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Chapter 1INTRODUCTION1.1 MotivationNu
lear Matter is believed to undergo a phase transition from ordinary hadroni
matter to a phase where quarks and gluons be
ome de
on�ned. This belief isbased on asymptoti
 freedom of QCD, the theory des
ribing the strong intera
-tion between quarks and gluons. This phase transition is not just of a
ademi
interest, sin
e it has 
ertainly taken pla
e in the early universe a

ording to 
ur-rent big bang theory. It will also be
ome investigable at the Relativisti
 HeavyIon Collider (RHIC) in Brookhaven and the Large Hadron Collider at CERN. Infa
t there are two true phase transitions 
hara
terized by an order parameter intwo limits of QCD. When the quark masses are in�nite, one has the de
on�ne-ment transition with the free energy of a stati
 quark as the order parameter.When the quark masses are zero one has the 
hiral (symmetry restoring) phasetransition with the va
uum expe
tation value of the quark anti-quark 
ondensateas the order parameter. It is not yet 
lear if these transitions persist for physi
alquark masses. Latti
e results indi
ate, that both transitions o

ur at the sametemperature with one transition driving the other. This is the reason why onespeaks of the QCD phase transition. At a phase transition point one typi
allyhas many length s
ales playing a role for the dynami
s of the system. It is there-fore often hard to �nd a suitable small expansion parameter for a perturbativetreatment. In QCD for example one has three natural length s
ales given bythe inverse temperature 1=T , the ele
tri
 s
reening mass 1=gT and the magneti
s
reening mass 1=g2T . The use of a nonperturbative approa
h, i.e. latti
e QCD,is therefore advisable. Sin
e thermal e�e
ts of massive parti
les are exponentially1
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ted phase diagram of 2 
avour QCD in the �-�-planesuppressed by their mass, the study of QCD with two light 
avours is of parti
-ular phenomenologi
al interest. Unfortunately the latti
e has its own pitfalls,one of whi
h is the nonexisten
e of an a
tion whi
h preserves 
hiral symmetryexa
tly for �nite latti
e spa
ing due to a general theorem [1℄. Two popular dis-
retisations exists and one has to 
he
k that the results obtained are 
onsistentwith ea
h other. Most studies of QCD thermodynami
s have employed staggeredfermions, sin
e they preserve a remnant 
hiral symmetry, whi
h keeps the quarkmasses from a
quiring an additive renormalisation, but whi
h breaks the 
avoursymmetry at �nite latti
e spa
ing. The other dis
retisation due to Wilson pre-serves the 
avour symmetry at the expense of breaking all 
hiral symmetries.This la
k of 
hiral symmetry 
auses mu
h 
on
eptual and te
hni
al diÆ
ultiesin numeri
al simulations and the physi
al interpretation of data. Before we turnto these problems let us dis
uss the physi
al expe
tations for the phase diagramof QCD as a fun
tion of temperature, quark mass and latti
e spa
ing. On thelatti
e these parameters are mapped onto the temporal extent of the latti
e N� ,the hopping parameter � and the inverse 
oupling �. This mapping is nonlin-ear, but some features of it are well known. The 
onne
tion between inverse
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oupling and the latti
e spa
ing is su
h, that a = 0 for � = 1 and vi
e versa.The inverse temperature is given by N�a. Therefore the thermal line �T movestoward weaker 
oupling as N� in
reases. And �nally, the line � = 0 
orrespondsto in�nite quark masses. Along this line, representing the pure gauge theory, a�rst order de
on�nement phase transition is well established. This phase tran-sition will extend into the phase diagram and the e�e
t of the fermions will beto lower the transition temperature. The strength of the transition may softenand eventually turn into a rapid 
rossover rather than a true transition. Forzero gauge 
oupling the 
riti
al hopping parameter �
 at whi
h the quark massvanishes is known to be �
 = 1=8. Sin
e Wilson fermions break all 
hiral symme-tries, this point is not prote
ted from additive renormalisations and the 
riti
alline be
omes �-dependent. This line 
orresponds to the 
hiral limit of QCD.One expe
ts 
hiral symmetry to be broken spontaneously at zero temperature forphenomenologi
al reasons and be
ome restored at �nite temperature. This 
hiralphase transition is believed to be of se
ond order for two fermion 
avours [2℄.As we have mentioned before, both transitions 
oin
ide for intermediate quarkmasses, so one expe
ts the de
on�nement transition line to run into the 
riti
alline at some �
t. Be
ause of the absen
e of 
hiral symmetry for Wilson fermions,the de�nition of the 
riti
al line is ambiguous. One usually de�nes the 
riti
alline by the vanishing of the pion mass or quark mass at zero temperature. Wherethe quark mass is de�ned via an axial Ward identity [3℄. Initial simulations [4℄failed to �nd a 
rossing point down to � = 3:5 with the transition line run-ning almost parallel to the 
riti
al line toward strong 
oupling. This raised thequestion whether it was possible to des
ribe the 
on�nement phase in the 
hirallimit with Wilson fermions. The issue was further investigated in [5℄ where the
rossing point for 2 
avours at N� = 4 was determined to be �
t � 3:9 � 4:0.This was done by simulating along the 
riti
al line, de�ned by a vanishing pionmass at zero temperature. Coming from the high temperature side, where nosingularity is seen a
ross the 
riti
al line, the inverse 
oupling was lowered untilsu
h a singularity appeared in terms of a diverging number of CG-iterations. Aninvestigation of how the position of the 
rossing point 
hanged with in
reasingN� brought the disen
ouraging result, that to have �
t > 5:0 one has to go to



