leads to more precise estimates of v than the ones got by means of the scaling of the percolation
cumulant; because of that, in our studies we shall determine the percolation exponent v from
the scaling of the pseudocritical points.
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Chapter 2

Percolation and Critical Behaviour in the Ising
Model

2.1 Critical Behaviour

In this section we shall introduce the formal definition of phase transition and point out the
main aspects related to it.

In general, if we have a system at a temperature 7', from its Hamiltonian H one defines the
partition function Z(T) as follows

Z(T) =) M p= (2.1)
(n}

where Z{n} runs over all possible states of the system. From Z(T') one can derive all the ther-
modynamic potentials of the system, which give us the whole thermal information. In particular,
one defines the free energy F(T)

F(T) = —% log Z(T). (2.2)

By means of the free energy one usually classifies phase transitions in two main categories:

e first order phase transitions, if the first derivative of the free energy F as a function of T
is discontinuous;

e continuous phase transitions, if the n'® derivative of the free energy F as a function of T
is discontinuous, all the previous n-1 derivatives are continuous (n = 2, 3, etc.).
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For first order phase transitions, the discontinuity of the first derivative of the free energy implies
the discontinuity of the energy density e,

oOF
_E_F+TH
% %

(E and V are the energy and the volume of the system, respectively). Because of that, once we
reach the critical temperature T, by heating or cooling our system, we need to extract (or add)
some energy (latent heat) for the system to pass to the other phase, and during this process the
temperature does not vary. This is exactly what happens during the water-ice transition: the
latent heat L ~334.J¢~" is the energy released when H,O molecules neatly pack themselves into
a face-centered cubic lattice, rather than wandering around.

€

(2.3)

The most famous example of a continuous phase transition is the conversion of iron from para-
magnetic to ferromagnetic form at the Curie temperature T, = 1043°K. At T > T, iron is
paramagnetic, i.e., it is not magnetized in absence of an external magnetic field; for T' < T, the
material acquires a spontaneous magnetization m. The magnetization as a function of T' is con-
tinuous and the energy density changes as well smoothly. The phase change is thus continuous.

In this work we will deal with second order phase transitions, therefore we shall briefly introduce
here the main features of these special phenomena.

A common feature of phase transitions is the existence of a variable ®, called order parameter:
® is defined in each point ¥ of the volume occupied by the system and its average value allows
to identify the phase of the system. For the paramagnetic-ferromagnetic transition we have
mentioned, ® is just the magnetization m, which is zero in the paramagnetic phase and non-
zero in the ferromagnetic one. To express the relationship between two points of the system at
various distances, one defines the two-point correlation function:

G (r) = (9(0) - B(F)). (2.4)

The brackets indicate thermal averaging, i.e., over many configurations at some temperature
T. In the ordered phase, G(Q)(r) includes the contribution of the non-vanishing average of the
order parameter |[(®)[2. In order to determine the fluctuations of ® with respect to its average
value, one needs to subtract that contribution. Therefore one often uses the connected two-point
correlation function

G (r) = (9(0) - B(F)) — |(2)]*, (2.5)

Experimental evidence leads to the following form of the function G, (r) for T close to the
critical temperature T,:

G D (r) ~eT/E, (2.6)

The length £ is the correlation length of the system. It expresses the distance within which the
fluctuations of the order parameter are important. For second order phase transitions at T'~ T,

§m T =T 2.7)
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where v is a critical exponent. The correlation length is thus divergent at T, which means that
at the critical point large scale fluctuations of the order parameter occur. Because of that big
dynamical structures are generated, though the interactions within the system are short-ranged.

The divergence of ¢ at criticality is described by a simple power law. Actually it turns out that
the behaviour of all variables around the critical point is described by simple power laws and
corresponding critical exponents (Table 2.1).

al|cgoca (| T-T.|/T.)"-1), T—T., H=0
3 moc (T, —T)" T—T,, H=0
y Xx|T =T, ", T—T, H=

§ m o H'YO T=T, H-—=0
n G (r) o r2-d-n T=T, H=0
v £ |T - T, T ST, H=0

Table 2.1: Behaviour at criticality of the main variables that characterize a system which un-
dergoes a second order phase transition. We indicate by cy the specific heat, by m the order
parameter, by x the susceptibility. The presence of another degree of freedom besides the tem-
perature T, like a (small) external field (labeled by H), leads to other interesting power laws
when H — 0. In the first column we have listed the relative critical exponents. The d present

(2)

in the expression of G¢”(r) is the space dimension of the system.

Some laws are valid both to the right and to the left of the critical point; the values of the
relative proportionality constants, or amplitudes, are in general different for the two branches of
the function, whereas the exponent is the same. From Table 2.1 we see that there are altogether
six exponents. Nevertheless they are not independent of each other, but related by some simple
scaling laws

a+28+v=2, a+p6+1)=2, 2L-nr=v rvd=2-aq, (2.8)

so that there are only two independent exponents. One of the most interesting aspects of second
order phase transitions is the so-called universality, i.e., the fact that systems which can be very
different from each other share the same set of critical indices (exponents and some amplitudes’
ratios). One can thus subdivide all systems into classes, each of them being identified by a set
of critical indices.

The divergence of the correlation length at 7. implies self-similarity at the critical point and
opens the way to analogous arguments as those we have presented in Section 1.4. Real space
renormalization [29] gives an account of the scaling behaviour and the universality of the critical
indices; moreover, starting from a general ansatz for the free energy, it allows to derive the
scaling relations (2.8) and the values of the exponents.
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2.2 Percolation vs Second Order Thermal Phase Transitions

The onset of percolation marks a borderline between two different geometrical phases of the
system: on one side we never have a spanning cluster, on the other we always have one. When
we introduced the percolation problem, we stressed the fact that each site of the lattice is
occupied with a probability p independently of the other sites. There is no communication
between different sites, which is in contrast to what one has in real systems, whose costituents
normally interact with each other.

Nevertheless, the geometrical transition of a percolation system has many features in common
with the thermal phase transitions we have dealt with in the previous section. We summarize
here the most important ones:

e In the neighbourhood of the critical point, both the percolation and the thermal variables
vary according to power laws:

P oo (p—pc)° m o (T.—T)°
forp > p. forT < T,
S x |p—p7 X o |[T.—T|"

e Simple scaling relations are valid, some of which, like the hyperscaling relation

(2.9)

d="242"
14 14

( d= number of space dimensions), are identical for both kinds of systems;

e Universality of the critical indices.

Indeed, for several ‘physical’ systems, it is possible to single out some cluster-like structures:
the magnetic domains of a piece of iron are a clear example. The interplay of such structures
in correspondence of different states of the system can be quite interesting. In the case of the
magnetic domains of iron, for instance, one observes that they grow by lowering the temperature
of the sample until they fuse into macroscopic structures below the Curie point. One could ask
oneself whether the critical behaviour of a system could be described in terms of the properties
of some ‘physical clusters’. The growth of correlations approaching the critical point would be
represented by the growth of the size of the clusters. Moreover, the spontaneous order appear-
ing below the critical temperature 7T, could be related to the formation of an infinite cluster,
which would map the thermal transition into a geometrical percolation transition. Cluster-like
pictures of phase transitions have been discussed since about 1940. Their first applications con-
cerned the liquid-gas transition: the droplet model proposed by Fisher was already able to make
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quantitative predictions and the size distribution of its ‘droplets’ is very close to the cluster size
distribution in percolation theory [30].

In general, one establishes the following correspondence between the thermal properties of the
model and the geometrical features of the ‘physical’ droplets:

they diverge at the thermal critical point;

the connectedness length diverges as the thermal correlation length (same exponent);

the percolation strength P near the threshold varies like the order parameter m of the
model (same exponent);

the average cluster size S diverges as the physical susceptibility x (same exponent).

By turning a thermal system into a percolation one, we introduce a new feature with respect to
the simple geometrical problem we introduced in the previous chapter: the sites of the lattice are
no longer independent of each other, because of the interaction. This may lead to different cluster
distributions compared to the ones of random percolationf. The distribution of the ‘physical’
clusters depends on the temperature of the system and on its dynamics. If the percolation
transition takes place at a temperature T, # T;, the thermal correlation length of the system,
&t is finite at T,. That means that two sites of the lattice separated by a distance r > &, (7))
will be uncorrelated; the large clusters which are responsible of the singularities of the percolation
variables are then basically formed by randomly distributed (occupied) sites, and for this reason
they will carry the exponents of random percolation. We can easily convince ourselves by simple
space renormalization arguments. At T), {, is finite but the percolation correlation length, ,, is
infinite. By applying successive blocking transformations, at some stage we will have reduced &,
to very small values, i.e., the sites of the renormalized configuration will be all uncorrelated. But
¢p remains infinite and, for percolation purposes, the renormalized system is characterized by
the same exponents of the original one, as we have explained in Section 1.4. Since the sites of the
final configuration are uncorrelated, the percolation exponents must be the random percolation
ones. Numerical analyses performed on several systems have confirmed that without exception.

On the other hand, if T, = 7T, each site has a non vanishing correlation on any other, and
the properties of all clusters of the system, including the largest ones, will be influenced by
this correlation. Therefore, the exponents describing the percolation variables need not be the
ones of random percolation, and may be related to the exponents describing the singularities of
thermal variables at criticality: in particular, their values could coincide.

The early attempts to explore quantitatively this possibility date back to the 70’s, and the first
system to be investigated was the Ising model.

*In this case one usually speaks of correlated percolation.
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2.3 The Ising Model

The Ising model is by far the simplest of all spin systems. Suppose we have a regular lattice in d
space dimensions and place two-valued spins at each lattice site. The Ising model is characterized
by the following Hamiltonian:

H=—J> sis;—HY s (2.10)
2] i

where J(> 0) is the coupling of the interaction between nearest neighbouring spins s; and s; and
H an external field. The values of the spins are conventionally taken to be +1 (up) and -1 (down).
For H = 0 and space dimension d>2, a

macroscopic system ruled by (2.10) undergoes .
a second order phase transition, going from
a high temperature phase without spin align-
ment to a low temperature phase with spin 1
alignment. In particular, at T' = 0, all spins
point to the same direction, either up or down.
In this way the state of the system at low
temperatures breaks the global symmetry un-
der spin inversion enjoyed by the Hamiltonian
(spontaneous symmetry breaking). The order
parameter of the Ising model is the lattice av- 0 Te T
erage of the spin variable s, or specific magne-
Lization m: Figure 2.1: Behaviour of the specific magneti-
] zation of the Ising model as a function of the
m = v Z s, (2.11) temper‘atu‘re T. Below the crltlcal‘temperature
i T., m is different from zero, that is the system
. . . ‘chooses’ one of the two equivalent directions for
being V the lattice volume (number of sites of the spins.

the lattice). Fig. 2.1 shows the behaviour of
m as a function of the temperature T

The Ising model without external field was ex-

actly solved in two dimensions by Onsager [31]. The behaviour of the thermodynamic potentials
close to the critical temperature is thus known analytically and the values of the critical expo-
nents are exactly determined. In three dimensions no rigorous solution has been found so far,
and all of what is known about it comes from numerical analyses, like high- and low-temperature
expansions and Monte Carlo simulations. However, the simplicity of the system is such that
most aspects can be investigated with remarkable precision. In Table 2.2 we put the values of
the critical exponents of the Ising model in two and three space dimensions, because we will
often refer to them for comparisons all along this work.

If we take a configuration of the Ising model around T, it will look like in Fig. 2.2.
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o B v J n v
2D 0 1/8 7/4 15 1/4 1
3D 0.1118(30) 0.3265(4) 1.2353(25) 4.783(16) 0.0374(12) 0.6294(10)

Table 2.2: Critical exponents of the Ising model in two and three dimensions. For the latter
ones we report the recent numerical evaluations given in [23].

Figure 2.2: Ising model with no external field in two
dimensions. The figure shows a typical configuration
near the critical temperature T.. We have marked all
up spins with balls. It is visible the tendency of the
spins to clusterize, because of the interaction. If we
treat the spins up like pawns in a percolation game and
we form clusters according to the pure site percolation
scheme, there is a spanning network (red cluster in the

figure).

Because of the spin alignment at low
temperatures, the system will be finally
dominated by spins of one type (up or
down). If we think of these spins as
occupied sites in a percolation picture,
the clusters formed by the aligned spins
will increase their size the lower the
temperature is, and at a certain value
Ty, there will be an infinite network.
The easiest thing to think of is to con-
sider as clusters all structures formed by
nearest neighbouring spins of the same
sign, which is the pure site percolation
scheme we have very often discussed in
the previous chapter. If we adopt this
scheme, the configuration of Fig. 2.2
presents a spanning cluster, represented
by the red structure. The first percola-
tion studies on the Ising model indeed
focused on these clusters.

In the two-dimensional Ising model,
topological considerations imply that
the percolation transition of the pure
site clusters and the thermal critical
point must coincide [4]. It thus became
interesting to study the behaviour of the
percolation variables around criticality

to determine the critical exponents. As we have seen in Chapter 1, the percolation variables
near the critical point vary as power laws of the ‘reduced’ density of occupied sites p — p.. That
is valid for pure random percolation. If we analyze the clusters formed by interacting systems,
their features do not depend on the density alone, and the dynamics plays a major role. For
example, if we take the Ising model at temperatures above T, there will be as many spins up
as spins down. So, the density of occupied sites (considering either the up or the down spins)
remains constant above T,. But the features of the clusters change if we go from T' = T,, where
the correlations between spins are long-ranged, to T' — oo, where spins are uncorrelated. It
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turns out that, for ‘dynamical’ clusters, the percolation variables vary as simple power laws of
the reduced temperature T'— T, like the thermal ones. In the case of the two dimensional Ising
model, the average cluster size S of the pure site clusters was shown to diverge as

S o |T =T, =", (2.12)

where 7, = 1.91 [5]. The result, derived by means of series expansions, is not in agreement with
the thermal value for the susceptibility exponent found by Onsager (y = 7/4). Besides, in three
dimensions, the spins which are favoured by the onset of magnetization form an infinite network
at any temperature, whereas the unfavoured spins happen to percolate at temperatures higher
than T}, with T}, ~0.96 T;. [6].

So, if it is at all possible to describe the thermal phase transition of the Ising model as a
percolation transition, one must look for a different cluster definition than the pure site one.

2.4 The Random Cluster Model

At the beginning of the 70’s, contemporary to the research activities mentioned in the previous
section, Fortuin and Kasteleyn [7] introduced a correlated bond-percolation model (the Random
Cluster Model) indexed by a parameter ¢, and proved identities relating the partition function
and connectedness probabilities in this model to the partition function and correlation functions
of the g-state Potts model (¢ = 2,3, ...). The ¢-state Potts model has the following Hamiltonian:

Ho=Jp> (1-065,), (2.13)

ij

where Jp(> 0) is the coupling and the o’s represent the spin variable of the model, which can
take ¢ different values. For ¢ = 2 it is easy to see that the Hamiltonian (2.13) is equivalent to
the one of an Ising model, whose coupling J; = Jp/2. In this section, however, we will keep the
Potts notation because it simplifies the mathematical expressions.

