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Introduction

The study of critical phenomena has always been one of the most challenging and fascinatingtopics in physics. One can give many examples of systems which undergo phase transitions,from familiar cases like the boiling of water in a kettle or the paramagnetic-ferromagnetic tran-sition of iron at the Curie temperature, to the more complicated case of the transition fromhadronic matter to quark-gluon plasma which is likely to be obtained by high-energy heavy-ionexperiments in the coming years. In all cases, one observes big changes of some properties ofthe system caused by small variations of some parameter (usually the temperature) around aparticular value of the parameter (critical point).In spite of the wide variety of systems in which such phenomena are observed, one has only twomain types of phase transitions: �rst order and continuous (basically second-order) transitions.One of the most attractive features is the fact that whole classes of systems, ruled by dynamicswhich look very di�erent from each other, happen to have the same behaviour at the phase tran-sition. This is particularly striking for second-order phase transitions, as one can de�ne a set ofcritical indices (exponents, amplitudes' ratios), which rule the behaviour of the thermodynamicvariables near the critical point: all systems belonging to a class are characterized by the sameset of critical indices (universality). It is not clear which common elements "unify" di�erentsystems so that they have the same critical behaviour; however, it seems that the number ofspace dimensions plays an important role. This connection to geometry is at the basis of ourfuture considerations.In general, a phase transition corresponds to a change in the order of the system. Going from aphase to another, the microscopic constituent particles of the system "choose" a di�erent way ofstaying together. The interesting thing is the fact that the order is a macroscopic feature, whilethe fundamental interactions which are responsible of the physics of the system, including thephase change, are microscopic interactions between the particles. How can parts of the systemwhich are far from each other know about their respective situations, so that they switch alltogether to the same state of order?The usual interpretation of this fact is that the interplay of the microscopic interactions allthroughout a system at thermal equilibrium gives rise to a correlation between the states of theparticles. The extent of this correlation depends on the thermal parameters (i.e. the temper-ature, eventual external �elds, etc.) and it is expressed by the so-called correlation length �,



2 Introductionwhich is the distance over which the uctuations of the microscopic degrees of freedom (positionof the atoms, spin orientation, etc.) are signi�cantly correlated with each other.The correlation creates thus "ordered" regions which drive the behaviour of the whole system.Because of that, it is natural to consider such regions as the leading characters of the phenomenonand describe phase transitions in terms of the properties of compound objects. The interaction"builds" these objects: the phase transition is related to the geometry of the resulting structures.This picture has, among other things, two big advantages. First, it would justify the connectionbetween critical phenomena and geometry that we have stressed above. Second, if the degrees offreedom relevant for the phase change are the ones of sets of particles, and not of single particles,it is likely that they do not depend on the details of the microscopic interaction, but only on itsgross features (e.g. symmetries): this could explain the universality of the critical indices.On these grounds, it is easy to understand why several attempts have been made to �nd ageometrical description of phase transitions. The �rst ideas date back to the end of the 40's,when Onsager [1] proposed an interpretation of the �-transition in liquid 4He based on thebehaviour of one-dimensional strings, whose size would change dramatically from one phase tothe other: whereas in the superuid phase only �nite strings are present, at the critical pointin�nite strings appear.This kind of picture is analogous to the well known phenomenon of percolation [2, 3], whichtakes place when geometrical clusters, formed by elementary objects of some system, stick toeach other giving rise to an in�nite network, that spans the whole system. Here, criticality isreached when the density of the elementary objects is su�ciently high. The onset of percolationmarks a distinction between two di�erent phases of the system, characterized by the presenceor the absence of an in�nite cluster. The percolation phenomenon turns out to have astonishinganalogies with ordinary second order thermal phase transitions. In particular, the behaviourof the percolation variables at criticality is also described by simple power laws, with relativeexponents; the values of the exponents, related to each other by simple scaling relations, are�xed only by the number of space dimensions of the system at study, regardless of its structureand of the special type of percolation process one considers.For these reasons, percolation seems to be an ideal framework for the geometrical descriptionof phase transitions we are looking for. One could try to map the thermal transition into ageometrical percolation transition. In order to do that, one must require that the two criticalthresholds coincide, and that the thermal variables can be expressed in terms of correspondingpercolation quantities.The �rst studies in this direction started at the beginning of the 70's, and concentrated on theIsing model. The main problem was to look for a suitable cluster de�nition. The �rst structureswhich were investigated were the ordinary magnetic domains, i.e. clusters formed by nearest-neighbouring spins of the same sign. In two dimensions such clusters happen indeed to percolateat the thermal critical temperature Tc [4]. Nevertheless, the values of the critical exponents di�erfrom the corresponding Ising values [5]. Besides, in three dimensions, the magnetic domains of



Introduction 3the spins oriented like the magnetization percolate at any temperature; the domains formed bythe spins opposite to the magnetization percolate for T �Tp, with Tp 6=Tc [6].The problem was solved when it became clear that, to de�ne the `physical' islands of a thermalsystem, one must take into account correctly the degree of correlation between the spins. Thesize of the ordinary magnetic domains, in fact, happens to be too large because of purelygeometrical e�ects, which operate independently of the spins' correlation. In order to get rid ofthese disturbing e�ects, Coniglio and Klein introduced a bond probability p = 1� exp(�2J=kT )(J is the Ising coupling, T the temperature). The new islands are site-bond clusters, i.e. clustersformed by nearest neighbouring like-signed spins, which are connected with a probability p, andnot always like in the previous de�nition (p = 1). These clusters had actually been introducedsome years before by Fortuin and Kasteleyn. They had shown that, by means of such objects,one can reformulate the Ising model as a geometrical model [7]. This result indicates thatthese apparently arti�cial structures are strictly related to the Ising dynamics. Coniglio andKlein showed that the new clusters percolate at the thermal threshold and that the percolationexponents coincide with the Ising exponents [8].So, it is possible to describe the paramagnetic-ferromagnetic transition of the Ising model as apercolation transition of suitably de�ned clusters. The paramagnetic-ferromagnetic transitionis due to the spontaneous breaking of the Z(2) symmetry of the Ising Hamiltonian, i.e., thesymmetry under inversion of the spins. The spontaneous breaking of the Z(2) symmetry is alsoresponsible of the con�nement-decon�nement transition in SU(2) pure gauge theory. Becauseof that, it was conjectured that SU(2) has the same critical behaviour of the Ising model [9],i.e., it undergoes a second order phase transition with Ising exponents, as it was successivelycon�rmed by lattice simulations [10].It is then natural to see whether the SU(2) con�nement-decon�nement phase transition can bedescribed as a percolation transition like for the Ising model: this is the aim of this work.The analogue of the spin variable in SU(2) pure gauge theory is the Polyakov loop L, a realnumber which is a well de�ned function of the gauge �elds. The decon�ned region is the orderedphase of the system, characterized by a non-vanishing lattice average of the Polyakov loop. Inthis way, regions of the space where the Polyakov loop has the same sign can be viewed as local"bubbles" of decon�nement. In each of these regions, in fact, the average of the Polyakov loop isnecessarily non-zero. If we put a test colour charge into a bubble, it will be free to move withinthe portion of space occupied by the bubble. But to have a real decon�ned phase, the test chargemust be able to move freely all throughout the system, so that there must be bubbles whose sizeis of the same order of the volume of the system. A working percolation picture would supportthe proposal of such a mechanism for the decon�nement transition.The question is, again, what clusters to choose. From what we have said, it is simple to deducethat the clusters must be formed by sites at which the Polyakov loops have the same sign. Butit is not clear if and how we can extract the other necessary ingredient for the cluster building,namely the bond probability.The search of the right bond probability is a�ected by two problems:



4 Introduction� The Polyakov loop is not a two-valued variable like the spin in the Ising model but acontinuous one; its values vary in a range that, with the normalization convention we use,is [�1; 1].� The SU(2) Lagrangian is a function of the gauge �elds which cannot in general be expressedonly in terms of the Polyakov loop L.The �rst point led us to investigate continuous spin models, i.e. models where the spin is acontinuous variable, to check whether the Coniglio-Klein result can be extended to such moregeneral cases. We began by analyzing the continuous spin Ising model, which is an Ising modelwith continuous spins. We will see that, in this case, an equivalent percolation picture canbe obtained by introducing a bond weight which is similar to the Coniglio-Klein one, with thedi�erence that it contains an explicit dependence on the spins connected by the bond. This localbond probability solves the �rst of the two afore-mentioned problems. Besides, the result canbe further extended to models with several spin-spin interactions, if ferromagnetic. We will alsoshow that eventual spin distribution functions and self-interaction terms do not inuence thepercolation picture. Finally, we will analyze O(n) spin models and �nd again that their criticalbehaviour can be easily described by means of cluster percolation.The second di�culty is hard to overcome. In fact, it seems clear that the percolation picture ofa model is strictly related to the interactions of the model. In particular, a bond is associatedto each spin-spin interaction, with a probability which depends on the value of the couplingstrength of the interaction. But, if the SU(2) Lagrangian is not simply a function of L, wecannot exactly specify how the "gauge spins", i. e., the Polyakov loops, interact with eachother. It seems then impossible to derive rigorously the corresponding percolation scheme.However, we can try to solve the problem by using suitable approximations. The best thing todo is to try to approximate SU(2) pure gauge theory by means of an e�ective theory, hopingthat the e�ective model admits a percolation picture.We shall �rst exploit a strong coupling expansion derived by Green and Karsch [11], whichshows that the partition function of SU(2) can be reduced to the partition function of one ofthe continuous spin models we have analyzed. This approximation is valid only in the strongcoupling limit, more precisely in the cases N� = 1; 2 (N�=number of lattice spacings in thetemperature direction). We will analyze the case N� = 2, both in two and in three spacedimensions, and show that the percolation picture derived by the e�ective theory describes wellthe thermal transition of SU(2).Next, we will try to �nd a procedure which can be also applied to the more interesting weakcoupling case. This time we shall construct the e�ective theory starting not from the SU(2)Lagrangian, but from the Polyakov loop con�gurations. Actually we shall consider the Ising-projected con�gurations, i.e. the distributions of the signs of the Polyakov loops. This isdone assuming that the Z(2) symmetry is the only relevant feature at the basis of the criticalbehaviour.



Introduction 5We will essentially look for a model which can reproduce the Ising-projected Polyakov loopcon�gurations. The e�ective model must be necessarily chosen inside the group of spin modelsfor which a working percolation picture exists. Our ansatz will be an Ising-like model with justferromagnetic spin-spin interactions, to which the Coniglio-Klein result can be trivially extendedby associating a bond to each coupling. The couplings of the e�ective theory are calculatedfollowing a method used in Monte Carlo renormalization group studies of �eld theories [12, 13].We will examine SU(2) in 3 + 1 dimensions, for N� = 2 and N� = 4. The results will be shownto be satisfactory in both cases.Our results are entirely obtained by means of lattice Monte Carlo simulations of the variousmodels we have studied. We have always used workstations except for some lenghty SU(2)simulations which were performed on a Cray T3E (ZAM , J�ulich).This work is structured as follows. Chapter 1 is devoted to a presentation of the main conceptsof percolation theory with a special attention to numerical techniques. In Chapter 2 we focus onthe analogies between percolation and thermal phase transitions, which lead to the percolationformulation of the Ising model of Coniglio and Klein. Chapter 3 collects all percolation studieson continuous spin models that we have mentioned above. In Chapter 4 we show the results forSU(2) pure gauge theory. Finally, the conclusions of our investigation are drawn. In AppendixA we present the procedure we have adopted to perform the so-called cluster labeling, i.e. theidenti�cation of the cluster con�gurations.



6 Introduction



Chapter 1

Introduction to Percolation Theory

1.1 Definition of the problem
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Figure 1.1: Scheme of a two-dimensional random re-sistor network. The spanning structure formed bythe resistors (marked in red) allows electric currentto ow all through the material.

Let us suppose to have a piece of somematerial X which is given by the mix-ture of two di�erent substances A andB. Substance A is a metal, substanceB an insulator. One could ask oneselfwhether the material X is insulating orconducting. Fig. 1.1 schematizes the sit-uation, assuming for simplicity our sys-tem to be two-dimensional. The geom-etry of the sample X is the one of aregular square lattice, represented by theblack points. If we assume that the mix-ing process is disordered, we can visualizethe presence of the metal by distribut-ing randomly resistors between pairs ofnearest neighbouring sites. If we set avoltage between the upper and the loweredge of our sample, electric current willow through the substance if the resis-tors form a connected structure from topto bottom (red path in the �gure). Let pbe the concentration of the metal in thesubstance. Our problem can be reformu-lated in the following way: what is theminimum value of p which is necessaryto have a connected bridge of resistors all through the lattice?



8 Chapter 1. Introduction to Percolation TheoryThe system we have presented here is a random resistor network, and represents only one ofthe many applications of percolation theory [2, 3]. The original problem which gave rise to thistheory was studied by Flory and Stockmayer [14] during the Second World War. They had aset of small branching molecules and increased the number of chemical bonds between them. Inthis way larger and larger macromolecules are formed. At some stage it may happen that thechemical bonds form a structure which spans the whole system (gelation).Nowadays the set of problems which can be modelled by using percolation theory is big andvarious: di�usion in disordered media [15], critical behaviour of systems undergoing secondorder phase transitions (the topic of this work), fractality [16], spread of epidemics or �res inlarge orchards [17], stock market uctuations [18]. In this chapter we want to introduce thepercolation problem and illustrate its main features.Suppose to have some in�nite periodic latticey in d dimensions. For simplicity, we considerhere a two-dimensional square lattice. We start by distributing randomly objects on the lattice,something like placing pawns on a chessboard. At this stage we have two possibilities: we canplace our pawns on the edges of the lattice, or on its vertices. If we work on the edges we havethe so-called bond percolation: our random resistor network is an example of it. If we insteadplace our pawns on the sites we are in the site percolation case. Other choices are allowed, butthey are given by combinations of site and bond percolation (for example one can use edges andsites together). Every bond model may be reformulated as a site model on a di�erent lattice[20], but the converse is false. Therefore site models are more general than bond models andin what follows we will deal essentially with the former ones. We assume that an edge (site)is occupied with some probability p (0� p� 1), independently of the other edges (sites). Tocomplete the picture we only need to establish a rule to form compound structures (clusters)out of our pawns. Percolation theory deals with the properties of the clusters thus formed.If we increase the probability p, the clusters at the beginning will increase in number and size.Successively most of them will stick to each other to form bigger and bigger clusters until, forsome value pc of the occupation probability, an in�nite spanning structure is formed (percolatingcluster). Further increases of p lead to an increase of the size of the percolating cluster whichslowly embodies the remaining ones until, for p = 1, it invades every edge (site) of the lattice.Fig. 1.2 shows three \pictures" of this phenomenon for the so-called pure site percolation case,for which two nearest neighbouring sites always belong to the same cluster. Fig. 1.2a shows alattice con�guration corresponding to a small value of p, in Fig. 1.2b p is higher but below pcand in Fig. 1.2c p is slightly above pc.Particularly interesting is what happens for values of p near pc. The aspects related to that arecalled critical phenomena and we will focus mainly on that. Indeed, at the percolation thresholdpc a sort of phase transition takes place, because our system changes dramatically its behaviouryWe remark that the percolation phenomenon does not require a lattice structure, but it can be also studiedon continuous manifolds. However, since our work is centered on lattice systems, we will disregard continuumpercolation. The interested reader is invited to look at [19].



1.1. Definition of the problem 9

(a) (b) (c)Figure 1.2: Pure site percolation on a 2-dimensional square lattice. In (a) the density of occupiedsites is low and the clusters small. In (b) the density is increased and the corresponding clustersare larger. For a still higher density many clusters stick together to form a spanning structure(red cluster in (c)).at one particular value of a continuously varying parameter. For an occupation probability pc��(� is an arbitrarily small numer) there is no percolating cluster, for pc+ � there is (at least) one.We have de�ned the percolation process on a regular lattice in d dimensions. It is easy to seethat d must be at least 2 in order to have a critical phenomenon. Let us suppose that d = 1.Our system can be represented by an in�nitely long linear chain, as shown in Fig. 1.3.
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��Figure 1.3: Site percolation on a 1-dimensional linear chain. Nearest-neighbouring black circlesform the clusters. The crosses indicate vacancies, which separate the clusters from each other.Percolation can take place only if all sites are occupied (p = 1).The black circles in the �gure represent the occupied sites. If the occupation probability pis smaller than 1, there will be holes along the chain. But a spanning cluster in this specialcase must include all sites, therefore there can be percolation only for p = 1. There is noseparation in two phases, and that makes the one-dimensional case not as interesting as thehigher-dimensional ones. We shall thus always assume that d�2. The lattice structures onwhich we can play our percolation game are not restricted to the simple square (cubic) ones: wecan use as well triangular, honeycomb lattices (Fig. 1.4). Besides, we can use the same structurein di�erent ways, like in the case of the simple 3-dimensional cubic lattice, from which we canget three lattices: we can consider as sites just the vertices of the cubic cells, the vertices plusthe centers of the cubes (body centered cubic or bcc lattice), or the vertices plus the centers ofthe six faces of each cube (face centered cubic or fcc lattice).
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������������Figure 1.4: Scheme of a triangular lattice. If we consider as sites the centers of the triangles weget the so-called honeycomb lattice.Because of the di�erent lattice structures, the critical values of the occupation probability pcwill be in general di�erent in each case. In Table 1.1 we have listed the values correspondingto the most studied systems. We notice that, for a �xed lattice structure, pc gets smaller thehigher the dimension d of the lattice.Lattice Site Bondd = 2 honeycomb 0.6962 1-2sin(�=18)d = 2 square 0.592746 1/2d = 2 triangular 1/2 2sin(�=18)d = 3 simple cubic 0.31160 0.2488d = 3 bcc 0.246 0.1803d = 3 fcc 0.198 0.119d = 4 hypercubic 0.197 0.1601d = 5 hypercubic 0.141 0.1182d = 6 hypercubic 0.107 0.0942d = 7 hypercubic 0.089 0.0787Table 1.1: Selected percolation thresholds for various lattices.



1.2. Cluster Size 11
1.2 Cluster Size

1.2.1 Cluster DistributionOnce we have de�ned the problem, we have to see how it is possible to study the percolationphenomenon quantitatively. Percolation is a random process, because random is the way inwhich we occupy the sites (bonds) of the lattice. If we repeat the procedure over and over wewill have clusters of di�erent sizes and shapes and therefore it makes sense to study the averagesof quantities related to the clusters. In order to do that, we must study the statistics of theseclusters.In general we de�ne as size s of a cluster the number of sites (bonds) belonging to it. It isinteresting to see how the clusters are distributed according to their size. This information isexpressed by a function ns, which depends both on s and on the density p. We de�ne ns as thenumber of clusters of size s per lattice site, according to the following formulans = limV!1 NV (s)V ; (1.1)where V is the volume (number of sites) of a �nite lattice and NV (s) the number of clusters ofsize s on that lattice.
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s(a) (b)Figure 1.5: (a) Cluster distribution for site percolation on a 1003 simple cubic lattice in corre-spondence of the critical density pc = 0:3116. (b) Log-log plot of the cluster distribution shownin (a). The data are stored in bins to reduce the uctuations. The slope of the straight linegives an approximated estimate of the critical exponent � .It is generally found that, near the critical density pc and for su�ciently big values of the sizes, the distribution ns has the scaling form:ns/ s��f [(p� pc) s�]; (1.2)



12 Chapter 1. Introduction to Percolation Theorywhere f is a function to be determined in each speci�c case and � , � are critical exponents.The function f(z), however, has some general features: it is basically constant for jzj� 1 andit decays rapidly for jzj� 1. That means that, for a �xed value of the density p, ns will beappreciably di�erent from zero for those values of the size s for whichs < jp� pcj�1=� : (1.3)For p = pc the distribution is a simple power law:ns/ s�� : (1.4)Fig. 1.5a shows the cluster number distribution for pure site percolation on a cubic lattice atthe critical threshold pc = 0:3116. The lattice size is 1003 and we have analyzed 100 samplesin order to get a satisfactory statistics. The values on the y axis are the unrenormalized clusternumbers NV (s). We can see the main features of the cluster distribution, in particular the rapiddecrease with the size s. To check whether ns has really the power law behaviour of Eq. (1.4),we have plotted our distribution in log-log scale. To obtain a good quality of the plot we havetried to reduce the uctuations which are visible in Fig. 1.5a. An e�cient method to do thatconsists in dividing the s axis in bins and calculating the average of nsV in each bin. Theresult can be seen in Fig. 1.5b, where all our data are represented by few points: they lookrather stable. Eq. (1.4) is valid only for big values of s, therefore we have excluded the pointscorresponding to low values of s (s � 20) and performed a linear best �t on the remaining ones.The straight line we have drawn is in good agreement with the data points, which con�rms thecorrectedness of Eq. (1.4). The slope of the straight line is 2.13, which is a fair approximationof the exponent � for this system (� = 2:18).
1.2.2 Average Cluster SizeIf we know the cluster distribution function ns, we may ask ourselves how big on average acluster is. We must be careful in specifying what we exactly mean by "average" in this case.Let us suppose that we point randomly to a lattice site and want to know how big the clusterto which that site belongs is. If the size of the cluster is s, the number of clusters of that size(per site) is ns. Therefore, the quantity nss is just the probability of picking up a site belongingto one of those clusters. On the other hand the probability that a site of the lattice taken atrandom belongs to any �nite cluster is given byXs nss (1.5)(the sum excludes the eventual percolating cluster). So, if we hit some occupied site of thelattice, the probability ws that it belongs to a cluster of size s is given byws = nssP�s n�s�s (1.6)



