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Introduction

While the QCD phase diagram for vanishing baryon density is well known from lattice
calculations, for the region of non-vanishing density only qualitative features can be un-
derstood in terms of models and approximations. The reason for this is the breakdown of
the probabilistic interpretation of the path integral representation of the QCD partition
function as the fermion determinant becomes complex for non-zero chemical potential. A
quantitative analysis of QCD at non-zero density is important for our understanding of
the behaviour of dense matter as it is created in heavy ion collisions and exists in the
cosmological context. Therefore, analyzing the sign problem and reducing or even solving
this problem is an important aim in lattice QCD.

A simple picture of the QCD phase diagram in the temperature-density plane consists of
two phases. In the region of small temperatures and small densities quarks und gluons are
confined within hadrons forming a hadron gas and chiral symmetry is broken. Increasing
the temperature or the density QCD undergoes a phase transition to a phase where quarks
and gluons are deconfined forming a quark gluon plasma (QGP) where chiral symmetry
is restored. The phase transition between these two phases is well understood for vanish-
ing baryon density from lattice calculations. The order of this transition depends on the
number of flavours and the quark masses. For physical quark mass values it is expected
to be a cross-over. Additional phases occur at high densities which are relevant for some
aspects in cosmology. It is expected that a quark gluon plasma might exist in the cores
of neutron stars at high densities and small temperatures. Discussions of the existence of
color superconducting phases play a role in this context.

The equations of state, critical parameters of the phase transitions, like critical temper-
atures and energy densities, and modifications of basic hadronic properties, like masses
and decay widths, at non-zero densities are important quantities for the understanding
and analysis of experimental signatures of heavy ion collisions. First signatures for the
existence of a quark gluon plasma were found at the CERN SPS. In future experiments
at RHIC in Brookhaven and LHC at CERN the collision energy of the nuclei will be suf-
ficiently high for the production of such a plasma.

The aim of this work is to get more insight into the physics of QCD at non-zero baryon
number density. Because of the sign problem of the fermion determinant and the resulting
problems in simulating lattice QCD at finite density, we will have to restrict our analysis
to the limit of infinite heavy quarks. Expressions for the heavy quark mass limit for two
alternative approaches, namely the canonical and the grand canonical approach, will be
derived and the results of simulations in these approaches discussed and compared. We



10 INTRODUCTION

will see that in this static limit the sign problem is controllable in both approaches for
the lattice volumes, temperatures and densities we have analyzed. Thermodynamic ob-
servables will be calculated in both approaches and the properties of the deconfinement
transition will be analyzed.

Major parts of this work are published in [1, 2, 3] and were presented on various con-
ferences and workshops [4, 5, 6, 7]. It includes the derivation and analysis of the quenched
limit at non-zero baryon number density [1], heavy quark potentials in quenched QCD
[3] and string breaking in full QCD [2]. These results are put into a more closer context
in this work. We will, moreover give a more straightforward derivation of the canonical
partition functions discussed in [3] and compare the results obtained in this approach to
the grand canonical approach.

A general introduction to lattice gauge theories can, for instance be found in books by
Rothe [8] or Montvay and Miinster [9]. A rather comprehensive discussion of phase tran-
sitions in QCD can be found in an review article by Meyer-Ortmanns [10].

This work is organized as follows:

In chapter 1 our current knowledge of the phase diagram at zero and non-zero densi-
ties will be discussed. We will then describe how the chemical potential can be introduced
in lattice QCD and discuss the problems arising at non-zero chemical potential. The two
alternative approaches to finite density, the canonical and the grand canonical one, will
be compared and the connection between both descriptions will be explained in terms of
the propagator matrix. We will then derive the partition functions within the canonical
and the grand canonical approach in the limit of infinitely heavy, i.e. static, quarks.

In chapter 2 we will discuss the observables at finite temperature and density, which will be
used to describe the properties and differences of lattice QCD at zero and non-zero density.
The Polyakov loop, although it is no longer an order parameter at non-zero density, will be
used to determine the properties of the phase transition. Further important observables
that will be discussed are the heavy quark potential and the chiral condensate.

The numerical results obtained within these two approaches will be discussed in chap-
ter 3 and 4. After a description of the simulation details and the sign problem in both
approaches, the properties of the phase transition at non-zero densities will be discussed.
The heavy quark potentials will be compared for the quenched theory at zero and non-zero
density, as well as for the case of full QCD with dynamical quarks.



Chapter 1

Lattice QCD at finite Density

In the first two sections of this chapter we discuss some aspects of our present knowledge
of the QCD phase diagram at vanishing density known from lattice QCD and at non-zero
density known from phenomenological arguments, approximations and models. We will
then introduce the chemical potential in the lattice description and discuss the problems
that occur in simulations at non-zero chemical potential, i.e. non-zero baryon number
density. After a discussion of the failure of the naive quenched limit, we describe two
alternative approaches to finite density, the canonical and the grand canonical one and
show the connection between them. As an example we will expand the grand canonical
partition function of the staggered fermion formulation in terms of canonical partition
functions with the help of the propagator matrix formulation. The quenched, i.e. heavy
quark mass limit of lattice QCD will be explained and used to derive the canonical as
well as the grand canonical partition functions for Wilson fermions in the limit of static
quarks.

1.1 The QCD phase diagram at vanishing density

For zero chemical potential or vanishing baryon density, the structure of the phase diagram
is well understood from lattice calculations. The system undergoes a phase transition from
a confined phase at low temperatures, where quarks and gluons are bound in hadrons form-
ing a hadronic gas, to a phase of deconfined quarks and gluons in a quark gluon plasma
at high temperatures.

In the quenched theory with zero flavours of quarks (the limit of QCD for infinite quark
mass), this deconfinement phase transition is of first order [11]. An order parameter for
this transition is the Polyakov loop, which is zero (in the infinite volume limit) in the low
temperature phase and non-zero in the high temperature phase. The Polyakov loop is
connected to the Z(3) center symmetry of the SU(3) gluonic action. This symmetry is
related to confinement and thus broken at high temperatures.

11



12 CHAPTER 1. LATTICE QCD AT FINITE DENSITY

In full QCD with dynamical quarks the action is no longer Z(3) symmetric and there-
fore the Polyakov loop is no longer an order parameter, but serves as an indicator for
the deconfinement transition. For decreasing quark masses the deconfinement transition
smoothly turns into a chiral phase transition
[12]. As long as the explicit breaking of the
chiral symmetry by the mass term in the La-
y 0@)? R grangian is not too strong, there is a phase
) transition from a phase of spontaneously bro-
wic ken chiral symmetry to a phase of restored
Ng=3 chiral symmetry at high temperatures. The
C chiral condensate serves as an order param-
eter for this transition. The order of the
transition depends on the number of flavours
7 %?zd) order and on the quark masses. For two flavours of
massless quarks, linear o-models [13] suggest
: that the transition is of second order, charac-
0 m, , Mg o terized by the critical exponents of the O(4)-
model. In the case of three massless flavours,
the transition is expected to be of first or-
der, while for physical values of the quark
[12]. masses, the phase transition might turn into
a crossover. This dependence of the order of
the phase transitions on the up (u), down (d) and strange (s) quark masses is illustrated
in figure 1.1. For QCD with fundamental fermions, the deconfinement and the chiral
phase transition coincide, while for QCD with fermions in the adjoint representation the
transitions are separated [14].

Ng=2 Pure
1 Gauge

2nd order

Figure 1.1: The phase diagram of QCD
for 241 quark flavours at vanishing density

1.2 The QCD phase diagram at finite density

A simplified phase diagram of QCD in the density-temperature plane is shown in figure 1.3.
In the past years there was some progress in understanding the rich phase structure of QCD
at non-zero density in terms of models and approximations. The line of zero temperature
and non-zero density can be described by analyzing the ground state of the system. The
partition function can be written as a Gibbs sum over all states « of the system,

Zzgexp{—w}. (1.1)

In the limit of small temperatures, ' — 0, the ground state of the system is determined by
the minimum of E, — uN,. For u < pg = min, (Ey/N,) the ground state is the vacuum
with N =0 and E = 0. Therefore the baryon density n(u) at zero temperature is zero for
p < po. The transition to n(u) # 0 is of first order. In [15] the value for pp was estimated
to be my — 16 MeV, the mass of the lightest baryon minus its binding energy, and the
density jumps from zero to ng ~ 0.16fm ™3 at py. At nonzero temperature, the density is



1.2. THE QCD PHASE DIAGRAM AT FINITE DENSITY 13

not strictly zero. For small T' and p one finds a dilute gas of light mesons and nucleons
with

3/2
n(T, i) ~ % (Qm:T> e=mn /T, (1.2)

Although the density is no longer zero below the transition for non-zero temperature,
it is expected that the transition remains a first order phase transition for sufficiently
small T'. This nuclear gas-liquid transition line ends at a critical point at T' ~ 10 MeV.
Multi-fragmentation experiments at 7 ——
moderate energies show signals for ® "Au+"Au, 600 AMeV
this transition line [16]. Measure- | 0%c,®0 +"*ag,**"Au, 30-84 AMeV
ments of the yields of nuclear frag- 10 .
ments show that the critical expo- _+_
nents are in agreement with those of V10 <E>/<A,> ’
the three-dimensional Ising model [17]. 8
In figure 1.2 experimental signals for %\
the gas-liquid transition produced in >
3
|_I

I
|

,
’
g
’
+
. m
,

Au + Au collisions at energies of 600
MeV per nucleon are shown. The
plateau in this plot is related to al- 4
most constant emission temperatures
over a broad range of incident ener-
gies. This behaviour suggests a first- 2
order phase transition with a substan-
tial latent heat.
For very high temperatures (T > OO — é — '110' — '115' — '20
Agcp), quarks and gluons form a
plasma. The effective coupling con- <Eo>/<A0> (MeV)
stant g(7T') is logarithmically small and Figure 1.2: Caloric curve of nuclei determined by
therefore one can expect that the chiral the dependence of the isotope temperature Ty.r;
condensate is zero and therefore chiral on the ezcitation energy per nucleon [16].
symmetry is restored at high tempera-
tures due to asymptotic freedom. In the opposite region of the phase diagram, for small
temperatures and large chemical potential, it is expected that chiral symmetry is also
restored. For very large chemical potential (4 > Agcp) the quarks occupy ever higher
momentum states and due to asymptotic freedom, the interaction near the Fermi surface
is weak. Non perturbative phenomena like chiral symmetry breaking should be absent at
sufficiently large u, therefore one can expect a phase transition where chiral symmetry is
restored. This transition is predicted to be of first order from the MIT bag model and
random matrix model. The chiral condensate acts as a order parameter for this transition.
At low temperatures, it is expected that additional interesting phases occur above the
chiral-symmetry-restoring chemical potential [20]. It was suggested by Bailin and Love
[21] that QCD at high density might behave analogous to a superconductor. Through the
BCS mechanism [22], Cooper pairs of quarks condense in an attractive channel, breaking
the color gauge symmetry, and opening a gap at the Fermi surface. The coherent state,
consisting of a quark pair condensate, has lower free energy than the perturbative vacuum,

%(<E0>/<AO> -2 MeV)
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Figure 1.3: A simplified phase diagram of QCD in the density-temperature plane.

indicating that in the true vacuum two quark colors condensate, leaving the third color
quarks forming a Fermi surface. Chiral symmetry is caused by a condensate of particle-
antiparticle pairs with zero net momentum. In the presence of a Fermi surface with Fermi
momentum pr, one can only create particles with p > pg, so as the density grows, more
and more states are excluded from pairing, and chiral symmetry breaking is suppressed.
In contrast, color symmetry breaking involves pairs of particles or pairs of anti-particles.
Near the Fermi surface these pairs can be created at negligible cost in free energy, and so
any attractive particle-particle interaction enables the pairs to lower the free energy. This
is the BCS instability of the perturbative vacuum. If there is any channel in which the
interaction between quarks is attractive, then quark pair condensation in that channel will
occur. As the density increases, the phase space available near the Fermi surface grows,
and more quark pairing occurs.

For two massless flavours, mean-field analyses of Nambu-Jona-Lasinio (NJL) models using
a 4-leg instanton vertex as the effective interaction [23, 24] indicate that BCS-style quark
pair condensation does indeed occur at densities of a few times nuclear matter density.
The gaps are of the order of 100 MeV. At even lower temperatures the quarks, left out
of the superconducting condensate, may form spin-1 pairs and condensate. There is no
local order parameter to distinguish the superconducting phase from the deconfined phase,
however, the phase transition is expected to be of first order.

For three massless flavours, an effective interaction with single-gluon exchange [25], shows
a similar behaviour as for the two flavour case. The condensate is invariant under corre-
lated color/flavour rotations (color-flavour locking). The color symmetry is broken by the
quark pair condensate, but unlike in the two flavour case, chiral symmetry is also broken.
An illustration of the phase diagram of QCD with two and three massless quark flavours
is shown in figure 1.4.
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Figure 1.4: Conjectured phase diagram for two and three massless flavours [18].

At intermediate temperatures and densities it has been argued that a critical or even tri-
critical point might exist at the endpoint of the first order transition at large densities
[26]. The NJL-model [27] in which the interaction is induced by instantons and the ran-
dom matrix model [15] have shown almost the same results for the position of the critical
point of a temperature of T;. ~ 100 MeV and a chemical potential of p;. ~ 600—700 MeV.
These are only crude estimates, since they are based on modeling the dynamics of chiral
symmetry breaking only. Similar results were obtained in a QCD-like theory by analyzing
an effective potential model [28]. A discussion of possible experimental signatures and
predictions on the existence of such a (tri)critical point can be found in [29].

The experimental study of the QCD phase diagram is mainly restricted to high temper-
atures and relatively low densities (see figure 1.5). At low beam energy the target and
projectile nuclei will be destroyed and only partially stopped leading to a non-vanishing
baryon number density in the collision region. This stopping scenario can be described by
the energy loss of a quark propagating through a heavy nucleon, which is of the order of
10 GeV and energy independent. At high beam energies, as will be realized at RHIC and
LHC, a transparent scenario leads to a smaller baryon density in the collision region. The
target and projectile nucleons interpenetrate and finally leave each other partly undis-
turbed. The targets deposit a high amount of energy density in form of gluons and quark,
anti-quark pairs in the collision region behind. If the energy density is high enough, a
quark gluon plasma might be realized in this region. With increasing initial energy den-
sity and temperature, the lifetime and the volume of the plasma increase, improving the
chances of observing signals directly from the quark gluon plasma. Some recent reviews
about possible signals for a transition to a quark gluon plasma are discussed in [30, 31, 32].
An overview of the QCD phase diagram in the region of large densities and the implifi-
cation of recent developments in our understanding of cold dense quark matter for the
physics of compact stars is reviewed in [26, 33, 18] and references in there. The possibil-
ity of a critical point in the phase diagram and how heavy ion collision experiments can
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Figure 1.5: Phase diagram of hadronic and partonic matter. The hadronical freeze out
points are determined from thermal model analyses of heavy ion collision data at SIS,
AGS and SPS energy. The hatched region indicates the current expectation for the phase
boundary. The arrow from chemical to thermal freeze out for the SPS corresponds to
isentropic expansion [19].

discover this point is also discussed there.

1.3 Chemical potential in lattice QCD

The naive way to introduce a chemical potential in lattice QCD is to proceed in analogy
with the continuum expression, where the partition function can be written as

Z:Tr(e—%(H—“Q)>, (1.3)
where H is the Hamiltonian and the charge operator () is given by
Q= /d3$1/_)x’)’41/)x- (1.4)

The partition function of QCD in the Euclidean path-integral formulation is given by

7 = /DA#DQ/)Dwexp(—SgCD). (1.5)
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The Euclidean action reads

1/T
0 14

with the Euclidean Lagrangian

Lhop = o D+ my+ )™ o) + S F, FLY
Lr+ L. (1.7)

The Euclidean covariant derivative is defined as D,, = 0, —igA,.

In the following we will only discuss the fermionic action for free fermions to illustrate
how the chemical potenial has to be introduced in the lattice formulation. The partition
function then reads

Z:/HddjzddjzesFa (1.8)

and the naive discretization of the fermionic action for free fermions with a chemical
potential 4 is given by

4

_ _ 1 _ _
SF = a3 Z ma’lpxwz + Na’l/)x’)’ﬂ,[)x + 5 Z ("/)x’)’uwaz—l—ﬂ - "/’x-l—ﬂ?’u"/’x) . (1'9)

p=1

This approach leads to a quadratic divergence of the energy density for the free theory in
the continuum limit. The energy density is defined as

., 0
e=-V lman |/ T—fixed (1.10)

where the partition function Z is given by equation (1.8).
In momentum space the integration over the fermion fields in (1.8) can be performed
explicitly. In the zero temperature limit the energy density then takes the form

3
L7 sin® g; + (ma)?
e = at{-—— [ dYy J=1
4t 3
“n (singy —ipa)? + 3" sin? ¢j + (ma)?
j=1

- a*4{uzo}, (1.11)

where the vacuum contributions are subtracted. This expression is quadratically divergent
in the continuum limit

€~ (H)2. (1.12)
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A similar divergence occurs for the particle number density. This problem is not connected
to the occurrence of fermion doublers due to additional zero modes in the free propaga-
tor. It also appears in the Wilson formulation for the fermionic action where the 16-fold
degeneracy of eq. (1.11) is removed. The divergence is not a lattice artifact, but is also
present in the continuum theory itself, where one uses some prescription, like the contour
method, to get rid of it. A class of actions that get rid of this divergence in lattice QCD
were proposed by Gavai [34]. The most common prescription was introduced by Karsch
and Hasenfratz [35]:

B 1 3. B
Sr = a® Z <ma'l/)x¢z + E Z (d’z'ﬁtd’x—l—ﬂ - d’x—l—[[}’ud’z)
T p=1

1 - o
+ 5 (eua@bm’yﬂ/)er;l — € Mai/)er;l’}/M/)x)) . (1.13)
This expression now leads to the following expression for the energy density in momentum
space in the zero temperature limit

3
7r sin? ¢; + (ma)?
=1

1 B
-4 4 J
= — | d

€ a 1 4/ q

3
“no sin®(qs —ipa) + 3 sin? ¢j + (ma)?
j=1

(1.15)

After performing the g4 integration one gets

1 ™

—4 3 a
= — d’qf(e" —b— Vb2 + 1 1.16
c=a s [ dante Vi) (1.16)

with
3
v = Z sin? ¢j + (ma)?. (1.17)
j=1

In the continuum limit, @ — 0, this expression leads to the correct result for the momentum
cut-off ~ 0(p — /@ + m?) in every corner of the Brillouin zone and reproduces 16 times
the usual energy density of free fermions at zero temperature,

e = 16 ¢ (1.18)
4
7

The particle number density n, can be derived in the same way and one reproduces 16
times the continuum value,

ng = 16 ng (1.20)

3
M
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For the Wilson formulation of the fermionic action, the chemical potential can be included
analogous to (1.13),

3

Se(pa) = Y (Watby — & D [Pu(l = 3)Usthyy; + Py (L + 1)UL joba]

T j=1
—k[e" s (1 — ya)Upathy g + € "3 (1 +74) U] 4iha])- (1.22)

The degeneracy is removed for Wilson fermions and the factor 16 in (1.18) and (1.20)
disappears.

