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Chapter 1INTRODUCTION1.1 MotivationNulear Matter is believed to undergo a phase transition from ordinary hadronimatter to a phase where quarks and gluons beome deon�ned. This belief isbased on asymptoti freedom of QCD, the theory desribing the strong intera-tion between quarks and gluons. This phase transition is not just of aademiinterest, sine it has ertainly taken plae in the early universe aording to ur-rent big bang theory. It will also beome investigable at the Relativisti HeavyIon Collider (RHIC) in Brookhaven and the Large Hadron Collider at CERN. Infat there are two true phase transitions haraterized by an order parameter intwo limits of QCD. When the quark masses are in�nite, one has the deon�ne-ment transition with the free energy of a stati quark as the order parameter.When the quark masses are zero one has the hiral (symmetry restoring) phasetransition with the vauum expetation value of the quark anti-quark ondensateas the order parameter. It is not yet lear if these transitions persist for physialquark masses. Lattie results indiate, that both transitions our at the sametemperature with one transition driving the other. This is the reason why onespeaks of the QCD phase transition. At a phase transition point one typiallyhas many length sales playing a role for the dynamis of the system. It is there-fore often hard to �nd a suitable small expansion parameter for a perturbativetreatment. In QCD for example one has three natural length sales given bythe inverse temperature 1=T , the eletri sreening mass 1=gT and the magnetisreening mass 1=g2T . The use of a nonperturbative approah, i.e. lattie QCD,is therefore advisable. Sine thermal e�ets of massive partiles are exponentially1
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βFigure 1.1: Expeted phase diagram of 2 avour QCD in the �-�-planesuppressed by their mass, the study of QCD with two light avours is of parti-ular phenomenologial interest. Unfortunately the lattie has its own pitfalls,one of whih is the nonexistene of an ation whih preserves hiral symmetryexatly for �nite lattie spaing due to a general theorem [1℄. Two popular dis-retisations exists and one has to hek that the results obtained are onsistentwith eah other. Most studies of QCD thermodynamis have employed staggeredfermions, sine they preserve a remnant hiral symmetry, whih keeps the quarkmasses from aquiring an additive renormalisation, but whih breaks the avoursymmetry at �nite lattie spaing. The other disretisation due to Wilson pre-serves the avour symmetry at the expense of breaking all hiral symmetries.This lak of hiral symmetry auses muh oneptual and tehnial diÆultiesin numerial simulations and the physial interpretation of data. Before we turnto these problems let us disuss the physial expetations for the phase diagramof QCD as a funtion of temperature, quark mass and lattie spaing. On thelattie these parameters are mapped onto the temporal extent of the lattie N� ,the hopping parameter � and the inverse oupling �. This mapping is nonlin-ear, but some features of it are well known. The onnetion between inverse



Chapter 1. INTRODUCTION 3oupling and the lattie spaing is suh, that a = 0 for � = 1 and vie versa.The inverse temperature is given by N�a. Therefore the thermal line �T movestoward weaker oupling as N� inreases. And �nally, the line � = 0 orrespondsto in�nite quark masses. Along this line, representing the pure gauge theory, a�rst order deon�nement phase transition is well established. This phase tran-sition will extend into the phase diagram and the e�et of the fermions will beto lower the transition temperature. The strength of the transition may softenand eventually turn into a rapid rossover rather than a true transition. Forzero gauge oupling the ritial hopping parameter � at whih the quark massvanishes is known to be � = 1=8. Sine Wilson fermions break all hiral symme-tries, this point is not proteted from additive renormalisations and the ritialline beomes �-dependent. This line orresponds to the hiral limit of QCD.One expets hiral symmetry to be broken spontaneously at zero temperature forphenomenologial reasons and beome restored at �nite temperature. This hiralphase transition is believed to be of seond order for two fermion avours [2℄.As we have mentioned before, both transitions oinide for intermediate quarkmasses, so one expets the deon�nement transition line to run into the ritialline at some �t. Beause of the absene of hiral symmetry for Wilson fermions,the de�nition of the ritial line is ambiguous. One usually de�nes the ritialline by the vanishing of the pion mass or quark mass at zero temperature. Wherethe quark mass is de�ned via an axial Ward identity [3℄. Initial simulations [4℄failed to �nd a rossing point down to � = 3:5 with the transition line run-ning almost parallel to the ritial line toward strong oupling. This raised thequestion whether it was possible to desribe the on�nement phase in the hirallimit with Wilson fermions. The issue was further investigated in [5℄ where therossing point for 2 avours at N� = 4 was determined to be �t � 3:9 � 4:0.This was done by simulating along the ritial line, de�ned by a vanishing pionmass at zero temperature. Coming from the high temperature side, where nosingularity is seen aross the ritial line, the inverse oupling was lowered untilsuh a singularity appeared in terms of a diverging number of CG-iterations. Aninvestigation of how the position of the rossing point hanged with inreasingN� brought the disenouraging result, that to have �t > 5:0 one has to go to



Chapter 1. INTRODUCTION 4N� > 18! The transition was found to be ontinuous at �t as expeted. Thisraises further expetations about the strength of the transition as the quark massis inreased from zero. The transition should soften as the quark mass inreases,but should beome stronger again when the quarks are heavy enough to reoverthe �rst order transition of the pure gauge system. Contrary to this expetationthe MILC ollaboration found [6℄ for N� = 4 that the transition beomes onevery strong and beomes weaker again at smaller �. For N� = 6 this intermediatetransition even beomes �rst order. In summary this means that the �nite tem-perature transition with Wilson quarks for small quark masses is plagued withlattie artifats. In this study an improved ation has been used whose derivationwill be disussed in x(1.4). Reently a new view of the �nite temperature phasediagram has emerged, whih is based on the spontaneous breaking of parity andavour symmetry. This proposal will be examined in Chapter 2. It is anothergoal of this study to test this proposal with improved ations.1.2 Outline of this workIn the previous hapter we have tried to summarise the motivations leading tothe researh presented in this thesis. The remainder of Chapter 1 disusses somebasi fats used throughout the thesis. We �rst disuss the hiral properties ofWilson fermions, as they play a entral role in the analysis of the phase dia-gram. Then we disuss Symanzik's improvement program and its appliation tothe fermioni and gluoni ation. Chapter 2 disusses in some detail the phasediagram of QCD espeially the proposal of Aoki and its appliation to �nite tem-perature. Chapter 3 desribes shortly the ideas of Monte Carlo integration usedto evaluate the partition funtion, Markov proesses to generate a desired prob-ability distribution and the diÆulties arising when fermioni degrees of freedomare added. The Pseudofermion method and the Hybrid Monte Carlo algorithmare desribed and equations of motion for the lover ation derived. Chapter 4disusses the results of our study. We will �rst present our �ndings and thenargue for them from the results obtained from simulations on two di�erent lat-tie sizes. Appendix A ontains a short summary of how to quantize gauge and



Chapter 1. INTRODUCTION 5fermion �elds. This mainly serves to �x our notation. Appendix B lays downin detail the derivation of the equations of motion for the Hybrid Monte Carlosimulation.1.3 Wilson fermions and hiral symmetryIn this setion we want to disuss some of the hiral properties of Wilson fermionsas they play a role in further disussions. Starting from the free ation givenin Equation (A.37) we want to determine the partile ontent of the theory. Toidentify the partiles in the spetrum we study the poles of the fermion propagatorin momentum spae. We �rst resale quark and anti-quark �elds by a fatora3=p2� where � = 1=2(am+ 4r). With this new normalisation the free fermionation an be written as Sf =Px � (x)Mx;y (y) with the fermion matrixMx;y = Æx;y � �X� Æx;y+�̂[r + �℄ + Æx;y��̂[r � �℄: (1.1)We now go to momentum spae, where we de�ne the Fourier transform as (p) =Xx e�ipx (x) and � (p) =Xx eipx � (x): (1.2)Sine the fermion matrix in momentum spae only depends on one momentum,beause of translation invariane, we get after fatoring out of a momentumonserving delta funtion:M(p) = 1� 2�X� r os(p�)� i� sin(p�): (1.3)The propagator is the inverse of the fermion matrix and it's poles give the partileontent.�(p) =  1� 2�X� r os(p�)� i� sin(p�)!�1



Chapter 1. INTRODUCTION 6= 1� 2�P� r os(p�) + i� sin(p�)�1� 2�P� r os(p�)�2 + 4�P� sin2(p�)= 12� � 12� �P� r os(p�)�+ iP� � sin(p�)� 12� �P� r os(p�)�2 +P� sin2(p�) (1.4)Now onsider the ase r = 0. For small a one an expand �(p) around p� =(0; 0; 0; 0). The result is up to a normalisation fator the free fermion propagatorin the ontinuum with M = 1=2��(p)! M + i/pM2 + p2 : (1.5)However the same result an also be obtained by expanding the lattie propagatoraround momenta p� whih have one or more omponents in the other orner ofthe Brillouin zone. In fat all 16 orners of the Brillouin zone are equivalent.This is a onsequene of the spetrum doubling symmetry [7℄. This symmetry isgenerated by the following set of operators and produts thereof:T0 = 1; T� = �5(�1)x�=a: (1.6)It an be shown that these operators transform the physial fermion state nearp� = (0; 0; 0; 0) to doubler fermion states with momentum omponents in the farorner of the Brillouin zone, e.g.(T1 ) (p1; p2; p3; p4) =  (p1 + �=a; p2; p3; p4): (1.7)Sine this analysis only relied on the spinor struture of the theory it is lear,that the doublers will also exist if interations are turned on. Then doublersan be pair produed by the gluons and that is why one is worried about them.In fat these additional states must appear. A hiral invariant regularisation ofQCD annot produe the axial anomaly in the ontinuum limit, due to Adlers



Chapter 1. INTRODUCTION 7theorem. As shown in referene [7℄ the additional speies have hiral harges suhas to anel the anomaly. For r 6= 0 the spetrum doubling symmetry is brokenas is hiral symmetry. The ontribution to the anomaly no longer anels andprodues the right anomaly, see again referene [7℄. Let us now disuss the aser 6= 0. We analyse the behaviour of the term M = 1=2�� rP� os(p�) near theorners of the Brillouin zone. There are �ve di�erent sets of momenta for whihthis term ats in a di�erent way:(i) p = (0; 0; 0; 0), M = 1=2�� 4r(ii) p = (�=a; 0; 0; 0) or (0; �=a; 0; 0) et., M = 1=2�� 2r(iii) p = (�=a; �=a; 0; 0) or p = (�=a; 0; �=a; 0) et., M = 1=2�(iv) p = (�=a; �=a; �=a; 0) or p = (�=a; �=a; 0; �=a) et., M = 1=2�+ 2r(v) p = (�=a; �=a; �=a; �=a). M = 1=2�+ 4rIf one now tunes � to � = 1=8r the quark near p = (0; 0; 0; 0) beomes massless,whereas all other doublers get a mass of O(1=a). In the ontinuum limit theydeouple from the spetrum and one is left with one fermion avour. The priewe have to pay for this is of ourse the breaking of hiral symmetry. This impliesthat the value of � = 1=8r of the free theory is not proteted by symmetry onewe turn on interations. The value for � will depend on the gauge oupling andhas therefore to be inferred from simulations. Note that one an hoose � suh,that another set of doublers beome massless, e.g. for � = 1=4r the doublers ofset (ii) beome massless and all others again have a mass of O(1=a). This willbeome important in our disussion of the phase diagram in the next hapter.1.4 The Symanzik improvement programWhile studying the approah to the ontinuum limit for lattie �4-theory, Symanzikmade the following important observation, see referene [8℄. Suppose we startwith a given lattie ation SL. The �eld theory desribed by this ation is on-tained in the olletion of all vertex funtion �(p1; p2; : : : ; pn; g2; a). Symanzik



