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Introduction

The fundamental theory for strongly interacting quarks and gluons is Quantum Chromodynam-
ics (QCD). It is formulated as a non-Abelian SU(3) gauge theory with the gluons as the gauge
bosons. Up to now six quark species are known which are labelled by their flavour (up, down,
strange, charm, bottom, top). All of them carry additional internal colour degrees of freedom.
The coupling between quarks and gluons is realized through colour. The experimental test of
perturbative QCD is restricted to deep inelastic scattering where the momentum transfer is large.
In this regime quarks act as asymptotically free particles, the strong coupling constant a; is small
and a perturbative description meaningful. For larger distances or smaller momentum transfers the
coupling strength increases and thus perturbative calculations break down. This is also reflected in
the observation that quarks are confined to colour neutral bound states, the baryons and mesons.
To explore the non-perturbative properties of QCD an alternative approach has been proposed by
Wilson [1]. He suggested a discretisation of the Euclidean path integral formulation of QCD by
introducing a four dimensional space-time lattice to regularise the theory. This so-called SU(3)
lattice gauge theory can be calculated by means of Monte-Carlo simulations. The results obtained
on the discrete lattice, which are expressed in terms of the finite lattice spacing a, are not free
of discretisation errors. They have to be extrapolated to the continuum a — 0. It turned out
that the cut-off effects induced by a straight-forward discretisation of the action is quite large for
most observables. During the last years it has become clear that improved discretisation schemes
provide a solution to this problem. The aim of these improved actions is to reduce the cut-off
distortions such that the results are more continuum-like already at finite lattice spacing .

One of the most fascinating predictions of non-perturbative QCD on the lattice is the existence of
a phase transition from a confined low temperature phase with broken chiral symmetry to a decon-
fined and chirally symmetric high temperature phase of liberated quarks and gluons, a so-called
quark gluon plasma. In heavy ion experiments at the CERN SPS (Super Proton Synchrotron)
evidence from several signatures has been found that such a new state of matter exists [2]. In
future experiments at RHIC (Relativistic Heavy Ion Collider) in Brookhaven and at LHC (Large
Hadron Collider) at CERN the collision energy of the nuclei will be sufficiently high to produce
a nearly baryon-free fireball. This corresponds to the system investigated in finite temperature
lattice simulations such that also quantitative comparisons between lattice and experimental data
might become possible.

Lattice results also have consequences for evolution scenarios of the early universe. There the
nature of the QCD phase transition very much determines if persisting inhomogeneities in the
universe might have been produced during the QCD transition which occured shortly after the big
bang.

During the last years the investigation of QCD at finite temperature on the lattice has lead to
quantitative predictions for the critical temperature at which the phase transition takes place, the
order of the transition and the equation of state. Due to limited computer resources the first simu-
lations were restricted to the quenched approximation of QCD, where the quark degrees of freedom
are neglected in the dynamics of the system. Different discretisation schemes lead a transition tem-
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perature of 265 MeV to 273 MeV in the continuum limit. A further success and consistency check
of the lattice formulation is the continuum extrapolation of the pressure which also agrees within a
few percent for unimproved and improved discretisations. Additionally it has been shown that the
use of improved actions allows the extraction of continuum physics at much larger lattice spacing
and consequently with smaller computer resources.

In finite temperature simulations of full QCD the results have not reached the same level of preci-
sion. Both widely used fermion formulations, Wilson and staggered fermions, respectively, suffer
from severe cut-off effects. This is the starting point of this work. A highly improved staggered
fermion action will be used to investigate the nature of the finite temperature phase transition. For
three degenerate quark flavours the mass parameter will be varied from quite heavy to relatively
light quarks to analyse how the transition changes from a confinement-deconfinement transition
to a chiral phase transition in the limit m, — 0. For three flavour QCD universality arguments
predict Ising critical exponents at the second order endpoints of the first order chiral and decon-
finement regions. These predictions will be tested.

In thermodynamic calculations heavy quarks with mass mg,a are suppressed with exp(—m,/T),
where at the phase transition the critical temperature T is about 180 MeV. Since this is close to
the strange quark mass a systematic study of the influence of a third quark flavour in addition to
the two light ones has been performed. The effect on thermodynamic quantities like the transition
temperature, pressure and energy density has been analysed. A first continuum estimate will be
possible with this action based on the analysis of remaining cut-off effects.

This work is organized as follows:

In the first chapter the formulation of finite temperature QCD on the lattice will be presented.
Especially the properties of staggered fermions are described in some detail. All physical observ-
ables which are discussed in the following chapters are introduced and a brief description of the
simulation algorithm is given.

Chapter 2 deals with the improvement of gluonic and staggered fermion actions. The basic princi-
ples of improvement in pure gauge theory and their benefit in finite temperature lattice calculations
will be discussed. For staggered fermions the main focus in this chapter lies on the presentation
of actions which improve the flavour and rotational symmetry. The expected improvement has
been tested in perturbative and lattice calculations. In a final section the computational costs of
simulations with improved actions will be presented.

The topic of the third chapter is the finite temperature phase transition in QCD. For the regime of
heavy quarks the confinement-deconfinement transition is discussed for three quark flavours with
improved staggered fermions. In the opposite limit of QCD with three light quarks the chiral
transition has been investigated. In both cases the numerical results are compared to predictions
from effective models, the Potts model with an external field and the SU(3) ® SU(3) o-model,
respectively. Additionally also results for two light and two light plus one heavier quark flavour
are summarized.

In chapter 4 QCD thermodynamic calculations with improved staggered fermions are presented.
The critical temperature and the equation of state are analysed for two, two plus one and three
quark flavours. Additionally the reduction of cut-off effects for improved actions has been investi-
gated.

In the appendix the Dirac v matrices in Euclidean metric, the generators of the group SU(N) and
the force computation in the Hybrid R algorithm for p4 and fat link staggered fermion actions is
given. In the third part of the appendix the results for the string tension extracted from the static
quark potential in full QCD are presented.



Chapter 1

Finite temperature QCD on the
lattice

In this chapter the formulation of a SU () gauge theory interacting with ny quark flavours at finite
temperature will be presented. The non-perturbative regime of such a theory, in this case especially
QCD, has been quite successfully explored using the lattice formulation. It will be discussed how
the QCD action can be discretized and in which way continuum results can be extracted from
lattice QCD. All observables and thermodynamic quantities measured and referred to in this work
are presented. Finally the numerical methods of the lattice simulation are explained. A general
introduction to lattice gauge theories can be found in the recent books of Rothe [3] or Montvay
and Miinster [4], the treatment of phase transitions in QCD is discussed in an review article by
Meyer-Ortmanns [5]. The starting point of this chapter is the continuum QCD Lagrangian.

The QCD Lagrangian in the continuum

For n; quark flavours with mass m; and the gauge group SU(N) the Lagrangian consists of a
gluonic and a fermionic part

EQCD (I) = ﬁgluon + Leermion (11)

Lauon(a) = —Fo(@)FL" (@) (1.2)

Lfermion (QZ) = Z E? (QZ) (pozﬁ —myg (Sozﬁ)d}? (ZE) (13)
f=1

with the covariant derivative ) and the field strength tensor Fj,. The index f denotes the flavours
while Greek letters will be used as Dirac indices in this chapter.

. CAT
P = i@ +ig A (1.4)
Fo, = 0,A% —0,A% — gfupcAL AL (1.5)

Af, denote the continuum gauge fields, ¢ (z) and E?(m) are the quark fields. A\* are the generators
of SU(N) and fup. are the corresponding structure constants.

15
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QCD at finite temperature

The partition function of QCD in the Euclidean path-integral formulation is given by

Z(T,V) :/DAHDEDweXp(_S(gCD[TaVaAu,E,d),g,mf]) ) (1.6)

where the action depends on two parameters, the gauge coupling g and the quark mass my. A
possible additional chemical potential is set to zero. The Euclidean action reads

/T B
SE [TV, ..] = / dt /V PeLEep[An b g.my] (1.7)
0

where the Euclidean Lagrangian is obtained from 1.1 by going from Minkowskian to Euclidean
metric, thus substituting g — —ix4, and by using the Euclidean v matrices

£8CD ($) = £gEl‘u0n + ££rmion

- @R+ DT @ m@ . 18)
f=1

The Euclidean covariant derivative is defined as ¥ = (0, + ig A%)yY, where the v¥ and A, are
the Euclidean Dirac matrices and SU(N) generators given in the appendix A.
Thermal expectation values of physical observables are now defined as

_ | DADYDYO exp(~SGep)
J DA, DYDY exp(—SEcp)

In the following only quantities defined in the Euclidean metric are used and the additional sub-
script is omitted.

(O

(1.9)

1.1 The lattice as a regulator of QCD

The functional integral in the expression for the partition function 1.6 is not well defined. One
possible approximation to the partition function is the formulation of QCD on a four-dimensional
hyper-cubic lattice [1]. The integral over the space-time continuum 7'V is replaced by a finite
sum over a hyper-cubic lattice where the number of points in the spatial and temporal directions
are N, and N, respectively. The sites on the lattice are labeled by x = (x1,x2, 3, 24) and are
related to the continuum coordinate by xcont = x - a, where a is the lattice spacing.

1.1.1 The gauge action on the lattice

The gluonic fields are represented by elements of the colour gauge group SU(3) which are denoted
by U,(x). This so-called link variable connects a point at site 2 to a point at site z + f1, where jt
is a unit vector in g direction. The relation to the gauge fields is achieved defining the gauge link
as a parallel transporter

a

(z+p)a
Uu(z) = exp (z’ga/ dyA“(y)> . (1.10)
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The simplest gauge invariant object which can be constructed from the link variable is a plaquette.
It is defined as the product of links around the shortest closed loop

Uy () = Uy (@)U, (& + DU} (@ + 9)U (@) (111)

The gluonic action can then be defined as

Sewon = B 5a({UY) = 8% (1— %ReTrUW,(x)>

T, u<v

By 1—%ReTr ()| (1.12)

x,u<v

v

where f3 is related to the gauge coupling by 8 = 2N/g?. To reproduce the continuum action an
expansion in powers of the lattice spacing a and the coupling g has to be performed. Using the
Baker-Hausdorff formula e?e? = eA+B+1/214.Bl+- and a Taylor expansion of the gauge fields A,
around the center of the plaquette, U, , becomes

Uy.v(z) = exp {iga® (0, A, (za) — 0, A, (za) + ig [A,(za), A, (za)]) + O(a®)} (1.13)

Inserting this into the action leads to an expression with corrections starting at O(a?) in O(g?).

4
Sgluon = aZ Z [Tt FFu + (’)(aQ)] + 0(g%a?)
n,u<v
1 5 1/T ,
ajO ZAd x/[) dzy Tr Ful/F;w + O(g ) s (114)

where F),, is the field-strength tensor

Fou(@) = 3,4, (2) - 3,4,(2) — ig[A, (), A(a)] . (1.15)

1.1.2 The fermion action on the lattice
Naive fermion formulation

The Grassmanian fields ¢ on the lattice obey periodic boundary conditions in space and antiperi-
odic boundary conditions in time in order to realize the commutation relations. The derivative in
the continuum will be replaced by a finite difference scheme. The local gauge invariance is realized
by inserting gauge links to connect the fermion fields. This ensures the correct transformation
properties according to the gauge group SU(3). The action then reads

Shtmson ZZw VM (2, y)0hy) (1.16)
f=1zy
where the fermion matrix is defined as

M (z,y) = my 6*%5(x,y)

+%Z(%)“6 [Uu(@)d(z + fr,y) = Ul(z — p)o(x — p,y)] . (1.17)
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In the limit @ — 0 this action reproduces the continuum action and respects the global chiral
U(ny)®U(ny) symmetry of QCD. To see this one has to expand the action in powers of the lattice
spacing a. For a gauge link this expansion reads

1 1
Uu(z) = N +iga {Au(xa) + §a8u14u(:na) + gaQBZAM(:Ua) +0(a@®)| + 0(a’g?) . (1.18)

When this expression is plugged into the lattice action 1.17, the continuum fermion action is
reproduced

St = aty Y [Zﬁ%(m)% (wg‘((w + a) — YL ((z — i)a)
z f H
+iga(Au((@ + DS (@ + B)a) + Au((@ + Ba)bh(x - ﬂ)a)))ﬂ
+mj U (@a)] (va)3*” + O(a”)

T / de 3" [Zﬁ%ﬁ(@(aﬂ +igAt(z) )Y ()
f u

+my G (@) (x)6°

(1.19)

Fermion Doublers

Unfortunately the naive lattice fermions suffer from severe problems related to the number of
degenerate fermions which are realized by this formulation. In momentum space the free action
for one flavour reads

naive m/a d4p o - 1 :
fermion — x/a (271')4 1/)(19) ; Z’YHE Sln(pﬂa) +m ¢(P) . (120)
Thus the free propagator in momentum space has the form
_ (izl‘%ﬁ“_m)ag
(aP)Vs(a)), = = Opg (1.21)

>, Ph(p) +m?

where p, = 1/asin(p,a). This propagator does not only have a pole at p = (0,0,0,0), but 15
further ones at the border of the Brillouin zone. To each additional pole there corresponds an
unwanted particle state which is referred to as doubler. Thus ny naive flavours in d dimensions
correspond to 2¢ - ns physical quarks.

There are different solutions to reduce the fermion doublers which will be discussed in the following
sections. In the Wilson fermion formulation there are no doublers, but the chiral symmetry is
explicitely broken even for m — 0. The chiral limit is defined as the vanishing of the pion mass at
a certain set of bare parameters. But it has been argued that these Goldstone bosons might not be
related to the spontaneous breakdown of the chiral but instead the parity-flavour symmetry. Only
in the continuum limit the chiral symmetry is expected to be restored. Staggered fermions on the
other hand retain an exact U(1) ® U(1) remnant of the continuum U(ny) ® U(ny) chiral symmetry.
Thus the advantage of this formulation is the fact that taking the quark mass to zero corresponds to
the chiral limit. Unfortunately staggered fermions describe four flavours of degenerate quarks and
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the flavour symmetry is broken which is evident from the fact that only one of the (nfc —1) pseudo
scalar mesons has its continuum Goldstone character. The connection between doublers and chiral
symmetry is stated in the No-Go theorem by Nielsen and Ninomiya [7]. Finally a new approach,
formulated in five dimensions, circumvents the No-Go theorem and leads to lattice fermions which
have no doublers and an exact chiral and flavour symmetry. The drawback in this formulation is
the increase of computational costs as will be discussed below.

1.1.3 Staggered fermions
Free staggered or Kogut-Susskind fermions

The staggered fermion formulation is based on the idea by Kogut and Susskind [8] to reduce
the fermion degrees of freedom by a spin diagonalisation of the action. This can be achieved by
applying a local transformation A(z) to the fermion fields

= Az)i(z)
P(z) = P)A(z) (1.22)
such that the Dirac 4 matrix is transformed to a diagonal form

A @)y e+ @) = @) 1 (1.23)

A possible choice is A(z) = v{"'v52v3°v4* which leads to the following staggered phases 1, (z) =
(_1)x1+...+xu—1_

The resulting fermion action is diagonal in the Dirac components, they just act as flavour compo-
nents

Stermion = %a‘l Z nu(x)éaa(x) (Va2 + 1) = Yalz — ) +m a* Zwa(l’)wa () . (1.29)

NN

The number of degenerate flavours can now be reduced by taking into account only one of the
Dirac components. Then the staggered fermion action will be written in terms of one-component
staggered fermion fields y

Sis = a* @)oo X (@) (x(a + ) — x(@ — i) +ma* S X@x@) . (1.29)

Flavour content of staggered fermions

The connection between staggered and continuum flavours has been established by H. Kluberg-
Stern et al. [9] in 1983. Their idea is based on the interpretation of the 16 staggered fields on the
corners of a 2% hypercube as 4 Dirac quark fields each carrying 4 Dirac indices. For this purpose
one has to introduce coordinates which label the hypercubes, y = (y1, Y2, y3,v4), where the y; can
take the values 0,2,4,...,N, —1 or N, — 1 respectively. Within the hypercube the 2 points
are labeled by & = (&1,£2,&3,&4) with § = 0,1. The coordinates on the hyper-cubic lattice are
then related to the ordinary ones by x = y + £ Now it is possible to reconstruct quark fields
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living on the hyper-cubic lattice which have a Dirac and a flavour component labeled by « and f,
respectively. They are defined as

<
o=
—
S
=
il

22 ozfX£
@) = izgjm) (vﬁ)fa , (1.26)

with 78 = 451952452444 and the fermion fields Xe(y) = 1/4x(y + &). Using these fermion fields the

staggered action can be transformed to the following form

Sks = Z(Qa)4§(y) Z (Ve @ WOy + alys @ tps) Lu] + m(l e L) | q(y) (1.27)

Y H

where the first operator in the tensor product acts on the Dirac and the second operator on the
flavour components. Since the new fields ¢(y) live on the hyper-cubic lattice also the differential
operators are defined on it,

Auq(y) 4—1a (q(y +2) — q(y — 212))

Chaly) = oz (aly+20) ~ 20(0) +aly —20) (1.25)
The corresponding relations hold for g(y). The matrices ¢ are defined as the transposed of the ~
matrices, .5 = tuts = 7,75
Obviously the action 1.27 corresponds to 4 degenerate quark flavours and a lattice spacing that
is doubled compared to that of the original staggered action 1.25. There is a corrections to the
continuum action at O(a) when the new quark fields are defined as in 1.26.

Staggered fermions with gauge interactions

The coupling of the gauge fields to the fermions can be realized in the same way as for naive
fermions

= o Y n@X@) g [Uaex + ) - Ul = ix(e - )] + m o’ REMEEED

where the fermion fields now have a colour component. Also for this gauge invariant staggered
fermion formulation fields living on the hyper-cubic lattice can be constructed.

A = 53 (9, Texe)
¢
1 -
oW = 5 ;Yg(y) L) (ng)fa ; (1.30)
where
Ue(y) = @) [Oay + &)1 - [Ualy + &+ + )5 (1.31)

is defined as the product of links that connects points in the hypercube.
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Naive continuum limit

Using the expansion of the gauge link 1.18 and the fermion fields 1.30 the staggered action after
some calculations reads

Sks = Y. (20) gy {(We Wm+ (3, 2 VD,
+ alos © 145) D, = 1190 Y. T Fuw ) Jalo) + O (1.32)

with the covariant derivative
D,(x) =0, +igA,(z) (1.33)

and the antisymmetric tensor T’

1
Ty = (= %) @ L+ ol ] @ (b +0)18] (1.34)

Thus the correct continuum action is reproduced in leading order. The corrections start at O(a)
with a contribution that is not diagonal in flavour space and is therefore responsible for the breaking
of flavour symmetry. In a work by Luo [10] it has been shown that the action is in fact already
correct up to orders a” since no operators of O(g?"a) can be added to the staggered fermion action
which respect the staggered symmetries. This also becomes obvious when writing the action in
terms of improved fermion fields as it is done in the next section when the flavour symmetry is
discussed.

1.1.4 Symmetries of the staggered fermion formulation

In this section the different symmetries realised by the continuum Lagrangian are discussed. The
Poincaré invariance of the continuum is only realized as a discrete subgroup in the staggered
formulation. The details are important for the identification of lattice particle states and their
relation to the continuum particles. An elaboration on it can be found in [11] but will not be
discussed in this work. The local SU(3) gauge invariance is realised by construction, the global
Uv(l) ® SUy(ng) ® Ua(l) ® SUa(ny) chiral symmetry of the continuum action in the case of
massless quarks is broken down to a subgroup as will be shown in this section. The Uy (1) is
responsible for the baryon number conservation which is realised also in the case of massive non-
degenerate quark flavours, the SUy (ny) is the generalized Iso spin symmetry for mass degenerate
flavours. It is responsible for the mass degeneracy of particle states in the n?c — 1 multiplet. The
U4 (1) flavour-singlet symmetry is broken by quantum effects already in the continuum and the
axial SUA(ny)* in the case of massless quarks leads to a mass degeneracy of parity partners. In
nature this degeneracy is not observed and therefore this symmetry is expected to be broken spon-
taneously. Finally the flavour symmetry which is realised in the continuum but broken by the
staggered formulation will be discussed.

*Quite often this symmetry alone is referred to as the chiral symmetry
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Chiral symmetry

Since the coupling of gauge fields to the fermions does not change the chiral properties of the action,
it is sufficient to investigate the chiral symmetry for free fermions. Applying transformations
U,,U. € U(1) to the staggered fields x and Y gives

x(z) — X'(z) =Ux(z), X(x) — X'(z) =Ulx(z), z even

x(@) — X'(z) =Ucx(z), X(z) — X'(z) =Ulx(z), 2odd , (1.35)

where points are denoted as even or odd when |z| = 2?21 x; is even or odd. The kinetic part of the
action is invariant under these transformations. For the mass term this is only true for U, = U,.

X(@) (x(z + i) = x(z =) — X(@U! Uex(z + ) = Uex(z — 1))
= X(@) (x(z+ i) = x(z - @) (1.36)
m X(@)UlUsx(z) — m X(2)UlUox(2)
Thus in the massless case staggered fermions have a U(1) ® U(1) chiral symmetry which for non-
zero mass is reduced to the diagonal subgroup.

The relation between the full chiral symmetry of massless QCD and the staggered remnant U(1) ®
U(1) can be analysed when looking at the transformation properties of the new quark fields ¢ and

q.
q(z) — () = (U Py + UcP,) q(x)

1 1
= §Uo(]1 U —v ®t5) + §Ue(]l ® N+ 95 @ t5)q(x)

- %(Ue +U) (1) + %(Ue —U,) (75 @ t5)q()

6(33) — ql(m) = @(ﬂf) (PoUcjr + PeU;r)

- %ﬁ(x)(ll @1 -7 @ ts5)UL + %a(x)(]l @1+ ® t5)U]
- %ﬁ(m)(]l o W)U + U + %a(x)(% ® t)(Ul — UT) (1.37)

where P, = 1/2(1® 11 + v ® t5) and P, = 1/2(11® 11 — 5 ® t5) are operators which project on
even and odd lattice sites, respectively.

The action is invariant under this transformation for U, = U, and for U, = —U,. In the first
case the transformation reduces to the operator 11 ® 1l. It leaves the kinetic and mass term of the
action invariant and is thus connected to the continuum Uy (1) which is responsible for baryon
number conservation. The second choice leads to a transformation with the operator v; ® t5
which anti-commutes with the operators in the kinetic part of the action. Thus only this part is
invariant under these transformations, the mass term is not. Since in addition 5 ® t5 is traceless
in flavour space it cannot be connected to the axial U4(1) but is a subgroup of the axial SU4(4).
Thus, when the U(1) on the lattice is spontaneously broken, the associated Goldstone boson is
a flavour non-singlet, like the pion in the continuum. This property of staggered fermions make
them especially interesting for the investigation of chiral symmetry breaking and its restoration at
high temperatures. On the other hand since only the U(1) is spontaneously broken on the lattice
all but one of the nfc — 1 flavour non-singlet states do not have Goldstone character.

Flavour symmetry

In the previous section a term proportional to a(ys ® t,5) in the staggered action 1.32 has been
identified to break the flavour symmetry of continuum QCD. In fact, when using the improved
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fermion fields proposed by Luo [10]

gty = exp(—aZAxﬁx) Usw)xe(y)

A

Xe (W)U} GXP( ZAADA) : (1.38)

ol
-
—~
S
=
I

—
with Dyx=090\ —igA,, the free staggered quark action can be written as

/; Q£ 'YM®I)55'[DM+%D2]+7”(I®I)g§/}q5’(y)
+0(a® )+0( ng?) . (1.39)

In tree level the corrections thus start at O(a?) with a term that is flavour symmetric and is not
responsible for flavour symmetry breaking. One therefore can conclude that tree level corrections
to the flavour symmetry at most start at O(a?).