To give a feeling of the work of Fortuin and Kasteleyn, we will show that their Random Cluster
Model and the g-state Potts model are equivalent to each other. In particular, we will see
that the partition function of the g-state Potts model can be rewritten in purely geometrical
terms, as sum over cluster configurations. The clusters are built in the following way: taking
two nearest neighbouring spins 0; and oy, if 0; # 0 they are always disjoint; if 0; = o0}, they
are joined together with a temperature dependent probability p;; = 1 — exp(—.Jp/kT). So, the
Fortuin-Kasteleyn clusters are site-bond clusters: once we have a spin configuration, we need to
distribute bonds with the probability p;; among nearest neighbouring spins of the same value
to build the clusters. A cluster configuration will be therefore completely determined by a spin
configuration {o} and a bond configuration {n} superimposed to the former. For the bond
variables n;;, we assign n;; = 0 (open bond) and n;; = 1 (closed bond).
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We won’t follow the original Fortuin-Kasteleyn derivation, because it is too technical, but a
simplified version proposed by Sokal and Edwards [32]. Given a lattice with Potts spins o; =
1,...,q on the sites and bond variables n;; on the edges (links), we define the joint probability
of a certain cluster configuration (spins + bonds) as

P(Ua n) = Z_l H [(1 _pij)dnij,ﬂ +pij60'ia']‘ 6ni]‘,1]7 (214)
<ij>
with
Z=> "3 I =piy)oni;0 + Pijdoio; 0ni.1]- (2.15)
o n <ij>

This is the so-called FKSW model (Fortuin-Kasteleyn-Swendsen-Wang), which has, a priori,
nothing to do with the dynamics of a spin model. If we sum over all bond configurations we get

P(o) = Y P(o.n)

1
= z! H Z [(1 _pij)énij,[] +pij50iﬂj6nij,1]

<i,j> mi;=0
= Z7' [T 10 = pij) + pijdois;]

<t,5>
_ a1 _Jr
= Z exp[ T Z(l 501-0]‘)}

<17>
, H(o)

_ 1 _
-z exp[ - } (2.16)

where H (o) is the Hamiltonian (2.13). Now we have got rid of the bonds. P(o) is the prob-
ability associated to the spin configuration {o} in the FKSW model. If we sum over all spin
configurations, we obviously obtain

Y Plo) =1 (2.17)

From Egs. (2.16) and (2.17) one gets
H(o
Z = Zexp [— k(T

We have then found that the partition function of the FKSW model coincides with the one of
the Potts model (see Eq. (2.13)). The expression of the probability P(o) we have derived in Eq.
(2.16) is just the Boltzmann probability to have the spin configuration {¢} in a system ruled
by the Potts dynamics. We conclude that, after integrating out the bond configurations, the
FKSW model is equivalent to the Potts model.

)}. (2.18)

Next, we want to see what happens if we reduce the FKSW model to a bond model, by elimi-
nating the spin degrees of freedom. For that, we start again from Eq. (2.14) and sum over all
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spin configurations. We obtain

P(n) = Y P(o,n)
= ZilZ[ H pz’jdam]‘ H (1_pi]')}' (2.19)

o <ij>,ni]‘:1 <ij>,nij:U

In the last expression all the terms in the sum with a closed bond between two spins in distinct
states will vanish (they are not allowed by definition), so if we denote by ¢™ a spin configuration
compatible with the restriction for two spins to be parallel if connected by a closed bond, we get

Py =230 I e II G-wy) (2.20)

on  <ig>nii=1 <ij>,nij=0

The terms in the sum are now independent of the spin configuration. Given the bond configu-
ration, the sum just counts the number of compatible spin configurations. Defining as a cluster
each set of bond-connected spins, we get

Pmy=z" I w»s [I -pia™, (2.21)

<ig>mij=1 <ig>,m;j=0

where ¢(n) is the number of clusters of the given bond configuration n. Again, we have the
normalization

> P(n) =1, (2.22)

so that

Z:Z[ I ri II =pia ™| (2.23)

no <ij>ng=1 <ig>,m;;=0

The (2.23) is just the partition function of the Random Cluster model introduced by Fortuin
and Kasteleyn, which is then equivalent to the FKSW model when the spins are integrated out.

Summarizing the results we have derived so far, we can say that the Potts and the Fortuin-
Kasteleyn models are nothing but the FKSW model when one eliminates the bonds or the spins,
respectively. Consequently, the Potts model is equivalent to the one of Fortuin and Kasteleyn.

The site-bond clusters we have used look like artificial structures, because the bond probability
breaks existing geometrical connections between the spins. Nevertheless, on the grounds of the
result we have just presented, it seems that such ”artificial structures” have a close relationship
to the dynamics of the Potts model. A confirmation of such relationship is represented by the
fact that the Fortuin-Kasteleyn clusters can be used to implement a non-local Monte Carlo
update of the Potts model. This algorithm was proposed by Swendsen and Wang [33] and it
reduces considerably the problem of critical slowing down, which makes the simulations around
the critical point very lengthy with traditional local methods. We conclude the section describing
this algorithm.
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As we have already said, in order to identify the clusters, we have a superposition of a spin
configuration {o} and a bond configuration {n}. But if we take a spin configuration {o}, it
will not be compatible with each bond configuration {n}. So, the probability to have {o} and
{n} is not simply given by the product of the probability of having {o} by the probability of
having {n} independently, but it is a more involved expression which requires the introduction
of the concept of joint probability. If we have two events A and B, one defines joint probability
P(A|B) as the probability of the event A given the event B. According to this definition one
gets, trivially

P(o,n) = P(o|n) P(n) = P(n|o) P(o) (2.24)

Now we can calculate the conditional probabilities to get from a bond configuration to a spin
configuration and vice versa:
P(o.n)

P(o)

— Pij)On;;,0 Pij00;0,0n;;,1
H [(1 )0ni;,0 + Pijdo;o;0n; 1]
<1,7>

P(nlo) =

xp[—H (o) [T
[1 [(1— pij)5nij ,0 +pij5m‘j,1] [1 [(1— pij)(snij,[]]

<’i,j>,0i:0]‘ <’i,j>,0i750]‘
- J
exp[— Zij k_g‘(l - 50i0j)]
[I [(1— pij)énij 0 +pij6nij;1] [I 6nij,0 [I exp[—g—;]

B <4,J>,0,=0; <i,j>,ai;£aj <i,j>,0’i;é0'j
= Tn
I1 exp[— 7]
<i,j>,0’i¢0’j
= H [(1 _pij)énij,o +pij5m‘j,1] H 5le‘j,0 (2.25)
<4,J>,0,=0; <i,j>,ai;£aj

is the probability to obtain the bond configuration {n} given the spin configuration {o}. In
the case 0; # o, only open bonds are allowed; in the case o; = 0; a closed bond is put with a
probability p;; and an open bond with probability 1 — p;;.
P(o,n)

P(n)

[T [(1- pij)dnij 0 +pij60i0j 5ni]‘,1]

<1,j>

pij  II (1=pi)g™

<ij>,nij:1 <ij>,nij:(]

H pijfsaiaj H (1 _pij)

P(oln) =

—c(n) <’i,j>,n1‘j:1 <’i,j>,nij:0
= q
pij I (1 =pij)
<ig>mij=1 <ig>,m;;=0
= ¢ H Sier (2.26)

<ij>,ni]‘:1

is the probability to obtain the spin configuration {o} given the bond configuration {n}. In
order to have compatibility, the spin configuration {o} must be one of the configurations which



42 CHAPTER 2. PERCOLATION AND CRITICAL BEHAVIOUR IN THE ISING MODEL

can be obtained by flipping the spins of the ¢(n) clusters formed by the bond {n}, under the
condition that the flipped spins within a cluster take the same value q.

sesassssansl silyasecysd
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Figure 2.3: Scheme of the Swendsen-Wang cluster update for the 2D Ising model. The two
possible spin values are labeled by the two colors, blue and red, of the sites. One starts from
some spin configuration (top left); bonds between nearest neighbouring spins of the same color
are distributed with probability p;; (green links in the top right diagram); the color of all sites
which are bond-connected to each other (including isolated sites) is set to blue or red with equal
probability, provided the color remains uniform within each cluster (lower left); taking the bonds
away one obtains a new spin configuration (lower right).

The Swendsen-Wang cluster update is based exactly on this procedure (see Fig. 2.3). We can
divide it in two steps:

e Take a spin configuration and distribute bonds between nearest neighbouring spins of the
same value with the probability p;; = 1 — exp(—Jp/kT);

e Set the values of all spins belonging to each cluster of bond-connected sites to one of the
possible ¢ values with equal probability.

Tt is clear that the algorithm respects the accessibility criterium, i.e. any spin configuration can
be produced provided we update the system a sufficiently large number of times. The probability
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P, of getting from the spin configuration {o} to {¢'} is given by:
P,y = Z P(o|n) P(nlo") (2.27)
n

It is easy to show that P, , satisfies the detailed balance condition, so that the algorithm indeed
produces a Markov chain which leads the system to the canonical equilibrium distribution of
the Potts model.

2.5 Percolation of Fortuin-Kasteleyn clusters

As we have seen, the pure site-clusters of the Ising model do not allow to map the thermal
transition into a geometrical percolation transition. The known properties of the Ising site-
clusters suggest that they are too big to describe the critical behaviour of the Ising model. The
reason is that there are two contributions to the Ising clusters: one is due to the correlations,
and the other is due to purely geometric effects. The latter becomes evident in the limit of
infinite temperature. In this case there are no correlations but the cluster size is different from
zero. In fact, since the density of occupied sites is 1/2, they tend to form clusters just because
they happen to be close to each other; in the 3-dimensional Ising model there is even a spanning
pure-site network at T' — oo, because the critical density of 3D random percolation is 0.3116,
well below 1/2.

It is thus necessary to reduce the size of the clusters in some way. We notice that the Fortuin-
Kasteleyn clusters are indeed smaller than the pure-site ones. In particular, the bond probability
pij = 1 —exp(—Jp/kT) varies strongly with the temperature 7', going from the value 1 at 7' =0
to the value 0 at T" — oo, which expresses the absence of correlation between the sites that are,
therefore, all disjoint. Moreover, from the previous section, it turns out that these clusters have
a close relationship with the dynamics of the g-state Potts model (Ising model for ¢ = 2). For
all that they might be good candidates for the droplets we are looking for.

A. Coniglio and W. Klein [8] showed that the Fortuin-Kasteleyn clusters really have the required
properties of the physical droplets, i. e. they percolate at the thermal critical point and the geo-
metrical critical exponents coincide with the thermal ones. This result, obtained independently
of the Fortuin-Kasteleyn work, is analytical and is valid for any space dimension d > 2 and any
lattice geometry, as long as it is homogeneous (Fig. 2.4). In the Ising notation, the bond weight
of Fortuin and Kasteleyn is

2J

pij =1— exp(—ﬁ) (2.28)

(see Section 2.4).

For the 2-dimensional Ising model, the result of Coniglio and Klein leads to an apparent paradox.
In fact we have seen that the pure site clusters percolate at the thermal threshold. On the other
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Figure 2.4: (a) Percolation cumulant as a function of § = J/kT for Fortuin-Kasteleyn clusters
of the 3-dimensional Ising model. The curves, corresponding to three different lattice sizes,
cross remarkably well at the thermal critical point, represented by the dashed line in the plot.
(b) Rescaled percolation cumulants taking as a variable on the X-axis the expression ¢L'/”
(t = (T —1T.)/T., L is the lattice side), where v is set to the 3D Ising model value vz, = 0.6294
(see Table 2.2). The curves fall on top of each other, so that vper. = vrs.

hand, the Fortuin-Kasteleyn clusters, which are smaller than the pure site ones, form as well
an infinite network at the Ising critical point. From this fact, which is indeed unexpected
but legitimate, it follows that site-bond clusters built using a bond probability p such that
pij < p < 1 will also give rise to a spanning cluster at the thermal critical point, as their size
is intermediate between the size of the pure site clusters and the one of the Fortuin-Kasteleyn
clusters. However, the geometrical critical exponents relative to the percolation transition of
these intermediate clusters are different from the thermal ones, with which they coincide only if
p = pi;. This fact shows the key role played by the bond weight p;;.

2.6 The Kert ész Line

So far we have been dealing with the Ising model in absence of an external magnetic field. The
reason of that is clear: the Ising model shows critical behaviour in the usual sense only if H = 0.
That means that introducing an external field H, none of the thermodynamic potentials will
exhibit discontinuities of any kind, because the partition function is analytical. This result,
already proved by Yang and Lee [34], inserts itself in a quite old debate concerning phase
transitions. It has been known for a long time that phases separated by a line of first order phase
transitions can be connected without thermodynamic singularities when using paths around the
critical endpoint. This was discovered experimentally by Andrews (1869) and explained by the
Van der Waals theory of liquid and gaseous states (1873). Because of that, it was suggested
that, along the ‘continuous’ paths, something interesting may happen, in spite of the absence of
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standard thermodynamic singularities. This is indeed true, and is strictly related to the droplet
description of phase transitions that we have discussed in this chapter.

The Fortuin-Kasteleyn clusters are perfectly defined also in the presence of a magnetic field.
Because of the field, the system has a non vanishing magnetization m parallel to the direction
of the field for any value of the temperature T'. However, for T — oo, m— 0. For T =0, m =1
again. This suggests that also in this case, for a fixed value of the field H, the clusters will form
an infinite network at some temperature T,,(H). Varying the intensity of the field one gets a
curve Tp,(H), which is called Kertész line [35]. We have plotted it schematically in Fig. 2.5.

Tb

Hl' Percolation No
Phase Percolation

T, O
Figure 2.5: Kertész line. For H = 0, T}, is equal to the Ising critical point; for H — oc, T}, tends
to the endpoint T}, solution of Eq. (2.29).

When the field H = 0, we obviously get the thermal threshold of the Ising model. When H — oo,
at any temperature T' the lattice spins will be all aligned with the field. The bonds will be then
distributed among all pairs of nearest neighbouring spins, and the site-bond problem turns in
a pure bond percolation problem. The geometric transition will then take place for that value
of the temperature T}, for which the probability p;; equals the critical density pp(d) of random
bond percolation in d dimensions:

pij = pB(d)
2.
1_ R —
exp( ka) pB(d)
2.J
logll — pp(d)] = ——=
gl — pp(d)] o
9
T, = J (2.29)

"k log[l — pp(d)]

So, we have a whole curve whose points are percolation points, with the usual singular behaviour
of cluster-related quantities, though the corresponding thermal variables are continuous.
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One can ask oneself how ‘physical’ the Kertész line is. We have already seen that some definitions
of clusters may lead to behaviours which have nothing to do with the critical behaviour of the
system: one example is represented by the pure site-clusters of the Ising model. In the same
way, we could conclude that the Fortuin-Kasteleyn clusters are not the ‘physical droplets’ of the
system if we switch on a magnetic field, and that we have to look for an appropriate definition.
Swendsen and Wang [36] proposed to introduce a ghost spin oriented parallel to the magnetic
field. This ghost spin is connected to each spin (oriented like the field) with a probability
pr = l—exp(—2H/ET), formally similar to the Fortuin-Kasteleyn bond weight. Since, for H #0,
such probability is non-zero, no matter how small, spins arbitrarily far from each other will be
connected together through the ghost spin, giving rise to a loose infinite network. Therefore,
as long as H #0, at any temperature there will be percolation in this general sense, with the
sites being not directly but indirectly connected. That seems to provide the desired mapping to
the thermal counterpart, in which there is always a non-zero magnetization and no divergences.
An indirect confirmation of that is given by the fact that, by means of this general definition of
clusters, it is possible to implement a cluster update which leads to the canonical equilibrium
distribution of the Ising (Potts) model with an external field.

The success of the Swendsen-Wang definition of clusters does not imply that we can simply
forget the Kertész line or treat it like an artificial construction. In fact, it turns out to have
some remarkable properties. Fig. 2.6 shows some preliminary results of an investigation we are

0.01

0.0001 0.001 0.01
External Magnetic Field h

Reduced Percolation Temperature t

Figure 2.6: Kertész line for the 2D Ising model for small values of the external field h.

carrying on. The system is the 2D Ising model, and we calculated few points of the Kertész line
for very small values of the external field h = H/J (see Eq. (2.10)). The variable on the y-axis
is the reduced percolation temperature tx = (Tx — T;)/T., where T, is as usual the critical
temperature of the Ising model without field. In the logarithmic scale of the plot the data points
fall remarkably well on a straight line. We thus conclude that, for the Kertész line,

tg o< b,  for h—0. (2.30)
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From the slope of the straight line in the plot we obtain x = 0.534(3). This result might have
an interesting connection with some thermal properties of the Ising model with external field.
In fact, even if the susceptibility x is not divergent at any T when H # 0, it has anyhow a
well defined peak. From the renormalization group ansatz for the free energy of thermal systems
undergoing second order phase transitions, it is possible to determine in general how the position
of the susceptibility peak ¢, is related to the magnetic field A, when A — 0. It turns out that

ty o< BB for b=, (2.31)

where [ and § are the critical exponents we have introduced in Section 2.1. For the 2D Ising
model 1/(36) = 0.533, which coincides with our estimate of the Kertész exponent . That could
mean that there is a relationship between the two curves. In particular, it would be interesting
to check whether they overlap, at least for small values of hf. Work in this direction is still in
progress.