Chapter 1. INTRODUCTION 8then introdued the onept of a loal e�etive Lagrangian Seff in terms of on-tinuum �elds, that would give the same vertex funtions as SL up to a ertainorder in the lattie spaing a.Seff = Z d4xfL0(x) + aL1(x) + a2L2(x) + : : :g: (1.8)Where L0 is the ontinuum Lagrangian and Lk are a ombination of loal opera-tors of dimension 4+k with the same symmetry as the lattie ation. As the loale�etive Lagrangian is spei� to the lattie ation, one an use the freedom tohoose the lattie ation to speed up the approah to the ontinuum limit. Thefreedom one has to hoose the lattie ation is to add suitable linear ombinationsof irrelevant operators, i.e. lattie analogues of L1 et., in suh a way as to haveL1 = 0 in the orresponding loal e�etive Lagrangian. This program an thenbe arried out order by order in perturbation theory. Symanzik showed that allvertex funtions an be thus improved in �4-theory. For lattie gauge theory nosuh proof exists, due to the fat that gauge dependent terms have to be addedto the ation at intermediate stages of the alulation. L�usher and Weisz havetherefore proposed a minimal improvement sheme by demanding improvementfor on-shell quantities, hene the name on-shell improvement [9℄. Aording toreferene [10℄ no proof for the existene of an on-shell improved ation has yetbeen given, but is taitly assumed. One further ingredient to the derivation ofa suitable on-shell improved ation is, that given one on-shell improved ation,others an be obtained from a loal ovariant isospetral transformation of the�elds, where isospetral refers to the low-lying states. Suh a transformation willin general hange the oeÆients of the operators in the original ation. Oper-ators whose oeÆients an thus be varied are alled redundant and their valuean therefore be hosen for onveniene. Let us now look at O(a)-improvementfor gluons and fermions in partiular.
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L1 2 3Figure 1.2: The three types of six link loops, �gure taken from referene [11℄.1.4.1 The O(a)-improvement of the gauge ationIn the gluoni ase there are no dimension 5 operators so the expansion of theloal e�etive Lagrangian starts at O(a2). There are three dimension 6 operatorsO(6)1 = X�;� Tr�D�F��D�F��� ;O(6)2 = X�;�;�Tr�D�F��D�F��� ;O(6)3 = X�;�;�Tr�D�F��D�F��� : (1.9)On the lattie this orresponds to loops with 6 links of whih there are also onlythree, see Figure 1.2. Eah of these loops has the expansionL = r(4) O(4) + r(6)1 O(6)1 + r(6)2 O(6)2 + r(6)3 O(6)3 + : : : ; (1.10)L�usher and Weisz have alulated these expansion oeÆients at tree level, seereferene [9℄. The results are given in Table 1.4.1 The lattie ation an now bewritten asSg = 6g2n(4)(g2) L(4) + Xi=1;3 (6)i (g2) L(6)i o (1.11)



Chapter 1. INTRODUCTION 10Loop r(4) r(6)1 r(6)2 r(6)3L(4) �14 124 0 0L(6)1 �2 56 0 0L(6)2 �2 �16 16 16L(6)3 �4 16 0 12Table 1.1: The oeÆients of the ontinuum operators of dimension 4 and 6 inthe lassial expansion of Wilson loops with 4 and 6 links.From the results in Table 1.4.1 one an see, that tree level improvement an beobtained by hoosing(4)0 = 53; (6)1 = � 112; (6)2 = (6)3 = 0: (1.12)One an also improve the gauge ation beyond tree level. This was arried out byL�usher and Weisz in referene [12℄. As it turns out, there are only two onstraintsone an get from demanding improvement of ertain on-shell quantities. This isdue to the fat that the operator O(6)3 is redundant, as one an see from the �eldtransformationA� �! A� + a2 �2X� [D�; F�� ℄: (1.13)One an therefore set it to zero without a�eting on-shell improvement to makethe simulations easier. Sine in this study we want to study the phase diagram at�nite temperature, whih at �xed temporal extent N� means large �, we expettree level improvement to suÆe.1.4.2 The O(a)-improvement of the fermion ationIn order to �nd an O(a) improved fermion ation let us �rst enumerate all oper-ators up to dimension �ve.dim3: O3 = � (x) (x)



Chapter 1. INTRODUCTION 11dim4: O4 = � (x) /D (x)dim5: O51 = � (x)(D2 � 12 i���F��) (x)O52 = � (x)12 i���F�� (x)To translate these to the lattie, we de�ne the following ovariant derivatives:Dright�  (x) = 1a [U�(x) (x + �̂)�  (x)℄Dleft�  (x) = 1a [ (x)� U y�(x) (x� �̂)℄DL� (x) = 12[Dright� +Dleft� ℄ (x)(D2�)L (x) = 1a [Dright� �Dleft� ℄ (x)�L (x) = X� (D2�)L (x) (1.14)To disretise F��(x) we note that it an be obtained from the imaginary part ofthe plaquette. To preserve as muh rotational symmetry as possible one averagesover the four possible plaquettes starting at x the ��-plane:F��(x) = 18i �U�(x)U�(x+ �̂)U y�(x+ �̂)U y�(x)+ U�(x)U y�(x+ �̂ � �̂)U y�(x� �̂)U�(x� �̂)+ U y�(x� �̂)U y�(x� �̂ � �̂)U�(x� �̂ � �̂)U�(x� �̂)+ U y�(x� �̂)U�(x� �̂)U�(x� �̂ + �̂)U y�(x)� h::℄ : (1.15)With these de�nitions, the lattie operators an be writtenO4L = � (x)�DL� (x)



Chapter 1. INTRODUCTION 12O5L;1 = � (x)(�L � i2a2���F��) (x)O5L;2 = � (x) i2a2���F�� (x); (1.16)and the lattie fermion ation is given bySf =Xx a�1b0(�;ma)O3L(x) + b1(�;ma)O4L(x) +a b2(�;ma)O5L;1(x) + a b3(�;ma)O5L;2(x): (1.17)Sine tree level improvement is onsistent with lassial improvement, requiringthe vanishing of all orretions to the ontinuum ation to O(a) in the smalla expansion of the lattie ation gives a tree level Symanzik improved fermionation. This ondition requires for the oeÆients bi(� = 0; ma)b0(0; ma) = ma; b1(0; ma) = 1; b2(0; ma) = b3(0; ma) = 0; (1.18)i.e. the naive fermion ation is tree levelO(a) improved. The next step is to use anisospetral transformations to remove the doublers from the physial spetrum.Sine the doublers involve high momentum modes we are allowed to hange theirproperties. Using an isospetral transformation makes sure we do not spoil O(a)improvement as we remove the doublers. The transformation is given by: (x) �!  (x) + �1 /D (x)� (x) �! � (x) + �2 /D � (x); (1.19)It renders the operator O51(x) redundant and one an add it with an arbitraryoeÆient. The oeÆient of the operator O52(x) has to be determined perturba-tively, but at tree level its value is b3(0; ma) = 0. The Alpha ollaboration haveinvented a way to determine this oeÆient nonperturbatively, but the resultswere not yet available when this study was begun. We therefore used the tree



Chapter 1. INTRODUCTION 13level value sw = 1. The ation used in this study is hene given as S = Sg + Sf ,where Sg and Sf are given in a graphial representation below.Sg = 6g2 Xx;�>� 53 �1� 1NReTr ��(x)��16  1� 12NReTr ��(x) + ��(x)!! (1.20)
Sf = 12�Xx;y �	(x)��1� �2X�;� Im ��(x) ����Æx;y� �X� �(1� �) Æx+�̂;y �(x) + (1+ �) Æx��̂;y �(y)��	(y)(1.21)



Chapter 2The Finite Temperature Phase Diagram of2-avour QCD2.1 The early understandingThe �rst analysis of the phase struture of lattie QCD is referene [13℄. Kawamotostudied the singularity struture of the hiral ondensate, beause it has the sameradius of onvergene (in �) as the fermion propagator and an easily be extendedto the fermion gauge oupled system. He found a singularity in 
 �  � at � = 1=4in the strong oupling and large N limit, where N is the number of olours. Thisvalue is lowered as Ng2 is lowered from in�nity. He also found a singularity at� = 1=8 in the weak oupling limit, whose value is inreased as the gauge inter-ation is taken into aount. From this observation Kawamoto onjetured, thata line of singularities in 
 �  �, onneting the singularities in the strong and weakoupling limit, exists. The region where � < �(�) is the physial region. Onthe line �(�) the pion mass vanishes, and for � > �(�) the pion mass beomesimaginary. In the weak oupling region also the quark mass vanishes along theritial line withM2� � mq. This is one of the onditions to hold for a theory withspontaneous breakdown of hiral symmetry. Another ondition is the vanishingof the pion-pion sattering amplitude at zero momentum in the hiral limit. Thishowever is not satis�ed on the ritial line in the strong oupling limit. Althoughthe ritial line has onventionally been interpreted as the line along whih atzero temperature hiral symmetry is spontaneously broken, Kawamoto's resultsin fat indiate, that this interpretation is not straightforward.
14



Chapter 2. The Finite Temperature Phase Diagram of 2-avour QCD 152.2 Aoki's ProposalIn 1984 Aoki hallenged this piture for a number of reasons [14℄. If there isa line dividing the � - � plane into two phases, what is the order parameter todistinguish the two phases? How an the pion beome a tahyon, when the ationof QCD has physial positivity? Is a spontaneous breakdown of hiral symmetrypossible with only one ritial line? Aoki went on to propose a new phase diagramfor 1 avour QCD with Wilson fermions:� There exist 5 ontinuum limits for four dimensional QCD orresponding todi�erent regions in momentum spae where di�erent sets of doublers beomemassless: (i) p = (0; 0; 0; 0), (ii) p = (�=a; 0; 0; 0) or (0; �=a; 0; 0) et., (iii)p = (�=a; �=a; 0; 0) or p = (�=a; 0; �=a; 0) et., (iv) p = (�=a; �=a; �=a; 0)or p = (�=a; �=a; 0; �=a) et. and (v) p = (0; 0; 0; 0). The true ontinuumlimit is of ourse (i). A pair of ritial lines on whih the �-meson massvanishes is assoiated whith eah ontinuum limit� There exist regions in the � � � plane, where the 
 � i5 � = 0 vauumbeomes unstable and the true vauum has 
 � i5 � 6= 0. The transitionbetween these phases ours at the ritial lines mentioned above.� In the strong oupling limit only two ritial lines exist where the �-mesonmass vanishes. Therefore no separation of the doublers ours.� At intermediate oupling, new ritial lines emerge, that separate the �veregions in momentum spae.The properties of this phase diagram are drawn from two soures. One is the 2dimensional lattie Gross-Neveu model formulated with the Wilson ation in thelarge N limit, where N is the number of olours. In this limit one an solve the G-Nmodel analytially and �nds the above piture veri�ed. Calulating the pion massnear the ritial point M one obtains the PCAC-like relation m2� � (M �M),without reourse to hiral symmetry. The other soure is strongly oupled QCD,also in the large N limit. Calulating the e�etive potential in this limit one �nds,



Chapter 2. The Finite Temperature Phase Diagram of 2-avour QCD 16that in addition to the onventional phase with 
 � i5 � = 0 there exists a phasewith 
 � i5 � 6= 0 for 0 � M2 � 4, where M = mqa + 4r = 1=2� is the massparameter. Calulating the pion mass one �nds, that its mass vanishes only atthe transition point. This shows, that the pion is the massless mode onnetedwith the parity breaking phase transition. These results are unhanged, whenone inludes the �rst orretions in � in the large N limit [15℄. Investigating thease of two avours again at � = 0 in the large N limit, one �nds two di�erentkinds of vaua due to an aidental symmetry of the solution to the saddle pointequation:
 � i51 � 6= 0 and 
 � i5�3 � = 0 (2.1)
 � i51 � = 0 and 
 � i5�3 � 6= 0 (2.2)The vauum of Equation (2.1) breaks only parity invariane, whereas the vauumof Equation (2.2) breaks both the avour symmetry and the parity invariane.The true vauum an be found using the strong oupling expansion whih removesthe degeneray between the vaua. It turns out, that Equation (2.2) is the truevauum, i.e. both parity and avour symmetry are spontaneously broken forM2 � 4 in the strong oupling expansion. Calulating the meson masses one�nds, that the neutral pion �0 beomes massless at the phase transition, as dothe harged pions �� due to avour symmetry. The � meson stays massiveat the transition whih solves the U(1) problem on the lattie. In the parityavour broken phase 2 Goldstone bosons must appear whih are the hargedpions. However the neutral pion beomes only massless at the transition point[16℄. The approah to the ritial line will be governed by some ritial exponent,so one expets m2� � (� � �)2�. Sine low energy properties of pions an bedesribed by an e�etive 4-dimensional salar �eld theory, one expets the phasetransition to be mean �eld like up to logarithmi orretions and therefore � =1=2, reproduing the PCAC relation m2� / mqa, where the quark mass is de�nedas mqa = ( 12� � 12�). Using hiral ward identities, one an de�ne a urrent quark