The effect of flavour symmetry breaking should be visible in a twofold way in lattice simulation.
First of all the mass degeneracy of the particle states in the n? — 1 multiplet should not be present
and second the spontaneously broken axial SUa(ny) is not realised and thus only one of the
expected n% — 1 Goldstone bosons really has the Goldstone character as was already pointed out
in this section.

1.1.5 Wilson fermions

Wilson’s idea [1] how to deal with the doublers was to add an additional term to the naive action
which lifts all doublers such that only the pole at (0,0,0,0) survives in the continuum limit.

SWi]SOIl = Fe?"glfon + T‘/2 Z d) (y),
Dz,y) = Y 6@+ ay)+ 6@ — fy) —26(z,y) (1.40)
n

Wilson fermions then describe only one quark flavour but the additional term breaks chiral sym-
metry at O(a). The scaling violations are also O(a). Both lattice artifacts can be reduced with the
so-called Clover action [12]. The mass term is altered such that the scaling and chiral symmetry
violations are of O(a?). The flavour symmetry is realized for Wilson and Clover fermions.

At finite lattice spacing the vanishing of the pseudo-scalar mass can be interpreted as the chiral
limit since the PCAC relation is telling that the expression mps o< m} + O(a) holds. On the other
hand Aoki [13] pointed out that the symmetry, which is restored as the pseudo-scalar meson gets
massless, is not the chiral symmetry but the parity flavour symmetry. Only in the continuum
limit the correct chiral symmetry will be restored. For this reason Wilson fermion simulations are
problematic when the finite temperature chiral phase transition is under investigation.

1.1.6 Domain wall fermions, Overlap fermions

Domain wall fermions and the overlap formalism provide an alternative approach to lattice fermions.
With both formulations it is in principle possible to realize exact chiral symmetry on the lattice.
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The main point is that the effective Dirac operator of domain wall and overlap fermions satisfy
the Ginsparg-Wilson relation [14], which implies an exact chiral symmetry.

Domain wall (DW) fermions are defined in a space-time with an extra fifth dimension. The massive
Wilson fermion fields are five-dimensional whereas the gauge fields are as usual four-dimensional.
In the fifth dimension they are set to unity. When boundary conditions along the fifth dimension
are free, the two chiralities are localized at different boundary walls. The mixing of the chiralities
is exponentially suppressed with the length of the fifth dimension L;. For Ly = oo no mixing
occurs and the theory is chirally symmetric already at finite lattice spacing a for zero quark mass.
The pole mass for free DW fermions is given by mpole = M (2 — M)[m;+ (1 - M)"<], (0 < M < 2),
where M is the domain wall height and m the coupling of the boundaries, which turns out to be
proportional to the 4-dimensional bare quark mass. The pole mass vanishes in the limit L, — oo
and my — 0, thus chiral symmetry is realised. This behaviour is very much desired in thermo-
dynamic studies when the finite temperature chiral phase transition and the strength of the axial
U4(1) symmetry breaking is investigated. The latter will have an influence on the order of the
chiral phase transition depending on whether the axial U4 (1) is effectively restored already at the
chiral transition or not.

Numerical studies with DW fermions show that in full QCD the lattice spacing has to be quite
small to ensure the restoration of chiral symmetry [15]. At an inverse lattice spacing of 1/a = 1GeV
the pion mass does not approach zero as L is sent to infinity and mj to zero. Only at 1/a = 2GeV
and Lg = 10—20 this is realized, meaning that finite temperature simulations have to be performed
with a temporal size as large as N, = 11 to meet this requirement’. The increase of computational
costs with N, will be discussed in the next chapter. Compared to ordinary fermion simulations
the computational costs grow linearly with the additional factor L.

At present only the first exploratory calculations on modest lattices are under way at the largest
parallel machines available. In the future it will be very interesting to see whether quantities re-
lated to the chiral symmetry of QCD come out the same for domain wall fermions as for staggered
and Wilson fermions in the continuum limit where the chiral symmetry should also be restored.
Details on domain wall fermions can be found in [16, 17] and references therein. The overlap
formalism which will not be the topic of this work is discussed for example in [18].

1.2 From the lattice to the continuum

The fields and observables are defined on the lattice in terms of the lattice spacing a in such a way
that only dimensionless quantities occur. The physical scale is introduced by either calculating
ratios of physical quantities or determining the lattice spacing a by interpreting lattice results as
physical. There are several ways to fix the scale of QCD. They are e.g. realised by measuring the
rho meson mass m,a or the string tension oa?.

a= T;LT’JSMeV_l a= ‘ggMev—l (1.41)
The physical interpretation is only justified, for example in case of the p meson mass, if the
bare quark masses considered are sufficiently small such that the lattice result can be interpreted
physically. Since the inverse rho meson mass is identified with the rho meson correlation length
¢ = 1/mya, it follows that a = 1/(¢ - 770)MeV ™" = 1/¢ 0.26fm and the limit a — 0 is realised at
& — 0.
For some value of the coupling parameters for lattice theories the limit & — oo is achieved at a
second order point. Thus physical behaviour connected to the IR modes of the theory can be

1t is assumed that the critical temperature for full QCD is about 180 MeV. From this N, can be deduced by
using T, = 1/N;a = N,=2GeV/180MeV
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described by critical phenomena. A main property exhibited by critical phenomena is universality,
i.e. they do not depend on the details of the microscopic theory. For lattice theories this means that
in the continuum limit the results do no longer depend on the details of the discretisation. As a
consequence also the symmetries broken by the discretisation are being recovered in the continuum
limit.

In QCD the limit £ — oo is realised at 3 — oo (¢ — 0) due to asymptotic freedom. Since this is
the weak coupling limit the functional dependence between the lattice spacing and the coupling
can be computed perturbatively. The result can be written as

d
aﬁ = bog® + big® + O(g7) (1.42)

where the first two coefficients by and b; are universal in the sense that they are the same for
different discretisation schemes and also for continuum QCD.

1 1IN 2ny

[ — _ =27 1.4
0 167r2< 3 3 ) (1.43)

1 \? /34N> (10N N2?-1
by = - 1.44
! (167r2> ( 3 (3 TN )”f> (144)

Equation 1.42 after integration leads to
—by

2Nbg \ 255 g
AL = = — 1.4
ode = () = (Z) " e {2 (1.45)

where Ay, is the so-called A parameter of the theory. In principle if lattice results at finite a show
the behaviour of 1.45 a reliable continuum extrapolation is possible.

1.3 Observables at finite temperature

In this section it is convenient to formulate lattice QCD on an anisotropic lattice with a temporal
lattice spacing a, and a spatial lattice spacing a. They are related via the anisotropy parameter
&, € = a/a;. In this formulation the temperature and volume are independent quantities

1/T =N, a, V3 =N,a . (1.46)

Since the lattice spacing enters in the action only indirectly through the bare couplings one has to
introduce different couplings for the spatial and temporal parts of the action.

/GO'SG,CT + ﬂTSG,T
= B, Z (1—%ReTrUH,,,(x)> + - Z (1—%ReTrUM’4(x)> (1.47)

zu<v<a z;u=1,2,3

Sxs = > {mea X@)x(@)

b 1Y e R@UL@XE + ) - XE@ULE -~ i)l - o)
n=1,2,3
+ T R@Ui@)x (@ +3) = X@)U] @@ - hx(z - 9] |

= ZY(‘T) l D(m,y);,u + ’}/FD(x7y);4 + mya §my] X(y) (148)
n=1,2,3

T,y
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The couplings are conveniently defined as (3, = 2N/g2¢, B, = 2N&/g2 and yp = £ such that the
anisotropic action reduces to the correct classical action in the naive limit. In lattice perturbation
theory the anisotropic couplings can be related to the anisotropy ¢ and the bare coupling on the
isotropic lattice. The relations are given by

B, = BET L +ca(£>g2+0( Y]

B = BE [+ (8)g” + O 4)] (1.49)
VF ¢ [1+er(§)g® + O(g")]

(1.50)

The quantum corrections have been calculated in pure gauge theory [19] and for full QCD [20] in
the limit of £ = 1.

1.3.1 Energy density and pressure

In thermodynamics the energy density and the pressure are fundamental quantities describing the
system. They are defined as the derivative of In Z with respect to the inverse temperature 771
and the volume V.

p = T<a;/Z>T (1.52)

These formula show that it is necessary to vary the temporal and spatial lattice spacing indepen-
dently in order to perform the corresponding derivatives. For a fixed volume N2 x N, the energy
density is

€  (ea+er)
T4 T4

N, \? Iz
{Ng 23
3
The gluonic and the fermionic contributions are given by

% - (5) o((mo-w)

(1.53)

+g? (dcfi—g(g)> g_1<S<;7a>+(dCfU Hm > . (1.54)
oo (Y %(dg—;g T - (ate) W) )

It has been made use of a notation where the vacuum contributions are already subtracted to
normalize the thermodynamic quantities to zero at 7' = 0.

(0) = <O>(N,<N,)_<O>(N,:N,)
= (O)r —(0) (1.56)
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The pressure is related to the energy density via e — 3p.

T - () (5., (=7 « % (452), ) oo

with the g-functions Rg = a(dB/a) |am, and Ry, o = a(dmga/da)|s. € — 3p is also referred to as
the interaction measure, indicating the deviations of the QCD equation of state to the ideal gas,
where this quantity vanishes.

For all thermodynamic quantities discussed so far it is necessary to calculate in addition to simple
gluonic and fermionic expectation values also the g-functions and derivatives of the anisotropic
couplings with respect to the anisotropy. A non-perturbative determination is in principle possible
for all these quantities but relatively simple only for Rg. The use of perturbative values lead to
problems like a negative pressure at the critical point.

Fortunately there exists an alternative prescription to calculate the pressure which allows a com-
pletely non-perturbative determination. It is based on the simple observation that for a homoge-
neous statistical system the free energy is proportional to the pressure.

T
p=—f= VIHZ (1.58)
The derivative of equation 1.58 gives
1 dp N \?
- (N_> (Sa) . (1.59)

Thus the pressure can be calculated by integrating 1.59 and subtracting the zero temperature
contributions

B
Bo

N,

3 Jéi ,
_ (N—) [ a9 (50~ (S (1.60)

P
T4

The calculation of the pressure is now reduced to the calculation of the action at zero and finite
temperature and the determination of the point By where the action difference vanishes within
errors.

1.3.2 The Polyakov loop and the chiral condensate

In statistical mechanics phase transitions are generally related to spontaneous symmetry breaking.
In pure gauge theory this symmetry is the Z(3) center symmetry of the pure gluonic action which
is related to deconfinement. The symmetry transformation is defined on all temporal links of a
timeslice

Us(Z,24) — 2Us(Z,4) ,2 € Z(3), V&, x4 fixed . (1.61)

Since the elements of Z(3) commute with elements of SU(3), the action remains unchanged under
this transformation whereas the Polyakov loop L(#) does transform non-trivially

L(#) = %Tr I U@ 2a) (1.62)

L(#) - 2L(Z) ,z€ Z(3) . (1.63)
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When the Z(3) symmetry of the action is preserved the expectation value of the Polyakov loop
(L) = (1/N2 | ; L(Z)|) will vanish in the infinite volume limit. Otherwise it will have a non-zero
value.

On the other hand the Polyakov loop is connected to the change of the free energy due to the
insertion of a fermionic test charge into a gluonic medium,

(L) o e~ Fa(D/T (1.64)

In the confined phase a single coloured charge cannot be screened, the free energy is infinite and
the Polyakov loop expectation value is zero. This is no longer true in the deconfinement phase
where the free energy is finite and the Polyakov loop non-zero.

The maximum of the Polyakov loop susceptibility x; can be used to define a pseudo-critical

coupling 3,
v = N3 ((EP) =) (1.65)

In the limit of zero quark mass QCD has a global chiral symmetry U(ny) ® U(ny), which for
staggered fermions is reduced to a U(1) ® U(1) symmetry. The chiral condensate which is defined
as the derivative of In Z with respect to the bare mass mga serves as an order parameter. Different
from the infinite mass limit it can directly be derived from the QCD partition function.
1 ny 0
N.N3 4 dmy,a
1 ng

= A4 (Tr M~1) (1.66)

Py = InZ

where the factor ny/4 corrects for the number of flavours. The chiral symmetry is spontaneously
broken at low temperatures and therefore one obtains a non-vanishing chiral condensate. At high
temperature one expects the symmetry to be restored.

The chiral susceptibility is defined as the derivative of (¢/1)) with respect to the mass mqa

1 n 0?
X(gu) —= NTNg’ZfB(mqa)anZ
= s () - mar)
—LY (M @M 0) (167)

xz
where the last line corresponds to the connected part of the chiral condensate which is omitted in
this work since it has no effect on the quantities considered. To calculate the disconnected part 25
random vectors have been used on each configuration to obtain a noisy estimator for <(Tr M’l)2 >
In the case where the quark mass is neither zero nor infinite the chiral condensate or the Polyakov
loop show a rapid change at the transition point. The maximum of the susceptibility of both
quantities still can be used to define the pseudo-critical coupling. As it turned out they agree

within errors for all calculations performed up to now. The case of intermediate quark masses will
be discussed in some detail later.

1.4 Observables at zero temperature

In this work different observables at zero temperature are considered. They are used to set the scale
of the finite temperature calculations. For calculations of the equation of state the temperature
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scale can be defined with the string tension o which is extracted from the heavy quark potential.
The effective physical quark mass can be determined from the ratio of the pseudo-scalar to vector
meson mass, (mps/my)? o Mphys. Thus the extraction of meson masses from correlation functions
will be discussed.

1.4.1 The heavy quark potential

The potential between a static quark anti-quark pair can be calculated from the temporal Wilson
loop

W(R,L) = <TrHUl> , (1.68)

leC

which is the trace of an ordered product of links U; along a path C with a space- and time-like
extension R and L, respectively.
For large temporal size it is connected to the potential between static quarks via
W(R,L) = Llim F(R)exp(Vy(R)L) (1.69)
—00

where F'(R) is the amplitude which characterizes the overlap of the Wilson loop operator with the
ground state of the system. The ansatz

Vag(R) = Vo + % +oR (1.70)

has proven quite successful for the description of the potential behaviour. The coulombic term
correctly describes the short-range behaviour and ensures asymptotic freedom, the linear term
with the string tension ¢ accounts for the confinement property of QCD. In the presence of light
quarks in the full theory one would ex-
pect the formation of a heavy light me-
son pair, if the static quark anti-quark
pair is sufficiently separated. @~ When
the potential is extracted from Wilson W(R,L)
loops in zero temperature lattice simu-
lations of QCD this string breaking phe-
nomenon has however not been observed S
for distances up to 2fm. Only at nonzero /] "z";g%;%“‘;“gi;t%%‘gggggg&‘
temperature this effect has been found in 74:};;«3““"““““

the confining phase [21]. In that case the

potential is determined from Polyakov

loop correlations.

Since the potential is not dependent on
the actual path in the Wilson loop it can
be optimized to obtain a maximal over-
lap of the Wilson loop with the ground

state. The APE group [22] pr'oposgd the Figure 1.1: Smeared Wilson loop as a function of v and
so-called smearing procedure in which it- (o nymber of smearing steps n. The lines show the

eratively a spatial staple is added to the  jiffarent level of signal enhancement.
link

U,—=U,+7v Z(l x 1 — staples), (1.71)

v—p
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where the factor v together with the number of smearing steps n are the parameters which are
used for tuning. In general a Wilson loop of a certain size will be chosen to test the smearing.
In figure 1.1 the relative value of the Wilson loop depending on the factor v and the number of
smear steps is plotted. Obviously after only a few steps the signal can be much improved. For the
Wilson loop operator W (N,;/2,1) an enhancement of the signal by more than a factor of 6 has
been achieved in pure gauge theory as well as in full QCD.

1.4.2 Meson correlation functions

In this section the procedure how to measure meson masses from meson correlation functions
for staggered fermions will be summarized. The lattice states have to be identified with the
corresponding continuum states. This is achieved by analysing the irreducible representations of
the discrete transformations of staggered fermions which lie within a discrete subgroup of the
Poincaré group. The different symmetries of the lattice group are identified with those of the
continuum and by this the lattice states are matched to the appropriate continuum states. A
complete analysis of meson operators in the staggered formulation can be found in a work by
Goltermann and Smit [11] which is summarized in [23].

The correlation function is defined as

Carar (1) = <0M(t)o;4, (t)> : (1.72)

where Oy (t) is the staggered meson operator which is given in terms of the physical ¢ fields as
defined in 1.30

Ou(t) = Y aw)(Sa®Tp)ay) . (1.73)

Y

The operators ¥4 and g act on the Dirac and flavour indices, respectively, and determine the
quantum number of the meson operator. In terms of the staggered fields the local zero momentum
meson operator is given by

Olocal(t) = Z Qﬁ(f)y(f: t)X(fv t) . (174)

The meson phases ¢(z) determine the corresponding quantum number of the meson.

An alternative zero momentum operator is constructed using a so-called wall-source. Correlation
functions built from local meson operators are usually contaminated by exited states such that
large temporal extensions of the lattice are necessary to determine the ground state reliably. The
idea now is to construct operators which have an improved overlap with the lightest particle state.
It turned out that operators constructed from wall sources achieve this requirement for staggered
fermions [23]

Owall) = o5 3 G@XE+ 0N +0) (1.75)

where Vs = N3/8. The sum is taken in addition to the strictly local operator also over all even
points in each direction denoted by € and ¢'. The operator has been made gauge invariant by fixing
the Coloumb gauge on the time slice ¢.

Both operators, Ojgeal(t) and Owan(t), project onto states with the same quantum number. The
ones measured in this work are given in table 1.4.2. The phases are (, = (—1)%#+1FT%4 ¢(z) =
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(—1)r+-*74 and the usual staggered phases 1, (z)
Two correlation functions have been analysed, the local-local and local-wall correlations

Clocal—local (t) = <Oloca1 (t)OlTocal (0)>
—(-1)INE Y dle)m (@) (|G, 17,01

Ciocal—wan(t) = <010031(t)oiva11(0)>

1 I

-
e

—(=1)'N3 Y~ (@) (@) <

2
> , (1.76)
where G is the quark propagator.

On the lattice the masses can thus be calculated by mea-

suring the quark propagators and constructing the corre-

lation functions. They are related to the masses of the | operator | state A | state B |

particle states in the following way XX p 7o
- Cma(T— 14 CaXX ™ -

Cu-m(t) = A (e mat 4 g=ma(T t)> nieCixXx 0 by
NaCani€GiXX p a

+ (-1)'B (e*th + e*mB<T*t)) (1.77)
Table 1.1: Local meson operators and

where A and B are the amplitudes and m4 and mp the their corresponding continuum parti-
masses of the corresponding meson states. A fit to the ¢Je states.
ansatz 1.77 yields the masses. When reducing the fitting
range by leaving out data points at small temporal distances the mass parameters should approach
a constant value. This is especially true for the wall source correlations since there the exited
states are suppressed.
The two different correlation functions have been used to check the consistency of the results. The
values quoted in this work are extracted from wall sources.

1.5 The numerical simulation

In this section the numerical methods to perform a simulation of lattice gauge theory with dynam-
ical quarks will be discussed. The general aim in simulations of statistical systems is to produce
a Markov chain which provides micro states C of the system which allow the calculation of an
ensemble average. This is especially true when the configurations C are distributed according to
the Boltzmann factor exp(—S) of the system under consideration. Then the expectation value of
an observable O can be approximated by

0y~ 290 (1.78)

#C

where #C denotes the number of configuration in the ensemble. The detailed balance condition
ensures that the system converges towards the equilibrium distribution

e 3@Opc,cy=e5Cpr,c) , (1.79)

where P(C,C") is a non-zero transition probability from one configuration to another.
In pure gauge theory generally heat-bath [24] and overrelaxation [25] algorithms are used. They
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are local updates which alter the degrees of freedom by going successively through the lattice.
When the fermion degrees of freedom are added to the system the locality of the action is lost due
to the fermion determinant in the action which results from integrating out the Grassmann fields.
Gottlieb and Toussaint [26] proposed two global algorithms which are based on hybrid molecular
dynamics methods. The so-called Hybrid Monte Carlo algorithm uses pseudo-fermion fields to
describe the fermion determinant and can be made exact by a final Metropolis accept-reject step.
The evolution of the system is based on the molecular dynamics method where the main numerical
task consists of the inversion of the fermion matrix which is performed with the conjugate gradient
method for staggered fermions. The algorithm is only applicable to two Wilson flavours and four
staggered flavours. An alternative algorithm for an arbitrary number of flavours is the Hybrid R
which will be discussed in the following. It has been used in staggered simulations in this work
with two, two plus one and three flavours.

1.5.1 The Hybrid R algorithm

The partition function of QCD for ny Wilson or staggered flavours can be written as

Z

/DUDH exp(—%tr H? — S¢) det(M*t ) /N

= /DUDHexp(—%tr H? — Sa + ]T\;—ftr In(MT(U)M(U)))
M

/ DUDH exp(—H) (1.80)

where Ny, = 2 for Wilson and Ny, = 4 for staggered fermions, respectively. H is defined as the
conjugate momentum to the gauge link U and can be introduced into the partition function without
changing expectation values of physical quantities depending on U. The equations of motion then
have the form

U,z) = iH,(z)U,(z) , H is traceless Hermitian
- d ng 1 d
= H H —Sq — —tr ———— (MY (U)M 1.81
0 = S B+ GoSe = Lt S gy (M) (8

where the derivatives U and H are taken with respect to the molecular dynamics time. The sec-
ond equation implicitly defines Hu(a:) using the requirement that the Hamiltonian is constant in
molecular dynamics time, 7 = 0. The explicit form will be derived in the appendix B.

The idea of the algorithm now consists of alternately update the H field using a heat-bath method
and update the H fields and gauge links U simultaneously with the molecular dynamics method
while keeping the effective Hamiltonian 7{ fixed. Since the equations of motion cannot be solved
using an exact numerical method the crucial part, the inverse of (M*t(U)M (U)), has to be approx-

imated by a noisy estimator

0 = > tr Hy(2)Hy,(x) + S - JG—]’;tr X*% (MY OU)MU)) X (1.82)

where X = 1/(MY(U)M(U)) M(U) R with the Gaussian noise vector R. These equations of
motion are now integrated by replacing the derivatives by a difference scheme such that the error
in observables is of the order of 672, where 7 is the molecular dynamics time. To achieve this a
modified leapfrog scheme has to be applied. The molecular dynamics evolution of the system from
time 7 to 7 + 07 is summarised starting from a newly refreshed field H,, (z)[7]:
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1. Start with an intermediate U:

U, () [T +or (% _ 2%)} — exp (i&r (% - ;V—fM> Hu(a:)[f]> U, () [7]

2. Generate an intermediate vector ®:

1 n
= Mt LY |
& =M |:T+5T<2 2NM>:| R

3. Compute U at 7+ 1/2 7 :

(o) |1+ 507] = ex (167 (3 ) @] ) - Ul [ +67 (5 - 1 )]

4. Calculate X using the conjugate gradient method:

1

A SO [ I M) [+ Ter]

5. Compute the momentum derivative Hu(x) [T + %57] as given in the appendix B.
6. Compute H,(z) [T + 07]:

H,(2) [+ 67) = Hy(z) [7] + 67H,,(x) [ i %a}

7. Unless this is the last time step, compute the next U:

Uy(x) [r+5r G - 27\;”M> +57‘} -

exp (m (1 - 27\;;4) H,(2)[r + 5T]> U, (x) [T + %&}

8. Repeat the steps 2 to 7 N times. In the last iteration omit step 7 and compute the final U:

U,(z) [r + No7] = exp (i%—Hu(x)[T + N§r]> U,(z) {r + <N - %) 54

The computation of the time derivative of H will be discussed in the appendix B for different
staggered fermion actions.

