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Chapter 1

INTRODUCTION

1.1 Motivation

Nuclear Matter is believed to undergo a phase transition from ordinary hadronic
matter to a phase where quarks and gluons become deconfined. This belief is
based on asymptotic freedom of QCD, the theory describing the strong interac-
tion between quarks and gluons. This phase transition is not just of academic
interest, since it has certainly taken place in the early universe according to cur-
rent big bang theory. It will also become investigable at the Relativistic Heavy
Ion Collider (RHIC) in Brookhaven and the Large Hadron Collider at CERN. In
fact there are two true phase transitions characterized by an order parameter in
two limits of QCD. When the quark masses are infinite, one has the deconfine-
ment transition with the free energy of a static quark as the order parameter.
When the quark masses are zero one has the chiral (symmetry restoring) phase
transition with the vacuum expectation value of the quark anti-quark condensate
as the order parameter. It is not yet clear if these transitions persist for physical
quark masses. Lattice results indicate, that both transitions occur at the same
temperature with one transition driving the other. This is the reason why one
speaks of the QCD phase transition. At a phase transition point one typically
has many length scales playing a role for the dynamics of the system. It is there-
fore often hard to find a suitable small expansion parameter for a perturbative
treatment. In QCD for example one has three natural length scales given by
the inverse temperature 1/7T, the electric screening mass 1/¢7T and the magnetic
screening mass 1/¢g?T. The use of a nonperturbative approach, i.e. lattice QCD,

is therefore advisable. Since thermal effects of massive particles are exponentially
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Figure 1.1: Expected phase diagram of 2 flavour QCD in the (-k-plane

suppressed by their mass, the study of QCD with two light flavours is of partic-
ular phenomenological interest. Unfortunately the lattice has its own pitfalls,
one of which is the nonexistence of an action which preserves chiral symmetry
exactly for finite lattice spacing due to a general theorem [1]. Two popular dis-
cretisations exists and one has to check that the results obtained are consistent
with each other. Most studies of QCD thermodynamics have employed staggered
fermions, since they preserve a remnant chiral symmetry, which keeps the quark
masses from acquiring an additive renormalisation, but which breaks the flavour
symmetry at finite lattice spacing. The other discretisation due to Wilson pre-
serves the flavour symmetry at the expense of breaking all chiral symmetries.
This lack of chiral symmetry causes much conceptual and technical difficulties
in numerical simulations and the physical interpretation of data. Before we turn
to these problems let us discuss the physical expectations for the phase diagram
of QCD as a function of temperature, quark mass and lattice spacing. On the
lattice these parameters are mapped onto the temporal extent of the lattice V.,
the hopping parameter x and the inverse coupling 5. This mapping is nonlin-

ear, but some features of it are well known. The connection between inverse
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coupling and the lattice spacing is such, that a = 0 for § = oo and vice versa.
The inverse temperature is given by N,a. Therefore the thermal line k7 moves
toward weaker coupling as N, increases. And finally, the line k = 0 corresponds
to infinite quark masses. Along this line, representing the pure gauge theory, a
first order deconfinement phase transition is well established. This phase tran-
sition will extend into the phase diagram and the effect of the fermions will be
to lower the transition temperature. The strength of the transition may soften
and eventually turn into a rapid crossover rather than a true transition. For
zero gauge coupling the critical hopping parameter k. at which the quark mass
vanishes is known to be k. = 1/8. Since Wilson fermions break all chiral symme-
tries, this point is not protected from additive renormalisations and the critical
line becomes (3-dependent. This line corresponds to the chiral limit of QCD.
One expects chiral symmetry to be broken spontaneously at zero temperature for
phenomenological reasons and become restored at finite temperature. This chiral
phase transition is believed to be of second order for two fermion flavours [2].
As we have mentioned before, both transitions coincide for intermediate quark
masses, so one expects the deconfinement transition line to run into the critical
line at some (3. Because of the absence of chiral symmetry for Wilson fermions,
the definition of the critical line is ambiguous. One usually defines the critical
line by the vanishing of the pion mass or quark mass at zero temperature. Where
the quark mass is defined via an axial Ward identity [3]. Initial simulations [4]
failed to find a crossing point down to # = 3.5 with the transition line run-
ning almost parallel to the critical line toward strong coupling. This raised the
question whether it was possible to describe the confinement phase in the chiral
limit with Wilson fermions. The issue was further investigated in [5] where the
crossing point for 2 flavours at N, = 4 was determined to be (., ~ 3.9 — 4.0.
This was done by simulating along the critical line, defined by a vanishing pion
mass at zero temperature. Coming from the high temperature side, where no
singularity is seen across the critical line, the inverse coupling was lowered until
such a singularity appeared in terms of a diverging number of CG-iterations. An
investigation of how the position of the crossing point changed with increasing

N, brought the disencouraging result, that to have . > 5.0 one has to go to
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N, > 18! The transition was found to be continuous at (. as expected. This
raises further expectations about the strength of the transition as the quark mass
is increased from zero. The transition should soften as the quark mass increases,
but should become stronger again when the quarks are heavy enough to recover
the first order transition of the pure gauge system. Contrary to this expectation
the MILC collaboration found [6] for N, = 4 that the transition becomes once
very strong and becomes weaker again at smaller k. For N, = 6 this intermediate
transition even becomes first order. In summary this means that the finite tem-
perature transition with Wilson quarks for small quark masses is plagued with
lattice artifacts. In this study an improved action has been used whose derivation
will be discussed in §(1.4). Recently a new view of the finite temperature phase
diagram has emerged, which is based on the spontaneous breaking of parity and
flavour symmetry. This proposal will be examined in Chapter 2. It is another

goal of this study to test this proposal with improved actions.

1.2 Outline of this work

In the previous chapter we have tried to summarise the motivations leading to
the research presented in this thesis. The remainder of Chapter 1 discusses some
basic facts used throughout the thesis. We first discuss the chiral properties of
Wilson fermions, as they play a central role in the analysis of the phase dia-
gram. Then we discuss Symanzik’s improvement program and its application to
the fermionic and gluonic action. Chapter 2 discusses in some detail the phase
diagram of QCD especially the proposal of Aoki and its application to finite tem-
perature. Chapter 3 describes shortly the ideas of Monte Carlo integration used
to evaluate the partition function, Markov processes to generate a desired prob-
ability distribution and the difficulties arising when fermionic degrees of freedom
are added. The Pseudofermion method and the Hybrid Monte Carlo algorithm
are described and equations of motion for the clover action derived. Chapter 4
discusses the results of our study. We will first present our findings and then
argue for them from the results obtained from simulations on two different lat-

tice sizes. Appendix A contains a short summary of how to quantize gauge and
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fermion fields. This mainly serves to fix our notation. Appendix B lays down
in detail the derivation of the equations of motion for the Hybrid Monte Carlo

simulation.

1.3 Wilson fermions and chiral symmetry

In this section we want to discuss some of the chiral properties of Wilson fermions
as they play a role in further discussions. Starting from the free action given
in Equation (A.37) we want to determine the particle content of the theory. To
identify the particles in the spectrum we study the poles of the fermion propagator
in momentum space. We first rescale quark and anti-quark fields by a factor
a®/\/2k where k = 1/2(am + 4r). With this new normalisation the free fermion
action can be written as S; = Y. ¥(z) M, (y) with the fermion matrix

Moy =0sy — K Z Oyt alr + Yl + O y—plr — Yul- (1.1)
1

We now go to momentum space, where we define the Fourier transform as

Yp) =) e "P(x) and  P(p) =) eP(a). (1.2)

x x

Since the fermion matrix in momentum space only depends on one momentum,
because of translation invariance, we get after factoring out of a momentum

conserving delta function:
M(p) =1-2k Z rcos(pu) — iy, sin(py). (1.3)
u

The propagator is the inverse of the fermion matrix and it’s poles give the particle

content.

Ap) = <1 - ZKZrcos(pu) — i, sin(pu))

7
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1 =2k, rcos(py) + ivysin(p,)
P
(1 =267 cos(pu)) +4k Y, sin?(py,)

1 (i — Zurcos(pu)> + i), Yusin(py) (14

Now consider the case » = 0. For small a one can expand A(p) around p, =
(0,0,0,0). The result is up to a normalisation factor the free fermion propagator

in the continuum with M =1/2xk

M +ip

A0) = 3

(1.5)
However the same result can also be obtained by expanding the lattice propagator
around momenta p, which have one or more components in the other corner of
the Brillouin zone. In fact all 16 corners of the Brillouin zone are equivalent.
This is a consequence of the spectrum doubling symmetry [7]. This symmetry is

generated by the following set of operators and products thereof:
Ty =1, T, = yuy5(—1)"/°. (1.6)

It can be shown that these operators transform the physical fermion state near
pu = (0,0,0,0) to doubler fermion states with momentum components in the far

corner of the Brillouin zone, e.g.

(1)) (p1, p2s p3, Pa) = Y (p1 + 7/ a, pa, p3, pa). (1.7)

Since this analysis only relied on the spinor structure of the theory it is clear,
that the doublers will also exist if interactions are turned on. Then doublers
can be pair produced by the gluons and that is why one is worried about them.
In fact these additional states must appear. A chiral invariant regularisation of

QCD cannot produce the axial anomaly in the continuum limit, due to Adlers
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theorem. As shown in reference [7] the additional species have chiral charges such
as to cancel the anomaly. For r # 0 the spectrum doubling symmetry is broken
as is chiral symmetry. The contribution to the anomaly no longer cancels and
produces the right anomaly, see again reference [7]. Let us now discuss the case
r # 0. We analyse the behaviour of the term M =1/2k —r_ cos(p,) near the
corners of the Brillouin zone. There are five different sets of momenta for which

this term acts in a different way:

(i) p=1(0,0,0,0), M = 1/2k — 4r
(ii) p = (7/a,0,0,0) or (0,7/a,0,0) etc., M = 1/2k — 2r
(iii) p=(r/a,7/a,0,0) or p = (7/a,0,7/a,0) etc., M =1/2k
(iv) p= (n/a,7/a,7/a,0) or p = (7/a,7/a,0,7/a) etc., M = 1/2K + 2r

(v) p=(r/a,n/a,7/a,7/a). M =1/2k + 4r

If one now tunes k to k. = 1/8r the quark near p = (0,0, 0,0) becomes massless,
whereas all other doublers get a mass of O(1/a). In the continuum limit they
decouple from the spectrum and one is left with one fermion flavour. The price
we have to pay for this is of course the breaking of chiral symmetry. This implies
that the value of k. = 1/8r of the free theory is not protected by symmetry once
we turn on interactions. The value for . will depend on the gauge coupling and
has therefore to be inferred from simulations. Note that one can choose k such,
that another set of doublers become massless, e.g. for k = 1/4r the doublers of
set (ii) become massless and all others again have a mass of O(1/a). This will

become important in our discussion of the phase diagram in the next chapter.