Together with the gluonic action the grand canonical partition function reads
Zge(T, V, 1) = /DzﬁDz/)DUe_SG(U)_SFW;’w’U). (1.23)

The standard Wilson discretization of the gluonic action can be written as

Se=p T [1 - T {U () + U, ()} (1.24)
n,u<v<4 ¢

with the usual definition 8 = % and the Plaquette terms defined by

Uiy = Uu(m)U,(n+ap)Uf(n+ ad)UJ(n). (1.25)

For the staggered formulation of the fermionic action, the chemical potential can be in-
troduced in analogy to (1.13) and (1.22).

Considering the way of introducing a chemical potential discussed above at finite temper-
ature, forward quark propagation, in terms of quark loops wrapping around the lattice in
the imaginary time direction, is enhanced by a factor e#® while forward propagation of
anti-quarks is damped by a factor e #%. For ordinary closed paths in spatial direction the
1 dependence cancels, as these loops describe virtual pair creation and annihilation and
the chemical potential for quarks and anti-quarks is of opposite sign. We will see later that
this way of including the chemical potential in lattice QCD will lead to a quite natural
extension of the calculation scheme for thermodynamic quantities in terms of a hopping
parameter expansion for the Wilson formulation of the fermion action at non-zero density.

1.4 Problems in simulating QCD at finite density

The usual approach to include dynamical fermions in lattice QCD is to integrate them
out. Due to the Grassmann properties of fermion fields this leads to a determinant of the
fermion matrix,

7 = /'DUDQ/_)'D@be_SG(U)_J)M(U)w

= /DUdetM(U)eSG(U) (1.26)
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and an effective action depending only on the gauge fields. Monte Carlo simulations require
a positive integrand in the partition function, because of the probabilistic interpretation
of the path integral. One way to guarantee this is if M is similar to its adjoint, so the
eigenvalues are real or in complex-conjugate pairs,

Mt =PMP™! for some P. (1.27)

For the Wilson formulation of the fermion matrix,

3
Myy = oy =5y [(r=1)Usiby, 5+ +73)U) 0, ,05]
j=1
—k[e"(r —v4)Ugad, , 3 +e " (r+ 74)U;’4(51’y+;1]) (1.28)
3
Mi, = boy—rY [(r+3)UL 0, 5+ = 7)Usid, , sl
j=1
—K[e" (r +4a) U 46, 0z + €74 (r — 1)U ad, 3], (1.29)

the relation (1.27) is fulfilled for P = 75 and zero chemical potential or purely imaginary
chemical potential,

M =~sM~ys . for p=ij with i € R. (1.30)

Introducing a real chemical potential, (1.30) is no longer valid and the fermion determi-
nant is then complex. This is the sign problem which is really a phase problem for QCD.
For QCD with only two colors, the relation (1.27) is true for P = oy and any chemical
potential and the fermion determinant is real and positive. For any number of colors and
fermions in the adjoint representation the fermion determinant is real. All above cases
can be classified by a Dyson index, i.e. the number of independent degrees of freedom per
matrix element [36].

1.5 The naive quenched limit

Because of the complex fermion determinant, Monte Carlo simulations in QCD with non-
zero chemical potential were mainly restricted to the quenched approximation. Problems
in this approach were first reported in [37]. In contrast to the expected behaviour, that
the onset transition, i.e. the transition from zero to non-zero density, at zero tempera-
ture occurs at a critical chemical potential related to the lightest baryon in the theory,
po = my/3, where my is the nucleon mass, in quenched simulations the onset was found
at an unphysical value of half the pion mass, i.e. pg = m;/2. In the chiral limit this
would extrapolate to zero and chiral symmetry would be restored for all non-zero p. This
behaviour was also verified in simulations on large lattices [38, 39]. A review of the prob-
lems in simulating QCD at non-zero density can be found in [40].
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The failure of the quenched approximation at non-zero chemical potential was first under-
stood analytically in terms of chiral random matrix theory [41]. The quenched limit can
be interpreted as the limit Ny — 0 of a partition function with the absolute value of the
fermion determinant,

| det(D(u) +m)|™7, (1.31)
rather than
(det(D(u) +m))N7. (1.32)
The absolute value of the fermion determinant can be written as
det(D (i) +m) det (D' (1) 4+ m). (1.33)

Writing the fermion determinant as a Grassmann integral, one observes that the quenched
partition function can be interpreted as a partition function of quarks and conjugate anti-
quarks. Therefore in addition to the usual Goldstone-modes, the quenched theory contains
Goldstone modes consisting of a quark and a conjugate anti-quark [41, 42]. Such modes
with the same mass as the usual Goldstone modes, i.e. the pions, have a non-zero baryon
number. The critical chemical potential given by the mass of the lightest particle with non-
zero baryon number is thus my /2. This explains why the naive quenched limit describes
the wrong physics. In the following sections we will derive the correct quenched or in other
words static limit in two alternative approaches.

1.6 Alternative approaches to finite density

The baryon number conservation law tells us that the difference between the number of
particles and the number of anti-particles, i.e. the baryon number B = N — N, is con-
served. This means that a particle can be created or annihilated only in conjunction with
an anti-particle. At low temperatures the thermal energy is not sufficient to create pairs,
therefore the number of particles is effectively conserved. At high temperatures the pos-
sibility of pair creation has to be taken into account. There will be an average number
of particles and anti-particles present in equilibrium and there will also be fluctuations
about the average value, while the difference between particle and anti-particle numbers
remains strictly constant and is determined by the initial conditions.

In relativistic statistical mechanics, we have the choice between the grand canonical and
the canonical treatments of conservation laws. While in the canonical approach the baryon
number is conserved exactly, it is the average value of the baryon number which is con-
served in the grand canonical description. If the baryon number and the volume take
on very large values with B/V — const, the grand canonical approach is adequate, for
example in cosmology and astrophysics. In many other realistic physical situations the
application of the grand canonical ensemble with respect to the conservation laws can be
questionable, especially when dealing with a small amount of matter enclosed in a tiny
volume with a small absolute value of the quantum numbers. This situation is found in the
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Figure 1.6: Comparison of the phase diagram and behaviour of observables in the grand
canonical (left) and canonical (right) approaches.

central region of hadron-hadron or heavy-ion collisions, where the baryon number density
is of the order of nuclear matter density.

The canonical and the grand canonical ensembles are equivalent in the thermodynamic
limit, except at a first order phase transition. The density fluctuations in the grand canon-
ical description are related to an appropriate susceptibility, the isothermal compressibility,
in analogy to the specific heat for energy fluctuations. Density fluctuations in the grand
canonical description are vanishing small, except in the region of a first order phase tran-
sition where the fluctuations become large. This is also expected physically as in such a
region the system is composed of two or more phases with different densities. Depending
on the amounts of each phase, the number of particles in any given volume can have a
whole range of values. In order to get predictions that are in agreement with those ob-
tained by the canonical ensemble, a Maxwell construction is used to continue the grand
canonical ensemble. At the critical value of the chemical potential the density can take
different values in an interval and the average density shows a discontinuous behavior at
the critical chemical potential for a first order phase transition. Due to this behavior at the
critical point, the canonical approach seems to be a more appropriate tool to analyze the
QCD phase transition at large temperatures and relatively small baryon number densities.
The connection between the two alternative approaches to finite density was discussed in
detail by Miller and Redlich [43]. The most common one used in lattice QCD is the grand
canonical formulation, where density is induced by a chemical potential y. The grand
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canonical partition function Z,.(T.V, ;) depends on the temperature 7', the Volume V
and p. In this formulation, the physical baryon density is an observable, depending on
the chemical potential y, and is conserved in terms of the average value of the baryon
number. Monte Carlo simulations in this formulation suffer from the fact that the fermion
determinant gets complex for non-zero u. This sign problem was discussed in detail by
Barbour et al. [44]. In the static limit, mg, 4 — oo, keeping e/ /m, fixed, as proposed by
Bender et al. [45] ,this can be handled for moderate lattice sizes. Simulations in this limit
for staggered fermions were performed by Blum et al. [46] and for Wilson fermions in this
work (see Chapter 4).

Instead of working with a chemical potential, one can directly fix the quark number den-
sity B, i.e. the baryon number density B/3, by introducing a complex chemical potential
in the grand canonical partition function and performing a Fourier transformation [43].
This transformation projects onto canonical partition functions at fixed quark number B,

2w

Z.(B,T,V) = %/0 dee B Z,.(id, T, V). (1.34)
Instead of a complex fermion determinant, the problem of this approach is the heavily
oscillating integrand in (1.34). We will see later that this can be handled in the quenched
limit, i.e. for infinite quark mass, as the Fourier integral can be performed explicitly
after an expansion of the action in terms of the hopping parameter. What remains is a
sign problem which can be handled for lattice sizes up to 16 x 4, small densities and
temperatures down to 0.87.
A qualitative difference of these approaches is described in figure 1.6. In the phase diagram
in the T-p plane, the phase transition occurs at a specific value of the chemical potential,
te. For a first order transition, observables like the Polyakov loop L or the baryon number
density np show a discontinuous behaviour at p.. In the canonical approach, np is no
longer an observable, but a parameter of the theory. It can be written in units of the

temperature T cubed as
ng B (N;\°
5 _Z (T 1.
"2 ( Ng) , (1.35)

where B is the number of quarks, i.e. B/3 is the baryon number and N, and N, are
the lattice extensions in temporal and spatial direction. By varying the baryon number
density one can traverse the region of coexisting phases (the discontinuity in the grand
canonical approach at p.) continously. Therefore observables are continuous in the density
even for a first order phase transition and the transition occurs in a density interval. In
the phase diagram in the T-npg plane an additional region of coexisting phases occurs.

1.7 The propagator matrix

The two alternative approaches to lattice QCD at non-vanishing density, discussed in the
previous section, can be compared in a nice way in the following example. For the stag-
gered formulation of the fermionic action, the connection between the canonical and grand
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canonical partition functions can be analyzed in terms of a propagator matrix description
proposed by Gibbs [47]. The grand canonical partition function can be expanded in terms
of canonical partition functions, each for a fixed number of fermions on the lattice. This
expansion can be obtained as a characteristic polynomial of a propagator matrix P. Each
of the canonical partition functions can be expressed in terms of traces of powers of P.
In the following we derive the propagator matrix formalism for the case of staggered
fermions. The fermion matrix M can be redefined as

M =iM =G+ Ve +Vie ™ +im, (1.36)

where the matrix G contains the contribution to M from the space-like links and is her-
mitian, V is the contribution from the forward time-links and m is the bare quark mass.
The propagator matrix P can now be defined as

-G —im 1
pP= ( 1 0 ) V (1.37)
and the inverse of P is given by
0 -1
P =V (1 —G—im>' (1.38)

The matrix P is related to the determinant of the fermion matrix by
det(M) = det(M) = e3V#det(P — ™) (1.39)

As the matrix (P — e #) is diagonal in the fugacity e #, it can be expanded as a charac-
teristic polynomial in the fugacity,

6V
det(P —e™#) = e™®Videt(e — P') = e VI Y " @ye, (1.40)
n=0
where the coefficients w,, are given by the recurrence relation
n—1
TeP" + ) TP + niy = 0 (1.41)
i=1
with @9 = 1 and @; = —TrP. Since the propagator matrix causes a step forward in time,

TrP" is non-zero only when n is a multiple of N, the temporal extend of the lattice, and
we can define

(1.42)
By considering the hermitian conjugate of (1.39) one can show the following relation:
Wn = Wey _n- (1.43)

The formal expansion of the grand canonical partition function in terms of the canonical
ones is now
3V
0 = anef(Ban)N.,u + u);kle(San)N.,-u

n=0

Zge(u, T,V) = /DUQeSG (1.44)
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Using the Fourier transformation (1.34) one can see that the canonical partition function
for B=(3V — n) fermions on the lattice is given by

1 2m .
ZAB,TV) = g | dje P02 (i, T,V)
= /DUwBeSG (1.45)

Due to the Z(3) symmetry, the canonical partition functions are non-zero only when B is a
multiple of 3. Furthermore, they are real when integrating over all gauge fields. Equation
(1.44) together with the relation (1.43) shows that the fermion determinant is real for
¢ = 0 and for imaginary chemical potential. While for real and non-zero u the fermion
determinant gets complex.

1.8 The canonical partition function

The connection between the grand canonical and the canonical formulation of QCD was
discussed in section 1.6. The main problem arises from the fact that the integrand in
the Fourier transformation, which eliminates the dependence on the chemical potential
in favour of a fixed quark number, is highly oscillating. We will now derive an explicit
expression for the canonical partition functions for Wilson fermions in terms of a hopping
parameter expansion as discussed in [1]. The Fourier integral can then be performed
explicitly. Later on we will concentrate on the leading order in the hopping parameter «,
which is all one needs to perform the quenched limit (k — 0).

Rewriting the fermionic action (1.22) by transforming the fermion fields

Q‘[)Ef,m) = euaud)(fyu) ) @Z)Ef,m) = e*uaudj(f’“) (1.46)

shifts the dependence on the chemical potential into only the last time slice. The u-
independent part of the action may be written as

Sp = Sr(0) = Sp7(0), (1.47)

where S}VT is the only p-dependent part of the fermionic action. Using the definition of
the temperature 1/T = aN; this part can be expressed in terms of u/T = paN,,

SN (/T) = &[Tz Ny (1= ¥a) Unathzny + €M g1y (1 +7a) U 4thz ) (1.48)

The chemical potential can now be completely removed from the action by including the
pu-dependence in the generalized boundary conditions

N == TPey o Yanan = —e T, (1.49)

The grand canonical partition function at a chemical potential u/T = paN, in a volume
V = (Nya)?® at temperature T = 1/N,a now reads

Zge(ps/T, T, V) = / T[]V [] ddudupse 57" /e 5c=5r, (1.50)
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where Sg denotes the gluonic action, which is p-independent. For the gluonic sector we
use the standard Wilson formulation (1.24). The Fourier transformation only acts on the
pu-dependent part e*Sl]’VT, which only involves links pointing in the 4th direction on the
last time slice of the lattice. Using the Grassmann properties of the fermionic fields this
contribution can be written as

e—S}V"(icb) — H (1 o Kewdﬂ N uaabﬁzpbﬂ f) (1.51)
(f7a’b’a7ﬁ’f)
, b3 b,
(1 — re gl yteat iyl ), (1.52)

where the product runs over all possible combinations of indices with Z taking values on
the three dimensional (spatial) lattice of size N2, a = 1,...,4 and a = 1,2,3 denoting
the spinor and color indices and f = 1,...,ny for different fermion flavours. We have
ignored the possibility of having different quark masses, i.e. different hopping parameters
k for various flavours. In the following we will combine the spinor and color indices by
A = (a,a). In (1.52) we have used the notation

Us =T Uggnpa » US=T3 Ul y,  with i = (1 £ ) (1.53)
Each propagator term in (1.52) comes with a hopping parameter £ and with a complex
fugacity z = exp(i¢) for the forward propagator, respectively z* for the backward propaga-
tor. Expanding this product in terms of the fugacity results in terms that are proportional
to 2"~" and k™", where n denotes the number of forward and 7 the number of backward
propagating terms. The Fourier transformation

1 2 )
Z(B,T,V) = 5/ dep =B Z,.(ip, T, V). (1.54)
0

will receive a non-zero contribution only from terms with n — n = B, i.e. terms that
are proportional to zZ. In the following we will only concentrate on the leading order in
the hopping parameter x. As each non-vanishing term in the Fourier transformation is
proportional to k"™", the leading order in a hopping parameter expansion arises from the
i = 0 sector and can be summarized as

i3] Csti Dis 7
Prp= Y H¢ IJ;V ¢ ¢(fi’{), (1.55)
X,C,D,Fi=1
where X, C, D, F are B-dimensional vectors ie. X = (#4,...,2p), F (f_i,. ,f_;g) and so

on. All elements of the set {(C;, f;, %)} 2., as well as {(D;, f,, xl)}z , have to be different
to give a non-vanishing contribution to the sum in (1.55). The Fourier integral (1.54) can
now be performed explicitly and one obtains the canonical partition function

Z(B,T,V) /HDUxVHdzpmdzpmeeSG Sr (1.56)

at fixed baryon (or quark) number, where the fixed quark number B is encoded in the
function fp as a sum over products of quark propagators between the time slice 4 = 1 and
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24 = N;. In the following B denotes the quark number. Therefore the physical baryon
number is given by B/3.

In a hopping parameter expansion (heavy quark mass limit) for the entire fermion determi-
nant, the function fp is all we need to generate the leading contribution, which finally will
be O(kBN7). To this order only B quark loops that wind around the temporal direction of
the lattice contribute to the determinant. In the next order in x additional factors from an
expansion of exp(—Sr) have to be included. In higher orders additional factors of (1.52)
which have to contain an equal number of additional backward and forward propagating
terms lead to contributions of anti-quarks.