Step size dependence in the Hybrid R algorithm

As already mentioned in the previous section the leapfrog steps are chosen such that the error
of observables induced by the Hybrid R algorithm is proportional to §72. In general simulations
at different step-sizes have to be performed and then extrapolated to zero step-size. Instead it
should be sufficient to perform a simulation at one step size which leads to a result that agrees
within statistical errors with the extrapolation to zero step-size. In this section a general crite-
rion to choose an appropriate 67 will be defined. The JLQCD collaboration [27] examined the
dependence of the critical coupling and the maximum of the chiral susceptibility on the step size.



34

CHAPTER 1. FINITE TEMPERATURE QCD ON THE LATTICE

0.415

0.410

0.405

0.400

0.165

0.160

0.155

0.150

Figure 1.2: The Polyakov loop and the chiral condensate
for different values of the step size §7. The straight line
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is a fit to the data in §72.

On an 83 x 4 lattice with a quark mass of
mga = 0.02 they determined these two
quantities for different 7 and found that
the relation §7 a2 2% should hold to en-
sure that the error is acceptable. In a
different study [60] the equation of state
has been investigated with the staggered
fermion action on an 122 x 6 and 12* lat-
tice. There the step size effects in the
plaquette are crucial for the correct de-
termination of the pressure. Their gen-
eral statement is that the 7' = 0 results
show a stronger step size effect than the
T # 0 results which is probably due to
the larger volume which accumulates the
error.

In this work the step size effect using an
improved! staggered fermion action has
been investigated. The Polyakov loop
and the chiral condensate have been cal-

culated on an 8% x 4 lattice at a quark mass of m,a = 0.05 for different 7. The results together
with an extrapolation to zero step size are plotted in figure 1.2. The green vertical line indicates
where the condition 67 = mga/2 is realised. The data at this step size reasonably well agree with
the value at zero step size. To improve the agreement throughout this work a value of 7 = mya/2.5
has been applied if not stated otherwise.
The step size effects in the equation of state will be discussed in chapter 4.

iThe improvement of lattice actions is the topic of the next chapter



Chapter 2

Improved gluon and staggered
fermion actions

As discussed in the previous chapter straight forward discretisation of the QCD action leads to
expressions which at finite lattice spacing a have corrections to the continuum action in some order
of a. Therefore observables which are sensitive to the ultraviolet cut-off show a strong a depen-
dence and one is forced to perform simulations at quite small lattice spacing to be able to extract
continuum results or to extrapolate to the continuum limit reliably. Unfortunately this increases
the computational effort dramatically.

In this chapter it will be discussed how the situation can be improved by using improved actions.
The general aim is to minimize the cut-off effects for finite lattice spacing. One strategy which
will be the main topic of the next section is to reduce the a corrections on the level of the lattice
action. This procedure turns out to be successful only in tree-level, in one loop order the O(a?)
dependence of physical quantities has to be analyzed and then removed by an appropriate choice
of the coefficients in the action. These approaches base on a perturbative expansion of the action
or a physical observables in orders of the coupling g and should give the best results when the
coupling is small. Since simulations are in general performed at intermediate couplings, Lepage
and Mackenzie [30] introduced the concept of mean-field or tadpole improvement. Based on the
observation that lattice perturbation theory converges badly in terms of the bare coupling g, but
much better when a renormalized coupling is used, they suggested the replacement of a single link
U, in the action by U,/(U). This should bring the lattice action closer to the continuum one
already at intermediate couplings.

A different approach concentrates on renormalisation group arguments. Hasenfratz and Nieder-
mayer [31] suggested to construct actions which are classically perfect in the sense that at g = 0
there are no cut-off effects at O(a™). For another class of actions the parameters are chosen such
that the action stays close to the renormalized trajectory after one or two block-spin transforma-
tions. All these improvement schemes have been used in pure gauge simulations during the last
years. The results will be discussed in section 2.2 focussing on observables which are relevant for
finite temperature QCD.

The improvement of the fermionic sector for staggered fermions will be the topic of section 2.3.
In addition to the improvement schemes discussed above, Heller et al. [32] used the reduction of
rotational symmetry violations as a guideline to construct improved actions. This will be explained
in section 2.3.1 together with the properties these actions have.

It was already pointed out in the previous chapter that staggered fermions break flavour symmetry
at order O(a®). In section 2.3.5 it will be shown that this problem can be reduced by introducing

35
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a so-called fat-link [33] , the sum of a link and the corresponding staple, into the fermionic action.
This chapter is completed by an analysis of the computational cost of simulation with improved
staggered actions and a discussion of full QCD actions suitable for QCD thermodynamics.

2.1 Improvement of the gluonic sector of QCD

2.1.1 Symanzik improved actions

For the Wilson gauge action one finds cut-off effects which start at O(a?) as pointed out in the
previous chapter. Since it is not the only possible discretization of the continuum SU(3) gauge
action one can add other operators than the plaquette to the lattice action and tune the coefficients
such that it reproduces the correct continuum limit, but also removes the deviations from the
continuum action at a certain order of g”a**. This procedure of improving the action order by
order in the perturbative expansion was suggested by Symanzik [29] in 1983 for the ¢* theory.

In SU(3) lattice gauge theory Weisz and Wohlert [34] used an ansatz for the action taking into
account all operators of length 4 and 6 to construct an action which is free of O(a?) corrections in
tree-level and one loop order.

Sib, = 8 [co<g2> > (1 et (2))

T, u<v

+ o) Y (1 ~ LRem (x)) ] (2.1)
rp<<p N . 1.v.p

where the coefficients ¢; are of the from ¢;(g%) = gocgo) + g2022) + O(g*) with the normalization
relation co(g2) + 4c1(g?) + 2ca(g?) + 4/3c3(g?) = 1. The graphical representation of the loops
stands for all loops of that shape which are based at the point z and have the first link pointing to
the positive u direction. These operators span a basis of dimension 6 operators and are therefore
suitable to construct an O(g"a?) improved action.

At tree-level it is sufficient to regard the expansion of the action and to choose the coefficients such
that the corrections in O(g%a?) are removed. The unique solution is

c(()o) =5/3 c§°) =-1/6 c§°) = cgo) =0 cgk)(QQ) =0, k=2,4,... . (2.2)

In one-loop order one has to take into account the expansion of physical or on-shell quantities
in order to avoid to impose unphysical conditions on the coefficients ¢;(g?). Liischer and Weisz
[35] used a meson mass and a scattering amplitude to numerically fix the coefficients up to order
O(g?a®). In principle this procedure could be followed up to every order g"a? if the expansion of
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these quantities was known to n-th order. The tree-level coefficients remain unchanged, in one-loop
they are

D =02370 P =-005042 ¢ =-001764 P =0 () =0, k=46 . (2.3)

Additionally to this perturbative improvement the link variables in the action can be redefined in
order to make them more continuum-like. Lepage and MacKenzie [30] suggested the replacement
Uu(z) — Upu(x)/(U) at every point of the lattice, where (U) is the gauge link expectation value.
In tree-level the link variable remains unchanged but one expects that higher order corrections to
the continuum action are reduced by this redefinition. (U) is not a gauge invariant quantity and
has to be calculated in a fixed gauge. Therefore in practice the fourth root of the plaquette is used
as an approximation to the expectation value of the link variable.

In this work results with the so-called tree-level and tadpole improved 1x2 gluon actions are
discussed, which only contain the plaquette and the 1x2 loop.

5 1
1x2 _
Sglijon = ﬁ Z ( 5 NRGTI“ (ZL')
T, V>N
nv
1 1
0
nv

N2

where ug = 1 for the tree-level action and ug = (Uplaq)'/* for the tadpole improved action.

2.1.2 Renormalisation group improved actions

A different strategy of improving an action can be derived from renormalisation group theory.
Applying block transformations to a lattice action induces many additional interactions in the
effective action. If this blocking is repeated a renormalisation group flow in the infinite dimen-
sional coupling space of effective actions is defined. All actions which lie in the scaling region
are expected to approach the renormalised trajectory after sufficiently many blocking steps. The
renormalised trajectory is thought of as a RG flow which starts from an infra-red fixed point Spp
in the critical surface. This fixed point Spp defines the continuum limit of the theory. All actions
on the renormalised trajectory are connected to the continuum by infinitely many renormalisation
group transformations and therefore show continuum properties. They are referred to as perfect
actions.

Since infinitely many operators cannot be handled in lattice simulations Hasenfratz and Nieder-
mayer [31] proposed to use an approximation to the classical perfect action Spp. At weak coupling
an integral equation can be found for Spp which can be solved numerically with a proper finite-
dimensional ansatz for the effective action. One type of approximate classically perfect fixed point
actions is FPIIl which will be discussed in the following section.

In an alternative approach, first followed by Iwasaki [36], the number of operators has been re-
stricted to two, the plaquette and the 1 x 2 loop. The general procedure is to choose a set of
parameters that minimizes the distance to the renormalized trajectory after a few blocking trans-
formations. In Iwasaki’s so-called RG action the coefficients are fixed to

o) =1-8¢" ¢ =-0331 (2:5)
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in order to achieve a minimal distance to the RG trajectory after one block transformation. This
action has been widely used in finite temperature simulation in pure SU(3) gauge theory as well
as in full QCD.
A member of the QCD Taro group proposed to work in the same two-dimensional coupling space
but to start blocking from the Wilson action [37]. After two block-spin transformations the coeffi-
cients are

A =1-8:" " =_14088 . (2.6)

This action is referred to as DBW2 action (Double blocked from Wilson action in two coupling
space).

2.2 Numerical results in pure gauge theory using improved
actions

2.2.1 The critical temperature 7,//c and the pressure p/T"

In this section the cut-off effects in SU(3)
thermodynamics will be discussed. One

0.68 has to distinguish between infrared and
ultraviolet dominated quantities. The
critical temperature T./+/o e.g. belongs

0.66 r

to the first category since the string ten-
sion o is extracted from the long-range
} behaviour of the potential and is there-

0.64 ¢ | @; fore not sensitive to high momenta but
only to the finite size of the volume. This
0.62 ; i is different for the equation of state. The

energy density € for an ideal gluon gas is

(Ix1) —a— (N2—1)7%/45 T* where the temperature
06 - (1x2) —e— | is related to the average momentum by
' L (2x2) —e— p x 3T x 3/Na. Therefore the equa-
. (Square) —=— tion of state is sensitive to a momentum
 (X2)ppg —— ) cut-off induced by a finite lattice spac-

0.58 r RG — B — G a -

ing. Simulations performed over the past
‘ . : years reflect these considerations. For
0 0.1 0.2 0.3 the transition temperature the cut-off
dependence is about 3%. In figure 2.1 all
Figure 2.1: The critical temperature T,./+/c as function available measurements fl‘“om pure gatge
. . 2 . . theory are collected. It is obvious that

of the lattice spacing ca”. For the Wilson action the . .

.. . for all actions the results only slightly
critical couplings are taken from Boyd et al. [38], the h W e the latti .
string tension from Edwards et al. [39], for the tree- CT}?ng(;f,f;V on Vai)yl‘?g eti 1cReC§pac;‘ng.
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trapolating various results at finite lat-
tice spacing to a = 0 using a quadratic ansatz in a. For the standard, the tree-level 1 x 2 and the
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RG action the results are T../+/0=0.630(5), 0.634(4) and 0.650(5), respectively.

The situation is completely different for the equation of state (figure 2.2). Here the unimproved
Wilson action at N, = 4 has cut-off corrections of about 25% to the continuum extrapolated
pressure. For the tree-level and tadpole improved 1 x 2 action and the fixed point action FPIII
the situation is much improved. The difference to the continuum curve is already quite small for
N, = 3 and a reliable extrapolation to the continuum limit can be performed using simulations
with N, = 3 and 4. This is shown in figure 2.3. The continuum results for the Wilson and 1 x 2
improved tree-level and tadpole actions agree within errors. Thus in pure gauge theory different
discretisation schemes lead to the same continuum limit. In figures 2.2 and 2.3 also the results
for the RG action are presented. Although it is designed to give an improvement at intermediate
couplings, the pressure at N, = 4 shows quite drastic cut-off distortions. For this reason the
continuum extrapolation based on N, = 4 and 8 lattices gives a slightly different result than the
other actions. This effect should vanish when using N, = 6 as smallest temporal extension in the
extrapolation. The same effect can be observed for the continuum extrapolation of the pressure
with the Wilson action.

2.2.2 The high temperature limit

To get an idea why the standard and RG improved action show these strong cut-off effects and the
Symanzik improved actions do not, a calculation of the high temperature ideal gas limit of the free
energy /pressure for the different actions is quite helpful. This can be done by using the equation
p = —f =1/VInZ, which can be calculated order by order, p = —f = —f(0 — g2 ) 4 O(g*).
The numerical evaluation of the lowest order contribution gives the results plotted in figure 2.4
after normalization with the continuum ideal gas value psp/T*.

PN ()
T4 - T4

2T N-—1
- Nt / dBﬁ[Nil > In(Azp (7, (27/N;) no) Det[AG (@(%/M)no)l)]

no =0

-N; (2m)° /Oﬂd4p[1n (AE}J(P)Det[AE:l(P)])] ; (2.7)

where an infinite spatial volume is chosen, N2 = oo, and the zero temperature contributions are
subtracted corresponding to N, = oo. The ng = 0,1, ..(N, —1) label the discrete Matsubara modes
27 n,/N; in the temporal direction. App(p) is the Fadeev Popov determinant and Agl(p) is the
inverse free gluon propagator which has been calculated for the different gluon actions in [45].
The Stefan Boltzmann value for the pressure is given by

7T2

PsB 2
= (N2-1
(V-1 T

TT (2.8)
Obviously the high-temperature ideal gas behaviour is quite different for the different actions. The
corrections are quite small for the 1 x 2 tree-level improved action already at N, = 4 whereas
they are large for the Wilson and RG actions. A similar pattern can be found for the pressure
in a simulation for a temperature regime of T2>27, . The corresponding actions are plotted in
figure 2.5. Thus in pure gauge theory the ideal gas free energy of different actions gives a good
indication how well suited an action will be for thermodynamic calculations. One should note that
the strong cut-off effects for the free energy in the ideal gas limit are not that pronounced in the
simulation. For the Wilson action the 50% effect in the ideal gas limit is reduced to about 25% in
a simulation at N, = 4, for the RG action a 75% effect is reduced by a factor of 3.
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Figure 2.2: The pressure p/T* as a function of temperature for different N.. Boyd et al. [38]
computed the Wilson action and the continuum extrapolation from their N, = 6 and 8 results.
The curves for the tree-level and tadpole improved 1 x 2 action are from Beinlich et al. [41].
Okamoto et al. [44] calculated the pressure with the RG action, Papa [46] used the fixed point
action (FP Ill).
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Figure 2.3: Continuum extrapolation of the pressure for the Wilson action (N; = 6 and 8), the
1 x 2 tree-level and tadpole improved action (N, = 3 and 4) and the RG action (N, = 4 and 8).
References are the same as in figure 2.2.



2.2. NUMERICAL RESULTS IN PURE GAUGE THEORY USING IMPROVED ACTIONS 41

O 1

cont

RG —6—

029 Ne |

4 6 8 10 12 14 16

Figure 2.4: The high-temperature ideal gas limit of the free energy normalized to the continuum
value for different N, and actions.
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Figure 2.5: The pressure p/T* as a function of temperature for N, = 4. Results are given for the
Wilson action, the tree-level and tadpole improved 1 x 2 action and the RG action. For references
see 2.2.
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Even close to the critical temperature the high-temperature limit of the free energy seems to be a
good criterion to estimate the cut-off effects at a certain N.. Calculations of the surface tension
and latent heat using the 1 x 2 tree level and tadpole improved actions [47] lead to results which
have a much reduced cut-off dependence compared to the same quantities calculated with the
standard Wilson action [48, 49].

2.2.3 Rotational symmetry in the heavy quark potential

At finite lattice spacing one observes the breaking of rotational symmetry in the heavy quark
potential. The potential at distance R measured along the coordinate axis and along off-axis
directions does not agree due to distortions of rotational symmetry. This behaviour can be utilized
to define a measure for the strength of rotational symmetry breaking. The potential V (R) is fitted
to the ansatz V(R) = V + 0 R + /R where only on-axis points are taken into account in the fit.
The following definition of §% then measures the relative mean square deviation of the potential
values for off-axis directions from the fit [43].

< (Va(R) = Voa(R))* 1)
W W@ (Zﬁ: 62voff<R>> ’ 29

where Vi (R) denotes the heavy quark potential fitted to only on-axis data and Vog(R) are the
off-axis data.
The potential has been determined from the ratio of smeared Wilson loops. Different from what one
usually does when calculating the string tension from the long-distance behaviour of the potential
also the short distance part of the
potential is taken into account in
0.0020 2Y T T T T T the fit. In figure 2.6 the re-
oy } sults for 6f using the 1 x 1, the
1 x 2 tree level and tadpole ac-
0.0015 | 1x1 - " 1 tions are plotted. As expected
1x2 tree ~—=— the breaking of rotational sym-
1x2tad —=— S
metry gets stronger with increas-
ing lattice spacing.  Addition-
' ally the improved actions show
. much smaller distortions than the
. standard 1 x 1 action. As for
0.0005 = " 1 the pressure and other thermo-
. " - " dynamic quantities like the latent
- avo heat and the surface tension the
0.0000 : : . : : : tadpole action is slightly superior
00 01 02 03 04 05 06 to the tree-level action. In [43] the
rotational symmetry violations at
lattice spacings larger than =
0.2fm (a\/020.4) have been inves-
tigated also for the renormalisa-
tion group improved actions, RG
and DBW2. One finds an even larger improvement of rotational invariance than for the Symanzik
1 x 2 improved actions.
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Figure 2.6: Rotational symmetry violations for the 1 x 1, the
1 x 2 tree level and tadpole improved actions.
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2.3 Improvement of the fermionic sector of QCD

In full QCD thermodynamic calculations very strong cut-off effects for the equation of state with
the standard staggered fermion action have been observed when comparing results from temporal
lattices of size N, = 4 [50] and N, = 6 [28]. The effect is even larger than in the pure gauge sector.
Therefore the use of improved actions is mandatory in the fermionic sector.

In general infinitely many operators can be added to the one-link derivative of the standard stag-
gered fermion action to take into account higher orders in the discretisation of the derivative. An
ansatz for the free staggered fermionic action with bilinear operators has the following form

Spo= mYy  x@x@) + Y x(@)

T

+ Z Mu () [ cio00 [ x(@+if) - x(@ —if) ]
u i=1,35,...

+ Z lCz’,]yo,o{[X(ﬂf‘*'iﬂ‘*'jﬂ)—x(ﬂ?—iﬂ—jﬁ)]
v#p j=0,2,4,

+ [ x(@+ i - j#) = x(z — i+ j9) ] }

+ [ ci,m{ [ X(z +ifi+ jo + kp) — x(z — if — ji — kp) |
pFu,v k=0,24,...
+ [ X(@+if—jo+kp) — x(@ —ifi+ jb — kp) |
+ [ x(z +ip+jvo — kp) — x(z —ifs — jo + kp) |
+ [ X(@+ifi— 0 = kp) = X(@ = ifi+ 5+ kp) ] |

+ > Y cum{lx@+ia+ o+ kp+1a) = x(@ - ii—ji —kp—16) ]
oFu,v,p 1=0,2,4,...

+ [ x(z+ip+jo+kp—16)—x(x—ip—jo—kp+15)]
+ [ x(z+ip+jo—kp+1o) —x(x—ip—jo+kp—15)]
+ [x(@+ip+jo—kp—16) — x(x —ifp— jvo + kp+16) ]
+ [x(z+ip—jv+kp+16)—x(z —ia+jo—kp—15)]
+ [ x(z+ip—jo+kp—I1c)—x(x—ip+jo—kp+15)]
+ [x(z+ip—jo—kp+16) — x(z —if+ j0 + kp—16) ]

+ [x(z+m—jﬁ—kﬁ—l6>—x(m-iﬂ”’”’“f’”&)]}m |

(2.10)
where the coefficients ¢; ; 1, have to fulfill the following normalisation condition
/2 = Z [ i €i,0,0,0 Z [ 2(i +J) cijoo
i=13,5,... 7=0,2,4,...
S [4G+i+R) cigro Y SG+j+k+Degnl]] @211
k=0,24,... 1=0,2,4,...

This ansatz respects the hyper-cubic structure of staggered fermions necessary to reproduce the
correct continuum action.
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Different strategies have been followed over the last years how to choose the operators of the im-
proved action and how to fix the coefficients. One approach is based on renormalisation group
concepts. The latest version of so-called perfect staggered fermions have been proposed by Bi-
etenholz et al. [51]. They constructed a truncated perfect action (TP) which is relatively local
compared to earlier attempts with a classical fixed point action [52]. In total the action consists of
eight operators with a path length up to three in u direction and up to two in all other directions,
i.e. the coefficients c1,0,0,0 ... €3,2,2,2 are non-zero. The ideal gas free energy density and the free
dispersion relation clearly show a drastic improvement over the standard staggered action [53].
Unfortunately there are still too many non-local operators involved such that this action is not
suitable for a full QCD simulation at the present stage of computer resources.

The same is even more true for an on-shell O(a®) improved staggered fermion action which has
been studied by Luo in 1998 [54]. After elimination of all irrelevant operators one is still left with
three bilinear and ten 4-Fermi operators for which it is not even clear how to incorporate them
in a simulation. Thus on-shell improvement in the fermionic sector is possible only in tree-level
where the linear one-link and three-link operator is sufficient. The coefficients are ¢;,0,0,0 = 9/16
and ¢3,0,0,0 = —1/48. This action has been proposed by Naik [55] already in 1989 to remove the
O(a?) corrections and is called Naik action after him. Thermodynamic simulations in 4 flavour
QCD [56] showed that the cut-off effects indeed are substantially reduced with the Naik action as
will be discussed in the next chapter.

2.3.1 Improvement of rotational symmetry

Another strategy to improve the staggered fermion action has been proposed by Heller et al. [32].
They constructed staggered fermion actions with improved rotational symmetry. In general one
can take into account any link which fulfills the staggered criteria to reproduce the continuum
action. To keep the action as local as possible Heller et al. restricted themselves to 1-link and all
possible 3-link paths. The ansatz for the fermion matrix M then reads

MU);; = mé;+mn- (01,0,0,0 A[UJi; + ¢€3,0,00 B1[Ulij + ¢1,2,0,0 B2[U]ij)
AlU]ij = ese—0—>
i — [t i i+ [t
= e—et—et——O—Po——po—— e
Bi[Uly i— 3 d i+ 30
i— i+ 20 i— i+ 20 it 2D i+ 20
1 X
A A
Bo[Ul;; = i + i + ' + i
Y M
. —01J
i+ - 20 ibf—20 i 20 i—f— 20

where the tree-level coefficients are fixed by demanding that the correct naive continuum limit
is reproduced and that the free fermion propagator* is rotationally invariant up to O(p*). The

*The improvement of rotational symmetry has also been calculated to one-loop order by demanding the rotational
invariance of the fermion propagator up to O(g?) [32].
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resulting relations are

€1,000+ 3¢3000+6ci00 = 1/2

€1,0,0,0 +27 3,000+ 6 c1200 = 24cip

A further simplification can be obtained by setting either of the coefficients ¢1 20,0 and ¢3,0,0,0 to
zero. Choosing ¢1,2,0,0 = 0 leads to the Naik action,

1,000 =9/16  ¢c300,0 = —1/48
By setting c3,0,0,0 = 0 one obtains the so-called p4 action,
€1,0,00 =3/8 1200 =1/48

A more complicated ansatz which com-

pares in complexity to the truncated per-

fect action (TP) of Bietenholz et al. [51] (i, 5, k1) Cijikl

can be used to obtain rotational symme- pbm | p6 | TP [51]
try of the free fermion propagator up to 0.3375 0.32 0.348194
O(pﬁ) It takes into account up to 7-link 0.01875 0.02 0.020490
paths of Euclidean length up to v/13. 0.0023438 | 0.0010938 | 0.002240

( )
( )
paths . (1,220
minimal number of operators is real- (3,0,0,0) | 0.0072917 | 0.0047917 | 0.007609
( )
( )
( )
( )

ized in the p6bm action, in the p6 action 0.00125 0.000247
two free coefficients can be used for tun- 0.00125 -0.000216
ing the action. The coefficients together -0.000384
with the ones of the truncated perfect -0.000214
action are collected in table 2.1. Obvi-

ously the coefficients of the rotational in-  Taple 2.1: Coefficients for O(p®) rotational invariant ac-

variant actions are similar to those of the  tjong and the truncated perfect point action.
truncated perfect action.