Chapter 2. The Finite Temperature Phase Diagram of 2-avour QCD 17mass via [3℄2mWIq � Px;y;thr3 � 53 (x�) � � 5 (0)iPx;y;th � 5 (x�) � � 5 (0)i : (2.3)This quantity is not a tunable parameter and the existene of a hiral limit isnot ensured. However the above senario explains how the theory obtains suh alimit.2.3 An e�etive Lagrangian analysisIn referene [17℄ the phase struture of 2-avour QCD lose to the ontinuum limitwas studied using an e�etive ontinuum Lagrangian whose long range behaviouran be analysed using a hiral Lagrangian. The e�etive ontinuum Lagrangianis the same we enountered in the Symanzik improvement programLe� = Lg + � (D= +m) + b1a � i���F�� ; (2.4)where Lg is the gluon Lagrangian and terms of O(a2) have been dropped. Writingdown an e�etive hiral Lagrangian leads toL� = f 2�4 Tr ����y����+ V� : (2.5)The �rst term is invariant under SU(2)L � SU(2)R hiral rotations, as is thee�etive ontinuum Lagrangian without mass and Pauli term. The seond partV� ontains the symmetry breaking terms up to seond order in m:V� = �14 Tr �� + �y�+ 216 �Tr �� + �y�	2 : (2.6)Sine the Pauli term transforms under hiral rotations in the same way as themass term, its e�ets an be absorbed into the oeÆients 1 and 2. Dimensionalanalysis then tells us that1 � m�3 + a�5 ; 2 � m2�2 +ma�4 + a2�6 ; (2.7)



Chapter 2. The Finite Temperature Phase Diagram of 2-avour QCD 18Where � is an abbreviation for �QCD. As one redues the mass at �xed lattiespaing, one enters a region where the two oeÆients beome omparable inmagnitude and the ompetition between the two terms an lead to spontaneousparity and avour breaking. For masses m � a�2 disretization e�ets beomeimportant and the mass at whih 1 vanishes is shiftet from m = 0 to m0 = 0with m0 = m � a�2. When this shifted mass is of O(a2), i.e. am0 = (a�)3, thesize of the oeÆients beomes omparable. Writing� = A+ iB � � with A2 +B2 = 1; (2.8)the potential beomesV� = �1A+ 2A2 ; (2.9)having a minimum/maximum at � = 1=22. Denoting the vauum state by�0 = A0 + iB0 � �, one sees that a nonzero B0 breaks the avour symmetryto U(1). A nonzero B0 an only our for jA0j less than one. The sign of 2distinguishes two di�erent senarios. For 2 < 0 the minimum of the potential isattained for A0 = �1. Hene avour symmetry is not broken, but the pions donot beome massless either. For 2 > 0 the minimum of the potential lies at �,hene if j�j > 1 the vauum is A0 = �1, but for j�j < 1 the vauum is A0 = �and avour symmetry beomes spontaneously broken. Sine � � m0=(a2�3) withm0 = m�a�2, one sees expliitly, that the Aoki phase has width �m0 � a�m0 �(a�)3. This analysis annot predit the sign of 2 and stays essentially unalteredfor the improved ase. The sign of 2 an however hange when one goes to theimproved ase, so the existene of an Aoki phase for improved Wilson fermionsis an open question.2.4 Appliation to �nite temperatureThe appliation of these ideas to the phase struture at �nite temperature wasput forward in referene [18℄. They de�ned the ritial line at �nite temperature�(�) by the vanishing of the pion sreening mass. This de�nition makes ontat



Chapter 2. The Finite Temperature Phase Diagram of 2-avour QCD 19with the standard de�nition at zero temperature and is a natural extension to�nite temperature. The question then arises how this line is related to the �nitetemperature transition line �T (�), de�ned for de�nitiveness sake by the peak inthe suseptibility of the hiral ondensate. One would expet the two lines tomeet on the following physial ground. Moving along the ritial line towardsinreasing � inreases the temperature. Sine one expets the restoration ofhiral symmetry at high temperature, one should �nd a point where the hiralondensate drops to zero and the orresponding suseptibility has a peak, i.e. oneshould ross the �T (�) line. Initial simulations failed to �nd lear signals of suha behaviour. As reviewed in referene [19℄ the �nite temperature line runs almostparallel to the ritial line, de�ned by the vanishing of the pion mass at zerotemperature, towards strong oupling, raising the question whether the two linesmeet at all. Subsequent simulations determined the rossing point by runningalong the zero temperature ritial line towards strong oupling until the numberof onjugate gradient iterations diverged signaling the appearane of a masslessmode, namely the pion, in the spetrum. Using the one plaquette ation for thegluons and the Wilson ation for the fermions, the rossing point was determinedto lie deep in the strong oupling region at �t = 3:9�4:0. The shift of this rossingpoint with N� was studied and it was estimated that N� & 18 would be neededto have the rossing point in the week oupling region. Another way out is theuse of improved ation for the gauge �eld, whih is pursued in this study. Aoki,Ukawa and Umemura then analysed the two dimensional Gross-Neveu modelformulated with the Wilson ation at �nite temperature. Exept for on�nement,this model shares many important features with QCD, as there are asymptotifreedom, spontaneous breakdown of hiral symmetry and its restoration at �nitetemperature. In the large N limit, the pion mass is analytially alulable andthe result is given in Figure 2.1. The main feature is the fat that the three uspsretrat from the weak oupling limit for �nite temporal lattie sizes, forminga ontinuous line whih shifts toward strong oupling as N� dereases. Theposition of the ritial line obviously depends on N� , but only slightly for largeN� . For QCD the number of usps will inrease to �ve beause of the di�erentdimensionality and the line of the �nite temperature transition will appear. To
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Figure 1: Critical line for the lattice Gross-Neveu model on (g;m) plane. Temporallattice size equals Nt = 2; 4; 8; 16 and 1 from inside to outside.
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Figure 2.1: Critial lines for the lattie Gross-Neveu model on the (g,m) plane.Temporal lattie sizes are Nt = 2; 4; 6; 16 and 1 from inside to outside. Figuretaken from referene [18℄.de�ne a unique point of the hiral phase transition the thermal line has to rossthe ritial line. The thermal line an however not extend into the parity-avourbreaking phase, sine massless pions exist in this phase. Therefore the line �Tannot ross the line � for �nite N� , but may at most touh it. This means, thatthe region lose to the ritial line belongs to the low temperature phase evenafter it turns bak toward strong oupling. This means, that the thermal lineshould extend past the tip of the usp to separate the high temperature regionfrom the low temperature region. The absene of the ritial line at weak enoughoupling naturally explains that physial quantities vary smoothly aross the zerotemperature ritial line. This line �(T = 0) is absent from the point of view ofthe �nite temperature partition funtion, i.e. it is not a line of thermodynamisingularities. Another line enters the phase diagram namely the line of vanishingurrent quark mass de�ned by Equation (2.3). This line extends from the point(�; �) = (1; 18) into the phase diagram. It runs towards the tip of the usp of theAoki phase and runs alongside it towards the point (�; �) = (0; 14). This is so,
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Figure 2.2: Phase diagram for 2-avour QCD with improved Wilson fermions inthe � � � plane.beause at zero temperature the ritial line oinides with the mq = 0 line andthe ritial line at zero temperature smoothly develops into the zero temperatureritial line. If the thermal line �T (�) runs past the usp of the Aoki phase anddoes not touh the Aoki phase, there will be room for a phase transition, probably�rst order, from a on�ned phase with positive quark mass to a on�ned phasewith negative quark mass, see referene [20℄. Creutz also points out, that thethermal line is expeted to boune bak towards weak oupling as one rosses themq = 0 line, beause in the ontinuum the sign of the mass term is irrelevant for2-avour QCD. Sine most features of the phase diagram rely on generi featuresof Wilson fermions, namely the way doublers are treated at the expense of hiralsymmetry, one expets these features to hold when an improved ation is used.Beware however the aveat mentioned at the end of x(2.3) This is the reasonfor using the Sheikoleslami-Wohlert ation for the fermions. We want to studywhether the phase diagram with improved ations also exhibits a phase strutureontaining an Aoki phase.



Chapter 3Simulating Lattie QCD3.1 Monte Carlo Integration and Markov proessesIn a omputer simulation of Eulidean �eld theory one is interested in expetationvalues of operators 
 whih depend on some fundamental �eld � whose dynamiis governed by an ation S(�). The expetation value is then alulated ash
i = 1Z Z [d�℄e�S(�); (3.1)Where [d�℄ is the path integral measure, Z is the partition funtion hosen suhthat h1i = 1. The main idea of Monte Carlo integration is now to generatea sequene of �eld on�gurations (�1;�1; : : : ;�t; : : : ;�N) eah hosen from theprobability distributionP (�t)[d�t℄ = 1Z e�S(�)[d�t℄: (3.2)Measuring the observable on eah of these on�gurations and taking the averagewill giveh
i = limN!1 �
 = limN!1 1N NXt=1 
(�t): (3.3)For large N the distribution of �
 will be Gaussian with standard deviation� = �
=pN , where �
 = qh
2i � h
i2. To reate the desired probability dis-tribution one makes use of Markov proesses. A Markov proess is a stohasti22



Chapter 3. Simulating Lattie QCD 23proedure, that given a on�guration �i generates a new on�guration �f withsome transition probability P (�i ! �f ). The new on�guration therefore de-pends only on its predeessor. A Markov proess is alled ergodi if and onlyif � = inf�i;�f P (�i ! �f ) > 0 (3.4)Given a probability distribution Q(�) on the spae of on�gurations, appliationof the Markov proess will hange this distribution unless it is a �xed point, i.e.Z [d�i℄Q(�i)P (�i ! �f ) = Q(�f ): (3.5)The remarkable property of ergodi Markov proesses is that for any suh pro-ess there exists a unique �xed point Q. The distribution of on�gurations willonverge to this �xed point no matter what the starting on�guration was andthis onvergene is exponential. To onstrut an ergodi Markov proess thathas the desired probability distribution Q(�) = e�S(�)=Z as its �xed point, thetransition probability has to satisfy another ondition known as detailed balane:Q(�i)P (�i ! �f) = P (�f ! �i)Q(�f ): (3.6)It should be noted, that this is a suÆient but not a neessary ondition for thetransition probability. One simple way of implementing detailed balane is theMetropolis algorithm:P (�i ! �f ) = min�1; Q(�f )Q(�i) � (3.7)If the ation S(�) is loal, we an build up an ergodi Markov proess by aprodut of non ergodi steps, involving an update of one degree of freedom ata time. Sine the ation is loal, the evaluation of Q(�f )=Q(�i) at eah step isheap. As soon as the ation beomes nonloal, this method beomes infeasible



Chapter 3. Simulating Lattie QCD 24and other methods have to be used. Unfortunately this is exatly the ase, whenfermions enter the game:Q( � ;  ; U) = 1Z expf�S( � ;  ; U)g [d � ℄[d ℄[dU ℄= 1Z expf�Sg(U)� � M(U) g [d � ℄[d ℄[dU ℄= 1Z det(M(U)) expf�Sg(U)g [dU ℄: (3.8)Integrating out the fermions thus leaves us with an e�etive ation for the gauge�elds that is highly nonloal. How one an simulate suh a system with reasonableeÆieny is the subjet of the next setion.3.2 Pseudofermions and Hybrid Monte CarloIn any Metropolis aept/rejet step one would have to alulate the ratio of twodeterminants, whih is an operation ubi in the lattie volume, regardless of howmany entries of the matrix are hanged. One way to irumvent the evaluationof a determinant is by trading it in for the inverse of a matrix by using a wellknown formula for Gaussian integrals.detM = Z d�d��e���M�1�; (3.9)whih applies if the real part of all eigenvalues of M is larger than zero. This isnot true for the fermion matrix of a single avour. But we an make use of thefollowing property of the fermion matrix of Wilson fermions:5M5 =My: (3.10)This implies that the determinant of M is real. Sine every additional avourof mass degenerate fermions adds another power of the fermion determinant intothe path integral, we an use Equation (3.10) to double the number of fermions