As we want to perform the quenched limit in this approach, we will now have a more
detailed look at the leading contribution arising from fp. To simplify this, we perform
a gauge transformation such that all the links pointing in the time direction on the last
time slice are equal to unity. As these are the only gauge fields that contributed, fp now
only depends on the fermionic fields on the last time slice,

f5 Y qu;;fz Y. (1.57)

X,AFi=1

As only two components of I'_ are non-zero, the spinor indices «; which are part of A; now
only take on the values a; = 1,2. This also gives rise to the factor 2 in front of k. When
evaluating the Grassmann integrals each of the ¢ terms can be contracted with all those
1) terms which carry the same flavour index. Each pair gives rise to a matrix element of
the inverse of Q, the fermion matrix corresponding to Sp. The different pairings give rise
to the Matthews-Salam determinant. We will get the product of n; determinants, each of
dimension d; such that 3, = B,

ny

fB = (2/<; Z HdetMl x A] (158)

X,AF =1

where the matrix M; gives the contributions for the [ — th flavour and the matrix elements
are the corresponding quark propagators,
iaj p— ~71

M= @z, 1).4,). (N2 40 (1.59)
Each matrix element of M; is O(kN~=1*I%=%D)) In the heavy quark mass limit (k —
0), only matrix elements with |Z; — Z;| = 0 will contribute. In this case the elements
Q&;?i,l),Aj),((fi,Nr),Ai) are just products of terms I'_Ug, )4 with k =1,..., N; — 1. AsT'_
is a diagonal matrix in spinor space the indices c; and a; have to be identical. The spinor
part thus gives rise to an overall factor 2V~ ~1 for each i, i.e. we obtain B such factors. The
multiplication of the SU(3) matrices yields an element of the ordinary, complex valued
Polyakov loop (U = 1 on the last time slice) which we denote by L 2% Finally, the sum
over different color indices appearing in (1.58) leads to contrlbutlons 1nv01ving only traces
over powers of the Polyakov loop,

Ly = [] Uga)- (1.60)
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As the (color, spinor) label A; can take on six different values, the determinant is non-zero
only if at most six quarks of a given flavour occupy a given site Z;. In the quenched limit
the partition function now reads

Z(B,T,V) = /H DU, (n) fre 5. (1.61)

A more detailed description of the canonical partition function and a general derivation of
the functions fp can be found in [1]. A more straightforward derivation of the canonical
partition functions in the quenched limit will be discussed in the following section in
connection to the grand canonical approach.

1.9 The grand canonical partition function

We will now have a look at the grand canonical partition function. We will derive the
quenched, i.e. static limit, in this approach analogous to the derivation in [46] and show
that the canonical partition functions of the previous section can be derived in a quite
natural way analogous to the propagator matrix formalism discussed in section 1.7.
The fermion matrix for Wilson fermions at non-zero chemical potential is given by

3
Mz,y = 5x,y - KZ[(l - 7J')Uz’jél,y*j + (1 + 'Yj)U;,jéxfj,y]
7=1

— k[ (1 — ) Upad, , 3+ " (1+)UL 46, 3))
= 1 — kG — k(1 —yg)e"V — k(1 + y)e VT (1.62)
In the quenched limit one has to perform the limit x — 0 and u — oc, keeping the ratio ke

fixed [45]. As we have already seen in the canonical approach, only forward propagating
terms in temporal direction contribute in this limit,

Mgy =1 — k(1 —y4)elV. (1.63)
Each spatial point is decoupled from all others and the fermion matrix can be written as
1 —C~VN Y, 0 - 0
0 1 —C Ny,
M= 0 0 1 (1.64)
. —Cil/N"VNT_l
C— /N~ Vi, 1
with
C = (2re!?) N, (1.65)

The matrices V; are diagonal in the spatial indices,

1
Vi = Diag (§<1 U s = )) | (1.66)
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The fermion matrix can now be diagonalized and the fermion determinant is expressed as
a product of determinants of local Polyakov loops Pz = [[,, Us(Z, z4),

det (M)
CV T (det(Ps + €))?

T

T

[Tc?*+c*npl+cC

x

[T(det(P! + c=1)2.

x

This expression is comparable to the one obtained for t

C™"V ] det(T- Pz + C)

¢ VI[(C? + C*TxP; + CTaP) + 1)

(1.67)
(1.68)
(1.69)
“ITrpy 4 1)?

(1.70)

(1.71)

he staggered formulation in [46]

except for the square of the local determinants. The square enters here due to the spinor

structure of the Wilson formulation.

The physical quark density is given by the derivative of the logarithm of the partition

function with respect to the chemical potential by

1 0dln(2)

— 1.72
(n) aN;V  0u (1.72)
2 C2TrP; + 2CTrP! + 3
= (> — . (1.73)
V \“Z C3+ C?*TrP; + CTrPL + 1
One can now define a propagator matrix P by
PR, O 0 0 0
0 P, 0 0 0
P = 0 0 . 0 0 (1.74)
0 0 0 Pz 0
0 0 0 0 P;

and the fermion determinant can be expanded as a characteristic polynomial in the coef-

ficient C,

det(M) C~Vdet(P +

6V
—n
E C "wy,
n=0

6V
c—V Z C"w
n=0

det(PT +C7)

) (1.75)

(1.76)

(1.77)

*
n

(1.78)
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where the w,, are given by the recurrence relation
n—1 . '
()" TeP" + Y (—1)" wTeP" ™ 4 nw, = 0 (1.79)
i=1

with wp = 1 and w; = TrP and the symmetry wy, = wg;,_,. The coeflicients w, can now
be interpreted as the canonical partition functions at a fixed quark number B = n and
one can show that they are identical to the partition functions derived in the last section.
The first coefficients are given by

w = TrP=2) TrP; (1.81)
z
1 2
— 2 2\ _ 2
w = 3 (—TrP + (TxP) ) = —Z’I‘rPf+2 (ZTrPf> (1.82)
xT xT
ws = 3 (TP = TePTeP + o (TrP) (1.83)

3
1
= 3 2) TrPI—6) TeP;> TrPs+4 <ZTrPf> (1.84)
@ @ @ 3
The canonical partition functions now read
Z(B,T,V) = /H DU, (n)wpe ¢ (1.85)
n,v

and are equivalent to the ones derived in the previous section and discussed in [6]. The
equivalence, wg = fg, can be seen quite easily by using some calulation rules for the traces
of SU(3)-matrices. Because of the Z(3)-symmetry of the action S¢, the partition functions
are non-zero only if B is a multiple of 3.

The recurrence relation (1.79) can be rewritten to

n—1
2 n—i n—i :
=0 T
wy = 1

Therefore the functions fg = wp can be evaluated for all B and have a more compact
form than the expressions derived in [1].



Chapter 2

Observables at finite temperature
and density

2.1 Thermodynamic observables

The calculation of the equation of state of QCD is one of the central goals of lattice
simulations at finite temperature. The behaviour of thermodynamic observables like the
pressure p, the energy density ¢ and the entropy density s are of great interest for the
understanding of the QCD phase transition and the high temperature phase as it might
have existed in the early universe and be produced in heavy ion collisions. The intuitive
picture of the high temperature phase as a gas of weakly interacting quarks and gluons
is based on leading order perturbation theory. Perturbative QCD fails to describe the
equation of state even at rather high temperatures because of infrared problems of the
theory. It seems that non-perturbative effects still dominate the equation of state in the
temperature regime attainable in heavy ion collisions.

The high temperature behaviour of QCD is close to that of an ideal gas. Bulk thermo-
dynamic quantities are therefore dominated by contributions from large momenta. These
are most strongly influenced by finite cut-off effects. Calculations of the energy density,
entropy density and pressure in SU(3) gauge theory with the standard Wilson action
were performed by Boyd et al. [48]. They show a strong cut-off dependence which is of
O((aT)?) and the deviations from the ideal gas limit are about 15% even at temperature
of about 57T,. In [49] and [50] it was shown that these cut-off effects can be reduced to a
few percent by using tree level or tadpole improved actions even on lattices with temporal
extent as small as N, = 4.

The thermodynamic quantities in lattice QCD can be calculated using basic thermody-
namic relations in the continuum. All quantities can be derived from the partition function
Z(T,V, ). Its logarithm defines the free energy density,

T
f:—van(T,V,u). (2.1)

31
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The energy density and pressure are derivatives of In Z with respect to T and V,

T? 9l Z(T,V, )

= 2.2
V oT ‘M/T fixed ( )
O Z(T,V, n)
_ 2.
p ov ‘u/T fixed ( 3)

As the logarithm of the partition function is not directly accessible within the Monte Carlo
approach, the free energy density is calculated from an integration of its derivative with
respect to 3,

olnZ
oB

where S is the gluonic part of action and Pr denotes the plaquette expectation value at
temperature T calculated on a lattice of size N2 N,. If Py denotes the plaquette expectation
value, evaluated on a lattice of size N2, the difference of the free energy density at couplings
B and fy is obtained as

= <SG> = GNENTPTa (24)

Lo e Bdﬁ’P P (2.5)
Talse =~ -/, [Po — Pr]. :
0
This relation can also be used to calculate the free energy density at non-zero densities,
while the following relations only hold for ;4 = 0. For large, homogeneous systems the

following relation,

olnZ

mZ=V
n v

(2.6)

can be used to show that the pressure can directly be obtained from the free energy density,

p(B) = = (B) = f(B1)], (2.7)

with the assumption that 31 has to be small enough, so that p(3;) is approximately zero.
Using the relation (2.7) one can express the entropy density s and the interaction measure
A in terms of derivatives of the pressure with respect to the temperature,

ctp_op

S = o = (2.8)
-3 d
A = ET—4p:T8—T (p/T") (2.9)
d
= Nde—ﬁ[so—sT] (2.10)

2.2 The Polyakov loop

Besides the local gauge invariance, the gluonic action S, and for non-zero density also fp
(if B is a multiple of 3) has a global Z3 symmetry. The elements of the center of the SU(3)
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group, C = {z € SU(3)|zgz ! = g for all g € SU(3)} are given by exp(27il/3) € Z(3)
with [ = 0,1,2. The action and all local observables are invariant under a transformation
z € C with

Ur(Z,24) = 2U-(Z,24), VI, 34 fixed. (2.11)

One observable which is not invariant under this transformation is the Polyakov loop, that
consists of a product of link variables along closed curves, which wind around the torus in
time direction

N-
Lz =Tr [ U-(,24). (2.12)

r4=1
Under the transformation (2.11), the Polyakov loop is rotated by an element of the center,
Lz — zLz. (2.13)

The Polyakov loop can be used to define an order parameter for the deconfinement tran-
sition in the infinite volume limit at zero density,

(L)oo = Tim (L])y. (2.14)

Ny— o0

In the confinement phase (T' < T,.), configurations that are connected by the center sym-
metry are equally probable and the expectation value of the Polyakov loop vanishes. In the
deconfinement phase (T > T.), the center symmetry is spontaneously broken and (L)«
gets non-zero. As the SU(3) gauge theory in four dimensions lies in the same universality
class as the Z(3) spin model (Potts model) in three dimensions, the phase transition is of
first order for the pure gauge theory (vanishing density, B = 0). Therefore (L), changes
discontinuously at a critical temperature 7.

The free energy of a single quark is related to the Polyakov loop. The expectation value
of Polyakov loops probe the screening properties of a static color triplet test charge in the
surrounding gluonic medium. The free energy F;,(T') induced by the presence of this test
quark is given by

- 1
e [T (L)) = (3 D Lal (2.15)

In the absence of dynamical or static quarks (B = 0) a single quark cannot be screened in
the confined phase, therefore F,(T') is infinite and the expectation value of the Polyakov
loop is zero. In fact, a simple quark does not exist as a physical state in the spectrum
even for T' > T,. The above notion is therefore only a commonly used notation for the
behaviour of a physical system consisting of a quark antiquark pair which gets separated
to infinite distance.

The Polyakov loop thus reflects the large distance behaviour of the potential or access free
energy between a heavy quark and a heavy anti-quark. For non-zero temperature, the
heavy quark potential can be calculated using Polyakov loop correlations [3],

V(#—g,T

T = (L Telh)  — (L) (2.16)

|Z—y| =00
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As (L) is zero in the low temperature phase for vanishing density, the heavy quark potential
is infinite (confined) for infinite separation of the quark anti-quark pair. The potential in
the confined phase can be parameterised by

V(R,T) = Vo + a(T)/R + o(T)R, (2.17)

where o(T) is the temperature dependent string tension.

In QCD with dynamical light quarks the Polyakov loop is no longer an order parameter.
The heavy quark potential stays finite at large distances even in the confined phase because
the static quark anti-quark pair can be screened through the creation of a light quark anti-
quark pair from the vacuum (string breaking).

At non-zero baryon number density we expect to find a similar behaviour of the heavy
quark potential even in the heavy quark mass limit because the quarks needed to break
the string need not be created through thermal (or vacuum) fluctuations. The static quark
anti-quark sources used to probe the heavy quark potential can recombine with the already
present static quarks to a baryon and a meson and will lead to a screening of the potential
even in the low temperature hadronic phase. Therefore the Polyakov loop expectation
value no longer serves as an order parameter at non-zero baryon density, although the
integrand of the partition function, fpexp(—Sg), is Z(3) symmetric, therefore we expect
that

(L) > 0, for all ng >0 and all 8 > 0. (2.18)

At temperatures above the critical temperature T, the Polyakov loop (L) is non-zero, due
to the spontaneous breaking of the Z(3) symmetry, and the heavy quark potential stays
finite for infinite separation. For temperatures just above T, perturbative arguments, that
suggest a Debye-screened Coulomb potential for large temperatures, will not apply and a
more general ansatz [51],

V(RaT) G(T) —u(T)R

= — €

T (RT)“

(2.19)

with an arbitrary power d, an arbitrary coefficient e(T) and a simple exponential decay
determined by a general screening mass u(7') can be used.

A more detailed description of the heavy quark potential, including corrections to (2.17)
can be found in [3]. Some aspects will be discussed in the following sections.

2.3 Heavy quark potentials

The understanding of the heavy quark potential, i.e. the potential between a heavy quark
anti-quark pair, is important for the understanding of confinement and deconfinement.
Heavy quark potentials can be used as input for spectroscopy and dissociation of quarko-
nia, i.e. mesonic states that contain two heavy constituent quarks, either charm or bottom
(due to the large weak decay rate t — bW ™, the top quark does not appear as a constituent
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in bound states). Examples for such mesons are .J/U (cé) or T (bb).

For sufficiently heavy quarks one might hope that the characteristic time scale associated
with the relative movement of the constituent quarks is much larger than that associ-
ated with the gluonic or sea quark degrees of freedom. In this case the adiabatic (or
Born Oppenheimer) approximation applies and the effect of gluons and sea quarks can be
represented by an averaged instantaneous interaction potential between the heavy quark
sources. The bound state problem will essentially become non-relativistic and the dynam-
ics will, to first approximation, be controlled by the Schrédinger equation,

72 B, B,
_%Af + V(R) \IITL”:; (R) = Enl‘Ilnll3 (R)a (220)

with a potential V' (R). One Ansatz for the the heavy quark potential V' (R) is the Cornell
potential [52],

V(R) = —% +oR. (2.21)
Extracting the string tension from fitting the exponentially measured quarkonia spectra
to the Cornell potential results in values of \/o ~ 412 MeV [53] and /o = 427 MeV [54].
This result is in qualitative agreement with the value \/o ~ 429(2) MeV extracted in [55].
Quarkonium dissociation is one of the important signals for the production of quark gluon
plasma in heavy ion collisions. Its usefulness as deconfinement probe is easily seen. If
for example a J/W¥ is placed into a hot medium of deconfined quarks and gluons, color
screening will dissolve the binding, so that the ¢ and ¢ quarks separate. When the medium
cools down to the deconfinement transition point, they will therefore in general be too far
apart to see each other. Since thermal production of further c¢ pairs is negligibly small
because of the high charm quark mass, the ¢ must combine with a light anti-quark to form
a D, and the ¢ with a light quark for a D. The presence of a quark-gluon plasma will thus
lead to a suppression of J/¥ production. This dissociation of the quarkonia can again
be understood with the help of heavy quark potentials, which in the deconfined region
show, to first approximation, a Coulomb behaviour which is screened with a screening
mass p(T'). The temperature dependence of the screening mass or in general of the heavy
quark potential can be used to describe the melting pattern, i.e. the different dissociation
temperatures, for different quarkonia states. With increasing temperature, a hot medium
will thus lead to a successive quarkonium melting, so that the suppression or survival of
specific quarkonium states serves as a thermometer for the medium. A detailed description
of the quarkonium dissociation and other signals for deconfinement can be found in [31].
In the following sections we will describe our present knowledge of the heavy quark po-
tential in the different phases of QCD for the quenched, as well as the full QCD theory,
at vanishing densities.

2.3.1 Heavy quark potentials in quenched QCD

The potential between a heavy quark anti-quark pair at finite temperatures is computed
from Polyakov loop correlations

-

(L(O)L(R)") = exp{~V (|R|,T)/T} (2.22)
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where
1 X
L(7) = gtr TH_1U4(5, 7) (2.23)

denotes the Polyakov loop at spatial coordinates Z. In the limit R — oo the correlation
function should approach the cluster value |(L(0))|> which vanishes if the potential is
rising to infinity at large distance (confinement) and which acquires a finite value in the
deconfinement phase.

In the limit where the flux tube between two static quarks can be considered as a string,
predictions about the behaviour of the potential are available from computations of the
leading terms arising in string models. For zero temperature one expects at large distance

V(R)=Vo — —=— +0oR (2.24)

where Vj denotes the self energy of the quark lines, ¢ is the string tension and the Coulomb-
like 1/R term stems from fluctuations of the string [56]. Eq. (2.24) generally gives a good
description of the zero temperature ground-state potential although it has been shown
[57] that the excitation spectrum meets string model predictions only at large quark pair
separations.