1.2. Cluster Size 13Our procedure will thus lead us to the following de�nition of average cluster size S:S = Xs ws s = Ps nss2P�s n�s�s : (1.7)
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|p-pc|(a) (b)Figure 1.6: (a) Average cluster size S as a function of the density p for pure site percolation ona 2-dimensional square lattice. The curves correspond to four di�erent lattice sizes and peaknear the in�nite volume threshold pc = 0:592746, which is represented by the dotted line. (b)Average cluster size S as a function of jp� pcj for pure site percolation on a 3002 square lattice.In the logarithmic scale of the plot the scaling behaviour of S is clearly indicated by the twostraight lines, which correspond to the di�erent branches of the curve around the peak.If the sums included the eventual percolating cluster, S would become in�nite above the criticalthreshold. In this way instead the average cluster size is divergent only at the critical densitypc. Besides, its behaviour near pc is again expressed by a power law:S/ jp� pcj� (1.8)where  is another critical exponent. The behaviour of S as a function of p is illustrated in Fig.1.6a, where we present the results of simulations for pure site percolation on a square latticein correspondence of di�erent lattice sizes. The divergence of S can be seen through the peaksof the curves, which become higher and narrower the larger is the size of the lattice. Besides,increasing the lattice volume, the position of the peaks approaches the critical point of thegeometrical transition (dotted line). To check the scaling behaviour of S expressed by Eq. (1.8)we use other data relative to pure site percolation on a square lattice. In general, scaling relationsare clearer for big volumes because the e�ects due to the �nite size of the lattice are small (seeSection 1.5). In Fig. 1.6b we have plotted S as a function of jp � pcj for a 3002 lattice. Thebranches of the curve to the right and to the left of the peak are represented by the two straightlines in the �gure. They are approximately parallel, which con�rms the fact that both brancheshave a power law behaviour with the same exponent  as in (1.8). Actually the condition of



14 Chapter 1. Introduction to Percolation Theorybest parallelism of the two lines is in general obtained for a value of pc which is slightly di�erentfrom the in�nite volume one also for relatively large lattices: that shows that the in�nite volumelimit is a condition that is hard to simulate even using modern supercomputers.
1.2.3 Percolation StrengthIn introducing the average cluster size S we stressed the fact that to evaluate this variable wedon't need any information about the eventual percolating cluster. But such information isof course very important for a thorough understanding of the percolation phenomenon. Wethus introduce another variable, the percolation strength P , de�ned as the probability that anarbitrarily chosen site of the lattice belongs to the spanning cluster. P is then basically thefraction of the lattice volume which is occupied by the percolating cluster. On an in�nite latticeP is zero for any density p below the critical value pc (no percolation), and a number betweenzero and one above pc. P is the order parameter of the percolation transition, as its value allowsus to distinguish the two phases of the system.
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1.3. Cluster Structure 15relation which is obviously valid for p > pc. Fig. 1.7a shows the P curves corresponding to theS curves of Fig. 1.6a. The �nite size of our lattices allows percolation to occur also at values ofp which are smaller than pc, but the tails of the P curves to the left of pc get smaller the biggerthe lattice size is. In Fig. 1.7b we show a plot in logarithmic scale of the percolation strengthas a function of p for 6002 lattice. Disregarding the closest points to the threshold, which feelstrongly the e�ects of the �nite size of the system (see Section 1.5), the scaling behaviour of Eq.(1.9) is clearly represented by the straight line to the right of the �gure.
1.3 Cluster Structure

1.3.1 Perimeter of a ClusterMost of what we have discussed so far has to do with the size of the clusters. But there are alsoother aspects that can be studied. In particular, we can examine the cluster structure, whichcan let us know the geometrical properties of our objects. For example, how can we de�ne theperimeter of a cluster? The easiest thing to think of is the number of empty sites neighbouring acluster. In Fig. 1.8 the crosses around the cluster mark its perimeter according to this de�nition.If we count the sites of the perimeter of Fig. 1.8 we �nd that they are approximately as many asthe sites of the cluster (15 vs 12). However, from geometry we know that, in a d-dimensional

Figure 1.8: Perimeter of a small cluster. We see that the number of sites of the perimeter is ofthe same order as the size of the cluster. This fact is also valid for large clusters.space, the perimeter of an object of linear dimension L is proportional to Ld�1, while its volumeis proportional to Ld: the ratio perimeter/volume goes then like L�1. We might object that thisfact is due to the small size of the cluster we have taken in our example, and that going to largerstructures we would recover the right behaviour. As strange as it may seem, this objection isnot correct. We should not forget that our clusters are random structures; because of that, largeclusters have in general holes in their body (like the holes in a Swiss cheese). The empty sitesof these holes contribute to the perimeter as well. We can take as example the big spanningcluster of Fig. 1.2c. There are more than forty holes in it, some of which are so big that other



16 Chapter 1. Introduction to Percolation Theoryclusters are contained in them. On these grounds it isn't surprising that even the perimeterof large clusters is proportional to their size. One could still say that the real perimeter isonly the external one, i.e., it is given by the empty sites surrounding the cluster, excluding thecontribution of eventual inner holes. But even in this case, the result remains valid. We caneasily convince ourselves in the case of site percolation on a simple cubic lattice. If we take adensity p between 0:4 and 0:6, we have percolation both for the occupied and for the emptysites of the cube. In fact, both the density of occupied sites p and the one of empty sites 1� pare above the critical threshold (pc = 0:3116). Nearly every occupied (empty) site belongs tothe in�nite network of occupied (empty) sites. Thus everywhere in the lattice, each occupiedsite has with high probability at least one neighbour belonging to the in�nite cluster of emptysites. Such empty site contributes to the external perimeter, since inner holes are, of course,disconnected from the in�nite network. This simple example shows clearly that the perimeterof a cluster is proportional to its size s and not to s(d�1)=d.
1.3.2 Cluster Radius and Fractal DimensionTo examine the cluster structure it is also important to de�ne the linear dimension of thecluster, i.e., its radius. To de�ne the radius of such complicated objects may not be that easy.The need to focus on some features of the cluster geometry instead of others may lead to di�erentde�nitions. We will de�ne the radius Rs of a cluster of size s throughRs2 = sXi=1 jri � r0j2s ; (1.10)where r0 = sXi=1 ris ; (1.11)is the position of the center of mass of the cluster and ri the coordinates of the site i. If werelate Rs to the average distance between two cluster sites we get the formula:Rs2 =Xi;j jri � rjj22s2 : (1.12)(We put the origin of the coordinates at the cluster centre-of-mass.) It is interesting to checkwhether the radius Rs of a cluster is related in some simple way to the cluster size s. One �ndsthat for large values of s the following simple power law is validRs / s1=D: (1.13)The number D is called fractal dimension. An interesting feature of Eq. (1.13) is the fact thatD varies with the density p. In particular, it may take non integer values. To evaluate thefractal dimension D in correspondence of some density p we just need to test the scaling relation(1.13). However, there is a special case in which D is relatively easy to determine.



1.3. Cluster Structure 17In fact, at the critical density pc, the radius of the largest clusters on a lattice of linear dimensionL is with good approximation just L. On big lattices one can thus writes / LD; (1.14)being s the size of the largest cluster. Fig. 1.9 illustrates a numerical test of Eq. (1.14). The
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18 Chapter 1. Introduction to Percolation Theory� p > pc. The fractal dimension of a percolating cluster is, from Eq. (1.15), equal to thenumber of space dimensions of the lattice. That means that their density inside the latticeis �nite, no matter how small, i.e. the clusters cover a �nite fraction of the whole lattice.Starting from this, it was proved rigorously that there can be only one percolating cluster[21].� p = pc. In this case, as we have seen, the fractal dimension of a percolating cluster issmaller than d. The relative density of such a cluster inside the lattice is zero, like thedensity of a straight line on a plane. This would allow, in principle, the existence ofseveral percolating clusters at pc. Aizenman proved that there is indeed a small but �niteprobability to have more that one spanning cluster, even in two and three space dimensions[22].On the grounds of these results, we shall keep assuming that there is a single percolating cluster,meaning a spanning cluster with a �nite density.
1.3.3 Correlation LengthIf we take a site of a cluster, the probability that an occupied site put at some distance r fromthe �rst one belongs to the same cluster is non-negligeable as long as r is of the same order ofthe cluster radius Rs. The average value of this probability is the correlation function g(r). Ifwe sum g(r) over all distances r, we get the average number of sites connected to some occupiedsite of the lattice. The equivalence of Pr g(r) and the average cluster size S is clear. So, ingeneral: pS = Xs nss2 = pXr g(r); (1.17)relation that is valid for p < pc because, above pc, g(r) would take into account the spanningcluster as well, whereas S excludes it. Eq. (1.17) can, however, be extended also to the regionp > pc. For that it is enough to subtract the contribution of the spanning cluster from thede�nition of the correlation function g(r). The probability pinf that an occupied site s0 takenat random belongs to the in�nite cluster is given by P=p, where P is the percolation strengthP . In fact, let Sp be the size of the in�nite cluster, N the number of occupied sites and V thelattice volume. The probability pinf is given bypinf = SpN = SpV VN � P 1p: (1.18)Now, the probability that another randomly selected site sr (occupied or not), distant r froms0, belongs as well to the in�nite cluster is simply given by pinf P = P 2=p. The contributionof the spanning cluster to the correlation function is thus P 2=p. In this way, if we replace g(r)by g(r)� P 2=p, we getpXr [g(r) � P 2=p] = pXr g(r)� pXr P 2=p = Xs nss2 � P 2V = Xs0 ns0s02 = pS (1.19)



1.3. Cluster Structure 19(the sum over s0 runs over non-percolating clusters), which is the generalization of Eq. (1.17)for any value of the occupation probability p.We de�ne the correlation or connectivity length � as some average distance of two sites belongingto the same cluster: �2 = Pr r2g(r)Pr g(r) ; (1.20)The sum over r can be written as a sum over the cluster size s following this reasoning. If wepoint to an occupied site of the lattice, the probability g(r) will be zero for all sites which donot belong to the same cluster. So, we have basically to perform a sum only within each clusterand average over all clusters of the lattice. Now we have to express Eq. (1.20) in terms ofs-quantities. Let us take at random a site i of the lattice. Supposing it belongs to a cluster ofsize s, we have Xr g(r) = pXs 1sXi Xj jri � rjj2nss (1.21)where the indices i and j run over all sites of the cluster. The probability that any site belongsto a cluster of size s is nss, and that weighs the distance jri � rjj2 in our equation. The secondsum (divided by s) corresponds to averaging over the site i picked up at the beginning. FromEq. (1.12) we get Xi;j jri � rjj2 = 2Rs2s2: (1.22)by which we can write Xr g(r) = pXs 2Rs2nss2 : (1.23)The denominator of Eq. (1.20) can be easily rewritten using Eq. (1.17), so that we �nally obtain�2 = Ps 2Rs2nss2Ps nss2 : (1.24)Eq. (1.24) shows that the correlation length is basically determined by those clusters which givethe main contribution to the average size S: � is essentially the average radius of those clusters.Approaching the critical density, the correlation length as well as S are thus divergent at pc.From what we have said it is not surprising that, for p� pc, also � has a power law behaviour,� / jp� pcj�� (1.25)with � as critical exponent. There is, however, much more than that. It is rather easy to arguethat all divergencies we have encountered so far are also due to the clusters which are responsiblefor the divergencies of the average size S and the correlation length �. For all variables, indeed, akey role is played by the cluster number distribution ns, which is explicitly or implicitly present



20 Chapter 1. Introduction to Percolation Theoryin all our de�nitions. We have actually seen above (Eq. (1.3)) that there is a sort of cuto� for thesize of the clusters for which ns is non negligible: the properties of these clusters determine thecritical behaviour of the percolation phenomenon. In particular, the divergence of the correlationlength is at the basis of the scaling laws we have met up to now, as we will explain more indetail in the next section. If the behaviour of all variables we have introduced is determined bythe few properties of some special clusters, it is easy to deduce that the corresponding criticalexponents, which �x the functional dependence on p of the variables at criticality, are somehowrelated to each other. The distribution ns at criticality is ruled by the two critical exponents �and � (see Eq. (1.2)), so that we expect that all other exponents are simple combinations of �and �. That turns out to be true: below we show how one can calculate all exponents startingfrom the two fundamental ones� = 2� � � 1� ; � = � � 2� ;  = 3� �� ; � = � � 1�d ; D(p = pc) = 1�� = d� � 1 :(1.26)(We indicate with d the space dimension of the lattice.) If we play a bit with Eqs. (1.26) wecan derive other useful relations: particularly important is2 �� + � = d: (1.27)The relations containing the dimension d are called hyperscaling relations. It is believed thatthe hyperscaling relations are valid only for values of d satisfying d � du, for some du called theupper critical dimension. When d � du, one �nds that the percolation process behaves roughlyin the same manner as percolation on an in�nite regular tree, like the Bethe lattice. The valuesof the critical exponents for this problem are analytically known: � = 5=2, � = 1=2, � = 1=2.We can ask ourselves for which value of d the hyperscaling relation� = � � 1�d (1.28)is satis�ed by such exponents. According to what we have said, the solution is just the uppercritical dimension du. From Eq. (1.28) one obtains du = 6.The fact that the space dimension d of the lattice is present in Eqs. (1.26) means that the scalingrelations are well-de�ned once we �x the value of d, independently of the type of percolation(site, bond) and (or) the lattice structure we are studying. It is actually remarkable that thedimension d seems to �x not only the scaling relations (1.26) but even the values of the singleexponents. This property is called universality and so far all tests which have been performed,both analytically and numerically, haven't found exceptions to it. In Table 1.2 we have reportedthe values of the critical exponents for several values of the space dimension d.



1.4. Real Space Renormalization 21Exponent d=2 d=3z d=4 d=5� -2/3 -0.6295(53) -0.72 -0.86� 5/36 0.4181(8) 0.64 0.84 43/18 1.793(4) 1.44 1.18� 4/3 0.8765(17) 0.68 0.57� 36/91 0.4522(9) 0.48 0.49� 187/91 2.18906(8) 2.31 2.41D(p = pc) 91/48 2.5230(2) 3.06 3.54D(p < pc) 1.56x 2 12/5 2.8D(p > pc) 2 3 4 5Table 1.2: Percolation critical exponents in d dimensions.
1.4 Real Space RenormalizationAs we have seen up to now, the behaviour of all percolation variables at criticality is describedby simple power laws. Apart from the simplicity of their form, power laws have a remarkableproperty: they are scale free. To understand this feature, we take the simple function f(x) =x1=2, and focus on two intervals of the x-axis, namely [1; 2] and [10; 20]. The ratio of the extremesof the intervals is the same (2 : 1 = 20 : 10 = 2) in both cases: the corresponding ratios of thevalues of the function is also the same (21=2 : 1 = 201=2 : 101=2 = 21=2). That means that ifwe perform a change of scale, from x to x0 = ax, the y-axis will be correspondingly rescaled,and the curve will look identical after the transformation. That does not happen if we use,for example, an exponential function. In fact, taking g(x) = ex and the same intervals of ourexample, we would �nd two di�erent ratios for the values of the function at the extremes of theranges (e2 : e1 = e 6= e20 : e10 = e10): if we go from a range to another through a scale change,the function will look di�erent after the transformation. In this sense we say that there is nocharacteristic length for a phenomenon described by a power law: it will look identical in eachscale.zThe values of the critical indices for d = 3 are taken from a recent study of random percolation on a simplecubic lattice [23].xOne could wonder why we have given a numerical estimate of D(p < pc) in two dimensions, whereas ford = 3; 4 analytical results are known. The percolation clusters below pc belong to the universality class of latticeanimals. In 1980 Parisi and Sourlas showed that the d-dimensional lattice animal problem corresponds to a(d � 2)-dimensional di�erent problem, solvable in one and two dimensions: that is why exact results are knownfor d = 3 and d = 4.



22 Chapter 1. Introduction to Percolation TheoryWe have stressed in the previous section that the correlation length � is the characteristic lengthof the percolation phenomenon, expressing the average radius of those clusters which give thegreatest contribution to the percolation variables. So, at some density p, the value of � �xes thescale of the phenomenon: the (large) clusters of radius Rs smaller than � determine the percola-tion variables. The correlation length thus divides all clusters in two distinct categories. At thecritical density pc, � becomes in�nite. Therefore, in a sense, there are no longer fundamentaldistinctions between two large clusters A and B at criticality, even if A is much bigger/smallerin size than B. If we take out a medium size piece of a big lattice, the linear dimensions of thelattice and of the piece are both much smaller than � at pc. The original lattice and its partwill then be similar as far as their average properties are concerned. A nice example of this isrepresented by Fig. 1.9: the average size of the largest cluster for all lattice sizes above 1002scales clearly with the linear dimension L, which means that all lattices are basically equivalentto each other. In this respect, the lattice 1002 contains all the information that can be extractedby 10002, 100002, etc. Going from a lattice size A to B we just need to rescale properly thevalues of the variables in A to obtain the values we would measure in B. This feature is calledself-similarity at the critical point and, according to what we have said at the beginning of thissection, it naturally leads to the power law behaviour of the percolation variables.Self-similarity is the basis of the renormalization group treatment of percolation. This ap-proach was historically �rst applied to thermal phase transitions by K. G. Wilson [24] to jus-tify the scaling assumptions and to calculate the critical exponents. We will briey presentthe extension to percolation, introduced by Reynolds et al. [25, 26]. It is based on the so-called real space renormalization, by which one performs transformations on the position co-ordinates in ordinary space. The �rst step consists in blocking the lattice, i.e. dividing thesites of the lattice into groups or blocks, and then replacing each block by just one single site.

Figure 1.10: Real space renormalization on a tri-angular lattice (blue structure). The new sites,marked in red, replace the triangles which surroundthem. The new lattice, which is still triangular, hastherefore one third of the sites of the original one.

Fig. 1.10 shows an example of this oper-ation on the 2-dimensional triangular lat-tice. We block the sites in triangles and re-place them by the red sites put in the centerof each triangle. One of the requirements ofthe blocking procedure is that one must getthe same lattice structure after any trans-formation. In our case we clearly see thatthe new structure we have formed is again atriangular lattice, and it contains one thirdof the sites there were at the beginning. Inorder to complete the transformation, wemust decide which of the new sites are oc-cupied and which are not. We need thatthe renormalized lattice keeps some essen-tial features of the old one, because the lat-ter is the system we want to analyze. Thatmeans that the status of each new site (oc-cupied, free) must be related to the statusof the three sites it replaces. There is no unique way of doing that. If we take a group of



1.4. Real Space Renormalization 23three sites, we can get four possible con�gurations, since we may have zero, one, two or threeoccupied sites (Fig. 1.11). What we want to keep is the essential physics of percolation of theinitial con�guration. Since percolation involves the formation of an in�nite connected network,by which one gets across the whole lattice, a sensible choice could be to de�ne a cell as occupiedif and only if it contains a set of sites such that the cell `percolates'.
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�(1� p)3 3p (1� p)2 3p2 (1� p) p3Figure 1.11: Possible states of a group of three sites. In black we mark the free sites, in red theoccupied ones. Apart from irrelevant permutations, there are only four di�erent combinations.Under each scheme we have written the corresponding probability.As we can see in Fig. 1.11, the �rst and the second schemes are not percolating, and the relativesuper-site will be set free, the last two are percolating and the relative super-site will be occupied.Since the occurrence of the four triangular schemes of Fig. 1.11 is a di�erent function of p ineach case, the density of the blocked con�guration will be in general some p0 6= p. In our exampleit is easy to calculate p0: it is just the probability for a triangular block of the unblocked latticeto be either the third or the fourth triangle of Fig. 1.11. The probability for a triangle to havetwo occupied sites is 3p2 (1� p), to have three p3. Thenp0 = 3p2 (1� p) + p3 (1.29)At p = pc we expect our operation to be basically equivalent to a rescaling of the structures ofthe original lattice and, because of self-similarity,p0 = 3p2 (1� p) + p3 = p = pc (1.30)The equation p0 = p has three solutions: 0, 1/2, 1. Discarding the trivial 0 and 1, we �ndpc = 1=2, which is indeed the exact value of the percolation threshold on a two dimensionaltriangular lattice (see Table 1.1).Moreover, by means of the renormalization group approach, we can evaluate the critical expo-nents. If we start from a density p close to pc, the correlation length � of the initial con�gurationis much bigger than the linear dimension b of the blocks (in our case b = p3). That means thatthe blocking introduces changes only at a scale which is by far smaller than �. The correlationlength of the renormalized con�guration �0 has thus the same functional dependence of �, i.e.�0 = c jp0 � pcj�� (1.31)with the same constant c and exponent � of �. Moreover, since all the lengths of the initialsystem are rescaled by a factor b, we have �0 = �=b, which establishes the following relation



24 Chapter 1. Introduction to Percolation Theorybetween p, p0 and � b jp0 � pcj�� = jp� pcj�� ; (1.32)from which we derive 1� = log[(p0 � pc)=(p� pc)]log b = log �dp0dp �pclog b ; (1.33)where the last step is justi�ed since we assume that both p and p0 are very close to pc. In ourcase, knowing the function p0 from Eq. (1.30) and pc = 1=2, we get �nally� = log(p3)log(3=2) = 1:355; (1.34)which is a good approximation of the exact value 4=3.We have then shown the power of the renormalization group approach. We must admit, however,that we have chosen a particularly suitable example, and that the agreement between the valuesderived in this way and the exact values is seldom as good as in our case. As we have said, infact, there is some freedom in the procedure that leads to the renormalized con�gurations: wemay choose several ways of blocking the lattice, and the rule to establish which of the sites ofthe renormalized lattice are occupied and which are free is not �xed either. In general, eachof the possible ways we may adopt to renormalize the initial lattice leads to di�erent results,which could also be rather far from the exact ones. The original assumption that, around thecritical point, we can `rescale' the lattice structures by simply replacing groups of sites by singlesuper-sites is indeed quite strong and not completely legitimate. It is easy to convince oneselfthat, for instance, a cluster of the initial lattice could be broken into pieces in the renormalizedlattice or, vice versa, separate clusters can be fused together after the blocking transformation.Since the crucial feature is the fact that the average properties of the initial con�guration arenot changed, sometimes we can be lucky enough to choose a procedure that induces a sortof compensation of these two e�ects: our case of the triangular lattice is an example of that.However, generally speaking, renormalizing a con�guration involves correlations between sitesat a block distance b from each other. After the transformations, in fact, the relative super-sitescan become neighbours and form structures. But, if we want to preserve the initial clusterdistribution after any transformation, we must forbid that new structures are formed or thatsome of the old ones disappear. Reynolds et al. showed that using large cells one can reducevery much this drawback and get quite precise results for several systems [26].From what we have said it emerges that blocking the lattice does not only imply a new oc-cupation density p0 for the sites of the renormalized con�guration, but also some probability xthat neighbouring sites are connected to each other. This probability is introduced to eliminatecorrelations among sites which are not neighbour in the initial con�guration. If we start from apure site percolation problem, we will thus end up with a site-bond one. Repeating the transfor-mation over and over, longer range correlations will be introduced, and, in order to cancel them,the number of parameters which characterize the percolation system after any transformation