Chapter 3. Simulating Lattie QCD 25and make Equation (3.9) work:(detM)2 = detMy detM = det(MyM) = Z d�d��e���(MyM)�1�: (3.11)This is the pseudofermion method. Sine the pseudofermions appear in a Gaus-sian integral, it is easy to do the Monte Carlo integration of them. Choosing �from a Gaussian distribution P (�) � exp(����) and setting � = My� will en-sure that � has the distribution required by Equation (3.11). What remains is to�nd a Markov proess, that evolves the gauge �elds. The e�etive ation for thegauge �elds now involves the inverse of the fermion matrix. This matrix beomesill onditioned when there is a massless mode in the spetrum, i.e. when thepion beomes massless. This means that even a small hange in the gauge �eldswill give rise to a large hange of the pseudofermioni energy and the aeptanerate would be very small. The idea of the Hybrid Monte Carlo (HMC) algorithmis therefore to evolve the system globally in a judiiously hosen way and thendeide about the aeptane of these hanges as a whole [21℄. We introdue addi-tional degrees of freedom whih are anonially onjugate momenta to the gaugedegrees of freedom. We de�ne a �titious HamiltonianH = 12Xx;� Tr �2�(x) + Sg(U) + ��(MyM)�1�: (3.12)Creating �eld on�gurations f�; U;�g with a Boltzmann weight given by H,namely Q(�; U;�) � exp(�H) will produe the right orrelation funtions forgauge and fermion �elds, sine the �titious momenta an be integrated out. TheHMC algorithm alternates two Markov proesses whih both have Q(�; U;�) asa �xed point, but neither of whih is ergodi by itself.The �rst step is a refreshment of the momenta hosen from a Gaussian distribu-tion. The seond step is to evolve the gauge �elds and momenta, using Hamilton'sequations of motion, along a moleular dynamis trajetory whih keeps the en-ergy H onstant. Sine one has to disretise these equations of motion in orderto integrate Hamiton's equations, one an not preserve the energy. Adding a



Chapter 3. Simulating Lattie QCD 26Metropolis aept/rejet step at the end of eah trajetory will then ensure de-tailed balane. The onventional way to derive the equations of motion was givenin referene [22℄. To preserve U as an element of SU(N) the equations of motionhave to take the form_U = i�U; (3.13)where � has to be an element of the Lie algebra of SU(N). The equations ofmotion for � are �xed by the requirement that H should stay onstant along thetrajetory. A mathematially more satisfying treatment is given in referene [23℄.There the formalism for lassial mehanis on an arbitrary ompat Lie groupG is developed and applied to the ase of HMC. The result is_� = �T ��S�U U� ; (3.14)where T is the projetor onto the Lie algebra of G. For the ase of SU(N)this amounts to projeting out the traeless antihermitian part. For the ase of2-avour QCD this will give�S�U = �Sg�U + �� ��U (MyM)�1�= �Sg�U + [(MyM)�1�℄� ��U (MyM)[(MyM)�1�℄: (3.15)The omputational bottlenek is of ourse the omputation of [(MyM)�1�℄. Todisretise these equations one has to �nd a sheme that is both reversible andarea preserving. The simplest one is the Leapfrog sheme. Evolve U(0) half atime step to U(12dt) usingU(12dt) = U(0) + _U(12dt)dt; (3.16)



Chapter 3. Simulating Lattie QCD 27then perform the leapfrog steps�(t+ dt) = �(t) + _�(t+ 12dt)dt (3.17)U(t + 12dt) = U(t� 12dt) + _U(t)dt (3.18)and lose the trajetory by another half step for the U �elds. The detailed alu-lation of the equations of motion for our kind of ation are derived in Appendix A.



Chapter 4Numerial Results with improved WilsonfermionsThis hapter desribes the results obtained through numerial simulation oftwo avour QCD with improved Wilson fermions on latties of size 83 � 4 and122 � 24� 4. Using routines to invert the fermion matrix and the orrelator odewritten by Peter Shmidt for a quenhed spetrosopy projet, a Hybrid MonteCarlo ode was set up together with Peter Shmidt and Burkhard Sturm. Thisode in its �nal version omprised 104 routines making up 19700 lines of (om-mented) ode, whih ran for about 200000 CPU hours on the Cray T3E at theH�ohstleistungs Rehen Zentrum in Juelih, Germany.4.1 Overview of resultsBefore we delve into the wealth of data, we want to summarise our �ndings on thephase diagram. Figure 4.1 shows the loation of the thermal line and the ritialline in the �-� plane. For � = 2:8 we have found two � values at whih thequark mass vanishes indiating the existene of the Aoki phase. Furthermore thesystem shows on�ned behaviour up to about � = 0:2 when the �nite temperaturetransition slowly sets in. This means that the thermal line runs past the tip ofthe usp of the Aoki phase and does not turn bak toward weak oupling as putforward in referene [20℄. In fat we see no sign of a seond thermal line at large� up to � = 0:33. At � = 3:0 the gap between the two vanishing points of thequark mass is no longer seen and the ritial line almost oinides with the �nitetemperature transition line. At � = 3:1 one rosses the thermal line before theritial line when � is inreased. We follow both lines up to � = 3:75 observing,28



Chapter 4. Numerial Results with improved Wilson fermions 29

0.12

0.14

0.16

0.18

0.2

0.22

0.24

2.6 2.8 3 3.2 3.4 3.6 3.8 4

κ

β

κt
κc

Figure 4.1: Results for the loation of the ritial line and thermal line in the �-�plane for two avours of improved Wilson fermions.that they stay quite lose together, as seen in earlier studies with the standardWilson ation. For the thermal line the vertial bars indiate the approximaterange over whih the transition takes plae. For the ritial line we have exeptfor � = 2:8 and 3.1 only data from the small lattie size, where an aurateextration of large distane behaviour of propagators is not possible. Yet there isstill a pronouned hange in the behaviour, when the quark mass hanges sign.This information an then be used to loate the ritial line. The vertial barsfor the ritial line are drawn between the points where the quark mass hangessign. For � = 2:8 and 3.1, where we have data from the larger lattie, the errorof the �t result is shown.In the following setions we will disuss in detail the results that orroborate thispiture, but before we an do this we have to de�ne the observables.



Chapter 4. Numerial Results with improved Wilson fermions 304.2 De�nition of the observablesSine we are ultimately interested in the �nite temperature phase transition inthe hiral limit of two avour QCD, we need a set of observables, that is sensitiveto both the hiral and thermal behaviour of the system. The simplest observablesensitive to hiral properties is the pion norm de�ned by� = 14N3�N� � tr �M�15M�15� ; (4.1)whih is just the integrated pion propagator. For light quark masses the pionnorm is proportional to the inverse pion mass squared, � � 1=m2�. It an there-fore be used on a smaller lattie to asses the proximity to the hiral limit, whereaurate information on the pion mass is not available.The pion sreening mass is extrated from the exponential deay of the spatialpseudosalar orrelator, projeted onto zero momentum in all orthogonal dire-tions h�(z)�(0)i =Xx;y;th � 5 (x�) � � 5 (0)i: (4.2)The onnetion between the sreening mass m and the orrelator is given byC(z) = 2A exp(�mNz=2) osh(m(Nz=2� z)) (4.3)whih is valid for large enough z.Another quantity of prime interest is the quark mass. By a areful analysis ofhiral ward identities referene [3℄ shows how to suitably de�ne physial quantitiesin order to get the orret hiral ontinuum limit. Following their presription,we de�ne the quark mass as2mq = ZAPx;y;thr3 � 53 (x�) � � 5 (0)iPx;y;th � 5 (x�) � � 5 (0)i : (4.4)



Chapter 4. Numerial Results with improved Wilson fermions 31ZA is the renormalisation onstant of the axial urrent, whih we set to its treelevel value, whih for our normalisation of the fermion �elds is 1=(2�)2. Thisis stritly speaking not orret, but we are mainly interested in the loation ofthe line of vanishing quark mass for whih the di�erene does not matter. Therenormalisation onstant an however be obtained from an analysis of three pointfuntions.In the hiral limit of QCD the hiral ondensate beomes an order parameterfor the �nite temperature hiral phase transition. At low temperature we expethiral symmetry to be spontaneously broken and therefore the hiral ondensateto extrapolate to a nonzero value in the hiral limit. In the symmetry restoredphase the hiral ondensate should vanish as the the quark mass goes to zero.For Wilson fermions a properly subtrated de�nition of the order parameter hasto be used to anel the ontat terms arising from the Wilson term. The properde�nition was again given in referene [3℄:h �  isub = 2mq � ZA � Xx;y;z;th�(x�)�(0)i (4.5)When the quarks are in�nitely heavy, full QCD redues to pure gauge theory.Here the deon�nement phase transition is related to the spontaneous breakdownof the Z(N) enter symmetry. The order parameter for this phase transition isthe Polyakov-loop, whose expetation value an be related to the partitionfuntion of a stati quark oupled to the gauge �elds. The Polyakov loop isde�ned byL = 1N3� X~x tr N�Yt=1 U4(~x; t): (4.6)We have �rst arried out a preparatory study on the small lattie of size 83 � 4to get an idea about the loation of the �nite temperature transition line and theloation of the usp of the Aoki phase if it existed. We have used the Polyakovloop and the pion norm to map out the phase diagram. We had also measured therelevant orrelators to determine the pion mass and the quark mass, but ould



Chapter 4. Numerial Results with improved Wilson fermions 32not extrat lear and unambiguous signals from them. We simulated the systemfor � = 2:8; 3:0; 3:1; 3:5 and 3:75 at various values of �. One the phase diagramwas approximately known, we used a larger lattie of 122�24�4 at two � values,namely � = 2:8 and 3:1, to orroborate our �ndings, hek �nite size e�ets andextrat pion and quark masses. With hindsight it turned out that to a ertainextent one ould use the alulated orrelators on the smaller lattie to extratviable information. We will deliberate on this in the appropriate setion.4.3 Results for the pion norm
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Figure 4.2: Left: The pion norm as a funtion of � on the 83 � 4 lattie fordi�erent � values. Right: Similarly data from the 122 � 24 � 4 lattie togetherwith orresponding data from the smaller lattie to asses �nite size e�ets. N.B.:note the di�erene in sale.Figure 4.2 shows the results for the pion norm. We expet the pion norm as afuntion of � to develop a peak that inreases as we derease �. This peak shouldturn into a singularity as one hits the tip of the Aoki phase. Lowering � further,the singularity should split up into two branhes and and leave a gap. As we ansee from Figure 4.2, one an identify this behaviour in our data. At � = 3:75the pion norm does not develop any peak and there is no sign of a proximity tothe Aoki phase. At � = 3:5 the pion norm develops a small peak whose loationoinides with that of the deon�nement transition, see x(4.4). At � = 3:1 onesees a lear signal for a diverging pion norm. As one dereases � further to