For non-vanishing temperatures below the critical temperature of the transition to decon-
finement, a temperature dependent potential has been computed [58] as

T 1 1
V(R,T) = Vy— [E - Earctan(2RT)] =

_ T2 g 2 L Z 2
+ |:J 3T +3T arctan<2RT>] R+ 5 In(1+ (2RT)*). (2.25)

In the limit R > 1/T this goes over into
V(R,T) = Vo+o(T)R+TIn(2RT) (2.26)
= Vot [a - gTﬂ R+ TIn(2RT), (2.27)
which had been calculated previously [59]. Note the logarithmic term which originates
from transverse fluctuations of the string. The temperature dependent terms appearing
in (2.25) and (2.27) should be considered as thermal corrections to the zero temperature

string tension. An explicitly temperature dependent string tension was computed by
means of a 1/D expansion [60],

=4/1— = 2.28
2(0) 7 (2.28)
where T, was obtained as
3
T? = ———0(0). 2.2
= g0 (2:29)

Note, however, that for D — oo the phase transition is of second order, leading to a con-
tinuous vanishing of the string tension at the deconfinement temperature. In color SU(2),
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which also exhibits a second order transition, it was established [61] that o(T") vanishes
~ (B. — B)” with a critical exponent v taking its 3-D Ising value of 0.63 as suggested by
universality. In the present case of SU(3) one expects a discontinuous behaviour and a
non-vanishing string tension at the critical temperature.

In the deconfined phase the Polyakov loop acquires a non-zero value. Thus, we can nor-
malize the correlation function to the cluster value |(L)|?, thereby removing the quark-line
self energy contributions,

(LO)L(R)')
(L)

Moreover, the quark-antiquark pair can be in either a color singlet or a color octet state.
Since in the plasma phase quarks are deconfined the octet contribution does not vanish,
although it is small compared to the singlet part, and the Polyakov loop correlation is a
color averaged mixture of both

— exp{—V(|R|,T)/T}. (2.30)

veryr _ L wviwnyr 8 wwmyr, (2.31)
9 9

(&

At high temperatures, perturbation theory predicts [62] that V; and Vg are related as
Vi = —8Vs + O(g"). (2.32)
Correspondingly, the color-averaged potential is given by

V(R,T) 1 V2(RT)

T =16 712 (2.33)

Due to the interaction with the heat bath the gluon acquires a chromo-electric mass m(T)
as the IR limit of the vacuum polarisation tensor. To lowest order in perturbation theory,

this is obtained as
(0) 2
me ’ (T) 9 N. Np
— ) =¢9(T) | —= 4+ —/ 2.34
(T> ) (). (230

where g(T') denotes the temperature-dependent renormalised coupling, N, is the number
of colors and Ny the number of quark flavours. The electric mass is also known in next-to-
leading order [63, 64] in which it depends on an anticipated chromo-magnetic gluon mass
although the magnetic gluon mass itself cannot be calculated perturbatively. Fourier
transformation of the gluon propagator leads to the Debye-screened Coulomb potential
for the singlet channel

Vi(R,T) = _%e_mE(T)Ra (2.35)

where o(T) = ¢?(T)(N2 —1)/(87N,) is the renormalised T-dependent fine structure con-
stant. It has been stressed [65] that eq. (2.35) holds only in the IR limit R — oo be-
cause momentum dependent contributions to the vacuum polarisation tensor have been
neglected. Moreover, at temperatures just above T, perturbative arguments will not apply
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so that we have chosen to attempt a parametrisation of the numerical data with the more
general ansatz [51]

V(R,T) e(T) _umr

T = (RT)de , (2.36)

with an arbitrary power d of the 1/R term, an arbitrary coefficient e(7") and a simple
exponential decay determined by a general screening mass u(7"). Only for T > T, and
large distances we expect that d — 2 and u(T) — 2m,(T), corresponding to two-gluon
exchange.

2.3.2 Heavy quark potentials in full QCD

In lattice QCD with dynamical quarks two physical effects can be expected concerning
the heavy quark potential, one at large distance and one at small distance. Within the
quenched approximation the number of quarks and anti-quarks are separately conserved.
In full QCD, i.e. with sea quarks, only the difference (the baryon number) is a conserved
quantity. Light quark anti-quark pairs can be created from the vacuum. If the energy
stored in the color string between the sources of the heavy quark potential exceeds a cer-
tain critical value at some distance, r = r., the string will ”break” and decay into two
static-light mesons, separated by a distance r. Therefore, for large distances, the ground
state energy will stop rising with distance and saturate at a constant level. The static
sources will be completely screened by light quarks that are created out of the vacuum.
The other effect will change the potential at short distances. While the vacuum polarisa-
tion due to gluons has an anti-screening effect on fundamental sources, sea quarks result
in screening. Therefore, the running of the QCD coupling with the distance is slowed
down with respect to the quenched approximation. The effective Coulomb strength in the
presence of sea quarks should, therefore, remain at a higher value than in the quenched
case for short distance [66, 67].

The heavy quark potential at zero temperature can be calculated using Wilson loops.
While string breaking has not been detected in the Wilson loop [55], the finite temper-
ature potential, extracted from Polyakov loop correlators at temperatures close to the
deconfinement phase transition exhibits a flattening, once sea quarks are included into the
action [2, 68]. Unlike Wilson loops, Polyakov loop correlators automatically have a non-
vanishing overlap with any excitation, containing static quark and anti-quark, separated
by a distance r. In particular the static quarks can be accompanied by two disjoint sea
quark loops, encircling the temporal boundaries, while in the Wilson loop case, copropa-
gating sea quarks are terminated by the extension of the Wilson loops

2.4 Chiral Condensate

QCD at low energies is well approximated by a theory with only the two lightest quarks
(u and d). They are mixed by the SU(2)y isospin symmetry group. This symmetry is
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exact for degenerate quark masses. For massless quarks there is an additional symmetry
described by the axial SU(2)4 group. The right-handed and left-handed quarks can be
rotated independently and the helicity is a good quantum number. The chiral symmetry
group in the massless case for two flavours is therefore G = SU(2)y x SU(2)4 which is
isomorphic to O(4). A non-zero mass term breaks this symmetry explicitly analogous
to a magnetic field in a spin system. Even in the massless case, the axial part of the
symmetry group G is broken spontaneously by a non-zero expectation value of the chiral
condensate in the vacuum state, which mixes right-handed and left-handed quarks. The
Goldstone theorem tells us that the spontaneous breaking of continuous symmetries leads
to low-lying excitations, the Goldstone modes, with a mass that vanishes in the absence
of a symmetry breaking field. The Goldstone modes in QCD, analogous to spin waves in
spin systems, are the pions with a mass that is well below the typical hadronic mass scale
of about 1 GeV.

The expectation value of the chiral condensate should become zero beyond a critical tem-
perature or a critical chemical potential, where the chiral symmetry gets restored. The
restoration of the chiral symmetry at high temperatures and zero density is confirmed by
lattice QCD calculations which show a critical temperature of about 170 MeV.

The QCD partition function can be written as a functional integral in Euclidean space,

Ny
7 = /DAN H det(D +my)e ¢, (2.37)
f=1

where Ny is the number of quark flavours and S¢ is the gluonic part of the action. The
QCD Dirac operator is given by

D = 7u(Ou +igAy) (2.38)
with non-abelian gauge fields A,. This operator is anti-hermitian, Df = —D, and satisfies
{45,D} =0 (2.39)

This relation is a compact expression of chiral symmetry, i.e. of the fact that right-handed
and left-handed quarks can be rotated independently. One can write down an eigenvalue
equation for the Dirac operator D,

D¢n = ZAnQ/)n (2.40)

From eq. (2.39) follows that the non-zero eigenvalues of D occur in pairs +i), with eigen-
functions v, and y51,. There can also be zero eigenvalues, A, = 0. The corresponding
eigenfunctions can be arranged to be simultaneous eigenfunctions of 5 with definite chi-
rality and eigenvalues +1.

In a chiral basis with

st/ = T (241)
one can use (2.39) to show that

(| Dlby) = 0 = (| Dlaby) (2.42)
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for all m and n. Based on the eigenvalue equation (2.40) the spectral density of the Dirac
operator can be defined by

p(\) = <Z S\ — An)> . (2.43)

The spectral density is related to the order parameter for spontaneous chiral symmetry
breaking, the chiral condensate,

(1) = — lim lim 1

m;—0V—oo V amf

log Z(my). (2.44)

Using eq. (2.37), this yields

. 1 1
=— 1 li = —. ). 2.45
(o) m;fﬂwgf;o<v§ixn+mf> (2.49)
Since the non-zero eigenvalues occur in pairs +i\,, their contribution to the sum can be
written as 2my/(A2 + m%) In the infinite volume limit, the sum over the eigenvalues
can be converted to an integral and in the limit m — 0 (2.45) leads to the Banks-Casher
relation [69],

S = ()| = lim Tim 2O

mjlc—>0 V=00 T (2.46)
This relation shows that spontaneous breaking of the chiral symmetry is encoded in an
accumulation of the small Dirac eigenvalues. The order parameter is non-zero only if
p(0)/V > 0.

In lattice QCD the chiral condensate on a lattice of size N3N, can directly be derived
from the partition function

- 1 Ny 0
1 Ny -1
NIN, 4 (Tr M~"). (2.48)

The factor Ny/4 corrects for the number of flavours (for staggered fermions). Results
for two flavours of staggered fermions in the full QCD theory are described in [70] and a
discussion of the flavour dependence of the chiral phase transition for different numbers
of flavours can be found in [71].

The chiral condensate can also be evaluated in the quenched theory [72], i.e. infinite quark
mass limit for dynamical quarks. Therefore one calculates the inverse of the fermion matrix
(2.48) on gauge configurations obtained by using only the gluonic part of the action in the
update scheme.

The mass term in full QCD breaks the Z(3) symmetry of the action explicitly. Gauge
configurations with a Polyakov loop expectation value in the complex Z(3) sectors are
suppressed. In the quenched theory, configurations with Polyakov loops in the three
different Z(3) sectors are equally probable. The chiral condensate turns out to be sensitive
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to different sectors [73, 74]. To understand this problem qualitatively, one may look at
the eigenvalue spectrum of the free Dirac operator [75], i.e. A, = 0, as this is connected
to the chiral condensate via (2.46). A Z(3) transformation on the gauge fields,

U(#,1/T) = 2U(,0) (2.49)

with z = exp(27i/3 j), 7 = 0..2, changes the boundary conditions in the Euclidean time
direction for the fermion fields from antiperiodic,

(& 1/T) = —$(7,0) (2.50)

to twisted,

(%,1)T) = —2z¢(Z,0). (2.51)

The spectrum of the Dirac operator in the z = 1 sector is given by A2 = k24 ((2n+1)nT)2,
while in the other two sectors becomes A2 = k2+ ((2n+1/3)7T)?. The smallest eigenvalue
moves from A = 7T to A = nT/3. Thus the chiral condensate in the two complex
sectors is larger than in the real sector. This behaviour was also shown by calculating the
effective potential for the chiral condensate of a Nambu-Jona-Lasinio model in a uniform
temperature dependent A, gauge field background [74, 76]. This behaviour was also
discussed in terms of the Gross-Neveu model [77].
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Chapter 3

The quenched limit at non-zero
baryon number

A numerical analysis of the thermodynamics at fixed quark number B can closely follow
the standard approach at B = 0, i.e. in a pure SU(3) gauge theory [48]. After describing
the details of the simulation and a discussion of the sign problem at non-zero quark
number density we analyze the temperature dependence of bulk thermodynamics, the
Polyakov loop expectation value and its susceptibilities and the free energy density. Heavy
quark potentials are calculated using Polyakov loop correlations. They are compared with
quenched and full QCD results at zero density. Finally the chiral condensate is calculated
on quenched configurations at non-zero density. All results are compared with quenched
data at zero density.

3.1 Details of the simulation

The partition function in the canonical approach for non-zero quark number density in
the quenched limit is given by

Z(B,T,V) = /HDU,,(n)fBe—SG. (3.1)

S denotes the gluonic part of the action, for which we have used the standard Wilson
gauge action described by equation (1.24). The constraint on the baryon number in (3.1)
is encoded in the function fp which depends on the local Polyakov loops. For different
values of the quark number B, fg is calculated using the recurrence relation derived in
section 1.9,

fo=— Z %(—1)"—% > Tprt (3.2)
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with fo = 1 and the symmetry f, = fg;,_,. Py denotes the local Polyakov loop at site Z.
The expressions for some values of the quark number B are calculated section 1.9.

The global Z(3) symmetry of the QCD partition function at non-zero quark number is
preserved also in the quenched limit, i.e. the function fp is invariant under global Z(3)
transformations if B is a multiple of 3. As the gluonic action S¢ also shares this property,
the partition function Z (B, T, V) is non-zero only if B is a multiple of 3.

The function fp is a complex valued function of the Polyakov loops, but when integrating
over all gauge fields in the canonical partition function (3.1), the contribution from the
imaginary part of fp vanishes and the partition function is real, as it should be. Actual
calculations can thus be performed using the real part of fg. The sign problem that
remains in this formulation can be handled by shifting the dependence on the sign into the
observables and using a reweighting method [78] to calculate expectation values according
to

_ (O -sgn(Refp))

O) = 3.3
O = e, )

where the expectation values (...) are calculated using the partition function
Z(B,T,V) = /HDUx,V|RefB|e—SG. (3.4)

T,V

Our simulations were performed using a combination of a Metropolis update and over-
relaxation steps to reduce autocorrelations. Each sweep consists of one Metropolis and four
over-relaxation steps. Measurements of the observables were performed after each sweep.
For each link update the change in the function fg is calculated and a possible change
in sign is monitored. The errors on observables were calculated using a Jackknife error

analysis with 10 Jackknife-blocks.

Interpolations were performed us-

N3x N, | B|ng/T? || NJx N, | B | ng/T3 ing the Ferrenberg Swendsen
83 x2| 0] 0.0000 83 x4 | 6] 0.2500 method.

83 x2| 6 0.0313 103x4 | 6/ 0.1280 Our simulations have been carried

8 x 2|12 | 0.0625 122 x4 | 6| 0.0741 out in the vicinity of the criti-

103x2 | 0| 0.0000 163 x4 | 0] 0.0000 cal coupling for the deconfinement

103x2 | 12| 00320 || 16>x4 | 6| 0.0313 | transition at B = 0. Calcula-

163 x4 | 12| 0.0625 tions with fixed B were performed

on lattices of size N3 x N, with
N, = 2 and 4 and various val-
ues for N,. The temperature is
varied by changing the coupling
3 = 6/g%. The temperature scales in our plots are set by a strong coupling expansion
of the string tension [79] for the N, = 2 results, resp. by the g-function of [48] for N, = 4.
The dimensionless parameter kept fixed in the simulation is the quark number density in

units of the temperature cubed,
ng B (N;\*
7~ 3\N,) - (3:5)

Table 3.1: Lattice sizes and densities of the simula-
tions.
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Figure 3.1: Ezpectation value of the sign of Refp, (sgn(Refg)), for N3 x 2.

The quark number density in physical units thus is

B (N’ T 3f -3 (3.6)
=—|— —— | fm™°. .
"BE=3\N, ) \ 200 MeV

For orientation we note that close to T,, which for the SU(3) gauge theory is known to be
about 270 MeV, a simulation on an 83 x 2 or 163 x 4 lattice with B = 12 corresponds to
a baryon number density of ng ~ 0.15/ fm?, i.e. approximately nuclear matter density.
The various lattice sizes and densities of our simulations are listed in Tab. 3.1.

3.2 The sign problem

In all cases we have studied, we find that (sgn(Refp))| can be well determined and is
positive and non-zero. Figures 3.1 and 3.2 show the average sign as a function of the
coupling . For large values of the coupling it is almost always positive and there is no
sign problem. Below the critical coupling the average sign drops exponentially.

Looking at a fixed volume we see only a small dependence of the average sign on the
density that indicates that the onset of the sign problem is shifted toward smaller values
of B and the drop is steeper. The expectation value of sgn(Refp) mainly depends on the
spatial volume N2, but even for a 16% x 4 lattice the average sign can be determined quite
well in the studied (-region and is non-zero within the errors. We will see later that the
values of observables do not depend much on the sign. The error obtained from a jackknife
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Figure 3.2: Ezpectation value of the sign of Refp, (sgn(Refg)), for N3 x 4.

analysis for these observables are substantially smaller than those for the average sign.
Looking at the definition of fg it is obvious that sgn(Refg) on a single configuration is
correlated to the value of the Polyakov loop on this configuration. Figure 3.3 shows the
distribution of the Polyakov loop in the complex plane spanned by Re(TrL) and Im(TrL)
for B = 0 and 6 calculated on a 163 x 4 lattice for different values of the coupling 3.
For vanishing density and small coupling the Polyakov loops are distributed symmetrical
around a value of 0. Near the critical coupling three additional regions are visible, which
reflects the Z(3) symmetry of the action. At large couplings TrL is distributed in one of
the cones due to spontaneous breaking of the Z(3) symmetry.

For B = 6 and small coupling the Polyakov loops with positive and negative contributions
are again distributed around 0. Near the phase transition one sees 6 (or in general B)
different cones for the positive and negative distribution. To understand this one can look
at the leading order in fp in the dilute limit, for B < N2,

B
fB ~ (Z TTL:E) ~ |L|e'P?, (3.7)

where ¢ is the angle of L = ) . TrLz in the complex plane. This explains the existence
of B positive and B negative cones in the distributions. For large values of the coupling
TrL is distributed in one of the Z(3) cones and therefore the sign of fp is always positive
for large 3.

The role of the Polyakov loop in the grand canonical approach was discussed in [80]. In
the static limit [46] the phase of the fermion determinant is strongly correlated to the
imaginary part of the Polyakov loop. This might also be the case for full QCD with
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Figure 3.3: Polyakov loop distribution in the complex plane spanned by Re(TrL) and
Im(TrL) for B = 0 (left) and B = 6 (right) on a 163 x 4 lattice and different B-values.
Red points are Polyakov loops that give a positive fg and green points give a negative fg.