If we take the cluster number distribution ns of the general Swendsen-Wang droplets, it behaves
differently on the two sides of the Kertész line [35]. On the low-temperature side

2H
log ngox — TS~ ?752/3, (2.32)

where 7 is a surface tension term; instead, on the high-temperature side, there is no surface
tension and one has

2
1 _ _ . 2.
08 15 0 — 778 const-s, (2.33)

Similar percolation-type singularities appear when one studies the behaviour of the Fortuin-
Kasteleyn droplets around the Kertész line. According to some numerical investigations [37],
there seems to be evidence that Taylor expansions of the free energy as a function of H or T have
a different convergence behaviour (i.e. radius) on the two sides of this line. That might be related
to the geometrical singularities we have just mentioned and could represent an argument for a
generalization of the definition of phase change, not exclusively based on standard singularities
of the thermodynamic potentials.

fFor h — oo, the position of the susceptibility peak f, — oo, whereas we have seen that the Kertész line
has an endpoint, given by Eq. (2.29). So, the two curves will certainly differ for sufficiently high values of h.
Nevertheless, one could introduce a dependence on the field h into the Coniglio-Klein factor. Simple expressions
like 1 — exp[—208(1 + h)], for example, would still lead to the same power law behaviour of Eq. (2.30) with the
same exponent x we have found, because for the small h-values of the points we have considered, the difference
from the Coniglio-Klein factor is negligible. On the other hand, the Kertész line obtained by using the new factor
tends to infinity for h — oo, which might allow a global comparison with the thermal curve of the susceptibility
peaks.
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CHAPTER 2.

PERCOLATION AND CRITICAL BEHAVIOUR IN THE ISING MODEL




Chapter 3

Percolation and Magnetization in Continuous
Spin Models

Starting from this chapter we shall present the results of our investigations. We will initially try
to extend the Coniglio-Klein result to models characterized by continuous spin variables, which
represents a first step towards the definition of a percolation picture for lattice field theory.

3.1 The Continuous Spin Ising Model

The easiest thing to start with is just to take the Ising model without external field, and replace
its two-valued spins by continuous variables. The Hamiltonian is again given by

H=-7) S (3.1)
ij

with the sum over nearest neighbours, but the spin S; can now take all values within some
range, which we assume to be [—1,+1]. This model is the classical continuous spin Ising model
introduced by Griffiths [38], who studied its behaviour in two space dimensions. In [38], Griffiths
deduced that this model has the same critical behaviour of the Ising model, i. e. it undergoes a
second order phase transition with the magnetization as order parameter, and its exponents are
in the Ising universality class. For practical reasons, it is convenient to rewrite the spin variable
S in the following way

S = sign(S) o, (3.2)

separating the sign from the amplitude o (e.g. the absolute value) of the spin. The Hamiltonian
(3.1) satisfies a Z(2) global symmetry, i. e. it remains invariant after a simultaneous sign change
of all spins of the system. This symmetry will play an important role all through our studies
and it implies that the signs of the spins are equally distributed in the canonical ensemble of the
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system. In contrast, the amplitudes can in general be weighted in different ways by choosing a
distribution function f(o). Therefore, the partition function of the continuous spin Ising model
has the following general form:

1
Z(T) = H/O do; f (o) exp{,f(;sisj}, (3.3)
1 i,]

where k = J/KT. In the model studied by Griffiths, f(o) = 1 Vo. We will begin by studying
this special case, but we will see that our result is valid also for the more general expression
(3.3).

We have carried on a detailed numerical study of the model on a simple square lattice. The
Monte Carlo update method we have used is a version of the Wolff algorithm [39] adapted to
our system. We briefly describe this algorithm, that we will often use, in the case of the Ising
model.

The Wolff algorithm is a cluster update which improves the Swendsen-Wang procedure we
have illustrated in Section 2.4. Starting from a randomly chosen spin Sp, one visits all nearest
neighbours of the same sign as Sy and connects them to it with probability p = 1 —exp(—2J/kT).
Repeating iteratively this procedure with newly added spins in the cluster, at some stage no
more neighbours will fulfill the above compatibility condition. Flipping all spins of the cluster
one gets a new spin configuration. It turns out that this dynamics verifies the detailed balance
condition, i.e. it samples the Gibbs distribution of the Ising model (see [39]). The analogies
with the Swendsen-Wang method are clear. The Wolff cluster is constructed in the same way
as the Fortuin-Kasteleyn-Swendsen-Wang clusters, being the bond probability the same in both
cases. But with the Wolff method one flips a single cluster at a time, a feature that succeeds in
eliminating the old problem of critical slowing down of Monte Carlo simulations.

Because of its effectiveness, we tried to implement a Wolff-like cluster update for our system,
exploiting its analogies with the Ising model. We basically repeat the Wolff procedure, but
adopting for the bond probability the expression below

pli.g) = 1~ exp(—2r0105), (3.4
which explicitly depends on the spin amplitudes. If we simply flip the spins, the dynamics is no
longer ergodic, as the spin amplitudes would remain unchanged. So, the cluster flipping must
be supplemented by a local update method (like Metropolis or heat bath), in order to respect
the accessibility criterium. We chose to alternate heat bath and Wolff steps. The proof that
the resulting update fulfills both ergodicity criteria and the detailed balance condition will be
omitted here since it follows closely the derivations that can be found in [40, 41, 42, 43].

Our version of the Wolff algorithm for the continuous Ising model suggests that the Fortuin-
Kasteleyn clusters in this case should probably be built as usual, the only difference being
represented by the local bond probability (3.4).
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To check whether these clusters are indeed the physical droplets we are looking for, we have
performed extensive simulations of our model, choosing six different lattice sizes, namely 642,
962, 1282, 1602, 200% and 300?. Our update step consisted of one heat bath sweep for the spin
amplitudes and three Wolff flippings for the signs, which turned out to be a good compromise
to reduce sensibly the correlation of the data without making the move be too much time-
consuming. The thermal quantities are the energy density

Zij SiSj
== - 3.5
(V is the lattice volume), and the magnetization
S
m = [2.:5i] |, (3.6)

V

where the absolute value is necessary to take into account the two equivalent directions of the
spins.

As far as the percolation variables are concerned, after grouping all spins into clusters by means
of the Hoshen and Kopelman labeling (see Appendix A), we measure the percolation strength
P and the average cluster size S, as defined in Sections 1.2.2 and 1.2.3. For the cluster labeling
we have used free boundary conditions. We say that a cluster percolates if it spans the lattice
in both directions, that is if it touches all four sides of the lattice. This choice was made to
avoid the possibility that, due to the finite lattice size, one could find more than one percolating
cluster, making ambiguous the evaluation of our variables!. The three fundamental features we
have just mentioned, i. e. the Hoshen-Kopelman algorithm, the use of free boundary conditions
and the definition of percolating cluster in all directions, will be always present in our percolation
investigations, unless stated otherwise.

The statistical errors of all variables were determined by using the Jackknife method [44] with
ten bins of data: such method will be applied in all our studies. The quantities of interest
were measured every five updates for any temperature and lattice size. That makes both the
percolation and the thermal variables basically uncorrelated.

After some preliminary scans of our program for several values of the temperature k (k = J/kT),
we focused on the x-range between 1.07 and 1.11, where the transition seems to take place. The
number of iterations for each run goes from 20000 (for x values close to the extremes of the
range) to 50000 (around the center of the range). The thermal results have been interpolated
by means of the density of state method (DSM) [45], which contributes to reduce the errors
relative to the data points. We shall regularly apply this method to study thermal phase
transitions. Unfortunately the DS M fails if one tries to interpolate the percolation data, because
the probability of having a given cluster configuration must take into account not only the
distribution of the spins, which is weighted by the Hamiltonian of the model, but also the

'In three dimensions even this definition of spanning cluster does not exclude the possibility of having more
than one of such clusters for the same configuration. Nevertheless the occurrence of such cases is so rare that we
can safely ignore them.
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distribution of the bonds. Besides, for the percolation quantities, standard interpolation methods
(like cubic spline) do not help to improve the situation because of the fluctuations of the data
at criticality. Therefore we used directly the data points to extract the critical indices.

To locate the critical point of the thermal transition we used the Binder cumulant?

(3.7)

Fig. 3.1 shows g, as a function of x for the different lattice sizes we used. The lines cross
remarkably well at the same point, which suggests that also in our case g, is a scaling function.
As a numerical proof we replot the lines as a function of tLY/* (t = (T —T.)/T,, L is the lattice
side), choosing for the exponent v the 2D Ising value 1. The plot (Fig. 3.2) shows that indeed
gr is a scaling function with the critical exponent v equal to the 2D Ising one.
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Figure 3.1: Classical continuous Ising model of Griffiths. Binder cumulant as a function of x for

six lattice sizes.

9r

1.9

18
1.7 +
16
15+
14
13 ¢
12+
11 +F

=
-1

T

-0.5

0
t LlN's

0.5

Figure 3.2: Rescaling of the Binder cumulant curves shown in Fig. 3.1. We took ¢y = 1.0932
and for the exponent v the 2D Ising value vr, = 1.

*In all figures of this work showing the Binder cumulant we will just plot the ratio (m4)/(m2)2; that allows to
separate neatly the Binder and the percolation cumulant in the same figure, which provides a visual comparison
of the critical thresholds.
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Figure 3.3: Classical continuous Ising model of Griffiths. Percolation cumulant as a function of
k for six lattice sizes. The dashed line indicates the thermal critical threshold.

To find the critical point of the percolation transition we use the percolation cumulant introduced
in Section 1.5. The results can be seen in Fig. 3.3. The agreement between the thermal threshold
and the geometrical one is excellent.

For the evaluation of the exponents we used standard finite size scaling techniques (see Section
1.5). To obtain the thermal exponents we adopted the x? method [10], a procedure that we will
apply to most of the models we are interested in. The results we got are reported in Table 3.1,
from which it is clear that the critical exponents of the two transitions agree with each other
and with the 2D Ising model values.

H Critical point ‘

plv

v/v

Thermal results

-+0.00012
1.09312Z 790008

+0.005
0.128~5 006

+0.007
1.745+0:907

+0.01
1.0175:01

Percolation results

1.093207F5-00008

0.130™9-09%

1.75370-006

0.98"0:03

2D Ising values

1/8 = 0.125

7/4 = 1.75

Table 3.1: Thermal and percolation critical indices for the classical continuous Ising model of
Griffiths.

So far we have investigated a relatively simple case, namely a model with the uniform amplitudes
distribution f(o) = 1. One can ask whether the result remains valid for the general ansatz (3.3).
As a matter of fact, the distribution f (o) plays an important role as far as the thermal properties
of the system are concerned; in particular, it may influence the order of the phase transition.
For this reason, since we want to study models with continuous transitions, the choice of the
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function f(o) is not arbitrary. It can be proved that it must obey certain regularity conditions,
which are not very restrictive, however [46]. Here we consider the following form for f(o):

flo)=+v1—0? (3.8)

which is the Haar measure of the SU(2) group. We have made this choice because our final
target is to define a percolation picture for SU(2) gauge theory, and the function (3.8) appears
quite often in formal expressions of this theory, like series expansions.

It is reasonable to presume that the bond weight we need to define our clusters is determined
by the Hamiltonian of the system, and not by eventual distribution functions. That is why we
tried to test the same cluster definition we adopted in the previous case. So, our droplets will be
again clusters of like-signed nearest neighbouring spins bound to each other with the probability
(3.4).

We have carried on a complete numerical investigation of the model, performing simulations on
four lattice sizes, 642, 1282, 160? and 240°. Our algorithm consists in heat bath steps for the
update of the spin amplitudes followed by Wolff-like cluster updates for the flipping of the signs.
That is basically the same method as used before, although the heat bath procedure is slightly
modified to take into account the presence of the distribution function f(o): the procedure is
analogous as the heat bath algorithm of Creutz for SU(2) gauge theory [47]. Also in this case,
the proof of the detailed balance condition is simply obtained from the results in [40] - [43].
Again, we alternated one heat bath sweep and three Wolff flippings and took the measurements
every five updates: that makes negligeable the correlation of all quantities.

Fig. 3.4 shows a comparison between the Binder cumulant g, (k) and the percolation cumulant,
both as functions of the temperature variable k, for different lattice sizes. The agreement
between the two thresholds is excellent.

2.5 [ ]

) |

g, vs Percolation Cumulant

Figure 3.4: Comparison of the thermal and the geometrical critical point for the continuous
Ising model with the distribution (3.8).
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Figure 3.5: Continuous Ising model with the distribution (3.8). Rescaled percolation cumulant
for four lattice sizes, using the 2D Ising exponent vy = 1. The errors on the data points are
smaller than the size of the symbols in the plot.
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Figure 3.6: Continuous Ising model with the distribution (3.8). Rescaled percolation cumulant
for four lattice sizes, using the 2D random percolation exponent vgp = 4/3. The errors on the
data points are smaller than the size of the symbols in the plot.
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We can also get an estimate for the percolation critical exponent v, by rescaling the percolation
cumulant curves as a function of tL1/7. Figs. 3.5 and 3.6 show the rescaled curves: k¢p;y = 1.3888
and for v we have taken the random percolation value vgp = 4/3 and Ising one v;s = 1,
respectively. It is clear that the curves scale for v = v7s and do not for v = vgp. To determine
the critical exponents’ ratios #/v and /v, we have performed high-statistics simulations around
the critical point, with the number of measurements for each value of the coupling varying from
50000 to 100000. We have listed the results in Table 3.2. It is evident that the percolation
behaviour coincides fully with the thermal critical behaviour. This conclusion is likely to hold
in general for the admissable spin distribution functions.

‘ H Critical point ‘ B/v ‘ v/v ‘ v

Thermal results || 1.388773:0002 | 0.12875:097 | 1.754+0-008 | 0.9970-03

Percolation results 1.3888"’8:888% 0. 121"’8:882 1.745"'8:8(1)% 1.01"’8:8%

2D Ising values 1/8 = 0.125 | 7/4 = 1.75 1

Table 3.2: Thermal and percolation critical indices for the continuous Ising model with the
amplitude distribution (3.8).

3.2 Extension to Generalized Continuous Ising-like Models

We shall now address the question whether the introduction of additional longer range spin-spin
interactions still allows a description of the thermal transition in terms of percolation. This
will turn out to be very useful in our attempt to define suitable clusters in SU(2) gauge theory.
Besides, we will examine the effects of eventual self-interaction terms, and show that they don’t
play any role in the cluster definition.

Our study is still based on continuous spin Ising models, in which the individual spins s; at each
lattice site can take on all values in the finite range [—1, 1]. Since these models are more general
than the ones characterized by discrete valued spins, the results can be then trivially extended
to the latter ones. Here we will consider three more general models of this type; d denotes the
space dimension:

A) d = 2, nearest-neighbour (NN) and diagonal next-nearest-neighbour (NTN) interaction (Fig.
3.7a);

B) d = 3, NN and two types of NTN interactions (see Fig. 3.7b);

C) as case B), but including an additional self-interaction term proportional to S? V i.
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(a) (b)

Figure 3.7: Scheme of the spin-spin interactions in the models we have studied. The figures
indicate the interactions of the spin represented by the black circle with its neighbours. Lines
of the same color are associated to the same coupling. a) Model A. b) Models B and C.

The couplings J; relative to the spin-spin interactions are all positive (ferromagnetic). In each
case, we will assume a uniform distribution for the spin amplitudes. This has only practical
reasons, since it simplifies the numerical analysis, but, according to the results of the previous
section, it does not affect the generality of our conclusions.