1.4 The Symanzik improvement program

While studying the approach to the continuum limit for lattice ¢*-theory, Symanzik
made the following important observation, see reference [8]. Suppose we start
with a given lattice action S;. The field theory described by this action is con-

tained in the collection of all vertex function I'(py,ps,...,pn; g% a). Symanzik
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then introduced the concept of a local effective Lagrangian S,¢; in terms of con-
tinuum fields, that would give the same vertex functions as Sy, up to a certain

order in the lattice spacing a.
Supp = /d4m{£0(x) b aly(z) + a2La(x) + ..}, (1.8)

Where L, is the continuum Lagrangian and £ are a combination of local opera-
tors of dimension 4+ k with the same symmetry as the lattice action. As the local
effective Lagrangian is specific to the lattice action, one can use the freedom to
choose the lattice action to speed up the approach to the continuum limit. The
freedom one has to choose the lattice action is to add suitable linear combinations
of irrelevant operators, i.e. lattice analogues of £, etc., in such a way as to have
L1 = 0 in the corresponding local effective Lagrangian. This program can then
be carried out order by order in perturbation theory. Symanzik showed that all
vertex functions can be thus improved in ¢?-theory. For lattice gauge theory no
such proof exists, due to the fact that gauge dependent terms have to be added
to the action at intermediate stages of the calculation. Liischer and Weisz have
therefore proposed a minimal improvement scheme by demanding improvement
for on-shell quantities, hence the name on-shell improvement [9]. According to
reference [10] no proof for the existence of an on-shell improved action has yet
been given, but is tacitly assumed. One further ingredient to the derivation of
a suitable on-shell improved action is, that given one on-shell improved action,
others can be obtained from a local covariant isospectral transformation of the
fields, where isospectral refers to the low-lying states. Such a transformation will
in general change the coefficients of the operators in the original action. Oper-
ators whose coefficients can thus be varied are called redundant and their value
can therefore be chosen for convenience. Let us now look at O(a)-improvement

for gluons and fermions in particular.
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Figure 1.2: The three types of six link loops, figure taken from reference [11].

1.4.1 The O(a)-improvement of the gauge action

In the gluonic case there are no dimension 5 operators so the expansion of the

local effective Lagrangian starts at O(a?). There are three dimension 6 operators

0O — ZTr<DuFMVDMFW> :
Y%

0P = ZTr(D#F,,pD#F,,p> ,
[v,p

Of = 3 Tu(DuFuD,Fy) - (1.9)
)

On the lattice this corresponds to loops with 6 links of which there are also only

three, see Figure 1.2. Each of these loops has the expansion
£ = oW 4000 L9 0l L 00 (1.10)

Liischer and Weisz have calculated these expansion coefficients at tree level, see
reference [9]. The results are given in Table 1.4.1 The lattice action can now be
written as
6
Sy = o {eW(e) £+ 3 Vgt £} (1.11)

g i=1,3
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Loop | r® 7“%6) réﬁ) réﬁ)
T 1

£<2> -l 5100

£ 23100

(6) 1 1 1

S| 2

£ | —a] Lo | L

Table 1.1: The coefficients of the continuum operators of dimension 4 and 6 in
the classical expansion of Wilson loops with 4 and 6 links.

From the results in Table 1.4.1 one can see, that tree level improvement can be
obtained by choosing
5 1
084) = 3 c§6) = ——; céﬁ) = ch) = 0. (1.12)
One can also improve the gauge action beyond tree level. This was carried out by
Liischer and Weisz in reference [12]. As it turns out, there are only two constraints
one can get from demanding improvement of certain on-shell quantities. This is

due to the fact that the operator O§6) is redundant, as one can see from the field

transformation

9 €
A, — A, +a 5Z[D,,,F,W]. (1.13)

v

One can therefore set it to zero without affecting on-shell improvement to make
the simulations easier. Since in this study we want to study the phase diagram at
finite temperature, which at fixed temporal extent N, means large (3, we expect

tree level improvement to suffice.
1.4.2 The O(a)-improvement of the fermion action

In order to find an O(a) improved fermion action let us first enumerate all oper-

ators up to dimension five.

dim3: 0% = ¢ (z)y(z)
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dim4: O* = (2) P(x)

dim5: O} = ¢(z)(D? — 3io, Fl. ) (z)
03 = (@) 510 Futh (x)

To translate these to the lattice, we define the following covariant derivatives:

Dristy(z) = (U (2)d(a + f) — ()

DY) = () ~ U)o — i)
Dib(r) = S[Dp + D)
(D)Ho(a) = (Do Dip(a)
Aby(z) = Y (DR u(a) (1.14)

To discretise F),,(x) we note that it can be obtained from the imaginary part of
the plaquette. To preserve as much rotational symmetry as possible one averages

over the four possible plaquettes starting at x the pv-plane:

Fult) = o [Uu@)Unla + UL+ UL (2)
+ Uy(@)Ul(x + 0 — @)U (x — i) U, (2 — j1)
+ Ulw—Uj (@ == @p)Uu(x =0 = @)U, (z — D)
+ Ulw = 0)Uu(z — 0)Uy(x — 0+ p)U}(2)
— hel] . (1.15)

With these definitions, the lattice operators can be written

Op = @)Dy ()
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- 1
Oi,l = w(x)(AL - Q—CLQU“Vf“V)w(x)

i

02,2 = &(x)Q—ago-;wf;ww(x); (116)

and the lattice fermion action is given by

S = Za’lbg(ﬂ,ma)Oi(a:) + by (B, ma)O; (v) +

a by(B, ma)O} | (z) + a by(B, ma)O} ,(). (1.17)

Since tree level improvement is consistent with classical improvement, requiring
the vanishing of all corrections to the continuum action to O(a) in the small
a expansion of the lattice action gives a tree level Symanzik improved fermion

action. This condition requires for the coefficients b;(3 = 0, ma)
bo(0,ma) = ma, b1(0,ma) =1, be(0, ma) = b3(0,ma) =0, (1.18)

i.e. the naive fermion action is tree level O(a) improved. The next step is to use an
isospectral transformations to remove the doublers from the physical spectrum.
Since the doublers involve high momentum modes we are allowed to change their
properties. Using an isospectral transformation makes sure we do not spoil O(a)

improvement as we remove the doublers. The transformation is given by:

() — P(@) +aPy(a)
U(@) — Y(@) +eaPi(z), (1.19)

It renders the operator OF(x) redundant and one can add it with an arbitrary
coefficient. The coefficient of the operator O3(x) has to be determined perturba-
tively, but at tree level its value is b3(0, ma) = 0. The Alpha collaboration have
invented a way to determine this coefficient nonperturbatively, but the results

were not yet available when this study was begun. We therefore used the tree
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level value ¢z, = 1. The action used in this study is hence given as S = S, + Sy,

where S, and Sy are given in a graphical representation below.

S, = — Z (1——R6T1"DW(~”U)> -

T u>1/

(oo den(oe] L)) o

5 = 21n {<lzlm%%uu U””> v

s [(1 =) B+ )+ (L) B+ J000)

(1.21)



Chapter 2

The Finite Temperature Phase Diagram of
2-flavour QCD

2.1 The early understanding

The first analysis of the phase structure of lattice QCD is reference [13]. Kawamoto
studied the singularity structure of the chiral condensate, because it has the same
radius of convergence (in ) as the fermion propagator and can easily be extended
to the fermion gauge coupled system. He found a singularity in <@Z¢> at k. = 1/4
in the strong coupling and large N limit, where N is the number of colours. This
value is lowered as Ng¢? is lowered from infinity. He also found a singularity at
k. = 1/8 in the weak coupling limit, whose value is increased as the gauge inter-
action is taken into account. From this observation Kawamoto conjectured, that
a line of singularities in <1ﬁw>, connecting the singularities in the strong and weak
coupling limit, exists. The region where k < k.(f) is the physical region. On
the line k.(() the pion mass vanishes, and for k > k.() the pion mass becomes
imaginary. In the weak coupling region also the quark mass vanishes along the
critical line with M2 ~ m,. This is one of the conditions to hold for a theory with
spontaneous breakdown of chiral symmetry. Another condition is the vanishing
of the pion-pion scattering amplitude at zero momentum in the chiral limit. This
however is not satisfied on the critical line in the strong coupling limit. Although
the critical line has conventionally been interpreted as the line along which at
zero temperature chiral symmetry is spontaneously broken, Kawamoto’s results

in fact indicate, that this interpretation is not straightforward.

14
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2.2 Aoki’s Proposal

In 1984 Aoki challenged this picture for a number of reasons [14]. If there is
a line dividing the # - k plane into two phases, what is the order parameter to
distinguish the two phases? How can the pion become a tachyon, when the action
of QCD has physical positivity? Is a spontaneous breakdown of chiral symmetry
possible with only one critical line? Aoki went on to propose a new phase diagram
for 1 flavour QCD with Wilson fermions:

e There exist 5 continuum limits for four dimensional QCD corresponding to
different regions in momentum space where different sets of doublers become
massless: (i) p = (0,0,0,0), (ii) p = (7/a,0,0,0) or (0,7/a,0,0) etc., (iii)
p = (n/a,7/a,0,0) or p = (w/a,0,7/a,0) etc., (iv) p = (7/a,7/a,7/a,0)
or p = (r/a,7/a,0,7/a) etc. and (v) p = (0,0,0,0). The true continuum
limit is of course (i). A pair of critical lines on which the 7m-meson mass

vanishes is associated whith each continuum limit

e There exist regions in the § — k plane, where the <1/;i75¢> = 0 vacuum
becomes unstable and the true vacuum has <1/;i75¢> # 0. The transition

between these phases occurs at the critical lines mentioned above.

e In the strong coupling limit only two critical lines exist where the m-meson

mass vanishes. Therefore no separation of the doublers occurs.

e At intermediate coupling, new critical lines emerge, that separate the five

regions in momentum space.

The properties of this phase diagram are drawn from two sources. One is the 2
dimensional lattice Gross-Neveu model formulated with the Wilson action in the
large N limit, where N is the number of colours. In this limit one can solve the G-N
model analytically and finds the above picture verified. Calculating the pion mass
near the critical point M, one obtains the PCAC-like relation m2 ~ (M — M,),
without recourse to chiral symmetry. The other source is strongly coupled QCD,

also in the large N limit. Calculating the effective potential in this limit one finds,
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that in addition to the conventional phase with <1Ei’y5w> = 0 there exists a phase
with <zﬁi75w> # 0 for 0 < M? < 4, where M = mya + 4r = 1/2k is the mass
parameter. Calculating the pion mass one finds, that its mass vanishes only at
the transition point. This shows, that the pion is the massless mode connected
with the parity breaking phase transition. These results are unchanged, when
one includes the first corrections in (3 in the large N limit [15]. Investigating the
case of two flavours again at 4 = 0 in the large N limit, one finds two different

kinds of vacua due to an accidental symmetry of the solution to the saddle point

equation:
(Pis1p) 0 and  (YiysTsyy) =0 (2.1)
(Pivs1y) =0 and  (YiysTah) # 0 (2.2)

The vacuum of Equation (2.1) breaks only parity invariance, whereas the vacuum
of Equation (2.2) breaks both the flavour symmetry and the parity invariance.
The true vacuum can be found using the strong coupling expansion which removes
the degeneracy between the vacua. It turns out, that Equation (2.2) is the true
vacuum, i.e. both parity and flavour symmetry are spontaneously broken for
M? < 4 in the strong coupling expansion. Calculating the meson masses one
finds, that the neutral pion my becomes massless at the phase transition, as do
the charged pions 7y due to flavour symmetry. The 7 meson stays massive
at the transition which solves the U(1) problem on the lattice. In the parity
flavour broken phase 2 Goldstone bosons must appear which are the charged
pions. However the neutral pion becomes only massless at the transition point