48 CHAPTER 3. THE QUENCHED LIMIT AT NON-ZERO BARYON NUMBER

A A
T <|L|>
B=0 (@) (b)
Te
Tag - > B>0 l
Th L l
coexisting ,
phases , i
| | > : | >
n A n q n B Th Tq TC T

Figure 3.4: Schematic plot of the QCD phase diagram (a) in the temperature-baryon
number density plane for the case of first order phase transitions in the entire plane.
For B > 0 and T, < T < Ty the system stays in a region of two coexisting phases.
For B =0 the transition occurs at a unique temperature T.. In (a) we also show the
paths followed when varying the coupling B in a Monte-Carlo simulation with fixed
B, N, and N.. In (b) the expected behaviour of the Polyakov loop expectation value
along these paths of non-zero B as well as for B = 0 is shown.

dynamical quarks for large quark masses as in an expansion for large quark mass the
leading term affected by the chemical potential is the Polyakov loop.

3.3 The deconfinement phase transition

To analyze the phase transition separating the confined phase for small temperatures
and the high temperature deconfined phase, we have calculated expectation values of the
Polyakov loop in a temperature range of T' ~ 0.8...1.2 T, for different lattice sizes and
various densities shown in Table 3.1. The results for (|L|)y are shown in figure 3.5 (for
N; = 2) and figure 3.6 (for N; = 4). The solid lines in the figures are interpolations using
the Ferrenberg-Swendsen method.

For vanishing quark number density there is a clear signal for a first order phase transition
which leads to a discontinuity in (L). The pseudo-critical couplings of 5 = 5.069(1) for the
83 x 2 and 103 x 2 lattices at B = 0 are compatible with the result from [72], and for the
163 x 4 lattice with the result from [48], 8. = 5.6908(2). The Polyakov expectation values
drop from large values at high temperatures to small values at the critical temperature.
(|L])v does not become zero because of the finite volumes, but the data for the 83 x 2 and
10? x 2 lattices indicate that in the infinite volume limit, (L) becomes zero at zero density
for T < T, while it stays finite for T' > T.

For all B > 0 we clearly observe a transition from a low temperature phase with small
Polyakov loop expectation value to the high temperature regime characterised by a large
Polyakov loop expectation value. Comparing the data for the 8% x 2 lattice at B = 6 with
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Figure 3.5: Ezpectation value of the Polyakov loop for N3 x 2.
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Figure 3.6: Ezpectation value of the Polyakov loop for N3 x 4.
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the 103 x 2 lattice at B = 12, which correspond to approximately the same density of
np/T? = 0.0313 respectively 0.0320, we see no significant volume dependence at fixed np.
This indicates that in the thermodynamic limit the physical observables will only depend
on the density rather than on quark number and volume separately. It also indicates that
for the small temperature regime the Polyakov loop (L) stays finite for non-zero density
while it gets zero for vanishing density.

For non-vanishing density the transition occurs in a temperature interval that broad-
ens with increasing quark number density and gets shifted towards smaller temperatures.
There is no indication for a discontinuous transition in contrast to the B = 0 case. In
fact, this is the expected behaviour in a canonical calculation, even if the transition is of
first order. By changing the gauge coupling § we vary the lattice cut-off and through this
also the quark number density continuously through a region of two coexisting phases.
This situation is schematically illustrated in figure 3.4. The question now is whether the
transition region really is a region of coexisting phases. In this case the values of thermo-
dynamic observables result as the superposition of contributions from two different phases
appropriately weighted by the fraction each phase contributes to the coexistence region
(for an illustration see e.g. figure 3.4b).

To gain further insight into the structure of this regime we also analyze various suscepti-
bilities. In figures 3.7 and 3.8 we show the conventional Polyakov loop susceptibility,

xr = N ((LF?) = (L)), (3-8)
and in figures 3.9 and 3.10 the derivative of (|L|) with respect to 3,
(L
5= B2 = g (21 x 50 - (25D (3.9)

Both response functions reflect the existence of a transition region that becomes broader
with increasing np and is shifted towards smaller temperatures. Compared to the be-
haviour at B = 0 they also change continuously in this region. Such a behaviour might as
well just correspond to a smooth crossover to the high temperature regime; a conclusion
also drawn from the heavy quark simulations with non-zero chemical potential [46]. To
establish the existence of a region of coexisting phases with certainty will thus require a
further, detailed analysis of finite size effects.
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Figure 3.10: Ezpectation value of the susceptibility xg, as defined in (3.9), for N3 x 4.
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Figure 3.11: Plaquette expectation value P for N3 x 2.

3.4 Thermodynamics

Although in principle all thermodynamic quantities can be derived from the free energy
density, in practice a direct computation of the partition function or free energy on the
lattice is not possible. A way out is to calculate the expectation value of the action, i.e.
the derivative of In Z with respect to the bare coupling 8. Up to a normalisation constant,
resulting from the lower integration limit 3y, the free energy density is then obtained by
integrating this expectation value

g
L6, =N [ g 150 s, (3.10)

0

where Sy and ST denote the expectation value of the action for zero and finite temperature.
We have used the zero density results for the action at zero temperature Sy for all densities,
because a calculation of Sy at non-zero density is impossible due to the sign problem. To
calculate the free energy density using (3.10), we have calculated the plaquette expectation
values,

1 1
- —Tr {U,, t A1
6V s 2Nc {UN (n) + Uul/(”)}’ (3 )

P

as they appear in the definition of the action (1.24).
Figure 3.11 (N; = 2) and 3.12 (N, = 4) show the results for P for the different lattice sizes
and quark number densities shown in Table 3.1. These results show a similar behaviour
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Figure 3.12: Plaquette expectation value for N2 x 4.

like the Polyakov loop expectation values. We see a broadening of the transition region
with increasing quark number density and a shift of the transition region towards smaller
temperatures. Important for the calculation of the free energy density is the fact that the
region between the zero temperature and finite temperature results for the action,

AS = Sy — Sr, (3.12)

shown in figure 3.13 and 3.15, grows with increasing density. This leads to a decrease of
the free energy density with increasing np as can be seen in figure 3.14 and 3.16. For
large values of the coupling, i.e. large temperatures, the plaquette expectation values for
non-zero densities tend to the zero density results and therefore the qualitative behaviour
of the free energy density is comparable for all values of B, but shifted toward smaller
values of f/T* with increasing B.

The problem in calculating the free energy density at non-zero quark number density is
the limitation to simulate at smaller temperatures due to the sign problem. Because the
quark number density ng/T? decreases when decreasing the temperature, the difference
between the zero and the non-zero density results should get smaller for smaller values of
the coupling 8. But as can be seen especially for N, = 4 in figure 3.15, the action difference
AS does not tend to zero at non-zero B for the S-range we have analyzed. Therefore the
lower integration limit Gy in (3.10) is not small enough for our data to get results that
are independent of §y. This problem would lead to a shift of the free energy densities at
non-zero B. Therefore the results in figure 3.14 and 3.16 show only a qualitative picture
of the free energy.
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Figure 3.14: The free energy density —f/T*, defined in (3.10), for the N, = 2 lattices.
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Figure 3.17: The heavy quark potentials for T < T, in units of the temperature which is
fized by choosing different values of the coupling B as indicated in the figure.

3.5 Heavy quark potentials at vanishing density

The results for the heavy quark potential at vanishing density will be discussed in the fol-
lowing paragraph. The results were generated with a tree-level Symanzik-improved gauge
action consisting of 1x1 and 2x1 loops on lattices of size 32% x 4. We used a pseudo-
heatbath algorithm [81] with FHKP updating [82, 83] in the SU(2) subgroups. Each
heatbath iteration is supplemented by 4 over-relaxation steps [84]. To improve the signal
in calculations of Polyakov loop correlation functions link integration [85, 86, 87] was em-
ployed. The correlation functions (2.22) for T' < T, resp. (2.30) for T' > T, have been
computed for all on-axis separations and almost all off-axis distance vectors R. For each
(B-value the data set contains 20000 to 30000 measurements separated by one sweep. The
errors on the potentials were determined by a jackknife analysis.

3.5.1 Results below T,

The results for the potential at temperatures below T, are shown in figure 3.17. We see
that rotational symmetry is quite well satisfied due to the use of an improved action in this
case. For the largest separation we see some effects of the periodic boundary conditions
which mainly influence the on-axis correlations.

The potentials have been fitted to (2.27) with two free parameters, the self-energy Vj
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Figure 3.18: The string tension as obtained from fits with eq. (2.27), normalized to its
zero temperature value. The line is the result of a fit to this ratio with the string model
motivated ansatz eq. (3.13). The data is compared with the lowest order temperature effect
on the linear part of the potential, eq. (2.27).

and a temperature dependent string tension o(7'). A more detailed description of the
temperature dependence of the string tension and the logarithmic term in (2.27) can be
found in [3]. The resulting temperature dependent string tension, normalized to its zero
temperature value is shown in Figure 3.18. The temperature dependence compares well
with the (modified) prediction [60] of the Nambu-Goto model

%za 1—b;—z. (3.13)

The string model prediction assumes a second order transition with a continuous vanishing
of the string tension at the critical temperature. As the deconfinement transition in pure
SU(3) gauge theory is known to be of first order, a discontinuity at the critical temperature
is expected. To account for this, the coefficients a and b in eq. (3.13) are allowed to deviate
from unity. The fit to the data, shown in figure 3.18, results in the values a = 1.21(5) and
b =0.990(5). This leads to a non-vanishing string tension at the critical temperature of

o(T:)

——= =0.121(35). 3.14

5 (35) (3.14)
This gives a (physical) mass gap at the transition point of mypp,s(Tc) /T, = o(T.)|T? =
0.30(9), which is a bit below but not incompatible with earlier results of dedicated analyzes
of the order of the deconfinement transition, mppys(7e)/Te = 0.4 — 0.8, as summarized in
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Figure 3.19: The heavy quark potentials for T > T, in units set by the temperature for
different values of the coupling 3. The Polyakov loop correlations have been normalized to
their cluster value.

[88].

The dotted line in figure 3.18 shows the leading order of the temperature dependent
string tension o(T') as given in eq. (2.27). One can see that non-leading terms contribute
substantially even at temperatures down to 0.88 T,.. The critical behaviour at 7, cannot
be understood in terms of the leading order contribution.

3.5.2 Results above T,

Above the critical temperature we have normalized the Polyakov loop correlations to their
cluster value

(L(0)L! (R))
(L(0))?

to eliminate the self-energy contributions. The results in figure 3.19 were obtained with a
tree-level Symanzik-improved gauge action on lattices of size 323 x 4 at vanishing quark
number density.

We fit the potentials above T, with the generalized ansatz (2.36), where the exponent
d of the Coulomb part is treated as a free parameter. It turns out that the value of the
exponent and the value of the screening mass p are strongly correlated. These fluctuations
have been taken into account in our estimates of the error bars.

V(R|,T) = —Tlog (3.15)
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At the highest temperatures analyzed we observed that at large quark separations the
Polyakov loop correlation decreases below the cluster value. In [65] it was argued that
finite momentum contributions to the vacuum polarization tensor can give rise to a mod-
ified screening function which undershoots the exponential Debye decay at intermediate
distances and approaches the infinite distance limit from below. We have taken an oper-
ational approach and have added an overall constant to our fit ansatz.

The results for the exponent d are summarized in figure 3.20. At temperatures very close
to T, the exponent is compatible with 1. When the temperature is increased slightly, d
starts rising to about 1.4 for temperatures up to 2 T.. Between 2 and 3 times 7T, the
exponent centers around 1.5 and the error bars tend to become rather large. A value of
2 as predicted by perturbation theory seems to be ruled out in the investigated tempera-
ture range. Figure 3.21 shows the results for the screening mass (7)) obtained from the
same fits with (2.36). The screening mass tends to smaller values near the critical tem-
perature, but stays finite. This is expected due to the first order of the transition. With
increasing temperature it rises rapidly and reaches a value of about 2.57 at high temper-
atures. The lines in figure 3.21 show the prediction in lowest order perturbation theory,
uw(T) = A x mgo)(T) with mgo)(T) as given in (2.34). For the temperature dependent
renormalized coupling ¢%(T') the two-loop formula

g %(T) = 2bg In <ﬂ> + z—;ln <21n (ﬂ» (3.16)

Ayrs Ayrs

was used, where T, /Ay;5 = 1.14(4) [50, 89]; the lattice scale was set by the lowest Mat-
subara frequency 27T. The data points for the two highest temperatures, T' > 2 T, lead
to a value of A = 1.82(15), which is close to the perturbation theory prediction of 2. In
view of the results for the exponent d we regard this as an accidental coincidence.

3.6 Heavy quark potentials in full QCD

To analyze string breaking in full QCD we have performed simulations with two light
flavours of staggered dynamical quarks on lattices of size 16% x 4 [2] and 123 x 4 (con-
figurations from [90, 91]) at fixed values for the quark mass of m,/T = 0.15 and 0.075.
The couplings were chosen to cover temperatures T below the critical temperature T, in
the range of approximately 0.7 < T < T.. The heavy quark potential was extracted from
Polyakov loop correlations (2.22). In the limit R — oo the correlation function should
approach the cluster value |(L(0))|? which vanishes if the potential is rising at large dis-
tances (as we have seen in the quenched potentials below T;.) and which acquires a small
but finite value if the string breaks.

In figures 3.23 and 3.22 the data for the potential are presented in lattice units at the
values of § analyzed. The critical couplings (. have been determined as 5.306 for N, = 4
and 5.415 for N; = 6. The Polyakov loop correlations have been computed for on-axis
and for a couple of off-axis distances. Rotational invariance is reasonable well recovered
if_’one uses th(z lattice Coulomb behaviour to determine the quark-antiquark separation,
|R| = 1/Giat(R).
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Figure 3.22: Heavy quark potentials in lattice unites for staggered fermions and N, = 4.

The right-most data points plotted at R/a = 9.5 and denoted by stars are the infinite
distance cluster values —T In|(L)|?.

The data quite clearly show a flattening of the potential at lattice distances of about 3 ro
4 lattice spacings, depending on . This is in agreement with earlier results [92, 68] on
smaller lattices of size 8% x 4. Moreover, the height of the potential at these distances is
in nice agreement already with the infinite distance cluster value, shown as the right-most
data point in each of the plots.

In figure 3.24 quenched [3] and full QCD [2] potentials are compared. In order to obtain
a rough estimate of the corresponding temperatures in units of the critical temperature,
the vector meson mass mya as well as the ratio of pseudoscalar to vector meson mass,
mpg/my were estimated. The absolute scale was determined from conventional Wilson
loop measurements of the string tension at zero temperatures at the critical G, values.
The dashed line denotes 7/(12R) + (420MeV)?R which gives a good description of the
zero temperature quenched potential. Again, the comparison with quenched potentials
at the same temperature demonstrates that the potential in the presence of dynamical
quarks becomes flat within the error bars at distances of about 1 fm. From figure 3.24
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Figure 3.23: Heavy quark potentials in lattice unites for staggered fermions and N, = 6.
The right-most data points plotted at R/a = 9.5 and denoted by stars are the infinite
distance cluster values —T In|(L)|%.

we conclude that the observed string breaking, albeit at finite temperature, is an effect
caused by the presence of dynamical fermions.

We have seen that string breaking is relatively easy to observe in the Polyakov loop corre-
lation, while it is difficult to detect through the conventional Wilson loop observable. In
the case of string breaking, the ground state of the Hamiltonian is expected to consist of
two isolated heavy-light mesons. Such a state with an extra light dynamical quark pair
has poor overlap with the flux-tube state which is created by the Wilson loop observable.
An improved Wilson loop style determination of the heavy quark potential in full QCD
would employ a variational superposition of the flux-tube and two-heavy-meson states
[93, 94, 95]. The Polyakov loop approach, on the other hand, although limited in practical
application to temperatures close or above 7., builds in no prejudices about the structure
of the static-pair ground state wave function. Screening from light quarks in the thermal
ensemble occurs readily.
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Figure 3.24: Heavy quark potentials in physical units at various temperatures. Compared
are quenched (open symbols) and full (filled symbols) QCD potentials at the same tem-
perature. The dashed line is the zero temperature quenched potential. The data has been
slightly shifted as to agree at distances around 0.3 fm.

3.7 Heavy quark potentials at non-zero density

The heavy quark potentials at non-zero baryon number

Ng x N, | B | np/T" density were calculated using the canonical partition func-
16> x 4 | 0 | 0.0000 tion (3.1) where we have used the standard Wilson gauge
16° x4 | 6| 0.0313 action for Sg. The correlation functions were calculated
16° x 4 | 12 | 0.0625 on 162 x 4 lattices for different densities as shown in table

(3.7) and various [(-values. The errors on the potentials
were determined by a jackknife analysis with 10 jackknife
blocks and the sign problem has been taken into account
by using the reweighting formula (3.3).

Table 3.2: Lattice sizes and
densities of the simulations.

3.7.1 Results below T,

The results for the potentials below the critical temperature 7, are shown in figure 3.26.
For comparison figure 3.25 shows the heavy quark potentials on the 163 x 4 lattice at
vanishing density. They show a worse rotational symmetry, but a qualitatively same be-
haviour as the results in figure 3.17. As we have seen in figure 3.6, the expectation value
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Figure 3.25: Heavy quark potentials below T, for vanishing density on 16> x 4 lattices.
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Figure 3.26: Heavy quark potentials below T, for B = 6 and different B-values on 163 x 4
lattices.
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Figure 3.27: Heavy quark potentials below T, for § = 5.620 and different densities on
16® x 4 lattices.

of the Polyakov loop stays non-zero for finite baryon number density even for tempera-
tures below the phase transition. In the limit of infinite separation the potential can be
expressed in terms of the Polyakov loop expectation value (2.16). Therefore we expect
that the potential stays constant at large separations for ng/T3 > 0. In figure 3.26 we
see exactly this behaviour. For small separations the usual (quenched) behaviour can be
identified and is comparable to the potentials in figures 3.17 and 3.25. For larger distances
the potential gets screened and stays constant in the limit of infinite separations. This
modification of the long distance part of the heavy quark potential can be explained by the
non-zero density of heavy quarks on the lattice. The static quark anti-quark source used
to probe the potential can recombine with the already present static quarks on the lattice,
forming a baryon and a meson, and therefore the potential gets screened. In figure 3.27
the potentials for 3 = 5.620 and the densities described in table (3.7) are shown. With
increasing quark number density the screening of the heavy quark potential is increased
and the plateau where the potential stays constant gets smaller.