The properties of these actions can be

analyzed by calculating the high temperature ideal gas value for the free energy and the disper-
sion relation for free fermions in lattice perturbation theory or by determining the distortions of
rotational symmetry from the heavy quark potential in lattice simulations.

2.3.2 The high-temperature limit

In the pure gauge sector the ideal gas limit of the free energy density is a good indicator of the
cut-off effects of thermodynamic quantities in simulations at a certain N,. This experience will
be used as a guideline to judge the quality of different full QCD actions. The free energy density
f=-T)V InZ = fe + fr can be decomposed into an fermionic and gluonic part up to next-
to-leading order. Thus the results for the high-temperature limit of the free energy density of the
pure gauge sector discussed in the previous section are still valid.

The continuum ideal gas value for the free energy density for ny massless quark flavour and the
colour group SU(N,) up to O(g?) is given by

.f.n,F —Pcont,F —€cont,F
C;“Z = ;4t = gjoﬂi = fc(gr)lt,F/T4 + 92f§§it7F/T4 +0(g%)

7 2 2 5 2 3
" TRg" N.+g = (N2 -1)+0(g°) (2.12)
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In lattice perturbation theory the corresponding contributions can also be calculated order by order
using the standard thermodynamic relations, i.e. p/T =V ~'InZ and e = -V ~'91In Z/0(1/T),

pr = Y+ + 0P (2.13)
€r = 6;9) + 926%2) + O0(g*%) (2.14)

The resulting integrals which have to be evaluated numerically are given in lowest order for a free
massless fermion gas,

P (N;) _

T4

%anf (2;)3 /OWdSﬁ[ ~1 Z In (w?(P) + 4f%((2no + D7/N;))

—ﬁ /07T dpo ln(wQ(ﬁ)—}—élfQ(pO))] , (2.15)
e (N) _

T4

g 1 R ! f2((2no + )7w/N;)
3TlfN-r (271')3 /(; d [N nOZ:O w2 m+4f2((2n0+1)71'/]\7)
LT )
(27r>/0 o =@ +4f2(po)] ! (2.16)

where the zero temperature contributions to pr/T* and e /T* have been subtracted. The function
wi(p) = 4Zi:1 f?(py) is introduced and the discrete Matsubara modes (2ng + 1)7/N; in the
temporal direction are labelled by ng = 0, 1,..., (IN; — 1). In the case of the standard, Naik and
p4 action, respectively, the momentum dependent terms of the free propagator are given by,

1

flpu) = 3 sin(p,) (standard staggered action) (2.17)
1
() 16 sin(py) — 5 sin(3p,) (Naik action) (2.18)
3 . 1 . .
flpu) = <sin(py) + — 2 sin(p,) Z cos(2p,) (p4 action). (2.19)
8 48 byl

In [32] Heller et al. calculated the fermionic tree-level and one-loop contributions to the free energy
density for the improved actions. Their tree-level results for the standard staggered, Naik and p4
action are plotted in figure 2.7.

The standard staggered action shows strong deviations from the ideal gas limit of O(1/N2) up to
quite large N,;. The contributions at N, = 4 deviate from the continuum by more than 100%,
at N, = 8 they are still larger than 40%. The situation is much improved for the p4 and Naik
action, where O(1/N?) deviations are substantially suppressed or eliminated, respectively. They
show cut-off corrections of 20% for the Naik and 40% for the p4 action at N, = 4. At larger N,
the situation is even more improved. Both actions approach the continuum value much faster than
the standard staggered action, for the p4 action the cut-off effects are only 5% already for N, = 6.
The more complex actions, p6 and TP, show cut-off distortions for N, = 4 of only 13% and 18%,
respectively. At larger N, the deviation is smaller than 1%. But, as already pointed out, for a full
QCD simulation with computer resources available now both actions are too expensive.

The quantity (e(®) —3p(®)) /T, which is zero for an ideal gas, is plotted in figure 2.8. Thus deviations
from zero indicate the violation of this basic thermodynamic identities due to finite cut-off effects.
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Figure 2.7: Tree-level contribution to the free energy density normalized by the corresponding
Stefan-Boltzmann value as a function of N, for different fermion actions. The p6 and TP action
values are taken from [51].
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Figure 2.8: Tree-level contribution to (e — 3p)/T* as a function of N, for different fermion actions.
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The approach to zero is very slow for the standard action. As in the case of the free energy the p4
action converges to the continuum already at smaller V. than the Naik action.

2.3.3 The dispersion relation

A further indication for the quality of the improvement is the dispersion relation for free massless
quarks. The results for the standard, Naik, p4 and p6 action are shown in figure 2.9. In the
continuum limit, @ — 0, corresponding to small £ and p all curves approach the continuum line.
Especially the p6 and p4 actions stay quite close to the continuum line for larger momenta.

21 E(p) | o 7

= :

15+ NAIK —— | | - 7

- )

P4 — P6_

1L 7 | 7

05 L 7 0.57 7
p p

O L 1 1 1 0 ‘ ‘ ‘ ‘
0 0.5 1 15 2 0 05 | 15 2

(a) momenta p = (0,0, p) (b) momenta 7 = (0,p/v/2,p/V2)

Figure 2.9: The dispersion relation E = E(p) for the standard staggered, the Naik, the p4 and the
pb6 action. The dashed line is the continuum dispersion relation FE = p.

2.3.4 Rotational symmetry of the heavy quark potential

A final test of the quality of the action is the direct measurement of the breaking of rotational
symmetry as it is observed in the heavy quark potential. Also for full QCD the distortions of
rotational symmetry are measured in the quantity 4% as defined by equation 2.9. Three flavour
simulations have been performed with the p4 fatt action for different bare quark masses mga = 0.10,
0.20, 0.40 and 0.60 on a lattice of size 16%. The potential has been determined from the ratio of
smeared Wilson loops. To compare the result with a two flavour standard staggered simulation [57]
the lattice spacing a has been determined from the string tension and the pseudo-scalar to vector
meson mass ratio has been extracted from the corresponding meson correlation functions. In
figure 2.10 the results for 43 are plotted against (mps/mv)?. There are two measurements at
the same physical quark mass determined by (mps/my)? and the same lattice spacing a. They
show that the p4 action reduces the breaking of rotational symmetry in the heavy quark potential
substantially, the value of 6% is smaller by more than a factor of two compared to the standard
staggered action.

fFat link improvement will be discussed in the next section. The effect on the rotational symmetry should be
small as it is small on the free energy density.
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Figure 2.10: The breaking of rotational symmetry in the heavy quark potential measured in the
quantity 83,. Comparison of Ny = 2 results with the standard staggered action and Ny = 3 results
for the rotationally improved p4 action.

Finally the success of rotationally improved actions for finite temperature calculations will be
discussed in chapter 4. There the reduction of cut-off effects in the pressure will be shown as
expected from the discussion of this section.

2.3.5 Improvement of flavour symmetry

From the expansion of the staggered fermion action in chapter 1 it is obvious that the flavour
symmetry of the continuum theory is not realized in the staggered formulation. The full chiral
symmetry U(ny) ® U(ny) for ny quark flavours is reduced to a U(1), ® U(1). symmetry for
staggered fermions due to a flavour mixing contribution to the action in O(a) or O(a?), depending
on whether unimproved or improved quark fields are used to connect staggered to continuum
flavours. Therefore only in the continuum limit the full axial SU4(ny) is spontaneously broken
which results in 15 massless pseudo-scalar mesons for 4 staggered flavours. At finite lattice spacing a
the reduced axial symmetry U4(1) is realised and only one of the 15 pseudo-scalar mesons becomes
massless. This lattice artifact is especially problematic for finite temperature calculations close to
the critical temperature. In this temperature regime light pseudo-scalar mesons are expected to
contribute to the pressure non-negligible. Thus for finite temperature staggered fermion simulations
with small quark masses an improvement of this finite lattice spacing effect is especially desirable.
The breaking of flavour symmetry is considered as an effect which is connected to the hyper-
cubic structure of staggered fermions [58]. The different Dirac and flavour components are linear
combinations of the staggered fields y which are connected via gauge fields in the interacting
theory. These gauge fields can induce flavour mixing. In momentum space the corresponding
picture becomes a gluon which transports sufficient energy to change the flavour content of the
fermion it couples to. In the approach of Lagaé and Sinclair [58] the gauge fields are redefined
such that for small gauge couplings ¢g the unwanted coupling between gluons and fermions is
suppressed. This leads to an improved gauge link that consists of generalized staples which are
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quite complicated objects. The simplest choice is the so-called fat-link, which was introduced by
MILC [33] already in 1997. It replaces a link U, by the sum of this link and the corresponding
staple.

Upat(2) = ﬁ(Uu(x)+wZU,,(x)UH(x+17)UJ(x+ﬂ)
VER

+Ul(z — ) U, (x — D) U (x + fo — 19))

>
=

 \

1 Y
= _ 2.2
1+6w< tw > (2:20)

Y

where w is a weight factor which can be used to tune the action.
The expansion of this fat-link in orders of the lattice spacing is given by

1 1 1
Ugat(r) = T +iga |-Au(x) + §a8HAH(x) + ga2aﬁAu(x) +w Z a2§83Au(x) + O(aS)-|
l = |
+0(a’g?)
1
= Uy(x) +w2iga3§8314u(m) + 0(a*) + 0(a®g?) (2.21)
vF#u

From this expansion it is clear that in tree level fat-links contribute to the fermion action only at
O(a®) since they agree with the usual link up to O(a?). Since the flavour symmetry breaking is
also at most an O(a?®) effect when the action is expressed in terms of improved fermion fields, it
is reasonable to assume that fat-links have an effect on the flavour symmetry. In addition it has
been shown by Luo [10] that the fat-link belongs to the set of non-redundant operators which are
necessary to construct an ((a?) on-shell improved action. This might also be interpreted as an
indication that the flavour non-diagonal operators in the expansion of the action are compensated
by fat-links.

The effect of fat-links can in the end only be demonstrated in lattice simulations. The mass
splitting in the pseudo-scalar channel Apg! is generally used as an indicator of flavour symmetry
breaking. It measures the difference of the Goldstone and non-Goldstone pseudo-scalar masses. A
definition of Apg in units of the vector meson mass is used in this work

2
— Mpg

2
my,

2
Aps = PS: ~ O(a?) (2.22)

where mpg is the mass of the Goldstone pseudo-scalar and mpg, the mass of the non-Goldstone
pseudo-scalar meson.

In first quenched studies with standard and improved gluon actions and the standard staggered
action it has been shown that the pion splitting can be substantially reduced by using fat-links. The
simulation by the MILC group [33] has been performed with the standard gluon action on lattices
of size 203 x 48 at $=5.85. In Bielefeld a similar calculation using the tree-level improved 1x2
action on 162 x 30 lattices at 3=4.1 has been carried out [59]. Bare quark masses of mya = 0.05,
0.02 and 0.01 have been used in the meson spectrum calculation. The result for Apg extracted
from 30 and 57 independent configurations, respectively, are shown in figure 2.11. For both gluon
actions fat-links lead to a reduction of the pion-splitting of more than 50%. The effect of varying

In the following Apg will be referred to as pion splitting as it is common in the literature.
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the quark mass is relatively small.
Since the lattice spacing of the simulation with the improved action is larger than the one with the
standard action the influence of different gluon actions on the pion splitting cannot be extracted
from figure 2.11. This analysis has also been performed by the MILC group [60] with the result that
a one-loop tadpole improved gluon action substantially reduces the pion-splitting already without
fat-links. When interpolating the Bielefeld results to mps/mvy = 0.5 and comparing at the same
lattice spacing it becomes clear that this is to some smaller extent also true for the tree-level
improved 1x2 action [61].

To study the influence of improvement of rotational invariance on the flavour symmetry the 57
quenched configurations have also been analysed with the Naik®, p4 and p6 action. In figure 2.12
no difference in the pion splitting for standard, Naik and p4 action are visible. At the largest
quark mass mga = 0.05 the meson spectrum has been calculated also for the p6 action. Again no
improvement over the standard action is visible.

Additionally this analysis could show that fat links work as well for rotationally improved actions
as they work for the standard staggered action. This is also true when only the one-link path in
the p4 action is fattened (green points in figure 2.12). A final test of the reduction of the pion
splitting has been performed in full QCD where the fat-links influence the dynamics of the system.
The fat-links in this case are only incorporated in the one-link part of the fermion matrix. On
the same configurations on which the deviations from rotational symmetry have been analyzed in
section 2.3.4 a measurement of the pion splitting has been performed. Figure 2.13 clearly shows
that at the same lattice spacing the fattened action reduces the pion splitting by nearly 50 %.
Finally the effect of fat-links on QCD
thermodynamics will be discussed. In

i T
lattice perturbation theory the one-loop ‘ action ‘ v ‘ Be ‘ /o ‘ mps/my ‘
contribution to the fermion free energy 0.0 | 5443 (5) | 0.470 (3) | 0.510 (5)
has been calculated taking into account std 0.2 | 5.249 (3) | 0.473 (13) | 0.656 (9)

different values of the fat-link parameter 1
w in the fermion action [32]. At lead- pd 0.0 | 3.906 (4) | 0.562 (17) | 0.563 (8)
ing order fat-links do not contribute to 0.2 | 3.778 (12) | 0.552 (16) | 0.716 (11)

the ideal gas value. Figure 2.14 indicates
that fat-links slightly reduce the devia- Table 2.2: The critical temperature and the meson

tions from the continuum free energy but masses for the standard and p4 action at a bare quark
this effect is small compared to the im- mass of mga = 0.20 for Ny = 2. Only the statistical
provement of rotational symmetry in the error for the string tension and the meson mass ratio
fermion action. are taken into account. An additional uncertainty due
On the other hand the inclusion of fat- to the error in the critical coupling is ignored.

links in the action has an influence on

(mPS/mV)2 which is proportional to the quark mass. At the same bare quark mass the mpg to
my ratio is larger for the fat action at the N, = 4 critical point than for the non-fat action. In
table 2.2 results from a simulation at a bare quark mass of m,a = 0.20 with the standard and p4
action with a fat-weight of w = 0.0 and 0.20 are gathered. Obviously the difference in mpg/my for
the standard and p4 action is much smaller than for the fat and non-fat actions. Additionally fat
links lead to a shift in the pseudo-critical coupling 8. for the same fermion action, standard or p4,
respectively. The critical temperature on the other hand does depend on the choice of the fermion
action and remains more or less unchanged for different fat-weights. Thus one has to perform a
simulation at a smaller bare quark mass for the fat action than for a non-fat action in order to
work at the same physical quark mass.

§The Naik results are taken from the diploma thesis of Axel Bicker [61].
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Figure 2.11: The pion splitting Apg as a function of the pseudo-scalar to vector meson mass ratio
with standard and tree-level improved gluon action for different fat-link parameters w.
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Figure 2.12: The pion splitting Apg as a function of the pseudo-scalar to vector meson mass ratio
with standard staggered, Naik and p4 action on 57 quenched configurations produced with the
tree-level 1 x 2 gluon action.



2.3. IMPROVEMENT OF THE FERMIONIC SECTOR OF QCD 53

0.7 T T T T T T
0.6 I Apg a=0.253(2)fm Std N=2 —a— -
; P4 FatN=3 =
05T a=0.243(1)fm ]
0.4 | . ]
0.3t - ; ]
a=0.252(5)fm
HIH
0.2 r a=0.237(2)fm * 1
0.1 T
| (mps/my)*  ~
0.0 — - - : - -

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 2.13: The pion splitting Apg as a function of the pseudo-scalar to vector meson mass ratio
for Ny = 2 and Ny = 3 for the non-fat standard staggered and one-link fat p4 action, respectively.
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Figure 2.14: The one-loop contribution to the free-energy for different fat-link parameters.
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2.4 Computational costs of QCD simulations with improved
actions

In this section the computer time required for full QCD simulations will be discussed. Since the
gluonic part of the action contributes negligible to the computational effort in the hybrid algorithm,
only the fermionic part will be analyzed. There are two basic parts in the calculation which can
be quite time consuming. The first one is the matrix multiplication which is part of the conjugate
gradient method, the other one is the force calculation. In table 2.3 the number of operations for the
different improvement schemes relative to the standard staggered action are given. An additional
factor, coming from the enhanced computation of products of link variables for improved actions,
is not taken into account. The relative time has been measured on a Quadrics QH2 with 256 nodes.
The force computation and the CG matrix inversion have to be performed in each time step of

| action | force computation | matrix multiplication | # CG steps | time/CG |

std 1 1 1 1

Naik 1+3 1+1 ~1.1 2.5-2.6

pd 1+36 1+6 ~0.7 12-14
fat link 1+18 1 0.6-0.77 >1

Table 2.3: Number of operations in the Hybrid algorithm for different improved action relative to
the standard action.

the molecular dynamic trajectory. The number of matrix multiplications in the CG algorithm is
roughly inverse proportional to the bare quark mass. Thus for small quark masses the matrix
inversion dominates the computational effort. Only if highly non-local fat-links as discussed by
Orginos et al. [62] are used, the force computation can be of equal importance than the matrix
product.

From table 2.3 one can read off that the p4 action requires a factor seven times operations than
the standard staggered action. On the other hand it turns out that in a simulation the number
of steps in a CG inversion is reduced when the p4 action or fat-links are used. This is probably
due to their non-local and two-dimensional structure. The corresponding values are given in the
fourth column of table 2.3. The number of steps for a combined p4 and fat-link improved action
compared to the standard action is roughly the product of the number of steps which are required
for both actions alone.

Finally the relative amount of computer time for a conjugate gradient iteration per step is shown
in column 5. In real computer time the theoretical factor 2 for the Naik action becomes a factor
of 2.5-2.6, the factor 7 for the p4 action becomes a factor of 12-14. The additional communication
on the Quadrics parallel machine is responsible for this increase. This is especially true for the
additional L-shaped operator in the p4-action which makes remote memory accesses necessary in
two directions.

Adding up everything together the p4 fat action is about a factor of 9 more time consuming than
the corresponding standard fat action. For the Naik fat action the ratio is about 3.

2.5 Discussion

In this chapter different aspects of improvement of staggered fermion actions have been discussed.
It has been shown that there are methods to improve the flavour and the rotational symmetry. The

TThe ratio depends on the value of the fat-weight. Increasing the fat-weight reduces the number of steps.
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first will become important for small quark masses since then the correct meson spectrum should
be reproduced. In finite temperature calculation this is important close to the critical point.

In calculations of the equation of state with the standard staggered action very strong cut-off
effects show up at N, = 4. When additionally taking into account the slow convergence of the
high-temperature free energy to its ideal gas value it is probably necessary to perform simulations
on lattices of temporal size 8 and 10 to be able to extrapolate to the continuum reliably. For the
improved actions a temporal extension of 4 and 6 might already be sufficient.

In table 2.4 a rough estimate of the relative computer time for different actions is given under the
assumption that the same quark mass m/T is used in the simulation and that the ratio N, /N, is
set to 4 to keep the volume approximately constant. Additionally it is assumed that the number
of conjugate gradient steps is proportional to the bare quark mass. To keep the error induced by
the finite step size of the Hybrid R algorithm sufficiently small the step size has also to be reduced
proportional to the bare quark mass. The autocorrelation of the Hybrid R algorithm is proportional
to (¢/a) where ({/a) is the correlation length of the system. This would then accumulate to a
computer time proportional to 1/a” or N7 when the critical temperature is relatively constant for
different lattice spacings.

In addition one has to have in mind that in thermodynamic calculations in quantities like the
equation of state p/T* the signal is suppressed with 1/N2Z. In order to have the same signal to
noise ratio this factor should also be taken into account. Then the computer time would add up
to a factor of N1

In table 2.4 the numbers for the simulation for different N, and actions are gathered. In the last
column the total computer time for the calculation of the equation of state normalized by the time
required for the standard action is given. The dramatic increase with N is obvious. A simulation
with NV, = 6 and 8 using the standard action is a factor of 8.1 or 2.7 more time consuming than a
N, =4 and 6 simulation with the Naik or p4 action, respectively.

Table 2.4: Number of operations in the Hybrid algorithm for different improved action relative to

the standard action.

| action | N, | N3 | mass | rel. time | tot. time |

4 | 16° mo 1 1
6 | 24% | 2/3my 1 87

std 8 | 323 | 1/2my 1 2048
10 | 403 | 2/5mg 1 23842
12 | 483 | 1/3myg 1 177147
4 | 16° mo 3 3

Naik 6 | 24° | 2/3my 3 261
8 | 323 | 1/2my 3 6144
4 | 16° mo 9 9

p4 6 | 243 | 2/3mg 9 783
8 | 32% | 1/2my 9 18432
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Chapter 3

The finite temperature phase
transition in QCD with 241 quark
flavours

QCD predicts a phase transition
from a hadronic phase with confined
quarks and gluons at low tempera-
tures to a plasma phase with liber-
ated quarks and gluons at high tem-
peratures. The nature of the phase
transition depends on the number of
flavours and the quark masses. For
the quenched theory with zero quark
flavours the first order nature of the
deconfinement transition has been es-
tablished by Fukugita et al. [63] in
lattice simulations with the standard
gluon action. With dynamical quarks
the Z(3) symmetry present in the
quenched theory is no longer a sym-
metry of the action and therefore the
Polyakov loop is not a proper order
parameter although it still serves as Figure 3.1: The susceptibility of the Polyakov loop and
a good indicator of the deconfining chiral condensate in 3 flavour QCD.

phase transition. On the other hand

for small quark masses there is a chiral phase transition from a phase with spontaneously broken
chiral symmetry at low temperatures to a phase with restored chiral symmetry at high tempera-
tures. This is true as long as the explicit breaking of chiral symmetry in the Lagrangian through
the mass term is not too strong. Strictly speaking there is no chiral order parameter except at
zero quark mass.

In a lattice simulation with the improved p4 action the quark mass has been varied from heavy
to light quarks. The effect on the susceptibility of the chiral condensate and the Polyakov loop is
illustrated in figure 3.1 for three quark flavours. One clearly observes that the deconfining transi-
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tion smoothly turns into a chiral transition. A similar behaviour has been observed in two flavour
QCD with an unimproved action [57)].