Chapter 1. INTRODUCTION 4N� > 18! The transition was found to be 
ontinuous at �
t as expe
ted. Thisraises further expe
tations about the strength of the transition as the quark massis in
reased from zero. The transition should soften as the quark mass in
reases,but should be
ome stronger again when the quarks are heavy enough to re
overthe �rst order transition of the pure gauge system. Contrary to this expe
tationthe MILC 
ollaboration found [6℄ for N� = 4 that the transition be
omes on
every strong and be
omes weaker again at smaller �. For N� = 6 this intermediatetransition even be
omes �rst order. In summary this means that the �nite tem-perature transition with Wilson quarks for small quark masses is plagued withlatti
e artifa
ts. In this study an improved a
tion has been used whose derivationwill be dis
ussed in x(1.4). Re
ently a new view of the �nite temperature phasediagram has emerged, whi
h is based on the spontaneous breaking of parity and
avour symmetry. This proposal will be examined in Chapter 2. It is anothergoal of this study to test this proposal with improved a
tions.1.2 Outline of this workIn the previous 
hapter we have tried to summarise the motivations leading tothe resear
h presented in this thesis. The remainder of Chapter 1 dis
usses somebasi
 fa
ts used throughout the thesis. We �rst dis
uss the 
hiral properties ofWilson fermions, as they play a 
entral role in the analysis of the phase dia-gram. Then we dis
uss Symanzik's improvement program and its appli
ation tothe fermioni
 and gluoni
 a
tion. Chapter 2 dis
usses in some detail the phasediagram of QCD espe
ially the proposal of Aoki and its appli
ation to �nite tem-perature. Chapter 3 des
ribes shortly the ideas of Monte Carlo integration usedto evaluate the partition fun
tion, Markov pro
esses to generate a desired prob-ability distribution and the diÆ
ulties arising when fermioni
 degrees of freedomare added. The Pseudofermion method and the Hybrid Monte Carlo algorithmare des
ribed and equations of motion for the 
lover a
tion derived. Chapter 4dis
usses the results of our study. We will �rst present our �ndings and thenargue for them from the results obtained from simulations on two di�erent lat-ti
e sizes. Appendix A 
ontains a short summary of how to quantize gauge and