Although the mechanism which leads to a breaking of the string is different for the
quenched case at non-zero density compared to the full QCD case discussed in section 3.6,
the heavy quark potentials show a quite similar behaviour. For small separations they
are comparable with the quenched case, while at some distance R the string breaks and
the potential stays constant for large separations. While in the full QCD case a quark
anti-quark pair has to be created out of the vacuum to break the string, in the case of
non-zero density the quarks are already present and at large separation it is energetically
favourable that the string breaks.
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Figure 3.28: Heavy quark potentials above T, for vanishing density on 163 x 4 lattices.

3.7.2 Results above T,

The heavy quark potentials for temperatures above the critical temperature were normal-
ized to their cluster value according to eq. (3.15) to eliminate the self-energy contribu-
tions. The potentials for vanishing quark number density (figure 3.28) show the screened
Coulomb potential behaviour described by eq. (2.19) with some power d of the Coulomb
part and screening masses i comparable to figure 3.21. The potentials for different values
of the quark number density but identical value of the coupling, 8 = 5.720, and therefore
at identical temperature,are plotted in figure 3.29. At non-zero density the general form of
the potential does not change, but the screening masses seem to increase with increasing
density. This can be expected, because the already present quarks on the lattice lead
to an additional screening of the quark anti-quark sources that probe the heavy quark
potential. In figure 3.29 the potentials are plotted logarithmically. Due to the form of the
potential (2.19), the screening masses are given by the gradient of the potential for large
separations, while the slope for small separations is influenced by the Coulomb part.
Due to the bad rotational symmetry and the small volume, fits to the heavy quark poten-
tials are limited to the ansatz

V(RaT) e(T) —u(T)R

=— e

T (RT)4

(3.17)

with a fixed d. As we have seen in figure 3.20, the exponent d is compatible with a value
of 1.5 for temperatures slightly above T.. Therefore to analyze the screening mass for the
potentials at non-zero density, we fix d to 1.5 and use the fit-ansatz (3.17) with only two
free parameters e(T') and (7). For comparison we use the zero density potentials from
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Figure 3.29: Heavy quark potentials above T, for 8 = 5.720 and different densities on
163 x 4 lattices.

1
VR,T)/T 162x4 B=0 ®
A 16°x4 B=6 ®
A 16%x4 B=12 4
0.1} AR ]
LI "
Phngg
0.01 } ma. .
‘A
n e
A "an
‘*‘A : a
A
0.001 © -
RT
00001 1 1 1 1 1 1 1

04 0.6 0.8 1 1.2 1.4 1.6

Figure 3.30: Logarithmic plot of the heavy quark potentials above T, for B = 5.720 and
different densities on 16> x 4 lattices.
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Figure 3.31: Screening masses u(T)/T for different densities extracted from the fit-ansatz
(3.17) with d = 1.5.

figure 3.28 as the systematic errors are comparable, rather than the ones from figure 3.19.
Because of the simple ansatz, this can only be considered as a first qualitative analysis.
The results for the screening masses p(7T')/T are plotted in figure 3.31. The zero density
results are comparable with the results in figure 3.21. The screening masses are large for
large O-values and tend to a small but non-zero value near the critical coupling. With
increasing quark number density, u(7T")/T increases for all couplings. At the critical cou-
pling for B = 0 the screening masses for B # 0 are still large and continue to decrease
at smaller couplings. This shows again the shift of the phase transition towards smaller
temperatures with increasing quark number density. Furthermore figure 3.31 shows that
the non-zero density leads to an increasing screening due to the additional heavy quarks
in the system. For a more detailed analysis of the heavy quark potential in the deconfined
region, including a determination of the exponent d, larger volumes and improved actions
are needed to reduce the systematic errors.
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Figure 3.32: The chiral condensate for different 3-values and various quark masses m,
together with the extrapolation to mg = 0.

3.8 The chiral condensate

We have calculated the chiral condensate (1)1) using equation (2.48) on quenched config-
urations obtained from the partition function (3.4) for quark numbers of B = 0, 3, 6 and
9. The expectation values were calculated according to the reweighting method (3.3). We
used two flavours of staggered fermions in the standard discretization with various quark
masses from 0.02 to 0.1.

The Z(3)-dependence of the chiral condensate was discussed in section 2.4. As the inte-
grand of the partition function (3.4) is Z(3)-symmetric, configurations that are connected
by the Z(3)-symmetry are equally probable. Therefore we have used a Z(3) transformation
on each configuration to calculate (1)¢) in each of the 3 sectors and analyzed the averaged
chiral condensate as well as the one in the real sector.

The results for the chiral condensate in the real sector for three (-values is plotted in
figure 3.32 together with the linear extrapolation to m, = 0. We see that (y1))(m,)
extrapolates to a non-zero value for the small couplings, while for § = 5.800 the chiral
condensate gets zero in the limit m, — 0. For the largest coupling, the B =0 and B = 6
values coincide. The difference between them is largest for 5 = 5.650 and gets smaller
again for the smallest coupling.

In figures 3.33 and 3.34 the extrapolated values (1))(m, = 0) for the sector-averaged
chiral condensate as well as for the one in the real sector are plotted. Both show a similar
behaviour. In the deconfined phase, the B = 0 and B = 6 results agree. The non-zero
density results tend to smaller values already for smaller couplings and the difference be-
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tween the zero and non-zero density values seem to be largest in the transition region. For
smaller values of 3 they seem to get together again.

The chiral condensates in figures 3.33 and 3.34 mainly differ in the vicinity and above
the phase transition. For the smallest coupling they agree within errors. While the chi-
ral condensate calculated in only the real sector extrapolates to zero for § = 5.80 for
both densities, it stays non-zero for the sector-averaged condensate. The behaviour for
the quenched chiral condensate for vanishing density in [73, 74] suggests that for larger
couplings both methods should give the same result. Therefore we expect that also the
averaged condensate extrapolates to zero for larger (-values.



Chapter 4

The quenched limit in the grand
canonical approach

In this chapter we discuss the results obtained for the grand canonical approach of lattice
QCD in the quenched limit. After describing the details of the simulation and a discussion
of the sign problem at non-zero chemical potential we analyze the temperature dependence
of bulk thermodynamics, the Polyakov loop expectation value and its susceptibility as
well as baryon number density. All results are compared with the results of the canonical
approach discussed in the previous chapter. We will also discuss the possibility of a critical
endpoint of the first order phase transition and analyze its properties.

4.1 Details of the simulation

The simulations for the grand canonical approach in the limit of static quarks, i.e. the
limit g — oo and kK — 0, keeping ke fixed, were performed with the partition function

Zge = /dU|Re(det(M))eSG, (4.1)

where det(M) is the quenched limit of the fermion determinant in the Wilson formulation,
as derived in section 1.9,

det (M)

H (det (PfT + 0—1))2

X

- 11 (0—3 +C7Tr Pl 4+ C7'Tr Py + 1)2 , (4.2)

X

with C = (2ket*)~Nr. Py = [],, Us(Z, x4) is the local Polyakov loop at the spatial point
Z. Sg denotes the gluonic part of the action, for which we have used the standard Wilson

73
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gauge action. The determinant (4.2) is a complex valued function of the Polyakov loops,
but when integrating over all gauge fields in the grand canonical partition function (4.1),
the imaginary parts of det(M) vanish. The sign problem that remains in this formulation
can be handled by shifting the dependence on the sign into the observables and using a
reweighting method [78] to calculate expectation values according to

O - sgn(RefB))ge
(sgn(Refp))ge

which is the same method used in the canonical calculations in the previous chapter. Our
calculations were performed in the vicinity of the critical coupling on 163 x 4 lattices
with C' = 0.0, 0.0008, 0.001, 0.002, 0.005 and 0.01 using a combination of a Metropolis
update and over-relaxation steps to reduce autocorrelations. Each sweep consists of one
Metropolis and four over-relaxation steps. For each link update the change in Re(det(M))
is calculated and a possible change in sign is monitored. Measurements of the observables
were performed after each sweep. The errors on observables were calculated using a
Jackknife error analysis with 10 Jackknife-blocks. Interpolations were performed using
the Ferrenberg-Swendsen method.

) ="

(4.3)

4.2 The sign problem

The average sign of the real part of the fermion determinant, Re(det(M)), is plotted in
figure 4.2. The sign problem is small in the whole -range for the values of the parameter
C analyzed in our calculations. For C' = 0.0008, 0.001 and 0.002, the average sign is one
for nearly all couplings. Only near the phase transition it drops slightly towards smaller
values. For larger values of C the sign problem gets stronger, but even for C' = 0.010 the
average sign is larger than 0.3.

If we look at the baryon number density in figure 4.11, we can see that the average sign
mainly depends on the density rather than depending on the parameter C. For small values
of C the density stays small in the whole S-range and the average sign is one for almost all
couplings. For increasing C, the density np/T? increases even for small couplings and the
sign problem gets stronger. Near the phase transition the rise of the density is strongest
and the average sign has its minimum. Although the density is further increasing in the
high temperature phase, the average sign gets larger again. This behaviour is similar to the
sign problem in the canonical approach. For the densities analyzed there, we have seen no
sign problem in the deconfined region. In the confined region, the average sign decreases
with increasing baryon number density. The same behaviour can be seen here. Due to the
strong increase of the density at the phase transition, the average sign is smallest near the
critical coupling.

Figure 4.1 shows the distribution of the Polyakov loop spanned by Re(Tr L) and Im(Tr L)
for C' = 0.001 and 0.005 for different B-values on the 16 x 4 lattice. For the small value
of C' we see a similar behaviour to the quenched case (for comparison see figure 3.3). The
sign is positive for all g-values. For small couplings the Polyakov loops are distributed
symmetrically around the center of the complex plane indicating that the Z(3) symmetry
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Figure 4.1: Polyakov loop distributions in the complex plane spanned by Re(TrL) and
Im(TrL) for C = 0.001 (left) and C = 0.005 (right) on 163 x 4 lattices and different
B-values. Red points are Polyakov loops that give a positive Re(det(M)) and green points
give a negative Re(det(M)).
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Figure 4.2: Expectation value of the sign of Re(det(M)) on 163 x 4 lattices and different
values of C.

is only slightly broken by the small value of C'. Increasing the coupling, and hence the
temperature, the Polyakov loop values move towards the positive real axis. For C' = 0.005
the Z(3) symmetry is disturbed for all couplings. Values in the positive real sector are
favoured. This indicates an increasing breaking of the Z(3) symmetry with increasing C.
The Polyakov loops with a positive real part of det(M) are distributed in a band around
the real axis and two additional sectors for the negative sign occur symmetrically around
the real axis. Increasing the coupling, the distributions move towards larger values of the
real part. In the deconfined region at 8 = 5.700, only the Polyakov loops with a positive
real fermion determinant remain.

4.3 The confinement-deconfinement phase transition

In order to analyze the phase transition separating the confined and the deconfined phases,
we have calculated expectation values of the Polyakov loop. In contrast to the canonical
approach, observables show a discontinuous behaviour (in the infinite volume limit) at the
critical coupling for a first order transition.

In figure 4.3 our results on 16% x 4 lattices with different values of the parameter C are
shown. For small couplings, i.e. small temperatures, the Polyakov loop expectation values
for different values of C seem to reach a similar value in the limit of small tempera-
tures. In the infinite volume limit, this value should extrapolate to zero at small T'. At
some critical coupling we see a sharp rise of the Polyakov loop, which can be identified
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Figure 4.3: Ezpectation value of the Polyakov loop on 163 x 4 lattices for different values

of C.

with the deconfinement phase transition. This pseudo critical couplings decreases with
increasing C'. Therefore the critical temperature T, decreases with increasing parameter
C as one would expect from the conjectured phase diagrams discussed in Chapter 1.

For C' = 0.0008 and 0.001 the
gradient of the slope of the
Polyakov loop at the critical
temperature is comparable to
the one at vanishing density
(C = 0.000), which might indi-
cate that the phase transition is
still of first order for small val-
ues of the parameter C. The
data for C' = 0.005 and 0.010
show a weakening of this tran-
sition. The transition gets con-
tinuous indicating a crossover
behaviour rather than a real
phase transition. Therefore it
seems that there exists a crit-
ical endpoint of the first order
phase transition at some C, > 0
in contrast to the arguments in
[46] where a vanishing of the
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Figure 4.6: The pseudo-critical couplings in the grand
canonical approach, extracted from the peak positions of
the Polyakov loop susceptibilities.
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Figure 4.7: The fourth Binder cumulant By s plotted against the parameter C. The solid
line indicates the universal Ising value of 1.604(1).

first order transition for any non-zero C' was proposed. The authors of [46] argue that
the behaviour of their data might be comparable to a simple function such as tanh(T}:ITC)
which has a discontinuity for Ao — 0 but a crossover at any non-zero h. We will see later
that this argument is not supported by our calculations.

The susceptibility of the Polyakov loop is plotted in figure 4.4. We see the shift of the
phase transition towards smaller values of the coupling, i.e. smaller temperatures, with
increasing values of the parameter C' as indicated by the Polyakov loop expectation values
in figure 4.3. The pseudo-critical couplings, extracted from the position of the peak of
the Polyakov loop susceptibility, are shown in table 4.4 and plotted in figure 4.6. We see
again a similar behaviour for C' = 0.0008, 0.001 and the zero density results. The peak
height is slightly decreasing with increasing C' but there is no broadening of the peak for
this values. For the two largest values of C' we see a broadening of the peak and a strong
decrease of the peak height, which indicates the weakening of the phase transition. This
behaviour of the Polyakov loop susceptibilities suggests again that the phase transition
remains of first order for small values of C' and that a critical endpoint might exist. In
the following section we will discuss the evidence for such an endpoint in more detail.

4.4 The critical endpoint

From the data discussed in the previous section, one might suggest that the phase transi-
tion remains of first order for small values of C'. The transition weakens with increasing
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C and might end at second order critical point for some C' = C,.. It is expected that

this endpoint of the first order transition belongs to the universality class of the 3-d Ising

model. For C' > C,, we expect to see a crossover.

To analyze the existence of such a critical point C, we follow the ideas discussed for the

Potts model [96], SU(2)-Higgs [97] and the liquid-gas phase transition [98, 99].
Due to the limited statis-
tics on only one lat-

C Be T.(C)/T:(0) | By np(T.)/T? tice size, an analysis of
0.0008 || 5.687(1) | 0.991(5) | 1.539(53) | 0.00742(45) | the volume dependence
0.0010 || 5.686(2) | 0.989(5) | 1.611(67) | 0.00933(70) | of the peak heights of
0.0020 || 5.679(3) | 0.972(7) | 1.808(71) | 0.02135(81) | the susceptibilities is
0.0050 || 5.663(2) | 0.935(5) | 2.411(106) | 0.04951(133) | not possible. The only
0.0100 || 5.643(2) | 0.890(5) | 2.737(88) | 0.10900(164) | criteria we can use at

present are the Binder

Table 4.1:  Pseudo-critical couplings, temperatures, fourth cumulants and joint his-

Binder cumulants and densities at the phase transition. tograms for the energy
and Polyakov loop dis-

tributions. This can of course only give some qualitative characterization, whether the
phase transition stays first order for small values of the parameter C, but no quantitative
specification of the critical value C, or the universality class of this endpoint.

We will now follow the method of decorrelating energy- and magnetic-like observables
discussed for the Potts model in [96]. For QCD with heavy quarks the gluonic action
takes the role of the energy and the Polyakov loop the one of the magnetisation of a spin
system. Since the Polyakov loop for non-zero chemical potential is no longer an exact
order-parameter one cannot expect to read off the same scaling properties at the critical
endpoint as for the proper order parameter of a system in the same universality class.
A non-zero field in a spin system, i.e. a non-zero chemical potential here, leads to a
mixing of F-(energy) and M-(magnetisation) like observables. Therefore one defines new
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observables E and M which are the result of a coordinate transformation,

E = A Sq+ AplL
M = Ay Sq+ AglL, (44)

where A is the basis transformation matrix which diagonalizes the fluctuation matrix F'
in ' — M space. F' is defined as

_ (ASe)?)  ((ASg)(AL))
F_<<(ASG)(AL)> ((AL)?) ) (4.5)

The new E- and M-like observables are now orthogonal in coupling space.
The third and fourth Binder cumulant of M are defined by

AM)?

B3 m 7<(<2M)2))3>/2 (4.6)
AM)*

Biy = 7<<((AM))2>>2, (4.7)

with AO = O — (O). The pseudo-critical couplings (. at fixed C' have been extracted
from the peak position of the Polyakov loop susceptibilities in the previous section (see
table 4.4). The probability distribution of the order parameter is symmetric at the pseudo-
critical coupling. This is characterized by a vanishing of the third Binder cumulant,
B3y = 0. The fourth Binder cumulant should be volume independent at the critical
endpoint and therefore the values of By s for different volumes should intersect at a
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universal value C.. In [96] it was shown that for the Potts model, the critical external field
is in very good agreement with the universal Ising value of 1.604(1). The universal values
for O(2) and O(4) are 1.092(3) and 1.233(6). The results for the fourth Binder cumulant
are shown in table 4.4. In figure 4.7 we see that the fourth Binder cumulant reaches the
universal Ising value for a value of the parameter C' around 0.001. This value might serve
as a first indication for the critical point. Simulations on larger lattices are needed to see
if the Binder cumulants intersect at this point.