Chapter 4. Numerial Results with improved Wilson fermions 33� 2.8 3.0 3.1� 0.1859(3) 0.1823(10) 0.1800(5)Table 4.1: Critial hopping parameters extrated from the pion norm.� = 3:0 the apparent gap between the two branhes of the developing divergenebeomes wider. We will argue below, that one an identify two ritial lines for� = 2:8, whih an be understood by the existene of Aoki's phase. As mentionedabove one expets the pion norm to be inversely proportional to the squared pionmass. Employing the partial onservation of the axial urrent the squared pionmass is proportional to the quark mass. For the quark mass one has in turn therelationmq � 12 � 1� � 1�� ; (4.7)whih is valid as an equality in the weak oupling limit where � = 1=8. At�nite � one has to use the appropriate value for �(�) and the proportionalityonstant beomes unequal a half. One an therefore extrat a �(�) from �tting1=� linearly in 1/�. The results are shown in Table 4.1; exept for � = 3:0 weused the data from the larger of the two lattie sizes in the analysis. The �t wasonly performed approahing the ritial line from below, beause 1=� showed astrong urvature when plotted as a funtion of 1/� for the larger values of �. Inthe next setion we will argue, that for � = 3:1 the data are not onsistent withthe proposition that the pion beomes massless. For � = 3:0 we annot deidethe issue, so we are left with only � = 2:8 where the existene of the Aoki phasean be established.4.4 Results for the Polyakov loopFigure 4.3 shows the results for the Polyakov loop. As one an infer from theright plot, the �nite size e�ets are not very large for the two �-values wheredata from both latties exist. We therefore assume the �nite size e�ets for the
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Figure 4.3: Left: The Polyakov loop as a funtion of � on the 83 � 4 lattie fordi�erent � values. Right: Similarly data from the 122�24�4 lattie together withorresponding data from the smaller lattie to asses �nite size e�ets, vertial linesare ritial values of � as extrated from the pion norm. N.B.: note the di�erenein sale.other �-values to be small as well and use all data to infer the phase diagram. Asexplained in x(1.1) one expets the ritial temperature of the phase transition toderease, when the mass of the quarks is lowered. This means, that the loationof the transition is shifted to larger � for smaller �. This is learly exhibited bythe data. For � = 3:75 the transition is quite strong as expeted for large quarkmasses where the �rst order phase transition of the pure gauge system is stillimportant. The transition takes plae between � = 0:13 and � = 0:15. Thesevalues quoted here are the basis for the vertial bars given for the thermal line inFigure 4.1. For � = 3:5 the transition is still quite strong taking plae between� = 0:155 and � = 0:16. The jump in the value of the Polyakov loop however issmaller than for � = 3:75 as expeted. For � = 3:1 the transition is even weakerand happens between � = 0:1725 and � = 0:18. This means that the pion annotbeome massless at �=0.18 whih was the �t result from the pion norm. Thesystem is already in the high temperature regime where the �t would suggestthe pion to beome massless. This means that for �=3.1 one rosses the thermalline before the ritial line. This will be further supported by the analysis of theresults for the quark mass and the pion mass as presented below. For � = 3:0



Chapter 4. Numerial Results with improved Wilson fermions 35where the �nite temperature phase transition takes plae between � = 0:177 and� = 0:185, the point where the �t from the pion norm would predit a masslesspion is right where the transition happens. This indiates that the ritial lineand the thermal line ome very lose around � = 3:0. For � = 2:8 there is noproblem with the interpretation, that the pion beomes massless for some valueof the hopping parameter. Though the Polyakov loop inreases with � it remainssmall and shows no transition behaviour as one approahes the ritial line. Onthe other side of the apparent singularity the Polyakov loop slowly rises andshows transient behavior between � = 0:20 and � = 0:24. This means that thethermal line runs past the tip of the usp of the Aoki phase ontinuing towardstrong oupling. The transition however is weaker and more spread out than forlarger values of �.4.5 Results for the pion mass
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Figure 4.4: Left: Value of the seond z-slie of the e�etive mass plot of the pionorrelator squared as a funtion of 1/� for the 83� 4 lattie. Right: Fitted pionmass squared as a funtion of 1/� from the 122 � 24 � 4 lattie together withdata from the smaller lattie as on the leftWe have measured the pion-pion orrelator on both lattie sizes, but only onthe larger lattie is it possible to extrat a mass from an exponential �t. Wehave however analysed the orrelator also on the smaller lattie and produedan e�etive mass plot, i.e. plotting the average ratio of the orrelator of two



Chapter 4. Numerial Results with improved Wilson fermions 36onseutive time slies. If we ompare the seond time slie of suh an e�etivemass plot on the smaller lattie with the �tted mass from the larger lattie atorresponding values of � and � we �nd a surprisingly good agreement, as anbe seen from the right part of Figure 4.4. We hene also plot this quantity asthe pion mass for the other �-values on the smaller lattie, to see whether theresults �t into the overall piture. We have to keep in mind though, that thesevalues have to be taken with a grain of salt. Let us now disuss the pion mass onthe smaller lattie. For � = 3:75 the pion stays heavy. The pion mass dereaseswith inreasing �, but beomes heavier again one we ross the transition region.For � = 3:5 this behaviour beomes even more pronouned, with the minimumvalue of the pion mass ourring right at the �nite temperature phase transition.Furthermore this minimum value is lower than for � = 3:75 whih �ts well withour �nding that the ritial line and the thermal line ome loser together as onedereases �. Another interesting feature for this �-value is that the pion aftergetting heavier after the �nite temperature transition beomes lighter again ateven higher values of �. This seems to indiate the proximity to another usp ofthe Aoki phase as we expet in total �ve usps to develop. For � = 3:1 we anompare the pion mass on the smaller lattie with the properly extrated onefrom the larger lattie. As one an see from Figure 4.4 they agree quite well for�'s in the low temperature phase. In the high temperature phase the agreement isnot so good, whih might be explained by the fat, that in the high temperaturephase there is stritly speaking no pion. This means, that what we measure isin fat the propagator of two quarks propagating in the medium. In this ase�nite size e�ets play an important role. We should hene be very areful ininterpreting the pion mass data in the high temperature phase. At � = 3:1 welearly see that the data are not ompatible with the assumption that the pionmass beomes zero. At � = 3:0 the situation is less lear ut also beause we haveno data from the larger lattie. The minimum value of the pion mass is lowerthan for � = 3:1 but not onsistent with zero. For larger �-values we see a similarbehaviour as for � = 3:5, namely the pion mass drops again. Finally at � = 2:8there is evidene that the pion beomes massless. The two branhes of the plotan be extrapolated to yield two di�erent values for � whih leave a small gap.



Chapter 4. Numerial Results with improved Wilson fermions 37� 2.8 2.8� 0.188(1) 0.1859(1)Table 4.2: Results for the two ritial hopping parameters at � = 2:8 extrapolatedfrom the pion mass.The result of a linear extrapolation is shown in Table 4.2. The errors are quitelarge whih omes from the fat, that the data show quite some urvature as afuntion of 1/�. This might be a result of the left out renormalisation fator. Onthe other hand the argument for a linear behaviour of the pion mass squared asa funtion of 1/� is drawn from PCAC ideas, whih due to Aoki are not reallyappliable here. We also have no problem that these �-values lie in the range ofthe �nite temperature phase transition as for the larger �-values. We onludethat for � = 2:8 there exists an Aoki phase whih however is very small.4.6 Results for the quark mass
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Chapter 4. Numerial Results with improved Wilson fermions 38� = 2.8 3.0 3.1 3.5 3.75� 0.1853(3) 0.1823(10) 0.1770(3) 0.1625(25) 0.1550(5)Table 4.3: Results for the position of the line of vanishing quark mass as extratedfrom the behaviour of the quark mass orrelator ratio.to be evaluated for large z, one an try to plot the furthest possible point, whihon a lattie with periodi boundary onditions is the midpoint. It turns out, thatwhen the data of the smaller lattie are plotted in suh a way, there exists againbroad agreement with the data from the larger lattie. One an however not takethe left plot of Figure 4.5 at fae value. Looking at the orrelator ratios them selfone an quite learly disern a orrelator ratio that will on a larger lattie give apositive quark mass from one that will result in a negative quark mass, see plotone and three of Figure 4.6. But there are also orrelator ratios, whih we allanomalous, that display positive/negative mass behavior, but whose value at the�fth z-slie is negative/positive, see plot two and four of Figure 4.6. Beause ofthe distinguishable positive/negative mass behaviour we have extrated a loationof the ritial line de�ned by the vanishing of the quark mass as the midpointbetween the two points between whih the behaviour of the quark mass orrelatorratio hanges, exept for � = 2:8 and 3:1, where a �t ould be performed. Theresults are shown in Table 4.3.
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Chapter 4. Numerial Results with improved Wilson fermions 394.7 Results for the hiral ondensateFrom the measurement of the pion norm and the quark mass we an infer thehiral order parameter. Our results are depited in Figure 4.7 where the hiralondensate is plotted as a funtion of the quark mass. This plot gives further evi-dene that for � = 2:8 hiral symmetry is broken as the hiral limit is approahed.The hiral ondensate extrapolates to a nonzero interept for this �-value. For� = 3:1 however, the hiral ondensates shows a strong urvature, indiatingthat it will extrapolate to zero in the zero mass limit, as expeted when hiralsymmetry is restored.
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Chapter 5SummaryIn this study the phase diagram of 2 avour QCD with dynamial fermions wasinvestigated. For the gauge �elds a tree level Symanzik improved ation was used.The fermions were simulated in the Wilson formulation also with a tree levelSymanzik improved ation, whih amounts to adding the so alled lover term tothe standard Wilson ation. This system was studied on two di�erent lattie sizes,namely 83�4 and 122�24�4. On the smaller lattie �ve di�erent �-values wereinvestigated to map out the phase diagram. These were � = 2:8; 3:0; 3:1; 3:5; 3:75.For eah �-value a varying number of �-values were simulated to �nd the thermaland ritial lines. One the phase diagram was known the system was simulatedon the larger lattie at two �-values � = 2:8 and 3:1 in the region where thepion was beoming light. For these values, pion and quark masses were extratedand �nite volume e�ets assessed. It was the aim of this study to investigate thefollowing points:� Does there exist an Aoki phase for the improved Wilson ation [18℄?� Does the use of improved ations alleviate problems with strong lattieartifats found in previous studies [6℄?� What happens to the thermal line one it rosses the line of vanishing quarkmass [20℄?� Can one study the �nite temperature phase transition with Wilson fermionsat light pion masses? 40



Chapter 5. Summary 41At the smallest � we �nd evidene for two ritial lines, whih are very losetogether and indiate the existene of an Aoki phase for this ation. We still�nd, that the thermal line and the ritial line ome very lose to eah other andrun almost parallel toward strong oupling. We �nd no anomalies as for examplereported by the MILC ollaboration [6℄. The strength of the transition dereaseswith dereasing quark mass as expeted. Again at the smallest �-value we �nda transition from on�ned to deon�ned behaviour in a regime where the quarkmass is negative. This means on the one hand that the thermal line ontinuespast the tip of the usp of the Aoki phase toward strong oupling and does notturn bak toward weak oupling as has been proposed. On the other hand thisimplies, that the thermal line rosses the ritial line, making it possible to studythe �nite temperature phase transition for light pions.Outlook and future investigations: There are a number of things, thatone would want to elaborate about the phase diagram. The evidene for theexistene of an Aoki phase is not very strong and quite indiret. It would beworthwhile to simulate the system at � = 2:8 for the larger �-values on thelarger lattie to be able to extrat the quark mass and establish the existeneof a seond ritial line more preisely. To this end it would also be usefulto study the system at even smaller �-values, as the width of the Aoki phaseshould inrease and the signal beome learer. In the light of the disussion inx(2.3) the existene of the Aoki phase for improved Wilson fermions should beestablished more �rmly. Another interesting region is the spae between the tipof the usp and the point where the thermal line rosses the line of vanishingquark mass. Due to the absene of the Aoki phase, the pion should not beomemassless and one expets a �rst order transition aross the line of vanishing quarkmass. This phase transition region will be squeezed out between the usp of theAoki phase and the �nite temperature transition line in the ontinuum limit andmight therefore be onsidered unimportant, but it would ertainly inrease ourunderstanding of the theoretial issues involved in the QCD phase diagram, if theexistene of this phenomenon ould be established. The next step, of ourse isthe thermodynamis of QCD with improved Wilson fermions. One is interested



Chapter 5. Summary 42how physial observables like pressure and energy density hange as a funtionof temperature. To determine a temperature sale in physial units, one hasto do simulations at zero temperature to set the sale. Beause it turned outthat the simulations were very time onsuming with the ombination of ationswe used, this ould not be realized in the present study. Another importantdiretion for future researh is the still open question of the order of the phasetransition for two massless quarks. Simulations with staggered quarks have sofar given puzzling and inonlusive results. The thermodynamis of QCD withWilson fermions is not very developed and this thesis was meant to hange this.