Chapter 1. INTRODUCTION 5fermion �elds. This mainly serves to �x our notation. Appendix B lays downin detail the derivation of the equations of motion for the Hybrid Monte Carlosimulation.1.3 Wilson fermions and 
hiral symmetryIn this se
tion we want to dis
uss some of the 
hiral properties of Wilson fermionsas they play a role in further dis
ussions. Starting from the free a
tion givenin Equation (A.37) we want to determine the parti
le 
ontent of the theory. Toidentify the parti
les in the spe
trum we study the poles of the fermion propagatorin momentum spa
e. We �rst res
ale quark and anti-quark �elds by a fa
tora3=p2� where � = 1=2(am+ 4r). With this new normalisation the free fermiona
tion 
an be written as Sf =Px � (x)Mx;y (y) with the fermion matrixMx;y = Æx;y � �X� Æx;y+�̂[r + 
�℄ + Æx;y��̂[r � 
�℄: (1.1)We now go to momentum spa
e, where we de�ne the Fourier transform as (p) =Xx e�ipx (x) and � (p) =Xx eipx � (x): (1.2)Sin
e the fermion matrix in momentum spa
e only depends on one momentum,be
ause of translation invarian
e, we get after fa
toring out of a momentum
onserving delta fun
tion:M(p) = 1� 2�X� r 
os(p�)� i
� sin(p�): (1.3)The propagator is the inverse of the fermion matrix and it's poles give the parti
le
ontent.�(p) =  1� 2�X� r 
os(p�)� i
� sin(p�)!�1
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os(p�) + i
� sin(p�)�1� 2�P� r 
os(p�)�2 + 4�P� sin2(p�)= 12� � 12� �P� r 
os(p�)�+ iP� 
� sin(p�)� 12� �P� r 
os(p�)�2 +P� sin2(p�) (1.4)Now 
onsider the 
ase r = 0. For small a one 
an expand �(p) around p� =(0; 0; 0; 0). The result is up to a normalisation fa
tor the free fermion propagatorin the 
ontinuum with M = 1=2��(p)! M + i/pM2 + p2 : (1.5)However the same result 
an also be obtained by expanding the latti
e propagatoraround momenta p� whi
h have one or more 
omponents in the other 
orner ofthe Brillouin zone. In fa
t all 16 
orners of the Brillouin zone are equivalent.This is a 
onsequen
e of the spe
trum doubling symmetry [7℄. This symmetry isgenerated by the following set of operators and produ
ts thereof:T0 = 1; T� = 
�
5(�1)x�=a: (1.6)It 
an be shown that these operators transform the physi
al fermion state nearp� = (0; 0; 0; 0) to doubler fermion states with momentum 
omponents in the far
orner of the Brillouin zone, e.g.(T1 ) (p1; p2; p3; p4) =  (p1 + �=a; p2; p3; p4): (1.7)Sin
e this analysis only relied on the spinor stru
ture of the theory it is 
lear,that the doublers will also exist if intera
tions are turned on. Then doublers
an be pair produ
ed by the gluons and that is why one is worried about them.In fa
t these additional states must appear. A 
hiral invariant regularisation ofQCD 
annot produ
e the axial anomaly in the 
ontinuum limit, due to Adlers