1.5. Finite Size Scaling 25will increase. But, around criticality, as long as the range of the correlation between sites canbe, it will be always negligible compared to the (basically) in�nite correlation length and, fol-lowing the same reasoning of our example, we deduce that the exponent � is the same for all thepercolation systems mapped onto each other by renormalization transformations. Analogously,if we consider other percolation variables, instead of the correlation length �, it is easy to showthat each critical exponent is not changed by blocking transformations. At some stage, one�nds that the set of parameters does not vary after performing blocking transformations. In anideal parameter space where all percolation systems can be represented by points according tothe values of p, x, etc., the �nal set of parameters represents the so-called �xed point of therenormalization transformation. If one starts from some percolation system at criticality in dspace dimensions, successive blockings will lead to the same �xed point. From what we havesaid, a consequence of that is the fact that the critical exponents are the same for all percolationsystems in d dimensions, which explains the universality for the percolation phenomenon. Inso far, we can say that the local di�erences between the various percolation systems can besmoothed out by means of renormalization transformations without changing the main features(e.g. the exponents) of the phenomenon. These features remain unchanged all the way up tothe �xed point and are, because of that, equal for all possible systems.
1.5 Finite Size ScalingAs we said at the beginning, the percolation problem is relatively old. The simplicity of itsformulation and the useful symmetries of several lattices have allowed to derive a number ofresults by means of rigorous analytic proofs: the demonstration that the critical density forbond percolation on a square lattice is 1=2 is probably the most spectacular achievement [27].Indeed, percolation as a critical phenomenon makes sense only on an in�nite lattice, and such anideal system can be properly handled by probability theory, which is at the basis of the proofswe mentioned. Many features of apparently simple systems are, however, still out of reach. Forinstance, nobody could so far �nd an analytical expression for the value of the critical density(pc = 0:592746) for the site percolation problem on a square lattice.The study of percolation systems received new impulse since fast computers became available.Monte Carlo simulations are, in fact, a powerful tool to analyze complex systems. The data wehave shown in our plots so far have been derived by means of this numerical approach. Computersimulations are experiments: they reproduce the system one wants to study by creating a bignumber of possible copies of it, and obtain the results by averaging the values correspondingto the di�erent con�gurations. In this way, one can investigate any system with a degree ofaccuracy which depends mainly on the computer time one invests in the project. The resultscan then be made, in principle, arbitrarily precise.By simulating a system, however, we are forced to use �nite lattices. The in�nite lattice, whichis the ideal system we would like to investigate, remains an unreachable limit for a computer, asbig as it can be. The rapid evolution of fast machines in the last years has allowed to push thesize of the lattices that can be realistically studied up to values which were unthinkable only ten



26 Chapter 1. Introduction to Percolation Theoryyears before. Any progress in this direction is always welcome, but the fundamental problemof computer simulations is always the same: how can we extrapolate the in�nite volume resultsout of values relative to �nite lattices? One could assume that a huge lattice is already `in�nite'in the sense that the di�erence between the critical indices (threshold, exponents) that one canderive from it and the exact ones is smaller than the degree of accuracy we want to reach. Forsome random percolation systems this turns out to be a good assumption. But in most cases,especially when one wishes to perform percolation studies on interacting systems, it does notwork. Because of the dynamics, in fact, the simulations are by far more time consuming than forordinary random percolation, and the largest lattices one can use for the latter are out of reach.As a matter of fact, there is a way to extract the required in�nite volume information out ofvalues calculated on �nite lattices: instead of using a single lattice size, one has to take severalones, and exploit the scaling behaviour of the percolation systems. This procedure is called �nitesize scaling and is usually applied to all systems which undergo second order phase transitions.In this section we shall describe �nite size scaling, focusing in particular on the techniques weadopted to extract the �nal results for the systems we have investigated all through this work.If we take a look at the plots we have presented in this chapter, we can already see a number ofcharacteristic �nite size e�ects, i.e. features due to the �nite size of the system. In Fig. 1.6a, forexample the divergence of the average cluster size S becomes a �nite peak, which gets sharperand higher for bigger systems; the corresponding percolation strength curves (Fig. 1.7a) showa little tail to the left of the critical point, whereas on an in�nite lattice P = 0 for p < pc.The main reason of these perturbations is obviously the �nite number of sites of the lattice,which introduces a cut-o� for the upper size of the clusters. Another problem is the fact thatthe con�guration looks di�erent at the boundaries of the system than far from them. We cansee it in Fig. 1.2c: the edges of the lattice cut the clusters close to them. This factor can beconsiderably reduced by using periodic boundary conditions, i.e., by connecting opposite sides(surfaces) of the lattice to each other in some way, so that each site is always surrounded byother sites. Such a trick is regularly adopted in simulating systems on the lattice but in all ourcluster analyses we will dispense with it (free boundaries).We have seen that the scaling laws are e�ective already for rather small lattices. In the previoussection we pointed out that self similarity at the critical point is responsible of that. Fromrenormalization group theory it is possible to �nd out what the scaling laws look like on �nitelattices. In general, if a variable O is supposed to scale as jp� pcj��, on a �nite lattice of lineardimension L at a density p close to pc, one observes the following behaviour:O(p� pc; L) = L�=� QOh�p� pcpc �L1=� ; giLyii ; (1.35)where � is the critical exponent we have already met and QO is a function related to thevariable O whose form does not depend on the dimension L of the lattice. Besides, one couldhave an eventual dependence on other parameters, which we indicate by gi: yi are the exponentscorrespondent to these other parameters. The further dependence of O on gi is the main sourceof the so-called corrections to scaling, since it modi�es the otherwise simple scaling assumptionexpressed by Eq. (1.35). Such perturbations are sometimes relevant and one should take them



1.5. Finite Size Scaling 27into account. However, for all the systems we have investigated in this work, we will disregardthem z. We shall thus always make use of the simple scaling assumptionO(p� pc; L) = L�=� QOh�p� pcpc �L1=�i : (1.36)Eq. (1.36) shows that the in�nite volume information we look for (pc and the exponent �) is`hidden' in the �nite size results: we have only to extract it in some clever way. At the criticaldensity pc, Eq. (1.36) becomes O(L)pc = L�=� QO[0] : (1.37)We notice that there is no L-dependence in the values of the function QO. By plotting O asa function of L at pc, we can then obtain the exponents' ratio �=� directly from the slope ofthe data points in a log-log plot. If we have an idea of where the critical point could be, e.g.from the positions of the peaks of the average cluster size curves, we can evaluate O at di�erentvalues of p for several lattices and check for which value of the density we get the best �2 forthe simple linear �t in the log-log plot. In this way we would be able to evaluate pc as well. Theerrors on pc and on the exponents are calculated by determining the p-range containing pc suchthat for each value of p one still gets a good �2 for the scaling �tx.As a matter of fact, there is also another method to determine quite precisely the critical pointof the percolation transition. Because of the �nite size of the lattices we may �nd spanningclusters at any value of the density p of occupied sites, in particular also for p < pc. For thesame reason there may be lattice con�gurations at densities above the critical threshold for whichpercolation does not occur. The probability of �nding a spanning cluster on a �nite lattice oflinear dimension L at a density p is a well de�ned function �, which we call percolation cumulant[28]: for p� pc and big values of L, it has the following behaviour� = �h�p� pcpc �L1=�i: (1.38)We recognize the typical functional dependence of an observable O given by Eq. (1.36) with� = 0. The function � is not a real variable for percolation because it has a non-trivial meaningonly on �nite lattices. On an in�nite lattice it reduces itself to a step function: it is zero forp < pc and one p > pc. Nevertheless the special features of � make it a powerful tool to extractinformation about critical properties of the percolation phenomenon. In particular, for p = pc,� = �(0) for any value of L. That means that if we calculate the percolation cumulant asa function of p for di�erent lattice sizes, all curves will cross in correspondence of the criticaldensity pc (Fig. 1.12a). Besides, if we replot the di�erent curves as a function of X = (p�pcpc )L1=� ,the result must be just the function �(X) for each lattice size and all curves will fall on top ofeach other (Fig. 1.12b). This represents a good technique to determine the critical point andwe will adopt this method all through our calculations. Once we have determined the positionof the critical threshold pc with its error �, we examine the range [pc � �; pc + �]: by exploitingzThis point will be discussed more extensively in the summary.xA common criterion is that the value of the �2 must be within the 95% con�dence level.
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(a) (b)Figure 1.12: (a) Percolation cumulant as a function of the density p for pure site percolationon a square lattice. The curves cross remarkably well at the same point, in excellent agreementwith the in�nite volume threshold, whose value is marked by the dotted line. (b) The datapoints in (a) are plotted as a function of (p�pcpc )L1=� . Both pc and � for this problem are wellknown from the literature: pc = 0:592746 and � = 4=3. All data points fall on the same curve,which is the scaling curve �(X) of equation (1.38) for our system.the scaling of the percolation variables one can see how the exponents's ratios �=� of Eq. (1.37)vary with p within the range. In this way one determines the errors on �=�.To get the scaling function �(X), one needs also to know the value of the exponent �: if we don'tknow this value we can evaluate it by making some guesses until we �nd the best scaling forthe percolation cumulant curves. This method can indeed help to restrict the range of possiblevalues of �; unfortunately � varies quite slowly with � and the errors on its value can be ratherbig (� 5% in some of our investigations).An alternative way of evaluating the exponent � consists in determining, for a given lattice ofdimension L, the so-called pseudocritical point. Looking at Fig. 1.6a we notice that the peaksare not centered at the same value of p. In fact, because of the �nite size, each lattice `feels'itself at criticality when the correlation length � reaches the dimension of the lattice. Since,around the critical point, � varies with p according to Eq. (1.25), the condition ��L is reachedfor the density �p (L) for which j�p(L)� pcj / L�1=� (1.39)The value of �p is called pseudocritical point: we stress that it depends on the linear dimensionL of the lattice. Plotting in logarithmic scale the values of the `distances' from the critical pointj�p(L) � pcj as a function of L, we should then get a straight line, whose slope gives 1=�. If wehave a precise value for the critical density pc, Eq. (1.39) allows us then to derive the exponent�. Anyway, if our determination of the critical point is not accurate enough but we have data



1.5. Finite Size Scaling 29in correspondence of several lattice sizes, we could obtain pc by considering it a parameter ofthe �t like 1=� and the proportionality constant of the power law of Eq. (1.39). This methodleads to more precise estimates of � than the ones got by means of the scaling of the percolationcumulant; because of that, in our studies we shall determine the percolation exponent � fromthe scaling of the pseudocritical points.
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Chapter 2

Percolation and Critical Behaviour in the Ising
Model

2.1 Critical BehaviourIn this section we shall introduce the formal de�nition of phase transition and point out themain aspects related to it.In general, if we have a system at a temperature T , from its Hamiltonian H one de�nes thepartition function Z(T ) as followsZ(T ) =Xfng e��H; � = 1kT ; (2.1)where Pfng runs over all possible states of the system. From Z(T ) one can derive all the ther-modynamic potentials of the system, which give us the whole thermal information. In particular,one de�nes the free energy F(T ) F(T ) = � 1� log Z(T ): (2.2)By means of the free energy one usually classi�es phase transitions in two main categories:� �rst order phase transitions, if the �rst derivative of the free energy F as a function of Tis discontinuous;� continuous phase transitions, if the nth derivative of the free energy F as a function of Tis discontinuous, all the previous n-1 derivatives are continuous (n = 2; 3; etc:).



32 Chapter 2. Percolation and Critical Behaviour in the Ising ModelFor �rst order phase transitions, the discontinuity of the �rst derivative of the free energy impliesthe discontinuity of the energy density �,� = EV = F + T @F@TV (2.3)(E and V are the energy and the volume of the system, respectively). Because of that, once wereach the critical temperature Tc by heating or cooling our system, we need to extract (or add)some energy (latent heat) for the system to pass to the other phase, and during this process thetemperature does not vary. This is exactly what happens during the water-ice transition: thelatent heat L' 334Jg�1 is the energy released when H2O molecules neatly pack themselves intoa face-centered cubic lattice, rather than wandering around.The most famous example of a continuous phase transition is the conversion of iron from para-magnetic to ferromagnetic form at the Curie temperature Tc = 10430K. At T > Tc iron isparamagnetic, i.e., it is not magnetized in absence of an external magnetic �eld; for T < Tc thematerial acquires a spontaneous magnetization m. The magnetization as a function of T is con-tinuous and the energy density changes as well smoothly. The phase change is thus continuous.In this work we will deal with second order phase transitions, therefore we shall briey introducehere the main features of these special phenomena.A common feature of phase transitions is the existence of a variable �, called order parameter:� is de�ned in each point ~r of the volume occupied by the system and its average value allowsto identify the phase of the system. For the paramagnetic-ferromagnetic transition we havementioned, � is just the magnetization m, which is zero in the paramagnetic phase and non-zero in the ferromagnetic one. To express the relationship between two points of the system atvarious distances, one de�nes the two-point correlation function:G(2)(r) � h�(0) � �(~r)i: (2.4)The brackets indicate thermal averaging, i.e., over many con�gurations at some temperatureT . In the ordered phase, G(2)(r) includes the contribution of the non-vanishing average of theorder parameter jh�ij2. In order to determine the uctuations of � with respect to its averagevalue, one needs to subtract that contribution. Therefore one often uses the connected two-pointcorrelation function Gc(2)(r) � h�(0) � �(~r)i � jh�ij2: (2.5)Experimental evidence leads to the following form of the function Gc(2)(r) for T close to thecritical temperature Tc: Gc(2)(r) � e�r=� : (2.6)The length � is the correlation length of the system. It expresses the distance within which theuctuations of the order parameter are important. For second order phase transitions at T �Tc,� � jT � Tcj�� (2.7)



2.1. Critical Behaviour 33where � is a critical exponent. The correlation length is thus divergent at Tc, which means thatat the critical point large scale uctuations of the order parameter occur. Because of that bigdynamical structures are generated, though the interactions within the system are short-ranged.The divergence of � at criticality is described by a simple power law. Actually it turns out thatthe behaviour of all variables around the critical point is described by simple power laws andcorresponding critical exponents (Table 2.1).� cH / ��1 �(jT � Tcj=Tc)�� � 1� , T ! Tc; H = 0� m / (Tc � T )� , T ! T�c ; H = 0 � / jT � Tcj� , T ! Tc; H = 0� m / H1=� , T = Tc; H ! 0� G(2)c (r) / r2�d�� , T = Tc; H = 0� � / jT � Tcj�� , T ! Tc; H = 0Table 2.1: Behaviour at criticality of the main variables that characterize a system which un-dergoes a second order phase transition. We indicate by cH the speci�c heat, by m the orderparameter, by � the susceptibility. The presence of another degree of freedom besides the tem-perature T , like a (small) external �eld (labeled by H), leads to other interesting power lawswhen H! 0. In the �rst column we have listed the relative critical exponents. The d presentin the expression of G(2)c (r) is the space dimension of the system.Some laws are valid both to the right and to the left of the critical point; the values of therelative proportionality constants, or amplitudes, are in general di�erent for the two branches ofthe function, whereas the exponent is the same. From Table 2.1 we see that there are altogethersix exponents. Nevertheless they are not independent of each other, but related by some simplescaling laws �+ 2� +  = 2; �+ �(� + 1) = 2; (2� �)� = ; � d = 2� �; (2.8)so that there are only two independent exponents. One of the most interesting aspects of secondorder phase transitions is the so-called universality, i.e., the fact that systems which can be verydi�erent from each other share the same set of critical indices (exponents and some amplitudes'ratios). One can thus subdivide all systems into classes, each of them being identi�ed by a setof critical indices.The divergence of the correlation length at Tc implies self-similarity at the critical point andopens the way to analogous arguments as those we have presented in Section 1.4. Real spacerenormalization [29] gives an account of the scaling behaviour and the universality of the criticalindices; moreover, starting from a general ansatz for the free energy, it allows to derive thescaling relations (2.8) and the values of the exponents.



34 Chapter 2. Percolation and Critical Behaviour in the Ising Model
2.2 Percolation vs Second Order Thermal Phase TransitionsThe onset of percolation marks a borderline between two di�erent geometrical phases of thesystem: on one side we never have a spanning cluster, on the other we always have one. Whenwe introduced the percolation problem, we stressed the fact that each site of the lattice isoccupied with a probability p independently of the other sites. There is no communicationbetween di�erent sites, which is in contrast to what one has in real systems, whose costituentsnormally interact with each other.Nevertheless, the geometrical transition of a percolation system has many features in commonwith the thermal phase transitions we have dealt with in the previous section. We summarizehere the most important ones:� In the neighbourhood of the critical point, both the percolation and the thermal variablesvary according to power laws:P / (p� pc)� m / (Tc � T )�for p > pc for T < TcS / jp� pcj� � / jTc � T j�� Simple scaling relations are valid, some of which, like the hyperscaling relationd = � + 2 �� (2.9)( d= number of space dimensions), are identical for both kinds of systems;� Universality of the critical indices.Indeed, for several `physical' systems, it is possible to single out some cluster-like structures:the magnetic domains of a piece of iron are a clear example. The interplay of such structuresin correspondence of di�erent states of the system can be quite interesting. In the case of themagnetic domains of iron, for instance, one observes that they grow by lowering the temperatureof the sample until they fuse into macroscopic structures below the Curie point. One could askoneself whether the critical behaviour of a system could be described in terms of the propertiesof some `physical clusters'. The growth of correlations approaching the critical point would berepresented by the growth of the size of the clusters. Moreover, the spontaneous order appear-ing below the critical temperature Tc could be related to the formation of an in�nite cluster,which would map the thermal transition into a geometrical percolation transition. Cluster-likepictures of phase transitions have been discussed since about 1940. Their �rst applications con-cerned the liquid-gas transition: the droplet model proposed by Fisher was already able to make



2.2. Percolation vs Second Order Thermal Phase Transitions 35quantitative predictions and the size distribution of its `droplets' is very close to the cluster sizedistribution in percolation theory [30].In general, one establishes the following correspondence between the thermal properties of themodel and the geometrical features of the `physical' droplets:� they diverge at the thermal critical point;� the connectedness length diverges as the thermal correlation length (same exponent);� the percolation strength P near the threshold varies like the order parameter m of themodel (same exponent);� the average cluster size S diverges as the physical susceptibility � (same exponent).By turning a thermal system into a percolation one, we introduce a new feature with respect tothe simple geometrical problem we introduced in the previous chapter: the sites of the lattice areno longer independent of each other, because of the interaction. This may lead to di�erent clusterdistributions compared to the ones of random percolationy. The distribution of the `physical'clusters depends on the temperature of the system and on its dynamics. If the percolationtransition takes place at a temperature Tp 6=Tc, the thermal correlation length of the system,�th, is �nite at Tp. That means that two sites of the lattice separated by a distance r > �th(Tp)will be uncorrelated; the large clusters which are responsible of the singularities of the percolationvariables are then basically formed by randomly distributed (occupied) sites, and for this reasonthey will carry the exponents of random percolation. We can easily convince ourselves by simplespace renormalization arguments. At Tp, �th is �nite but the percolation correlation length, �p, isin�nite. By applying successive blocking transformations, at some stage we will have reduced �thto very small values, i.e., the sites of the renormalized con�guration will be all uncorrelated. But�p remains in�nite and, for percolation purposes, the renormalized system is characterized bythe same exponents of the original one, as we have explained in Section 1.4. Since the sites of the�nal con�guration are uncorrelated, the percolation exponents must be the random percolationones. Numerical analyses performed on several systems have con�rmed that without exception.On the other hand, if Tp = Tc, each site has a non vanishing correlation on any other, andthe properties of all clusters of the system, including the largest ones, will be inuenced bythis correlation. Therefore, the exponents describing the percolation variables need not be theones of random percolation, and may be related to the exponents describing the singularities ofthermal variables at criticality: in particular, their values could coincide.The early attempts to explore quantitatively this possibility date back to the 70's, and the �rstsystem to be investigated was the Ising model.yIn this case one usually speaks of correlated percolation.



36 Chapter 2. Percolation and Critical Behaviour in the Ising Model
2.3 The Ising ModelThe Ising model is by far the simplest of all spin systems. Suppose we have a regular lattice in dspace dimensions and place two-valued spins at each lattice site. The Ising model is characterizedby the following Hamiltonian: H = �JXij sisj �HXi si; (2.10)where J(> 0) is the coupling of the interaction between nearest neighbouring spins si and sj andH an external �eld. The values of the spins are conventionally taken to be +1 (up) and -1 (down).

T0 c T

m

1

Figure 2.1: Behaviour of the speci�c magneti-zation of the Ising model as a function of thetemperature T . Below the critical temperatureTc, m is di�erent from zero, that is the system`chooses' one of the two equivalent directions forthe spins.

For H = 0 and space dimension d� 2, amacroscopic system ruled by (2.10) undergoesa second order phase transition, going froma high temperature phase without spin align-ment to a low temperature phase with spinalignment. In particular, at T = 0, all spinspoint to the same direction, either up or down.In this way the state of the system at lowtemperatures breaks the global symmetry un-der spin inversion enjoyed by the Hamiltonian(spontaneous symmetry breaking). The orderparameter of the Ising model is the lattice av-erage of the spin variable s, or speci�c magne-tization m: m = 1V Xi si; (2.11)being V the lattice volume (number of sites ofthe lattice). Fig. 2.1 shows the behaviour ofm as a function of the temperature T .The Ising model without external �eld was ex-actly solved in two dimensions by Onsager [31]. The behaviour of the thermodynamic potentialsclose to the critical temperature is thus known analytically and the values of the critical expo-nents are exactly determined. In three dimensions no rigorous solution has been found so far,and all of what is known about it comes from numerical analyses, like high- and low-temperatureexpansions and Monte Carlo simulations. However, the simplicity of the system is such thatmost aspects can be investigated with remarkable precision. In Table 2.2 we put the values ofthe critical exponents of the Ising model in two and three space dimensions, because we willoften refer to them for comparisons all along this work.If we take a con�guration of the Ising model around Tc, it will look like in Fig. 2.2.



2.3. The Ising Model 37� �  � � �2D 0 1/8 7/4 15 1/4 13D 0.1118(30) 0.3265(4) 1.2353(25) 4.783(16) 0.0374(12) 0.6294(10)Table 2.2: Critical exponents of the Ising model in two and three dimensions. For the latterones we report the recent numerical evaluations given in [23].