Appendix AQuantisation of gauge and fermion �eldsA.1 Quantising the gauge �eldsLattie Quantum Chromo Dynamis is a non-perturbative implementation ofEulidean �eld theory using the path integral approah a la Feynman. The �nitespae time grid serves as a regulator for the theory, that has to be removed asone takes the ontinuum limit. As one formulates QCD on a lattie one is willingto give up e.g. Lorentz invariane, but what one is not willing to give up isloal gauge invariane. This has quite pratial reasons, see e.g. referene [24℄,only gauge invariane guarantees the equality of the quark-gluon, three-gluon andfour-gluon ouplings and the masslessness of the gluons. To formulate a theorywith a loal gauge invariane, one uses the onept of ovariant derivatives andparallel transporters. A parallel transporter is a mapping from the spae ofontinuous paths on spae time into the spae of gauge transformations underwhih our ation shall be loally invariant (e.g. U(1),SU(N),...) with the followingproperties:U(;) = 1 (A.1)where ; denotes the path with zero length, i.e. Cx;x for all x.U(C2 Æ C1) = U(C2)U(C1) (A.2)where C2 Æ C1 denotes the path omposed of C1 followed by C2.U(�C) = U(C)�1 (A.3)43



Appendix A. Quantisation of gauge and fermion �elds 44where �C is the path C traversed in the opposite way.Under a loal gauge transformation�(x)! �0(x) = ��1(x)�(x)�(y)! �0(y) = ��1(y)�(y) (A.4)a parallel transporter transforms asU(Cy;x)! U 0(Cy;x) = ��1(y)U(Cy;x)�(x): (A.5)Therefore U(Cy;x)�(x) transforms under a gauge transformation like �(y). Wean hene ompare the �eld at di�erent points using the ovariant distane�C = U�1(Cy;x)�(y)� �(x); (A.6)whih depends of ourse on the spei� path Cy;x. For the spei� paths C�(t) =x + �̂ � t we an de�ne the ovariant derivativeD��(x) = limt!0 �C�(t)�(x)t : (A.7)It is obvious from the above de�nition, that the ovariant derivative transformsunder gauge transformations as the �eld �(x).If we de�ne the gauge �eld A� asA�(x) = limt!0 1� U(C�(t))t ; (A.8)the ovariant derivative is given asD� = �� + A�(x): (A.9)



Appendix A. Quantisation of gauge and fermion �elds 45In order to �nd the transformation law for the gauge �elds, one starts fromEquation (A.8) as the de�ning equation for the in�nitesimal generator and usesthe gauge transformed parallel transporter. This results inA0�(x) = ��1(x)A�(x)�(x)� (���(x))�(x): (A.10)The �eld strength is de�ned as the ommutator of two ovariant derivatives anddesribes the parallel transport around an in�nitesimal parallelogram:F�� = [D�; D�℄ : (A.11)The ontinuum ation is then given in terms of F�� asSG = � 12g2 Z d4xTrF��F �� (A.12)It is now lear how one an de�ne a gauge invariant ation using parallel trans-porters. In fat given a gauge �eld, one an reonstrut the parallel transportersvia U(C) = P exp�� ZC A�(x)dx�� ; (A.13)where P denotes path ordering of the gauge �elds along C when evaluating theexponential. It is therefore natural to formulate the gauge dynamis on a lattiein terms of the parallel transporters. On a hyperubi lattie we have to speifythe elementary parallel transporters along the links joining two adjaent pointsin our lattie. They will be denoted U�(x), for further notations see Appendix A.The gauge ation on the lattie is formulated in terms of plaquettes, whih arethe produt of link �elds around an elementary square in the �� � planeU��(x) = U�(x)U�(x+ �̂)U y�(x+ �̂+ �̂)U y�(x+ �̂): (A.14)



Appendix A. Quantisation of gauge and fermion �elds 46The ation is then given as a sum over all plaquettes:SG = � Xx;�<��1� 1NReTrU��(x)� forSU(N); (A.15)where � = 2N=g2. If we expand the above ation in powers of the lattie spainga we get bak the ontinuum ation up to terms of O(a2), see e.g. referene [25℄.To fully desribe the quantum system one has to speify the measure on the gaugegroup over whih one integrates in the path integral. This measure should respetgauge invariane for the orrelation funtions resulting from the path integral tobe gauge invariant. Fortunately for every ompat group G there exists a uniqueregular Borel probability measure with the desired properties, namely:1. NormalisationZG dU = 1: (A.16)2. InvarianeZG f(U)dU = ZG f(UV )dU = ZG f(V U)dU for all V 2 G: (A.17)Whih satis�esZG f(U)dU = ZG f(U�1)dU: (A.18)This measure is alled the Haar measure of G, for an existene proof see refer-ene [26℄. The expetation value of an observable O, whih is a funtion of thegauge �eld fUg, is given byhOi = 1Z Z DUO(fUg) exp(�SG(fUg)) (A.19)Z = Z DU exp(�SG(fUg)) (A.20)DU =Yx;� dU�(x) (A.21)



Appendix A. Quantisation of gauge and fermion �elds 47with dU�(x) being the Haar measure for the link from x to x + �̂.A.2 Quantising the matter �eldsQuantising fermions via the path integral approah is far from trivial. It is indeednontrivial to see, that the analogy argument, i.e. use Grassmann variables in thepath integral instead of ordinary ones, indeed gives the right answer. What wewant to show here, is how one an express the trae over a omplete set of statesin the Fok spae of reation and annihilation operators as a funtional integralover Grassmann �elds. We start from a set of �eld operators���(x); ��(y) (A.22)satisfying anonial ommutation relations����(x); ��(y)	 = a3�;�4 Æx;y; (A.23)where a is the lattie spaing and x; y are points on a ubi lattie. The vauumis de�ned byP+�(x)j0i = ��(x)P�j0i = 0 with P� = 12(1� 4): (A.24)We also introdue a Grassmann algebra with elements  �(x); � �(y) with thefollowing antiommutation properties� �(x);  �(y)	 = � � �(x); � �(y)	 = � �(x); � �(y)	 = 0: (A.25)These Grassmann �elds in turn ommute with all reation and annihilation op-erators. We now de�ne Grassmann oherent states:j ; � i = exp(a3Xx [ ��(x)P+ (x) + � (x)P��(x)℄) j0i (A.26)h ; � j = h0j exp(a3Xx [ � (x)P+�(x) + ��(x)P� (x)℄) : (A.27)



Appendix A. Quantisation of gauge and fermion �elds 48They are eigenvetors of the reation and annihilation operators with Grassmanneigenvalues, namely:P+�(x)j ; � i = P+ (x)j ; � i��(x)P�j ; � i = � � (x)P�j ; � ih ; � j��(x)P+ = h ; � j � (x)P+h ; � jP��(x) = h ; � j � P� (x): (A.28)These states form a omplete set in the sense that1 = Z Y�;xfa3d � �(x)d �(x)g exp(�a3X�;x � �(x) �(x)) j ; � ih ; � j(A.29)is a resolution of the identity.The matrix element of two di�erent oherent states is given by:h 0; � 0j ; � i = exp(a3Xx ( � (x)0P+ (x) + � (x)P� (x)0)) : (A.30)We will now use these results to alulate the partition funtionZ = Tr�e��H	 =Xn hnj e��H jni= Xn Z Y�;xfa3d � �(x)d �(x)ge�a3Px � (x) (x) hnj ; � ih ; � je��H jni= Xn Z Y�;xfa3d � �(x)d �(x)ge�a3Px � (x) (x)h ; � je��H jni hnj � ( ; � )i= Z Y�;xfa3d � �(x)d �(x)ge�a3Px � (x) (x)h ; � je��Hj �  ; � i: (A.31)The minus sign arises from ommuting the two Grassmann valued matrix ele-ments past eah other. It will give rise to antiperiodi boundary onditions in



Appendix A. Quantisation of gauge and fermion �elds 49time for the Grassmann variables. To proeed from here one splits the time in-terval into N� piees of length a0 with N�a0 = � and inserts a omplete set ofstates at eah intermediate point.Z = limN�!1Trn�e�a0H�No= limN�!1Z N�Yt=1Y�;xfa3d � �(x; t)d �(x; t)ge�a3Px;t � (x;t) (x;t)
 ; � (N� )�� exp(�a0H) �� ; � (N� � 1)� �
 ; � (N� � 1)�� exp(�a0H) �� ; � (N� � 2)� � : : :
 ; � (1)�� exp(�a0H) ��� ; � (N� )� (A.32)The next step is to approximate exp(�a0H) by 1� a0H and evaluate the matrixelements between the oherent states. We must now speify the Hamiltonian.We hoose the disretisation introdued by Wilson:H = Xx a3�: ���(x) �m+ 3ra ��(x)� :� 12a 3Xk=1 ��(x+ k̂)[r + k℄�(x) + ��(x� k̂)[r � k℄�(x)) ; (A.33)where :: means normal ordering to subtrat the zero point energy:: ��(x)�(x) := ��(x)P+�(x)� ��(x)(��(x)P�)� (A.34)From the rules in Equation (A.28) one obtains for the matrix elements of a0H:
 ; � (t+ 1)�� a0H �� ; � (t)� = 
 ; � (t+ 1)j ; � (t)� �a0Xx a3��m + 3ra � � � (x; t+ 1)P+ (x; t) + � (x; t)P� (x; t+ 1)�



Appendix A. Quantisation of gauge and fermion �elds 50� 12a 3Xk=1( � (x+ k̂; t+ 1)P+ + � (x + k̂; t)P�)[r + k℄(P+ (x; t) + P� (x; t+ 1))+( � (x� k̂; t+ 1)P+ + � (x� k̂; t)P�)[r � k℄(P+ (x; t) + P� (x; t+ 1))o(A.35)Together with Equation (A.30) we then arrive at the following expression for thepartition funtion:Z = limN�!1Z Y�;x;tfa3d � �(x; t)d �(x; t)g exp�� a3a0Xx;t � 1a0 � (x; t) (x; t)+ �m+ 3ra � � � (x; t+ 1)P+ (x; t) + � (x; t)P� (x; t + 1)�� � � (x; t+ 1)P+ (x; t) + � (x; t� 1)P� (x; t)�� 12a 3Xk=1( � (x+ k̂; t+ 1)P+ + � (x + k̂; t)P�)[r + k℄(P+ (x; t) + P� (x; t+ 1))+ ( � (x� k̂; t+ 1)P+ + � (x� k̂; t)P�)[r � k℄(P+ (x; t) + P� (x; t+ 1))��(A.36)Denoting the points in the four dimensional lattie by x, taking equal lattiespaings in spae and time diretions a0 = a and r=1, the integrand an be furthersimpli�ed to lead to the well known Wilson fermion ation, see referene [25℄:Sf = Xx a4n�m + 4a� � (x) (x)� 12a 4X�=1 � (x+ �̂)(1 + �) (x) + � (x� �̂)(1� �) (x)o (A.37)This is a disretised version of the free ontinuum Dira ation. This shows,that to quantise fermions with the path integral approah one starts from the



Appendix A. Quantisation of gauge and fermion �elds 51ation and integrates over lassial on�gurations of Grassmann �elds, i.e. theanalogy argument works. To ouple in the gauge �elds one has to make the aboveation gauge invariant. This is ahieved by inserting the appropriate paralleltransporters. The result isSf = Xx a4n�m + 4a� � (x) (x)� 12a 4X�=1 � (x)U�(x)(1� �) (x+ �̂) + � (x)U y�(x� �̂)(1 + �) (x� �̂)o(A.38)



Appendix BHybrid Monte Carlo equations of motionThis appendix is intended to show the derivation of the equations of motion usedin the Hybrid Monte Carlo simulation. We follow referene [22℄. In what followswe use the following onventions:tr : olour traeTr : spinor traeTR : spae traeThe derivation starts from the HMC-HamiltonianH = 12Xx;� tr�2�(x) + Sg + ��(MyM)�1�: (B.39)The ��(x) are momenta onjugate to the gauge �elds U�(x). They live in thegroup algebra, i.e. are traeless anti-hermitian matries. The time-evolution ofthe gauge-�elds takes the form_U�(x) = i��(x)U�(x)_U y�(x) = �iU y�(x)��(x): (B.40)The equations of motion for the onjugate momenta are derived from the require-ment, that the above Hamiltonian is onstant in Moleular-Dynamis-time. Itwill be shown that the time-derivative of the fermion and gauge ontributions to52