The distribution of the M-like observable is plotted in figure 4.10. We see a clear double-
peak structure up to C' = 0.001, indicating the existence of a phase transition. For the
large values of C, only one symmetric peak remains showing a crossover behaviour. This
behaviour favors again a value of C,. around 0.001.

Finally we analyze the joint E- and M-like distributions. They are normalized such
that ((AM)?) = 1 and ((AE)?) = 1. For the different universality classes discussed in
connection with the Potts model and QCD, the Ising, O(4) and O(2) joint distributions
at the critical endpoint are plotted in figure 4.8. The joint distributions of the rotated
Polyakov loop M and the rotated action E are investigated on 16% x 4 lattices at the
pseudo critical coupling. They are plotted in figure 4.9 for different values of C. The
distributions for C = 0.000 and 0.0008 look quite similar indicating the first order nature
of the transition. For C' = 0.001 one finds a certain structure in the distribution which
shows feature of the Ising or O(2) distribution shown in figure 4.8. The distribution for
C > 0.002 look more like a crossover. The two largest values show a rotationally symmetric
distribution which is a clear signal for a crossover. Therefore one might conclude that
the transition is still of first order for small values of C' and turns into a crossover at
approximately C =~ 0.001 — 0.002. However, for the joint distributions the lattice volume
and the statistics seems to be too small to determine an exact position of the critical
endpoint. Simulations on larger lattices are needed to determine the location of the critical
point and its universality class. We have seen that the methods used for the Potts model
also seem to work for QCD at non-zero chemical potential.

4.5 The baryon number density

Unlike in the canonical approach, the baryon number density is an observable in the grand
canonical approach. It can be calculated by the derivative of the logarithm of the partition
function with respect to the chemical potential p,

(nB) _ 1 1 8ln(Z) (4 8)
T3  3T3aN,V 0Op '
2N3 C2TrP; + 20TrP! + 3
A G omr o (49)
3N; \ = C3 + C?TrPy + CTrPL + 1

The results for ng/T? are shown in figure 4.11 and figure 4.12. Below the critical temper-
ature the density is small. It shows a strong increase at the phase transition and turns to
large values in the deconfined phase. With increasing value of the parameter C, the baryon
number density rises towards larger values. For the smallest values of C' the slope of the
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density at the critical coupling is very steep comparable to the behaviour of the Polyakov
loop expectation values in figure 4.3. This indicates again that the phase transition is of
first order for small values of C'. The densities at the pseudo-critical couplings are shown
in table 4.4.

All baryon number densities which we have analyzed in the canonical approach seem to be
in the crossover region, rather than in the region of first order phase transition. Therefore
it is not surprising that we have found no clear signals for a region of coexisting phases in
the canonical approach. The broadening of the phase transition region might also be ex-
plained by a cross-over behaviour. Simulations for even smaller densities in the canonical
approach have to be performed to see signals for a region of coexisting phases.
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Figure 4.11: The baryon number density normalized by the temperature cubed for different
values of C.
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Figure 4.12: The baryon number density normalized by the temperature cubed for small
values of C.
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Conclusions

In this work we discussed the quenched limit of lattice QCD in the canonical and grand
canonical approach. For the grand canonical approach we derived a closed expression of
the partition function in terms of local Polyakov loops. From this expression we obtained
a simple recurrence relation for the canonical partition functions, which allows a faster
calculation of fp for all B in our simulations in contrast to our earlier formulation which
was limited to small values of the quark number B. Although a sign problem remains in
both approaches, we have seen that it can be handled quite well in the vicinity and above
the deconfinement transition for the densities and lattice volumes we have analyzed.

The results for the canonical approach show the expected behaviour. We see a broadening
of the transition region with increasing quark number densities and a shift of the transition
region towards smaller temperatures. Whether the broadening can be interpreted as a
sign for a region of coexisting phases, as expected if the phase transition would be of first
order, can not be answered up to now. We have analyzed the heavy quark potentials for
the quenched case at zero and non-zero density, as well as for full QCD at zero density and
compared all results. The quenched potentials at non-zero density show a qualitatively
similar behaviour to the potentials obtained from the theory with dynamical quarks. Below
the deconfinement transition, they show a flattening at large separations, which can be
interpreted as a screening of the test quarks by the quarks already present in the system
due to the non-zero quark density. This is comparable to string breaking in the full theory,
although the mechanism is different. Above the transition, the screening masses increase
with increasing density, again due to an additional contribution from static quarks.

The results for the grand canonical approach again show a shift of the phase transition
towards smaller temperatures with increasing chemical potential, but no broadening of the
transition region. The phase transition stays first order for small values of the chemical
potential, but weakens with increasing chemical potential. The first order transition line
ends at a second order critical point. The existence of this point has been established.
However, because of the limited statistics on only one lattice volume, only a crude estimate
for the position of this point at C' = 0.001 could be given. For larger chemical potentials
a crossover can be identified. Higher statistics and larger lattices are needed to determine
the position and the universality class of the critical point in greater detail.

The quark densities used in the canonical approach were larger than the densities at
the second order endpoint determined in the grand canonical approach. A region of
coexisting phases in the parameter space analyzed in the canonical case may thus be ruled
out. Calculations in the canonical approach for baryon number densities in the region
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of the first order transition, i.e. at even smaller densities, are needed to observe signals
for a region of coexisting phases. Larger lattices might improve the signatures for this
coexistence, but will also lead to a more severe sign problem. Therefore the formulation
and algorithms have to be improved to handle, or even remove, the sign problem also for
larger lattice volumes.

With this work we intended to explore a new starting point for a non-perturbative analysis
of QCD at finite density on the lattice. Within the static approximation we could establish
many of the basic changes in the thermodynamic behaviour of QCD that are expected
to occur in the presence of a non-vanishing baryon number density. The screening of
the heavy quark potential and the reduction of chiral symmetry breaking are the most
striking effects. The next step will be to allow for large, but finite quark masses, which
will include also the propagation of the quarks in spatial direction. As the sign problem
will be enhanced in this case, new algorithms or different formulations of the theory need
to be developed. Further effort in this field will hopefully lead to a better understanding
of the physics of strongly interacting matter as it will be created in experiments, existed
in the early universe and might exist in the cores of compact stars.
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CHAPTER A. TABLES OF THE RESULTS

B =560

B=0

B =5.62

B=0

B=5.64

B=0

R

V(R)/T

AV(R)/T

V(R)/T

AV(R)/T

V(R)/T

AV(R)/T

0.0000000
1.0000000
1.4142136
1.7320508
2.0000000
2.2360680
2.4494897
2.8284271
3.0000000
3.1622777
3.3166248
3.4641016
3.6055513
3.7416574
4.0000000
4.1231056
4.2426407
4.3588989
4.4721360
4.5825757
4.6904158
4.8989795
5.0000000
5.0990195
5.1961524
5.3851648
5.6568542
5.7445626
9.8309519
6.0000000
6.4031242
6.9282032
7.0000000
8.0000000

2.195177e+00
4.432303e+4-00
5.300304e+-00
5.789670e4-00
5.919454e4-00
6.292921e+00
6.568696e+-00
6.945009e+-00
7.117338e4-00
7.238188e4-00
7.406921e4-00
7.592849e+00
7.680067e+4-00
7.813110e+00
8.007337e4-00
8.148617e4-00
8.226413e+00
8.361504e+-00
8.427064e+-00
8.531490e+-00
8.663607e4-00
8.820651e+-00
8.880800e+-00
8.975107e+00
9.074920e+00
9.219449e+00
9.419900e4-00
9.591221e+00
9.605271e+-00
9.704383e4-00
1.006758e+01
1.027985e+01
1.017875e+01
1.068467e+01

5.612769e-05
8.958306e-04
1.521423e-03
2.746433e-03
2.726625e-03
3.535159e-03
4.484024e-03
5.564562e-03
4.643774e-03
7.128702e-03
7.390522e-03
9.644043e-03
6.552145e-03
7.955387e-03
1.183027e-02
1.094161e-02
1.323237e-02
1.185326e-02
1.246277e-02
1.505315e-02
1.913807e-02
1.499406e-02
1.990825e-02
2.179816e-02
4.032937e-02
1.816967e-02
5.081252e-02
3.917818e-02
3.798434e-02
4.697385e-02
1.028668e-01
2.110401e-01
1.991746e-01
7.040868e-02

2.194599¢+-00
4.370289e+4-00
5.186653e+00
5.639329e+-00
5.767279e+-00
6.101783e+4-00
6.352648e+00
6.686751e+-00
6.844000e+4-00
6.954427e+00
7.110628e+-00
7.257062e+-00
7.347165e+-00
7.470380e+-00
7.638400e+-00
7.758891e+-00
7.856004e+-00
7.961342e+00
8.025661e+-00
8.115779e+4-00
8.208289e4-00
8.336488e+-00
8.412158e+-00
8.507358e+-00
8.573304e+4-00
8.709725e+4-00
8.912274e+4-00
8.989616e+-00
9.009316e+-00
9.101601e+4-00
9.379549¢e+4-00
9.710735e+4-00
9.607003e+-00
9.914415e+-00

8.231983e-05
7.567707e-04
1.526772e-03
2.350014e-03
2.618553e-03
2.838497e-03
2.596333e-03
3.041290e-03
3.061188e-03
5.965821e-03
7.548632e-03
6.576258e-03
9.097664e-03
8.494131e-03
1.223507e-02
7.991322e-03
1.304368e-02
9.123402e-03
1.157299e-02
1.259854e-02
1.117710e-02
1.547657e-02
1.541681e-02
1.820454e-02
1.696064e-02
2.183369e-02
3.177950e-02
2.515498e-02
3.601300e-02
3.856917e-02
3.808192e-02
9.666858e-02
1.034219e-01
2.113406e-01

2.193657e+00
4.310837e+4-00
5.076937e+00
5.494327e+00
5.613743e+400
5.921304e+00
6.141727e+00
6.444404e+-00
6.582144e+00
6.686198e+-00
6.818610e+4-00
6.939508e+-00
7.036318e+00
7.134693e+-00
7.286591e+-00
7.387162e+00
7.476459¢+-00
7.559676e+00
7.620399¢e+-00
7.696534e4-00
7.772624e+00
7.905704e+-00
7.968664e+-00
8.040757e+4-00
8.089269e+4-00
8.226222e+00
8.400381e+4-00
8.448818e+-00
8.499660e+-00
8.585431e+4-00
8.849348e4-00
9.127452e+4-00
9.011232e+4-00
9.128650e+4-00

1.164036e-04
7.758643e-04
1.418957e-03
2.588450e-03
2.183170e-03
2.386581e-03
3.581328e-03
4.891201e-03
5.069087e-03
5.211735e-03
5.667071e-03
6.567053e-03
8.547489e-03
6.853326e-03
9.207411e-03
7.798008e-03
9.732352e-03
1.060322e-02
8.883656e-03
9.771756e-03
9.115422e-03
1.181230e-02
1.184405e-02
1.256687e-02
1.305162e-02
1.957426e-02
2.579924e-02
2.326003e-02
2.302885e-02
2.453378e-02
3.471759e-02
5.827713e-02
4.176885e-02
5.965334e-02

Table A.1: The heavy quark potentials for B = 0 (figure 3.25).




91

B =566

B=0

B =568

B=0

B =5.60

B=6

R

V(R)/T

AV(R)/T

V(R)/T

AV(R)/T

V(R)/T

AV(R)/T

0.0000
1.0000
1.4142
1.7320
2.0000
2.2360
2.4494
2.8284
3.0000
3.1622
3.3166
3.4641
3.6055
3.7416
4.0000
4.1231
4.2426
4.3588
4.4721
4.5825
4.6904
4.8989
5.0000
5.0990
5.1961
5.3851
5.6568
5.7445
5.8309
6.0000
6.4031
6.9282
7.0000
8.0000

2.192093e+00
4.248518e+-00
4.965017e+4-00
5.343720e+-00
5.453846e+-00
5.725858e+00
5.922896e+00
6.189226e+00
6.308142e+00
6.399997e+4-00
6.512949e+00
6.627455e+4-00
6.700295e+4-00
6.788959e+4-00
6.918046e+4-00
7.005587e+4-00
7.070548e+-00
7.152382e+-00
7.197069e+-00
7.260390e+-00
7.340721e4-00
7.437307e+00
7.482835e+-00
7.536245e+00
7.601146e+00
7.697214e+00
7.808134e+00
7.860449e+00
7.928702e+-00
7.977161e+00
8.190880e+-00
8.412977e+4-00
8.242425e+00
8.351243e+00

1.463824e-04
1.313626e-03
2.398089e-03
3.756978e-03
3.946189e-03
4.670958e-03
6.135797e-03
7.798261e-03
8.439360e-03
8.105853e-03
8.722369e-03
1.093301e-02
1.181394e-02
1.180710e-02
1.575112e-02
1.515043e-02
1.625915e-02
1.653766e-02
1.636643e-02
1.976964e-02
2.057044e-02
2.128655e-02
2.178571e-02
2.521042e-02
2.340587e-02
2.781506e-02
3.350697e-02
2.842957e-02
3.087645e-02
3.124491e-02
3.614668e-02
4.748189e-02
2.831035e-02
5.898439e-02

2.187407e+-00
4.159960e+4-00
4.799412e+4-00
5.120896e4-00
5.210577e4-00
5.428492e4-00
9.581695e+-00
5.780578e+00
5.866399e4-00
5.931206e4-00
6.009849e4-00
6.084376e+-00
6.133100e+-00
6.192047e+400
6.275205e4-00
6.328514e4-00
6.369246e+00
6.413702e4-00
6.444787e+4-00
6.481869e4-00
6.521900e4-00
6.579160e+-00
6.601542e+4-00
6.633521e+00
6.662079e4-00
6.710516e4-00
6.771349e+00
6.793319e+-00
6.818589e+-00
6.848148e+00
6.938800e4-00
7.029597e4-00
6.943296e+-00
6.982273e+-00

2.124049e-04
1.908997e-03
4.062993e-03
5.732179e-03
6.133714e-03
7.793819e-03
8.995278e-03
1.161951e-02
1.272150e-02
1.364072e-02
1.460781e-02
1.555820e-02
1.647286e-02
1.752462e-02
1.917228e-02
2.006806e-02
2.103500e-02
2.189586e-02
2.263997e-02
2.325266e-02
2.499226e-02
2.574756e-02
2.722543e-02
2.806136e-02
2.922988e-02
2.957194e-02
3.292517e-02
3.222945e-02
3.375375e-02
3.398539e-02
3.684048e-02
4.065465e-02
3.917749e-02
3.974387e-02

2.189309e+-00
4.341691e+4-00
5.085961e+00
5.436481e+-00
5.569226e+00
5.821445e+00
6.014012e+-00
6.188327e+4-00
6.272407e+4-00
6.329784e+4-00
6.437798e+-00
6.475336e+-00
6.475413e+00
6.563706e+4-00
6.625047e+4-00
6.672881e+4-00
6.680095e+-00
6.722414e+-00
6.719153e+4-00
6.749377e+4-00
6.819791e+4-00
6.816396e+-00
6.851878e+-00
6.842898e+-00
6.981169e+4-00
6.837637e+00
6.942538e+-00
6.892614e+4-00
6.907084e+4-00
6.924625e+00
6.846521e+4-00
6.949595e+4-00
6.942942e+-00
7.035027e+-00

1.848690e-03
1.191301e-02
2.365677e-02
4.024753e-02
3.865565e-02
4.749981e-02
5.072183e-02
6.303483e-02
6.222171e-02
7.812033e-02
8.405653e-02
1.011344e-01
8.625004e-02
6.547030e-02
9.693986e-02
9.359741e-02
9.923598e-02
8.805614e-02
7.923854e-02
9.267044e-02
9.851563e-02
7.130386e-02
1.157425e-01
8.663726e-02
1.110530e-01
9.290371e-02
1.305804e-01
1.049684e-01
1.052762e-01
1.227445e-01
1.144498e-01
1.513076e-01
1.330674e-01
1.488300e-01

Table A.2: The heavy quark potentials for B = 0 (figure 3.25) and for B = 6 (figure 3.26).
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B =5.62

B=6

B=5.64

B=6

B =566

B=6

V(R)/T

AV(R)/T

V(R)/T

AV(R)/T

V(R)/T

AV(R)/T

0.0000
1.0000
1.4142
1.7320
2.0000
2.2360
2.4494
2.8284
3.0000
3.1622
3.3166
3.4641
3.6055
3.7416
4.0000
4.1231
4.2426
4.3588
4.4721
4.5825
4.6904
4.8989
5.0000
5.0990
5.1961
5.3851
5.6568
5.7445
5.8309
6.0000
6.4031
6.9282
7.0000
8.0000

2.185063e+-00
4.270493e+4-00
4.972180e+4-00
5.311102e4-00
5.412403e4-00
9.628230e+-00
5.774231e+00
5.964151e+-00
6.031734e4-00
6.089494e4-00
6.138676e+4-00
6.179300e+-00
6.236790e+-00
6.277096e400
6.301937e4-00
6.355856e4-00
6.376419e+00
6.371549e+-00
6.415809e+-00
6.440151e+4-00
6.442201e4-00
6.471790e+-00
6.463675e+4-00
6.466264e+4-00
6.507911e4-00
6.538867e4-00
6.513364e4-00
6.520614e+4-00
6.583989e+-00
6.573891e+4-00
6.555864e4-00
6.573772e4-00
6.620050e+-00
6.516197e+4-00

2.000393e-03
1.340515e-02
2.792687e-02
3.583744e-02
4.285889e-02
4.001598e-02
4.532448e-02
5.305668e-02
5.552345e-02
5.698220e-02
5.524233e-02
7.234018e-02
6.876418e-02
6.427620e-02
7.029691e-02
6.627639e-02
7.299843e-02
6.869121e-02
7.957401e-02
7.087263e-02
7.631044e-02
8.385661e-02
8.246070e-02
8.268516e-02
7.804979e-02
7.380982e-02
9.665272e-02
8.071642e-02
7.533009e-02
7.123660e-02
7.656488e-02
9.564884e-02
7.058026e-02
5.964754e-02