[16]. The approach to the critical line will be governed by some critical exponent,

2

2v
ﬂ .

so one expects m2 ~ (k. — K) Since low energy properties of pions can be

described by an effective 4-dimensional scalar field theory, one expects the phase

transition to be mean field like up to logarithmic corrections and therefore v =

1/2, reproducing the PCAC relation m2 o mg,a, where the quark mass is defined
1 1

as mga = (5.~ — 5-). Using chiral ward identities, one can define a current quark
c
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mass via [3]

oW1 = Zx,y,t<V31/_W573¢($u) ‘1/_17515(0». (2.3)

’ Zx,y,t@%W%) ' 7]"757#(0»

This quantity is not a tunable parameter and the existence of a chiral limit is
not ensured. However the above scenario explains how the theory obtains such a

limit.
2.3 An effective Lagrangian analysis

In reference [17] the phase structure of 2-flavour QCD close to the continuum limit
was studied using an effective continuum Lagrangian whose long range behaviour
can be analysed using a chiral Lagrangian. The effective continuum Lagrangian

is the same we encountered in the Symanzik improvement program

Lo = Ly + (D + m)p + byaryio, Fu i (2.4)

where £, is the gluon Lagrangian and terms of O(a?) have been dropped. Writing
down an effective chiral Lagrangian leads to
2

Ly="FTr (0"219,%) + V. (2.5)

The first term is invariant under SU(2);, x SU(2)g chiral rotations, as is the
effective continuum Lagrangian without mass and Pauli term. The second part

V, contains the symmetry breaking terms up to second order in m:
Vo= —3Tr(2+5) + 2 {Tr (z+5h}". (2.6)

Since the Pauli term transforms under chiral rotations in the same way as the
mass term, its effects can be absorbed into the coefficients ¢; and ¢,. Dimensional

analysis then tells us that

c1 ~mA® 4+ aA®, cy ~ m*A? + maA* + a®A°, (2.7)
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Where A is an abbreviation for Agep. As one reduces the mass at fixed lattice
spacing, one enters a region where the two coefficients become comparable in
magnitude and the competition between the two terms can lead to spontaneous
parity and flavour breaking. For masses m ~ aA? discretization effects become
important and the mass at which ¢; vanishes is shiftet from m = 0 to m' = 0
with m’ = m — aA?. When this shifted mass is of O(a?), i.e. am’ = (aA)?, the

size of the coefficients becomes comparable. Writing

Y =A+iB- o with A2+ B? =1, (2.8)
the potential becomes

V, = —c1 A+ cpA?, (2.9)

having a minimum/maximum at € = ¢;/2¢,. Denoting the vacuum state by
Yo = Ao + iBg - o, one sees that a nonzero By breaks the flavour symmetry
to U(1). A nonzero By can only occur for |Ag| less than one. The sign of ¢,
distinguishes two different scenarios. For ¢ < 0 the minimum of the potential is
attained for Ay = +1. Hence flavour symmetry is not broken, but the pions do
not become massless either. For ¢, > 0 the minimum of the potential lies at e,
hence if || > 1 the vacuum is Ay = 1, but for |¢|] < 1 the vacuum is Ay = ¢
and flavour symmetry becomes spontaneously broken. Since € ~ m'/(a?A?) with
m' = m—al?, one sees explicitly, that the Aoki phase has width Amgy ~ aAm' ~
(aA)3. This analysis cannot predict the sign of ¢, and stays essentially unaltered
for the improved case. The sign of ¢, can however change when one goes to the
improved case, so the existence of an Aoki phase for improved Wilson fermions

is an open question.

2.4 Application to finite temperature

The application of these ideas to the phase structure at finite temperature was
put forward in reference [18]. They defined the critical line at finite temperature

k() by the vanishing of the pion screening mass. This definition makes contact



Chapter 2. The Finite Temperature Phase Diagram of 2-flavour QCD 19

with the standard definition at zero temperature and is a natural extension to
finite temperature. The question then arises how this line is related to the finite
temperature transition line x7(3), defined for definitiveness sake by the peak in
the susceptibility of the chiral condensate. One would expect the two lines to
meet on the following physical ground. Moving along the critical line towards
increasing [ increases the temperature. Since one expects the restoration of
chiral symmetry at high temperature, one should find a point where the chiral
condensate drops to zero and the corresponding susceptibility has a peak, i.e. one
should cross the k() line. Initial simulations failed to find clear signals of such
a behaviour. As reviewed in reference [19] the finite temperature line runs almost
parallel to the critical line, defined by the vanishing of the pion mass at zero
temperature, towards strong coupling, raising the question whether the two lines
meet at all. Subsequent simulations determined the crossing point by running
along the zero temperature critical line towards strong coupling until the number
of conjugate gradient iterations diverged signaling the appearance of a massless
mode, namely the pion, in the spectrum. Using the one plaquette action for the
gluons and the Wilson action for the fermions, the crossing point was determined
to lie deep in the strong coupling region at 3., = 3.9—4.0. The shift of this crossing
point with NV, was studied and it was estimated that N, 2 18 would be needed
to have the crossing point in the week coupling region. Another way out is the
use of improved action for the gauge field, which is pursued in this study. Aoki,
Ukawa and Umemura then analysed the two dimensional Gross-Neveu model
formulated with the Wilson action at finite temperature. Except for confinement,
this model shares many important features with QCD, as there are asymptotic
freedom, spontaneous breakdown of chiral symmetry and its restoration at finite
temperature. In the large N limit, the pion mass is analytically calculable and
the result is given in Figure 2.1. The main feature is the fact that the three cusps
retract from the weak coupling limit for finite temporal lattice sizes, forming
a continuous line which shifts toward strong coupling as N, decreases. The
position of the critical line obviously depends on N, but only slightly for large
N,. For QCD the number of cusps will increase to five because of the different

dimensionality and the line of the finite temperature transition will appear. To
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Figure 2.1: Critical lines for the lattice Gross-Neveu model on the (g,m) plane.
Temporal lattice sizes are N; = 2,4,6,16 and oo from inside to outside. Figure
taken from reference [18].

define a unique point of the chiral phase transition the thermal line has to cross
the critical line. The thermal line can however not extend into the parity-flavour
breaking phase, since massless pions exist in this phase. Therefore the line kp
cannot cross the line k, for finite V., but may at most touch it. This means, that
the region close to the critical line belongs to the low temperature phase even
after it turns back toward strong coupling. This means, that the thermal line
should extend past the tip of the cusp to separate the high temperature region
from the low temperature region. The absence of the critical line at weak enough
coupling naturally explains that physical quantities vary smoothly across the zero
temperature critical line. This line k.(T" = 0) is absent from the point of view of
the finite temperature partition function, i.e. it is not a line of thermodynamic
singularities. Another line enters the phase diagram namely the line of vanishing
current quark mass defined by Equation (2.3). This line extends from the point
(B, k) = (00, %) into the phase diagram. It runs towards the tip of the cusp of the

Aoki phase and runs alongside it towards the point (3, k) = (0, i) This is so,
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Figure 2.2: Phase diagram for 2-flavour QCD with improved Wilson fermions in
the 8 — k plane.

because at zero temperature the critical line coincides with the m, = 0 line and
the critical line at zero temperature smoothly develops into the zero temperature
critical line. If the thermal line k7 () runs past the cusp of the Aoki phase and
does not touch the Aoki phase, there will be room for a phase transition, probably
first order, from a confined phase with positive quark mass to a confined phase
with negative quark mass, see reference [20]. Creutz also points out, that the
thermal line is expected to bounce back towards weak coupling as one crosses the
mg = 0 line, because in the continuum the sign of the mass term is irrelevant for
2-flavour QCD. Since most features of the phase diagram rely on generic features
of Wilson fermions, namely the way doublers are treated at the expense of chiral
symmetry, one expects these features to hold when an improved action is used.
Beware however the caveat mentioned at the end of §(2.3) This is the reason
for using the Sheikoleslami-Wohlert action for the fermions. We want to study
whether the phase diagram with improved actions also exhibits a phase structure

containing an Aoki phase.



Chapter 3
Simulating Lattice QCD

3.1 Monte Carlo Integration and Markov processes

In a computer simulation of Euclidean field theory one is interested in expectation
values of operators €2 which depend on some fundamental field & whose dynamic

is governed by an action S(®). The expectation value is then calculated as

(Q) = % / [dd)e=S®), (3.1)

Where [d®] is the path integral measure, Z is the partition function chosen such
that (1) = 1. The main idea of Monte Carlo integration is now to generate
a sequence of field configurations (&, ®y,...,®;,..., Py) each chosen from the
probability distribution

P(®,)[dd,] = %eﬂ‘l’)[d@t]. (3.2)

Measuring the observable on each of these configurations and taking the average
will give
N

(Q) = lim Q= lim lZQ(@). (3.3)

For large N the distribution of Q will be Gaussian with standard deviation
0 =0q/VN, where o = 1/(Q2) — (Q)*. To create the desired probability dis-

tribution one makes use of Markov processes. A Markov process is a stochastic

22
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procedure, that given a configuration ®; generates a new configuration ®; with
some transition probability P(®; — ®;). The new configuration therefore de-
pends only on its predecessor. A Markov process is called ergodic if and only
if

a= inf P(®;, = ®;) >0 (3.4)
®;,0;
Given a probability distribution Q(®) on the space of configurations, application

of the Markov process will change this distribution unless it is a fixed point, i.e.

/ D] Q(2,)P(®, > ¥)) = Q). (3.5)

The remarkable property of ergodic Markov processes is that for any such pro-
cess there exists a unique fixed point Q. The distribution of configurations will
converge to this fixed point no matter what the starting configuration was and
this convergence is exponential. To construct an ergodic Markov process that
has the desired probability distribution Q(®) = e~5(®)/Z as its fixed point, the

transition probability has to satisfy another condition known as detailed balance:
Q(P)P(®; = Of) = P(D; — 0;)Q(Dy). (3.6)
It should be noted, that this is a sufficient but not a necessary condition for the

transition probability. One simple way of implementing detailed balance is the

Metropolis algorithm:

P(®; — ®f) = min [1, (3.7)
If the action S(®) is local, we can build up an ergodic Markov process by a
product of non ergodic steps, involving an update of one degree of freedom at
a time. Since the action is local, the evaluation of Q(®;)/Q(®;) at each step is

cheap. As soon as the action becomes nonlocal, this method becomes infeasible
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and other methods have to be used. Unfortunately this is exactly the case, when

fermions enter the game:

exp{=8(v, ¢, U)} [d][dy][dU]
exp{—8,(U) — v M(U)y} [dv)[dv][dU]

det (M(U)) exp{—S,(U)} [dU]. (3.8)

QU ¥, U) =

NI =N = N[+~

Integrating out the fermions thus leaves us with an effective action for the gauge
fields that is highly nonlocal. How one can simulate such a system with reasonable

efficiency is the subject of the next section.