3.2.1 Model A: Next-to-Nearest Neighbour Interactions

We have now two terms, with a Hamiltonian of the form

NN NTN
H=—Jxn > SiS;i—JInrn Y SiS; (3.9)
(4,7) (4,7)

where the first sum describes nearest-neighbour and the second diagonal next-to-nearest neigh-
bour interactions (Fig. 3.7a). Since longer range interactions are generally weaker, we have
fixed the ratio between the two couplings at Jyxn/Jyrn = 10; however, we do not believe that
our results depend on the choice of the couplings, as long as both are ferromagnetic.

To define clusters, we now extend the Coniglio-Klein method and define for each two spins i, j
of the same sign, for NN as well as NTN, a bond probability

pp(i,j) =1 — exp(—2kz0i0;), (3.10)

where z specifies kyy = Jyn/kT and knry = Jyrn/ET, respectively. This hypothesis seems
to us the most natural, and we will test it in the following B and C models.
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We have studied model A using two different Monte Carlo algorithms, in order to test if a Wolff-
type algorithm can also be applied in the presence of NTN interactions. The first is the standard
Metropolis update, while the second alternates heat bath steps and a generalized Wolff flipping,
for which the clusters are formed taking into account both interactions. The generalization of
the cluster update is trivial. After several runs, some with high statistics, we found excellent
agreement with the Metropolis results in all cases. So, the mixed algorithm with heat bath and
Wolff flippings appears to remain viable also in the presence of more than the standard NN
interaction. Subsequently we have therefore used this mixed algorithm. The update alternates
like before one heat bath sweep and three Wolff flippings. The lattice sizes ranged from 100? to
4002. We measured our variables every 5 updates for the smaller lattice sizes and every 10 for
the larger ones, keeping these numbers fixed at any temperature. All variables of interest turn
out to be basically uncorrelated. We accumulated up to 50000 measures for temperatures close
to the critical point.

1.4 1

g, vs Percolation Cumulant

0.969 0.9 0.971 0.972 0.973
K

Figure 3.8: Comparison of the thermal and the geometrical critical point for Model A obtained
respectively from the Binder cumulant g, and the percolation cumulant.

We present again the comparison between percolation and Binder cumulants, in order to test
that the critical points coincide (Fig. 3.8). The crossing point of the percolation curves looks
less defined than the thermal one because we used a simple linear interpolation of the data.
Anyhow, simulations of the model at the thermal threshold lead to values of the percolation
cumulant that, within errors, are the same for all lattice sizes. We then rescale the percolation
cumulant, using the critical k determined in Fig. 3.8 together with the two main options for the
exponent v, that is the value of 2D random percolation and the one of the 2D Ising model. In
Fig. 3.9 we show the rescaling done using vys: the curves fall clearly on top of each other.

The determination of the two exponents ratios §/v and 7 /v confirms that indeed the exponents
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Figure 3.9: Rescaled percolation cumulant curves for model A, using the 2D Ising exponent
vrs = 1. The errors on the data points are smaller than the size of the symbols in the plot.

of our geometrical islands belong to the 2D Ising universality class (Table 3.3).

H Critical point ‘

Blv

v/v

14

Thermal results

0.0003
0.9707150005

+0.007
0.124%5 005

+0.009
1.747+0-009

0.014
0.993%0010

Percolation results

0.0002
0.9708 50005

+0.008
0.12975 009

0.009
1.7521 000

+0.012
1.005Z5 020

2D Ising Model

1/8 = 0.125

7/4 = 1.75

1

Table 3.3: Thermal and percolation critical indices for model A, compared to those of the 2D

Ising model.

3.2.2 Model B: Extension to Three Dimensions

We now go one step further and repeat the study for a d = 3 model with three different

interactions (Fig. 3.7b).

To fix the model, we have to specify the ratios of the nearest-neighbour coupling Jyx to Jyrn
and Jgiqg. We chose them to be 10 : 2 and 10 : 1, respectively. Our calculations are performed
on lattices ranging from 123 to 403.
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Also here we have first compared the results from a mixed algorithm of the same kind as for the
previous case to those from a standard Metropolis algorithm; again, the agreement turns out to
be very good. The heat bath sweeps and the Wolff flippings are in the ratio 1 : 3. We measured
our variables every 5 updates for any temperature and lattice size. The percolation variables are
not correlated, whereas the thermal ones show a correlation which is, however, rather small (the
autocorrelation time 7 is of about 2 — 3 for the magnetization on the 40? lattice near criticality).
The number of measurements we took varies from 20000 to 40000.
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Figure 3.10: Comparison of the thermal and the geometrical critical point for Model B obtained
respectively from the Binder cumulant g, and the percolation cumulant.

Figs. 3.10 and 3.11 then show the comparison of the thresholds and the scaling of the percolation
probability. As before, the correspondence between percolation and thermal variables is evident
(Table 3.4).

‘ | Critical point | B/v ‘ /v ‘ v ‘

Thermal results || 0.3667770 00008 | 0.53010-012 | 1.94370019 | 0.64010-012

Percolation results || 0.3667370:99012 | 0.528+3:912 | 1.9750:010 | 0.632+3919

3D Ising Model 0.5187(14) | 1.963(7) | 0.6294(10)

Table 3.4: Thermal and percolation critical indices for model B, compared to those of the 3D
Ising model.
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Figure 3.11: Rescaled percolation cumulant curves for model B, using the 3D Ising exponent
vrs = 0.6294. The errors on the data points are smaller than the size of the symbols in the plot.

3.2.3 Model C: Adding Self-Interactions

From what we have seen up to now, it seems to be clear that the correct cluster definition can
readily be extended to models including several (ferromagnetic) spin-spin interactions. However,
such terms are not the only possible interactions in a model with Z(2) symmetry and a continuous
transition. There could be anti-ferromagnetic spin-spin couplings as well as multispin terms,
coupling an even number of spins greater than two (four, six, etc.). Moreover, since the spins
are continuous, the presence of self-interaction terms is possible, determined by 52, §*, etc. The
treatment for antiferromagnetic and multispin couplings so far remains an open question. In
contrast, self-interactions are not expected to play a role in the cluster building, since such terms
do not relate different spins. Therefore, we test a cluster definition ignoring any self-interaction
term.

We thus consider in Model C the same interactions as in Model B, plus a term proportional
to Jo >, 52, We chose a negative value for the self-interaction coupling Jo; this is the more
interesting case since the corresponding interaction tries to resist the approach of the system to
the ground state at low temperatures (0 = 1 everywhere). The ratios of the NN coupling to the
others were chosen as Jyy : Jnrn : Jgiag : |[Jo| =6:2:1:2.

We first verify the viability of the mixed algorithm. The check was successful so that we could
apply the algorithm for our purposes. The update consists again in one heat bath sweep and
three Wolff flippings. In order to eliminate the correlation of the data we measured our quantities
every 40 updates. We collected up to 70000 measurements for temperatures close to criticality.
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Figure 3.12: Rescaled percolation cumulant curves for model C, using the 3D Ising exponent

vrs = 0.6294. The errors on the data points are smaller than the size of the symbols in the plot.

The critical points were determined by means of the cumulants. In Fig. 3.12 we present the
rescaling of the percolation cumulant curves in correspondence of the 3D Ising exponent vrg =
0.6294. The scaling function can be clearly seen. Successively we have determined the critical
exponents (Table 3.5). Tt is evident that percolation and the thermal transition again fall into
the same universality class.

‘ H Critical point ‘ Blv ‘ v/v ‘ v

Thermal results

0.0002
0.300410 6001

+0.012
0.513Z4 010

+0.014

+0.011
0.626Z5 1

Percolation results

0.0001
0.300570 5001

0.010
0.524700,7

+0.008

0.011
0.636 0017

3D Ising Model

0.5187(14)

1.963(7)

0.6294(10)

Table 3.5: Thermal and percolation critical indices for model C, compared to those of the 3D
Ising model.

We have shown that the equivalence of cluster percolation and spin ordering in the description
of critical behaviour in the continuous spin Ising model can be extended to a rather wide class of
theories. In particular, it remains valid also in the presence of more than just nearest neighbour
interactions, if ferromagnetic, and of spin distribution functions. Moreover, the introduction of
self-energy contributions does not affect the equivalence.
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3.3 Cluster Percolation in O(n) Spin Models

An interesting extension of the Coniglio-Klein result concerns the O(n) spin models.

The O(n) spin models with no external magnetic field have the following Hamiltonian:

H=-])ssj, (3.11)
(i)

where 7 and j are nearest-neighbour sites on a d-dimensional hypercubic lattice, and s;j is an
n-component unit vector at site i (J > 0 is the coupling). The partition function of these
models at the temperature T is

Z(T) = /D[s] exp{B_sisj} (3.12)
(i)

where 8 = J/kT and the integral is extended over all spin configurations {s} of the system.

In three space dimensions, such models undergo a second order phase transition due to the
spontaneous breaking of the continuous rotational symmetry of their Hamiltonian. The O(n)
models are very interesting: some physical systems in condensed matter physics are directly
associated to them. The three-dimensional O(3) model is the low-temperature effective model
for a bidimensional quantum antiferromagnet [48]. The O(2) model in three dimensions is known
to be in the same universality class as superfluid * He. O(n) models are also very useful to study
relativistic field theories. The O(4) model in three dimensions has been conjectured to be in
the same universality class as the finite-temperature chiral phase transition of QC'D with two
flavours massless quarks [49].

Numerical simulations of O(n) models became much quicker and more effective after U. Wolff
introduced his Monte Carlo cluster update [39]. We have already described it in the particular
case of the Ising model (see Section 3.1). As a matter of fact, the Wolff update was devised for
O(n) spin models, of which the Ising model is a special case (for n = 1).

The procedure, as we have said, consists in flipping all spins of a cluster which is built in some
way. For details of the flipping procedure, see [39]. Here we are interested in the way to build
up the clusters. We can split this procedure in two steps:

a) choose a random n-component unit vector r;

b) bind together pairs of nearest-neighbouring sites 7, j with the probability

p(i,7) = 1 —exp{min[0, —26(s;-r)(sjr)]}. (3.13)

From this prescription it follows that if the two spins at two nearest-neighbouring sites ¢ and j are
such that their projections onto the random vector r are of opposite signs, they will never belong
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to the same cluster (p(i,j) = 0). The random vector r, therefore, divides the spin space in two
hemispheres, separating the spins which have a positive projection onto it from the ones which
have a negative projection. The Wolff clusters are made out of spins which all lie either in the
one or in the other hemisphere. In this respect, we can again speak of up’ and ’down’ spins, like
for the Ising model. In addition to that, the bond probability is local, since it depends explicitly
on the spin vectors s; and s;, and not only on the temperature like the Fortuin-Kasteleyn factor.

The analogies with the Ising model are however clear, motivating the attempt to study the
percolation properties of these clusters.

Indeed, for O(2) and O(3), it was analytically proven that the Wolff clusters percolate at the
thermal critical point [50, 51]. Nevertheless, in [50, 51] nothing about the relationship between
the critical exponents was said.

We have investigated numerically the 3-dimensional O(2) and O(4) models performing computer
simulations for several lattice sizes. The Monte Carlo update was performed by the Wolff
algorithm. At the end of an iteration, the percolation strength P and the average cluster size S
were measured. This has been done for each of the models using two different approaches.

The first approach is the traditional one, based on a complete analysis of the lattice config-
uration. Once we have the configuration we want to analyze, we build Wolff clusters until all
spins are set into clusters. We assign to P the value zero if there is no percolating cluster, the
ratio between the size of the percolating cluster and the lattice volume otherwise. We calculate
S using the standard formula (1.7). We say that a cluster percolates if it spans the lattice from
a face to the opposite one in each of the three directions z, y, z. In this approach we have used
as usual free boundary conditions.

The second approach is based on a single-cluster analysis. Basically one studies the percolation
properties of the cluster built during the update procedure. For the cluster building we have
considered periodic boundary conditions. Suppose that s. is the size of the cluster we built. If
it percolates, we assign value one to the strength P and zero to the size S; otherwise, we write
zero for P and s, for S. These definitions of P and S look different from the standard definitions
we have introduced above, but it is easy to see that they are instead equivalent to them.

In fact, we build the cluster starting from a lattice site taken at random. In this way, the
probability that the cluster percolates (expressed by the new P) coincides with the probability
that a site taken at random belongs to the percolating cluster (standard definition of P). As
far as the average cluster size is concerned, we can repeat the same reasoning: the probability
that the cluster we built is a non-percolating cluster of size s, is just the probability w,_ that a
randomly taken lattice site belongs to a non-percolating cluster of size s.; ws, is given by

Ws, = Ng, Sc - (3.14)

c

Because of that, whenever we get a non-vanishing size s., such value will be weighted by the
probability ws,_ in the final average S, which is then given by the following formula:

S = z:wscsC = Z”sc Se2, (3.15)
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where the sum runs over the non-percolating clusters. We notice that Eq. (3.15) coincides with
Eq. (1.7), apart from the denominator ) ng s, which is just the density of the sites belonging to
finite clusters. Since this term does not contribute to the divergence of the average cluster size,
the power law behaviour of the two S’s at criticality is identical, so that the critical exponent =y
is the same in both cases.

As we have said, in the second approach we select a single cluster at a time from the whole con-
figuration. Because of that we have now some freedom of choosing the definition of percolating
cluster, as we do not risk, like in the first approach, to find more spanning structures. We say
that the cluster percolates if it connects at least one face with the opposite one.

In this way, also the definitions of percolating clusters are different in the two approaches.
This certainly influences the results on finite lattices, but has no effects on the infinite-volume
properties we are interested in. In fact, we have seen in Section 1.3.2 that one can have at most a
unique spanning cluster above the critical density p. (in our case below the critical temperature
T,). Exactly at p. (T.) there is a finite probability to have more than a spanning cluster. So, the
two different definitions of percolating cluster we have adopted can lead to differences between
the infinite-volume values only at the critical point p. (T;). But the critical exponents are,
of course, not influenced by that, as they are determined by the behaviour of the percolation
variables near the critical point, not exactly at p. (T¢).

The second approach has the advantage that it does not require a procedure to reduce the
configuration of the system to a set of clusters; on the other hand, since it gets the information
out of a single cluster, it requires a higher number of samples in order to measure the percolation
variables with the same accuracy of the first method. Nevertheless, the iterations are faster due
to the simpler measurement of observables, and are less correlated than in the first approach,
since only a (random) limited region of the lattice is considered in each sample. We find that
both methods are efficient, and that it is important to be able to compare results obtained in
two such different ways.

We collected up to 150000 measurements for temperatures close to the critical point. We mea-
sured our quantities every N updates, with N ranging from 50 for the smaller lattice sizes to
100 for the greater ones: that eliminates the correlation of the percolation data.

Figs. 3.13 and 3.14 show percolation cumulant curves for O(2) and O(4), respectively. The
agreement with the physical thresholds (dashed lines) is clear. Successively, we perform the
usual scaling tests to check whether the exponents vp.,. of the geometrical transitions coincide
with the ones of the model, vps = 0.6723 and vo4 = 0.7479 respectively, or rather with the
3-dimensional random percolation exponent vrp = 0.8765. Figs. 3.15 and 3.16 show that, by
taking the thermal exponents, the curves fall on top of each other, confirming that verc = Viperm
in both cases.
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Figure 3.13: Percolation cumulant as function of 3 for O(2) and five lattice
line indicates the position of the thermal threshold [52].
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To complete our investigation, we have determined the critical exponents’ ratios making use, as
usually, of standard finite size scaling techniques. We list all the critical indices relative to the
percolation transition for O(2) and O(4) in Tables 3.6 and 3.7, respectively. In the tables we
have reported, for comparison, the values of the thermal critical indices. The agreement with
the physical values in [52, 53, 54] is good.

| L B8 | v [ v [ v |
Thermal results [52] || 0.454165(4) | 0.5189(3) | 1.9619(5) | 0.6723(3)

Percolation results || 0.45418(2) | 0.516(5) | 1.971(15) | 0.670(4)

Table 3.6: Comparison of the thermal and percolation thresholds and exponents for O(2).

| [ B 77 v |
Thermal results || 0.93590(5)[53] | 0.5129(11)[54] | 1.9746(38)[54] | 0.7479(90)[54]

Percolation results 0.93595(3) 0.515(5) 1.961(15) 0.751(6)

Table 3.7: Comparison of the thermal and percolation thresholds and exponents for O(4).