In addition to lattice calculations the nature of the phase transition has also been studied in
effective models which respect the symmetries of QCD. The three-states Potts model in three
dimensions has the same Z(3) sym-
Nf=2 Pure metry as quenchec'! QCD and is thert?—
Gauge fore expected to lie in the same uni-
versality class as zero flavour QCD.
Results from this model will be dis-

cussed in the next section.
In the case of small quark masses
_ Ginsburg-Landau effective theories
tric respecting the chiral symmetry of
4...Nf -3 QCD, so-called linear o models, have
been studied in the past. The
Ne=1 SU(2) x SU(2) and SU(3) x SU(3)
o models [64] suggests a second or-
der transition with O(4) critical ex-
Sl O e ponents for two degenerate quark
/ 2(2) flavours and a first order transition
for three degenerate quarks in the
limit of zero quark mass. The sec-
ond order line in the phase diagram
runs into a tricritical point and then
continues according to m,,mg &

2nd order

y 04?7 2nd order
Z(2) g

0 m,, My 0

2
tri 5 .
Figure 3.2: The phase diagram of QCD for 2+1 quark (my"" —ms)® [65] separating the
Aavours. first order from the crossover re-

gion. On the line of three degenerate

quarks the second order phase transi-
tion should scale with Z(2) critical exponents for the chiral as well as the deconfinement transition
[66]. These predictions are schematically presented in the (172up,/down, Mstrange)-Plane of figure 3.2
and will be reviewed in the following sections.
Lattice results from simulations with staggered and Wilson fermions have been obtained for differ-
ent number of flavours and quark masses during the past years. They will be compared to o model
predictions and results from a simulation of three quark flavours with the p4 improved staggered
fermion action.
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3.1 The deconfinement transition

The finite temperature deconfine-
ment transition for heavy quarks
will be investigated for three quark
flavours in the staggered fermion for- X max
mulation with an improved p4 action. L
The case of infinite quark mass has
been intensively investigated in the 10 |
past. Using the standard gluon ac-

tion Fukugita et al. [63] established

the first order nature of the phase
transition by inspecting the finite size 1
scaling of the Polyakov loop suscep-
tibility xz. The maximum of xg,
should scale with the volume for first ) ) ) L
order transitions and like V7/% with 63 g3 10° 123 163 243 283323
some critical exponents for a sec-
ond order transition. For a crossover
X7 should approach some constant
value when the volume is sufficiently
large. In figure 3.3 results for the
maximum of the susceptibility are
plotted for the standard [63] and im-
proved gluon actions [41, 40]. Scaling fits to the data lead to results for the exponent 7/dv of
1.01(6), 0.96(11), 0.98(2) and 0.95(2) for the standard (N, = 4), the tree-level 1 x 2 (N, = 3,4)
and tadpole 1 x 2 (N, = 4) actions, respectively. These values should be compared to the second
order Ising, O(2) or O(4) exponents of 0.653. There is thus great evidence from different discreti-
sation schemes of SU(3) pure gauge theory that the corresponding transition is first order. The
fact that N, = 3 and IV, = 4 results of the tree level 1 x 2 action are consistent with unity strongly
suggests a first order transition also in the continuum limit. The same conclusion can be drawn
by investigating the surface tension. After infinite-volume and continuum extrapolation it is fixed
to a small but non-vanishing value of o /7% = 0.0155(16) [47] indicating a first order transition.
The case where dynamical quarks are included has not been studied that extensively in the past.
In addition to the three flavour study of this work there exist one flavour results [67] and a two
flavour simulation [68] on 6 x 2 lattices with a pre-Hybrid Monte-Carlo algorithm. An up-to-date
calculation has been started by Liitgemeier [57] and is now being completed by Schmidt [69] with
standard staggered fermions.

A first step in the investigation of the deconfining phase transition can be the study of an effective
theory of QCD with heavy quarks. Svetitsky and Yaffe [70] argued that this is the three-states
Potts model in three dimensions for the pure gauge case. In the full theory integrating out the
quark fields leads to an external field in the Z(3) spin theory [71]. A first numerical calculation of
the spin system with external field was carried out by DeGrand and DeTar in 1983 and has now
been pushed to very high precision by Stickan in his diploma thesis [72].

A slightly different approach has been realized by Hasenfratz et al. [74] who simulated an effec-
tive model where the hopping parameter expansion for Wilson fermions is truncated at leading or
next-to-leading order. By extrapolating the gap in the order parameter to zero the critical field
at the endpoint of the first order transition has been determined to be h/,,, = 0.055. Translating
this into the bare quark mass gives m/T & 4.2 for three flavours. This value is in agreement with
a mean-field analysis of this model by Green and Karsch|[75].

100 ¢

1x1 N=4
1x2 tree N=3 —a—
1x2 tree Ny=4 —e—
1x2 tad N;=4 —a— 1

No

Figure 3.3: The peak height of the Polyakov loop suscep-
tibility as a function of the volume in pure gauge theory.
Straight lines are fits to the data for the three largest vol-
umes available for each action.
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3.1.1 The three states Potts model in three dimensions with external
field - An effective model for QCD with heavy quarks

In this section the high-temperature and strong-coupling limit of QCD with heavy quarks will
be discussed. After integrating out the Grassman variables of the QCD action one obtains the
effective action

Sgcp = BSa+ Sr
= BSg+ Y MU
— Seff = [(Sq +tr lnM(U). (31)

The gauge part can be treated in the high temperature and strong coupling limit corresponding to
small N, and small a;/a. In the anisotropic gauge action given in equation 1.47 the spatial part
is then suppressed with a,/a. Finally choosing the special case N, = 1 and replacing elements of
SU (3) with elements of Z(3) the temporal part of the action reduces to that of a three dimensional
Z(3) spin or the three state Potts model

U(z) = Ui(@)Uu(2)Uf(x + @)Ul (z) for N, =1
= 2y 2y, for SU(3)— Z(3)
a
£ o 2
= Sq¢ — ﬁaT ;;Re 2 Zavn (3.2)

where z, are elements of Z(3).

For the contributions from the fermion degrees of freedom the hopping parameter expansion for
Wilson fermions can be applied which is valid for small k. The hopping parameter can be related
to the quark mass when k and a,/a are small

ke ™A (3.3)

Once again if N; is chosen to be one and the SU(3) group elements are replaced by elements of
Z(3) the fermionic action reduces to a function of Z(3) elements.

M = 1- Kar/aMspatial - KMtemporal
=Tr InM =~ Tr In(ll - KMiemporal)
= ho+ h(k) ZReZm (3.4)

Gauge and fermionic part then have the form of a three states Potts model with real external field
h(k)

B8Sq + Sp — ﬂag ZRe 23 2p4pn + h(K) ZRezaE , (3.5)

z.p

where for small x the relation h(k) &~ 24k holds. Thus the bare quark mass is related to the
external field of the Potts model via the equation h = 12 exp(—m/T'); the external field grows with
decreasing quark mass. At some critical value of the external field the explicit breaking of Z(3)
symmetry is expected to be that strong that the first order transition of the Potts model for zero
field disappears. The endpoint of the first order transitions should be a second order critical point.
A numerical study can determine this critical endpoint and the critical exponents of the second
order transition. Due to the relation between the quark mass in QCD and the external field in the
Potts model one might hope that results on the universality class of the transition carry over from
the Potts model to QCD as they did for zero external field or infinite quark mass. In that case
both transitions have turned out to be first order [63, 73]
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Numerical results

In a first numerical study DeGrand and DeTar [71] performed simulations on lattices of maximal
size 30% and looked for tunneling events between two states. This lead to an estimate of the critical
external field of 1072 < h.piy < 1072 or to a bare quark mass of 4.8 < m/T < 7.1

A very recent numerical calculation of the Potts model has been carried out by Stickan [72] on
volumes ranging from L? = 30° to 70°. The energy E = > Re 2}2,4, and magnetisation
M = 3", Re z, have been calculated at several (8,h) values with a statistics of up to 140000
iterations close to the critical point using the Wolf cluster update [95]. Stickan utilized methods
previously applied to the determination of the universality of the second order endpoint of the
liquid gas transition [76] and the electroweak phase transition [77]. A first step in this procedure
is the exact determination of the critical endpoint. One can think of different criteria for the
distinction between a first order and a continuous phase transition.

The existence or non-existence of a two state signal in the Polyakov loop or the action indi-
cating a non-zero or vanishing latent heat.

e The surface tension calculated from the maximum and minimum of the order-parameter

distribution P according to
ov 1 Prin

e The finite volume scaling of the peak height of the order parameter susceptibility character-
izes the nature of the transition: scaling like V' for first order and like V7/% for second order
transitions. For a crossover the peak height should approach some maximum value.

e The intersection of the fourth Binder cumulant for different lattice sizes defines the critical
point.
(Am)*)

Cy(M) = (A2 (3.7)

with AO = O — (0).

To obtain reliable results an infinite volume extrapolations of the latent heat and surface tension
seems to be necessary. Only then one makes sure that non-zero values of oy and Ae on finite
volumes survive in the limit of infinite volume.

The determination of the pseudo-critical coupling in 8 at fixed h is quite unproblematic. Com-
patible results for (. have been extracted from the peak position of the magnetic and energy
susceptibilities and the criterion that the probability distribution of the order parameter is sym-
metric. This is characterized by the vanishing of the third cumulant C5(M) = 0.

((AM)?)
Cs(M) = ——ers 3.8
3 ( ) <(AM)2>3/2 ( )
To find the critical point in h-direction the peak heights of the magnetic susceptibility at different
external fields A for several volumes are analysed and plotted in figure 3.4. The volume dependence
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Figure 3.4: The peak height of the magnetic susceptibility as a function of the external field for
different volumes.
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Figure 3.5: The intersection of Binder cumulants as a function of the external field for different
volumes.
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Figure 3.6: The distribution of E’- and M’-like observables for different spin models at the critical
point. The horizontal axis shows AM', the vertical axis AFE'.

clearly reduces when the value of the field is increased. At some point no volume effects are visible
any more, a clear sign for a crossover. However, it does not seem possible to fix the exact position
of the endpoint. To reliably determine the endpoint and the universality class the concept of
decorrelating energy and magnetic-like observables has to be introduced. For the liquid gas and
electroweak transition it has been shown that a linear mapping of a small area in parameter space
around the critical point to the corresponding area in the Ising model can be found and that all
three systems behave in exactly the same way in this area.

Since the magnetisation for non-zero external field is no longer an exact order-parameter one
cannot, expect to read off the same scaling properties at the critical endpoint as for the proper
order parameter of a system in the same universality class. A non-zero field effectively leads to a
mixing of E- and M-like observables. Therefore one defines new observables E' and M’ which are
the result of a coordinate transformation and in two dimensions is simply given by

E’ = A11 E+ A12 M
M = Ay E+Ayn M (3.9)

where A is the basis transformation matrix which diagonalizes the fluctuation matrix F' in E — M
space. F' is defined as

_ (AE)?)  ((AE)(AM))
F_<<(AE)(AM)> (AM)?) ) (3.10)

The new E’- and M'-like observables are now orthogonal in coupling space.

The order parameter distribution P(M') for a first order transition determines the surface tension
and for a second order critical point it should show a universal form independent of the volume.
Thus the ratio of the minimum and maximum has a fixed universal value which in the Potts model
at h = 7.7-10~* turned out to be 2.23(11) clearly in agreement to the Ising value of 2.173(4). Also
the infinite volume extrapolation of the surface tension 3.6 which takes into account different finite
volume corrections [79]

oy o a bin(L)

T8 s a1t (3.11)

leads to a vanishing of ¢/T at about h = 7.5-10"%. Thus using this criterion a critical field of
h. = 7.5(5) - 10~ * has been found.
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Figure 3.7: The joint E’- and M-like distribution for the Potts model at the pseudo-critical point
. for different values of the external field on a volume of 70°. In (a) couplings in the crossover
region, in (b) at the critical point and in (c) in the first order region are displayed. The horizontal
axis shows AM', the vertical axis AE'.

Additionally the intersection of the fourth Binder cumulant for M’ at 3. can be used to determine
the critical value of the external field h. In figure 3.5 the results for the four largest volumes are
plotted. All curves intersect within a range in h of 7.6-10~% and 7.8-10~4, thus the critical endpoint
can be determined to very high precision (8., h.) = (0.54939(1),7.7(1) - 10~*). The value of the
fourth cumulant at the intersection point is characteristic for the universality class. One finds a
C4(M") of 1.603(4) at h, for the largest volume which is in very good agreement with the universal
Ising value of 1.604(1) [78] and clearly disagrees with the O(2) and O(4) values of 1.092(3) and
1.233(6), respectively. A further universal quantity is the critical exponent 7 /v which characterizes
the scaling of the order parameter susceptibility with the volume. At (8., h.) a value of 1.933(6)
has been calculated, to be compared to 1.96 for the Ising, O(2) and O(4) universality class. For
larger or smaller values of h the exponent approaches zero or three as it should for a crossover or
first order transition, respectively.

Finally the universal joint E’- and M'-like distribution at the critical point can be analysed. They
are normalized such that ((AM')?) = 1 and ((AE')*) = 1. For the different universality classes
discussed in connection with the Potts model and QCD, the Ising, O(4) and O(2) joint distributions
are plotted in figure 3.6. They can now be compared to the results from the three-states Potts
model at the pseudo-critical coupling (8., h.) determined by the intersection of the cumulants. The
distribution is plotted in figure 3.7 not only for the critical point (3., h.) which agrees to very high
precision with the Ising distribution, but also for two values of the pseudo-critical coupling which
lie in the crossover and in the first order region. Thus not only the universal Ising intersection
point of the cumulant and the critical exponent /v, but also the joint probability distribution is
that of the Ising model in three dimensions. If the connection between the Potts model and QCD
carries over to non-zero external field and large quark masses, respectively, then the QCD critical
endpoint in the deconfinement region should also be that of the Ising model. Numerical evidence
for or against this will be presented in the next section.
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pseudo-critical couplings (.
mya ‘ N, ‘ # 0 ‘ # iter. max(xs) ‘ max(xr,) ‘ maX(X@d))) ‘ C3(L)=0
8| 16| 39250 || 3.5184 (462) | 3.6216 (27) | 3.6204 (32) | 3.6120 (29)
020 12| 5] 18700 || 3.5986 (25) | 3.6020 (32) | 3.6004 (18) | 3.6001 (32)
16 | 8| 20650 || 3.5998 (14) | 3.6017 (17) | 3.6000 (33) | 3.6024 (13)
8| 11| 36600 3.7756 (64) | 3.7848 (23) | 3.7808 (27) | 3.7836 (24)
040 | 12| 3] 11700 || 3.7810 (24) | 3.7781 (17) | 3.7797 (16) | 3.7762 (20)
16 | 5| 16250 || 3.7653 (16) | 3.7719 (33) | 3.7746 (40) | 3.7692 (28)
8| 12| 33100 [ 3.7983 (159) | 3.8865 (17) | 3.8806 (12) | 3.8812 (16)
060 12| 4| 16500 || 3.8718 (47) | 3.8770 (16) | 3.8798 (38) | 3.8760 (11)
16 | 6| 41750 || 3.8210 (233) | 3.8766 (6) | 3.8764 (6) | 3.8744 (9)
| 070 16| 4| 24000 || 3.7983 (159) | 3.8865 (17) | 3.8806 (12) | 3.8812 (16) |
| 00| 16| 3] 25300 || 3.9358 (18) | 3.9377 (10) | 3.9368 (14) | 3.9382 (17) |
8] 8] 21750 [ 3.9680 (6) | 3.9686 (27) | 3.9663 (11) | 3.9690 (28)
00| 12| 5| 24520 || 3.9717 (39) | 3.9712 (22) | 3.9711 (15) | 3.9704 (19)
16 | 8101300 || 3.9771 (15) | 3.9778 (10) | 3.9808 (16) | 3.9770 (11)
8| 10| 129000 || 4.0554 (27) | 4.0745 (17) - 4.0685 (14)
12 | 14 | 154900 || 4.0708 (27) | 4.0708 (6) - 4.0684 (7)
oo [ 16| 8157500 || 4.0719 (7) | 4.0715 (5) - 4.0704 (6)
24 | 3| 75200 || 4.0724 (4) | 4.0722 (4) - 4.0719 (3)
32| 1| 46800 || 4.0733 (4) | 4.0729 (3) - 4.0729 (4)
I~ - {40732 (4) | 40730 (3) - 1.0729 (4)

Table 3.1: Pseudo-critical couplings for different masses and volumes.
3.1.2 Numerical results from lattice QCD with three degenerate quarks

To investigate the second order endpoint of the deconfinement transition in three flavour QCD
simulations with the p4 improved staggered fermion action have been performed. The standard
Hybrid R algorithm has been used with a step size of 0.08 for the smallest and 0.10 for the other
quark masses. This choice probably leads to results which are not free of systematic errors. On the
other hand one would not expect that the effect is large enough to change the universality class of
the transition.

The quark masses under consideration are mya = 0.20 0.40 0.60 0.70, 0.80 and 1.00. To get an
impression of the finite size effects simulations on 8% x 4, 123 x 4 and 16° x 4 have been performed.
The pseudo-critical couplings have been determined from the peak position of the susceptibilities
of the action, the chiral condensate and the Polyakov loop. Additionally the third "magnetic”
cumulant C3(L) has been analyzed. Since it should vanish at the critical point it also defines a
pseudo-critical coupling. From all observables except from the action susceptibility one obtains a
good signal for all quark masses and lattice sizes. All results for the critical couplings are collected
in table 3.1 together with the total number of iterations and 3 values. A jackknife analysis has
been performed to determine the mean value and the error.

In most cases the values for . coming from the peak position from x7 and Xz, and from the
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Figure 3.8: The peak height of the Polyakov loop susceptibility as a function of the pseudo scalar
to vector meson mass ratio for different volumes.

third cumulant coincide within errors for fixed volumes. The finite size effects lead to discrepancies
of B, which are larger than the assigned errors. Thus the infinite volume critical couplings are
probably not reached at the largest volume of 16 x 4. This is expected since an analysis of the
pure gauge data shows that only a volume as large as 32° x 4 is within errors in agreement with
the infinite volume extrapolated value. Details of the extrapolation are given in [41].

To find the endpoint of the first order region the different quantities discussed in the previous
section are analyzed. In figure 3.8 the maximum of the Polyakov loop susceptibility is plotted

max(xg )=k - V/¥
mass H k ‘ ~v/dv
0.20 0.233 | 0.158
0.40 0.660 | 0.143
0.60 || 0.00613 | 0.804
1.00 || 0.00541 | 0.862
o0 0.00179 | 0.982

Table 3.2: The critical exponent ~/dv
and the factor k extracted from the
finite volume scaling fit of the peak
height of the Polyakov loop susceptibil-
ity on lattices of spatial size 12° and
163.

for different masses and lattice sizes. For small masses
the volume dependence clearly vanishes whereas for the
larger masses an increase of the maximum with volume
shows up. One thus finds the expected behaviour for a
crossover and first order region. The results qualitatively
also agree with the ones from the Potts model. The fact
that the maxima for mya = 1.00 are within errors equal
to the corresponding pure gauge values is not quite un-
derstood. One might speculate that at such a quark mass
the system already behaves like a quenched system.

From pure gauge simulation one knows that the volumes
considered here are too small to see the correct finite size
scaling in the maximum of the susceptibilities. Neverthe-
less it has been performed using results from the 12% and
167 lattices. The order parameter susceptibility scales
like V7/% where the exponent is one for first order tran-
sitions and zero for a crossover. In principle one should
allow for an additional constant in the fit to also cover the
regular part of the susceptibilities, max(y) = e+k-V /%,
This should be especially important in the crossover re-

gion since there no scaling with the volume is expected. The scaling plots are shown in figure 3.9
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Figure 3.9: Scaling of the peak height of the Polyakov loop susceptibility as a function of the
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Figure 3.11: The Polyakov loop distribution for different quark masses and lattice sizes.

and 3.10 for the peak height of the Polyakov loop and chiral susceptibility, respectively. For x7'#*
a fit without constant has been included in the figure. The fit parameters are collected in table 3.2.
For the three largest quark masses k is small and the exponent «/dv is close to one as one would
expect for a first order transition. As can already be read off from the figure 3.9 the two smallest
quark masses show a quite different behaviour. x7'** does only change weakly with the volume,
which is also reflected in the small exponent and large factor k. Of course in principle one should
have used a fit with an additional constant, but the quality of the data did not allow for such an
ansatz. If assuming the predicted Ising universality class with an exponent of 0.65 for the second
order endpoint the critical mass would be in the range between m,a = 0.40 and 0.60.

Since only the disconnected part is taken into account in the chiral susceptibility it is a priori ques-
tionable if the correct scaling can be extracted from it. In two flavour simulations the contribution
from the connected part turned out to be large at large quark masses and for three flavours it
should diverge at the critical point in the chiral limit. The volume dependence of the maximum of
X?ﬁf) is quite small for all mass values considered (see figure 3.10). Also for the two largest masses,
which show a strong scaling with the volume for the Polyakov susceptibility, no such behaviour
has been found.

A further criterion examined is the surface tension. In figure 3.11 the change of the Polyakov loop
distribution with the volume is plotted for different values of the quark mass with the maximum
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Figure 3.12: The fourth Binder cumulant C4(L') plotted against the quark mass for different lattice
volumes.

normalized to one. The formula to calculate the surface tension from the order parameter distri-
bution P(L) then reads oy /T° = 1/LI~'In(Pp;y,). For the pure gauge case and mgya = 1.00 a
minimum in the distribution develops which decreases or at least stays constant with increasing
volume. This will result in a finite surface tension in the infinite volume limit. For quark masses
m,a<0.60 the minimum of the distribution vanishes with increasing volume, thus the surface ten-
sion approaches zero in the limit V' — oc.

As for the Potts model the method of decorrelating energy- and magnetic-like observables has
been applied. For QCD with heavy quarks the gluonic action takes the role of the energy and the
Polyakov loop the one of the magnetisation of a spin system. The basis transformation has been
applied to the vector (Sg, L) yielding

S'" = A Se+ AL
L' = Ay So+As L | (3.12)

with the basis transformation matrix A. It diagonalizes the fluctuation matrix F' in S¢ — L space.
F is defined as

_ ((ASG)?)  ((ASg)(AL))
F_<<(ASG)(AL)) ((AL)?) ) (3.13)

In two dimensions the transformation is simply a rotation about the angle a. For the largest
lattice size, 163 x 4, & at the pseudo critical point turned out to be as small as 1.75° for infinite
quark masses and increases to 6.12° for the smallest mass considered, mya = 0.10. The angles at
intermediate couplings are collected in table 3.3. The results thus show that for large quark masses
the Polyakov loop nearly is a proper order parameter which is contaminated by contributions from
the action at smaller masses.

The intersection of the fourth cumulant which for the Potts model gave the most precise result
for the determination of the second order critical point, is plotted in figure 3.12. Due to the large
errors in the quantity it is difficult to find a universal intersection point. At a bare quark mass of
mga = 0.60 the values of C'y(L') are consistent within errors for all volumes, but do not agree with



70 CHAPTER 3. THE PHASE TRANSITION IN QCD WITH 241 FLAVOURS

mgya 00 1.00 | 0.80 | 0.70 | 0.60 | 0.40 | 0.20 | 0.10
Q 1.75° | 1.77° | 1.81° | 2.12° | 2.10° | 2.80° | 5.56° | 6.12°

Table 3.3: The angle of the rotation in Sg-L space at the pseudo critical point for 163 x 4.

the Ising number of 1.604(1) and even less with the O(2) and O(4) results of 1.233(6) and 1.092(3),
respectively. Taking this seriously would rule out that the QCD deconfinement transition is in
the universality class of any of the spin models discussed so far. On the other hand the volumes
considered in this work are still quite small and therefore the results presented here have to be
confirmed on larger volumes before being conclusive. This is especially true since for the largest
spatial volume of 16% C,(L') reaches the universal Ising value at a quark mass of m,a = 0.80, thus
the Ising universality is not out of reach.

Finally the joint probability distributions of the rotated Polyakov loop L' and the rotated action
S’ are investigated on the largest lattice size 16% x 4. They are plotted in figure 3.13 for masses
ranging from mgya = 0.20 to cc. The two smallest quark masses show a rotationally symmetric
distribution which compares to the Potts distribution being in the crossover region (figure 3.7(a)).
The quenched and m,a = 1.00 distributions also look quite similar confirming the first order nature
of the transition already deduced from the volume scaling of the Polyakov loop susceptibility. For
the intermediate mass values one finds a certain structure in the distribution which shows features
of the Ising or O(2) distribution. The histogram at a quark mass of mga = 0.80, where the fourth
Binder cumulant has the Ising value, shows a form which is closest to the Z(2) one. However, for
the joint distributions to be conclusive the lattice volume and the statistics seems to be too small.
Combining the results from different observables one can conclude that the three flavour deconfining
phase transition occurs at bare quark masses between mya = 0.40 and 1.00 for improved staggered
fermions. This corresponds to a quite large physical quark mass of mpg/mv = 0.914(5) to 0.953(6).
Methods previously applied to liquid-gas systems, the electroweak-transition and the Potts model
have been used to construct magnetic- and energy-like observables. In principles these methods
seem to work also in QCD, but require a high statistics and large enough volumes.