3.2 Pseudofermions and Hybrid Monte Carlo

In any Metropolis accept/reject step one would have to calculate the ratio of two
determinants, which is an operation cubic in the lattice volume, regardless of how
many entries of the matrix are changed. One way to circumvent the evaluation
of a determinant is by trading it in for the inverse of a matrix by using a well

known formula for Gaussian integrals.
det M = /d@dcb*e‘l’*M‘lq’, (3.9)

which applies if the real part of all eigenvalues of M is larger than zero. This is
not true for the fermion matrix of a single flavour. But we can make use of the

following property of the fermion matrix of Wilson fermions:
Mo = M (3.10)
This implies that the determinant of M is real. Since every additional flavour

of mass degenerate fermions adds another power of the fermion determinant into

the path integral, we can use Equation (3.10) to double the number of fermions
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and make Equation (3.9) work:
(det M)? = det M det M = det(MIM) = /d@d@*e—wM*M)”@. (3.11)

This is the pseudofermion method. Since the pseudofermions appear in a Gaus-
sian integral, it is easy to do the Monte Carlo integration of them. Choosing n
from a Gaussian distribution P(n) ~ exp(—n*n) and setting ® = M'n will en-
sure that ® has the distribution required by Equation (3.11). What remains is to
find a Markov process, that evolves the gauge fields. The effective action for the
gauge fields now involves the inverse of the fermion matrix. This matrix becomes
ill conditioned when there is a massless mode in the spectrum, i.e. when the
pion becomes massless. This means that even a small change in the gauge fields
will give rise to a large change of the pseudofermionic energy and the acceptance
rate would be very small. The idea of the Hybrid Monte Carlo (HMC) algorithm
is therefore to evolve the system globally in a judiciously chosen way and then
decide about the acceptance of these changes as a whole [21]. We introduce addi-
tional degrees of freedom which are canonically conjugate momenta to the gauge

degrees of freedom. We define a fictitious Hamiltonian

H=3) Trm(x)+8,(U) + & (MM)', (3.12)
T,u

Creating field configurations {7,U, ®} with a Boltzmann weight given by #,
namely Q(m, U, ®) ~ exp(—H) will produce the right correlation functions for
gauge and fermion fields, since the fictitious momenta can be integrated out. The
HMC algorithm alternates two Markov processes which both have Q(w, U, ®) as
a fixed point, but neither of which is ergodic by itself.

The first step is a refreshment of the momenta chosen from a Gaussian distribu-
tion. The second step is to evolve the gauge fields and momenta, using Hamilton’s
equations of motion, along a molecular dynamics trajectory which keeps the en-
ergy H constant. Since one has to discretise these equations of motion in order

to integrate Hamiton’s equations, one can not preserve the energy. Adding a
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Metropolis accept/reject step at the end of each trajectory will then ensure de-
tailed balance. The conventional way to derive the equations of motion was given
in reference [22]. To preserve U as an element of SU(N) the equations of motion
have to take the form

U =nU, (3.13)

where 7 has to be an element of the Lie algebra of SU(N). The equations of
motion for 7 are fixed by the requirement that H should stay constant along the
trajectory. A mathematically more satisfying treatment is given in reference [23].
There the formalism for classical mechanics on an arbitrary compact Lie group
G is developed and applied to the case of HMC. The result is
oS

T =T |=—U 3.14

i=-1 |20, (3.14)
where T' is the projector onto the Lie algebra of G. For the case of SU(N)

this amounts to projecting out the traceless antihermitian part. For the case of
2-flavour QCD this will give

0§ _ 08y ax 0 0 iha
ou 6U+(I)6U(MM) CI)
0

08, 1 -1
= oo H MM e o (MIM)[(MIM) o) (3.15)

The computational bottleneck is of course the computation of [(MTM)='®]. To
discretise these equations one has to find a scheme that is both reversible and
area preserving. The simplest one is the Leapfrog scheme. Evolve U(0) half a

time step to U(3dt) using

U(Ldt) = U(0) + U(idt)dt, (3.16)
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then perform the leapfrog steps

T(t+dt) = w(t)+7(t+ 3dt)dt (3.17)
Ut + 1dt) = U(t—Ldt) +U(t)dt (3.18)

and close the trajectory by another half step for the U fields. The detailed calcu-

lation of the equations of motion for our kind of action are derived in Appendix A.



Chapter 4

Numerical Results with improved Wilson

fermions

This chapter describes the results obtained through numerical simulation of
two flavour QCD with improved Wilson fermions on lattices of size 8% x 4 and
122 x 24 x 4. Using routines to invert the fermion matrix and the correlator code
written by Peter Schmidt for a quenched spectroscopy project, a Hybrid Monte
Carlo code was set up together with Peter Schmidt and Burkhard Sturm. This
code in its final version comprised 104 routines making up 19700 lines of (com-
mented) code, which ran for about 200000 CPU hours on the Cray T3E at the

Hochstleistungs Rechen Zentrum in Juelich, Germany.

4.1 Overview of results

Before we delve into the wealth of data, we want to summarise our findings on the
phase diagram. Figure 4.1 shows the location of the thermal line and the critical
line in the -k plane. For § = 2.8 we have found two k values at which the
quark mass vanishes indicating the existence of the Aoki phase. Furthermore the
system shows confined behaviour up to about x = 0.2 when the finite temperature
transition slowly sets in. This means that the thermal line runs past the tip of
the cusp of the Aoki phase and does not turn back toward weak coupling as put
forward in reference [20]. In fact we see no sign of a second thermal line at large
kup to k = 0.33. At § = 3.0 the gap between the two vanishing points of the
quark mass is no longer seen and the critical line almost coincides with the finite
temperature transition line. At G = 3.1 one crosses the thermal line before the

critical line when £ is increased. We follow both lines up to 5 = 3.75 observing,

28
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Figure 4.1: Results for the location of the critical line and thermal line in the (-
plane for two flavours of improved Wilson fermions.

that they stay quite close together, as seen in earlier studies with the standard
Wilson action. For the thermal line the vertical bars indicate the approximate
range over which the transition takes place. For the critical line we have except
for f# = 2.8 and 3.1 only data from the small lattice size, where an accurate
extraction of large distance behaviour of propagators is not possible. Yet there is
still a pronounced change in the behaviour, when the quark mass changes sign.
This information can then be used to locate the critical line. The vertical bars
for the critical line are drawn between the points where the quark mass changes
sign. For # = 2.8 and 3.1, where we have data from the larger lattice, the error
of the fit result is shown.

In the following sections we will discuss in detail the results that corroborate this

picture, but before we can do this we have to define the observables.
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4.2 Definition of the observables

Since we are ultimately interested in the finite temperature phase transition in
the chiral limit of two flavour QCD, we need a set of observables, that is sensitive
to both the chiral and thermal behaviour of the system. The simplest observable

sensitive to chiral properties is the pion norm defined by

= ININ, tr [M‘l%./\/l_l%] , (4.1)
which is just the integrated pion propagator. For light quark masses the pion
norm is proportional to the inverse pion mass squared, IT ~ 1/m2. Tt can there-
fore be used on a smaller lattice to asses the proximity to the chiral limit, where
accurate information on the pion mass is not available.

The pion screening mass is extracted from the exponential decay of the spatial
pseudoscalar correlator, projected onto zero momentum in all orthogonal direc-

tions

(m(2)m(0)) = Y (bystb(,) - 950(0)). (4.2)

Y.t

The connection between the screening mass m and the correlator is given by
C(z) = 2Aexp(—mN,/2) cosh(m(N,/2 — z)) (4.3)

which is valid for large enough z.

Another quantity of prime interest is the quark mass. By a careful analysis of
chiral ward identities reference [3] shows how to suitably define physical quantities
in order to get the correct chiral continuum limit. Following their prescription,

we define the quark mass as

Zx,y,t<v37]}’75’73w(xu) - y51(0))
> oyt (00 (@) - hysv(0))

qu == ZA
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Z 4 is the renormalisation constant of the axial current, which we set to its tree
level value, which for our normalisation of the fermion fields is 1/(2x)?. This
is strictly speaking not correct, but we are mainly interested in the location of
the line of vanishing quark mass for which the difference does not matter. The
renormalisation constant can however be obtained from an analysis of three point
functions.

In the chiral limit of QCD the chiral condensate becomes an order parameter
for the finite temperature chiral phase transition. At low temperature we expect
chiral symmetry to be spontaneously broken and therefore the chiral condensate
to extrapolate to a nonzero value in the chiral limit. In the symmetry restored
phase the chiral condensate should vanish as the the quark mass goes to zero.
For Wilson fermions a properly subtracted definition of the order parameter has
to be used to cancel the contact terms arising from the Wilson term. The proper

definition was again given in reference [3]:

(D)o = 2mg - Za - Y (m(2,)7(0)) (4.5)

I’y7z7t

When the quarks are infinitely heavy, full QCD reduces to pure gauge theory.
Here the deconfinement phase transition is related to the spontaneous breakdown
of the Z(N,) center symmetry. The order parameter for this phase transition is
the Polyakov-loop, whose expectation value can be related to the partition
function of a static quark coupled to the gauge fields. The Polyakov loop is
defined by

1 >
L= N3 Ztr H Uy(Z,1). (4.6)

We have first carried out a preparatory study on the small lattice of size 8 x 4
to get an idea about the location of the finite temperature transition line and the
location of the cusp of the Aoki phase if it existed. We have used the Polyakov
loop and the pion norm to map out the phase diagram. We had also measured the

relevant correlators to determine the pion mass and the quark mass, but could
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not extract clear and unambiguous signals from them. We simulated the system
for = 2.8,3.0,3.1,3.5 and 3.75 at various values of k. Once the phase diagram
was approximately known, we used a larger lattice of 122 x 24 x 4 at two 3 values,
namely # = 2.8 and 3.1, to corroborate our findings, check finite size effects and
extract pion and quark masses. With hindsight it turned out that to a certain
extent one could use the calculated correlators on the smaller lattice to extract

viable information. We will deliberate on this in the appropriate section.

4.3 Results for the pion norm
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Figure 4.2: Left: The pion norm as a function of x on the 8 x 4 lattice for
different 3 values. Right: Similarly data from the 122 x 24 x 4 lattice together
with corresponding data from the smaller lattice to asses finite size effects. N.B.:
note the difference in scale.

Figure 4.2 shows the results for the pion norm. We expect the pion norm as a
function of k to develop a peak that increases as we decrease 3. This peak should
turn into a singularity as one hits the tip of the Aoki phase. Lowering § further,
the singularity should split up into two branches and and leave a gap. As we can
see from Figure 4.2, one can identify this behaviour in our data. At § = 3.75
the pion norm does not develop any peak and there is no sign of a proximity to
the Aoki phase. At § = 3.5 the pion norm develops a small peak whose location
coincides with that of the deconfinement transition, see §(4.4). At § = 3.1 one

sees a clear signal for a diverging pion norm. As one decreases [ further to
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3 2.8 3.0 3.1
ke || 0.1859(3) | 0.1823(10) | 0.1800(5)

Table 4.1: Critical hopping parameters extracted from the pion norm.