Figure 2.2: Ising model with no external �eld in twodimensions. The �gure shows a typical con�gurationnear the critical temperature Tc. We have marked allup spins with balls. It is visible the tendency of thespins to clusterize, because of the interaction. If wetreat the spins up like pawns in a percolation game andwe form clusters according to the pure site percolationscheme, there is a spanning network (red cluster in the�gure).

Because of the spin alignment at lowtemperatures, the system will be �nallydominated by spins of one type (up ordown). If we think of these spins asoccupied sites in a percolation picture,the clusters formed by the aligned spinswill increase their size the lower thetemperature is, and at a certain valueTp, there will be an in�nite network.The easiest thing to think of is to con-sider as clusters all structures formed bynearest neighbouring spins of the samesign, which is the pure site percolationscheme we have very often discussed inthe previous chapter. If we adopt thisscheme, the con�guration of Fig. 2.2presents a spanning cluster, representedby the red structure. The �rst percola-tion studies on the Ising model indeedfocused on these clusters.In the two-dimensional Ising model,topological considerations imply thatthe percolation transition of the puresite clusters and the thermal criticalpoint must coincide [4]. It thus becameinteresting to study the behaviour of thepercolation variables around criticalityto determine the critical exponents. As we have seen in Chapter 1, the percolation variablesnear the critical point vary as power laws of the `reduced' density of occupied sites p� pc. Thatis valid for pure random percolation. If we analyze the clusters formed by interacting systems,their features do not depend on the density alone, and the dynamics plays a major role. Forexample, if we take the Ising model at temperatures above Tc, there will be as many spins upas spins down. So, the density of occupied sites (considering either the up or the down spins)remains constant above Tc. But the features of the clusters change if we go from T = Tc, wherethe correlations between spins are long-ranged, to T ! 1, where spins are uncorrelated. It



38 Chapter 2. Percolation and Critical Behaviour in the Ising Modelturns out that, for `dynamical' clusters, the percolation variables vary as simple power laws ofthe reduced temperature T � Tc, like the thermal ones. In the case of the two dimensional Isingmodel, the average cluster size S of the pure site clusters was shown to diverge asS / jT � Tcj�p ; (2.12)where p = 1:91 [5]. The result, derived by means of series expansions, is not in agreement withthe thermal value for the susceptibility exponent found by Onsager ( = 7=4). Besides, in threedimensions, the spins which are favoured by the onset of magnetization form an in�nite networkat any temperature, whereas the unfavoured spins happen to percolate at temperatures higherthan Tp, with Tp� 0:96Tc [6].So, if it is at all possible to describe the thermal phase transition of the Ising model as apercolation transition, one must look for a di�erent cluster de�nition than the pure site one.
2.4 The Random Cluster ModelAt the beginning of the 70's, contemporary to the research activities mentioned in the previoussection, Fortuin and Kasteleyn [7] introduced a correlated bond-percolation model (the RandomCluster Model) indexed by a parameter q, and proved identities relating the partition functionand connectedness probabilities in this model to the partition function and correlation functionsof the q-state Potts model (q = 2; 3; :::). The q-state Potts model has the following Hamiltonian:H = JP Xij (1� ��i�j ); (2.13)where JP (> 0) is the coupling and the �'s represent the spin variable of the model, which cantake q di�erent values. For q = 2 it is easy to see that the Hamiltonian (2.13) is equivalent tothe one of an Ising model, whose coupling JI = JP =2. In this section, however, we will keep thePotts notation because it simpli�es the mathematical expressions.To give a feeling of the work of Fortuin and Kasteleyn, we will show that their Random ClusterModel and the q-state Potts model are equivalent to each other. In particular, we will seethat the partition function of the q-state Potts model can be rewritten in purely geometricalterms, as sum over cluster con�gurations. The clusters are built in the following way: takingtwo nearest neighbouring spins �i and �j, if �i 6= �j they are always disjoint; if �i = �j, theyare joined together with a temperature dependent probability pij = 1� exp(�JP =kT ). So, theFortuin-Kasteleyn clusters are site-bond clusters: once we have a spin con�guration, we need todistribute bonds with the probability pij among nearest neighbouring spins of the same valueto build the clusters. A cluster con�guration will be therefore completely determined by a spincon�guration f�g and a bond con�guration fng superimposed to the former. For the bondvariables nij , we assign nij = 0 (open bond) and nij = 1 (closed bond).



2.4. The Random Cluster Model 39We won't follow the original Fortuin-Kasteleyn derivation, because it is too technical, but asimpli�ed version proposed by Sokal and Edwards [32]. Given a lattice with Potts spins �i =1; :::; q on the sites and bond variables nij on the edges (links), we de�ne the joint probabilityof a certain cluster con�guration (spins + bonds) asP (�; n) = Z�1 Y<ij>[(1 � pij)�nij ;0 + pij��i�j�nij ;1]; (2.14)with Z =X� Xn Y<ij>[(1 � pij)�nij ;0 + pij��i�j�nij ;1]: (2.15)This is the so-called FKSW model (Fortuin-Kasteleyn-Swendsen-Wang), which has, a priori,nothing to do with the dynamics of a spin model. If we sum over all bond con�gurations we getP (�) = Xn P (�; n)= Z�1 Y<i;j> 1Xnij=0[(1 � pij)�nij ;0 + pij��i�j�nij ;1]= Z�1 Y<i;j>[(1 � pij) + pij��i�j ]= Z�1 exp h� JPkT X<ij>(1� ��i�j )i= Z�1 exp h� H(�)kT i; (2.16)where H(�) is the Hamiltonian (2.13). Now we have got rid of the bonds. P (�) is the prob-ability associated to the spin con�guration f�g in the FKSW model. If we sum over all spincon�gurations, we obviously obtain X� P (�) = 1: (2.17)From Eqs. (2.16) and (2.17) one getsZ = X� exp h� H(�)kT i: (2.18)We have then found that the partition function of the FKSW model coincides with the one ofthe Potts model (see Eq. (2.13)). The expression of the probability P (�) we have derived in Eq.(2.16) is just the Boltzmann probability to have the spin con�guration f�g in a system ruledby the Potts dynamics. We conclude that, after integrating out the bond con�gurations, theFKSW model is equivalent to the Potts model.Next, we want to see what happens if we reduce the FKSW model to a bond model, by elimi-nating the spin degrees of freedom. For that, we start again from Eq. (2.14) and sum over all



40 Chapter 2. Percolation and Critical Behaviour in the Ising Modelspin con�gurations. We obtainP (n) = X� P (�; n)= Z�1X� h Y<ij>;nij=1 pij��i�j Y<ij>;nij=0(1� pij)i: (2.19)In the last expression all the terms in the sum with a closed bond between two spins in distinctstates will vanish (they are not allowed by de�nition), so if we denote by �n a spin con�gurationcompatible with the restriction for two spins to be parallel if connected by a closed bond, we getP (n) = Z�1X�n h Y<ij>;nij=1 pij Y<ij>;nij=0(1� pij)i: (2.20)The terms in the sum are now independent of the spin con�guration. Given the bond con�gu-ration, the sum just counts the number of compatible spin con�gurations. De�ning as a clustereach set of bond-connected spins, we getP (n) = Z�1 Y<ij>;nij=1 pij Y<ij>;nij=0(1� pij)qc(n); (2.21)where c(n) is the number of clusters of the given bond con�guration n. Again, we have thenormalization Xn P (n) = 1; (2.22)so that Z =Xn h Y<ij>;nij=1 pij Y<ij>;nij=0(1� pij)qc(n)i: (2.23)The (2.23) is just the partition function of the Random Cluster model introduced by Fortuinand Kasteleyn, which is then equivalent to the FKSW model when the spins are integrated out.Summarizing the results we have derived so far, we can say that the Potts and the Fortuin-Kasteleyn models are nothing but the FKSW model when one eliminates the bonds or the spins,respectively. Consequently, the Potts model is equivalent to the one of Fortuin and Kasteleyn.The site-bond clusters we have used look like arti�cial structures, because the bond probabilitybreaks existing geometrical connections between the spins. Nevertheless, on the grounds of theresult we have just presented, it seems that such "arti�cial structures" have a close relationshipto the dynamics of the Potts model. A con�rmation of such relationship is represented by thefact that the Fortuin-Kasteleyn clusters can be used to implement a non-local Monte Carloupdate of the Potts model. This algorithm was proposed by Swendsen and Wang [33] and itreduces considerably the problem of critical slowing down, which makes the simulations aroundthe critical point very lengthy with traditional local methods. We conclude the section describingthis algorithm.



2.4. The Random Cluster Model 41As we have already said, in order to identify the clusters, we have a superposition of a spincon�guration f�g and a bond con�guration fng. But if we take a spin con�guration f�g, itwill not be compatible with each bond con�guration fng. So, the probability to have f�g andfng is not simply given by the product of the probability of having f�g by the probability ofhaving fng independently, but it is a more involved expression which requires the introductionof the concept of joint probability. If we have two events A and B, one de�nes joint probabilityP (AjB) as the probability of the event A given the event B. According to this de�nition onegets, trivially P (�; n) = P (�jn)P (n) = P (nj�)P (�) (2.24)Now we can calculate the conditional probabilities to get from a bond con�guration to a spincon�guration and vice versa:P (nj�) = P (�; n)P (�)= Q<i;j>[(1� pij)�nij ;0 + pij��i�j �nij ;1]exp[�H(�)=kT ]= Q<i;j>;�i=�j [(1� pij)�nij ;0 + pij�nij ;1] Q<i;j>;�i 6=�j [(1� pij)�nij ;0]exp[�Pij JPkT (1� ��i�j )]= Q<i;j>;�i=�j [(1� pij)�nij ;0 + pij�nij ;1] Q<i;j>;�i 6=�j �nij ;0 Q<i;j>;�i 6=�j exp[�JPkT ]Q<i;j>;�i 6=�j exp[�JPkT ]= Y<i;j>;�i=�j [(1� pij)�nij ;0 + pij�nij ;1] Y<i;j>;�i 6=�j �nij ;0 (2.25)is the probability to obtain the bond con�guration fng given the spin con�guration f�g. Inthe case �i 6= �j only open bonds are allowed; in the case �i = �j a closed bond is put with aprobability pij and an open bond with probability 1� pij.P (�jn) = P (�; n)P (n)= Q<i;j>[(1� pij)�nij ;0 + pij��i�j�nij ;1]Q<ij>;nij=1 pij Q<ij>;nij=0(1� pij)qc(n)= q�c(n) Q<i;j>;nij=1 pij��i�j Q<i;j>;nij=0(1� pij)Q<ij>;nij=1 pij Q<ij>;nij=0(1� pij)= q�c(n) Y<ij>;nij=1 ��i�j (2.26)is the probability to obtain the spin con�guration f�g given the bond con�guration fng. Inorder to have compatibility, the spin con�guration f�g must be one of the con�gurations which



42 Chapter 2. Percolation and Critical Behaviour in the Ising Modelcan be obtained by ipping the spins of the c(n) clusters formed by the bond fng, under thecondition that the ipped spins within a cluster take the same value q.
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Figure 2.3: Scheme of the Swendsen-Wang cluster update for the 2D Ising model. The twopossible spin values are labeled by the two colors, blue and red, of the sites. One starts fromsome spin con�guration (top left); bonds between nearest neighbouring spins of the same colorare distributed with probability pij (green links in the top right diagram); the color of all siteswhich are bond-connected to each other (including isolated sites) is set to blue or red with equalprobability, provided the color remains uniform within each cluster (lower left); taking the bondsaway one obtains a new spin con�guration (lower right).The Swendsen-Wang cluster update is based exactly on this procedure (see Fig. 2.3). We candivide it in two steps:� Take a spin con�guration and distribute bonds between nearest neighbouring spins of thesame value with the probability pij = 1� exp(�JP =kT );� Set the values of all spins belonging to each cluster of bond-connected sites to one of thepossible q values with equal probability.It is clear that the algorithm respects the accessibility criterium, i.e. any spin con�guration canbe produced provided we update the system a su�ciently large number of times. The probability



2.5. Percolation of Fortuin-Kasteleyn clusters 43P�;�0 of getting from the spin con�guration f�g to f�0g is given by:P�;�0 =Xn P (�jn)P (nj�0) (2.27)It is easy to show that P�;�0 satis�es the detailed balance condition, so that the algorithm indeedproduces a Markov chain which leads the system to the canonical equilibrium distribution ofthe Potts model.
2.5 Percolation of Fortuin-Kasteleyn clustersAs we have seen, the pure site-clusters of the Ising model do not allow to map the thermaltransition into a geometrical percolation transition. The known properties of the Ising site-clusters suggest that they are too big to describe the critical behaviour of the Ising model. Thereason is that there are two contributions to the Ising clusters: one is due to the correlations,and the other is due to purely geometric e�ects. The latter becomes evident in the limit ofin�nite temperature. In this case there are no correlations but the cluster size is di�erent fromzero. In fact, since the density of occupied sites is 1=2, they tend to form clusters just becausethey happen to be close to each other; in the 3-dimensional Ising model there is even a spanningpure-site network at T ! 1, because the critical density of 3D random percolation is 0:3116,well below 1=2.It is thus necessary to reduce the size of the clusters in some way. We notice that the Fortuin-Kasteleyn clusters are indeed smaller than the pure-site ones. In particular, the bond probabilitypij = 1� exp(�JP =kT ) varies strongly with the temperature T , going from the value 1 at T = 0to the value 0 at T !1, which expresses the absence of correlation between the sites that are,therefore, all disjoint. Moreover, from the previous section, it turns out that these clusters havea close relationship with the dynamics of the q-state Potts model (Ising model for q = 2). Forall that they might be good candidates for the droplets we are looking for.A. Coniglio and W. Klein [8] showed that the Fortuin-Kasteleyn clusters really have the requiredproperties of the physical droplets, i. e. they percolate at the thermal critical point and the geo-metrical critical exponents coincide with the thermal ones. This result, obtained independentlyof the Fortuin-Kasteleyn work, is analytical and is valid for any space dimension d � 2 and anylattice geometry, as long as it is homogeneous (Fig. 2.4). In the Ising notation, the bond weightof Fortuin and Kasteleyn is pij = 1� exp(� 2JkT ) (2.28)(see Section 2.4).For the 2-dimensional Ising model, the result of Coniglio and Klein leads to an apparent paradox.In fact we have seen that the pure site clusters percolate at the thermal threshold. On the other
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(a) (b)Figure 2.4: (a) Percolation cumulant as a function of � = J=kT for Fortuin-Kasteleyn clustersof the 3-dimensional Ising model. The curves, corresponding to three di�erent lattice sizes,cross remarkably well at the thermal critical point, represented by the dashed line in the plot.(b) Rescaled percolation cumulants taking as a variable on the X-axis the expression tL1=�(t = (T � Tc)=Tc, L is the lattice side), where � is set to the 3D Ising model value �Is = 0:6294(see Table 2.2). The curves fall on top of each other, so that �perc = �Is.hand, the Fortuin-Kasteleyn clusters, which are smaller than the pure site ones, form as wellan in�nite network at the Ising critical point. From this fact, which is indeed unexpectedbut legitimate, it follows that site-bond clusters built using a bond probability p such thatpij < p < 1 will also give rise to a spanning cluster at the thermal critical point, as their sizeis intermediate between the size of the pure site clusters and the one of the Fortuin-Kasteleynclusters. However, the geometrical critical exponents relative to the percolation transition ofthese intermediate clusters are di�erent from the thermal ones, with which they coincide only ifp = pij . This fact shows the key role played by the bond weight pij.
2.6 The Kert ész LineSo far we have been dealing with the Ising model in absence of an external magnetic �eld. Thereason of that is clear: the Ising model shows critical behaviour in the usual sense only if H = 0.That means that introducing an external �eld H, none of the thermodynamic potentials willexhibit discontinuities of any kind, because the partition function is analytical. This result,already proved by Yang and Lee [34], inserts itself in a quite old debate concerning phasetransitions. It has been known for a long time that phases separated by a line of �rst order phasetransitions can be connected without thermodynamic singularities when using paths around thecritical endpoint. This was discovered experimentally by Andrews (1869) and explained by theVan der Waals theory of liquid and gaseous states (1873). Because of that, it was suggestedthat, along the `continuous' paths, something interesting may happen, in spite of the absence of



2.6. The Kert�esz Line 45standard thermodynamic singularities. This is indeed true, and is strictly related to the dropletdescription of phase transitions that we have discussed in this chapter.The Fortuin-Kasteleyn clusters are perfectly de�ned also in the presence of a magnetic �eld.Because of the �eld, the system has a non vanishing magnetization m parallel to the directionof the �eld for any value of the temperature T . However, for T !1, m! 0. For T = 0, m = 1again. This suggests that also in this case, for a �xed value of the �eld H, the clusters will forman in�nite network at some temperature Tp(H). Varying the intensity of the �eld one gets acurve Tp(H), which is called Kert�esz line [35]. We have plotted it schematically in Fig. 2.5.
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Figure 2.5: Kert�esz line. For H = 0, Tp is equal to the Ising critical point; for H !1, Tp tendsto the endpoint Tb, solution of Eq. (2.29).When the �eldH = 0, we obviously get the thermal threshold of the Ising model. WhenH !1,at any temperature T the lattice spins will be all aligned with the �eld. The bonds will be thendistributed among all pairs of nearest neighbouring spins, and the site-bond problem turns ina pure bond percolation problem. The geometric transition will then take place for that valueof the temperature Tb for which the probability pij equals the critical density pB(d) of randombond percolation in d dimensions: pij = pB(d)1� exp(� 2JkTb ) = pB(d)log[1� pB(d)] = � 2JkTbTb = � 2Jk log[1� pB(d)] (2.29)So, we have a whole curve whose points are percolation points, with the usual singular behaviourof cluster-related quantities, though the corresponding thermal variables are continuous.



46 Chapter 2. Percolation and Critical Behaviour in the Ising ModelOne can ask oneself how `physical' the Kert�esz line is. We have already seen that some de�nitionsof clusters may lead to behaviours which have nothing to do with the critical behaviour of thesystem: one example is represented by the pure site-clusters of the Ising model. In the sameway, we could conclude that the Fortuin-Kasteleyn clusters are not the `physical droplets' of thesystem if we switch on a magnetic �eld, and that we have to look for an appropriate de�nition.Swendsen and Wang [36] proposed to introduce a ghost spin oriented parallel to the magnetic�eld. This ghost spin is connected to each spin (oriented like the �eld) with a probabilitypH = 1�exp(�2H=kT ), formally similar to the Fortuin-Kasteleyn bond weight. Since, forH 6=0,such probability is non-zero, no matter how small, spins arbitrarily far from each other will beconnected together through the ghost spin, giving rise to a loose in�nite network. Therefore,as long as H 6=0, at any temperature there will be percolation in this general sense, with thesites being not directly but indirectly connected. That seems to provide the desired mapping tothe thermal counterpart, in which there is always a non-zero magnetization and no divergences.An indirect con�rmation of that is given by the fact that, by means of this general de�nition ofclusters, it is possible to implement a cluster update which leads to the canonical equilibriumdistribution of the Ising (Potts) model with an external �eld.The success of the Swendsen-Wang de�nition of clusters does not imply that we can simplyforget the Kert�esz line or treat it like an arti�cial construction. In fact, it turns out to havesome remarkable properties. Fig. 2.6 shows some preliminary results of an investigation we are
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2.6. The Kert�esz Line 47From the slope of the straight line in the plot we obtain � = 0:534(3). This result might havean interesting connection with some thermal properties of the Ising model with external �eld.In fact, even if the susceptibility � is not divergent at any T when H 6= 0, it has anyhow awell de�ned peak. From the renormalization group ansatz for the free energy of thermal systemsundergoing second order phase transitions, it is possible to determine in general how the positionof the susceptibility peak t� is related to the magnetic �eld h, when h! 0. It turns out thatt� / h1=(��); for h! 0; (2.31)where � and � are the critical exponents we have introduced in Section 2.1. For the 2D Isingmodel 1=(��) = 0:533, which coincides with our estimate of the Kert�esz exponent �. That couldmean that there is a relationship between the two curves. In particular, it would be interestingto check whether they overlap, at least for small values of hz. Work in this direction is still inprogress.If we take the cluster number distribution ns of the general Swendsen-Wang droplets, it behavesdi�erently on the two sides of the Kert�esz line [35]. On the low-temperature sidelog ns/ � 2HkT s� �s2=3; (2.32)where � is a surface tension term; instead, on the high-temperature side, there is no surfacetension and one has log ns/ � 2HkT s� const�s; (2.33)Similar percolation-type singularities appear when one studies the behaviour of the Fortuin-Kasteleyn droplets around the Kert�esz line. According to some numerical investigations [37],there seems to be evidence that Taylor expansions of the free energy as a function of H or T havea di�erent convergence behaviour (i.e. radius) on the two sides of this line. That might be relatedto the geometrical singularities we have just mentioned and could represent an argument for ageneralization of the de�nition of phase change, not exclusively based on standard singularitiesof the thermodynamic potentials.
zFor h ! 1, the position of the susceptibility peak t� ! 1, whereas we have seen that the Kert�esz linehas an endpoint, given by Eq. (2.29). So, the two curves will certainly di�er for su�ciently high values of h.Nevertheless, one could introduce a dependence on the �eld h into the Coniglio-Klein factor. Simple expressionslike 1 � exp[�2�(1 + h)], for example, would still lead to the same power law behaviour of Eq. (2.30) with thesame exponent � we have found, because for the small h-values of the points we have considered, the di�erencefrom the Coniglio-Klein factor is negligible. On the other hand, the Kert�esz line obtained by using the new factortends to in�nity for h !1, which might allow a global comparison with the thermal curve of the susceptibilitypeaks.