3.1.3 The deconfinement transition with one and two flavours

A one flavour calculation using Wilson fermions has been carried out by Alexandrou et al. [67] on
lattices of size 82 x 4, 12* x 4 and 16> x 4. From the tunneling rate of the Polyakov loop and the
scaling of the susceptibilities the authors concluded that for k = 0.05 and 0.12 the transition is first
order and a crossover, respectively. For an intermediate x of 0.10 the signals are no longer that
clear and no conclusion can be drawn. As for the three flavour staggered results a larger lattice
size would be needed to determine the critical endpoint more precisely. In an effective model the
same authors found a value for the bare quark mass at the endpoint of the transition of mya = 1.4,
a similar large value as for the three flavour study.

For two staggered flavours using the unimproved action in the gauge and fermionic part [57, 69]
a similar analysis to the one in this work is being performed. The calculations qualitatively agree
with the three flavour results. Even on a 163 x 4 and 24% x 4 lattice the intersection of the fourth
cumulants is not conclusive with a statistics of up to 100000 iterations. The same is true for the
joint probability distributions.
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3.2 The chiral transition

In this section the finite temperature chiral phase transition of QCD will be discussed. For two
quark flavours recent lattice results will be compared to o-model predictions. In the case of
three light flavours the analysis of the chiral SU(3) ® SU(3) o-model will be reviewed in some
detail. Finally the lattice results obtained with improved staggered fermions will be discussed and
compared to findings with standard staggered and Wilson fermions.

3.2.1 The two flavour chiral transition

Simulations with two flavours using standard staggered quarks performed by different groups [96,
98, 102] with lattice bare quark masses ranging from m,a = 0.008 to 0.075 do neither show evidence
for a first order transition nor do they contradict a second order transition in the chiral limit
mga = 0. From renormalization-group arguments it follows that the scaling laws for the different
fermionic susceptibilities have the form x™%*(mgya) o (mga)~*, where the index i denotes the
various derivatives of the free energy with respect to the reduced temperature and/or the quark
mass. Hyper-scaling laws relating the critical exponents z; are approximately satisfied in different
studies. On the other hand the critical exponents extracted do not agree with the O(2) or O(4)
exponents. The authors of [102] additionally claim that the agreement becomes worse for the
smallest quark mass of mya = 0.008. For this reason the determination of the universality class of
the two flavour chiral transition still remains an open problem for unimproved staggered fermions.
Unimproved Wilson fermions together with the standard gluon action are plagued by strong lattice
artifacts such that no conclusions on the chiral transition can be extracted [99]. The situation is
much improved when the RG gluon action is used [100]. Then the subtracted chiral condensate
can be successfully described by a scaling function with O(4) critical exponents indicating that the
chiral transition is second order and lies in the universality class of the O(4) sigma model. This
result is surprising since the chiral properties of Wilson fermions are not expected to be very good.

3.2.2 Ising universality class for the 241 flavour chiral transition - Pre-
dictions from linear sigma models

In the case of three degenerate massless quark flavours Pisarski and Wilczek [64] investigated a
linear sigma model respecting the global SU(3) ® SU(3) chiral symmetry of three flavour QCD.
The lack of an infrared stable fixed point in this model lead to their conclusion that the chiral
transition is of first order driven by fluctuations. In addition to this renormalisation group analysis
Frei and Patkéds [80] investigated the sigma model by a saddle point approximation of the free
energy and confirmed the first order nature of the chiral transition. In [81, 82] Meyer-Ortmanns
et al. showed that in the case of non-vanishing pseudo-scalar meson masses the chiral transition
changes to a smooth crossover. It is therfore expected that the line of first order transitions ends
in a second order chiral critical point when increasing the quark mass from zero to some value
(mup/down: mstrange)crit-

The universality class of this 2nd order phase transition has been analyzed by Gavin et al. [66]. The
effective model with the global SU(3) ® SU(3) chiral symmetry is the same as in [64, 80, 81, 82].
The Lagrangian density, which is constructed like in Landau theory as a function of the order
parameter ¢ « (qr.qr), is given by

Lonier = tr [8,0]° + tr (¢7¢) — V6 (det(¢) + det(¢7))
+ (g1 — go) (tr ¢'0)° + 3gatr (679)7, (3.14)
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where the field ¢ is defined by ¢ = Zi:o(”a + ime)A". The \;, (i = 1..9) are the Gell-Mann
matrices and the o, and m, are the scalar and pseudo-scalar components of the nonet.

The different parts in the chirally symmetric Lagrangian are the kinetic term, the mass term with
a mass parameter p?, terms quartic in ¢ to provide the possibility of a spontaneous symmetry
breakdown and a det(¢) term to reproduce the U(1) anomaly correctly which is responsible for the
mass splitting in 7 and 5. To incorporate the effect of non- vanishing pseudo-scalar meson masses
an explicit symmetry breaking term along two directions of the group generators are introduced
into the Lagrangian

L = Leniral + hooo + hgog . (3.15)

The fields hg and hg correspond to external magnetic fields in spin systems and account for the
non-vanishing of the pseudo-scalar masses (explicit breaking of the chiral symmetry) and the mass
splitting between different iso-spin multiplets (explicit breaking of the flavour SU(3) ). In QCD
this corresponds to finite non-degenerate quark masses.

Gavin et al. [66] could show that in mean field theory this model reproduces the scalar and pseudo-
scalar meson spectrum reasonably well when fitting to the masses of 7, n, ' and the pion decay
constant fr. Thus the model can be regarded as a appropriate effective model for QCD.

In the case of the flavour SU(3) symmetry, hg = 0, the Lagrangian reduces to the potential for a
constant field g

L o= —hoSo+ops2—Cxgdigs (3.16)
2 3 4

For zero external field hqy the transition is driven first order by the cubic term in the Lagrangian
and the strength of this transition is reduced by switching on the external field. The transition
turns second order when there is only one extremum in the Lagrangian or Landau free energy.
The critical values are given by h't = ¢2/(27¢3), X" = ¢/(3g1) and p2,;; = ¢*/(3g1). Inserting
these results into the mass formula leads to a massless o,/. All other mesons are massive. Since
this model has the same phase diagram as the liquid-gas system and there is only one scalar order
parameter it is in the same universality class as the liquid gas system, which is the one of the Ising
model in three dimensions.
The authors claim that this is also true for the case of hg # 0 where the flavour SU(3) sym-
metry is broken. Numerically they still obtain one massless field with the universality class of
the Ising model. Thus not only in the case of three degenerate quark flavours but also along the
(Mup/downs Mstrange)erit line one should see Z(2)-scaling.

3.2.3 Numerical results from lattice QCD for 3 quark flavours

As pointed out in the previous section for three flavours one expects a region of first order chiral
phase transitions to emerge when the quark mass approaches zero. Since previous lattice results
from staggered [97, 98] and Wilson [99] fermions lead to quantitatively very different values for
the onset of this first order region a new calculation with the p4-improved staggered fermion
action has been performed at bare quark masses of mya = 0.01, 0.025 and 0.05. The lattice
sizes under investigation are 8% x 4 and 16% x 4 for the two heavier masses. With decreasing
quark mass the chiral order parameter <151/)> , plotted in figure 3.14, shows a steeper drop but
no clear sign of a discontinuity. The finite size effects in this quantity are small since the results
of the two lattice sizes coincide within errors. This is different for the distribution of the chiral
condensate reweighted to the appropriate pseudo-critical couplings (figure 3.14). Here one observes
a clear broadening of the distribution for the small lattice which is much reduced for the larger
lattice. In [27] the same effect shows up for two flavours where even a double-peak structure in the
distribution on 8 x 4 lattices disappears when going to larger lattices. Taking this into account
the broad distribution at the smallest quark mass m,a = 0.01 which might be interpreted as a
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Figure 3.14: The chiral order parameter as a function of
the coupling (3 and the histogram of <1/Jz/)> reweighted to (3,
for three flavours of improved staggered quarks on lattices

superposition of two single peaks,
will probably not survive in the in-
finite volume. Thus we have an up-
per bound for the first order region
from improved staggered fermions of

mga = 0.01.
In principle all quantities discussed
for the deconfinement transition

could also be analysed here. In ta-
ble 3.4 the pseudo-critical couplings
are collected which have been ex-
tracted from the susceptibility of the
action, the Polyakov loop and the
chiral condensate and from the van-
ishing of the third chiral cumulant.
For some observables no determina-
tion was possible or a large error had
to be assigned to .. In general the
values agree for different observables
at a fixed volume.

In figure 3.15 a clear increase of
max(x<¢w>) with decreasing quark

mass is visible whereas max(xr)
slightly decreases.  This indicates
that the chiral transition strength-
ens and the deconfining transition
gets weaker. The volume dependence
of the maximum of the chiral and
Polyakov loop susceptibilities turned
out to be small for the mass values
investigated. Thus also the volume
scaling of the susceptibilities exhibits
no sign for the onset of the first order
region. The fourth cumulants, which
at the critical point should intersect

pseudo-critical couplings 3,
mga ‘ N, ‘ # 0 ‘ # iter. max(xs) ‘ max(xr,) ‘ max(Xgyy) | C3(X(gyy) =0
| 001 | 8| o 10300 || 3.2865 (98) | 3.2887 (65) | 3.2841 (57) | 3.2831 (42) |
g5 | S| 8] 14000 || 33265 (93) | 3.3318 (24) | 3.3281 (25) | 3.3284 (23)
16| 6] 8200 - 3.3428 (159) | 3.3194 (21) -
oos 81 1] 16250 - 3.4018 (35) | 3.3930 (201) | 3.3851 (74)
16| 4| 4500 || 3.3866 (47) | 3.3950 (150) | 3.3877 (26) | 3.3872 (120)
010 81 12| 25100 | 34637 (34) | 34864 (25) | 34842 (151) | 3.4816 (113)
16 | 9| 15350 || 3.4752 (10) | 3.4856 (138) | 3.4756 (14) | 3.4763 (11)

Table 3.4: Pseudo-critical couplings for different masses and volumes.



3.2. THE CHIRAL TRANSITION 75

8.0 - - . . .
7.0
6.0
5.0 r
4.0
3.0 r

20

max
1.0 XL |

B & — —A q
0.0 ' '

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Figure 3.15: The maximum of the chiral and Polyakov loop susceptibility as a function of the bare
quark mass for the lattice volumes 8 x 4 and 16> x 4.

at a universal value for different volumes, stay quite constant in a range between 2.2 and 2.8
for both volumes considered. This should be compared with the Ising, O(4) and O(2) universality
classes discussed in connection with QCD, which have intersection points at 1.604, 1.233 and 1.092,
respectively.

For standard staggered fermions [97, 98] two-state signals in the chiral condensate have been found
for small quark masses. The discontinuity in (¢)¢)) was extrapolated to zero to find the critical
mass where the transition turns second order; they found m.a = 0.034 corresponding to m. ~ 23
MeV [98] in physical units when assuming a critical temperature of 180 MeV at the transition
point. A scaling fit in (m —m.) * lead to a critical exponent z of 0.67(3) which is relatively close
to the Z(2) exponent 0.79. On the other hand, considering the results obtained for the Potts
model [72] the determination of the first order endpoint by extrapolating to zero discontinuity
in the order parameter seems not to be the appropriate procedure. One should instead look for
a vanishing surface tension in the infinite volume limit or the intersection of the fourth Binder
cumulant. In summary the staggered fermion action simulations thus suggest that the regime of
first order transitions starts at very small quark masses of about 23 MeV. It is pushed to even
smaller values of < 14MeV* when an improved action is used.

In contrast to the staggered formulation, results obtained with Wilson fermions suggest a first
order transition already for rather large quark masses of 140MeV [99]. But one should note that
the Wilson data do not seem reliable since they lead to an unphysically large discontinuity of the
action at the transition point (figure 3.16) The latent heat can be calculated from the gap in the
plaquette expectation value of the different phases using the formula Ae/T* = —36N?} Rz APlaq,

*Again a critical temperature of 180MeV has been assumed to set the scale. For the p4 fat link improved action
at larger quark masses the same pseudo scalar to vector meson mass ratio as for standard staggered fermions shows
up at half the bare quark mass. Therfore an additional factor of two has been introduced when the bare quark mass
is expressed in physical units.
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Figure 3.17: The order of the phase transition for 2+1
flavour simulations using standard staggered [97, 98],
improved staggered and standard Wilson [99] actions.

fermions reduces the lattice artifacts
significantly [100]. Unfortunately for
three flavours only exploratory simu-
lations have been performed with this
combination of quark and gluon ac-
tions [101].

Collecting all data available for 241
flavour simulations the staggered data
give a consistent result whereas the
data from Wilson fermions disagree with
them (figure 3.17). This discrepancy
then also leads to different results for
the order of the phase transition at the
physical point of two light and one heav-
ier strange quark. For three staggered
flavours the first order region already
ends at a quark mass of about 14 —
25 MeV and standard staggered simu-
lations with two light and one heavier
quark show no first order signal at quark
masses even smaller than the physical
one. The physical transition therefore
very likely is a crossover. The prediction
of a first order physical transition from
Wilson fermions seems to be question-
able for the problems with an unphysical
action discontinuity mentioned above.

The order of the QCD phase transition
has consequences for cosmological mod-

els and heavy ion collisions which will shortly be mentioned. In connection with the evolution of
the early universe the QCD transition has been discussed as a source of matter inhomogeneities
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created during the transition [83]. Remnants of these structures would only be visible until today
if the transition was strongly first order. For pure gauge theory the latent heat and the surface
tension calculated on the lattice [45] lead to results for the density fluctuations which are too small
to explain the structure of the universe as it is observed today. For a continuous transition in full
QCD, as predicted by staggered fermions, no observable consequences are expected. Rajagopal and
Wilezek [65] discussed a continuous second order transition in the context of heavy ion collisions.
Due to the divergence of the correlation length large volumes of space would be correlated and
might lead to fluctuations in the ratio of charged to neutral pions. On the other hand in the phys-
ical world a non-zero quark mass would restrict the correlation length and no correlated volumes
of space would emerge. Thus, if the QCD plasma cools through the transition while staying close
to thermal equilibrium then no dramatic effect occurs and the QCD transition is a smooth crossover.

3.3 Conclusions

In this chapter the properties of the confinement-deconfinement and chiral phase transitions of
QCD have been investigated for three degenerate quark flavours using the p4 improved staggered
fermion and the tree-level improved 1 x 2 gluon action. In the regime of heavy quarks the first order
phase transition gets weaker and finally disappears when the quark mass is reduced from infinity to
some still large value. Using methods previously applied for the Potts model and the electroweak
theory in lattice simulations, the critical endpoint for the first order region has been limited to the
mass interval of mpg/my = 0.914(5) to 0.953(6). At a bare quark mass of m,a = 0.80 the fourth
Binder cumulant and the M-E-like distribution lead to the impression that the universality class is
indeed the Ising one. This is predicted for QCD from a simulation of the three states Potts model
with external field which might be regarded as an effective model for QCD with heavy quarks. For
a final conclusive result probably larger lattices and higher statistics are needed.

The chiral transition which occurs at small quark masses has been analysed in a mass range where
no clear sign of a first order transition shows up. Thus the universality class of the transition could
not be analysed in this study. Indeed the crossover region expands down to bare quark masses
of my= 14MeV or 25MeV for improved and unimproved staggered fermions, respectively. This
finding combined with results obtained with two light and one heavier flavour suggest that the
physical transition is a smooth crossover.
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Chapter 4

QCD thermodynamics with
improved staggered fermions

The final aim of QCD thermodynamic calculations is a lattice determination of the equation of
state and the transition temperature at the physical point where the bare parameters are chosen
such that the correct mass spectrum is realized. In such a simulation the contribution of strange
quarks can no longer be neglected as it has been done in previous studies of two flavour QCD [28].
In this chapter a first attempt to incorporate the strange quark sector in a non-perturbative way
in a complete thermodynamic calculation will be described. The following section is dedicated to
the determination of the critical temperature with two and three light flavours and additionally
two light and one heavy flavour using improved staggered fermions. The results will be compared
to standard staggered, Wilson and domain wall fermion simulations and the effect of the strange
quark will be analysed. In the second section the pressure and energy density for two, two plus one
and three flavours will be discussed. The relative contribution of the strange quark to the equation
of state can be extracted from this calculation at least for temperatures a few times the critical
temperature. A correct determination of the situation close to the finite temperature phase tran-
sition cannot be expected since the correct chiral properties of QCD are not realized for the quark
masses considered. Finally in both sections the finite cut-off effects in thermodynamic quantities
are discussed. The comparison with unimproved staggered fermions shows a drastic reduction of
cut-off distortions for the p4 action in the equation of state and the transition temperature.

4.1 The critical temperature

The critical temperature 7. = 1/N.a(3.) is calculated by determining the pseudo critical couplings
from the approximate order parameters of QCD, the chiral condensate and the Polyakov loop.
Possible criteria to fix a value for 3. are the peak position of the susceptibilities or the vanishing of
the third cumulant as discussed in chapter 3. The lattice spacing at the critical coupling has to be
calculated from physical quantities. In this work the transition temperature is expressed in terms
of the string tension oa? and the vector meson mass mva. For three quark flavours the critical
couplings have been determined for the bare quark masses discussed in chapter 3. Additional
simulations with the p4 fat action at bare quark masses of m, 4a = 0.05, 0.10 and 0.20 for two
and my 4a = 0.10, mga = 0.25 for two plus one flavours have been performed on zero and finite
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Ny =2
T#0 T =0, N!=16"
My, N3x N, | #8 ‘ # iter. ‘ Be Jé] ‘ # iter. ‘ period
0.05 83 x 4 4 3700 3.585 (11) 3.585 340 2
0.10 16% x 4 10 36300 3.646 (4) 3.60, 3.663, 3.70 2180 5
0.20 83 x 4 6 6300 3.778 (12) 3.778 750 5
Ny=2+1
T#0 T =0, N!=16*
my,qga/msa || N3 x N, | # 3 ‘ # iter. ‘ Be Ié; ‘ # iter. ‘ period
| 010/0.25 || 16°x4 | 10 | 31550 | 3543(2) | 355,360 | 750 | 5 |
Ny =3
T#0 T =0, N!=16"
My, N3x N, | # 8 ‘ # iter. ‘ Be Jé] ‘ # iter. ‘ period
0.05 163 x 4 6 6890 3.395 (15) 3.395 400 2
0.10 16% x 4 16 21750 3.475 (2) 3.475 1000 5
0.20 163 x 4 8 29650 3.602 (3) 3.602 980 5
0.40 163 x 4 9 36600 3.772 (4) 3.771 750 5
0.60 16% x 4 6 41750 3.877 (2) 3.876 1000 5
1.00 163 x 4 8 101300 | 3.978 (2) 3.978 850 5

Table 4.1: The simulation parameters for the determination of the critical temperature. For the
T # 0 lattice the largest lattice size simulated, the number of 3 values and iterations and the
pseudo critical couplings are given. The [3 values, the number of iterations and the periodicity
of the Wilson loop and meson correlation measurements are presented for the zero temperature
simulation.

temperature lattices of size 8 x 4, 16° x 4 and 16%, respectively. The string tensions are extracted
from smeared Wilson loops as discussed in the appendix C and the pseudo scalar and vector
meson masses have been determined from wall source correlation functions at couplings close to
the critical one. The parameters of the finite and zero temperature simulations are collected in
table 4.1. There the number of 3 values and iterations are given. In general the zero temperature
simulations have been performed at the pseudo critical couplings. For some masses this is not
realized and results from two or three couplings given in column 6 have been linearly interpolated
to the critical 8 value. The Wilson loops and meson correlation functions have been measured
on every fifth configuration for larger and on every second configuration for smaller quark masses.
This periodicity is given in column 8.

The resulting string tension, pseudo scalar and vector meson masses are collected in table 4.2
together with T./+/c and T./mvy. In addition to the statistical error also the error due to the
uncertainty in the pseudo critical coupling is taken into account in these quantities. This has
been achieved by analysing the effect of a shift in § on the string tension and meson masses for
mga = 0.10, where simulations at several values of the coupling have been performed. It has then
been assumed that the relative effect is the same for other quark masses. Down to mya = 0.10
the additional error due to the uncertainty in (. is negligibly small. This is no longer true for the
mass mgya = 0.05.
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Ny =2
My, da H Be ‘ oa’ ‘ mpsa ‘ mya ‘ T./\/o ‘ T./my
0.05 3.585 (11) | 0.286 (14) | 0.697 (6) | 1.260 (35) | 0.467 (11) | 0.198 (6)
0.10 3.646 (4) | 0.271 (10) | 0.958 (2) | 1.377 (25) | 0.480 (10) | 0.182 (4)
0.20 3.778 (12) | 0.205 (12) | 1.295 (15) | 1.530 (35) | 0.552 (16) | 0.163 (4))
Ny=2+1
My,d0/Mmsa H Be ‘ oa® ‘ mpsa ‘ mva ‘ T./\/o ‘ T./my
| 010/025 || 3543 (2) | 0.271 (11) | 0.962 (3) | 1.343 (20) | 0.480 (10) | 0.186 (3) |
Ny =3
My, d@ H Be ‘ oa? ‘ mpsa ‘ mva ‘ T./\/o ‘ T./my
0.05 3.395 (15) | 0.303 (13) | 0.706 (6) | 1.320 (35) | 0.454 (10) | 0.189 (6)
0.10 3.475 (2) | 0.283 (11) | 0.967 (1) | 1.415 (15) | 0.470 (9) | 0.177 (2)
0.20 3.602 (3) | 0.248 (4) | 1.322(2) | 1.608 (9) | 0.502 (4) | 0.155 (1)
0.40 3.772 (4) | 0.189 (4) | 1.814 (4) | 1.985 (10) | 0.575 (6) | 0.126 (1)
0.60 3877 (2) | 0.176 (3) | 2.210 (4) | 2.347 (12) | 0.596 (5) | 0.107 (1)
1.00 3.978 (2) | 0.154 (2) | 2.838 (6) | 2.979 (15) | 0.637 (4) | 0.084 (1)

Table 4.2: The critical temperature in terms of the string tension and rho meson mass. Additionally
the critical couplings, the string tension and the rho meson and pion masses are given.

The two flavour transition temperature for p4 fat improved staggered fermions is compared to
unimproved staggered, Wilson, Clover and domain wall fermions in figure 4.1(a) and 4.1(b) for
T./v/o and T./my, respectively. For the transition temperature in units of the vector meson
mass the discrepancy between unimproved staggered and Wilson fermions is largely reduced when
improved fermion discretisations are used. Clover (green points), domain wall (turquoise points)
and p4 improved staggered (blue points) results agree within 10%. This observation shows that
standard staggered and Wilson fermions suffer from severe finite cut-off distortions different from
pure gauge theory, where the cut-off effects are already small for the Wilson gauge action and
consistent results can be obtained for different discretisations. The critical temperature T,./my
for improved actions turns out to be systematically larger than the standard staggered data at
least for values of mpg/my > 0.5. If this trend continues towards smaller quark masses then the
transition temperature can be estimated to T./mv = 0.23(1) (T. = 177(8) MeV) in the chiral
limit.