£ = 3.0 the apparent gap between the two branches of the developing divergence
becomes wider. We will argue below, that one can identify two critical lines for
B = 2.8, which can be understood by the existence of Aoki’s phase. As mentioned
above one expects the pion norm to be inversely proportional to the squared pion
mass. Employing the partial conservation of the axial current the squared pion
mass is proportional to the quark mass. For the quark mass one has in turn the

relation

1/1 1 (47)
M ™ 5 ke K '

which is valid as an equality in the weak coupling limit where k. = 1/8. At
finite 3 one has to use the appropriate value for x.(f) and the proportionality
constant becomes unequal a half. One can therefore extract a k.(3) from fitting
1/T1 linearly in 1/k. The results are shown in Table 4.1; except for § = 3.0 we
used the data from the larger of the two lattice sizes in the analysis. The fit was
only performed approaching the critical line from below, because 1/II showed a
strong curvature when plotted as a function of 1/k for the larger values of k. In
the next section we will argue, that for 5 = 3.1 the data are not consistent with
the proposition that the pion becomes massless. For § = 3.0 we cannot decide
the issue, so we are left with only § = 2.8 where the existence of the Aoki phase

can be established.

4.4 Results for the Polyakov loop

Figure 4.3 shows the results for the Polyakov loop. As one can infer from the
right plot, the finite size effects are not very large for the two [-values where

data from both lattices exist. We therefore assume the finite size effects for the
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Figure 4.3: Left: The Polyakov loop as a function of x on the 8 x 4 lattice for
different 3 values. Right: Similarly data from the 122 x 24 x 4 lattice together with
corresponding data from the smaller lattice to asses finite size effects, vertical lines
are critical values of k as extracted from the pion norm. N.B.: note the difference
in scale.

other -values to be small as well and use all data to infer the phase diagram. As
explained in §(1.1) one expects the critical temperature of the phase transition to
decrease, when the mass of the quarks is lowered. This means, that the location
of the transition is shifted to larger x for smaller 5. This is clearly exhibited by
the data. For = 3.75 the transition is quite strong as expected for large quark
masses where the first order phase transition of the pure gauge system is still
important. The transition takes place between x = 0.13 and k = 0.15. These
values quoted here are the basis for the vertical bars given for the thermal line in
Figure 4.1. For 3 = 3.5 the transition is still quite strong taking place between
k = 0.155 and k = 0.16. The jump in the value of the Polyakov loop however is
smaller than for § = 3.75 as expected. For § = 3.1 the transition is even weaker
and happens between x = 0.1725 and x = 0.18. This means that the pion cannot
become massless at k=0.18 which was the fit result from the pion norm. The
system is already in the high temperature regime where the fit would suggest
the pion to become massless. This means that for 5=3.1 one crosses the thermal
line before the critical line. This will be further supported by the analysis of the

results for the quark mass and the pion mass as presented below. For § = 3.0
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where the finite temperature phase transition takes place between x = 0.177 and
k = 0.185, the point where the fit from the pion norm would predict a massless
pion is right where the transition happens. This indicates that the critical line
and the thermal line come very close around 3 = 3.0. For § = 2.8 there is no
problem with the interpretation, that the pion becomes massless for some value
of the hopping parameter. Though the Polyakov loop increases with x it remains
small and shows no transition behaviour as one approaches the critical line. On
the other side of the apparent singularity the Polyakov loop slowly rises and
shows transient behavior between x = 0.20 and x = 0.24. This means that the
thermal line runs past the tip of the cusp of the Aoki phase continuing toward
strong coupling. The transition however is weaker and more spread out than for

larger values of 3.

4.5 Results for the pion mass
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Figure 4.4: Left: Value of the second z-slice of the effective mass plot of the pion
correlator squared as a function of 1/k for the 8% x 4 lattice. Right: Fitted pion
mass squared as a function of 1/k from the 122 x 24 x 4 lattice together with
data from the smaller lattice as on the left

We have measured the pion-pion correlator on both lattice sizes, but only on
the larger lattice is it possible to extract a mass from an exponential fit. We
have however analysed the correlator also on the smaller lattice and produced

an effective mass plot, i.e. plotting the average ratio of the correlator of two
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consecutive time slices. If we compare the second time slice of such an effective
mass plot on the smaller lattice with the fitted mass from the larger lattice at
corresponding values of # and xk we find a surprisingly good agreement, as can
be seen from the right part of Figure 4.4. We hence also plot this quantity as
the pion mass for the other 3-values on the smaller lattice, to see whether the
results fit into the overall picture. We have to keep in mind though, that these
values have to be taken with a grain of salt. Let us now discuss the pion mass on
the smaller lattice. For § = 3.75 the pion stays heavy. The pion mass decreases
with increasing x, but becomes heavier again once we cross the transition region.
For § = 3.5 this behaviour becomes even more pronounced, with the minimum
value of the pion mass occurring right at the finite temperature phase transition.
Furthermore this minimum value is lower than for § = 3.75 which fits well with
our finding that the critical line and the thermal line come closer together as one
decreases (. Another interesting feature for this g-value is that the pion after
getting heavier after the finite temperature transition becomes lighter again at
even higher values of k. This seems to indicate the proximity to another cusp of
the Aoki phase as we expect in total five cusps to develop. For § = 3.1 we can
compare the pion mass on the smaller lattice with the properly extracted one
from the larger lattice. As one can see from Figure 4.4 they agree quite well for
k’s in the low temperature phase. In the high temperature phase the agreement is
not so good, which might be explained by the fact, that in the high temperature
phase there is strictly speaking no pion. This means, that what we measure is
in fact the propagator of two quarks propagating in the medium. In this case
finite size effects play an important role. We should hence be very careful in
interpreting the pion mass data in the high temperature phase. At g = 3.1 we
clearly see that the data are not compatible with the assumption that the pion
mass becomes zero. At § = 3.0 the situation is less clear cut also because we have
no data from the larger lattice. The minimum value of the pion mass is lower
than for # = 3.1 but not consistent with zero. For larger k-values we see a similar
behaviour as for § = 3.5, namely the pion mass drops again. Finally at § = 2.8
there is evidence that the pion becomes massless. The two branches of the plot

can be extrapolated to yield two different values for k. which leave a small gap.
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3 28 2.8
ke | 0.188(1) | 0.1859(1)

Table 4.2: Results for the two critical hopping parameters at 3 = 2.8 extrapolated
from the pion mass.

The result of a linear extrapolation is shown in Table 4.2. The errors are quite
large which comes from the fact, that the data show quite some curvature as a
function of 1/k. This might be a result of the left out renormalisation factor. On
the other hand the argument for a linear behaviour of the pion mass squared as
a function of 1/k is drawn from PCAC ideas, which due to Aoki are not really
applicable here. We also have no problem that these x-values lie in the range of
the finite temperature phase transition as for the larger §-values. We conclude

that for § = 2.8 there exists an Aoki phase which however is very small.

4.6 Results for the quark mass
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Figure 4.5: Left: Value of the fifth z-slice of the quark mass correlator ratio as a
function of 1/k for the 8 x 4 lattice. Right: Fitted quark mass as a function of
1/k on the 122 x 24 x 4 lattice together with data from the smaller lattice as on
the left

As for the pion mass one can only extract the quark mass reliably on the larger

lattice. Since the ratio of correlation functions that determine the quark mass is
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5= 2.8 3.0 3.1 3.5 3.75
ke || 0.1853(3) | 0.1823(10) | 0.1770(3) | 0.1625(25) | 0.1550(5)

Table 4.3: Results for the position of the line of vanishing quark mass as extracted
from the behaviour of the quark mass correlator ratio.

to be evaluated for large z, one can try to plot the furthest possible point, which
on a lattice with periodic boundary conditions is the midpoint. It turns out, that
when the data of the smaller lattice are plotted in such a way, there exists again
broad agreement with the data from the larger lattice. One can however not take
the left plot of Figure 4.5 at face value. Looking at the correlator ratios them self
one can quite clearly discern a correlator ratio that will on a larger lattice give a
positive quark mass from one that will result in a negative quark mass, see plot
one and three of Figure 4.6. But there are also correlator ratios, which we call
anomalous, that display positive/negative mass behavior, but whose value at the
fifth z-slice is negative/positive, see plot two and four of Figure 4.6. Because of
the distinguishable positive/negative mass behaviour we have extracted a location
of the critical line defined by the vanishing of the quark mass as the midpoint
between the two points between which the behaviour of the quark mass correlator
ratio changes, except for § = 2.8 and 3.1, where a fit could be performed. The

results are shown in Table 4.3.

Figure 4.6: From left to right: positive mass correlator ratio, anomalous positive
mass correlator ratio, negative mass correlator ratio and anomalous negative mass
correlator ratio.
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4.7 Results for the chiral condensate

From the measurement of the pion norm and the quark mass we can infer the
chiral order parameter. Our results are depicted in Figure 4.7 where the chiral
condensate is plotted as a function of the quark mass. This plot gives further evi-
dence that for # = 2.8 chiral symmetry is broken as the chiral limit is approached.
The chiral condensate extrapolates to a nonzero intercept for this (-value. For
B = 3.1 however, the chiral condensates shows a strong curvature, indicating
that it will extrapolate to zero in the zero mass limit, as expected when chiral

symmetry is restored.
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Figure 4.7: Chiral condensate as a function of the quark mass on the 122 x 24 x 4
lattice



Chapter 5

Summary

In this study the phase diagram of 2 flavour QCD with dynamical fermions was
investigated. For the gauge fields a tree level Symanzik improved action was used.
The fermions were simulated in the Wilson formulation also with a tree level
Symanzik improved action, which amounts to adding the so called clover term to
the standard Wilson action. This system was studied on two different lattice sizes,
namely 8 x 4 and 122 x 24 x 4. On the smaller lattice five different 3-values were
investigated to map out the phase diagram. These were § = 2.8, 3.0, 3.1, 3.5, 3.75.
For each (3-value a varying number of x-values were simulated to find the thermal
and critical lines. Once the phase diagram was known the system was simulated
on the larger lattice at two (-values § = 2.8 and 3.1 in the region where the
pion was becoming light. For these values, pion and quark masses were extracted
and finite volume effects assessed. It was the aim of this study to investigate the

following points:

e Does there exist an Aoki phase for the improved Wilson action [18]?

e Does the use of improved actions alleviate problems with strong lattice

artifacts found in previous studies [6]7

e What happens to the thermal line once it crosses the line of vanishing quark

mass [20]7

e Can one study the finite temperature phase transition with Wilson fermions

at light pion masses?

40
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At the smallest 8 we find evidence for two critical lines, which are very close
together and indicate the existence of an Aoki phase for this action. We still
find, that the thermal line and the critical line come very close to each other and
run almost parallel toward strong coupling. We find no anomalies as for example
reported by the MILC collaboration [6]. The strength of the transition decreases
with decreasing quark mass as expected. Again at the smallest (-value we find
a transition from confined to deconfined behaviour in a regime where the quark
mass is negative. This means on the one hand that the thermal line continues
past the tip of the cusp of the Aoki phase toward strong coupling and does not
turn back toward weak coupling as has been proposed. On the other hand this
implies, that the thermal line crosses the critical line, making it possible to study

the finite temperature phase transition for light pions.