So far we have presented the results obtained using the first approach. The results derived using
the second approach are essentially the same; besides, we observe an improved quality of the
scaling, mainly because of the use of periodic boundary conditions, which reduce considerably
the finite size effects.

In particular we show in Figs. 3.17, 3.18 the scaling of P and S at the thermal thresholds
reported in [52, 53]. We observe very small finite size effects (lattices of L > 20 are used in the
fits), especially for the O(2) case, which is in contrast to what is observed for thermal observables
[55]. The slopes of the straight lines are in agreement with the values of the thermal exponents’

ratios /v, y/v.

In conclusion, we have shown that the spontaneous breaking of the continuous rotational sym-
metry for the 3-dimensional O(2) and O(4) spin models can be described as percolation of Wolff
clusters. In both cases, the number n of components of the spin vectors s does not seem to play
a role; the result is thus likely to be valid for any O(n) model.
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Chapter 4

Polyakov Loop Percolation in SU(2) Gauge
Theory

4.1 Finite Temperature SU(N) on the lattice

Finite temperature Quantum Chromodynamics (QC D) has been extensively simulated on the
lattice over the last two decades, in order to test the hypothesis that, at high temperatures
and (or) high densities, quark matter should pass from the (confined) hadronic phase to the
(deconfined) phase represented by a plasma of quarks and gluons.

QCD, like all theories describing fundamental forces (except gravitation), is a quantum field
theory with local gauge invariance. The gauge group which rules this invariance is SU(3): the
quarks form a triplet in the fundamental representation of SU(3), and the gluons, which are the
carriers of the interaction, form an octet in the adjoint representation.

The non-abelian character of the SU(3) group leads to an important feature that distinguishes
QCD from Quantum Electrodynamics (QED), which is ruled by the abelian group U(1): the
gluons carry a charge and can interact among each others, in contrast to the photons. Therefore,
it makes sense to study systems constitued only by gluons, and to check whether the interaction
gives rise to a confinement-deconfinement transition from a phase in which the gluons are bound
in glueballs to a phase of free gluons. This simpler situation is described by the so-called pure
gauge SU(3).

Since any SU(N) group is non abelian, the study of the relative pure gauge theories may be of
interest also for N#£3.

The Lagrangian density of the SU(N) pure gauge theories is

L= —ing(x) Fany (), (4.1)
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where
Ff,(z) =0, Al(z) — 0, Al(x) + g f*° A) () AS (). (4.2)

Here Aj, are the gauge fields (a=1,2,...,N?—1), g is the gauge coupling constant and f,. the
structure constants of the SU(N) group. The rightmost term of (4.2), present because for the
SU(N) group fape # 0, is responsible of the gluon-gluon interaction.

The renormalizability of SU(N) gauge theories [56] assures the convergence of perturbative
series expansions: (QC'D was established as theory of the strong interaction after a great deal
of perturbative results were confirmed by experiments. However, the important phenomenon of
confinement lies well beyond the realm of perturbation theory.

The need of getting predictions from the theory in the non-perturbative domain led to an
alternative calculation pattern, the lattice regularization, characterized by a discretization of
space-time which gets rid automatically of troublesome divergences [57].

With the Lagrangian density (4.1) provided, the formulation of statistical SU(N) theories is, at
least in principle, a well-defined problem. We have to calculate the partition function

Z(B,V) = Tr{e Pt} (4.3)

In the trace we have to sum over all physical states accessible to the system in a spatial volume
Vi B = 1/T, where T is the physical temperature and H is the Hamiltonian of the system,
which can be expressed by means of £. Once we have Z(3,V), we can proceed to derive all
thermodynamic observables. Thus,

1 /0InZ
- 4.4
‘ V( B )v (44)
is the energy density, and
1/0InZ
P= E( oV )g (45)

gives us the pressure.

The lattice formulation of statistical SU(N) is obtained in three steps. First we replace the
Hamiltonian form (Eq. (4.3)) of the partition function by the corresponding Euclidean functional
integral

B
Zu(8,V) = / () exp [ - / Pz / ar £(4)]. (4.6)
v 0
Ap(B,2)=A,(0,1)
This form involves directly the Lagrangian density and the sum over states in (4.3) is replaced

by the integration over the field configurations A. The periodicity condition A, (53, Z) = A,(0,Z)
is a consequence of the trace form of Eq. (4.3). The spatial integration of (4.6) is performed over
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the whole volume of the system, while in the imaginary time 7 =iz, the integration runs over
a finite slice determined by the temperature. The finite temperature behaviour of the partition
function thus becomes a finite size effect in the integration over 7.

Next, the Euclidean ¥ — 7 manifold is replaced by a discrete lattice, with N, points in each
space direction and N, points for the 7 axis. The lattice spacing is a. The overall space volume
becomes V = (Nya)?, the inverse temperature 5~! = N,a. To ensure the gauge invariance of
the formulation, the gauge fields A must be defined on the links connecting each pair of adjacent
sites.

In the final step, the integration over the gluon fields is replaced by one over the corresponding
gauge group variables, or link variables,

. T; + T
Uij = exp | —ig(z; — xj)”Au(%ﬂ, (4.7)
with z; and z; denoting two adjacent lattice sites, so that U;; is an SU(N) matrix associated
to the links between these two sites.

The partition function of finite temperature SU(N) pure gauge theories takes then the form

20N, Neig?) = [ ] vy el-S(0) (4.8)

links

where S(U) is the Wilson action

sy = 2N

p (1 - %Re Tr UUUU). (4.9)

plagq

The sum is over all the smallest closed paths of the lattice (plaquettes), which are formed by
four links; UUUU is the product of the link variables corresponding to each side of a plaquette.

By letting the lattice spacing a go to zero, one recovers the continuum limit (4.6). This assures
that, for a small enough, the lattice regularization does not influence the physical observables
and that we can rely on the results derived by this approach.

4.2 Z(N) Symmetry and Deconfinement

Pure SU(N) gauge theories have a global symmetry, resulting from the periodicity of the gauge
fields in the temperature direction, that rules the behaviour of the system at finite temperatures.
Gauge transformations which are compatible with the periodicity condition need only be periodic
up to an element z of the center Z(N) of the gauge group SU(N). Thus a gauge transformation
must obey:
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A(Z,0) = zA(Z,8), for all %, (4.10)

where A(Z,7) is the SU(N) matrix associated to the gauge field at the point (Z,7) and z €
Z(N). The n-th element of Z(N) is given as exp(2min/N) (n =0,..., N — 1). It is easy to see
that, under (4.10), the action (4.9) remains unchanged. In contrast, the Polyakov loop,

N.
1 T
Ly = yTIr }:11 Uzitt+1 (4.11)

consisting of the product of all the U’s in the temperature direction taken at a given spatial site
Z, transforms non-trivially under this transformation,

Ly — zLgz. (4.12)

The same relation is valid if we take the average L = (Lz) over the lattice and over configurations.
L is an indicator of the state in which the system finds itself. It is clear that, if L # 0, the
transformation (4.10) will not leave invariant the value of L, as it would happen if L = 0. That
means that the state of the system may spontaneously break the global Z(N) symmetry, just
as the ordered phase of the Ising model breaks the global Z(2) symmetry of its Hamiltonian.

The quantity L is then the order parameter of the phase transition associated to the spontaneous
breaking of the Z(N) symmetry. Is this transition somehow related to deconfinement?

The state of a gluons system can be probed qualitativey by a heavy test quark. The free energy
F of this test quark should be infinite in the confinement phase, but finite in the deconfinement
phase. It turns out that such free energy is related to the lattice average of the Polyakov loop
by the following expression

L ox e Pl (4.13)

In the confinement regime, F' = oc and Eq. (4.13) implies L = 0. If the gluons are free, F' is
finite and, consequently, L # 0. The (eventual) transition from the confined to the deconfined
state of the SU(NN) gauge system is thus characterized by the spontaneous breaking of the global
center Z(N) symmetry.

Lattice studies have shown that this phase transition indeed takes place. The first computer
simulations of finite temperature lattice gauge theories were performed in the early 80’s and con-
cerned the SU(2) theory [47], basically because it is the simplest one and the relative simulations
are not so lengthy as the SU(3) simulations.

Fig. 4.1 shows SU(2) data relative to the Polyakov loop, from which the typical behaviour of a
second order phase transition is clearly visible.

In spite of their higher complexity, SU(3) simulations could be performed shortly after the SU(2)
ones. However, it took a while before one could be sure to understand what was happening there.
Now it is well established that SU(3) gauge theory undergoes a (weak) first order confinement-
deconfinement phase transition (Fig. 4.2).
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Figure 4.1: Lattice average of the Polyakov loop as a function of the coupling 8 = 4/¢> for pure
gauge SU(2) on a N3xN, lattice with N, = 36 and N, = 4.
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Figure 4.2: Polyakov loop as a function of the coupling 8 = 6/g* for pure gauge SU(3) on a
323 x4 lattice; the data points are taken from [58].
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4.3 SU(N) Gauge Theories vs Z(N) Spin Models

In the previous section we have stressed the key role played by the Z(N) symmetry in the
confinement-deconfinement mechanism of SU(N) gauge theories. It is easy to check that any
Z(N) rotation leaves invariant the product of link variables around each closed path which
includes spatial links (Wilson loops). However, we have seen that the topologically nontrivial
Polyakov loop Lz changes after such rotations (see Eq. (4.12)). If we consider that, from Eq.
(4.11), Lz is determined only by the links in the imaginary time/temperature direction, we
realize that the Z(N) symmetry introduces a distinction between spatial links and time links:
the latter ones alone seem to have the control of the phase transition.

It is then natural to try to get rid of the ‘irrelevant’ degrees of freedom represented by the spatial
links and to express the SU(N) action in terms only of the order parameter field Lz. This can
be achieved by integrating out the spatial gauge fields; the resulting effective theory is simpler
than the original model and could facilitate the investigation of the confinement-deconfinement
phase transition.

Svetitsky and Yaffe [9] presented a number of arguments that lead to some interesting conclusions
about the properties of such SU(N) effective theories. Their arguments are essentially based on
dynamical considerations and simple renormalization group ideas and allow to deduce, among
other things, the order of the phase transition and, in case of a continuous transition, the
exponents which characterize the critical fluctuations.

The main point of [9] is the hypothesis that, integrating out all degrees of freedom except the
Polyakov loops, one yields an effective theory with short range interactions, which is invariant
under the center Z(N) symmetry. In case of a continuous transition, one could in principle locate
the renormalization fixed point which governs the relative critical behaviour. If it happens that,
in the space of d-dimensional theories with short range interactions invariant under the center
symmetry, there exists only a single fixed point, then the critical behaviour of the original
(d + 1)-dimensional finite-temperature SU(N) gauge theory will be the same as that of simple
d-dimensional spin models invariant under the same global symmetry Z(N).

In many cases theories, related by the same symmetry, are indeed associated to a single fixed
point: this implies that results for the critical behaviour of simple spin models may be used to
predict the critical behaviour in finite-temperature gauge theories.

It is, for example, the case of the Z(2) symmetry, for which only one fixed point is known.
Consequently, since SU(2) pure gauge theory undergoes a continuous transition, its critical
exponents should fall in the universality class of the Z(2) spin model, which is the Ising model.
Lattice studies have provided strong evidence that the conjecture is indeed true [10].

As a counter-example, in the space of three-dimensional Z(3) symmetric theories, no stable
renormalization group fixed point is known. That led the authors of [9] to conjecture that
(3+1)-d SU(3) pure gauge theory undergoes a first order phase transition, as it was successively
confirmed by lattice simulations (see Section 4.2).
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4.4 Polyakov Loop Percolation

Z(N) spin models have been extensively investigated, both analytically and numerically. It is
natural to check to which extent the analogy between such models and SU(N) gauge theories
is valid.

In particular, we know that the critical behaviour of the Ising model can be equivalently described
as percolation of well defined clusters of like-sign spins (see Chapter 2). It is thus spontaneous
to ask ourselves whether it is possible to find a description of critical behaviour in terms of
percolation also for the deconfinement transition in SU(2) gauge theory.

This could provide a suggestive view of the confinement-deconfinement mechanism. If we take
a typical SU(2) configuration at a certain temperature, there will be areas where the Polyakov
loop L takes negative values, and areas where L takes positive values. Both the positive and
the negative ’islands’ can be seen as local regions of deconfinement. But as long as there are
finite islands of both signs, deconfinement remains a local phenomenon and the whole system is
in the confined phase. When one of this islands percolates, that is it becomes infinite, then we
can talk of deconfinement as a global phase of the system.

The rest of this chapter is devoted to find a solution to this problem. The main difficulty is
the fact that the SU(2) Lagrangian is not directly a function of the Polyakov loop, due to the
presence of the spatial gauge fields. Moreover, if we integrate out the spatial link variables, we
yield an effective theory that contains non trivial combination of operators, which cannot in
general be replaced by suitable combinations of Polyakov loops.

Therefore it is not clear how one can extract the expression of the bond probability which is
necessary to build the clusters like in the Ising model.

The only way to face the problem is to try to approximate SU(2) by means of effective theories
which are easy to handle. This will allow us to exploit the percolation pictures for general spin
models presented in Chapter 3.

We propose two alternative procedures to look for a suitable definition of cluster building.

The first approach adopts a Polyakov loop effective theory derived by means of series expansions
of the SU(2) partition function in the strong coupling limit.

The second approach searches for simple Ising-like spin models which approximate the Ising-
projected Polyakov loop configurations and, even if it is more involved than the first one, it can
also be applied in a case which approaches the weak coupling region.
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4.5 First Approach: Strong Coupling Expansions

4.5.1 The Green-Karsch Effective Theory

One of the most successful techniques adopted to deduce results from the lattice formulation of
gauge theories is the so-called strong coupling expansion, which consists in expanding quantities
like the action, the partition function, etc., in powers of the inverse coupling 1/¢2. This pro-
cedure, analogous as the well known high-temperature expansions in statistical physics, allows
to obtain interesting information about the system. It was by means of analyses of the strong
coupling limit that Polyakov [59] and Susskind [60] could show for the first time that QC'D may
lose its confining property, if the temperature is sufficiently high.

We present here a strong coupling expansion of SU(N) gauge theories derived by Green and
Karsch [11]. Their aim was to perform a mean field analysis of the SU(N) deconfinement
transition in the presence of dynamical quarks, but we will limit ourselves to introduce the
expressions relative to the pure gauge sector, in particular to pure gauge SU(2), which is the
one we are interested in.

We start from the formula (4.8) for the lattice action. We can write
S(U) = > SpU
P

4 1
Sp(U) = —2(1 — “ReTr UUUU) (4.14)

g 2
where the action S(U) is divided in the contributions Sp(U) coming from each plaquette P.
Sp(U) can be expanded [61] in terms of the characters x, of the SU(2) group (r is an integer

which indicates the representation of the group)

e 5P — ZO( )[1+Zd z( )Xr Up)} (4.15)

In (4.15) d, = 7+ 1, z.(1/¢%) = I,41(4/g%)/I1(4/¢?) and Zy = ¢*I1(4/9%)/2, where the I, are
the modified Bessel functions.

Next, we remark that we can neglect all spacelike plaquettes P; by setting Up, = 1 without
affecting appreciably the critical behaviour of the system, as long as the coupling 8 = 4/¢?
small. The validity of this approximation, which corresponds to dropping the magnetic term in
the hamiltonian of the theory, relies on the fact that spacelike plaquettes tend to decrease the
string tension (see [61]). Hence if a phase transition is found in the strongly coupled theory,
there is almost certainly one in the full theory.