48 Chapter 2. Percolation and Critical Behaviour in the Ising Model



Chapter 3

Percolation and Magnetization in Continuous
Spin Models

Starting from this chapter we shall present the results of our investigations. We will initially tryto extend the Coniglio-Klein result to models characterized by continuous spin variables, whichrepresents a �rst step towards the de�nition of a percolation picture for lattice �eld theory.
3.1 The Continuous Spin Ising ModelThe easiest thing to start with is just to take the Ising model without external �eld, and replaceits two-valued spins by continuous variables. The Hamiltonian is again given byH = �J Xij SiSj; (3.1)with the sum over nearest neighbours, but the spin Si can now take all values within somerange, which we assume to be [�1;+1]. This model is the classical continuous spin Ising modelintroduced by Gri�ths [38], who studied its behaviour in two space dimensions. In [38], Gri�thsdeduced that this model has the same critical behaviour of the Ising model, i. e. it undergoes asecond order phase transition with the magnetization as order parameter, and its exponents arein the Ising universality class. For practical reasons, it is convenient to rewrite the spin variableS in the following way S = sign(S)�; (3.2)separating the sign from the amplitude � (e.g. the absolute value) of the spin. The Hamiltonian(3.1) satis�es a Z(2) global symmetry, i. e. it remains invariant after a simultaneous sign changeof all spins of the system. This symmetry will play an important role all through our studiesand it implies that the signs of the spins are equally distributed in the canonical ensemble of the



50 Chapter 3. Percolation and Magnetization in Continuous Spin Modelssystem. In contrast, the amplitudes can in general be weighted in di�erent ways by choosing adistribution function f(�). Therefore, the partition function of the continuous spin Ising modelhas the following general form:Z(T ) = Yi Z 10 d�if(�i) expf�Xhi;jiSiSjg; (3.3)where � � J=kT . In the model studied by Gri�ths, f(�) = 1 8�. We will begin by studyingthis special case, but we will see that our result is valid also for the more general expression(3.3).We have carried on a detailed numerical study of the model on a simple square lattice. TheMonte Carlo update method we have used is a version of the Wol� algorithm [39] adapted toour system. We briey describe this algorithm, that we will often use, in the case of the Isingmodel.The Wol� algorithm is a cluster update which improves the Swendsen-Wang procedure wehave illustrated in Section 2.4. Starting from a randomly chosen spin S0, one visits all nearestneighbours of the same sign as S0 and connects them to it with probability p = 1�exp(�2J=kT ).Repeating iteratively this procedure with newly added spins in the cluster, at some stage nomore neighbours will ful�ll the above compatibility condition. Flipping all spins of the clusterone gets a new spin con�guration. It turns out that this dynamics veri�es the detailed balancecondition, i.e. it samples the Gibbs distribution of the Ising model (see [39]). The analogieswith the Swendsen-Wang method are clear. The Wol� cluster is constructed in the same wayas the Fortuin-Kasteleyn-Swendsen-Wang clusters, being the bond probability the same in bothcases. But with the Wol� method one ips a single cluster at a time, a feature that succeeds ineliminating the old problem of critical slowing down of Monte Carlo simulations.Because of its e�ectiveness, we tried to implement a Wol�-like cluster update for our system,exploiting its analogies with the Ising model. We basically repeat the Wol� procedure, butadopting for the bond probability the expression belowp(i; j) = 1� exp(� 2JkT �i�j); (3.4)which explicitly depends on the spin amplitudes. If we simply ip the spins, the dynamics is nolonger ergodic, as the spin amplitudes would remain unchanged. So, the cluster ipping mustbe supplemented by a local update method (like Metropolis or heat bath), in order to respectthe accessibility criterium. We chose to alternate heat bath and Wol� steps. The proof thatthe resulting update ful�lls both ergodicity criteria and the detailed balance condition will beomitted here since it follows closely the derivations that can be found in [40, 41, 42, 43].Our version of the Wol� algorithm for the continuous Ising model suggests that the Fortuin-Kasteleyn clusters in this case should probably be built as usual, the only di�erence beingrepresented by the local bond probability (3.4).



3.1. The Continuous Spin Ising Model 51To check whether these clusters are indeed the physical droplets we are looking for, we haveperformed extensive simulations of our model, choosing six di�erent lattice sizes, namely 642,962, 1282, 1602, 2002 and 3002. Our update step consisted of one heat bath sweep for the spinamplitudes and three Wol� ippings for the signs, which turned out to be a good compromiseto reduce sensibly the correlation of the data without making the move be too much time-consuming. The thermal quantities are the energy density� = Pij SiSjV (3.5)(V is the lattice volume), and the magnetizationm = jPi SijV ; (3.6)where the absolute value is necessary to take into account the two equivalent directions of thespins.As far as the percolation variables are concerned, after grouping all spins into clusters by meansof the Hoshen and Kopelman labeling (see Appendix A), we measure the percolation strengthP and the average cluster size S, as de�ned in Sections 1.2.2 and 1.2.3. For the cluster labelingwe have used free boundary conditions. We say that a cluster percolates if it spans the latticein both directions, that is if it touches all four sides of the lattice. This choice was made toavoid the possibility that, due to the �nite lattice size, one could �nd more than one percolatingcluster, making ambiguous the evaluation of our variablesy. The three fundamental features wehave just mentioned, i. e. the Hoshen-Kopelman algorithm, the use of free boundary conditionsand the de�nition of percolating cluster in all directions, will be always present in our percolationinvestigations, unless stated otherwise.The statistical errors of all variables were determined by using the Jackknife method [44] withten bins of data: such method will be applied in all our studies. The quantities of interestwere measured every �ve updates for any temperature and lattice size. That makes both thepercolation and the thermal variables basically uncorrelated.After some preliminary scans of our program for several values of the temperature � (� = J=kT ),we focused on the �-range between 1:07 and 1:11, where the transition seems to take place. Thenumber of iterations for each run goes from 20000 (for � values close to the extremes of therange) to 50000 (around the center of the range). The thermal results have been interpolatedby means of the density of state method (DSM) [45], which contributes to reduce the errorsrelative to the data points. We shall regularly apply this method to study thermal phasetransitions. Unfortunately theDSM fails if one tries to interpolate the percolation data, becausethe probability of having a given cluster con�guration must take into account not only thedistribution of the spins, which is weighted by the Hamiltonian of the model, but also theyIn three dimensions even this de�nition of spanning cluster does not exclude the possibility of having morethan one of such clusters for the same con�guration. Nevertheless the occurrence of such cases is so rare that wecan safely ignore them.



52 Chapter 3. Percolation and Magnetization in Continuous Spin Modelsdistribution of the bonds. Besides, for the percolation quantities, standard interpolation methods(like cubic spline) do not help to improve the situation because of the uctuations of the dataat criticality. Therefore we used directly the data points to extract the critical indices.To locate the critical point of the thermal transition we used the Binder cumulantzgr = 3� hm4ihm2i2 : (3.7)Fig. 3.1 shows gr as a function of � for the di�erent lattice sizes we used. The lines crossremarkably well at the same point, which suggests that also in our case gr is a scaling function.As a numerical proof we replot the lines as a function of tL1=� (t = (T � Tc)=Tc, L is the latticeside), choosing for the exponent � the 2D Ising value 1. The plot (Fig. 3.2) shows that indeedgr is a scaling function with the critical exponent � equal to the 2D Ising one.
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Figure 3.1: Classical continuous Ising model of Gri�ths. Binder cumulant as a function of � forsix lattice sizes.
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Figure 3.3: Classical continuous Ising model of Gri�ths. Percolation cumulant as a function of� for six lattice sizes. The dashed line indicates the thermal critical threshold.To �nd the critical point of the percolation transition we use the percolation cumulant introducedin Section 1.5. The results can be seen in Fig. 3.3. The agreement between the thermal thresholdand the geometrical one is excellent.For the evaluation of the exponents we used standard �nite size scaling techniques (see Section1.5). To obtain the thermal exponents we adopted the �2 method [10], a procedure that we willapply to most of the models we are interested in. The results we got are reported in Table 3.1,from which it is clear that the critical exponents of the two transitions agree with each otherand with the 2D Ising model values.Critical point �=� =� �Thermal results 1:09312+0:00012�0:00008 0:128+0:005�0:006 1:745+0:007�0:007 1:01+0:01�0:02Percolation results 1:09320+0:00008�0:00008 0:130+0:008�0:010 1:753+0:006�0:006 0:98+0:03�0:022D Ising values 1=8 = 0:125 7=4 = 1:75 1Table 3.1: Thermal and percolation critical indices for the classical continuous Ising model ofGri�ths.So far we have investigated a relatively simple case, namely a model with the uniform amplitudesdistribution f(�) = 1. One can ask whether the result remains valid for the general ansatz (3.3).As a matter of fact, the distribution f(�) plays an important role as far as the thermal propertiesof the system are concerned; in particular, it may inuence the order of the phase transition.For this reason, since we want to study models with continuous transitions, the choice of the



54 Chapter 3. Percolation and Magnetization in Continuous Spin Modelsfunction f(�) is not arbitrary. It can be proved that it must obey certain regularity conditions,which are not very restrictive, however [46]. Here we consider the following form for f(�):f(�) =p1� �2 (3.8)which is the Haar measure of the SU(2) group. We have made this choice because our �naltarget is to de�ne a percolation picture for SU(2) gauge theory, and the function (3.8) appearsquite often in formal expressions of this theory, like series expansions.It is reasonable to presume that the bond weight we need to de�ne our clusters is determinedby the Hamiltonian of the system, and not by eventual distribution functions. That is why wetried to test the same cluster de�nition we adopted in the previous case. So, our droplets will beagain clusters of like-signed nearest neighbouring spins bound to each other with the probability(3.4).We have carried on a complete numerical investigation of the model, performing simulations onfour lattice sizes, 642, 1282, 1602 and 2402. Our algorithm consists in heat bath steps for theupdate of the spin amplitudes followed by Wol�-like cluster updates for the ipping of the signs.That is basically the same method as used before, although the heat bath procedure is slightlymodi�ed to take into account the presence of the distribution function f(�): the procedure isanalogous as the heat bath algorithm of Creutz for SU(2) gauge theory [47]. Also in this case,the proof of the detailed balance condition is simply obtained from the results in [40] - [43].Again, we alternated one heat bath sweep and three Wol� ippings and took the measurementsevery �ve updates: that makes negligeable the correlation of all quantities.Fig. 3.4 shows a comparison between the Binder cumulant gr(�) and the percolation cumulant,both as functions of the temperature variable �, for di�erent lattice sizes. The agreementbetween the two thresholds is excellent.
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Figure 3.5: Continuous Ising model with the distribution (3.8). Rescaled percolation cumulantfor four lattice sizes, using the 2D Ising exponent �Is = 1. The errors on the data points aresmaller than the size of the symbols in the plot.
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Figure 3.6: Continuous Ising model with the distribution (3.8). Rescaled percolation cumulantfor four lattice sizes, using the 2D random percolation exponent �RP = 4=3. The errors on thedata points are smaller than the size of the symbols in the plot.



56 Chapter 3. Percolation and Magnetization in Continuous Spin ModelsWe can also get an estimate for the percolation critical exponent �, by rescaling the percolationcumulant curves as a function of tL1=� . Figs. 3.5 and 3.6 show the rescaled curves: �crit = 1:3888and for � we have taken the random percolation value �RP = 4=3 and Ising one �Is = 1,respectively. It is clear that the curves scale for � = �Is and do not for � = �RP . To determinethe critical exponents' ratios �=� and =�, we have performed high-statistics simulations aroundthe critical point, with the number of measurements for each value of the coupling varying from50000 to 100000. We have listed the results in Table 3.2. It is evident that the percolationbehaviour coincides fully with the thermal critical behaviour. This conclusion is likely to holdin general for the admissable spin distribution functions.Critical point �=� =� �Thermal results 1:3887+0:0002�0:0001 0:128+0:007�0:010 1:754+0:007�0:008 0:99+0:03�0:02Percolation results 1:3888+0:0002�0:0003 0:121+0:008�0:006 1:745+0:011�0:007 1:01+0:02�0:032D Ising values 1=8 = 0:125 7=4 = 1:75 1Table 3.2: Thermal and percolation critical indices for the continuous Ising model with theamplitude distribution (3.8).
3.2 Extension to Generalized Continuous Ising-like ModelsWe shall now address the question whether the introduction of additional longer range spin-spininteractions still allows a description of the thermal transition in terms of percolation. Thiswill turn out to be very useful in our attempt to de�ne suitable clusters in SU(2) gauge theory.Besides, we will examine the e�ects of eventual self-interaction terms, and show that they don'tplay any role in the cluster de�nition.Our study is still based on continuous spin Ising models, in which the individual spins si at eachlattice site can take on all values in the �nite range [�1; 1]. Since these models are more generalthan the ones characterized by discrete valued spins, the results can be then trivially extendedto the latter ones. Here we will consider three more general models of this type; d denotes thespace dimension:A) d = 2, nearest-neighbour (NN) and diagonal next-nearest-neighbour (NTN) interaction (Fig.3.7a);B) d = 3, NN and two types of NTN interactions (see Fig. 3.7b);C) as case B), but including an additional self-interaction term proportional to S2i 8 i.
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(a) (b)Figure 3.7: Scheme of the spin-spin interactions in the models we have studied. The �guresindicate the interactions of the spin represented by the black circle with its neighbours. Linesof the same color are associated to the same coupling. a) Model A. b) Models B and C.The couplings Ji relative to the spin-spin interactions are all positive (ferromagnetic). In eachcase, we will assume a uniform distribution for the spin amplitudes. This has only practicalreasons, since it simpli�es the numerical analysis, but, according to the results of the previoussection, it does not a�ect the generality of our conclusions.
3.2.1 Model A: Next-to-Nearest Neighbour InteractionsWe have now two terms, with a Hamiltonian of the formH = �JNN NNXhi;jiSiSj � JNTN NTNXhi;ji SiSj (3.9)where the �rst sum describes nearest-neighbour and the second diagonal next-to-nearest neigh-bour interactions (Fig. 3.7a). Since longer range interactions are generally weaker, we have�xed the ratio between the two couplings at JNN=JNTN = 10; however, we do not believe thatour results depend on the choice of the couplings, as long as both are ferromagnetic.To de�ne clusters, we now extend the Coniglio-Klein method and de�ne for each two spins i; jof the same sign, for NN as well as NTN, a bond probabilitypxB(i; j) = 1� exp(�2�x�i�j); (3.10)where x speci�es �NN = JNN=kT and �NTN = JNTN=kT , respectively. This hypothesis seemsto us the most natural, and we will test it in the following B and C models.



58 Chapter 3. Percolation and Magnetization in Continuous Spin ModelsWe have studied model A using two di�erent Monte Carlo algorithms, in order to test if a Wol�-type algorithm can also be applied in the presence of NTN interactions. The �rst is the standardMetropolis update, while the second alternates heat bath steps and a generalized Wol� ipping,for which the clusters are formed taking into account both interactions. The generalization ofthe cluster update is trivial. After several runs, some with high statistics, we found excellentagreement with the Metropolis results in all cases. So, the mixed algorithm with heat bath andWol� ippings appears to remain viable also in the presence of more than the standard NNinteraction. Subsequently we have therefore used this mixed algorithm. The update alternateslike before one heat bath sweep and three Wol� ippings. The lattice sizes ranged from 1002 to4002. We measured our variables every 5 updates for the smaller lattice sizes and every 10 forthe larger ones, keeping these numbers �xed at any temperature. All variables of interest turnout to be basically uncorrelated. We accumulated up to 50000 measures for temperatures closeto the critical point.
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Figure 3.9: Rescaled percolation cumulant curves for model A, using the 2D Ising exponent�Is = 1. The errors on the data points are smaller than the size of the symbols in the plot.of our geometrical islands belong to the 2D Ising universality class (Table 3.3).Critical point �=� =� �Thermal results 0.9707+0:0003�0:0002 0.124+0:007�0:005 1.747+0:009�0:007 0.993+0:014�0:010Percolation results 0.9708+0:0002�0:0002 0.129+0:008�0:009 1.752+0:009�0:011 1.005+0:012�0:0202D Ising Model 1=8 = 0:125 7=4 = 1:75 1Table 3.3: Thermal and percolation critical indices for model A, compared to those of the 2DIsing model.
3.2.2 Model B: Extension to Three DimensionsWe now go one step further and repeat the study for a d = 3 model with three di�erentinteractions (Fig. 3.7b).To �x the model, we have to specify the ratios of the nearest-neighbour coupling JNN to JNTNand Jdiag . We chose them to be 10 : 2 and 10 : 1, respectively. Our calculations are performedon lattices ranging from 123 to 403.



60 Chapter 3. Percolation and Magnetization in Continuous Spin ModelsAlso here we have �rst compared the results from a mixed algorithm of the same kind as for theprevious case to those from a standard Metropolis algorithm; again, the agreement turns out tobe very good. The heat bath sweeps and the Wol� ippings are in the ratio 1 : 3. We measuredour variables every 5 updates for any temperature and lattice size. The percolation variables arenot correlated, whereas the thermal ones show a correlation which is, however, rather small (theautocorrelation time � is of about 2�3 for the magnetization on the 403 lattice near criticality).The number of measurements we took varies from 20000 to 40000.
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Figure 3.11: Rescaled percolation cumulant curves for model B, using the 3D Ising exponent�Is = 0:6294. The errors on the data points are smaller than the size of the symbols in the plot.
3.2.3 Model C: Adding Self-InteractionsFrom what we have seen up to now, it seems to be clear that the correct cluster de�nition canreadily be extended to models including several (ferromagnetic) spin-spin interactions. However,such terms are not the only possible interactions in a model with Z(2) symmetry and a continuoustransition. There could be anti-ferromagnetic spin-spin couplings as well as multispin terms,coupling an even number of spins greater than two (four, six, etc.). Moreover, since the spinsare continuous, the presence of self-interaction terms is possible, determined by S2, S4, etc. Thetreatment for antiferromagnetic and multispin couplings so far remains an open question. Incontrast, self-interactions are not expected to play a role in the cluster building, since such termsdo not relate di�erent spins. Therefore, we test a cluster de�nition ignoring any self-interactionterm.We thus consider in Model C the same interactions as in Model B, plus a term proportionalto J0Pi S2i . We chose a negative value for the self-interaction coupling J0; this is the moreinteresting case since the corresponding interaction tries to resist the approach of the system tothe ground state at low temperatures (� = 1 everywhere). The ratios of the NN coupling to theothers were chosen as JNN : JNTN : Jdiag : jJ0j = 6 : 2 : 1 : 2.We �rst verify the viability of the mixed algorithm. The check was successful so that we couldapply the algorithm for our purposes. The update consists again in one heat bath sweep andthree Wol� ippings. In order to eliminate the correlation of the data we measured our quantitiesevery 40 updates. We collected up to 70000 measurements for temperatures close to criticality.
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Figure 3.12: Rescaled percolation cumulant curves for model C, using the 3D Ising exponent�Is = 0:6294. The errors on the data points are smaller than the size of the symbols in the plot.The critical points were determined by means of the cumulants. In Fig. 3.12 we present therescaling of the percolation cumulant curves in correspondence of the 3D Ising exponent �Is =0:6294. The scaling function can be clearly seen. Successively we have determined the criticalexponents (Table 3.5). It is evident that percolation and the thermal transition again fall intothe same universality class. Critical point �=� =� �Thermal results 0.3004+0:0002�0:0001 0.513+0:012�0:010 1.963+0:014�0:009 0.626+0:011�0:010Percolation results 0.3005+0:0001�0:0001 0.524+0:010�0:011 1.975+0:008�0:009 0.636+0:011�0:0173D Ising Model 0.5187(14) 1.963(7) 0.6294(10)Table 3.5: Thermal and percolation critical indices for model C, compared to those of the 3DIsing model.We have shown that the equivalence of cluster percolation and spin ordering in the descriptionof critical behaviour in the continuous spin Ising model can be extended to a rather wide class oftheories. In particular, it remains valid also in the presence of more than just nearest neighbourinteractions, if ferromagnetic, and of spin distribution functions. Moreover, the introduction ofself-energy contributions does not a�ect the equivalence.
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3.3 Cluster Percolation in O(n) Spin ModelsAn interesting extension of the Coniglio-Klein result concerns the O(n) spin models.The O(n) spin models with no external magnetic �eld have the following Hamiltonian:H = �JXhi;ji sisj; (3.11)where i and j are nearest-neighbour sites on a d-dimensional hypercubic lattice, and si is ann-component unit vector at site i (J > 0 is the coupling). The partition function of thesemodels at the temperature T is Z(T ) = Z D[s] expf�Xhi;ji sisjg (3.12)where � = J=kT and the integral is extended over all spin con�gurations fsg of the system.In three space dimensions, such models undergo a second order phase transition due to thespontaneous breaking of the continuous rotational symmetry of their Hamiltonian. The O(n)models are very interesting: some physical systems in condensed matter physics are directlyassociated to them. The three-dimensional O(3) model is the low-temperature e�ective modelfor a bidimensional quantum antiferromagnet [48]. The O(2) model in three dimensions is knownto be in the same universality class as superuid 4He. O(n) models are also very useful to studyrelativistic �eld theories. The O(4) model in three dimensions has been conjectured to be inthe same universality class as the �nite-temperature chiral phase transition of QCD with twoavours massless quarks [49].Numerical simulations of O(n) models became much quicker and more e�ective after U. Wol�introduced his Monte Carlo cluster update [39]. We have already described it in the particularcase of the Ising model (see Section 3.1). As a matter of fact, the Wol� update was devised forO(n) spin models, of which the Ising model is a special case (for n = 1).The procedure, as we have said, consists in ipping all spins of a cluster which is built in someway. For details of the ipping procedure, see [39]. Here we are interested in the way to buildup the clusters. We can split this procedure in two steps:a) choose a random n-component unit vector r;b) bind together pairs of nearest-neighbouring sites i, j with the probabilityp(i; j) = 1� expfmin[0;�2�(si�r)(sj�r)]g: (3.13)From this prescription it follows that if the two spins at two nearest-neighbouring sites i and j aresuch that their projections onto the random vector r are of opposite signs, they will never belong