Outlook and future investigations: There are a number of things, that
one would want to elaborate about the phase diagram. The evidence for the
existence of an Aoki phase is not very strong and quite indirect. It would be
worthwhile to simulate the system at 8 = 2.8 for the larger k-values on the
larger lattice to be able to extract the quark mass and establish the existence
of a second critical line more precisely. To this end it would also be useful
to study the system at even smaller (-values, as the width of the Aoki phase
should increase and the signal become clearer. In the light of the discussion in
§(2.3) the existence of the Aoki phase for improved Wilson fermions should be
established more firmly. Another interesting region is the space between the tip
of the cusp and the point where the thermal line crosses the line of vanishing
quark mass. Due to the absence of the Aoki phase, the pion should not become
massless and one expects a first order transition across the line of vanishing quark
mass. This phase transition region will be squeezed out between the cusp of the
Aoki phase and the finite temperature transition line in the continuum limit and
might therefore be considered unimportant, but it would certainly increase our
understanding of the theoretical issues involved in the QCD phase diagram, if the
existence of this phenomenon could be established. The next step, of course is

the thermodynamics of QCD with improved Wilson fermions. One is interested
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how physical observables like pressure and energy density change as a function
of temperature. To determine a temperature scale in physical units, one has
to do simulations at zero temperature to set the scale. Because it turned out
that the simulations were very time consuming with the combination of actions
we used, this could not be realized in the present study. Another important
direction for future research is the still open question of the order of the phase
transition for two massless quarks. Simulations with staggered quarks have so
far given puzzling and inconclusive results. The thermodynamics of QCD with

Wilson fermions is not very developed and this thesis was meant to change this.



Appendix A
Quantisation of gauge and fermion fields

A.1 Quantising the gauge fields

Lattice Quantum Chromo Dynamics is a non-perturbative implementation of
Euclidean field theory using the path integral approach a la Feynman. The finite
space time grid serves as a regulator for the theory, that has to be removed as
one takes the continuum limit. As one formulates QCD on a lattice one is willing
to give up e.g. Lorentz invariance, but what one is not willing to give up is
local gauge invariance. This has quite practical reasons, see e.g. reference [24],
only gauge invariance guarantees the equality of the quark-gluon, three-gluon and
four-gluon couplings and the masslessness of the gluons. To formulate a theory
with a local gauge invariance, one uses the concept of covariant derivatives and
parallel transporters. A parallel transporter is a mapping from the space of
continuous paths on space time into the space of gauge transformations under
which our action shall be locally invariant (e.g. U(1),SU(N),...) with the following

properties:

U) =1 (A1)
where () denotes the path with zero length, i.e. C,, for all x.

U(Cy0Cy) =U(Co)U(Cy) (A.2)
where Cy o C; denotes the path composed of C; followed by Cs.

u-c)=u(e)™! (A.3)

43
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where —C is the path C traversed in the opposite way.

Under a local gauge transformation

®(x)

— () = A (2)D(2)
d(y) — A

(A.4)

a parallel transporter transforms as

U(Cyr) = U'(Cys) = A (y)U(Cya) A(). (A.5)

Therefore U(C, ,)®(z) transforms under a gauge transformation like ®(y). We

can hence compare the field at different points using the covariant distance

Ac=U"(Cya)®(y) — D(2), (A.6)

which depends of course on the specific path C, . For the specific paths C,(t) =
x + f1 -t we can define the covariant derivative

Ac, (@
D,®(z) = lim M
t—0 t

(A7)

It is obvious from the above definition, that the covariant derivative transforms
under gauge transformations as the field ®(z).

If we define the gauge field A, as

A, () = lim 1= UlG(1) UC(®)

t—0 t ’

the covariant derivative is given as

D, =0, + A,(z). (A.9)
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In order to find the transformation law for the gauge fields, one starts from
Equation (A.8) as the defining equation for the infinitesimal generator and uses

the gauge transformed parallel transporter. This results in
A (@) = AN (@) Au(2)A(w) — (0uA(2))A(2). (A.10)

The field strength is defined as the commutator of two covariant derivatives and

describes the parallel transport around an infinitesimal parallelogram:
F.,=[D,,D,]. (A.11)
The continuum action is then given in terms of F},, as

1 4
SG = —2—92 d xTrFu,,F’“’ (A12)
It is now clear how one can define a gauge invariant action using parallel trans-
porters. In fact given a gauge field, one can reconstruct the parallel transporters

via

U(C) = Pexp {—/Au(:c)d:c“} : (A.13)
c
where P denotes path ordering of the gauge fields along C when evaluating the
exponential. It is therefore natural to formulate the gauge dynamics on a lattice
in terms of the parallel transporters. On a hypercubic lattice we have to specify
the elementary parallel transporters along the links joining two adjacent points
in our lattice. They will be denoted U),(x), for further notations see Appendix A.
The gauge action on the lattice is formulated in terms of plaquettes, which are

the product of link fields around an elementary square in the y — v plane

Uw(x) = Up(2)Uy(z + QUL (z + i+ D)US (z + D). (A.14)
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The action is then given as a sum over all plaquettes:

Sa=pY" (1 - %ReTrUW(x)> forSU(N), (A.15)

x,u<v

where 3 = 2N/g?. If we expand the above action in powers of the lattice spacing
a we get back the continuum action up to terms of O(a?), see e.g. reference [25].
To fully describe the quantum system one has to specify the measure on the gauge
group over which one integrates in the path integral. This measure should respect
gauge invariance for the correlation functions resulting from the path integral to
be gauge invariant. Fortunately for every compact group G there exists a unique
regular Borel probability measure with the desired properties, namely:

1. Normalisation
/ U =1. (A.16)
G

2. Invariance
/f(U)dUz/f(UV)dUz/f(VU)dU for all V € G. (A17)
G G G

Which satisfies
/f(U)dU:/f(U—l)dU. (A.18)
G G

This measure is called the Haar measure of G, for an existence proof see refer-
ence [26]. The expectation value of an observable O, which is a function of the

gauge field {U}, is given by

1
(©) = [ PUOUUY exp(-Sa({U}) (219
7= /DUexp(—SG({U})) (A.20)
DU = [ dU,(z) (A.21)

T
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with dU,(x) being the Haar measure for the link from z to = + /.

A.2 Quantising the matter fields

Quantising fermions via the path integral approach is far from trivial. It is indeed
nontrivial to see, that the analogy argument, i.e. use Grassmann variables in the
path integral instead of ordinary ones, indeed gives the right answer. What we
want to show here, is how one can express the trace over a complete set of states
in the Fock space of creation and annihilation operators as a functional integral

over Grassmann fields. We start from a set of field operators

X (), X% (v) (A.22)

satisfying canonical commutation relations

{(x*(@),x*(y)} = a®4§76,,, (A.23)

where a is the lattice spacing and x, y are points on a cubic lattice. The vacuum
is defined by

Pox(2)|0) = x(#)P_0) =0 with Py — %(1 7). (A.24)

We also introduce a Grassmann algebra with elements ¢ (z),v?(y) with the

following anticommutation properties

{07(@), 7 ()} = {9"(2).9°(9)} = {"(2). ¥ (y) } = 0. (A.25)

These Grassmann fields in turn commute with all creation and annihilation op-

erators. We now define Grassmann coherent states:

[, 1) = exp {a3 > [X(@) Prop(x) + w(x)PX(x)]} 0) (A.26)

x

(¥, 9] = (0] exp {a3 > (@) Pix(@) + X(x)Pw(x)]} : (A.27)

x
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They are eigenvectors of the creation and annihilation operators with Grassmann

eigenvalues, namely:

Pix(@)l$,9) = Pup(a)|y,9)
X(@)P-[, ) = —(2)P-|i), )
AIX@E@)P = (), Yl(a) Py
AWIPx(@) = (| = P_ip(z). (A.28)

These states form a complete set in the sense that

1= /H{a3d¢“(fr)dw“(x)}exp {—a32¢“(fr)w“(fr)} [, 9)(, [ (A.29)

is a resolution of the identity.

The matrix element of two different coherent states is given by:

W', ) —exp{ Z 2) Pz w(x)P_w(x)')}- (A.30)

We will now use these results to calculate the partition function

7 = Tr{e’m{}zz (n| e " |n)
- Z/H{a?’dwa ) () e Ze SN ], G, Gle 7 )
= 3 [ T ai @ @)he =500, Gle M ) (] = (1)

- / TT{a%dde (@)due (@) e Se 50 s Tl %] — . Gy (A31)

The minus sign arises from commuting the two Grassmann valued matrix ele-

ments past each other. It will give rise to antiperiodic boundary conditions in
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time for the Grassmann variables. To proceed from here one splits the time in-
terval into N, pieces of length ag with N.aqg = [ and inserts a complete set of

states at each intermediate point.

Z = lim Tr{(e‘“OH)N}

Nr—o0

Nr—00

N .
- / [T TT{a a0 (z, )du” (w, ) e Hme Vim0V

t=1 a,z

<w: &(NT)‘ eXp(_aUH) W; z;(]\]’T - 1)> )
<77Z"a 775(]\77 - 1)‘ eXP(—CLo%) ‘wai}(N’r - 2)> fee
(b, 9(1)] exp(—aoH) |1, $(N;)) (A.32)

The next step is to approximate exp(—aoH) by 1 — agH and evaluate the matrix
elements between the coherent states. We must now specify the Hamiltonian.

We choose the discretisation introduced by Wilson:

where :: means normal ordering to subtract the zero point energy:
X (2)x (@) = x(2) Prx(z) — x*(z) (x(2) P-)* (A.34)

From the rules in Equation (A.28) one obtains for the matrix elements of ayH:

(.t + 1) aoH [, () = (v, Dt + 1) [, (1))
ag Z a? { [m + %T] (U(z,t+ 1) Prp(z, t) + p(z, t) Poip(z, t + 1))



Appendix A. Quantisation of gauge and fermion fields 50

w

L > (@@ 4kt + )Py +3(x + kb t)PO)[r + ] (Petb(x, ) + Pap(a, t+ 1))

2a
k=1

Sz — kt+ )Py + 9 — b )P — ] (Poo(a, t) + Pop(a, t + 1))}
(A.35)

Together with Equation (A.30) we then arrive at the following expression for the

partition function:

Z= lim / H{a?’dz;a(x,t)dw(x,t)}exp{ ey [aiozz(x,t)w(x,t)

N;—o0
a,z,t z,t

+ {m + 3;74} (V(z, t+ 1) Pep(z,t) + P, t)Poyp(z,t + 1))

— (V(z,t + 1) Prp(z, t) + o(z, t — 1)P_yp(z,1))

_ 2_1a > @z 4kt + )Py + 1 (x + k1) P2)[r + il (Pt () + Potp(, t+ 1))

b ekt OPy B — B OP) I — ) (Prblet) + Pb(at + 1))} }
(A.36)

Denoting the points in the four dimensional lattice by z, taking equal lattice
spacings in space and time directions ay = a and r=1, the integrand can be further

simplified to lead to the well known Wilson fermion action, see reference [25]:

s = Lo {(m+3) it

4
1 - . - .
= 2B+ D) + P = (= p)e@) ] (A3
n=1
This is a discretised version of the free continuum Dirac action. This shows,

that to quantise fermions with the path integral approach one starts from the
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action and integrates over classical configurations of Grassmann fields, i.e. the
analogy argument works. To couple in the gauge fields one has to make the above
action gauge invariant. This is achieved by inserting the appropriate parallel

transporters. The result is



Appendix B

Hybrid Monte Carlo equations of motion

This appendix is intended to show the derivation of the equations of motion used
in the Hybrid Monte Carlo simulation. We follow reference [22]. In what follows

we use the following conventions:

tr  : colour trace
Tr : spinor trace
TR : space trace

The derivation starts from the HMC-Hamiltonian

H=13) tim(z) + S, + & (MM)7'. (B.39)
T,

The m,(r) are momenta conjugate to the gauge fields U,(z). They live in the
group algebra, i.e. are traceless anti-hermitian matrices. The time-evolution of

the gauge-fields takes the form

Uu(z) = im,(2)U, ()
U):(x) = —iUl(m)wu(x). (B.40)