The transition temperature in units of the string tension /o unfortunately does not agree for
improved staggered and Clover data. One finds critical temperatures for the Clover action at
N, = 4 which are up to 20 % smaller than the standard staggered data whereas the p4 improved
staggered results predict a critical temperature which is a few percent larger. On the other hand
at smaller lattice spacing corresponding to the N, = 6 critical point, a calculation using the non-
perturbative Clover action [85] remarkably coincides with the improved staggered fermion result
at mps/mvy =~ 0.85. This suggests that at N, = 4 the lattice spacing even for improved Wilson
fermions is still too large to reliably determine the scale from the string tension. The estimate for
the critical coupling in the limit m — 0 from T./+/o is thus based on the quite linear trend for
standard staggered fermions for smaller quark masses and the fact that for mpg/my > 0.5 the p4
improved actions leads to a slightly larger T./\/o compared to the standard action. As for T./my
this suggests a critical temperature of about T./\/0 = 0.42(2) corresponding to 176(9) MeV.
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Figure 4.1: The transition temperature for two flavour QCD in units of the string tension and
the vector meson mass. Open/filled symbols correspond to N, = 4 and 6. All standard staggered
data [57, 86] are plotted in red, the standard Wilson data [87] in pink and results for domain wall
fermions [88] in turquois. The p4 improved staggered data are in blue, the different Clover results
[85, 89, 86] in combination with several gluon actions are all plotted in green.
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Figure 4.2: T,/mvy for standard [57, 90] and p4 fat improved staggered fermions versus mps/my.

The cut-off effects for staggered fermions can be analysed by comparing the results from the p4 fat
improved action with standard staggered data for T./mvy with N, up to 12. From figure 4.2 one
can read off the tendency that with increasing N, the transition temperature in units of the vector
meson mass becomes larger. For N, = 8 and even more 12 the results agree with the calculation
using improved staggered fermions at N, = 4. There is thus clear evidence that the sizable cut-off
effects in T./my for standard staggered fermions can be reduced with the p4 action.

One of the main goals of this work is to investigate the flavour dependence of thermodynamic
quantities. The results for two, two plus one and three flavours which are collected in table 4.1
are plotted in figures 4.3(a) and 4.3(b). The qualitative behaviour is quite the same for two and
three flavours. A rapid drop or strong increase for T, /\/c and T./my, respectively, is apparent
for quite large quark masses. The comparison of results with the p4 improved action shows that
the dependence on the number of quark flavours is a small but systematic effect. As one would
expect when increasing the number of degrees of freedom of the system, the critical temperatures
for three flavours is smaller than the two flavour one at the same meson mass ratio. The four
flavour Naik results do also support this observation. The one data point from the two plus
one flavour simulation does agree within errors with T, /+/o and T,./my for two flavours. Thus the
heavier strange quark seems to be irrelevant for the transition temperature and the dynamics at the
transition seems to be dominated by the lightest particle state, the pseudo scalar corresponding to
the pion. The pseudo scalar masses extracted from the up/down - up/down and strange - up/down
quark propagators, the pion and the kaon, have been determined to be 0.962 (3) and 1.255 (5),
respectively. This gives a pion to kaon mass ratio of m, /mg =0.77(1). Since at the physical point
this ratio is about 0.30 one might expect that the dominance of the pion for the dynamics of the
transition is even enhanced and the two plus one and two flavour critical temperatures also agree
in the chiral limit for a fixed strange quark mass of m,/T = 1.

In the figures 4.4(a) and 4.4(b) the same results for the critical temperature are plotted against
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Figure 4.3: The critical temperature versus mps/my for different number of flavours using standard
[57], Naik [56] and p4 fat improved staggered fermions.
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Figure 4.4: The transition temperature for two, two plus one and three flavour QCD in units of the
string tension and the vector meson mass versus mps/+/o with standard [57] and p4 fat improved
staggered fermions.
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mps/+/o. They show quite a linear trend over the whole range of mass values. For two flavour
QCD an extrapolation linearly in mpg/+/o leads to approximately the same critical temperature
of about 180 MeV as for the extrapolation in mpg/my. In the case of three flavours T, is about 5

to 10 MeV lower.

4.2 The equation of state
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Figure 4.5: The equation of state along lines of constant
mg/T. The blue symbols correspond to N, = 6 results
for two mass values. The blue symbols are results on an
N; = 4 lattice. Horizontal lines correspond to Stefan-
Boltzmann value for Ny = 4, 6, and the continuum.

In this section the equation of state
for two, two plus one and three quark
flavours using the 1 x 2 improved gauge
action and the p4 fat improved stag-
gered fermion action will be analysed.
One point of interest is the reduction
of the large cut-off effects present for
the standard Wilson gauge and stag-
gered fermion action. There the results
for the pressure and the energy den-
sity from N, = 4 and N, = 6 simu-
lations differ significantly [28]. In fig-
ure 4.2 they are plotted for points of
constant m,/T. The energy density in-
creases rapidly near the transition while
the pressure only rises smoothly. For
both N,=4 and 6 lattices the energy
density is much smaller than the infinite
temperature Stefan-Boltzmann value.

A second interesting question is con-
nected to the influence of strange quarks
on the equation of state. In the context
of heavy ion collision the enhancement of
strange particles is discussed as a signa-
ture for the formation of a quark-gluon
plasma [91]. Since the relative produc-

tion rate of strange anti-strange quark pairs is higher in a quark gluon plasma than the production
of bound states containing a strange quark in a hadron gas it is expected that the relative abun-
dance of strange particles after the freeze out is an appropriate signal to test whether the system
has been in the plasma state of matter or not. This simple picture has to be refined by taking into
account the detailed dynamics of the heavy ion experiment to really have predictive power.

On the lattice a first analysis of the contribution of the strange quark sector to the energy den-
sity has been performed by Kogut et al. [92] already in 1987 with a temporal extent N, = 4.
They calculated the fermionic part of the energy density by separately taking into account the

contributions from the light and heavy quarks,
3
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where in the quantity @ the zero temperature contributions are already subtracted. Such a
separation of €¢/T% in a gluonic, light and heavy quark sector is only correct for non-interacting
systems. Especially in the temperature regime a few times 7T, pure gauge results for the equation
of state have turned out to be of non-perturbative nature. Perturbative descriptions failed to give
the correct behaviour. Additionally the derivative d"}/F/d€|£:1 has only been approximated by its

lowest order perturbative value

dyr

_ 2
| =1+ol)

e=1
The total derivative of the masses with respect to the anisotropy vanishes in the chiral limit,
therefore this part in ep has been neglected.

dm,a

dg

—0 as mga—0
¢=1

For the strange quark this is however a crude approximation since mg/T should be of the order of
one at T..

The final result of reference [92] is plotted in figure 4.6 where the contribution to ep from the two
light and one heavy quarks are normalized to one flavour. At temperatures T' > T, the energy
density for the light isodoublett shows ideal gas behaviour. In the strange quark sector even at
temperatures a few times the

critical temperature the strange isodoublet, my 4/T=0.05 —s—
quark contribution is strongly strange quark, ms/T=1.0 ~——
suppressed. Close to the transi-
tion point the energy density in
the strange quark sector reaches
only half the value of a non-
interacting Fermi gas. These re-
sults, however, have to be in-
terpreted with care, since the
assumptions and approximations
discussed above are in no way
justified. Furthermore as al-
ready pointed out, do staggered
fermions at N, = 4 suffer from I T, ~2T, -8, > 10% .
severe cut-off effects. In this 0 . . . . . . .
work a simulation is performed 5.1 5.15 5.2 525 5.3 5.35 54 6.0 100 B
which uses methods which in Figure 4.6: The fermionic part of the energy density calcu-
principle allow a complete non- lated for two light flavours with m,, 4/T = 0.1 and one heavier
perturbative calculation of the Havour with my/T = 1.00.

pressure and the energy density

and is designed to reduce the cut-

off distortions.
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4.2.1 The numerical simulation

Numerical simulations on finite and zero temperature lattices of size 16® x 4 and 16* have been
performed at several values of the gauge coupling for two, two plus one and three flavours. The
light bare quark masses are m, 4a = 0.10 and the heavier strange quark mass is mgsa = 0.25
corresponding to ms/T = 1.00. On the 16° x 4 lattice 15 to 20 3 values have been calculated with
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a statistics of up to 3000 trajectories close to the critical point and 1000 trajectories away from it.
In the zero temperature simulations up to 800 trajectories were generated to obtain a statistical
error comparable to the finite temperature calculations.

On the T # 0 lattices the pseudo critical couplings have been extracted from the peak position of
the chiral susceptibility (table 4.3). Results consistent with these values can also be found when
analysing the Polyakov loop susceptibility or the third Binder cumulant. The scale has been set
by either calculating the string tension oa? or the pseudo scalar and vector meson masses my and
mps, respectively. In the two plus one flavour case in addition to the pseudo scalar corresponding
to the pion also the kaon has been analysed. These masses are also given in table 4.3. The ratio
of pseudo scalar and vector meson masses is in all three cases, mps/my ~ 0.7 indicating that
the quark masses used in this analysis are certainly too large to investigate in more detail the
temperature interval close to T,., where the correct chiral properties of QCD have to be realized.
In the high temperature phase, however, the dependence on the bare quark masses has been found

m a
ng B oa? T./\/o T./mv S mya

2 | 3.646 (4) | 0.271 (10) | 0.480 (10) | 0.182 (4) 0.058 ) . 1.377 (25)
241 | 3.543 (2) | 0.271 (11) | 0.480 (10) | 0.186 (3) | 0.962 (3) | 1.255(5) | 1.343 (20)
(11 (1 - (15

3 | 3475 (2) | 0.283 (11) | 0.470 (9) | 0.177 (2) | 0.967 (1) 1.415 (15)

Table 4.3: Pseudo-critical couplings, string tensions calculated at these couplings and the resulting
pseudo-critical temperatures for ny = 2 and 3 as well as QCD with two light and a heavier strange
quark. In addition results for the pseudo scalar and vector meson masses are given.

to be strongly reduced [56, 28] and reliable conclusions may be expected.
The temperature scale T'/T, is fixed by string tension measurements for several couplings on zero
temperature lattices,

T 1/N-a(8) _ V7a(B)
1/Nza(B:)  Voa(B)

The details of these calculations can be found in the appendix C. A parametrisation of \/oa as
a function of 8 will be used to calculate T//T. also at intermediate couplings where there are no
measurements performed. The ansatz is motivated by renormalisation group arguments [93]

Voa(B) = R(B)(1 + 26*(B) + csd(B)) /o (4.2)

with @ = R(B)/R(B). From the discussion in the appendix one knows that it is only suitable for
an interpolation and can in this form not be used to extrapolate to the continuum limit.

4.2.2 The pressure p/T"

The pressure has been calculated using the integral method [94] which makes use of the fact that
for homogeneous systems it is directly related to the free energy density by p = —f =TV 'In Z.
The derivative of this equation with respect to # and finally the integration of the resulting gauge
action yields the pressure

8
Bo

N,

3 8
=(N—U) [ a8 (a)y ~(Se)m) (4.3)

p

T4
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Figure 4.7: The action differences from 16* and 16> x 4 lattices for ny = 2, 3 and 2+1.

The zero temperature contribution (Sg)o calculated on the 16* lattice is subtracted to normalize
the pressure to zero at T = 0. The action difference for the two, two plus one and three flavour
simulations are plotted in figure 4.7 for values of the coupling corresponding to a temperature
range of 0.6 T, < T <4 T,. At around Ty ~ 0.67, the action difference is zero within errors which
defines the lower border for the integration. For the peak in the action difference a systematic
increase with increasing number of flavours is visible in figure 4.7, which after integration leads to
the increase of the pressure with increasing number of the degrees of freedom. This is apparent
from figure 4.8a, where the pressure for ny = 2 and 3 as well as the 2+1-flavour case is shown.
To test whether the flavour dependence for the QCD pressure is the same as for a non-interacting
system of quarks and gluons, the pressure is normalised to an ideal quark gluon gas,

DSB 21 w2
= = <16+ 2gf> o (4.4)

Here gy counts the effective number of degrees of freedom of a massive Fermi gas which contribute
to the free energy or pressure. For a massless gas g = ny, in general it is defined as

gr= > glmg/T) (4.5)

f=u.d,..
with
360 [

g(m/T) = — dzzv/2? — (m/T)?In(1+e” ") . (4.6)

B 771'4 m/T

For the quark mass values used in this analysis one gets ¢(0.4) = 0.9672 and ¢(1) = 0.8275,
respectively. The correspondingly normalized curves are given in figure 4.8b. They indicate that
for two and three flavours the dependence on ny is at least for 7'>27, governed by the ideal gas
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Figure 4.8: The pressure forny = 2, 241 and 3 calculated with the p4-action (a) and the normalized
values p/psp (b).The arrows indicate the continuum ideal gas limits for two and three flavour QCD
with quarks of mass my q/T = 0.4 as well as the case of two flavour QCD with m,, /T = 0.4 and
an additional heavier quark of mass my/T = 1.
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Figure 4.9: The pressure for ny = 2. Shown are results obtained with the p4-action on lattices with
temporal extent N, = 4 (line) as well as with the standard staggered fermion action on N, = 4
(squares) and 6 (circles, triangles) lattices. Also shown is an estimate of the continuum equation
of state for massless QCD (grey band), based on the assumption that the systematic error of the
current analysis is (15 £ 5)% and the continuum extrapolation of pure gauge theory rescaled by
the appropriate number of degrees of freedom.

behaviour. In the presence of a heavier quark the deviations of the pressure from the ideal gas
value is larger than in the massless limit . This is in qualitative agreement with the observations
made by Kogut et al. [92].

Cut-off effects

The cut-off distortions for different combinations of gluon and fermion actions are plotted in fig-
ure 4.10 for the free energy. The N, = 4 values of these perturbative calculations can be compared
to actual simulations performed with these actions for different number of quark flavours. Obvi-
ously the numerical results normalized by the corresponding Stefan Boltzmann values qualitatively
follow the same pattern as the ideal gas ratio f/fsp (figure 4.11). This clearly shows that also in
full QCD simulations the perturbative calculation of the high temperature limit gives useful hints
for the quality of the action in thermodynamic studies as it is the case for quenched simulations.
Although this analysis is restricted to a single temporal lattice size, i.e. N, = 4, one may try to
estimate the continuum limit. Since a complete extrapolation to a = 0 would demand calculations
at larger N,, the remaining cut-off effects have to be estimated on the basis of what has been
found in pure gauge simulations. There the analyses of finite cut-off effects have shown that at
temperatures T' ~ (2 — 4) T. the ideal gas calculations correctly describe qualitative features of
the cut-off dependent terms. However, they overestimate their influence by roughly a factor 2. If
this carries over to calculations with light quarks, which also have a thermal mass of O(g(T)T)
one may expect that the finite cut-off distortion in this numerical calculations is also reduced by
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Figure 4.10: The ideal gas value of the pressure for the standard staggered and Wilson gauge
action, the p4 and Naik improved staggered with 1 X 2 gauge action. To distinguish the number of
quark flavours different plotting symbols have been used. The triangle for four, the circle for three
and the square for two flavours.
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Figure 4.11: The pressure at N, = 4 normalized by the appropriate Stefan Boltzmann value for
the Naik action (ny = 4), the p4 fat action (ny = 2, 3) and the standard staggered action (ny = 2).
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a similar factor. The ideal gas limit for the p4 improved action leads to results which are 26%
and 29% below the continuum value for ny = 2 and 3, respectively. Combined with the small
systematic errors resulting from the use of non-zero quark masses in this calculation one may thus
expect that the continuum equation of state for massless QCD at temperatures T' 2 27, is about
15% above the values obtained in the simulation. This estimate for the continuum limit is shown
for two-flavour QCD in figure 4.9 together with results from a calculation with the standard Wilson
gauge and staggered fermion action on lattices with temporal extent N, = 4 and 6 [28]. These
latter data lie substantially higher which is in accordance with the larger cut-off effects for the
unimproved actions.

An alternative estimate for the continuum limit comes from the observation that at high tem-
peratures the flavour dependence agrees with that of an ideal gas. One thus may try to rescale
the continuum extrapolation of the pressure in pure gauge theory with the appropriate number of
degrees of freedom. The resulting curve which is also shown in figure 4.9 is in good agreement to
the continuum estimate based on the correction of cut-off effects.

4.2.3 The interaction measure (¢ — 3p)/7T" and the energy density ¢/T*

The calculation of (¢ — 3p)/T* is much more involved than for the pressure since one additionally
needs the g-functions for the gauge coupling and the quark mass. In the case of two plus one quark
flavours the following expression has to be evaluated

-3 -3 -3 —3
: T4 L= (6 T4 p>g1uon + (6 T p>up7d0wn i (6 T p)strange
(7). - (3)" R (15— (50)r)

with Rg = a(dB/da)|(am, s:am,) and Rm, ,,, = a(damu,d/s/da)\wﬂms/uvd). One thus has to analyse
in addition to the action differences also the difference of the operator (Tr M ~!) on zero and finite
temperature lattices. The results are plotted in figure 4.12 for the light and in the ny =241 case
also for the heavier quark.

From the interpolation of the string tension measurements presented in appendix C the g-function

Rp can be determined non-perturbatively via the expression

-1
()

(amy, q;ams) (amy g,amy)

From the calculations performed in this work the g-function for the quark masses can only be
approximated. In principle they can be determined from hadron masses using

a _dam,r = am
da N N
dam, am
da N ’
damg
a = amk . (4.8)

da
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Figure 4.12: The difference of (TrM~"') on zero and finite temperature lattices for ny = 2, 241
and 3 calculated with the p4-action. Given are the results for the light quarks with m/T = 0.4
and the heavier quark of the two plus one flavour simulation with m/T = 1.00.

Since the meson masses are functions of 3, am,, 4 and amg these expressions can be rewritten

Olnam;, Olnam;, Olnamy,
o = 1
Ry )] + B, g dam.y,q i, dam
Odlnam, Odlnam, Odlnam,
A, m m = ]'
o 08 + B damy,q + B, Oam
Olnamgk Olnamgk Olnamg
Rs——— + R, R,, = 1 . 4.9
A 0 + A damy,q + fim, Oam (4.9)

One now assumes that the mesons containing no strange quark are independent of the strange
quark mass. This seems to be justified by the small difference in the spectrum calculation of ampg
and amy for 2, 241 and 3 flavours. Then the partial derivative of the pion and rho mass with
respect to m, vanishes and the system of linear equations simplifies. Furthermore one has to choose
an explicit ansatz for the quark mass dependence of the meson masses since a direct measurement,
has not, been carried out. In this work the following expressions have been used

am? = h(B) amy.a
am, = f(B)+9(B) amuy,q
am}, = 1(p) e T (4.10)

2 )

where the quadratic dependence of the pseudo scalar mesons on the quark mass is motivated by
their Goldstone character for the flavour SU(2) or SU(3), respectively.
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Figure 4.13: The functions In h(8) and Inl(B) extracted from the pion and kaon mass measurements
together with a fourth order polynomial fit to the data points.

The equations 4.9 can now be solved with the result

f
Ry = I O(amy,a) (4.11)
1h" f
Rpy,,s = 2myg (1 - 5EF> + O ((amy,q)?) (4.12)
My,a+ms LI f myalh f
Rms = st (]. - Tﬁ?? . 5%? +0 (amu’d amsg, (amu,d)2) (413)

where f', h' and I’ denote the derivative of these functions with respect to 3.

Now since Rz has been determined quite precisely from the string tension measurements it will
be used to define f/f' neglecting the correction in am,, 4. The derivatives of the functions In h(/3)
and Inl(8) with respect to 3 yield h'/h and I'/l. From the measurements of the pion and kaon
masses the values of h and [ can be calculated using the above formula 4.10. The logarithm of
these data together with fits using fourth order polynomials are plotted in figure 4.13. Since the
meson masses for § values away from the critical point have only been calculated on 20 to 40
configurations separated by five Hybrid R trajectories, the determination of R, , and R,,, is
not thought of as a very precise measurement but merely as a rough estimate. In this sense also
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the interaction measure and the energy density taking into account fermionic contributions are
calculated to get an idea how large the effect of finite quark masses on these quantities might be.
Now one is in the position to calculate (¢ — 3p)/T* and the energy density ¢/7%. As already
mentioned before, in the chiral limit m, 4 — 0 the g-function for the light quark mass vanishes,
Ry, , — 0. Thus neglecting the part from the light quark sector might be interpreted as taking
the chiral limit. In figure 4.14 the interaction measure is plotted for the gluonic, the gluonic plus
fermionic contributions from the strange quark sector (T'rM—1!)  and finally the complete contri-

butions from the gluonic, light and heavy quark sector. The peak in the quantity ((e — 3p)/T*)

ms
gluon
increases with increasing number of flavours and for temperatures T2>2T, all curves agree within
errors. Additionally the continuum extrapolation for pure gauge theory has been included in this
plot which is substantially lower within the complete temperature range than the full QCD results.
This shows that, although only the gluonic action difference is included in ((e — 3p)/T4)g1u0n, the
quark degrees of freedom lead to a larger interaction measure.

When the fermionic contributions are taken into account the expected systematic increase in the
maximum of (e — 3p)/T* with the number of flavours is lost for ((e — 3p)/T4)gluoIthtrange and the
agreement at high temperatures does not show up. From this one analysis it is however not pos-
sible to definitely understand these peculiarities, but one might speculate that finite quark mass
effects are responsible for it. In earlier studies [28, 56] it turned out that the interaction measure
at larger temperatures decreases with the quark mass. Since the light masses m, 4/7 = 0.4 in this
simulation are relatively heavy it is reasonable to assume that for smaller quark masses the large
contributions from the light quark sector are substantially reduced. The situation is different for
the strange quark where at T, the physical mass of about ms/T = 1.0 is realised in this simula-
tion. On the other hand do the spectrum calculations at the critical point show that the kaon to
vector meson mass ratio of mg/mvy = 0.93 is still much larger than the physical value of 0.65. In
the three flavour simulation this ratio is approximately realized for mpg/my=0.68(1). There the
third flavour had a mass of mza = 0.10 instead of msa = 0.25 in the ny = 2 + 1 case. It is thus
reasonable to assume that the quark masses used here are still too large. This would explain the
large contribution from the heavy quark sector to (e — 3p)/T*.

The energy density has been calculated by adding three times the pressure to (e —3p)/T* (see figure
4.15). For ny = 2 and 3 the energy density shows the same flavour dependence as the pressure.
When normalized to the corresponding Stefan Boltzmann value, both curves in figure 4.16 more
or less agree for temperatures larger than 2.5 T,.. The energy density for a massive ideal Fermi gas
is calculated as follows

2
B <8 + ah,c) r . (4.14)

Similar to the case of the pressure, hy counts the effective number of degrees of freedom of a
massive Fermi gas relevant for the energy density. When m/T = 0 this factor is ny, in general it is

hi= Y h(mg/T) (4.15)

f=u.d,..
with
120 [ , 1
h(m/T) = w/m/T dz z°\/z? — (m/T)21 el (4.16)

For a single quark flavour the corresponding values are h(0.4) = 0.9881 and h(1) = 0.9230, respec-
tively. The overall Stefan Boltzmann values for three and two plus one flavours are esg /T* = 15.504
and 15.279, thus the effect of the heavier quark flavour is quite small for the energy density of an
ideal gas. For the ny = 241 simulation depending on whether taking into account only the gluonic
or additionally the fermionic contributions different conclusions on the suppression in the strange
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Figure  4.14: The quantities  ((e — 3p)/T4)glu0n, ((e— 3p)/T4)gluon+strange and
((e— 3p)/T4)gluonﬂp’downﬁmmge for ny = 2, 2+1 and 3 calculated with the p4-action
(from the top to the bottom).
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Figure 4.15: The energy density ¢/T* for ny = 2, 241 and 3 calculated with the p4-action taking
into account the different gluonic and fermionic contributions (the details are given in the text and

in the previous figure)
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Figure 4.16: The energy density €/esg for ny = 2, 2+1 and 3 which is normalized by the corre-

sponding Stefan Boltzmann value. (the details are given in the text)
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Figure 4.17: The energy density e/T* for ny = 2 with the standard staggered action (N, = 4 and
6), the p4 fat action (N, = 4) and the continuum extrapolation of pure gauge theory rescaled by
the appropriate number of degrees of freedom. For the p4 action the energy density with only
gluonic contributions is given in the lower curve.

quark sector can be drawn. For the gluonic case a clear suppression for large temperatures as
for the pressure has been found. When the heavy quark sector or the complete contributions are
taken into account all normalised curves show nearly the same behaviour for 7>2.57.. From the
above discussion it is however reasonable to assume that the physical situation is best described
by (e/T4)g1u0n. Then the results of Kogut et al. are confirmed by this simulation.