Appendix B. Hybrid Monte Carlo equations of motion 53H an be written as_S =Xx;� tr[��(x)iF�(x)℄; (B.41)with F�(x) = G�(x)�Gy�(x): (B.42)The ondition of onstant energy along the MD-trajetory an therefore be reastinto the following:0 = _H =Xx;� trf��(x)[ _��(x) + iF�(x)℄g: (B.43)This is zero if _��(x) is proportional to the unit matrix. To keep ��(x) traeless theremaining proportionality onstant is hosen as the trae of F�(x). The equationsof motion for the onjugate momenta are therefore:i _��(x) = G�(x)�Gy�(x)� 13tr �G�(x)�Gy�(x)� : (B.44)B.1 The gluoni ontributionSpelling out the graphial representation given in Equation (1.20), the gaugeation is given bySg = � Xx;�>� 53 �1� 12N tr [U��(x) + U��(x)℄��16 �1� 14N tr �U2�1�� (x) + U1�2�� (x) + U1�2�� (x) + U2�1�� (x)�� ;(B.45)where U�;�(x) = U�(x)U�(x+ �̂)U y�(x+ �̂)U y�(x)



Appendix B. Hybrid Monte Carlo equations of motion 54U2�1�;� (x) = U�(x)U�(x+ �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)U1�2�;� (x) = U�(x)U�(x+ �̂)U�(x + �̂+ �̂)U y�(x+ �̂ + �̂)U y� (x+ �̂)U y�(x):(B.46)The �rst observation is, that one an rewrite the sum over � > � as a sum over� 6= � and drop half of the terms. The time derivatives of U�;�(x) and U2�1�� (x)are then given by_U�;�(x) = _U�(x)U�(x + �̂)U y�(x + �̂)U y�(x)+ U�(x) _U�(x + �̂)U y�(x + �̂)U y�(x)+ U�(x)U�(x + �̂) _U y�(x + �̂)U y�(x)+ U�(x)U�(x + �̂)U y�(x + �̂) _U y�(x) (B.47)
_U2�1�;� (x) = _U�(x)U�(x+ �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)U�(x) _U�(x+ �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)U�(x)U�(x+ �̂) _U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)U�(x)U�(x+ �̂)U�(x+ �̂+ �̂) _U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)U�(x)U�(x+ �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂) _U y�(x + �̂)U y�(x)U�(x)U�(x+ �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂) _U y�(x)(B.48)The sum over x and � 6= � an now be used to hange the dummy indies ofeah term. The yli property of the trae an then be used to bring all timederivatives to the front. Finally we make use of Equation (B.40) and write_Sg = � �2N Xx;�6=� trhi��(x)U�(x)53nU�(x+ �̂)U y�(x+ �̂)U y�(x)



Appendix B. Hybrid Monte Carlo equations of motion 55+ U y�(x+ �̂� �̂)U y�(x� �̂)U�(x� �̂)� h::o� 112trn U�(x+ �̂)U�(x + �̂+ �̂)U y�(x+ �̂+ �̂)U y�(x+ �̂)U y�(x)+ U�(x + �̂)U y�(x + �̂)U y�(x� �̂+ �̂)U y�(x� �̂)U�(x� �̂)+ U�(x+ �̂)U y�(x+ �̂+ �̂� �̂)U y�(x+ �̂� �̂)U y�(x� �̂)U�(x� �̂)+ U y�(x+ �̂� �̂)U y�(x� �̂)U y�(x� �̂� �̂)U y�(x� �̂)U�(x� �̂)+ U�(x + �̂)U�(x+ �̂+ �̂)U y�(x + �̂ + �̂)U y�(x + �̂)U y�(x)+ U y�(x+ �̂� �)U�(x+ �̂� �̂ � �̂)U y�(x� �̂ � �̂)U�(x� �̂ � �̂)U�(x� �̂)� h::oi= Xx;� tr�i��(x)(GG� (x)� h:)	 (B.49)where the sum over the generalized staples is de�ned byGG� (x) = � �2N Xx;� 6=�U�(x)h53nU�(x+ �̂)U y�(x+ �̂)U y�(x)+U y�(x + �̂� �̂)U y�(x� �̂)U�(x� �̂)o�112nU�(x + �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)+ U�(x + �̂)U y�(x + �̂)U y�(x� �̂+ �̂)U y�(x� �̂)U�(x� �̂)+ U�(x+ �̂)U y�(x + �̂+ �̂� �̂)U y�(x + �̂� �̂)U y�(x� �̂)U�(x� �̂)+ U y�(x + �̂� �̂)U y�(x� �̂)U y�(x� �̂� �̂)U y�(x� �̂)U�(x� �̂)+ U�(x + �̂)U�(x+ �̂+ �̂)U y�(x+ �̂ + �̂)U y�(x + �̂)U y�(x)+ U y�(x + �̂� �)U�(x+ �̂� �̂ � �̂)U y�(x� �̂ � �̂)U�(x� �̂ � �̂)U�(x� �̂)oi(B.50)



Appendix B. Hybrid Monte Carlo equations of motion 56B.2 The fermioni ontributionIn terms of pseudo fermions the fermioni part of the Hamiltonian is given bySf = ��(MyM)�1�; (B.51)taking the derivative with respet to time gives_Sf = �� � ddt(MyM)�1 � �= ���(MyM)�1 � ddt(MyM) � (MyM)�1�= �X� � ddt(MyM) �X= �X�� dMydt M+My dMdt �X= �TR Tr tr� dMydt MP + dMdt PMy� ; (B.52)with X(x) = (MyM)�1�(x)P(x; y) = X(x)
X�(y): (B.53)We now speify the form of the fermion matrix:M(x; y) = A(x)Æx;y � � /D(x; y)/D(x; y) = X� U�(x) (1� �) Æx+�̂;y + U y�(y) (1 + �) Æx��̂;yA(x) = 1� i�2 SWF��(x)���F��(x) = 18i(Q��(x)�Qy��(x))��� = 12[�; �℄



Appendix B. Hybrid Monte Carlo equations of motion 57Q��(x) = U�;�(x) + U�;��(x) + U��;��(x) + U��;�(x)U�;�(x) = U�(x)U�(x + �̂)U y�(x + �̂)U y�(x)U��(x) = U y�(x� �̂)U y��(x) = U�(x� �̂) (B.54)Beause of the linear struture of the fermion matrix the time derivative of thefermion ontribution splits up into two parts, whih we will now alulate.B.2.1 The Wilson termThe �rst ontribution omes from the time derivative of the Wilson term.R1 = �TR Tr trn _DyMP + _DPMyo (B.55)Note that in the time derivative we have to treat U and U y as independent degreesof freedom. The ontribution at point x is_/D(x; y) = X� _U�(x) (1� �) Æx+�̂;y + _U y�(y) (1 + �) Æx��̂;y_/Dy(x; y) = X� _U�(x) (1 + �) Æx+�̂;y + _U y�(y) (1� �) Æx��̂;y; (B.56)whih givesR1 = �Xx;� trn _U�(x) (1 + �)MX(x+ �̂)
X�(x)+ _U y�(x� �̂) (1� �)MX(x� �̂)
X�(x)+ _U�(x) (1� �)X(x+ �̂)
 (MX)�(x)+ _U y�(x� �̂) (1 + �)X(x� �̂)
 (MX)�(x)o (B.57)



Appendix B. Hybrid Monte Carlo equations of motion 58and an be rewritten asR1 = �Xx;� trn _U�(x)Tr [(1 + �)MX(x+ �̂)
X�(x)+ (1� �)X(x+ �̂)
X�M(x)� h::℄g= Xx;� tr�i��(x)(GW� (x)� h:)	 (B.58)with GW� (x) = �U�(x)Tr [(1 + �)MX(x+ �̂)
X�(x)+ (1� �)X(x+ �̂)
X�M(x)℄ (B.59)where we have used Equation (B.40)B.2.2 The lover termThe seond ontribution omes from the time derivative of the so alled loverterm R2 = �TR Tr trn _AMP + _APMyo (B.60)where we have already used the fat that A is hermitian. Using Equation (B.54)one getsR2 = TR Tr tr�i�2 SW _F��(x)��� [MP + PMy℄�= TR Tr trn�SW16 � _Q��(x)� _Qy��(x)� ��� [MP + PMy℄o= TR Tr trn�SW16 � _U�;�(x) + _U�;��(x) + _U��;��(x) + _U��;�(x)���� [MP + PMy℄� h::o (B.61)



Appendix B. Hybrid Monte Carlo equations of motion 59The ontribution of the time derivatives at point x is_U�;�(x) = _U�(x)U�(x + �̂)U y�(x + �̂)U y�(x)+ U�(x) _U�(x + �̂)U y�(x + �̂)U y�(x)+ U�(x)U�(x + �̂) _U y�(x + �̂)U y�(x)+ U�(x)U�(x + �̂)U y�(x + �̂) _U y�(x) (B.62)_U�;��(x) = _U�(x)U y�(x� �̂+ �̂)U y�(x� �̂)U�(x� �̂)+ U�(x) _U y�(x� �̂+ �̂)U y�(x� �̂)U�(x� �̂)+ U�(x)U y�(x� �̂+ �̂) _U y�(x� �̂)U�(x� �̂)+ U�(x)U y�(x� �̂+ �̂)U y�(x� �̂) _U�(x� �̂) (B.63)_U��;��(x) = _U y�(x� �̂)U y�(x� �̂� �̂)U�(x� �̂� �̂)U�(x� �̂)+ U y�(x� �̂) _U y�(x� �̂� �̂)U�(x� �̂� �̂)U�(x� �̂)+ U y�(x� �̂)U y�(x� �̂� �̂) _U�(x� �̂� �̂)U�(x� �̂)+ U y�(x� �̂)U y�(x� �̂� �̂)U�(x� �̂� �̂) _U�(x� �̂) (B.64)_U��;� = _U y� (x� �̂)U�(x� �̂)U�(x + �̂� �̂)U y�(x)+ U y� (x� �̂) _U�(x� �̂)U�(x + �̂� �̂)U y�(x)+ U y� (x� �̂)U�(x� �̂) _U�(x + �̂� �̂)U y�(x)+ U y� (x� �̂)U�(x� �̂)U�(x + �̂� �̂) _U y�(x) (B.65)Changing dummy indies one an turn all dotted U �elds into _U�(x), one thenuses the yliity of the trae to bring _U�(x) to the front. Those terms ontaining_U y�(x) are exhanged for their hermitian ounterparts. As it turns out one half ofthe remaining terms is equal to the other half, so only 8 di�erent terms are left,leading toR1 = �SW8 Xx;� tr _U�(x)nU�(x+ �̂)U y�(x+ �̂)U y�(x)W�(x; �)



Appendix B. Hybrid Monte Carlo equations of motion 60� U y�(x + �̂� �̂)U y�(x� �̂)U�(x� �̂)W�(x; �)+ U�(x+ �̂)U y�(x+ �̂)W�(x + �̂; �)U y� (x)� U y�(x + �̂� �̂)U y�(x� �̂)W�(x� �̂; �)U�(x� �̂)+ U�(x+ �̂)W�(x+ �̂+ �̂; �)U y�(x + �̂)U y�(x)� U y�(x + �̂� �̂)W�(x+ �̂� �̂; �)U y�(x� �̂)U�(x� �̂)+ W�(x+ �̂; �)U�(x+ �̂)U y�(x+ �̂)U y�(x)� W�(x+ �̂; �)U y�(x + �̂� �̂)U y�(x� �̂)U�(x+ �̂)� h:o= Xx;� tr�i��(x)(GC� (x)� h:)	 (B.66)where we de�neW�(x; �) = Tr f��;� [(MX)(x)
X�(x) +X(x)
 (MX)�(x)℄g : (B.67)The lover ontribution to the fore term is hene given byGC� (x) = �SW8 U�(x)nU�(x + �̂)U y�(x + �̂)U y�(x)W�(x; �)� U y�(x+ �̂� �̂)U y�(x� �̂)U�(x� �̂)W�(x; �)+ U�(x + �̂)U y�(x + �̂)W�(x+ �̂; �)U y�(x)� U y�(x+ �̂� �̂)U y�(x� �̂)W�(x� �̂; �)U�(x� �̂)+ U�(x + �̂)W�(x + �̂+ �̂; �)U y�(x+ �̂)U y�(x)� U y�(x+ �̂� �̂)W�(x + �̂� �̂; �)U y�(x� �̂)U�(x� �̂)+ W�(x + �̂; �)U�(x + �̂)U y�(x + �̂)U y�(x)� W�(x + �̂; �)U y�(x + �̂� �̂)U y�(x� �̂)U�(x + �̂)o; (B.68)where we have used Equation (B.40) again.