The equations of motion for the conjugate momenta are derived from the require-
ment, that the above Hamiltonian is constant in Molecular-Dynamics-time. It

will be shown that the time-derivative of the fermion and gauge contributions to

02
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‘H can be written as
S=Y trm,(x)iF,(z)], (B.41)
@1
with
F(z) =Gu(z) — GL(x) (B.42)

The condition of constant energy along the MD-trajectory can therefore be recast

into the following:
0="H= Ztr{ﬂu V() +iF,(2)]}. (B.43)

This is zero if 7, () is proportional to the unit matrix. To keep 7, (x) traceless the
remaining proportionality constant is chosen as the trace of F,(z). The equations

of motion for the conjugate momenta are therefore:
ity (z) = Gu(z) — GL(x) - %tr [Gu(x) - GL(w)] ) (B.44)

B.1 The gluonic contribution

Spelling out the graphical representation given in Equation (1.20), the gauge

action is given by

5, = ﬁzj( 1 ) 4 U )] -

T,u>v
1 1 X X X X
3 (17 Tt )+ U 0) + U0 + ) )
(B.45)

where

Up (1) = Uu(@)Up(o + @)Ul(x + 0)U ()
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UHNz) = Uu@)Uulz + )U(z + o+ @)Uz + g+ 0)Ul (z + 0)UJ (z)
U (@) = Uu@)U(z+ @)U (z+ p+0)Ul(x + 0+ 0)Uj (z + 0)UJ (2).
(B.46)

The first observation is, that one can rewrite the sum over ;> v as a sum over
pt # v and drop half of the terms. The time derivatives of U, (x) and U< (z)

are then given by

Up(z) = Un(@)U,(z + U} (x + 2)US(z)
+ Uu(2)Uy(z + @)Ul (z + 2)UJ (2)
+ Uu(2)Uy(z + @)Ul(z + 2)UJ (2)
+ Uu@)U(x + p)Ul(z + 0)Ul(2) (B.47)
U (z) = Uu@)Uuz+ @)U (z+ o+ @)Ul(x + o+ 2) Ul (x + 2) U (2)
U(2)Uu(z + @)U, (z + fo+ QUL ( + o+ 2) Ul (z + D)UJ ()
U (@)Up(z + U (z + o+ @)Ul (z + o+ 2)U} (z + 2)U} ()
U (2)Uu(z + @)U, (z + oo+ QU (2 + o+ 2) Ul (z + D)UJ (2)
U(2)Uu(z + @)U, (z + fo+ QUL (@ + o+ 2) Ul (x + D)UJ ()
U, (2)Up(z + U, (z + o+ p)Ul(z + o+ 2)U (z + 2)U} ()
(B.48)

The sum over x and p # v can now be used to change the dummy indices of
each term. The cyclic property of the trace can then be used to bring all time

derivatives to the front. Finally we make use of Equation (B.40) and write

> tefimu(@)Uu()2 { Ut + DU} + )0} (0)

T, pFv

g
2N,

§, = -
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) =~ 3 Ul MUt + iUl + )L )

T VFE

%{Uu(x LU+ o+ UL+ it U@+ 2)UL ()
t o Ula+ DU+ DU — i+ 0)US(x — @)Ul — )
+ U+ U@+ g+ p— ) Ul (z+ p— ) Ul (z = 0)U, (z — D)
+ Ut i DU~ DU f— DU~ U )
+ U+ Uz + p+0) Uz + 0+ 0) Ul (x + 2)UJ ()
+ U@+ p— U+ i—0— Ul == 0)U(e— 0 — ), (x — u)}]
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B.2 The fermionic contribution

In terms of pseudo fermions the fermionic part of the Hamiltonian is given by
S; =" (M M), (B.51)
taking the derivative with respect to time gives
S = - i(MTM)—l
dt

— e MM %(MTM) (MIAM)!

= —X*-E(MTM)-X

Sdt
= —TRTrtr{ﬂMP dMPMT} (B.52)
with
X(x) = MM) o)
Plr,y) = X(z)® X*(y). (B.53)

We now specify the form of the fermion matrix:

M(z,y) = Alx)dey - HZD(SU v)

P(x,y) = ZU 5z+uy+U (¥) (1 + ) 62—y
Aw) = 1- %cswﬂw( )
Fu(z) = g(QW($) - QLu(x))
1
O = 5[%“%/]
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Qu(®) = Uy (@) + Uy (2) + U (1) + Uy (2)
Upi(z) = Un@)Uy(z+ U}z + 2)U}(x)

U_u(w) = Uf(z—j)

Ul (z) = Uz —p) (B.54)

Because of the linear structure of the fermion matrix the time derivative of the

fermion contribution splits up into two parts, which we will now calculate.
B.2.1 The Wilson term

The first contribution comes from the time derivative of the Wilson term.
R1=#TR Tr tr {QjTMP + DPMT} (B.55)

Note that in the time derivative we have to treat U and U as independent degrees

of freedom. The contribution at point x is

Pla.y) = Y Uu(@) (1= %) Gorpy + UL (y) (1+ %) 0oy

PHa,y) = D Uu(@) (L4 %) oy + ULY) (1= %) Gampy, (B.56)

which gives

+ Uz = i) (1 = ) MX (2 — 1) ® X*(2)

+ Ualr) (1= 7) X (5 + 1) @ (MX)"(2)
+ Ulw = ) (1 +9) X(z = ) @ (MX)' ()} (B5T)
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and can be rewritten as

RI::KE:U{ Te [(1+ 7,) MX (2 + ) ® X*(2)
+ (l—w)X(:E—i-ﬂ)@X*M(x)—h.c.]}
= Ztr {im,(x) — h.c)} (B.58)

with

G (2) = wUL(2)Tr[(1+7) MX (2 + 1) ® X*(2)
+ (1—7,) X(z+ ) @ X* M(z)] (B.59)

where we have used Equation (B.40)
B.2.2 The clover term

The second contribution comes from the time derivative of the so called clover

term
R2= —TR Tr tr {AMP + APMT} (B.60)

where we have already used the fact that A is hermitian. Using Equation (B.54)

one gets

R2 = TR Tr tr {gcsw}'ﬂy( )0 [MP + PMT]}

= TR T {0 (0, (0) Oy (1) ol MP + P AT}

— TRTror{ “CjGW () Ul () + U () + U ()

@MMP+PMW—mﬁ (B.61)
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The contribution of the time derivatives at point x is

Upo(x) = Uu(2)U,(z + U (z + 2)Uf(2)
+ Uu(2)U,(z + )Ul(z + 2)UJ (2)
+ Uu(2)Uy(z + p)Ul(z + 2)UJ (2)
+ Uu(@)U(x + p)Ul(z + 0)Ul(2) (B.62)
U, u(x) = U @)Uz =+ 0)U(z — p)Uu(x - )
+ U, (2)Ul(x — i+ ) Ul (z — p)U, (2 — f1)
+ U, (2)Ul(z — i+ ) Uj(x — p)Uu(z — j2)
+ U (0)Ul(x = p+0)US(x = ))U,(x — o) (B.63)
Uy o(z) = Uiz = Ui (& = o = D)Uu(z — o= 2)U,(z — 7)
+ Ul(x = p)US(z = p = 0)Uy(x — o = D)U, (z = D)
+ Ule = )Uf(x = j = 0)Uu(x = o — 2)U, (x — D)
+ Ul — Uz — i — 0)Uu(x — g — D)0, (z — D) (B.64)
Uy = Ul(x = 0)Uu(x = 0)U, (¢ + o — 0)Uf(x)
+ Uiz — ) Uu(x — 0)U,(z + o — )Ul(2)
+ Ulle — 0)Uu(z — 0)U,(x + o — 0)Uf(2)
+ Uiz — 0)Uu(z — 0)Uy(x + o — 2)U}(x) (B.65)

Changing dummy indices one can turn all dotted U fields into U, (), one then
uses the cyclicity of the trace to bring Uﬂ(:r) to the front. Those terms containing
UZ(SB) are exchanged for their hermitian counterparts. As it turns out one half of
the remaining terms is equal to the other half, so only 8 different terms are left,

leading to

Rl = KC;WZtrUM(x){
@,p

Uy(z + U (z + D) U (2)W, (2, v)
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Wz + f,v)U, (z + @)Ul (z + 2)UJ ()
W (2 + o, ) Ul + fi — ﬁ)Ul(w —0)U,(z+7v) — h.c}

Z tr {im, (x)(GS(x) — h.c)}

where we define

Wz, v) = Tr{oy, [(MX)(z) @ X*(z) + X(z) @ (MX)"(2)]} .

The clover contribution to the force term is hence given by

Gy ()

- B )
Uy (2 + @)U (x + ) U (2) W, (z, v)

— Ul,(sv—i-ﬂ—l?)Ul(x—l?)Ul,(x—ID)WM(x,V)

+ Uz + Ul + )Wz + 0, v)Uj(2)

— Uz +p—0)Ul(x = 0)W(z — 0, 0)Uy(z — D)

+ Uz + a)Wulz + o+ 0,v)Ul(x + 2)UJ ()

— Ul@+p— )Wz + p— 0,0)Ul(z — 0)U, (x — D)

+ Wz + p,v)U(z + QUL (x + D) U (2)

- Wu(:r:+/l,u)UJ(x+ﬂ—ﬁ)Ul(m—z})Uy(x—i-z))},

where we have used Equation (B.40) again.
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(B.66)

(B.67)

(B.68)



Appendix B. Hybrid Monte Carlo equations of motion 61

B.3 Putting it all together

In this appendix we have shown the validity of Equation (B.41) and Equa-
tion (B.42), with

Gu(z) = ij(a:) + Gg(a:) + GZV(x) (B.69)

where G5 (z), G}V (z) and G{(x) are defined by Equations (B.50), (B.59) and
(B.68) respectively. This ends the derivation of the HMC equations of motion.



Appendix C

Tables of Results

In this appendix we collect in tables all the results previously depicted graphically.
Each table gives the average values for total action, Polyakov loop, pion norm,
pion screening mass, quark mass and the average number of iterations used by
the inversion algorithm. For points in the confined phase this was BiCGstab and
in the deconfined phase CG.