For little values of § we can thus write the SU(2) partition function

Zeff = / H [1 +Zd zr< )Xr Upt)} (4.16)
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where the product is exclusively over the timelike plaquettes P;. Integrating over the spacelike
links and grouping the timelike links associated to the same spatial site x, we easily get

Zepp = /H awy I [1+Zz,{vf<;—2)Xr(Wx)Xr(W,l+e) . (4.17)

In the expression above {x,e} indicates a link, N, is the number of lattice spacings in the
temperature direction and Wy the Wilson line variable

N:
Wy = [] Uxitir1- (4.18)
t=1

We stress that the the original (d+1)-dimensional lattice has now become a simple d-dimensional
lattice; the first product in Eq. (4.17) runs over its sites, the second one over its links.

If B is small enough, we can keep only the fundamental » = 1 term of the expansion, and we
finally get

Zopp ™ / T[T dWx exp [5’2 LiL]}, (4.19)
X ij

with 8 = 42{\” and L; the value of the Polyakov loop at the site i (see Eq. (4.11)); the sum is
over nearest neighbours. For 3 small,

1
a2

Zl(i) _ IQ(%)

" = g. (4.20)

~
Pl
—
Qe
~—
K

The final expression for the coupling 3’ of the effective theory is then

N:

g = 4(é) . (4.21)

4
The partition function Z, s of Eq. (4.19) looks very much like the one of a spin model with simple
nearest-neighbour interactions, with the Polyakov loop playing the role of the spin variable.
There is, however, an essential difference: the integration variables in Z,¢; are not the Polyakov
loops Ly, but the Wilson line operators Wy, which are SU(2) matrices. We know that
1

Ly = §Tr Wy, (4.22)
but it is not clear whether we can rewrite the sum in Eq. (4.19) as a sum over Polyakov loops
only.

The properties of the SU(2) group may help us to solve the problem. If U is an SU(2) matrix,
we can use a parametrization in terms of an angle ¢ and a 3-dimensional unit vector 7:

U = 972 = (cos g)l + 1 (sin g) i 7, 0<¢<2n Ji|=1 (4.23)
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n (4.23), 7 are the Pauli matrices. According to Eq. (4.23), one gets
_ ¢
TrU = 2 cos 3 (4.24)

So, the trace of U depends only on the angle ¢. With this parametrization, the integral over
SU(2) matrices can be written as

1 2
AU = —— dg (i) (sin %) , (4.25)

where d€2(77) is the measure relative to the angles of 7. Using Eqs. (4.22), (4.24) and (4.25), we
can express Z.ry in the following way

Zepp = /H o dox dQU(71 )(sm $> exp [ﬁ Z cos (—2) cos (%)}, (4.26)

The exponential of Eq. (4.26) is only a function of the angles ¢; associated to the Wilson
line operators. The angles of d2(7) can thus be integrated out; since L; = cos(¢;/2) and

sin(¢x/2) = /1 — Ly?, we reach the final expression

Zepp ™ / [T dL VI= Lz exp [8'Y LiLy], (4.27)
X i

in which we have neglected the irrelevant constant factor due to the integration over dQ(7)x.

We stress that, to derive Eq. (4.27), we made use of two approximations. We have neglected
the spacelike plaquettes and we have truncated the expansion of (4.17) to the first term. Both
approximations rely on the fact that the coupling 3., at which the transition occurs, is small
enough. Since (. shifts to higher values the bigger the number of lattice spacings in the time
direction, the assumptions are valid only for small values of N,. Green and Karsch showed that
the mean field analysis of the effective theory of Eq. (4.19) gives results which are compatible
with SU(2) lattice simulations for N, = 1,2 [11]. We decided to concentrate ourselves to the
more interesting case, i. e. N; = 2.

Eq. (4.27) is exactly the partition function of one of the continuous spin Ising models we have
studied in Section 3.1, namely the model whose spin amplitudes {o} are distributed according to
Eq. (3.8). From Section 3.1 we know that the critical behaviour of the continuous Ising models
has an equivalent percolation picture; the clusters are formed by binding nearest neighbouring
spins of the same sign with the probability (3.4). We have also seen that the distribution (3.8)
does not play a role in the cluster definition.

Assuming that, for N; = 2, the Polyakov loop configurations of SU(2) are ruled by the partition
function (4.27), it is natural to test the same definition of clusters of the continuous Ising model.
In our case, the clusters will be then formed by like-signed nearest neighbouring Polyakov loops,
bound with the probability

p(i, ) = 1 —exp(=20' L; L). (4.28)
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For N, = 2, from Eq. (4.21) we get ' = 3?/4, so that

2
p(ij) =1 —exp(— %Li Lj). (4.29)

With Eq. (4.29), the Polyakov loop percolation problem is fully defined. We point out that the
strong coupling expansion we have shown is independent on the number of space dimensions of
the system, as long as the corresponding values of the critical coupling G, remain small. Because
of that, we decided to investigate SU(2) both in (2 + 1) and in (3 + 1) dimensions, to test our
cluster definition in two different cases.

4.5.2 Numerical Results for (2+1)-d SU(2)

Our analysis is based on four sets of data on N2x2 lattices, with N,=64, 96, 128 and 160. The
Monte Carlo update consists of one heat bath and two overrelaxation steps. For the 64% x 2 and
962 x 2 lattices we evaluated configurations every six updates, for 1282 x 2 and 160? x 2 every
eight updates, measuring in each case the percolation strength P and the average cluster size
S. The percolation variables are essentially uncorrelated.

A first scan for values 3.1 < § < 3.5 leads to the behaviour of S shown in Fig. 4.3. It is
seen that S peaks slightly below [.; with increasing N,, the peak moves towards (.. Next,

1600 — ' | |

1400 | - 1602 - ﬁ |
o O w1282 x 2 '
% 1200 | 962 x 2 ‘fr % |
5 1000 - o 4240 % X % |
o £ %
3 800 X |
o 600 | s |
© e
Q400 + - b |
> *
< 200 r BDDDDBBD XL i

B o B BB
0 ' | | . s

3 3.1 3.2 3.3 3.4 3.5 3.6

Figure 4.3: (2+41)-d SU(2), N; = 2. Average cluster size S as function of 3 for four lattice sizes.
The curves peak clearly near the thermal threshold, represented by the dashed lines (within one
standard deviation), and tend to approach it the larger the size is.
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we carried out high-statistics simulations in a narrower range 3.410 < § < 3.457 around the
transition. In general, we performed between 30000 and 55000 measurements per ( value, with
the higher number taken in the region of the interval closest to the eventual critical point. The
high density of points near the threshold allows to determine quite precisely the critical indices
after the usual finite size scaling analysis that we have adopted many times in this work.

25 T T T
2.0 \ 8
2D Ising y/v
[%2]
2
‘é‘ 15 r y/v i
0
C
2
g 10 8
>
|
B
05 F o .
b 2D Ising B/v
0.0 : e
3.42 3.43 3.44 3.45 3.46

B

Figure 4.4: (24 1)-d SU(2), N; = 2. Critical exponents’ ratios derived by the slope of finite
size scaling fits for P (red line) and S (green line), plotted as a function of the coupling 3. The
blue line marks the point at which the x? is minimal. The corresponding values of the critical
exponents’ ratios /v and /v (vertical axis in the figure), are in good accord with the 2D Ising
values, represented by the horizontal dashed lines.

In Fig. 4.4 we present the variation with § of the values of the exponents’ ratios obtained by
log-log finite size scaling fits for P and S. The 3 value corresponding to the best x? is indicated
by the vertical line in the figure. The values of §/v and /v around that point are, within errors,
in the universality class of the 2D Ising model. The final results are reported in Table 4.1.

‘ | Critical point | B/v ‘ v/v ‘ v ‘
Percolation results || 3.44370000 | 0.12870953 | 1.7527095¢ | 0.9870-07
Thermal results 3.46470012 | 1/8 = 0.125 | 7/4 = 1.75 1

Table 4.1: Thermal and percolation critical indices for (2 + 1)-d SU(2), N, = 2. As exponents
for the thermal transition we adopted the exact 2D Ising exponents, the value of the threshold
is taken from [62].
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The critical values of the coupling for the thermal and the geometric transition are very close,
although they do not overlap within one standard deviation. In view of the inevitable approx-
imations involved by our procedure, small deviations are not unexpected. However, the fact
that the critical percolation exponents agree with the Ising values and not with the 2D ran-
dom percolation ones shows clearly that our clusters are, with good approximation, the physical
‘droplets’ of the system.

4.5.3 Numerical Results for (3+1)-d SU(2)

As finite temperature SU(2) in (3 4+ 1) dimensions is more interesting than in (2 4 1), because
it describes a system in the ‘real’ 3-dimensional space, we carried on a complete study of the
model, analysing both the thermal and the geometrical transition.

We performed four sets of simulations in correspondence to the following lattice sizes: 163 x 2,
243 % 2, 303 x 2, 40° x 2. The Monte Carlo update is the same we have used in the previous
case, i. e. it alternates heat bath and overrelaxation moves, in the ratio 1 : 2. We evaluated
configurations every ten updates for each lattice size and value of the coupling 3. The percola-
tion data are uncorrelated; the thermal variables instead show some important correlation (the
autocorrelation time 7 is about 10 for the magnetization on the 403 x2 lattice near criticality).
The number of measurements varies from 10000 to 80000. We used the density of states method
(DSM) [45] to interpolate our data. Fig. 4.5 shows the results of the interpolation for the
physical susceptibility

x =V ((L*) = (L)?), (4.30)

T T T T T
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40

20 size 16° x 2

1 1 1 1 1

187 1871 1.872 1.873 1.874 1875 1.876
B

Figure 4.5: (3 + 1)-d SU(2), N; = 2. Physical susceptibility x as function of § for four lattice
sizes. For each curve we got 4000 interpolation points.
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where L is, as usual, the lattice average of the Polyakov loop and V the spatial lattice volume.

To find the thermal threshold we used the Binder cumulant?

(L)
- | 4.31
" (431)
2.4 ' | | é I
size 163 x2
2.2- size 243 2 |
size 307 x 2
2 |
18 o -
N =
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l | | | ) 1
187 1872 1874 1876 1.878 1.88
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Figure 4.6: Binder cumulant as function of g for (3 + 1)-d SU(2), N, = 2.

We put the interpolated curves in Fig. 4.6. They clearly cross at the same point, around
B = 1.8734, which gives a good idea of where the thermal transition takes place.

To determine precisely this point we used the y? method [10]. We applied this method to the
absolute value of the lattice average of the Polyakov loop |L|, to the physical susceptibility x and
to the derivative of the Binder cumulant with respect to 5. In this way we could also evaluate
the critical exponents ratios 3/v, v/v and 1/v. Both the threshold and the exponents’ ratios
are shown in Table 4.2.

We began our percolation studies performing some test runs for different lattice sizes to check
the behaviour of our percolation variables around criticality. Fig. 4.7 shows the behaviour of
the average cluster size S for three lattice sizes, 24% x 2, 303 x 2, and 403 x 2 respectively.

To get the critical point of the geometrical transition we made use of the percolation cumulant.
In Fig. 4.8 one can see the percolation cumulant as a function of 3 for 24% x 2, 303 x 2 and
40% x 2. The lines cross at the same point within the errors and that restricts further the g
range for the critical threshold.

fSee footnote at page 52.
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Figure 4.7: (3 + 1)-d SU(2), N; = 2. Average cluster size as function of 3 near the thermal
threshold (., indicated within one standard deviation by the dashed lines.
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Figure 4.8: (3 + 1)-d SU(2), N; = 2. Percolation cumulant as function of 3 for three lattice
sizes. The curves cross close to the thermal threshold (dashed lines).
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Figure 4.9: (3 + 1)-d SU(2), N; = 2. Rescaling of the percolation cumulant curves of Fig. 4.8
using [, = 1.8747 and the 3-dimensional Ising exponent v;s = 0.6294.
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Figure 4.10: (34 1)-d SU(2), N, = 2. Rescaling of the percolation cumulant curves of Fig. 4.8
using [, = 1.8747 and the 3-dimensional random percolation exponent vgp = 0.8765.
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Figs. 4.9 and 4.10 show the rescaled percolation cumulant using 8. = 1.8747 and the two
major options for the exponent v, respectively the Ising value and the random percolation one.
From the figures it is evident that the critical exponent v, of the scaling function is the Ising
exponent and not the random percolation one.

To evaluate the exponents’ ratios 3/v and /v we performed high-statistics simulations in the
range where the percolation cumulant curves cross each other. To improve the precision of the
scaling fits we considered several lattice sizes (all even values of the lattice side L between 18
and 40). The number of measurements we took for each value of the coupling varies from 50000
to 100000. The final results are reported in Table 4.2.

‘ H Critical point ‘ B/v ‘ v/v ‘ v

Percolation results || 1.8747+3:9%02 | 0.528*0:012 | 1.98570:013 | 0.63270-91°

Thermal results || 1.8735700003 | 0.523%0-01% | 1.9590:959 | 0.63010-05

3D Tsing Model 0.5187(14) | 1.963(7) | 0.6294(10)

Table 4.2: Thermal and percolation critical indices for (3 4+ 1)-d SU(2), N, = 2: first approach.

The critical exponents we found, both for the thermal transition and for the geometrical one,
are in good agreement with each other and with the ones of the 3-dimensional Ising model.

Again, the values of the two critical points are very close but they overlap only within two
standard deviations, like in the (2 + 1)-d case. However, our value of the thermal threshold
is much more precise than the value we adopted for (2 + 1)-d SU(2) (see Table 4.1). In this
respect, the accord for (3 + 1)-d is better than the one for (2 + 1)-d. This fact is not a surprise.
In fact, the error induced by the truncation of the strong coupling expansion to the first term
(see Section 4.5.1) is smaller the smaller 3, is, so that the approximation is better in the (3 +1)
dimensional case (8, = 1.8735) than in the (2 4 1)-d case (5, = 3.464).

4.6 Second Approach: Projection on Ising-like Spin Models

4.6.1 Beyond the Strong Coupling Limit

On the ground of our previous investigations, we can say that the effective theory, derived by
means of the strong coupling expansion of Section 4.5.1, allows to map the critical behaviour
of finite temperature SU(2) pure gauge theory into a geometrical percolation framework. Our
procedure was, necessarily, approximate; nevertheless the results are encouraging.
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We must point out that a drawback of the method is the fact that its validity is limited to the
strong coupling limit of SU(2) (i.e. for small N;). If we want to address the deconfinement
problem more generally, an investigation of the weak coupling limit becomes compulsory.

Since, in this case, high temperature expansions do not help, the derivation of an effective theory
from the SU(2) lattice action seems prohibitively complicated. We thus decided to try to extract
the effective theory we need by analysing directly the Polyakov loop configurations. This can be
done by using techniques developed in Monte Carlo renormalization group studies [63, 64, 65].

To simplify the things, we assume the Z(2) global symmetry to be the only relevant feature at the
basis of the critical behaviour of the theory. This assumption is rather strong but reasonable,
since the Z(2) symmetry seems to be the only unifying feature of all theories in the Ising
universality class.

In this way, we can limit ourselves to analyze the configurations of the signs of the Polyakov
loops, so that we perform a sort of projection into Ising-like spin configurations. This approach
has been successfully applied by Okawa to define an effective Hamiltonian for SU(2), in order
to look for the fixed point of the theory by means of block-spin transformations [12].

The effective Hamiltonian H(s) of the signs {sn} of the Polyakov loop configurations can be
defined through the equation [12]

exp[H(s)] = / (U] T Slsms sgn(Tn)] exp(Ssir), (4.32)

where L,, is, as usual, the value of the Polyakov loop at the spatial point n and Sgr2 the SU(2)
lattice action. We stress that we include the factor —% in the definition of the Hamiltonian. Eq.
(4.32) shows that all degrees of freedom of the original SU(2) field configurations are integrated
out, leaving only the distribution of the corresponding Ising-projected configuration.