64 Chapter 3. Percolation and Magnetization in Continuous Spin Modelsto the same cluster (p(i; j) = 0). The random vector r, therefore, divides the spin space in twohemispheres, separating the spins which have a positive projection onto it from the ones whichhave a negative projection. The Wol� clusters are made out of spins which all lie either in theone or in the other hemisphere. In this respect, we can again speak of 'up' and 'down' spins, likefor the Ising model. In addition to that, the bond probability is local, since it depends explicitlyon the spin vectors si and sj, and not only on the temperature like the Fortuin-Kasteleyn factor.The analogies with the Ising model are however clear, motivating the attempt to study thepercolation properties of these clusters.Indeed, for O(2) and O(3), it was analytically proven that the Wol� clusters percolate at thethermal critical point [50, 51]. Nevertheless, in [50, 51] nothing about the relationship betweenthe critical exponents was said.We have investigated numerically the 3-dimensional O(2) and O(4) models performing computersimulations for several lattice sizes. The Monte Carlo update was performed by the Wol�algorithm. At the end of an iteration, the percolation strength P and the average cluster size Swere measured. This has been done for each of the models using two di�erent approaches.The �rst approach is the traditional one, based on a complete analysis of the lattice con�g-uration. Once we have the con�guration we want to analyze, we build Wol� clusters until allspins are set into clusters. We assign to P the value zero if there is no percolating cluster, theratio between the size of the percolating cluster and the lattice volume otherwise. We calculateS using the standard formula (1.7). We say that a cluster percolates if it spans the lattice froma face to the opposite one in each of the three directions x, y, z. In this approach we have usedas usual free boundary conditions.The second approach is based on a single-cluster analysis. Basically one studies the percolationproperties of the cluster built during the update procedure. For the cluster building we haveconsidered periodic boundary conditions. Suppose that sc is the size of the cluster we built. Ifit percolates, we assign value one to the strength P and zero to the size S; otherwise, we writezero for P and sc for S. These de�nitions of P and S look di�erent from the standard de�nitionswe have introduced above, but it is easy to see that they are instead equivalent to them.In fact, we build the cluster starting from a lattice site taken at random. In this way, theprobability that the cluster percolates (expressed by the new P ) coincides with the probabilitythat a site taken at random belongs to the percolating cluster (standard de�nition of P ). Asfar as the average cluster size is concerned, we can repeat the same reasoning: the probabilitythat the cluster we built is a non-percolating cluster of size sc is just the probability wsc that arandomly taken lattice site belongs to a non-percolating cluster of size sc; wsc is given bywsc = nsc sc : (3.14)Because of that, whenever we get a non-vanishing size sc, such value will be weighted by theprobability wsc in the �nal average S, which is then given by the following formula:S = Xsc wscsc = Xsc nsc sc2; (3.15)



3.3. Cluster Percolation in O(n) Spin Models 65where the sum runs over the non-percolating clusters. We notice that Eq. (3.15) coincides withEq. (1.7), apart from the denominatorPs ns s, which is just the density of the sites belonging to�nite clusters. Since this term does not contribute to the divergence of the average cluster size,the power law behaviour of the two S's at criticality is identical, so that the critical exponent is the same in both cases.As we have said, in the second approach we select a single cluster at a time from the whole con-�guration. Because of that we have now some freedom of choosing the de�nition of percolatingcluster, as we do not risk, like in the �rst approach, to �nd more spanning structures. We saythat the cluster percolates if it connects at least one face with the opposite one.In this way, also the de�nitions of percolating clusters are di�erent in the two approaches.This certainly inuences the results on �nite lattices, but has no e�ects on the in�nite-volumeproperties we are interested in. In fact, we have seen in Section 1.3.2 that one can have at most aunique spanning cluster above the critical density pc (in our case below the critical temperatureTc). Exactly at pc (Tc) there is a �nite probability to have more than a spanning cluster. So, thetwo di�erent de�nitions of percolating cluster we have adopted can lead to di�erences betweenthe in�nite-volume values only at the critical point pc (Tc). But the critical exponents are,of course, not inuenced by that, as they are determined by the behaviour of the percolationvariables near the critical point, not exactly at pc (Tc).The second approach has the advantage that it does not require a procedure to reduce thecon�guration of the system to a set of clusters; on the other hand, since it gets the informationout of a single cluster, it requires a higher number of samples in order to measure the percolationvariables with the same accuracy of the �rst method. Nevertheless, the iterations are faster dueto the simpler measurement of observables, and are less correlated than in the �rst approach,since only a (random) limited region of the lattice is considered in each sample. We �nd thatboth methods are e�cient, and that it is important to be able to compare results obtained intwo such di�erent ways.We collected up to 150000 measurements for temperatures close to the critical point. We mea-sured our quantities every N updates, with N ranging from 50 for the smaller lattice sizes to100 for the greater ones: that eliminates the correlation of the percolation data.Figs. 3.13 and 3.14 show percolation cumulant curves for O(2) and O(4), respectively. Theagreement with the physical thresholds (dashed lines) is clear. Successively, we perform theusual scaling tests to check whether the exponents �perc of the geometrical transitions coincidewith the ones of the model, �O2 = 0:6723 and �O4 = 0:7479 respectively, or rather with the3-dimensional random percolation exponent �RP = 0:8765. Figs. 3.15 and 3.16 show that, bytaking the thermal exponents, the curves fall on top of each other, con�rming that �perc = �thermin both cases.
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Figure 3.13: Percolation cumulant as function of � for O(2) and �ve lattice sizes. The dashedline indicates the position of the thermal threshold [52].
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Figure 3.14: Percolation cumulant as function of � for O(4) and six lattice sizes. The dashedline indicates the position of the thermal threshold [53].
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Figure 3.15: Rescaled percolation cumulant for O(2) using �c = 0:45416 and the O(2) exponent�O2 = 0:6723. The values of the thermal critical indices are taken from [52]. The errors on thedata points are smaller than the size of the symbols in the plot.
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Figure 3.16: Rescaled percolation cumulant for O(4) using �c = 0:9359 and the O(4) exponent�O4 = 0:7479. The values of the thermal critical indices are taken from [53] (the threshold) and[54] (the exponent �O4). The errors on the data points are smaller than the size of the symbolsin the plot.



68 Chapter 3. Percolation and Magnetization in Continuous Spin ModelsTo complete our investigation, we have determined the critical exponents' ratios making use, asusually, of standard �nite size scaling techniques. We list all the critical indices relative to thepercolation transition for O(2) and O(4) in Tables 3.6 and 3.7, respectively. In the tables wehave reported, for comparison, the values of the thermal critical indices. The agreement withthe physical values in [52, 53, 54] is good.�c �=� =� �Thermal results [52] 0.454165(4) 0.5189(3) 1.9619(5) 0.6723(3)Percolation results 0.45418(2) 0.516(5) 1.971(15) 0.670(4)Table 3.6: Comparison of the thermal and percolation thresholds and exponents for O(2).�c �=� =� �Thermal results 0.93590(5)[53] 0.5129(11)[54] 1.9746(38)[54] 0.7479(90)[54]Percolation results 0.93595(3) 0.515(5) 1.961(15) 0.751(6)Table 3.7: Comparison of the thermal and percolation thresholds and exponents for O(4).So far we have presented the results obtained using the �rst approach. The results derived usingthe second approach are essentially the same; besides, we observe an improved quality of thescaling, mainly because of the use of periodic boundary conditions, which reduce considerablythe �nite size e�ects.In particular we show in Figs. 3.17, 3.18 the scaling of P and S at the thermal thresholdsreported in [52, 53]. We observe very small �nite size e�ects (lattices of L � 20 are used in the�ts), especially for the O(2) case, which is in contrast to what is observed for thermal observables[55]. The slopes of the straight lines are in agreement with the values of the thermal exponents'ratios �=�, =�.
In conclusion, we have shown that the spontaneous breaking of the continuous rotational sym-metry for the 3-dimensional O(2) and O(4) spin models can be described as percolation of Wol�clusters. In both cases, the number n of components of the spin vectors s does not seem to playa role; the result is thus likely to be valid for any O(n) model.
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Figure 3.17: Finite size scaling plot at Tc for the percolation observable P as a function of thelattice size L. The slopes in the plots correspond to �=� = 0:521(3); 0:513(6) respectively forO(2) and O(4). The errors on the data points are smaller than the size of the points in the plot.
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Figure 3.18: Finite size scaling plot at Tc for the percolation observable S as a function of thelattice size L. The slopes in the plots correspond to =� = 1:97(1); 1:99(1) respectively for O(2)and O(4). The two curves look surprisingly similar to each other. The errors on the data pointsare smaller than the size of the points in the plot.
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Chapter 4

Polyakov Loop Percolation in SU(2) Gauge
Theory

4.1 Finite Temperature SU(N) on the latticeFinite temperature Quantum Chromodynamics (QCD) has been extensively simulated on thelattice over the last two decades, in order to test the hypothesis that, at high temperaturesand (or) high densities, quark matter should pass from the (con�ned) hadronic phase to the(decon�ned) phase represented by a plasma of quarks and gluons.QCD, like all theories describing fundamental forces (except gravitation), is a quantum �eldtheory with local gauge invariance. The gauge group which rules this invariance is SU(3): thequarks form a triplet in the fundamental representation of SU(3), and the gluons, which are thecarriers of the interaction, form an octet in the adjoint representation.The non-abelian character of the SU(3) group leads to an important feature that distinguishesQCD from Quantum Electrodynamics (QED), which is ruled by the abelian group U(1): thegluons carry a charge and can interact among each others, in contrast to the photons. Therefore,it makes sense to study systems constitued only by gluons, and to check whether the interactiongives rise to a con�nement-decon�nement transition from a phase in which the gluons are boundin glueballs to a phase of free gluons. This simpler situation is described by the so-called puregauge SU(3).Since any SU(N) group is non abelian, the study of the relative pure gauge theories may be ofinterest also for N 6=3.The Lagrangian density of the SU(N) pure gauge theories isL = �14F a��(x)F a��(x); (4.1)



72 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge Theorywhere F a��(x)� @�Aa�(x)� @�Aa�(x) + g fabcAb�(x)Ac�(x): (4.2)Here Aa� are the gauge �elds (a = 1; 2; :::; N2 � 1), g is the gauge coupling constant and fabc thestructure constants of the SU(N) group. The rightmost term of (4.2), present because for theSU(N) group fabc 6=0, is responsible of the gluon-gluon interaction.The renormalizability of SU(N) gauge theories [56] assures the convergence of perturbativeseries expansions: QCD was established as theory of the strong interaction after a great dealof perturbative results were con�rmed by experiments. However, the important phenomenon ofcon�nement lies well beyond the realm of perturbation theory.The need of getting predictions from the theory in the non-perturbative domain led to analternative calculation pattern, the lattice regularization, characterized by a discretization ofspace-time which gets rid automatically of troublesome divergences [57].With the Lagrangian density (4.1) provided, the formulation of statistical SU(N) theories is, atleast in principle, a well-de�ned problem. We have to calculate the partition functionZ(�; V ) = Trfe��Hg: (4.3)In the trace we have to sum over all physical states accessible to the system in a spatial volumeV ; � = 1=T , where T is the physical temperature and H is the Hamiltonian of the system,which can be expressed by means of L. Once we have Z(�; V ), we can proceed to derive allthermodynamic observables. Thus, � = � 1V �@ lnZ@� �V (4.4)is the energy density, and P = 1��@ lnZ@V �� (4.5)gives us the pressure.The lattice formulation of statistical SU(N) is obtained in three steps. First we replace theHamiltonian form (Eq. (4.3)) of the partition function by the corresponding Euclidean functionalintegral ZE(�; V ) = ZA�(�;~x)=A�(0;~x) (dA) exp h� ZV d3xZ �0 d� L(A)i: (4.6)This form involves directly the Lagrangian density and the sum over states in (4.3) is replacedby the integration over the �eld con�gurations A. The periodicity condition A�(�; ~x) = A�(0; ~x)is a consequence of the trace form of Eq. (4.3). The spatial integration of (4.6) is performed over



4.2. Z(N) Symmetry and Deconfinement 73the whole volume of the system, while in the imaginary time � � ix0, the integration runs overa �nite slice determined by the temperature. The �nite temperature behaviour of the partitionfunction thus becomes a �nite size e�ect in the integration over � .Next, the Euclidean ~x � � manifold is replaced by a discrete lattice, with N� points in eachspace direction and N� points for the � axis. The lattice spacing is a. The overall space volumebecomes V = (N�a)3, the inverse temperature ��1 = N�a. To ensure the gauge invariance ofthe formulation, the gauge �elds A must be de�ned on the links connecting each pair of adjacentsites.In the �nal step, the integration over the gluon �elds is replaced by one over the correspondinggauge group variables, or link variables,Uij = exp h� ig(xi � xj)�A��xi + xj2 �i; (4.7)with xi and xj denoting two adjacent lattice sites, so that Uij is an SU(N) matrix associatedto the links between these two sites.The partition function of �nite temperature SU(N) pure gauge theories takes then the formZ(N�; N� ; g2) = Z Ylinks dUij exp[�S(U)]; (4.8)where S(U) is the Wilson actionS(U) = 2Ng2 Xplaq �1� 1NReTr UUUU�: (4.9)The sum is over all the smallest closed paths of the lattice (plaquettes), which are formed byfour links; UUUU is the product of the link variables corresponding to each side of a plaquette.By letting the lattice spacing a go to zero, one recovers the continuum limit (4.6). This assuresthat, for a small enough, the lattice regularization does not inuence the physical observablesand that we can rely on the results derived by this approach.
4.2 Z(N) Symmetry and DeconfinementPure SU(N) gauge theories have a global symmetry, resulting from the periodicity of the gauge�elds in the temperature direction, that rules the behaviour of the system at �nite temperatures.Gauge transformations which are compatible with the periodicity condition need only be periodicup to an element z of the center Z(N) of the gauge group SU(N). Thus a gauge transformationmust obey:



74 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge TheoryA(~x; 0) = zA(~x; �); for all ~x; (4.10)where A(~x; �) is the SU(N) matrix associated to the gauge �eld at the point (~x; �) and z 2Z(N). The n-th element of Z(N) is given as exp(2�in=N) (n = 0; :::; N � 1). It is easy to seethat, under (4.10), the action (4.9) remains unchanged. In contrast, the Polyakov loop,L~x = 1N Tr N�Yt=1 U~x;t;t+1; (4.11)consisting of the product of all the U 's in the temperature direction taken at a given spatial site~x, transforms non-trivially under this transformation,L~x ! z L~x: (4.12)The same relation is valid if we take the average L = hL~xi over the lattice and over con�gurations.L is an indicator of the state in which the system �nds itself. It is clear that, if L 6= 0, thetransformation (4.10) will not leave invariant the value of L, as it would happen if L = 0. Thatmeans that the state of the system may spontaneously break the global Z(N) symmetry, justas the ordered phase of the Ising model breaks the global Z(2) symmetry of its Hamiltonian.The quantity L is then the order parameter of the phase transition associated to the spontaneousbreaking of the Z(N) symmetry. Is this transition somehow related to decon�nement?The state of a gluons system can be probed qualitativey by a heavy test quark. The free energyF of this test quark should be in�nite in the con�nement phase, but �nite in the decon�nementphase. It turns out that such free energy is related to the lattice average of the Polyakov loopby the following expression L / e�� F : (4.13)In the con�nement regime, F = 1 and Eq. (4.13) implies L = 0. If the gluons are free, F is�nite and, consequently, L 6= 0. The (eventual) transition from the con�ned to the decon�nedstate of the SU(N) gauge system is thus characterized by the spontaneous breaking of the globalcenter Z(N) symmetry.Lattice studies have shown that this phase transition indeed takes place. The �rst computersimulations of �nite temperature lattice gauge theories were performed in the early 80's and con-cerned the SU(2) theory [47], basically because it is the simplest one and the relative simulationsare not so lengthy as the SU(3) simulations.Fig. 4.1 shows SU(2) data relative to the Polyakov loop, from which the typical behaviour of asecond order phase transition is clearly visible.In spite of their higher complexity, SU(3) simulations could be performed shortly after the SU(2)ones. However, it took a while before one could be sure to understand what was happening there.Now it is well established that SU(3) gauge theory undergoes a (weak) �rst order con�nement-decon�nement phase transition (Fig. 4.2).
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Figure 4.1: Lattice average of the Polyakov loop as a function of the coupling � = 4=g2 for puregauge SU(2) on a N3��N� lattice with N� = 36 and N� = 4.
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Figure 4.2: Polyakov loop as a function of the coupling � = 6=g2 for pure gauge SU(3) on a323�4 lattice; the data points are taken from [58].
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4.3 SU(N) Gauge Theories vs Z(N) Spin ModelsIn the previous section we have stressed the key role played by the Z(N) symmetry in thecon�nement-decon�nement mechanism of SU(N) gauge theories. It is easy to check that anyZ(N) rotation leaves invariant the product of link variables around each closed path whichincludes spatial links (Wilson loops). However, we have seen that the topologically nontrivialPolyakov loop L~x changes after such rotations (see Eq. (4.12)). If we consider that, from Eq.(4.11), L~x is determined only by the links in the imaginary time/temperature direction, werealize that the Z(N) symmetry introduces a distinction between spatial links and time links:the latter ones alone seem to have the control of the phase transition.It is then natural to try to get rid of the `irrelevant' degrees of freedom represented by the spatiallinks and to express the SU(N) action in terms only of the order parameter �eld L~x. This canbe achieved by integrating out the spatial gauge �elds; the resulting e�ective theory is simplerthan the original model and could facilitate the investigation of the con�nement-decon�nementphase transition.Svetitsky and Ya�e [9] presented a number of arguments that lead to some interesting conclusionsabout the properties of such SU(N) e�ective theories. Their arguments are essentially based ondynamical considerations and simple renormalization group ideas and allow to deduce, amongother things, the order of the phase transition and, in case of a continuous transition, theexponents which characterize the critical uctuations.The main point of [9] is the hypothesis that, integrating out all degrees of freedom except thePolyakov loops, one yields an e�ective theory with short range interactions, which is invariantunder the center Z(N) symmetry. In case of a continuous transition, one could in principle locatethe renormalization �xed point which governs the relative critical behaviour. If it happens that,in the space of d-dimensional theories with short range interactions invariant under the centersymmetry, there exists only a single �xed point, then the critical behaviour of the original(d + 1)-dimensional �nite-temperature SU(N) gauge theory will be the same as that of simpled-dimensional spin models invariant under the same global symmetry Z(N).In many cases theories, related by the same symmetry, are indeed associated to a single �xedpoint: this implies that results for the critical behaviour of simple spin models may be used topredict the critical behaviour in �nite-temperature gauge theories.It is, for example, the case of the Z(2) symmetry, for which only one �xed point is known.Consequently, since SU(2) pure gauge theory undergoes a continuous transition, its criticalexponents should fall in the universality class of the Z(2) spin model, which is the Ising model.Lattice studies have provided strong evidence that the conjecture is indeed true [10].As a counter-example, in the space of three-dimensional Z(3) symmetric theories, no stablerenormalization group �xed point is known. That led the authors of [9] to conjecture that(3+1)-d SU(3) pure gauge theory undergoes a �rst order phase transition, as it was successivelycon�rmed by lattice simulations (see Section 4.2).



4.4. Polyakov Loop Percolation 77
4.4 Polyakov Loop PercolationZ(N) spin models have been extensively investigated, both analytically and numerically. It isnatural to check to which extent the analogy between such models and SU(N) gauge theoriesis valid.In particular, we know that the critical behaviour of the Ising model can be equivalently describedas percolation of well de�ned clusters of like-sign spins (see Chapter 2). It is thus spontaneousto ask ourselves whether it is possible to �nd a description of critical behaviour in terms ofpercolation also for the decon�nement transition in SU(2) gauge theory.This could provide a suggestive view of the con�nement-decon�nement mechanism. If we takea typical SU(2) con�guration at a certain temperature, there will be areas where the Polyakovloop L takes negative values, and areas where L takes positive values. Both the positive andthe negative 'islands' can be seen as local regions of decon�nement. But as long as there are�nite islands of both signs, decon�nement remains a local phenomenon and the whole system isin the con�ned phase. When one of this islands percolates, that is it becomes in�nite, then wecan talk of decon�nement as a global phase of the system.The rest of this chapter is devoted to �nd a solution to this problem. The main di�culty isthe fact that the SU(2) Lagrangian is not directly a function of the Polyakov loop, due to thepresence of the spatial gauge �elds. Moreover, if we integrate out the spatial link variables, weyield an e�ective theory that contains non trivial combination of operators, which cannot ingeneral be replaced by suitable combinations of Polyakov loops.Therefore it is not clear how one can extract the expression of the bond probability which isnecessary to build the clusters like in the Ising model.The only way to face the problem is to try to approximate SU(2) by means of e�ective theorieswhich are easy to handle. This will allow us to exploit the percolation pictures for general spinmodels presented in Chapter 3.We propose two alternative procedures to look for a suitable de�nition of cluster building.The �rst approach adopts a Polyakov loop e�ective theory derived by means of series expansionsof the SU(2) partition function in the strong coupling limit.The second approach searches for simple Ising-like spin models which approximate the Ising-projected Polyakov loop con�gurations and, even if it is more involved than the �rst one, it canalso be applied in a case which approaches the weak coupling region.