2.180891e+00
4.173900e+4-00
4.793238e+-00
5.090891e+-00
5.168970e+-00
5.352424e+00
5.478550e+-00
5.618762e+-00
5.682897e+4-00
5.723806e+-00
5.774517e+00
5.829563e+00
5.847268e+00
5.880364e4-00
5.927464e4-00
5.962529¢e+00
5.976611e+00
6.003886e+-00
6.016351e+4-00
6.028660e+-00
6.048281e+4-00
6.078837e+4-00
6.087330e+-00
6.094859e+4-00
6.109972e4-00
6.130554e+4-00
6.137952e+4-00
6.152595e+4-00
6.159639e+-00
6.178893e+4-00
6.211418e+00
6.229918e+00
6.204914e+-00
6.219687e+4-00

5.234351e-04
6.728703e-03
1.342233e-02
1.642152e-02
1.800745e-02
2.194579e-02
2.472686e-02
2.969644e-02
2.793144e-02
3.008018e-02
3.124929e-02
3.138978e-02
3.128909e-02
3.350257e-02
3.222121e-02
3.479155e-02
3.491274e-02
3.884352e-02
3.563334e-02
3.699339e-02
3.779046e-02
3.828000e-02
4.209590e-02
4.039584e-02
3.905001e-02
4.058806e-02
4.078202e-02
4.156607e-02
4.510174e-02
4.544871e-02
4.674396e-02
4.538604e-02
4.548219e-02
5.210504e-02

2.168553e+-00
4.014567e+4-00
4.518615e+4-00
4.734736e+4-00
4.791251e+4-00
4.917574e+4-00
4.997808e+-00
9.093525e+-00
5.131402e4-00
5.157155e4-00
5.190958e4-00
5.218445e+00
5.236733e+-00
5.256687e4-00
5.283595e4-00
5.302400e4-00
5.314966e+-00
5.328641e+-00
5.338246e+00
5.347962e4-00
5.360442e+00
5.375004e+-00
9.382003e+-00
9.389396e+-00
5.398910e4-00
5.408657e4-00
5.427105e4-00
5.428721e+-00
5.433190e+-00
5.437674e4-00
5.458012e4-00
5.475927e4-00
5.455278e+-00
5.465245e+00

7.552123e-04
6.703244e-03
1.136396e-02
1.400662e-02
1.574223e-02
1.740976e-02
1.869762e-02
2.123892e-02
2.183479e-02
2.231420e-02
2.316675e-02
2.318101e-02
2.427675e-02
2.463196e-02
2.642351e-02
2.618516e-02
2.655922e-02
2.641834e-02
2.703759e-02
2.752603e-02
2.779859e-02
2.884088e-02
2.829965e-02
2.827280e-02
2.914013e-02
2.885964e-02
2.964529e-02
3.001215e-02
2.960681e-02
2.993584e-02
3.105616e-02
3.190125e-02
3.022240e-02
3.132139e-02

Table A.3: The heavy quark potentials for for B = 6 (figure 3.26).
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3 =5.62

B =12

B =5.10

B=0

B =572

B=0

R

V(R)/T

AV(R)/T

V(R)/T

AV(R)/T

V(R)/T

AV(R)/T

0.0000
1.0000
1.4142
1.7320
2.0000
2.2360
2.4494
2.8284
3.0000
3.1622
3.3166
3.4641
3.6055
3.7416
4.0000
4.1231
4.2426
4.3588
4.4721
4.5825
4.6904
4.8989
5.0000
5.0990
5.1961
5.3851
5.6568
5.7445
5.8309
6.0000
6.4031
6.9282
7.0000
8.0000

2.174889¢+-00
4.151868e+-00
4.740729e+4-00
5.006136e+00
5.041432e4-00
5.204744e+00
5.299403e+-00
5.424132e+-00
5.450781e+-00
5.491342e+00
5.520590e+-00
5.551007e+00
5.586035e+00
5.594449e+00
5.640970e+00
5.659960e+-00
5.657935e+00
5.665996e+00
5.691135e+00
5.688117e+00
5.714427e+00
5.708902e+-00
5.711464e+-00
5.720935e+-00
5.748553e+00
5.725260e+-00
5.729773e400
5.745346e+-00
5.757134e+00
5.754666e400
5.766255e+00
5.765644e+-00
5.770438e+00
5.810096e+00

1.786768e-03
1.212239e-02
1.886650e-02
2.771484e-02
3.416902e-02
3.268742e-02
3.332181e-02
3.819674e-02
3.893550e-02
3.821001e-02
4.027562e-02
4.771933e-02
3.652808e-02
4.062776e-02
4.825389e-02
4.793728e-02
4.581671e-02
5.006986e-02
9.052820e-02
5.009762e-02
5.001732e-02
4.803483e-02
9.095869e-02
5.084517e-02
5.176167e-02
4.948882e-02
5.016659e-02
5.128821e-02
9.226823e-02
5.464586e-02
5.771518e-02
5.526662e-02
5.307850e-02
6.777742e-02

2.102479e+-00
3.515387e+-00
3.769433e+-00
3.855979e4-00
3.872094e4-00
3.915722e+4-00
3.940465e+-00
3.966253e+-00
3.975948e4-00
3.982166e4-00
3.990064e4-00
3.996766e+00
4.000510e+4-00
4.005171e+400
4.010323e+4-00
4.014367e+4-00
4.017083e+4-00
4.019746e+4-00
4.021560e+4-00
4.023651e+4-00
4.025488e+4-00
4.028439e+4-00
4.029559e+4-00
4.031051e+4-00
4.032364e+4-00
4.034246e+00
4.036832e4-00
4.037610e+4-00
4.038453e+4-00
4.039263e+4-00
4.042353e+4-00
4.044993e+4-00
4.042660e+4-00
4.044030e+4-00

1.375793e-03
8.006737e-03
1.094492e-02
1.224341e-02
1.264305e-02
1.354122e-02
1.398030e-02
1.462502e-02
1.482223e-02
1.503501e-02
1.525883e-02
1.533822e-02
1.551621e-02
1.569521e-02
1.593178e-02
1.594450e-02
1.608357e-02
1.614707e-02
1.617043e-02
1.623380e-02
1.627774e-02
1.633968e-02
1.651966e-02
1.657921e-02
1.647877e-02
1.664421e-02
1.686524e-02
1.676136e-02
1.679182e-02
1.689352e-02
1.703595e-02
1.713512e-02
1.699544e-02
1.707018e-02

2.067274e+00
3.325114e+-00
3.520915e+4-00
3.582707e+4-00
3.592202e4-00
3.621959e+-00
3.637955e+4-00
3.653640e+-00
3.659448e+00
3.663076e+4-00
3.667523e+4-00
3.671397e+4-00
3.673315e+4-00
3.675816e+4-00
3.678573e+00
3.680627e+4-00
3.682009e+-00
3.683568e+-00
3.684274e+4-00
3.685203e+4-00
3.686341e+4-00
3.687621e+4-00
3.688078e+-00
3.688890e+-00
3.689700e+-00
3.690425e+00
3.691239¢e4-00
3.691786e+-00
3.692136e+-00
3.692548e+00
3.693810e+4-00
3.694729e+00
3.693998e+-00
3.694656e+-00

5.794007e-04
2.776710e-03
3.527517e-03
3.810987e-03
4.019805e-03
4.126671e-03
4.218032e-03
4.351842e-03
4.375162e-03
4.369933e-03
4.379516e-03
4.442417e-03
4.472195e-03
4.487869e-03
4.534241e-03
4.523145e-03
4.539604e-03
4.594032e-03
4.603467¢-03
4.632685e-03
4.585246e-03
4.617785e-03
4.672615e-03
4.672057e-03
4.669537e-03
4.732998e-03
4.688039e-03
4.707041e-03
4.770970e-03
4.712432e-03
4.771647e-03
4.707500e-03
4.886819e-03
5.010235e-03

Table A.4: The heavy quark potentials for B = 12 (figure 3.27) and for B = 0 (figure 3.28).
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B =576

B=0

3 =580

B=0

R

V(R)/T

AV(R)/T

V(R)/T

AV(R)/T

0.0000
1.0000
1.4142
1.7320
2.0000
2.2360
2.4494
2.8284
3.0000
3.1622
3.3166
3.4641
3.6055
3.7416
4.0000
4.1231
4.2426
4.3588
4.4721
4.5825
4.6904
4.8989
5.0000
5.0990
5.1961
5.3851
9.6568
5.7445
5.8309
6.0000
6.4031
6.9282
7.0000
8.0000

2.025994e+-00
3.131752e4-00
3.282682e4-00
3.327747e+00
3.332795e4-00
3.353909e+-00
3.364674e+4-00
3.374567e+4-00
3.377971e+4-00
3.380153e4-00
3.382857e+-00
3.385323e+-00
3.386209e+-00
3.387606e+00
3.388899e4-00
3.390254e4-00
3.390960e+-00
3.391706e+-00
3.392057e4-00
3.392618e+00
3.393125e+400
3.393660e+-00
3.393887e+-00
3.394330e+-00
3.394610e+00
3.394916e+00
3.395413e+00
3.395575e+4-00
3.395681e+-00
3.395887e4-00
3.396386e4-00
3.396742e4-00
3.396369e+-00
3.396326e+-00

2.615001e-04
9.615212e-04
1.216371e-03
1.222089e-03
1.242007e-03
1.335470e-03
1.364012e-03
1.454883e-03
1.385835e-03
1.390379e-03
1.397984e-03
1.435145e-03
1.426524e-03
1.434689¢-03
1.443820e-03
1.458714e-03
1.422530e-03
1.421350e-03
1.454220e-03
1.447068e-03
1.456809e-03
1.476892e-03
1.456825e-03
1.468405e-03
1.563395e-03
1.470273e-03
1.466546e-03
1.483088e-03
1.454950e-03
1.448406e-03
1.480130e-03
1.587837e-03
1.512606e-03
1.528490e-03

1.994491e+00
3.002675e+4-00
3.130063e+4-00
3.166579e+4-00
3.170608e+-00
3.187439e+-00
3.195800e+-00
3.203316e+-00
3.206029e4-00
3.207644e+4-00
3.209646e+-00
3.211110e+00
3.212194e+4-00
3.213125e+-00
3.214011e+-00
3.215005e+4-00
3.215487e+4-00
3.216050e+-00
3.216239e4-00
3.216632e+4-00
3.217013e+-00
3.217428e+00
3.217574e+4-00
3.217819e+00
3.218195e+4-00
3.218275e+4-00
3.218589e+-00
3.218628e+-00
3.218738e+-00
3.218877e+4-00
3.219153e+4-00
3.219360e+4-00
3.219212e4-00
3.219362e+-00

1.649468e-04
5.125201e-04
6.309800e-04
7.381844e-04
6.824041e-04
6.917528e-04
6.850378e-04
7.100104e-04
7.597249e-04
7.310503e-04
7.327422e-04
7.497913e-04
7.392257e-04
7.551264e-04
7.072186e-04
7.173487e-04
7.414193e-04
7.858652e-04
7.368077e-04
7.522747e-04
7.026983e-04
7.289175e-04
7.552647¢e-04
7.657799¢-04
7.905192e-04
7.472364e-04
7.658886e-04
7.691572e-04
7.716651e-04
7.431228e-04
7.456663e-04
7.026771e-04
7.499511e-04
7.136117e-04

Table A.5: The heavy quark potentials for B = 0 (figure 3.28).
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B =572

B=6

B=512

B=12

R

V(R)/T

AV(R)/T

V(R)/T

AV(R)/T

0.0000
1.0000
1.4142
1.7320
2.0000
2.2360
2.4494
2.8284
3.0000
3.1622
3.3166
3.4641
3.6055
3.7416
4.0000
4.1231
4.2426
4.3588
4.4721
4.5825
4.6904
4.8989
5.0000
5.0990
5.1961
5.3851
5.6568
5.7445
5.8309
6.0000
6.4031
6.9282
7.0000
8.0000

2.056227e+-00
3.275227e+00
3.457849¢e+4-00
3.514226e+00
3.522383e+4-00
3.549320e+4-00
3.563474e+4-00
3.577304e+-00
3.582122e+-00
3.584952e+4-00
3.588874e+4-00
3.592325e+00
3.594004e+-00
3.596271e+4-00
3.598070e+4-00
3.600081e+4-00
3.601136e+-00
3.602298e+-00
3.603039¢e+4-00
3.603924e4-00
3.604405e+4-00
3.605737e+4-00
3.606216e+00
3.606578e+-00
3.606718e+4-00
3.607753e+4-00
3.608597e+4-00
3.608806e+-00
3.609135e+4-00
3.609324e+4-00
3.610413e+00
3.611043e+00
3.610421e+00
3.610899e+-00

1.066575e-03
5.330544e-03
6.642578e-03
7.240392e-03
7.335437e-03
7.640440e-03
7.769065e-03
8.016672e-03
8.056253e-03
8.101070e-03
8.197244e-03
8.315499e-03
8.269568e-03
8.337454e-03
8.361358e-03
8.453554e-03
8.445150e-03
8.519499e-03
8.497166e-03
8.548835e-03
8.560225e-03
8.663872e-03
8.621757e-03
8.625797e-03
8.631576e-03
8.613263e-03
8.718842e-03
8.706090e-03
8.672547e-03
8.690401e-03
8.756339e-03
8.669325e-03
8.857434e-03
8.870494e-03

2.046831e+-00
3.234002e+-00
3.406031e4-00
3.458236e4-00
3.465479e4-00
3.490371e+-00
3.503258e+-00
3.515429e+-00
3.519890e4-00
3.522556e4-00
3.526040e+-00
3.528835e+-00
3.530210e+00
3.532015e+400
3.533846e4-00
3.535455e4-00
3.536362e+-00
3.537336e+00
3.537944e4-00
3.538511e4-00
3.539133e4-00
3.540020e+-00
3.540255e+-00
3.540793e+-00
3.541019e+00
3.541783e4-00
3.542373e+00
3.542658e+-00
3.542859e+-00
3.543116e+00
3.543640e4-00
3.544111e4-00
3.544239e+-00
3.544359e+-00

7.297964e-04
3.233304e-03
4.139833e-03
4.472233e-03
4.452191e-03
4.639951e-03
4.801604e-03
4.871574e-03
4.923406e-03
4.957480e-03
4.939227e-03
5.087911e-03
5.049079e-03
5.035980e-03
5.026880e-03
5.102515e-03
5.087299¢-03
5.108327e-03
5.131576e-03
5.124147e-03
5.118428e-03
5.163115e-03
5.135794e-03
5.171152e-03
5.199189e-03
5.154476e-03
5.155268e-03
5.122236e-03
5.211814e-03
5.203886e-03
5.181260e-03
5.220756e-03
5.287036e-03
5.398514e-03

Table A.6: The heavy quark potentials for B = 6 and 12 (figure 3.29).
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B =12
u(T)
0.219617
0.284626
0.341434
0.422048
0.479862
0.543997
0.605879

i w(T)
5.67
5.68
5.69
5.70
5.72
5.74
5.76
5.78
5.80

Ap(T) Ap(T) Ap(T)

0.008407
0.005647
0.006480
0.008116
0.005350
0.006678

0.005992

0.139201
0.208419
0.344702
0.416221
0.522179
0.596179

0.010757
0.013241
0.009650
0.010024
0.005757
0.004902

0.094868
0.377818
0.472800
0.509122
0.564647
0.592046

0.028810
0.006431
0.004651
0.005149
0.004683
0.004807

0.647424 | 0.009103 | 0.654775 | 0.007231

Table A.7: The screening masses p(7') for B = 0, 6 and 12 (figure 3.31)

B=0

B=6

B

(V)

Ay)

(V)

Ag)

9.560
5.600
5.620
5.650
9.680
5.700
5.720
5.740
5.800

5.675975e-01
4.516934e-01
4.125112e-01
3.447211e-01
2.199510e-01
1.724013e-01
1.123391e-01
8.559863e-02
4.318381e-02

1.999751e-02
2.993775e-02
3.770406e-02
1.842360e-02
2.377878e-02
2.767812e-02
1.705682e-02
1.383918e-02
5.547616e-03

5.141182¢-01
3.292075e-01
2.963828e-01
1.895866e-01
1.354169e-01
1.113506e-01
9.971245e-02
5.825762e-02
3.324330e-02

5.710701e-02
3.296467e-02
5.869031e-02
1.099939e-02
2.179290e-02
2.145039e-02
1.155948e-02
1.021383e-02
1.086050e-02

B=3

B=9

9.650

2.395582e-01

2.064072e-02

1.893213e-01

1.838337e-02

Table A.8: The chiral condensate for B =0, 3, 6 and 9 (figure 3.33)

B=0 B=6
3 ) A(Y) ) A(Y)
5.560 | 5.550248e-01 | 2.161521e-02 | 4.668751e-01 | 6.922858e-02
5.600 | 4.453723e-01 | 3.116627e-02 | 3.003278e-01 | 5.733124e-02
5.620 | 3.837429e-01 | 4.456664e-02 | 1.855921e-01 | 7.426015e-02
5.650 | 3.179101e-01 | 2.820616e-02 | 1.161515e-01 | 6.703597e-02
5.680 | 1.420890e-01 | 3.129058e-02 | 3.036821e-02 | 1.920882¢-02
5.700 | 1.200041e-01 | 6.243432¢-02 | 1.678132e-02 | 1.630390e-02
5.720 | 3.208167e-02 | 1.982048e-02 | 1.503684e-02 | 8.310794e-03
5.740 | 1.179322e¢-02 | 1.136064e-02 | 1.860205e-03 | 7.063125e-03
5.800 | -1.227372e-03 | 3.884930e-03 | -1.853167e-03 | 6.036416e-03
B=3 B=9
5.650 | 1.302718e-01 | 2.349215e-02 | 6.916529¢e-02 | 1.752395e-02

Table A.9: The chiral condensate for B =0, 3, 6 and 9 (figure 3.34)
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