The problem is now how to determine the expression of #(s), starting from the original Polyakov
loop configurations.

In general, we write
H(s) = k0%, (4.33)

in which &, are the couplings, O® the spin operators and a sum over the index « is understood
(e.g. in the Ising model there would be only a single operator O = Zij 5i55). Once we select the
number and the type of operators, to fix the form of #H(s) we need just to calculate the values
of the couplings k.

To solve this problem, Okawa proposed to use Schwinger-Dyson equations, which are derived
by exploiting the Z(2) symmetry of H(s) [13].
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Suppose to select some point n of the spatial volume. We can then rewrite Eq. (4.33)
H(s) = kaOf + A Hy, (4.34)

separating the terms depending on the spin s, at n (O2) from the ones which are independent
of sp (A Hp). We assume Of to be linear in s,. This assumption is by no means restrictive,
since all even powers of the spin variables are equal to 1, and consequently any product of spins
can be reduced to a form where each spin appears at most linearly.

The thermal average of the operator Oy is

>~ On exp[H(s)]
(op) = & = (4.35)

(Z is the partition function). If we perform a change of variable inside the sum, ‘flipping’ the
spin variable s, to —sp, the operator O, will change sign and Eq. (4.35) becomes

S O5 exp[—kaO% + A Hy]
{s}
7 =
<On> Z

S Of exp(—2k,02) exp(ka02 + A Hy,)
{s}

Z
= —(O) exp(—2k,0%)). (4.36)

Eq. (4.36) establishes a relation between thermal averages of the operators Oy, and the couplings
k~. The equations (4.36) are, however, implicit in the couplings. They can be solved by means
of the Newton method, which is based on successive approximations. One starts by making a
guess about the values of the couplings; we indicate by &, such initial values. We can develop
the exponential

exp(—26,03) = exp{ 20, + (1, — )03} ~ exp(~2,09)[L - 205 — A5)OL]  (4.37)

Combining (4.37) and (4.36), we finally obtain for the first approximation of &,
1
iy (1) = iy + 5(OJ00) T [(07) + (OF exp(=26507))]- (4.38)

From the Polyakov loop configurations we can calculate the thermal averages of the operator
expressions present in (4.38). Next, we use the results s, (1) of the first iteration as input values
in Eq. (4.38) and we get some values k- (2). After a sufficient number N of iterations, the series
of partial values for the x,’s will converge, i. e. £, (N +1) = £, (NN) within errors, V. The final
set of couplings is the solution of Eq. (4.36).

We notice that the general set of equations (4.36) refers to a single point n of the spatial volume.
The thermal averages are independent of the particular point n, so it doesn’t matter where we
decide to take the averages. Nevertheless, since we aim to reduce as much as possible the errors
of the couplings, we chose to determine the thermal averages at each point of the lattice, and
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to calculate successively the average value of the couplings obtained by solving the equations at
any point. This reduces considerably the effect of thermal fluctuations and, consequently, the
errors on the final x,’s.

So, we have now all necessary tools to derive an effective theory for SU(2) out of the Polyakov
loop configurations. We still have to specify what kind of spin operators should appear in
the expression (4.33) of the hamiltonian #(s). We can in principle choose any operator which
respects the Z(2) symmetry. Nevertheless, our choice is bound by the condition for the effective
spin model to have an equivalent percolation formulation. As far as this is concerned, we know
that the original Coniglio-Klein picture of the Ising model can be extended to general spin
models, as long as the interactions are spin-spin and ferromagnetic (see Section 3.2.1). We
proved this result for continuous spin models, but it remains valid also in the simpler case of
Ising spins.

Because of that, we impose that our O% are spin-spin operators. Our ansatz for the effective
Hamiltonian H(s) is thus

H(s) = nlzsis]' + Ko Z SEps; + K3 Z Smsn + etc., (4.39)
NN NTN NTNTN

where the distance between coupled spins increases progressively starting from the simple
nearest-neighbour (NN) case (NT N =next-to-nearest, NT NT N =next-to-next-to-nearest, and
so on).

What we have to do is to check whether, including a sufficient number of operators, the Hamilto-
nian (4.39) can reproduce the Ising-projected Polyakov loop configurations of finite temperature
SU(2). In general, the approximation improves the more operators we include in (4.39), because
there will be more parameters. The fact that one must restrict the choice to some subset of
operators involves an error (truncation error) in addition to the statistical one. The truncation
error is, in general, impossible to determine and can be much bigger than the indetermination
of the effective theory due to the statistical fluctuations of the thermal averages. In this way,
the solution one finds at the end of the procedure is not necessarily a good approximation of
the original theory, but only the closest one belonging to the subspace of theories defined by
the selected set of operators. We need thus to establish a criterium to judge how well the effec-
tive theory approximates the original one. A good option could be to compare average values
got from the configurations produced by simulating the effective theory with the corresponding
quantities measured on the original Ising-projected Polyakov loop configurations. We used the
lattice average of the magnetization m,

RO

(V' is the spatial lattice volume) as test variable for this quality control.

: (4.40)

We point out that the approach we have described is independent of the value of the number N;
of lattice spacings in the temperature direction. In this respect, the method is general, although
it is not possible to predict whether it is able to provide the required solution in all cases.
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We applied the method to SU(2) in (3 + 1) dimensions, for two different lattice regularizations:
N, = 2 and N; = 4. We have already studied the case N, = 2 with the first approach (see
Section 4.5.3): this gives us the possibility to compare the two different procedures.

4.6.2 Numerical Results for (3+1)-d SU(2), N ,=2

As we are interested in the phase transition of SU(2), we focused our attention on the critical
point. The value of the critical coupling . was already determined quite precisely during the
previous investigation; our estimate was (3, = 1.87351“8:88831 (see Table 4.2). So, our aim is to
check whether, at 8 = 3., we can find a projection of the theory onto the spin model (4.39).

We performed a simulation of SU(2) at 3, on a rather large lattice, 32 x2. We chose a large
lattice to reduce finite size effects. The algorithm we used is the same described in Section
4.5.2. We measured our quantities every 70 updates, which makes the analyzed configurations
basically uncorrelated; the total number of measurements is 2000. As usual, the errors were
determined with the Jackknife method.

We began by making a projection on a model with 10 operators. Ten is, in fact, the number
of spin-spin operators considered by Okawa in his effective theory of SU(2) [12]. However,
his Hamiltonian contains also multispin operators (products of 4, 6 and 8 spins), which we
must exclude. The average of the magnetization (4.40) of the effective theory did not agree
with the one of the Polyakov loop configurations, so that we progressively enlarged the set of
operators, adding further spin-spin interactions, until we reached a set of 15 couplings. The

‘ Coupling ‘ Avg. Value ‘ Coupling ‘ Avg. Value ‘

K 0.1307(1) Ko 0.00014(10)
o 0.01905(3) K10 0.00058(3)
K3 0.00470(5) K11 0.00018(3)
Ky 0.0080(1) K12 0.00008(1)
s 0.00192(4) K13 0.00001(1)
K 0.00062(8) K14 0.00006(1)
K7 0.00033(2) kis | -0.00005(3)
Ks 0.00007(2)

Table 4.3: Couplings of the effective theory for the Polyakov loop configurations of (3 + 1)-d
SU(2) (N, = 2) at the critical coupling S, = 1.8735.
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relative operators connect a point (000) to (100), (110), (111), (200), (210), (211), (220), (221),
(222), (300), (310), (311), (320), (321), (322). The final set of couplings is reported in Table 4.3.

Fig. 4.11 shows a comparison between the magnetization distribution of the Polyakov loop
configurations and the one of the effective theory: the two histograms are very similar. The
values of the average magnetization m are also in agreement: for SU(2), m = 0.091(1) and
for the spin model, m = 0.0923(7). We notice that all the couplings in Table 4.3 are positive,
except the last one. Since the error on k15 is of the order of its average value, we can set k15 = 0
without appreciable effects. In this way, we have got the effective theory we were looking for,
with only ferromagnetic spin-spin interactions. The values of the couplings can then be used to

500 . — .
450 |
400 |
350 |
300 |
250 ¢ | ' t

200 t 1
150 | -
100 | / .
50 | ; .

0 1 o 1 Vt‘i 1
-1 -0.5 0 0.5 1

Magnetization

Occurrence

Figure 4.11: (3+1)-d SU(2), N; = 2. Comparison of the magnetization histograms derived from
the Polyakov loop configurations at (3. and the effective theory (4.39) defined by the couplings
of Table 4.3.

determine the bond weights p® of the corresponding percolation model, according to the usual
formula

p* = 1—exp(—2kq) (4.41)
(@=1,..,15).

The magnetization check indicates that the effective theory is a fair approximation of SU(2).
Anyhow, this does not necessarily imply that the two models are very close to each other, so
that we can conclude that the percolation picture of the effective theory indeed works for the
original Polyakov loop configurations. The only way to see that is to investigate the geometrical
transition of the new clusters in the SU(2) configurations.
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Therefore, we performed a percolation analysis of (3+1)-d SU(2) (N, = 2), building the clusters
according to the general definition introduced in Section 3.2.1, with the bond probabilities (4.41).
We stress that the bond weights are temperature-dependent. Our effective theory represents a
projection of SU(2) for 8 = (3.. But, in order to carry on our analysis, we need to evaluate the
percolation variables at different values of 3. Strictly speaking, for each (; at study we should
derive the corresponding effective theory, and use the relative set {k}; to calculate the bond
weights (4.41) at f3;. But for our analysis the previous consideration is not important. In fact,
we are interested anyhow only in 4’s which lie near (., so that the corresponding couplings of
the effective theory will change only slightly from one to the other extreme of the range. In the
specific case of our investigations, it turns out that the variation is of the order of the error on
the couplings derived by a single projection, and it is thus irrelevant for our purposes. Because
of that, at each 3, we shall use the same set of bond probabilities, namely the set determined
by the couplings of Table 4.3.

We considered four lattice sizes: 24%x2, 303x2, 40°>x2 and 503x2. Taking the measurements
every 10 updates, the percolation data are uncorrelated, even for the 50°x2 lattice. Fig. 4.12
shows the behaviour of the percolation cumulant as a function of 3.

1 . . , | | |
243 x2 —+—
308 x 2
g 087 40%x2 xo —
3 5 .
g 50 x 2 ] -
L * X . i
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Figure 4.12: (3 + 1)-d SU(2), N = 2. Percolation cumulant near the critical point for four
lattice sizes.

The four curves cross remarkably well at the same point, within errors, in excellent agreement
with the thermal threshold, indicated within one standard deviation by the dashed lines. The
rescaling of the percolation cumulant curves indicates that the percolation exponent vpe,. = v7s
(Figs. 4.13 and 4.14).
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To determine the exponents’ ratios 3/v and /v, we used the usual finite size scaling procedure,
performing simulations at criticality of many different lattice sizes to improve the quality of the
scaling fits (we took even values of the lattice side L between 20 and 50). Unfortunately, we
could not determine /v, because of strong fluctuations of the percolation strength P around
Be. The value of P at criticality is, in general, quite small, and it suffers more than S the
approximations involved by our procedure. Consequently, the slopes of the data points in the
log-log scaling fits of P vary wildly, and the error of 3/v turns out to be too large. On the other
hand, /v can be evaluated with the usual accuracy (= 1%) and its value is in agreement with
the one of SU(2) (Table 4.4).

‘ H Critical point ‘ v/v ‘ v

Percolation results || 1.8734(2) 197710010 | 0.628T0059

Thermal results || 1.873570:0003 | 1.95973:902 | 0.63070-008

3D Tsing Model 1.963(7) | 0.6294(10)

Table 4.4: Percolation critical indices for (3+1)-d SU(2), N; = 2, with the new cluster definition.
We also put for comparison the thermal results determined in Section 4.5.3. and the 3D Ising
values.

In conclusion, in spite of the several approximations we were forced to introduce to define the
percolation picture with the second approach, for N, = 2 the new clusters seem again to follow
the behaviour of the thermal quantities. Besides, the value of the critical threshold is better
than the one determined by the first approach.

4.6.3 Numerical Results for (3+1)-d SU(2), N =4

The case N, = 2, discussed in the previous section, is important because it shows that the new
percolation approach can be successfully applied and because it confirms the result obtained in
Section 4.5.3, even if the two types of clusters have apparently nothing to do with each other.
However, for N, = 4, the things get more interesting, since the new method allows us to explore
this case, which is instead unaccessible to the first approach.

As far as the thermal critical behaviour is concerned, we adopted as reference values the results
of a recent study of Engels et al. [10]. In particular, in [10] the critical point 8. was determined
with great accuracy: (. = 2.29895(10). We simulated (3+1)-d SU(2) at 8 = 2.29895 and looked
for the corresponding effective theory. The lattice size was 323 x4, the number of measurements
2000; we evaluated the configurations every 60 updates to have them uncorrelated.

We tried first to use the same set of 15 operators which worked so well in the N; = 2 case.
Unfortunately, the effective theory we obtained fails in reproducing the behaviour of the mag-
netization. There is, in fact, a clear discrepancy between the average values. This fact is not
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unexpected: it is known that, by increasing N, longer range interactions come into play. We
then enlarged further on the set of spin-spin operators. For 19 operators, we got the set of
couplings reported in Table 4.5.

‘ Coupling ‘ Avg. Value ‘ Coupling ‘ Avg. Value ‘

K1 0.08390(4) K11 0.00082(5)
K 0.01839(5) K12 0.00055(4)
K3 0.00775(4) K13 0.00035(2)
K 0.00697(1) K14 0.00030(4)
K 0.00343(2) K1 0.00013(4)
K 0.00197(1) K16 0.00020(5)
K7 0.00114(1) K17 0.00018(3)
ks 0.00083(1) K1 0.00017(1)
Ko 0.00035(6) K19 0.00017(4)
K10 0.00105(9)

Table 4.5: Couplings of the effective theory for the Polyakov loop configurations of (3 + 1)-d
SU(2) (N; =4) at the critical coupling 8. = 2.29895.

The new 4 operators connect a point (000) to (330) (k1g), (331) (k17), (332) (k1g) and (333)
(k19). The average value of m from the effective theory is now 0.121(3), in agreement with the
SU(2) value 0.128(6).

We see that all interactions are ferromagnetic. So, also for N, = 4, there seems to be a promising
effective theory that we can exploit to carry on percolation studies.

Next, SU(2) simulations were performed on the following lattices: 24%x4, 303x4, 40%x4 and
503x4. To build the clusters we use the bond weights relative to the set of couplings of Table
4.5, for any value of the SU(2) coupling /3 (see Section 4.6.2). We took the measurements every
10 updates for any coupling and lattice size; in this way the percolation data are uncorrelated.

Fig. 4.15 illustrates where the geometrical transition takes place: the crossing point of the
percolation cumulant curves concides with the thermal threshold (dashed line) within errors.
The scaling analysis of the cumulant curves can be seen in Figs. 4.16 and 4.17. Also here it
turns out that vp.. = v7s. The final results of the finite size scaling analysis are presented
in Table 4.6. To get better scaling fits we considered again several lattice sizes close to the
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Figure 4.15: (3 + 1)-d SU(2), N; = 4. Percolation cumulant near the critical point for different
lattice sizes.

critical point, taking for the lattice side L all even numbers between 20 and 50. The value of
the exponents’ ratio §/v is missing for the same problem stressed in the previous section.

‘ H Critical point ‘ v/v ‘ v ‘

Percolation results || 2.2991(2) 1.97970:918 1 062970097

Thermal results 2.29895(10) 1.944(13) | 0.630(11)

3D Tsing Model 1.963(7) | 0.6294(10)

Table 4.6: Percolation critical indices for (3+1)-d SU(2), N, = 4. They are compared with the
thermal results of [10] and the 3D Ising values.