78 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge Theory
4.5 First Approach: Strong Coupling Expansions

4.5.1 The Green-Karsch Effective TheoryOne of the most successful techniques adopted to deduce results from the lattice formulation ofgauge theories is the so-called strong coupling expansion, which consists in expanding quantitieslike the action, the partition function, etc., in powers of the inverse coupling 1=g2. This pro-cedure, analogous as the well known high-temperature expansions in statistical physics, allowsto obtain interesting information about the system. It was by means of analyses of the strongcoupling limit that Polyakov [59] and Susskind [60] could show for the �rst time that QCD maylose its con�ning property, if the temperature is su�ciently high.We present here a strong coupling expansion of SU(N) gauge theories derived by Green andKarsch [11]. Their aim was to perform a mean �eld analysis of the SU(N) decon�nementtransition in the presence of dynamical quarks, but we will limit ourselves to introduce theexpressions relative to the pure gauge sector, in particular to pure gauge SU(2), which is theone we are interested in.We start from the formula (4.8) for the lattice action. We can writeS(U) = XP SP (U)SP (U) = 4g2�1� 12ReTr UUUU� (4.14)where the action S(U) is divided in the contributions SP (U) coming from each plaquette P .SP (U) can be expanded [61] in terms of the characters �r of the SU(2) group (r is an integerwhich indicates the representation of the group)e�SP = Z0� 1g2�h1 +Xr drzr� 1g2��r(UP )i: (4.15)In (4.15) dr = r + 1, zr(1=g2) = Ir+1(4=g2)=I1(4=g2) and Z0 = g2I1(4=g2)=2, where the Ir arethe modi�ed Bessel functions.Next, we remark that we can neglect all spacelike plaquettes Ps by setting UPs = 1 withouta�ecting appreciably the critical behaviour of the system, as long as the coupling � = 4=g2 issmall. The validity of this approximation, which corresponds to dropping the magnetic term inthe hamiltonian of the theory, relies on the fact that spacelike plaquettes tend to decrease thestring tension (see [61]). Hence if a phase transition is found in the strongly coupled theory,there is almost certainly one in the full theory.For little values of � we can thus write the SU(2) partition functionZeff = Z [dU ] YPt h1 +Xr drzr� 1g2��r(UPt)i; (4.16)



4.5. First Approach: Strong Coupling Expansions 79where the product is exclusively over the timelike plaquettes Pt. Integrating over the spacelikelinks and grouping the timelike links associated to the same spatial site x, we easily getZeff = Z Yx dWx Yx;e h1 +Xr zN�r � 1g2��r(Wx)�r(W yx+e)i: (4.17)In the expression above fx; eg indicates a link, N� is the number of lattice spacings in thetemperature direction and Wx the Wilson line variableWx = N�Yt=1 Ux;t;t+1: (4.18)We stress that the the original (d+1)-dimensional lattice has now become a simple d-dimensionallattice; the �rst product in Eq. (4.17) runs over its sites, the second one over its links.If � is small enough, we can keep only the fundamental r = 1 term of the expansion, and we�nally get Zeff � Z Yx dWx exp h�0Xij LiLji; (4.19)with �0 = 4zN�1 and Li the value of the Polyakov loop at the site i (see Eq. (4.11)); the sum isover nearest neighbours. For � small,z1� 1g2� = I2� 4g2�I1� 4g2� � 1g2 = �4 : (4.20)The �nal expression for the coupling �0 of the e�ective theory is then�0 = 4��4�N� : (4.21)The partition functionZeff of Eq. (4.19) looks very much like the one of a spin model with simplenearest-neighbour interactions, with the Polyakov loop playing the role of the spin variable.There is, however, an essential di�erence: the integration variables in Zeff are not the Polyakovloops Lx, but the Wilson line operators Wx, which are SU(2) matrices. We know thatLx = 12TrWx; (4.22)but it is not clear whether we can rewrite the sum in Eq. (4.19) as a sum over Polyakov loopsonly.The properties of the SU(2) group may help us to solve the problem. If U is an SU(2) matrix,we can use a parametrization in terms of an angle � and a 3-dimensional unit vector ~n:U = ei�~n�~�=2 = � cos �2�1 + i� sin �2�~n � ~�; 0 � � < 2�; j~nj = 1: (4.23)



80 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge TheoryIn (4.23), ~� are the Pauli matrices. According to Eq. (4.23), one getsTr U = 2 cos��2� (4.24)So, the trace of U depends only on the angle �. With this parametrization, the integral overSU(2) matrices can be written asdU = 14�2 d� d
(~n)� sin �2�2; (4.25)where d
(~n) is the measure relative to the angles of ~n. Using Eqs. (4.22), (4.24) and (4.25), wecan express Zeff in the following wayZeff � Z Yx 14�2 d�x d
(~nx)� sin �x2 �2 exp h�0Xij cos ��i2 � cos ��j2 �i; (4.26)The exponential of Eq. (4.26) is only a function of the angles �i associated to the Wilsonline operators. The angles of d
(~n) can thus be integrated out; since Li = cos(�i=2) andsin(�x=2) =p1� Lx2, we reach the �nal expressionZeff � Z Yx dLxp1� L2x exp h�0Xij LiLji; (4.27)in which we have neglected the irrelevant constant factor due to the integration over d
(~n)x.We stress that, to derive Eq. (4.27), we made use of two approximations. We have neglectedthe spacelike plaquettes and we have truncated the expansion of (4.17) to the �rst term. Bothapproximations rely on the fact that the coupling �c, at which the transition occurs, is smallenough. Since �c shifts to higher values the bigger the number of lattice spacings in the timedirection, the assumptions are valid only for small values of N� . Green and Karsch showed thatthe mean �eld analysis of the e�ective theory of Eq. (4.19) gives results which are compatiblewith SU(2) lattice simulations for N� = 1; 2 [11]. We decided to concentrate ourselves to themore interesting case, i. e. N� = 2.Eq. (4.27) is exactly the partition function of one of the continuous spin Ising models we havestudied in Section 3.1, namely the model whose spin amplitudes f�g are distributed according toEq. (3.8). From Section 3.1 we know that the critical behaviour of the continuous Ising modelshas an equivalent percolation picture; the clusters are formed by binding nearest neighbouringspins of the same sign with the probability (3.4). We have also seen that the distribution (3.8)does not play a role in the cluster de�nition.Assuming that, for N� = 2, the Polyakov loop con�gurations of SU(2) are ruled by the partitionfunction (4.27), it is natural to test the same de�nition of clusters of the continuous Ising model.In our case, the clusters will be then formed by like-signed nearest neighbouring Polyakov loops,bound with the probability p(i; j) = 1� exp(�2�0 Li Lj): (4.28)



4.5. First Approach: Strong Coupling Expansions 81For N� = 2, from Eq. (4.21) we get �0 = �2=4, so thatp(i; j) = 1� exp�� �22 Li Lj�: (4.29)With Eq. (4.29), the Polyakov loop percolation problem is fully de�ned. We point out that thestrong coupling expansion we have shown is independent on the number of space dimensions ofthe system, as long as the corresponding values of the critical coupling �c remain small. Becauseof that, we decided to investigate SU(2) both in (2 + 1) and in (3 + 1) dimensions, to test ourcluster de�nition in two di�erent cases.
4.5.2 Numerical Results for (2+1)-d SU(2)Our analysis is based on four sets of data on N2��2 lattices, with N�=64, 96, 128 and 160. TheMonte Carlo update consists of one heat bath and two overrelaxation steps. For the 642�2 and962 � 2 lattices we evaluated con�gurations every six updates, for 1282 � 2 and 1602 � 2 everyeight updates, measuring in each case the percolation strength P and the average cluster sizeS. The percolation variables are essentially uncorrelated.A �rst scan for values 3:1 < � < 3:5 leads to the behaviour of S shown in Fig. 4.3. It isseen that S peaks slightly below �c; with increasing N�, the peak moves towards �c. Next,
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Figure 4.3: (2+1)-d SU(2), N� = 2. Average cluster size S as function of � for four lattice sizes.The curves peak clearly near the thermal threshold, represented by the dashed lines (within onestandard deviation), and tend to approach it the larger the size is.



82 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge Theorywe carried out high-statistics simulations in a narrower range 3:410 < � < 3:457 around thetransition. In general, we performed between 30000 and 55000 measurements per � value, withthe higher number taken in the region of the interval closest to the eventual critical point. Thehigh density of points near the threshold allows to determine quite precisely the critical indicesafter the usual �nite size scaling analysis that we have adopted many times in this work.
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4.5. First Approach: Strong Coupling Expansions 83The critical values of the coupling for the thermal and the geometric transition are very close,although they do not overlap within one standard deviation. In view of the inevitable approx-imations involved by our procedure, small deviations are not unexpected. However, the factthat the critical percolation exponents agree with the Ising values and not with the 2D ran-dom percolation ones shows clearly that our clusters are, with good approximation, the physical`droplets' of the system.
4.5.3 Numerical Results for (3+1)-d SU(2)As �nite temperature SU(2) in (3 + 1) dimensions is more interesting than in (2 + 1), becauseit describes a system in the `real' 3-dimensional space, we carried on a complete study of themodel, analysing both the thermal and the geometrical transition.We performed four sets of simulations in correspondence to the following lattice sizes: 163 � 2,243 � 2, 303 � 2, 403 � 2. The Monte Carlo update is the same we have used in the previouscase, i. e. it alternates heat bath and overrelaxation moves, in the ratio 1 : 2. We evaluatedcon�gurations every ten updates for each lattice size and value of the coupling �. The percola-tion data are uncorrelated; the thermal variables instead show some important correlation (theautocorrelation time � is about 10 for the magnetization on the 403�2 lattice near criticality).The number of measurements varies from 10000 to 80000. We used the density of states method(DSM) [45] to interpolate our data. Fig. 4.5 shows the results of the interpolation for thephysical susceptibility � = V (hL2i � hLi2); (4.30)
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84 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge Theorywhere L is, as usual, the lattice average of the Polyakov loop and V the spatial lattice volume.To �nd the thermal threshold we used the Binder cumulantygr = 3� hL4ihL2i2 : (4.31)
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4.6. Second Approach: Projection on Ising-like Spin Models 87Figs. 4.9 and 4.10 show the rescaled percolation cumulant using �c = 1:8747 and the twomajor options for the exponent �, respectively the Ising value and the random percolation one.From the �gures it is evident that the critical exponent �perc of the scaling function is the Isingexponent and not the random percolation one.To evaluate the exponents' ratios �=� and =� we performed high-statistics simulations in therange where the percolation cumulant curves cross each other. To improve the precision of thescaling �ts we considered several lattice sizes (all even values of the lattice side L between 18and 40). The number of measurements we took for each value of the coupling varies from 50000to 100000. The �nal results are reported in Table 4.2.Critical point �=� =� �Percolation results 1:8747+0:0002�0:0002 0:528+0:012�0:015 1:985+0:013�0:018 0:632+0:010�0:015Thermal results 1:8735+0:0004�0:0003 0:523+0:010�0:013 1:959+0:009�0:007 0:630+0:010�0:0083D Ising Model 0.5187(14) 1.963(7) 0.6294(10)Table 4.2: Thermal and percolation critical indices for (3 + 1)-d SU(2), N� = 2: �rst approach.The critical exponents we found, both for the thermal transition and for the geometrical one,are in good agreement with each other and with the ones of the 3-dimensional Ising model.Again, the values of the two critical points are very close but they overlap only within twostandard deviations, like in the (2 + 1)-d case. However, our value of the thermal thresholdis much more precise than the value we adopted for (2 + 1)-d SU(2) (see Table 4.1). In thisrespect, the accord for (3 + 1)-d is better than the one for (2 + 1)-d. This fact is not a surprise.In fact, the error induced by the truncation of the strong coupling expansion to the �rst term(see Section 4.5.1) is smaller the smaller �c is, so that the approximation is better in the (3+1)dimensional case (�c = 1:8735) than in the (2 + 1)-d case (�c = 3:464).
4.6 Second Approach: Projection on Ising-like Spin Models

4.6.1 Beyond the Strong Coupling LimitOn the ground of our previous investigations, we can say that the e�ective theory, derived bymeans of the strong coupling expansion of Section 4.5.1, allows to map the critical behaviourof �nite temperature SU(2) pure gauge theory into a geometrical percolation framework. Ourprocedure was, necessarily, approximate; nevertheless the results are encouraging.



88 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge TheoryWe must point out that a drawback of the method is the fact that its validity is limited to thestrong coupling limit of SU(2) (i.e. for small N� ). If we want to address the decon�nementproblem more generally, an investigation of the weak coupling limit becomes compulsory.Since, in this case, high temperature expansions do not help, the derivation of an e�ective theoryfrom the SU(2) lattice action seems prohibitively complicated. We thus decided to try to extractthe e�ective theory we need by analysing directly the Polyakov loop con�gurations. This can bedone by using techniques developed in Monte Carlo renormalization group studies [63, 64, 65].To simplify the things, we assume the Z(2) global symmetry to be the only relevant feature at thebasis of the critical behaviour of the theory. This assumption is rather strong but reasonable,since the Z(2) symmetry seems to be the only unifying feature of all theories in the Isinguniversality class.In this way, we can limit ourselves to analyze the con�gurations of the signs of the Polyakovloops, so that we perform a sort of projection into Ising-like spin con�gurations. This approachhas been successfully applied by Okawa to de�ne an e�ective Hamiltonian for SU(2), in orderto look for the �xed point of the theory by means of block-spin transformations [12].The e�ective Hamiltonian H(s) of the signs fsng of the Polyakov loop con�gurations can bede�ned through the equation [12]exp[H(s)] = Z [dU ]Yn �[sn; sgn(Ln)] exp(SSU2); (4.32)where Ln is, as usual, the value of the Polyakov loop at the spatial point n and SSU2 the SU(2)lattice action. We stress that we include the factor � 1kT in the de�nition of the Hamiltonian. Eq.(4.32) shows that all degrees of freedom of the original SU(2) �eld con�gurations are integratedout, leaving only the distribution of the corresponding Ising-projected con�guration.The problem is now how to determine the expression ofH(s), starting from the original Polyakovloop con�gurations.In general, we write H(s) = ��O�; (4.33)in which �� are the couplings, O� the spin operators and a sum over the index � is understood(e.g. in the Ising model there would be only a single operator O =Pij sisj). Once we select thenumber and the type of operators, to �x the form of H(s) we need just to calculate the valuesof the couplings ��.To solve this problem, Okawa proposed to use Schwinger-Dyson equations, which are derivedby exploiting the Z(2) symmetry of H(s) [13].



4.6. Second Approach: Projection on Ising-like Spin Models 89Suppose to select some point n of the spatial volume. We can then rewrite Eq. (4.33)H(s) = ��O�n +�Hn; (4.34)separating the terms depending on the spin sn at n (O�n) from the ones which are independentof sn (�Hn). We assume O�n to be linear in sn. This assumption is by no means restrictive,since all even powers of the spin variables are equal to 1, and consequently any product of spinscan be reduced to a form where each spin appears at most linearly.The thermal average of the operator On ishOni = Pfsg On exp[H(s)]Z (4.35)(Z is the partition function). If we perform a change of variable inside the sum, `ipping' thespin variable sn to �sn, the operator On will change sign and Eq. (4.35) becomeshOni = �Pfsg On exp[���O�n +�Hn]Z= �Pfsg On exp(�2��O�n) exp(��O�n +�Hn)Z= �hOn exp(�2��O�n)i: (4.36)Eq. (4.36) establishes a relation between thermal averages of the operators On and the couplings� . The equations (4.36) are, however, implicit in the couplings. They can be solved by meansof the Newton method, which is based on successive approximations. One starts by making aguess about the values of the couplings; we indicate by ~� such initial values. We can developthe exponentialexp(�2�On) = expf�2[ ~� + (� � ~�)]Ong � exp(�2 ~�On)[1� 2(�� � ~��)O�n] (4.37)Combining (4.37) and (4.36), we �nally obtain for the �rst approximation of ��(1) = ~� + 12 hOnO�ni�1[hO�ni+ hO�n exp(�2 ~��O�n)i]: (4.38)From the Polyakov loop con�gurations we can calculate the thermal averages of the operatorexpressions present in (4.38). Next, we use the results �(1) of the �rst iteration as input valuesin Eq. (4.38) and we get some values �(2). After a su�cient number N of iterations, the seriesof partial values for the � 's will converge, i. e. �(N +1) � �(N) within errors, 8 . The �nalset of couplings is the solution of Eq. (4.36).We notice that the general set of equations (4.36) refers to a single point n of the spatial volume.The thermal averages are independent of the particular point n, so it doesn't matter where wedecide to take the averages. Nevertheless, since we aim to reduce as much as possible the errorsof the couplings, we chose to determine the thermal averages at each point of the lattice, and



90 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge Theoryto calculate successively the average value of the couplings obtained by solving the equations atany point. This reduces considerably the e�ect of thermal uctuations and, consequently, theerrors on the �nal � 's.So, we have now all necessary tools to derive an e�ective theory for SU(2) out of the Polyakovloop con�gurations. We still have to specify what kind of spin operators should appear inthe expression (4.33) of the hamiltonian H(s). We can in principle choose any operator whichrespects the Z(2) symmetry. Nevertheless, our choice is bound by the condition for the e�ectivespin model to have an equivalent percolation formulation. As far as this is concerned, we knowthat the original Coniglio-Klein picture of the Ising model can be extended to general spinmodels, as long as the interactions are spin-spin and ferromagnetic (see Section 3.2.1). Weproved this result for continuous spin models, but it remains valid also in the simpler case ofIsing spins.Because of that, we impose that our O� are spin-spin operators. Our ansatz for the e�ectiveHamiltonian H(s) is thusH(s) = �1XNN sisj + �2 XNTN sksl + �3 XNTNTN smsn + etc: ; (4.39)where the distance between coupled spins increases progressively starting from the simplenearest-neighbour (NN) case (NTN =next-to-nearest, NTNTN =next-to-next-to-nearest, andso on).What we have to do is to check whether, including a su�cient number of operators, the Hamilto-nian (4.39) can reproduce the Ising-projected Polyakov loop con�gurations of �nite temperatureSU(2). In general, the approximation improves the more operators we include in (4.39), becausethere will be more parameters. The fact that one must restrict the choice to some subset ofoperators involves an error (truncation error) in addition to the statistical one. The truncationerror is, in general, impossible to determine and can be much bigger than the indeterminationof the e�ective theory due to the statistical uctuations of the thermal averages. In this way,the solution one �nds at the end of the procedure is not necessarily a good approximation ofthe original theory, but only the closest one belonging to the subspace of theories de�ned bythe selected set of operators. We need thus to establish a criterium to judge how well the e�ec-tive theory approximates the original one. A good option could be to compare average valuesgot from the con�gurations produced by simulating the e�ective theory with the correspondingquantities measured on the original Ising-projected Polyakov loop con�gurations. We used thelattice average of the magnetization m,m = 1V ���Xi si��� ; (4.40)(V is the spatial lattice volume) as test variable for this quality control.We point out that the approach we have described is independent of the value of the number N�of lattice spacings in the temperature direction. In this respect, the method is general, althoughit is not possible to predict whether it is able to provide the required solution in all cases.



4.6. Second Approach: Projection on Ising-like Spin Models 91We applied the method to SU(2) in (3 + 1) dimensions, for two di�erent lattice regularizations:N� = 2 and N� = 4. We have already studied the case N� = 2 with the �rst approach (seeSection 4.5.3): this gives us the possibility to compare the two di�erent procedures.
4.6.2 Numerical Results for (3+1)-d SU(2), N �= 2As we are interested in the phase transition of SU(2), we focused our attention on the criticalpoint. The value of the critical coupling �c was already determined quite precisely during theprevious investigation; our estimate was �c = 1:8735+0:0004�0:0003 (see Table 4.2). So, our aim is tocheck whether, at � = �c, we can �nd a projection of the theory onto the spin model (4.39).We performed a simulation of SU(2) at �c on a rather large lattice, 323�2. We chose a largelattice to reduce �nite size e�ects. The algorithm we used is the same described in Section4.5.2. We measured our quantities every 70 updates, which makes the analyzed con�gurationsbasically uncorrelated; the total number of measurements is 2000. As usual, the errors weredetermined with the Jackknife method.We began by making a projection on a model with 10 operators. Ten is, in fact, the numberof spin-spin operators considered by Okawa in his e�ective theory of SU(2) [12]. However,his Hamiltonian contains also multispin operators (products of 4, 6 and 8 spins), which wemust exclude. The average of the magnetization (4.40) of the e�ective theory did not agreewith the one of the Polyakov loop con�gurations, so that we progressively enlarged the set ofoperators, adding further spin-spin interactions, until we reached a set of 15 couplings. TheCoupling Avg. Value Coupling Avg. Value�1 0.1307(1) �9 0.00014(10)�2 0.01905(3) �10 0.00058(3)�3 0.00470(5) �11 0.00018(3)�4 0.0080(1) �12 0.00008(1)�5 0.00192(4) �13 0.00001(1)�6 0.00062(8) �14 0.00006(1)�7 0.00033(2) �15 -0.00005(3)�8 0.00007(2)Table 4.3: Couplings of the e�ective theory for the Polyakov loop con�gurations of (3 + 1)-dSU(2) (N� = 2) at the critical coupling �c = 1:8735.



92 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge Theoryrelative operators connect a point (000) to (100), (110), (111), (200), (210), (211), (220), (221),(222), (300), (310), (311), (320), (321), (322). The �nal set of couplings is reported in Table 4.3.Fig. 4.11 shows a comparison between the magnetization distribution of the Polyakov loopcon�gurations and the one of the e�ective theory: the two histograms are very similar. Thevalues of the average magnetization m are also in agreement: for SU(2), m = 0:091(1) andfor the spin model, m = 0:0923(7). We notice that all the couplings in Table 4.3 are positive,except the last one. Since the error on �15 is of the order of its average value, we can set �15 = 0without appreciable e�ects. In this way, we have got the e�ective theory we were looking for,with only ferromagnetic spin-spin interactions. The values of the couplings can then be used to
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Figure 4.11: (3+1)-d SU(2), N� = 2. Comparison of the magnetization histograms derived fromthe Polyakov loop con�gurations at �c and the e�ective theory (4.39) de�ned by the couplingsof Table 4.3.determine the bond weights p� of the corresponding percolation model, according to the usualformula p� = 1� exp(�2��) (4.41)(� = 1; :::; 15).The magnetization check indicates that the e�ective theory is a fair approximation of SU(2).Anyhow, this does not necessarily imply that the two models are very close to each other, sothat we can conclude that the percolation picture of the e�ective theory indeed works for theoriginal Polyakov loop con�gurations. The only way to see that is to investigate the geometricaltransition of the new clusters in the SU(2) con�gurations.



4.6. Second Approach: Projection on Ising-like Spin Models 93Therefore, we performed a percolation analysis of (3+1)-d SU(2) (N� = 2), building the clustersaccording to the general de�nition introduced in Section 3.2.1, with the bond probabilities (4.41).We stress that the bond weights are temperature-dependent. Our e�ective theory represents aprojection of SU(2) for � = �c. But, in order to carry on our analysis, we need to evaluate thepercolation variables at di�erent values of �. Strictly speaking, for each �i at study we shouldderive the corresponding e�ective theory, and use the relative set f�gi to calculate the bondweights (4.41) at �i. But for our analysis the previous consideration is not important. In fact,we are interested anyhow only in �'s which lie near �c, so that the corresponding couplings ofthe e�ective theory will change only slightly from one to the other extreme of the range. In thespeci�c case of our investigations, it turns out that the variation is of the order of the error onthe couplings derived by a single projection, and it is thus irrelevant for our purposes. Becauseof that, at each �, we shall use the same set of bond probabilities, namely the set determinedby the couplings of Table 4.3.We considered four lattice sizes: 243�2, 303�2, 403�2 and 503�2. Taking the measurementsevery 10 updates, the percolation data are uncorrelated, even for the 503�2 lattice. Fig. 4.12shows the behaviour of the percolation cumulant as a function of �.
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Figure 4.12: (3 + 1)-d SU(2), N� = 2. Percolation cumulant near the critical point for fourlattice sizes.The four curves cross remarkably well at the same point, within errors, in excellent agreementwith the thermal threshold, indicated within one standard deviation by the dashed lines. Therescaling of the percolation cumulant curves indicates that the percolation exponent �perc = �Is(Figs. 4.13 and 4.14).
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Figure 4.13: (3+1)-d SU(2), N� = 2. Rescaling of the percolation cumulant curves of Fig. 4.12using �c = 1:8734 and the 3-dimensional Ising exponent �Is = 0:6294.
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Figure 4.14: (3+1)-d SU(2), N� = 2. Rescaling of the percolation cumulant curves of Fig. 4.12using �c = 1:8734 and the 3-dimensional random percolation exponent �RP = 0:8765.