Cut-off effects

Finally the cut-off effects in two flavour QCD for the energy density will be analysed. In figure
4.18 the perturbative ideal gas value for the energy density for different fermion and gluon actions
for ny = 2, 3 and 4 are plotted. The staggered action in combination with the Wilson gauge action
has cut-off distortions of nearly 70% at N, = 4 and approaches the continuum ideal gas value only
for quite large temporal lattice sizes. The Naik and p4 action together with the tree-level 1 x 2
gluon action show much smaller deviation from the Stefan Boltzmann value, about 20% for the
Naik action at N, = 4 and 7% for the p4 action at N, = 6. In the lattice simulations a similar
pattern can be found as for the N, = 4 perturbative calculation. This is especially true when
only the gluonic sector is included in ¢/7* for the improved actions. The complete contributions
for the Naik action show a quite strong overshooting close to 7T,. Only at temperatures T 22T,
the ordering between Naik and standard staggered fermions are according to the ideal gas. Thus
again as in the case of the pressure the high temperature limit qualitatively reflects the cut-off
distortions present in lattice simulations at high temperatures.
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Figure 4.18: The ideal gas value of the energy density for the standard staggered and Wilson gauge
action, the p4 and Naik improved staggered with 1 x 2 gauge action. To distinguish the number of
quark flavours different plotting symbols have been used. The triangle for four, the circle for three
and the square for two flavours.

1.8 - . . .
16 ¢
14 ¢
1.2 ¢
1.0
0.8
0.6
0.4
0.2

0.0 ¥
10 15 20 25 30 35

staggered, N;=4, ma=0.025 —H&— 8
p4, Nt=4, ma=0.10 —v—
Naik, Nt=4, ma=0.05 —o&—

TIT,

Figure 4.19: The energy density normalized by the appropriate Stefan Boltzmann value for the
Naik action (ny = 4), the p4 fat action (ny = 2) and the standard staggered action (ny = 2)
at N. = 4. The lower curves for the Naik and p4 action take into account only the gluonic
contributions. The upper curve contains the complete gluonic and fermionic contributions.
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For two flavours all lattice data available are collected in figure 4.17. The results obtained with
the standard staggered action show strong cut-off effects and even at N, = 6 the energy density
is larger than the Stefan-Boltzmann value. Such a behaviour is not expected since in pure gauge
theory at temperatures of 1.5 T, the continuum extrapolation lies substantially below esg/T*.
Therefore it is reasonable to assume that for the N, = 6 results with the standard staggered action
there are still finite lattice spacing effects present. Since also for the energy density results from
two and three flavour simulations with the p4 action agree when rescaled by the corresponding
Stefan Boltzmann value, the continuum extrapolated pure gauge result has been rescaled by a
factor of 2.3125 accounting for the fermion degrees of freedom and is included in figure 4.17. As in
the case of the pressure it seems to be a reasonable estimate for the continuum result of the energy
density in the temperature range (2 — 4)7T... Then the energy density calculated with the p4 action
definitely shows strongly reduced cut-off effects. Whatever contribution to the energy density is
taken into account, only the gluonic or the complete, the agreement is within 15%.

4.2.4 Finite step size effects on the equation of state

The simulation of QCD with ny flavours
different from four has to be performed
with an algorithm which is not exact.
18.0 + (NT/chS(BGQ-[ﬁGQ) ' AT:0104 — ] The results discussed %n this chapt.er
16.0 A1=0.02 —— | have been obtained using the Hybrid
R algorithm with a step size of At =
am,/2.5. In the calculation of the pres-
sure with light quarks of am, = 0.10 a
8 step size of A7 = 0.04 has thus been
used. To quantify the error induced by
this choice additional simulations with
A7 = 0.02 have been performed on
163 x 4 and 16 lattices at five coupling
1 values. The action difference on zero
and finite temperature lattices, which is
the main input for a pressure calcula-
tion is plotted in figure 4.20. There one
observes the trend that the difference
Figure 4.20: The step size dependence of the action dif- calculated with the smaller step-size is
ference with At = 0.04 and 0.02. systematically smaller. This leads to a
smaller pressure after integration if the
temperature scale would not change significantly. Therefore, if in the future calculations of the
pressure proceed to a higher accuracy, the step size should be extrapolated to zero. In [50] it is
reported that this problem becomes worse for smaller quark masses.

14.0
12.0
10.0

4.3 Conclusions

In this work the critical temperature of the QCD phase transition and the equation of state have
been investigated with improved staggered fermions. The reduction of finite lattice spacing effects
and the analysis of the flavour dependence of thermodynamic quantities have been the main points
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of interest. For the transition temperature in units of the vector meson mass T./my two flavour
results from different discretisations using improved actions converge towards a unique result.
When the transition temperature is expressed in terms of the string tension more simulations
at N; = 6 are needed for improved Wilson fermions to confirm the agreement of 7./\/c with
improved staggered data at N, = 4. A present estimate for the two flavour critical temperature
is 180(10) MeV for m = 0. In general simulations at smaller quark masses are needed to reliably
extrapolate to the chiral limit using improved discretisation schemes. The same is true for the
flavour dependence which up to now only has been investigated at relatively large quark masses.
For am, corresponding to mpg/my > 0.5 a small but systematic increase of the critical temperature
has been observed when changing the number of flavours from three to two.

The equation of state for the pressure and the energy density have been calculated with two and
three light and additionally two light and one heavier quark flavour. The use of the p4 fat improved
staggered fermion action leads to the expected reduction of cut-off effects and a first continuum
estimate for the pressure has been obtained for T' = (2 — 4)T, on the basis of the analysis of
the remaining cut-off effects predicted by the high-temperature limit. For the energy density it is
a subtle task to correctly incorporate the contributions from the fermionic sector and a reliable
continuum estimate was not possible with the present lattice data. The situation close to the
transition has to be investigated using smaller quark masses such that the correct physical mass
spectrum is realised.

For both, the pressure and the energy density, the quark mass dependence in the case of two
and three flavours closely follow the pattern expected from the analysis of an ideal Fermi gas.
The strange quark contributions are however significantly suppressed relative to an ideal gas. For
the energy density this observation is made, when only the gluonic contributions are taken into
account. In the future one would like to perform simulations with fixed strange quark mass and
not, as in this work, with fixed ms/T. Additionally calculations at smaller N, are needed to be
able to perform the continuum extrapolation a — 0.

As for the critical temperature it would be nice to see that other discretisation schemes predict
the same equation of state in the continuum than staggered fermions. The only calculation up to
now has been performed with Wilson fermions [103], which unfortunately suffer from severe cut-off
effects for thermodynamic quantities.
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Appendix A

The Euclidean Dirac v matrices
and the SU(N) generators )

A.1 Dirac matrices

In Euclidean metric the v matrices are defined in terms of the Pauli matrices o as

i = ( 12 _6‘” ) i=1,2,3 = (? é)
where the Pauli matrices are given by
n=(1e) w=(0 ) ~=(04)
10 i 0 0 -1
The followiing relations hold

’yll = ’Y;L
{’Vua 'Yv} = 25;11/

A.2 SU(N) generators

Elements A of the group SU(N) can be written as

NZ_1
A =exp Z 1Tw®
a=1

where w® € R. T, are the traceless, hermitian generators, which are normalized as follows

1
Tr (T,T,) = §5ab

107

(A.6)
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The generators are defined through the commutation relations and the corresponding total anti-
symmetric structure constants fup. € R of SU(N)

[T,,Ty) =ifweT. abc=1,.,N>—1 . (A7)

For SU(3) the generators are in general expressed in terms of the Gellmann matrices T, = 1/2\%,
which have the following representation

010 0 —i 0 1 0 0
A= 1 00 M= i 0 M=[0 -1 0
000 0 0 0 0 0 0
00 1 00 —i 0 0 0
A= 00 0 N=100 0 MNM=10 01
1 00 i 0 0 010
00 0 1 1 0 0
A= 0 0 —i M=—1]01 0 . (A.8)
0 i O V3o 0 -2



Appendix B

The force computation in the
Hybrid R algorithm for the 1 x 2
gluon and the p4 fat link
staggered fermion action.

The integration of the equations of motion in the Hybrid R algorithm requires the calculation of
the time-derivative of the conjugate momentum H, (), which is implicitely defined through the
requirement H = 0,

. d n
0 = ZtrHu(x)Hu(a:)jLESG !
N

. d
NN (Mt OyM@U))x (B.1)

where x = 1/(MY(U)M(U)) M(U) R with the Gaussian noise vector R. Thus the derivative of
the gauge action and the fermion matrix with respect to the mlecular dynamics time has to be
calculated. In the following sections the corresponding expressions for the 1 x 2 gluon action, the
p4 and fat link actions are presented.

B.1 The gauge action

The 1 x 2 gluon action expressed in terms of link variables reads

= 0% (1 gk W +UL)

2>
—% (1 - 4]1\]6 (U2 @) + U2 @) + U2 () + Uiff*(@)) (B.2)
with
Upw(z) = Un(@)U,(z+ @)Ul (x + 2)U} (2)
UL (z) Uu(@)Uy (2 + @)Uy (2 + o+ 2)US (z + 20)US (2 + 2)UJ (2)
UXilz) = Un@)Uu(z + @)U, (z + 20U (z + i+ )U} (z + 2)U (2) (B.3)
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AND THE P4 FAT LINK STAGGERED FERMION ACTION.

The derivatives of the plaquette and the 1 x 2 loop is then given by

U (@)

UH,V(:E) =

I
":q-

+ + + 4+ o+
S

+ o+ +

Uu(@)U, (2 + @)U (x + 2)U} ()

Un(@)U, (z + @)U (x + ) U] (x)

Up(2)Uy (z + @)U (x + 2)US ()

Uu(2)U, (z + QU] (z + )T} (2) (B.4)
+ U, (x + o+ ) Ul (2 + 20)US (z + 2)U} (2)

+ U, (x + i+ 2)Ul (2 + 20) Ul (z + 2)U} (2)

+ Uy (x + o+ D)US (z + 20)U ) (2 + 2)US (x)

+ Uy (z + o+ ) Ul (z + 20) Ul (z + 2)U} (2)

+ U, (x + o+ ) Ul (x + 20)US (z + 2)U} (2)

+ U (2 + oo+ D)US (2 + 20)U (2 + 2)US (2) (B.5)

With these expressions at hand the time derivative of the gluonic action can be calculated. The in-

dices are rearranged such that U, () can be factored out and reexpressed by U, (z)

S2><1

= iH,(2)U,(x)

_%Ztr iH,( {;U {

g{m( + UL (@ + 2)US (2)
+US (x + fi a)Ug(m—ﬁ)Uu(m—ﬁ)]

B [Uu(:ﬂ-I-u)Uy(a:+2,u)UT(a:+u+u)U (z + 0)U} ()

+U,(z + Ul (x + 0)Ul (x — o+ 2)US (z — Q)US (z = 1)
+Uu(x + @)U (x + 20— 0)Ul (x + o — D) UL (z = 2)U, (= — D)
+UNz + o= U (& = D)Uf (2 — o = 9)Ul (2 = )U, (2 — f2)
+U, (m+u)U( + i+ D)Ul(x + 20)U) (z + 2)UJ ()
+UNz + o — D) U, (z + o — A)UZ(:U—QIA/)U,S:U—219)U,,(a;—19)}}
—h.c.}

Ztr iH,(z) (P8 (x) — h.c.)

(B.6)
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B.2 The fermionic action

The derivative of the fermionic action is given by

AL germion =gy (UMD x
- —;\;—]J;trx*%(DT[U]D[U])X
_ _J’\;_Ltr (X*DT[U]D[U]X + x*D*[U]D[U]X)
2 (oo 0uN )

= 3Tt (D] (DU @ +DWW] x © (D))
(B.7)

where M = mll + D and the property D' = —D has been used. Tr denotes the trace in space.

B.2.1 The fat link action

The matrix D[U] for fat links is defined as

D[Uley = c1000

AlUlay

1+ 6w (A[Uley + wF[Ulay)

Z Uy (2)00403y — UJ(@" — 0)8a—pyy

FlULy = Y3 (U@U(@ + p)U} (@ +9)

v pFv
+US @ = U (@ = DU + 5 = 5))durony
~ (U @)Ul = 7+ DU} (= — 9)
+U @ = U@ = 0= Uz = = §)) sy (B.8)

Now the time derivatives and thus the expression Tr tr (D[U](D[U]X) 2x*+D[U] x® (D[U]x)*)

can be calculated for the different parts of the action seperately. The cyclic property of the trace
has been used to bring U, (z) to the front.

>t X" AUNDUIX) + tr (DUT)* AlU]x

= 33t (U@ D0era © %5 = Up(@)Xera @ (DX); + hec:)

S5 triH,(x) (P;;‘(x) —h.c.+ P (z) - h.c.) (B.9)



CHAPTER B. THE FORCE COMPUTATION IN THE HYBRID R ALGORITHM FOR THE 1 X 2 GLUON
112 AND THE P4 FAT LINK STAGGERED FERMION ACTION.

Ztr X*F[UND[Ux) + tr (DIUx)*F[U]x

ZZtr Z( 2)U, (z + @U@ + 2)(DX)ats @ X}
v pFv
Uu(w)(DX)aH-u ® X:H—u VUZ(CU -V
— Uu(@)US (2 + oo = 2)UJ(z = 2)(Dx)a -
= Un(@)(DX)a+i ® Xy4on UL @ + D)US ()
+ Uu(@)U (2 + o = 9)Xa—ipn @ (DX)5_pUn(z — 9)
U (@)U (2 + @)X+ 40 @ (DX)345U ) (2)
— Uu(@)U, (2 + @)U (2 + 9)Xa 15 ® (D
(z)
(z)
(z)
(z)
(z)U

x

(z
X)z
— Up(@)Xati ® (DX)31 s Ul (x = )U, (x — D)
+ Uy (@)U (z + o= D)US (2 = D)Xaep ® (DX)}

(

+ Uu T)Xa+p @ (D X)I+M+UU;1J:($ + V)U:t )
Uul(z Ullz + i — D) DX)ari—v @ Xa_pUn(x — D)
Un@)Us (2 + B)(DX)atjits ® Xor s Ul (@) + huc)
S5 triH, () (Pf(a:) —hee.+ P (2) - h.c.) (B.10)
T op

Since the fields x only live on even lattice sites one has to distinguish the even and the odd case.
Printed in blue are the expressions which are valid for even sites in red the ones for odd sites.

B.2.2 The p4 action

The matrix D[U] for the p4 action is defined as

D[Ulsy = c1000 A[Ulay + c1200 Ba[Ulsy

AlUley = Z Up()0a4iy — UJ(CU = 0)6a—psy

BolUley = Y3 (U@l +0)Up(a+0+ )
v pFv

+U (@)U (@ + P + 26) ) dat 42510
+ (U,,(x)Ug(x + 0= PU (@ + D — 25)

+US (@ = U@ = 200U (@ = 29))8uso 20
- (Ul - U} (= = 20)U(z = & - 20)

+Ul (@ = Ul (= 0 = pUS (@ — b — 2,3))5%&,2@@,
- (Up(x)Up(x 4 UL — b+ 2p)

YUl (@ — D)U,(x — 0)U,(z — » + ﬁ))aw_ﬁmy (B.11)
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The expression for A[U] is given in the previous section, for By[U] it is
Ztr X" Ba[U](D[U]x) + tr (DIU]x)" B2[U]x

Z Ztr Z ( p (@)U (@ + 2)(DX) 2424 @ Xp45Un(2)

H vFE
H@ 4 i = 0)(DX)ari—o @ Xo_pUnl® — 1)
w(@+ @) (DX)a+20 @ Xz Uv(z — D)
Uy(z + @) (DX)a+iato ® Xg—pUn(@ — 1)
DX)ati ® Xo— i Ub (@ — D)Uu(z — 1)
+ Up(@)(DX)ati @ Xip2uU (@ + 0)U} (2)

- U#(x)
(x)U,
(z)
(z)
(z)

— Up(@)Up(@ + U (@ + 20 = 2)(DX)z420-5 @ X
(z)U]
(z)
(z)
(z)
(z)

u(x
+Uum

- Uy

(
z)(
— Up(@)Ul (2 + o= D)US (2 + o = 20) (DX) 2 4ji—20 @ X}
+ Uu(@)Up(z + W)U (2 + it + ) (DX)a+it20 @ Xy
+ Up(2)(DX) 2t @ X s Up(@ — o = YUy (x — 1)
+ Up(@)Up(z + @)Uy (z + 20) (DX) 2440 © X
+ Uu(@)(DX) a4 @ X5 -0 U (@ — 20)U, (z — )
— [(Dx) «— x, even +— odd] + h.c.)

33 triH, () (Pf2 () — hoc. + PP (z) — h.c.) (B.12)

Putting everything together the force term for the 1 x 2 gluonic and p4 fat improved fermion action
is defined by

ZZtrH ( ()+zF()) (B.13)

with
F,(x) = Py(z)- P,I(x)
=PI+ evgnoe (BAE) + 0P (@) + e1a00 P (0)
+ Cl,o,o,oﬁ (Pu (z) + wPf(:c)) + cl,g,o,OPEQ (z) — h.c. (B.14)

For the equation B.13 to be satisfied, H,(z) has to be proportional to the unity matrix. H,(z)
should remain traceless, therfore H,(x) is chosen to be so.

iH,(z) = Pu(z)-Pj(z)- %tr [Pu(z) — Pl(z)] (B.15)

This last equation finally defines the force for the 1 x 2 gluonic and p4 fat improved fermion action
in the Hybrid R algorithm.
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Appendix C

The static quark potential at zero
temperature

The determination of the heavy quark potential in full QCD will be presented. The string tension
extracted from it is used to set the scale in finite temperature simulations. Finally the fit ansatz
to describe the string tension as a function of the coupling § will be discussed.

The potential between a static quark anti-quark pair has been calculated from the temporal Wilson
loop

W(R,L) = <TrHUl> , (C.1)

leC

along a path C with a space- and time-like extension R and L, respectively.
From it the local potential has been extracted

W(R,L+1)

V(R,L) =1n WERI)

(C.2)

which for large temporal extension should approach a constant yielding V;;(R). The potential has
then been fitted to the ansatz

Vio(R) = Vo + % +oR | (C.3)

with the parameter o in the Coulomb term and the string tension o in the linear part.

As discussed in chapter 1 the signal-to-noise ratio can be improved by applying the smearing
technique proposed by the APE group [22]. The procedure consists of iteratively adding a spatial
staple to the link

U,—=U,+~ Z(l x 1 — staples), , (C.4)

v—p

where the factor v together with the number of smearing steps n are the parameters which are
used for tuning.
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C.1 The string tension from improved staggered fermion
simulations

For full QCD the static quark potential has been calculated at several values of the coupling for
two, two plus one and three quark flavours at the bare quark mass m, 4 = 0.10 for the light and
ms = 0.25 for the heavy flavour. On each configuration different smearing paramters v and number
of smear steps n have been tested. They are given in table C.1. In most cases consistent results
could be extracted from two or more combinations of v and n. Without smearing no stable results
could be extracted for the potential.

n| 0 5 5 10 | 10
v100101]03]01]0.3

Table C.1: Smear parameters and number of smear steps for the Wilson loop measurement.

Finally the string tension has been determined through a fit of the form C.3 to the potential
data. Although the p4 action has shown to improve the rotational symmetry of the heavy quark
potential (see figure 2.10), the distortions are still too large to include the off axis data in the fit.
In figure C.1 the resulting string tensions are plotted together with a fit to the data using the
renormalization group inspired ansatz [93],

Voa(B) = R(B)(1 + ¢26*(B) + c4d(B))/co (C.5)

with @ = R(3)/R(B). B is a normalisation constant.

The fit parameters are given in table C.2. In this work the fit will only be applied to interpolate
the string tension data to define a temperature scale in thermodynamic calculations of chapter 4.
In principle the fit has the correct asymptotic form and should allow an extrapolation to the

3 flavour —a—
2+1 flavour —&— .
2 flavour —oe—

0.8-‘}

07 2
0.6
0.5 | Voa
04

03
0.2
0.1+

0.0 - - - - -
32 34 36 38 40 42

Figure C.1: The string tension a+/o and a fit to the data using the ansatz C.5.
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continuum limit. The constant ¢q in the fit should determine the A parameter of lattice QCD,
Alat = /0 co. That this is for the bare coupling scheme in fact not the case will be discussed for
the quenched theory.

flavour content | [Bmin, Bmaz) I} Co c C4
2 [3.6.4.4] | 3.70 | 0.0570 (35) | 0.669 (208) | -0.0822 (1088)
2+1 3.5.4.4] | 3.60 | 0.0526 (32) | 1.026 (224) | -0.1964 (1065)
3 3.4,.4.2] | 3.50 | 0.0448 (15) | 0.507 (115) | -0.0071 (677)

Table C.2: Fit parameter used for the interpolation of string tension data.

In pure gauge theory the heavy quark potential has been analysed for the Wilson gauge action [39]
and different improved actions [41, 44]. Here the results of tree-level 1 x 2 improved actions
will be reviewed since this action is also

used in the full QCD study. The string

tension data from [41] have been fitted (1x2) —e—
to the ansatz given in equation C.5 and 0.70 t fit
are plotted in figure C.2. The parame-
ters of the fit have been collected in ta-
ble C.3. From /\1132 the A parameter in 0.50
the MS-scheme has been calculated us-
ing the relation Agg/A.i? = 5.442 (col-
lumns 7 and 8). The resulting \yzzg =  0.30
158(2)MeV is in good agreement with
the one extracted for the Wilson gauge
action, Ayg = 161(2)MeV [39],* when 0.10
the bare coupling scheme is used. It has 0.00 ) ) ) ) ) B )
on the other hand been shown [39], that 3.80 400 420 440 460 4.80 5.00
effective coupling schemes, e.g. defined
through the action, lead to much larger
values of A5 ~ 223(15)MeV. Unfortu-
nately for the 1x 2 action the A paramter
in an effective scheme cannot be calcu-
lated since the corresponding constants relating the MS- with effective schemes are not known.
Nevertheless, the agreement between the Wilson and 1 x 2 improved gauge action within the bare
coupling scheme suggests that also for the improved action the use of this scheme does not lead
to a correct asymptotic result. From these considerations it is thus reasonable to assume, that
the ansatz C.5 extrapolates properly to the asymptotic scaling region only when an effective cou-
pling scheme is used. This statement should also be correct for full QCD with improved staggered
fermions.

0.80 . . . .

T

0.60

0.40

0.20

Figure C.2: The string tension a\/o and a fit to the data
using the ansatz C.5.

[ﬂmina ﬂmax] B Co Co C4 Alat )\m
[4.00,5.00] | 6.00 | 0.0693 (7) | 0.00392 (51) | 0.0000146 (45) | 29.1 (3)MeV | 158 (2)MeV

Table C.3: Fit parameters for the fit C.5 to the string tension data. In collumns 7 and 8 the
resulting A-parameters are given.

*To be consistent within this work a value of /o = 420MeV has been used instead of 465MeV in [39]
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