We notice that /v is not in accord with the corresponding SU(2) estimate taken from [10].
Nevertheless, it overlaps with the 3D Ising value, although the agreement is not as good as in
the N, = 2 case. This fact indicates that, for N, = 4, the effective theory (4.39) does not
approximate SU(2) so well as for N; = 2. The main reason could be the approximation induced
by the condition that the theory must contain only spin-spin operators. As a matter of fact,
Okawa showed that, going from N; = 2 to N, = 4, multispin couplings become important [12].
Besides, for N, > 4, we do not exclude that antiferromagnetic couplings may appear, which
cannot still be handled in a percolation framework.



98 CHAPTER 4. PoOLYAKOV LOOP PERCOLATION IN SU(2) GAUGE THEORY

1 T T T T T T
243 x 4 —+— .
30% x 4 L
E 08 B 403 X 4 . N 7
o 3 ¥
g 50 x4 &
8 0.6 ; i
c e
.S +
s 0.4 r i
: P
()
o 02+ }Xg |
N
%
0 1 1 1 1 1 1
-0.8 -06 -04 -0.2 0 0.2 0.4 0.6
1/
(B-BJL™s

Figure 4.16: (3+1)-d SU(2),

N, = 4. Rescaling of the percolation cumulant curves of Fig. 4.15

using [, = 2.2991 and the 3-dimensional Ising exponent v;s = 0.6294.
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We stress that our aim was to check whether it is possible to find a percolation picture for
SU(2) which works in the weak coupling regime as well. For N, = 4 the cluster definition of our
approach leads to a percolation transition which reproduces fairly well the thermal counterpart.
The arguments we have presented above suggest that our method may fail for N, > 4; this
statement should be verified through numerical simulations.
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Summary

We have seen that the Coniglio-Klein percolation picture of the paramagnetic-ferromagnetic
transition of the Ising model can be used, with suitable modifications, to describe the sponta-
neous symmetry-breaking of a wide class of theories.

In particular, there seems to be a one-to-one correspondence between spin-spin interactions and
geometrical bonds connecting the spins involved in the interactions. The probability for a bond
to be active is a simple function of the associated coupling strength. We have found out that
the spin variables need not be discrete like in the Ising model, but they can vary continuously
in a range, and even be n-components vectors, like in O(n) spin models. The only difference in
the percolation picture is that the bond probability is local, since it depends on the values of
the spin variables at the sites connected by the bond.

In the more general case of a theory characterized by more interactions, the percolation picture
can be trivially extended if all interactions are spin-spin and ferromagnetic. For that, one needs
just to combine together all bonds corresponding to each interaction. It is not clear whether
it is possible to formulate a general percolation frame in the presence of frustration. Besides,
if multispin couplings have a geometrical counterpart, more complicated objects than simple
bonds (e.g. plaquettes) may be involved. This could lead to a highly non-trivial representation,
which is still far from being established.

The possibility of dealing with continuous degrees of freedom opens the way, in principle, to a
possible application of percolation models to field theories. We considered the case of SU(2)
pure gauge theory, because its critical behaviour is identical to the one of the Ising model and
we hoped that such connection could simplify our task.

We stressed that no rigorous percolation picture a la Coniglio-Klein is possible as long as we
do not know the exact expressions of the interactions between the Polyakov loops. This fact
forced us to approximate SU(2) by means of special effective theories, for which an equivalent
percolation model exists. We have followed two different approaches to extract a suitable effective
theory.

The first approach, based on series expansions of the SU(2) lattice action, works rather well but
its validity is limited to the strong coupling limit.
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The second approach is more a brute force procedure, since it aims to find an Ising-like spin
model, with just spin-spin interactions, which reproduces the configurations of the signs of the
Polyakov loops. The new method leads to good results both in the strong coupling case we had
examined with the first approach (N, = 2) and if we move towards the weak coupling limit
(N; = 4). However, for N; = 4 the approximation looks worse than for N, = 2. More precisely,
the value of the exponents’ ratio y/v seems to shift slightly towards the random percolation
value, even if it is still in agreement with the Ising ratio. This can mean that the procedure is
not reliable for higher values of N;. As a matter of fact, we have to recognize that our ansatz for
the Hamiltonian of the effective model is probably too restrictive, and that multispin couplings
may become important for big N;’s. Moreover, the precision of the method decreases the more
spin-spin operators we introduce. In fact, if we analyze any time the same number of SU(2)
configurations, the errors on the final couplings of the effective theory are of the same order,
no matter how many couplings we have. Consequently, the corresponding uncertainty on the
model is the greater the more the couplings are. The Polyakov loop clusters, which are built by
using the bond weights calculated from the couplings of the effective theory, become thus less
and less defined. In order not to lose accuracy, one must lower the error on each single coupling,
and that is possible only if we increase the number of SU(2) configurations to analyze, which
can lead to prohibitively lengthy simulations.

In conclusion, the second approach has certainly some drawbacks. Nevertheless, it allowed us
to define some Polyakov loop clusters which have, with good approximation, the properties of
the physical droplets of SU(2) we were looking for, also in a case which approaches the weak
coupling limit (N, = 4). For this reason, the second approach is to be preferred to the first one,
which strongly depends on a special lattice regularization of SU(2).

From our investigations it is not possible to argue whether the critical behaviour of other field
theories can be described by means of percolation. The strict relationship between SU(N) gauge
theories and Z(N) spin models can represent a useful tool to devise suitable percolation pictures
for the gauge theories starting from results known for the simpler spin models. In principle, that
is exactly what we have done in our case, exploiting the analogy between SU(2) and the Ising
model. In practice, the task gets more complicated for SU(N), when N > 2. For example,
SU(3) gauge theory is certainly the most interesting case of all, because it involves the "real”
gluons. In two space dimensions, SU(3) undergoes a second order phase transition, like the
three states Potts model. Very recently [66] it was shown that the 2-dimensional three states
Potts model admits an equivalent percolation formulation, which could thus be used for SU(3).
However, SU(3) in two space dimensions is rather an academic model. One is surely more
interested in the realistic 3-dimensional case. The fact that the SU(3) phase transition in three
space dimensions is first order poses an essential problem concerning the relationship between
percolation and first order phase transitions.

The situation gets even more involved when one considers the case of full QCD, i. e. SU(3)
plus dynamical quarks, since the transition from confinement to deconfinement is probably a
crossover, i.e. it takes place without any singularity in the partition function. We have seen in
Section 2.6 that there are cases in which geometrical properties can change abruptly without a
corresponding discontinuity in the thermal variables. This could provide a criterion to define
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different phases and the relative transition in an extended sense [67]. Work in this direction is
in progress.

We conclude our summary with some general remarks concerning the method we have chosen
to study correlated percolation, i. e. Monte Carlo simulations. There is, in fact, basically no
literature about this subject, as most of the known results are based on analytical proofs, and
the few numerical studies rely on series expansions.

We point out the importance of the percolation cumulant, from which one can derive a precise
estimate of the critical point. Besides, the scaling of the percolation cumulant curves allows to get
the value of the critical exponent v, with 4—5 % accuracy for the lattice sizes we have considered.
The accuracy can be increased by analyzing larger lattices. Anyway, better estimates of v can
be obtained by using standard finite size scaling techniques, like the scaling of the pseudocritical
points (see end of Section 1.5).

We remark that, for equal statistics, the errors on the percolation variables are much smaller
than the errors on the corresponding thermal variables. The latter seems to be a general feature
of site-bond percolation, because the clusters depend as well on the bonds’ distribution. This
introduces a further random element which contributes to reduce sensibly the correlation of the
percolation measurements with respect to the thermal counterparts, which depend only on the
spin configurations. We found that the data of the percolation strength P are always more
correlated than the corresponding data of the average cluster size S.

For a study of the thermal transition variables like the susceptibility x or the Binder cumulant
gr are necessary. Such quantities cannot be determined directly from measurements on the
spin configurations, but are calculated by means of averages of powers of the order parameter.
That usually leads to big error bars on the final results of xy and g,. Instead, the percolation
counterparts of x and g,, i.e. the average cluster size and the percolation cumulant, are calculated
directly from the clusters’ configurations, so that their errors are rather small.

Hence, in order to get the same accuracy on the average values, the thermal investigation of a
model would require more C'PU time than the relative percolation study. Nevertheless we have
to point out that the errors on the thermal variables can be considerably reduced by means of
reweighting techniques like the DSM [45], which we have often used in our studies, whereas
similar interpolation methods do not exist for correlated percolation f. In this work we were thus
forced to use directly the data points in the finite size scaling fits. We think that the Fortuin-
Kasteleyn-Swendsen-Wang model we have discussed in Section 2.4 could be used to implement
an efficient method for the interpolation of Fortuin-Kasteleyn percolation data relative to the
g-state Potts model.

From the finite size scaling analysis, it turns out that the scaling behaviour of the percolation
variables is rather pure: that is clearly shown by the precision of the scaling of the percolation

YFor random percolation a reweighting method was recently proposed [68, 69]; the role of the energy is carried
out by the probability of having a configuration in correspondence of a value p of the density of occupied sites
(bonds).
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cumulants we have performed many times in this work. In particular, in all our analyses,
corrections to scaling seem negligible, and finite size effects disappear already for relatively
small lattice sizes. This is quite impressive, especially when one makes comparisons with the
thermal variables, which are normally strongly affected by such perturbations. Nevertheless,
we have to keep in mind that the accuracy on our evaluation of the critical exponents has
always been about 1 — 2%, which is good for our purposes ¥ but not exceptional. Moreover,
the percolation data of our SU(2) studies are already affected by the approximations involved
in the determination of the effective theory, which are by far more important than eventual
corrections to scaling. On the other hand, if we want to obtain more accurate estimates of
the results for models which admit an exact percolation formulation, like the continuous spin
models of Chapter 3, corrections to scaling may become important: in high precision numerical
studies of random percolation that seems indeed to be the case [23]. We remind that we have
almost always adopted free boundary conditions for the cluster identification. The results on
O(n) spin models, however, suggest that the situation could be further on improved by using
periodic boundary conditions (see Section 3.3).

$We remind that for the systems we investigated we had to check whether the critical exponents of the perco-
lation transition agree with the thermal exponents of the system or rather with the ones of random percolation.
The thermal exponents of all the models we have considered differ from the random percolation exponents of
about 10 — 20 %, so that our accuracy is good enough to distinguish the two cases.
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Cluster Labeling

Suppose we want to perform percolation studies by means of lattice Monte Carlo simulations.
We can divide the process in two phases:

e a configuration is created specifying, according to the percolation model we have chosen,
which sites are occupied and which ones are empty;

e all occupied sites of the configurations are set into clusters, following the prescription of
the percolation model (pure site, site-bond, etc.).

The first phase depends on the type of system we are studying. In the case of random per-
colation, for instance, one needs just a good random number generator to create the required
configurations. First, one fixes the value p of the density of occupied sites. In general one
associates a random number r between zero and one to a lattice site and compares it with p.
If r < p, the site is occupied, otherwise it is empty. The procedure is repeated for all sites
of the lattice. In the case of correlated percolation, the configuration is created by means of
suitable Monte Carlo algorithms. For example, in the Ising model, the spin configurations can
be produced by standard updates like Metropolis, heat bath, or cluster algorithms. Anyhow,
such procedures will assign a value of the spin to each lattice site. Suppose we define the sites
as occupied if their spins point up, then also the percolation frame will be established.

The delicate point is then represented by the second phase of the process that we have mentioned
above, namely the cluster building. To identify a cluster configuration one needs essentially to
associate to each site some label L, which indicates that the site belongs to some cluster. What
we would like to have is an algorithm which gives all sites within the same cluster the same
label, and gives different labels to sites belonging to different clusters. If this is possible, the
search of an eventual percolation cluster becomes trivial. In fact, it suffices to check whether the
same label is present in two opposite sides/faces of the lattice. Besides, the size s of a cluster is
simply determined by counting how many times a particular label occurs in the lattice.
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Figure A.1: Scheme of a 3x5 lattice with 11 occupied sites, which we want to set into clusters
according to the pure site percolation rule.

To have an idea of the difficulties to find a suitable and efficient algorithm for the cluster labeling,
we take as example the simple configuration we have sketched in Fig. A.1. The black points
represent the occupied sites of the lattice, and we want to identify the relative site percolation
clusters.

We can ask the computer to start from the top-left site and to proceed from left to right within
each line, and then from the top to the bottom. Any time, the program will check whether
the site (S) it analyzes is occupied or not. Assuming it is, one checks its left (L) and top (7)
neighbours. If none of them is occupied, S takes a label which has not been used previously; on
the other hand, if at least one of such neighbours is also occupied, say L, S will take the label
of L (we notice that both L and T have been previously examined and therefore, if occupied,
they carry some label).

Now we can start our procedure for the configuration of Fig. A.1. The top-left site is occupied, it
therefore receives the label 1. The next occupied site is the third from the left: its left neighbour
is empty and above there are no lattice sites, so that it gets a new label 2. The same happens
for the last site of the top line, which receives the label 3. For the first line we then obtain the
following labeling, where the zeros indicate the empty sites:

1020 3

The first site of the second line is occupied, like its top neighbour, which carries the label 1.
Hence the new site takes also the label 1. For the same reason the next occupied site of the
second line receives the label 2, like the third one. But when we arrive to the last site of the line,
we have a problem: in fact, this site is connected to both its neighbours, which carry different
labels. Which label shall we then associate to it? The present situation is sketched by the
scheme below

—_ =
N DN
N O
~ W

o O



107

The crucial point is that the site in question connects two clusters which were so far separated.
From now on, the labels 2 and 3 mark thus one and the same cluster. We assign to our
troublesome site the smaller of the two labels, but we have to keep in mind that all sites marked
by 3 must be finally switched to 2. The simplest way of doing that is to ask our computer to
come back to the top-left lattice site and to mark with the label 2 all encountered sites which
carry the label 3. But this process would be very time consuming, since it would force the
computer to scan the lattice a number of times which is of the same order of the lattice volume
V. The total number of operations involved by the procedure of cluster labeling would thus
grow as V2, which makes the relative computing time prohibitively large for big lattice sizes.
We would rather like to have a computing time proportional to the lattice volume.

Hoshen and Kopelman [70] found a smart way to solve the problem. One needs just to associate
to each label M a number, which we indicate N(M). Such number takes into account the
relations between cluster labels that one finds while scanning the lattice. So, when we introduce
anew label M, we set N(M) = M. If, at some stage, the cluster M turns out to be connected to
another cluster P, with P < M, like in our example (M = 3, P = 2), then we reset N(M) = P.
With this prescription let us proceed with the analysis of our configuration. The label 1 is
obviously fundamental, since it is the first we have introduced, so that N(1) = 1. The label 2
marks a cluster which has, so far, no connections with 1, and therefore N(2) = 2. The same for
the third label, before one examines the crucial case at which we interrupted our analysis, so
N (3) = 3. The site we have indicated through the question mark obtains now the label 2. The
fact that the clusters 2 and 3 are the same leads us to reset N(3) = 2. Finally, let us investigate
the third and last line of the lattice. The first two sites are simple to identify: they both receive
the label 1. The third one establishes a connection between the clusters 1 and 2. Because of
that, the site takes the label 1 and N(2) = 1. We end up with the following situation

In this way we need to go through the whole lattice once and to store the connections found
later in the ”label of labels” array N. To finish our job, we must assign to each site the right
label. For that we just have to classify all labels which have been introduced. Let us assume
that we take a label M. The first thing to do is to check whether N(M) = M. If it is so, all
sites marked with M carry the correct label. If, otherwise, N(M) = P < M, then one has to
check whether P is a fundamental label, i.e. whether N(P) = P. In this case, we reset the
label M to the new value P. If N(P) = L < P one repeats the procedure until one finds that
N(S) = S for some label S, which becomes the final label of the sites initially marked with M.
It is easy to check that this iterative procedure leads to the correct cluster labeling of the sample
configuration of Fig. A.1l.

In conclusion, the Hoshen-Kopelman algorithm is a very efficient method for the identification
of the cluster configurations which is necessary to carry on numerical percolation studies on a
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lattice. The algorithm requires essentially a single scan of the lattice and the label classification
we have described above, which can be done by means of simple routines in the program.
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