4.6. Second Approach: Projection on Ising-like Spin Models 95To determine the exponents' ratios �=� and =�, we used the usual �nite size scaling procedure,performing simulations at criticality of many di�erent lattice sizes to improve the quality of thescaling �ts (we took even values of the lattice side L between 20 and 50). Unfortunately, wecould not determine �=�, because of strong uctuations of the percolation strength P around�c. The value of P at criticality is, in general, quite small, and it su�ers more than S theapproximations involved by our procedure. Consequently, the slopes of the data points in thelog-log scaling �ts of P vary wildly, and the error of �=� turns out to be too large. On the otherhand, =� can be evaluated with the usual accuracy (� 1%) and its value is in agreement withthe one of SU(2) (Table 4.4). Critical point =� �Percolation results 1:8734(2) 1:977+0:011�0:017 0:628+0:011�0:009Thermal results 1:8735+0:0004�0:0003 1:959+0:009�0:007 0:630+0:010�0:0083D Ising Model 1.963(7) 0.6294(10)Table 4.4: Percolation critical indices for (3+1)-d SU(2), N� = 2, with the new cluster de�nition.We also put for comparison the thermal results determined in Section 4.5.3. and the 3D Isingvalues.In conclusion, in spite of the several approximations we were forced to introduce to de�ne thepercolation picture with the second approach, for N� = 2 the new clusters seem again to followthe behaviour of the thermal quantities. Besides, the value of the critical threshold is betterthan the one determined by the �rst approach.
4.6.3 Numerical Results for (3+1)-d SU(2), N �= 4The case N� = 2, discussed in the previous section, is important because it shows that the newpercolation approach can be successfully applied and because it con�rms the result obtained inSection 4.5.3, even if the two types of clusters have apparently nothing to do with each other.However, for N� = 4, the things get more interesting, since the new method allows us to explorethis case, which is instead unaccessible to the �rst approach.As far as the thermal critical behaviour is concerned, we adopted as reference values the resultsof a recent study of Engels et al. [10]. In particular, in [10] the critical point �c was determinedwith great accuracy: �c = 2:29895(10). We simulated (3+1)-d SU(2) at � = 2:29895 and lookedfor the corresponding e�ective theory. The lattice size was 323�4, the number of measurements2000; we evaluated the con�gurations every 60 updates to have them uncorrelated.We tried �rst to use the same set of 15 operators which worked so well in the N� = 2 case.Unfortunately, the e�ective theory we obtained fails in reproducing the behaviour of the mag-netization. There is, in fact, a clear discrepancy between the average values. This fact is not



96 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge Theoryunexpected: it is known that, by increasing N� , longer range interactions come into play. Wethen enlarged further on the set of spin-spin operators. For 19 operators, we got the set ofcouplings reported in Table 4.5.Coupling Avg. Value Coupling Avg. Value�1 0.08390(4) �11 0.00082(5)�2 0.01839(5) �12 0.00055(4)�3 0.00775(4) �13 0.00035(2)�4 0.00697(1) �14 0.00030(4)�5 0.00343(2) �15 0.00013(4)�6 0.00197(1) �16 0.00020(5)�7 0.00114(1) �17 0.00018(3)�8 0.00083(1) �18 0.00017(1)�9 0.00035(6) �19 0.00017(4)�10 0.00105(9)Table 4.5: Couplings of the e�ective theory for the Polyakov loop con�gurations of (3 + 1)-dSU(2) (N� = 4) at the critical coupling �c = 2:29895.The new 4 operators connect a point (000) to (330) (�16), (331) (�17), (332) (�18) and (333)(�19). The average value of m from the e�ective theory is now 0:121(3), in agreement with theSU(2) value 0:128(6).We see that all interactions are ferromagnetic. So, also for N� = 4, there seems to be a promisinge�ective theory that we can exploit to carry on percolation studies.Next, SU(2) simulations were performed on the following lattices: 243�4, 303�4, 403�4 and503�4. To build the clusters we use the bond weights relative to the set of couplings of Table4.5, for any value of the SU(2) coupling � (see Section 4.6.2). We took the measurements every10 updates for any coupling and lattice size; in this way the percolation data are uncorrelated.Fig. 4.15 illustrates where the geometrical transition takes place: the crossing point of thepercolation cumulant curves concides with the thermal threshold (dashed line) within errors.The scaling analysis of the cumulant curves can be seen in Figs. 4.16 and 4.17. Also here itturns out that �perc = �Is. The �nal results of the �nite size scaling analysis are presentedin Table 4.6. To get better scaling �ts we considered again several lattice sizes close to the
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Figure 4.15: (3 + 1)-d SU(2), N� = 4. Percolation cumulant near the critical point for di�erentlattice sizes.critical point, taking for the lattice side L all even numbers between 20 and 50. The value ofthe exponents' ratio �=� is missing for the same problem stressed in the previous section.Critical point =� �Percolation results 2:2991(2) 1:979+0:016�0:014 0:629+0:007�0:011Thermal results 2:29895(10) 1:944(13) 0:630(11)3D Ising Model 1.963(7) 0.6294(10)Table 4.6: Percolation critical indices for (3+1)-d SU(2), N� = 4. They are compared with thethermal results of [10] and the 3D Ising values.We notice that =� is not in accord with the corresponding SU(2) estimate taken from [10].Nevertheless, it overlaps with the 3D Ising value, although the agreement is not as good as inthe N� = 2 case. This fact indicates that, for N� = 4, the e�ective theory (4.39) does notapproximate SU(2) so well as for N� = 2. The main reason could be the approximation inducedby the condition that the theory must contain only spin-spin operators. As a matter of fact,Okawa showed that, going from N� = 2 to N� = 4, multispin couplings become important [12].Besides, for N� > 4, we do not exclude that antiferromagnetic couplings may appear, whichcannot still be handled in a percolation framework.



98 Chapter 4. Polyakov Loop Percolation in SU(2) Gauge Theory

0

0.2

0.4

0.6

0.8

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
er

co
la

tio
n 

C
um

ul
an

t

(β-βc)L
1/νIs

243 × 4
303 × 4
403 × 4
503 × 4

Figure 4.16: (3+1)-d SU(2), N� = 4. Rescaling of the percolation cumulant curves of Fig. 4.15using �c = 2:2991 and the 3-dimensional Ising exponent �Is = 0:6294.

0

0.2

0.4

0.6

0.8

1

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

P
er

co
la

tio
n 

C
um

ul
an

t

(β-βc)L
1/νRP

243 × 4
303 × 4
403 × 4
503 × 4

Figure 4.17: (3+1)-d SU(2), N� = 4. Rescaling of the percolation cumulant curves of Fig. 4.15using �c = 2:2991 and the 3-dimensional random percolation exponent �RP = 0:8765.



4.6. Second Approach: Projection on Ising-like Spin Models 99We stress that our aim was to check whether it is possible to �nd a percolation picture forSU(2) which works in the weak coupling regime as well. For N� = 4 the cluster de�nition of ourapproach leads to a percolation transition which reproduces fairly well the thermal counterpart.The arguments we have presented above suggest that our method may fail for N� > 4; thisstatement should be veri�ed through numerical simulations.
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Summary

We have seen that the Coniglio-Klein percolation picture of the paramagnetic-ferromagnetictransition of the Ising model can be used, with suitable modi�cations, to describe the sponta-neous symmetry-breaking of a wide class of theories.In particular, there seems to be a one-to-one correspondence between spin-spin interactions andgeometrical bonds connecting the spins involved in the interactions. The probability for a bondto be active is a simple function of the associated coupling strength. We have found out thatthe spin variables need not be discrete like in the Ising model, but they can vary continuouslyin a range, and even be n-components vectors, like in O(n) spin models. The only di�erence inthe percolation picture is that the bond probability is local, since it depends on the values ofthe spin variables at the sites connected by the bond.In the more general case of a theory characterized by more interactions, the percolation picturecan be trivially extended if all interactions are spin-spin and ferromagnetic. For that, one needsjust to combine together all bonds corresponding to each interaction. It is not clear whetherit is possible to formulate a general percolation frame in the presence of frustration. Besides,if multispin couplings have a geometrical counterpart, more complicated objects than simplebonds (e.g. plaquettes) may be involved. This could lead to a highly non-trivial representation,which is still far from being established.The possibility of dealing with continuous degrees of freedom opens the way, in principle, to apossible application of percolation models to �eld theories. We considered the case of SU(2)pure gauge theory, because its critical behaviour is identical to the one of the Ising model andwe hoped that such connection could simplify our task.We stressed that no rigorous percolation picture a la Coniglio-Klein is possible as long as wedo not know the exact expressions of the interactions between the Polyakov loops. This factforced us to approximate SU(2) by means of special e�ective theories, for which an equivalentpercolation model exists. We have followed two di�erent approaches to extract a suitable e�ectivetheory.The �rst approach, based on series expansions of the SU(2) lattice action, works rather well butits validity is limited to the strong coupling limit.



102 SummaryThe second approach is more a brute force procedure, since it aims to �nd an Ising-like spinmodel, with just spin-spin interactions, which reproduces the con�gurations of the signs of thePolyakov loops. The new method leads to good results both in the strong coupling case we hadexamined with the �rst approach (N� = 2) and if we move towards the weak coupling limit(N� = 4). However, for N� = 4 the approximation looks worse than for N� = 2. More precisely,the value of the exponents' ratio =� seems to shift slightly towards the random percolationvalue, even if it is still in agreement with the Ising ratio. This can mean that the procedure isnot reliable for higher values of N� . As a matter of fact, we have to recognize that our ansatz forthe Hamiltonian of the e�ective model is probably too restrictive, and that multispin couplingsmay become important for big N� 's. Moreover, the precision of the method decreases the morespin-spin operators we introduce. In fact, if we analyze any time the same number of SU(2)con�gurations, the errors on the �nal couplings of the e�ective theory are of the same order,no matter how many couplings we have. Consequently, the corresponding uncertainty on themodel is the greater the more the couplings are. The Polyakov loop clusters, which are built byusing the bond weights calculated from the couplings of the e�ective theory, become thus lessand less de�ned. In order not to lose accuracy, one must lower the error on each single coupling,and that is possible only if we increase the number of SU(2) con�gurations to analyze, whichcan lead to prohibitively lengthy simulations.In conclusion, the second approach has certainly some drawbacks. Nevertheless, it allowed usto de�ne some Polyakov loop clusters which have, with good approximation, the properties ofthe physical droplets of SU(2) we were looking for, also in a case which approaches the weakcoupling limit (N� = 4). For this reason, the second approach is to be preferred to the �rst one,which strongly depends on a special lattice regularization of SU(2).From our investigations it is not possible to argue whether the critical behaviour of other �eldtheories can be described by means of percolation. The strict relationship between SU(N) gaugetheories and Z(N) spin models can represent a useful tool to devise suitable percolation picturesfor the gauge theories starting from results known for the simpler spin models. In principle, thatis exactly what we have done in our case, exploiting the analogy between SU(2) and the Isingmodel. In practice, the task gets more complicated for SU(N), when N > 2. For example,SU(3) gauge theory is certainly the most interesting case of all, because it involves the "real"gluons. In two space dimensions, SU(3) undergoes a second order phase transition, like thethree states Potts model. Very recently [66] it was shown that the 2-dimensional three statesPotts model admits an equivalent percolation formulation, which could thus be used for SU(3).However, SU(3) in two space dimensions is rather an academic model. One is surely moreinterested in the realistic 3-dimensional case. The fact that the SU(3) phase transition in threespace dimensions is �rst order poses an essential problem concerning the relationship betweenpercolation and �rst order phase transitions.The situation gets even more involved when one considers the case of full QCD, i. e. SU(3)plus dynamical quarks, since the transition from con�nement to decon�nement is probably acrossover, i.e. it takes place without any singularity in the partition function. We have seen inSection 2.6 that there are cases in which geometrical properties can change abruptly without acorresponding discontinuity in the thermal variables. This could provide a criterion to de�ne



Summary 103di�erent phases and the relative transition in an extended sense [67]. Work in this direction isin progress.We conclude our summary with some general remarks concerning the method we have chosento study correlated percolation, i. e. Monte Carlo simulations. There is, in fact, basically noliterature about this subject, as most of the known results are based on analytical proofs, andthe few numerical studies rely on series expansions.We point out the importance of the percolation cumulant, from which one can derive a preciseestimate of the critical point. Besides, the scaling of the percolation cumulant curves allows to getthe value of the critical exponent �, with 4�5% accuracy for the lattice sizes we have considered.The accuracy can be increased by analyzing larger lattices. Anyway, better estimates of � canbe obtained by using standard �nite size scaling techniques, like the scaling of the pseudocriticalpoints (see end of Section 1.5).We remark that, for equal statistics, the errors on the percolation variables are much smallerthan the errors on the corresponding thermal variables. The latter seems to be a general featureof site-bond percolation, because the clusters depend as well on the bonds' distribution. Thisintroduces a further random element which contributes to reduce sensibly the correlation of thepercolation measurements with respect to the thermal counterparts, which depend only on thespin con�gurations. We found that the data of the percolation strength P are always morecorrelated than the corresponding data of the average cluster size S.For a study of the thermal transition variables like the susceptibility � or the Binder cumulantgr are necessary. Such quantities cannot be determined directly from measurements on thespin con�gurations, but are calculated by means of averages of powers of the order parameter.That usually leads to big error bars on the �nal results of � and gr. Instead, the percolationcounterparts of � and gr, i.e. the average cluster size and the percolation cumulant, are calculateddirectly from the clusters' con�gurations, so that their errors are rather small.Hence, in order to get the same accuracy on the average values, the thermal investigation of amodel would require more CPU time than the relative percolation study. Nevertheless we haveto point out that the errors on the thermal variables can be considerably reduced by means ofreweighting techniques like the DSM [45], which we have often used in our studies, whereassimilar interpolation methods do not exist for correlated percolation z. In this work we were thusforced to use directly the data points in the �nite size scaling �ts. We think that the Fortuin-Kasteleyn-Swendsen-Wang model we have discussed in Section 2.4 could be used to implementan e�cient method for the interpolation of Fortuin-Kasteleyn percolation data relative to theq-state Potts model.From the �nite size scaling analysis, it turns out that the scaling behaviour of the percolationvariables is rather pure: that is clearly shown by the precision of the scaling of the percolationzFor random percolation a reweighting method was recently proposed [68, 69]; the role of the energy is carriedout by the probability of having a con�guration in correspondence of a value p of the density of occupied sites(bonds).



104 Summarycumulants we have performed many times in this work. In particular, in all our analyses,corrections to scaling seem negligible, and �nite size e�ects disappear already for relativelysmall lattice sizes. This is quite impressive, especially when one makes comparisons with thethermal variables, which are normally strongly a�ected by such perturbations. Nevertheless,we have to keep in mind that the accuracy on our evaluation of the critical exponents hasalways been about 1 � 2%, which is good for our purposes x but not exceptional. Moreover,the percolation data of our SU(2) studies are already a�ected by the approximations involvedin the determination of the e�ective theory, which are by far more important than eventualcorrections to scaling. On the other hand, if we want to obtain more accurate estimates ofthe results for models which admit an exact percolation formulation, like the continuous spinmodels of Chapter 3, corrections to scaling may become important: in high precision numericalstudies of random percolation that seems indeed to be the case [23]. We remind that we havealmost always adopted free boundary conditions for the cluster identi�cation. The results onO(n) spin models, however, suggest that the situation could be further on improved by usingperiodic boundary conditions (see Section 3.3).

xWe remind that for the systems we investigated we had to check whether the critical exponents of the perco-lation transition agree with the thermal exponents of the system or rather with the ones of random percolation.The thermal exponents of all the models we have considered di�er from the random percolation exponents ofabout 10� 20%, so that our accuracy is good enough to distinguish the two cases.



Appendix A

Cluster Labeling

Suppose we want to perform percolation studies by means of lattice Monte Carlo simulations.We can divide the process in two phases:� a con�guration is created specifying, according to the percolation model we have chosen,which sites are occupied and which ones are empty;� all occupied sites of the con�gurations are set into clusters, following the prescription ofthe percolation model (pure site, site-bond, etc.).The �rst phase depends on the type of system we are studying. In the case of random per-colation, for instance, one needs just a good random number generator to create the requiredcon�gurations. First, one �xes the value p of the density of occupied sites. In general oneassociates a random number r between zero and one to a lattice site and compares it with p.If r < p, the site is occupied, otherwise it is empty. The procedure is repeated for all sitesof the lattice. In the case of correlated percolation, the con�guration is created by means ofsuitable Monte Carlo algorithms. For example, in the Ising model, the spin con�gurations canbe produced by standard updates like Metropolis, heat bath, or cluster algorithms. Anyhow,such procedures will assign a value of the spin to each lattice site. Suppose we de�ne the sitesas occupied if their spins point up, then also the percolation frame will be established.The delicate point is then represented by the second phase of the process that we have mentionedabove, namely the cluster building. To identify a cluster con�guration one needs essentially toassociate to each site some label L, which indicates that the site belongs to some cluster. Whatwe would like to have is an algorithm which gives all sites within the same cluster the samelabel, and gives di�erent labels to sites belonging to di�erent clusters. If this is possible, thesearch of an eventual percolation cluster becomes trivial. In fact, it su�ces to check whether thesame label is present in two opposite sides/faces of the lattice. Besides, the size s of a cluster issimply determined by counting how many times a particular label occurs in the lattice.
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Figure A.1: Scheme of a 3�5 lattice with 11 occupied sites, which we want to set into clustersaccording to the pure site percolation rule.To have an idea of the di�culties to �nd a suitable and e�cient algorithm for the cluster labeling,we take as example the simple con�guration we have sketched in Fig. A.1. The black pointsrepresent the occupied sites of the lattice, and we want to identify the relative site percolationclusters.We can ask the computer to start from the top-left site and to proceed from left to right withineach line, and then from the top to the bottom. Any time, the program will check whetherthe site (S) it analyzes is occupied or not. Assuming it is, one checks its left (L) and top (T )neighbours. If none of them is occupied, S takes a label which has not been used previously; onthe other hand, if at least one of such neighbours is also occupied, say L, S will take the labelof L (we notice that both L and T have been previously examined and therefore, if occupied,they carry some label).Now we can start our procedure for the con�guration of Fig. A.1. The top-left site is occupied, ittherefore receives the label 1. The next occupied site is the third from the left: its left neighbouris empty and above there are no lattice sites, so that it gets a new label 2. The same happensfor the last site of the top line, which receives the label 3. For the �rst line we then obtain thefollowing labeling, where the zeros indicate the empty sites:1 0 2 0 3The �rst site of the second line is occupied, like its top neighbour, which carries the label 1.Hence the new site takes also the label 1. For the same reason the next occupied site of thesecond line receives the label 2, like the third one. But when we arrive to the last site of the line,we have a problem: in fact, this site is connected to both its neighbours, which carry di�erentlabels. Which label shall we then associate to it? The present situation is sketched by thescheme below 1 0 2 0 31 0 2 2 ?



107The crucial point is that the site in question connects two clusters which were so far separated.From now on, the labels 2 and 3 mark thus one and the same cluster. We assign to ourtroublesome site the smaller of the two labels, but we have to keep in mind that all sites markedby 3 must be �nally switched to 2. The simplest way of doing that is to ask our computer tocome back to the top-left lattice site and to mark with the label 2 all encountered sites whichcarry the label 3. But this process would be very time consuming, since it would force thecomputer to scan the lattice a number of times which is of the same order of the lattice volumeV . The total number of operations involved by the procedure of cluster labeling would thusgrow as V 2, which makes the relative computing time prohibitively large for big lattice sizes.We would rather like to have a computing time proportional to the lattice volume.Hoshen and Kopelman [70] found a smart way to solve the problem. One needs just to associateto each label M a number, which we indicate N(M). Such number takes into account therelations between cluster labels that one �nds while scanning the lattice. So, when we introducea new labelM , we set N(M) =M . If, at some stage, the clusterM turns out to be connected toanother cluster P , with P < M , like in our example (M = 3, P = 2), then we reset N(M) = P .With this prescription let us proceed with the analysis of our con�guration. The label 1 isobviously fundamental, since it is the �rst we have introduced, so that N(1) = 1. The label 2marks a cluster which has, so far, no connections with 1, and therefore N(2) = 2. The same forthe third label, before one examines the crucial case at which we interrupted our analysis, soN(3) = 3. The site we have indicated through the question mark obtains now the label 2. Thefact that the clusters 2 and 3 are the same leads us to reset N(3) = 2. Finally, let us investigatethe third and last line of the lattice. The �rst two sites are simple to identify: they both receivethe label 1. The third one establishes a connection between the clusters 1 and 2. Because ofthat, the site takes the label 1 and N(2) = 1. We end up with the following situation1 0 2 0 31 0 2 2 21 1 1 1 0N(1) = 1; N(2) = 1; N(3) = 2:In this way we need to go through the whole lattice once and to store the connections foundlater in the "label of labels" array N . To �nish our job, we must assign to each site the rightlabel. For that we just have to classify all labels which have been introduced. Let us assumethat we take a label M . The �rst thing to do is to check whether N(M) = M . If it is so, allsites marked with M carry the correct label. If, otherwise, N(M) = P < M , then one has tocheck whether P is a fundamental label, i.e. whether N(P ) = P . In this case, we reset thelabel M to the new value P . If N(P ) = L < P one repeats the procedure until one �nds thatN(S) = S for some label S, which becomes the �nal label of the sites initially marked with M .It is easy to check that this iterative procedure leads to the correct cluster labeling of the samplecon�guration of Fig. A.1.In conclusion, the Hoshen-Kopelman algorithm is a very e�cient method for the identi�cationof the cluster con�gurations which is necessary to carry on numerical percolation studies on a



108 Appendix A. Cluster Labelinglattice. The algorithm requires essentially a single scan of the lattice and the label classi�cationwe have described above, which can be done by means of simple routines in the program.
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