C.1 Results for the 8 x 4 lattice

Iv) K action L Pion norm My my # Tterations
2.8000 | 0.1400 || 0.9652(9) | 0.016(1) 20.55(6) 2.060(5) | 2.41(1) 33.24(7)
2.8000 | 0.1600 || 0.9564(4) | 0.0257(6) | 28.99(6) 1.520(5) | 1.027(4) 75.6(1)
2.8000 | 0.1700 || 0.9477(5) | 0.0338(9) 40.3(2) 1.180(7) | 0.531(4) 150.6(5)
2.8000 | 0.1750 || 0.9410(6) | 0.041(1) 52.7(4) 0.976(10) | 0.323(4) 251(1)
2.8000 | 0.1800 || 0.931(1) | 0.050(1) 87(1) 0.679(7) | 0.142(3) 530(6)
2.8000 | 0.1900 || 0.840(1) | 0.053(3) 93(16) 0.50(7) | -0.03(3) 983(34)
2.8000 | 0.1950 || 0.812(4) | 0.062(3) 59(3) 1.02(4) | -0.09(2) 558(37)
2.8000 | 0.2000 || 0.7987(7) | 0.052(7) 61(3) 1.22(4) | -0.19(2) 453(8)
2.8000 | 0.2050 || 0.789(1) | 0.063(2) 53(4) 1.14(5) | -0.27(5) 424(15)
2.8000 | 0.2200 || 0.764(1) | 0.093(8) 41(1) 1.44(2) | -0.166(6) 325(10)
2.8000 | 0.2400 || 0.7363(6) | 0.155(3) 30.4(8) 1.50(2) | -0.196(7) 252(5)

Table C.1: Results for g = 2.8
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Iv) K action L Pion norm My my # Iterations
3.0000 | 0.1200 || 0.922(2) | 0.0148(5) | 16.99(1) | 2.507(5) | 4.53(2) 23.02(2)
3.0000 | 0.1400 | 0.9184(4) | 0.0176(4) | 20.70(2) | 2.017(4) | 2.268(8) 33.23(3)
3.0000 | 0.1600 | 0.9047(5) | 0.0290(7) | 30.04(6) | 1.446(6) | 0.868(5) 62.6(1)
3.0000 | 0.1700 || 0.894(1) | 0.040(2) 44.9(4) 1.03(1) | 0.382(8) 123(2)
3.0000 | 0.1725 || 0.8869(8) | 0.045(1) 52.9(5) 0.919(9) | 0.272(7) 230(2)
3.0000 | 0.1750 || 0.879(2) | 0.051(1) 70(1) 0.779(7) | 0.179(6) 192(5)
3.0000 | 0.1770 || 0.862(2) | 0.056(4) 96(6) 0.59(3) | 0.071(7) 517(35)
3.0000 | 0.1800 || 0.800(2) | 0.075(4) 82(6) 0.53(5) | -0.08(3) 611(27)
3.0000 | 0.1825 || 0.775(1) | 0.084(6) 48(3) 0.93(6) | -0.13(2) 338(13)
3.0000 | 0.1850 || 0.764(2) | 0.109(7) 47(5) 1.28(8) | -0.26(3) 275(18)
3.0000 | 0.1900 || 0.745(1) | 0.111(3) 35(2) 1.51(4) | -0.22(3) 228(6)
3.0000 | 0.2000 | 0.731(2) | 0.128(3) 31(1) 1.71(5) | -0.21(6) 199(9)
3.0000 | 0.2100 | 0.714(2) | 0.153(5) 29.2(10) 1.73(4) | -0.12(2) 157(6)
3.0000 | 0.2300 || 0.696(1) | 0.177(4) 27.5(8) 1.66(3) | -0.19(1) 151(2)
3.0000 | 0.2500 || 0.6786(9) | 0.209(2) 24.4(2) 1.60(1) | -0.278(7) 155(3)
3.0000 | 0.2700 | 0.664(1) | 0.235(3) 22.0(8) 1.53(1) |-0.350(9) 160(3)

Table C.2: Results for g = 3.0

I} K action L Pion norm My my # Iterations
3.1000 | 0.1200 || 0.8979(6) | 0.0149(4) | 16.997(10) | 2.493(4) | 4.40(2) 21.00(1)
3.1000 | 0.1400 || 0.8917(6) | 0.0189(7) | 20.76(3) | 1.995(5) | 2.17(1) 36.32(5)
3.1000 | 0.1600 || 0.8756(8) | 0.032(1) 30.5(1) 1.384(7) | 0.755(10) 96.5(4)
3.1000 | 0.1700 || 0.855(1) | 0.046(2) 48.4(7) 0.95(1) | 0.260(7) 268(4)
3.1000 | 0.1725 || 0.847(1) | 0.052(2) 63(2) 0.75(2) | 0.156(10) 318(5)
3.1000 | 0.1750 || 0.822(1) | 0.079(4) 75(5) 0.62(3) 0.06(1) 589(7)
3.1000 | 0.1775 || 0.757(1) | 0.102(7) 47(3) 1.02(5) | -0.12(3) 334(14)
3.1000 | 0.1800 || 0.743(1) | 0.115(5) 42(4) 1.22(4) | -0.24(4) 259(18)
3.1000 | 0.1900 || 0.7162(7) | 0.152(5) 32(1) 1.70(3) | -0.19(4) 162(7)
3.1000 | 0.2000 || 0.7022(8) | 0.167(2) 30(2) 1.80(6) | -0.14(2) 143(3)

Table C.3: Results for g = 3.1
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Iv) K action L Pion norm My my # Tterations
3.5000 | 0.1200 | 0.782(3) | 0.0167(7) | 17.03(1) | 2.395(8) | 3.77(3) 25.5(1)
3.5000 | 0.1400 | 0.7671(5) | 0.026(1) 21.13(3) | 1.832(5) | 1.57(1) 42.55(6)
3.5000 | 0.1500 || 0.748(2) 0.041(3) 25.42(9) | 1.444(9) | 0.771(6) 71.5(8)
3.5000 | 0.1550 || 0.729(2) 0.066(3) 28.5(5) 1.23(1) | 0.43(1) 111(14)
3.5000 | 0.1600 | 0.6652(7) | 0.193(2) 25.9(5) 1.42(3) | -0.04(2) 107(4)
3.5000 | 0.1650 || 0.6514(10) | 0.205(4) 25.1(3) 1.61(4) | -0.26(2) 92(3)
3.5000 | 0.1750 || 0.634(1) 0.228(5) 24.7(3) 1.84(2) |-0.269(9) 77(2)
3.5000 | 0.1850 || 0.6210(8) | 0.240(3) 22.9(2) 2.00(3) | -0.11(2) 69.0(7)
3.5000 | 0.2000 || 0.6086(8) | 0.256(5) 22.1(1) 2.09(1) | 0.032(5) 68.1(6)
3.5000 | 0.2100 || 0.6009(9) | 0.264(3) 22.1(3) 2.06(1) | -0.007(4) 68(1)
3.5000 | 0.2300 || 0.5900(7) | 0.284(4) 20.2(1) 1.946(6) | -0.160(7) 73.5(7)
3.5000 | 0.2500 || 0.5802(6) | 0.294(2) 19.1(1) 1.819(6) | -0.327(7) 82.9(8)
3.5000 | 0.2700 || 0.5732(5) | 0.304(3) 17.6(2) 1.744(7) | -0.454(5) 95.2(6)
3.5000 | 0.2900 | 0.5668(4) | 0.319(2) 16.15(7) | 1.697(4) | -0.514(4) 109.2(9)
3.5000 | 0.3100 || 0.5614(4) | 0.325(1) 14.84(8) | 1.681(8) | -0.556(4) 125(1)
3.5000 | 0.3300 || 0.5571(3) | 0.330(2) 13.51(7) | 1.691(3) | -0.580(5) 143.2(6)
3.5000 | 0.3500 || 0.5538(3) | 0.334(2) 12.38(6) | 1.697(5) | -0.605(3) 165.0(6)

Table C.4: Results for g = 3.5

I} K action L Pion norm My my # Iterations
3.7500 | 0.0800 || 0.6999(5) | 0.0180(5) | 13.680(6) | 3.474(3) | 14.00(3) 2.00(1)
3.7500 | 0.1000 || 0.6939(7) | 0.0191(6) | 14.95(2) | 2.902(6) | 4.76(4) 5.96(4)
3.7500 | 0.1100 || 0.6901(5) | 0.021(1) 15.84(2) | 2.610(5) | 6.89(4) 4.00(1)
3.7500 | 0.1200 || 0.6838(6) | 0.028(1) 17.03(3) | 2.325(5) | 3.17(2) 4.86(2)
3.7500 | 0.1300 || 0.6735(6) | 0.048(3) 18.67(4) | 2.014(4) | 1.92(1) 19.73(4)
3.7500 | 0.1400 || 0.6425(9) | 0.162(4) 20.8(1) 1.71(1) 0.94(1) 31.7(3)
3.7500 | 0.1500 || 0.616(1) | 0.238(6) | 22.16(10) | 1.60(2) | 0.221(10) 66(1)
3.7500 | 0.1600 | 0.598(1) | 0.252(5) 22.4(1) 1.70(2) | -0.26(1) 66.0(10)

Table C.5: Results for g = 3.75
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C.2 Results for the 122 x 24 x 4 lattice

Iv) K action L Pion norm My my # Iterations

2.8000 | 0.1650 || 0.9528(3 33.5(3) 1.35(2) | 0.762
)

)

2.8000 | 0.1700 | 0.9477(4) | 0.0340(5) | 39.9(5) | 1.18(1
)
)

2.8000 | 0.1800 || 0.935(1) | 0.0458(9 84(3 0.69(2) | 0.143(1 94(2)

(5)
( (5)
2.8000 | 0.1750 || 0.9420(2) | 0.0393(4) | 53.0(5) | 0.971(9) | 0.324(1) |  49.9(2
( (6)
9)
(7)

—
w
~—

(2)
(2)
(1)
2.8000 | 0.1775 || 0.9375(3 67(1) | 0.83(2) | 0.222(1) |  66.0
) (1)
(2)
(1)

(
2.8000 | 0.1825 || 0.926(1) | 0.0549 139( 0.530(7) | 0.076(2 168(2)
2.8000 | 0.1835 || 0.9216(5) | 0.0539(7) | 219(14) | 0.42(4) | 0.045

Table C.6: Results for g = 2.8

Iv) K action L Pion norm My my # Iterations
3.1000 | 0.1650 || 0.8697(5) | 0.0348(3) 36.7(2) 1.158(6) | 0.504(1) 35.0(1)
3.1000 | 0.1700 || 0.8595(9) | 0.0433(6) 49.2(6) 0.914(7) | 0.274(1) 56.7(4)
3.1000 | 0.1750 || 0.8353(8) | 0.0621(6) 92(4) 0.559(7) | 0.078(2) 129(6)
3.1000 | 0.1755 || 0.824(1) | 0.0732(8) | 104(12) 0.54(4) | 0.043(2) 447(14)
3.1000 | 0.1775 || 0.7579(4) | 0.105(3) 68(13) 0.98(6) | -0.17(1) 382(18)
3.1000 | 0.1785 || 0.7504(6) | 0.109(1) 44(2) 1.10(2) | -0.20(1) 334(12)
3.1000 | 0.1800 || 0.7443(4) | 0.111(1) 39(2) 1.29(2) | -0.23(2) 277(9)
3.1000 | 0.1850 || 0.7305(3) | 0.120(2) 35(1) 1.47(2) | -0.23(1) 196(3)
3.1000 | 0.1900 || 0.7195(4) | 0.130(1) 32.1(9) 1.54(3) |-0.202(6) 194(9)
3.1000 | 0.2000 || 0.7011(3) | 0.162(3) 27.7(6) 1.597(6) | -0.10(1) 141(4)

Table C.7: Results for g = 3.1
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