Appendix B. Hybrid Monte Carlo equations of motion 61B.3 Putting it all togetherIn this appendix we have shown the validity of Equation (B.41) and Equa-tion (B.42), withG�(x) = GG� (x) +GC� (x) +GW� (x) (B.69)where GG� (x), GW� (x) and GC� (x) are de�ned by Equations (B.50), (B.59) and(B.68) respetively. This ends the derivation of the HMC equations of motion.



Appendix CTables of ResultsIn this appendix we ollet in tables all the results previously depited graphially.Eah table gives the average values for total ation, Polyakov loop, pion norm,pion sreening mass, quark mass and the average number of iterations used bythe inversion algorithm. For points in the on�ned phase this was BiCGstab andin the deon�ned phase CG.C.1 Results for the 83 � 4 lattie� � ation L Pion norm m� mq # Iterations2.8000 0.1400 0.9652(9) 0.016(1) 20.55(6) 2.060(5) 2.41(1) 33.24(7)2.8000 0.1600 0.9564(4) 0.0257(6) 28.99(6) 1.520(5) 1.027(4) 75.6(1)2.8000 0.1700 0.9477(5) 0.0338(9) 40.3(2) 1.180(7) 0.531(4) 150.6(5)2.8000 0.1750 0.9410(6) 0.041(1) 52.7(4) 0.976(10) 0.323(4) 251(1)2.8000 0.1800 0.931(1) 0.050(1) 87(1) 0.679(7) 0.142(3) 530(6)2.8000 0.1900 0.840(1) 0.053(3) 93(16) 0.50(7) -0.03(3) 983(34)2.8000 0.1950 0.812(4) 0.062(3) 59(3) 1.02(4) -0.09(2) 558(37)2.8000 0.2000 0.7987(7) 0.052(7) 61(3) 1.22(4) -0.19(2) 453(8)2.8000 0.2050 0.789(1) 0.063(2) 53(4) 1.14(5) -0.27(5) 424(15)2.8000 0.2200 0.764(1) 0.093(8) 41(1) 1.44(2) -0.166(6) 325(10)2.8000 0.2400 0.7363(6) 0.155(3) 30.4(8) 1.50(2) -0.196(7) 252(5)Table C.1: Results for � = 2:8
62



Appendix C. Tables of Results 63� � ation L Pion norm m� mq # Iterations3.0000 0.1200 0.922(2) 0.0148(5) 16.99(1) 2.507(5) 4.53(2) 23.02(2)3.0000 0.1400 0.9184(4) 0.0176(4) 20.70(2) 2.017(4) 2.268(8) 33.23(3)3.0000 0.1600 0.9047(5) 0.0290(7) 30.04(6) 1.446(6) 0.868(5) 62.6(1)3.0000 0.1700 0.894(1) 0.040(2) 44.9(4) 1.03(1) 0.382(8) 123(2)3.0000 0.1725 0.8869(8) 0.045(1) 52.9(5) 0.919(9) 0.272(7) 230(2)3.0000 0.1750 0.879(2) 0.051(1) 70(1) 0.779(7) 0.179(6) 192(5)3.0000 0.1770 0.862(2) 0.056(4) 96(6) 0.59(3) 0.071(7) 517(35)3.0000 0.1800 0.800(2) 0.075(4) 82(6) 0.53(5) -0.08(3) 611(27)3.0000 0.1825 0.775(1) 0.084(6) 48(3) 0.93(6) -0.13(2) 338(13)3.0000 0.1850 0.764(2) 0.109(7) 47(5) 1.28(8) -0.26(3) 275(18)3.0000 0.1900 0.745(1) 0.111(3) 35(2) 1.51(4) -0.22(3) 228(6)3.0000 0.2000 0.731(2) 0.128(3) 31(1) 1.71(5) -0.21(6) 199(9)3.0000 0.2100 0.714(2) 0.153(5) 29.2(10) 1.73(4) -0.12(2) 157(6)3.0000 0.2300 0.696(1) 0.177(4) 27.5(8) 1.66(3) -0.19(1) 151(2)3.0000 0.2500 0.6786(9) 0.209(2) 24.4(2) 1.60(1) -0.278(7) 155(3)3.0000 0.2700 0.664(1) 0.235(3) 22.0(8) 1.53(1) -0.350(9) 160(3)Table C.2: Results for � = 3:0� � ation L Pion norm m� mq # Iterations3.1000 0.1200 0.8979(6) 0.0149(4) 16.997(10) 2.493(4) 4.40(2) 21.00(1)3.1000 0.1400 0.8917(6) 0.0189(7) 20.76(3) 1.995(5) 2.17(1) 36.32(5)3.1000 0.1600 0.8756(8) 0.032(1) 30.5(1) 1.384(7) 0.755(10) 96.5(4)3.1000 0.1700 0.855(1) 0.046(2) 48.4(7) 0.95(1) 0.260(7) 268(4)3.1000 0.1725 0.847(1) 0.052(2) 63(2) 0.75(2) 0.156(10) 318(5)3.1000 0.1750 0.822(1) 0.079(4) 75(5) 0.62(3) 0.06(1) 589(7)3.1000 0.1775 0.757(1) 0.102(7) 47(3) 1.02(5) -0.12(3) 334(14)3.1000 0.1800 0.743(1) 0.115(5) 42(4) 1.22(4) -0.24(4) 259(18)3.1000 0.1900 0.7162(7) 0.152(5) 32(1) 1.70(3) -0.19(4) 162(7)3.1000 0.2000 0.7022(8) 0.167(2) 30(2) 1.80(6) -0.14(2) 143(3)Table C.3: Results for � = 3:1



Appendix C. Tables of Results 64� � ation L Pion norm m� mq # Iterations3.5000 0.1200 0.782(3) 0.0167(7) 17.03(1) 2.395(8) 3.77(3) 25.5(1)3.5000 0.1400 0.7671(5) 0.026(1) 21.13(3) 1.832(5) 1.57(1) 42.55(6)3.5000 0.1500 0.748(2) 0.041(3) 25.42(9) 1.444(9) 0.771(6) 71.5(8)3.5000 0.1550 0.729(2) 0.066(3) 28.5(5) 1.23(1) 0.43(1) 111(14)3.5000 0.1600 0.6652(7) 0.193(2) 25.9(5) 1.42(3) -0.04(2) 107(4)3.5000 0.1650 0.6514(10) 0.205(4) 25.1(3) 1.61(4) -0.26(2) 92(3)3.5000 0.1750 0.634(1) 0.228(5) 24.7(3) 1.84(2) -0.269(9) 77(2)3.5000 0.1850 0.6210(8) 0.240(3) 22.9(2) 2.00(3) -0.11(2) 69.0(7)3.5000 0.2000 0.6086(8) 0.256(5) 22.1(1) 2.09(1) 0.032(5) 68.1(6)3.5000 0.2100 0.6009(9) 0.264(3) 22.1(3) 2.06(1) -0.007(4) 68(1)3.5000 0.2300 0.5900(7) 0.284(4) 20.2(1) 1.946(6) -0.160(7) 73.5(7)3.5000 0.2500 0.5802(6) 0.294(2) 19.1(1) 1.819(6) -0.327(7) 82.9(8)3.5000 0.2700 0.5732(5) 0.304(3) 17.6(2) 1.744(7) -0.454(5) 95.2(6)3.5000 0.2900 0.5668(4) 0.319(2) 16.15(7) 1.697(4) -0.514(4) 109.2(9)3.5000 0.3100 0.5614(4) 0.325(1) 14.84(8) 1.681(8) -0.556(4) 125(1)3.5000 0.3300 0.5571(3) 0.330(2) 13.51(7) 1.691(3) -0.580(5) 143.2(6)3.5000 0.3500 0.5538(3) 0.334(2) 12.38(6) 1.697(5) -0.605(3) 165.0(6)Table C.4: Results for � = 3:5� � ation L Pion norm m� mq # Iterations3.7500 0.0800 0.6999(5) 0.0180(5) 13.680(6) 3.474(3) 14.00(3) 2.00(1)3.7500 0.1000 0.6939(7) 0.0191(6) 14.95(2) 2.902(6) 4.76(4) 5.96(4)3.7500 0.1100 0.6901(5) 0.021(1) 15.84(2) 2.610(5) 6.89(4) 4.00(1)3.7500 0.1200 0.6838(6) 0.028(1) 17.03(3) 2.325(5) 3.17(2) 4.86(2)3.7500 0.1300 0.6735(6) 0.048(3) 18.67(4) 2.014(4) 1.92(1) 19.73(4)3.7500 0.1400 0.6425(9) 0.162(4) 20.8(1) 1.71(1) 0.94(1) 31.7(3)3.7500 0.1500 0.616(1) 0.238(6) 22.16(10) 1.60(2) 0.221(10) 66(1)3.7500 0.1600 0.598(1) 0.252(5) 22.4(1) 1.70(2) -0.26(1) 66.0(10)Table C.5: Results for � = 3:75



Appendix C. Tables of Results 65C.2 Results for the 122 � 24� 4 lattie� � ation L Pion norm m� mq # Iterations2.8000 0.1650 0.9528(3) 0.0281(5) 33.5(3) 1.35(2) 0.762(2) 25.6(1)2.8000 0.1700 0.9477(4) 0.0340(5) 39.9(5) 1.18(1) 0.527(2) 33.7(1)2.8000 0.1750 0.9420(2) 0.0393(4) 53.0(5) 0.971(9) 0.324(1) 49.9(2)2.8000 0.1775 0.9375(3) 0.0433(6) 67(1) 0.83(2) 0.222(1) 66.0(2)2.8000 0.1800 0.935(1) 0.0458(9) 84(3) 0.69(2) 0.143(1) 94(2)2.8000 0.1825 0.926(1) 0.0549(7) 139(13) 0.530(7) 0.076(2) 168(2)2.8000 0.1835 0.9216(5) 0.0539(7) 219(14) 0.42(4) 0.045(1) 244(4)Table C.6: Results for � = 2:8� � ation L Pion norm m� mq # Iterations3.1000 0.1650 0.8697(5) 0.0348(3) 36.7(2) 1.158(6) 0.504(1) 35.0(1)3.1000 0.1700 0.8595(9) 0.0433(6) 49.2(6) 0.914(7) 0.274(1) 56.7(4)3.1000 0.1750 0.8353(8) 0.0621(6) 92(4) 0.559(7) 0.078(2) 129(6)3.1000 0.1755 0.824(1) 0.0732(8) 104(12) 0.54(4) 0.043(2) 447(14)3.1000 0.1775 0.7579(4) 0.105(3) 68(13) 0.98(6) -0.17(1) 382(18)3.1000 0.1785 0.7504(6) 0.109(1) 44(2) 1.10(2) -0.20(1) 334(12)3.1000 0.1800 0.7443(4) 0.111(1) 39(2) 1.29(2) -0.23(2) 277(9)3.1000 0.1850 0.7305(3) 0.120(2) 35(1) 1.47(2) -0.23(1) 196(3)3.1000 0.1900 0.7195(4) 0.130(1) 32.1(9) 1.54(3) -0.202(6) 194(9)3.1000 0.2000 0.7011(3) 0.162(3) 27.7(6) 1.597(6) -0.10(1) 141(4)Table C.7: Results for � = 3:1
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