Chapter 1. INTRODUCTION 7theorem. As shown in referen
e [7℄ the additional spe
ies have 
hiral 
harges su
has to 
an
el the anomaly. For r 6= 0 the spe
trum doubling symmetry is brokenas is 
hiral symmetry. The 
ontribution to the anomaly no longer 
an
els andprodu
es the right anomaly, see again referen
e [7℄. Let us now dis
uss the 
aser 6= 0. We analyse the behaviour of the term M = 1=2�� rP� 
os(p�) near the
orners of the Brillouin zone. There are �ve di�erent sets of momenta for whi
hthis term a
ts in a di�erent way:(i) p = (0; 0; 0; 0), M = 1=2�� 4r(ii) p = (�=a; 0; 0; 0) or (0; �=a; 0; 0) et
., M = 1=2�� 2r(iii) p = (�=a; �=a; 0; 0) or p = (�=a; 0; �=a; 0) et
., M = 1=2�(iv) p = (�=a; �=a; �=a; 0) or p = (�=a; �=a; 0; �=a) et
., M = 1=2�+ 2r(v) p = (�=a; �=a; �=a; �=a). M = 1=2�+ 4rIf one now tunes � to �
 = 1=8r the quark near p = (0; 0; 0; 0) be
omes massless,whereas all other doublers get a mass of O(1=a). In the 
ontinuum limit theyde
ouple from the spe
trum and one is left with one fermion 
avour. The pri
ewe have to pay for this is of 
ourse the breaking of 
hiral symmetry. This impliesthat the value of �
 = 1=8r of the free theory is not prote
ted by symmetry on
ewe turn on intera
tions. The value for �
 will depend on the gauge 
oupling andhas therefore to be inferred from simulations. Note that one 
an 
hoose � su
h,that another set of doublers be
ome massless, e.g. for � = 1=4r the doublers ofset (ii) be
ome massless and all others again have a mass of O(1=a). This willbe
ome important in our dis
ussion of the phase diagram in the next 
hapter.1.4 The Symanzik improvement programWhile studying the approa
h to the 
ontinuum limit for latti
e �4-theory, Symanzikmade the following important observation, see referen
e [8℄. Suppose we startwith a given latti
e a
tion SL. The �eld theory des
ribed by this a
tion is 
on-tained in the 
olle
tion of all vertex fun
tion �(p1; p2; : : : ; pn; g2; a). Symanzik
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ed the 
on
ept of a lo
al e�e
tive Lagrangian Seff in terms of 
on-tinuum �elds, that would give the same vertex fun
tions as SL up to a 
ertainorder in the latti
e spa
ing a.Seff = Z d4xfL0(x) + aL1(x) + a2L2(x) + : : :g: (1.8)Where L0 is the 
ontinuum Lagrangian and Lk are a 
ombination of lo
al opera-tors of dimension 4+k with the same symmetry as the latti
e a
tion. As the lo
ale�e
tive Lagrangian is spe
i�
 to the latti
e a
tion, one 
an use the freedom to
hoose the latti
e a
tion to speed up the approa
h to the 
ontinuum limit. Thefreedom one has to 
hoose the latti
e a
tion is to add suitable linear 
ombinationsof irrelevant operators, i.e. latti
e analogues of L1 et
., in su
h a way as to haveL1 = 0 in the 
orresponding lo
al e�e
tive Lagrangian. This program 
an thenbe 
arried out order by order in perturbation theory. Symanzik showed that allvertex fun
tions 
an be thus improved in �4-theory. For latti
e gauge theory nosu
h proof exists, due to the fa
t that gauge dependent terms have to be addedto the a
tion at intermediate stages of the 
al
ulation. L�us
her and Weisz havetherefore proposed a minimal improvement s
heme by demanding improvementfor on-shell quantities, hen
e the name on-shell improvement [9℄. A

ording toreferen
e [10℄ no proof for the existen
e of an on-shell improved a
tion has yetbeen given, but is ta
itly assumed. One further ingredient to the derivation ofa suitable on-shell improved a
tion is, that given one on-shell improved a
tion,others 
an be obtained from a lo
al 
ovariant isospe
tral transformation of the�elds, where isospe
tral refers to the low-lying states. Su
h a transformation willin general 
hange the 
oeÆ
ients of the operators in the original a
tion. Oper-ators whose 
oeÆ
ients 
an thus be varied are 
alled redundant and their value
an therefore be 
hosen for 
onvenien
e. Let us now look at O(a)-improvementfor gluons and fermions in parti
ular.
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(6)
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L
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L1 2 3Figure 1.2: The three types of six link loops, �gure taken from referen
e [11℄.1.4.1 The O(a)-improvement of the gauge a
tionIn the gluoni
 
ase there are no dimension 5 operators so the expansion of thelo
al e�e
tive Lagrangian starts at O(a2). There are three dimension 6 operatorsO(6)1 = X�;� Tr�D�F��D�F��� ;O(6)2 = X�;�;�Tr�D�F��D�F��� ;O(6)3 = X�;�;�Tr�D�F��D�F��� : (1.9)On the latti
e this 
orresponds to loops with 6 links of whi
h there are also onlythree, see Figure 1.2. Ea
h of these loops has the expansionL = r(4) O(4) + r(6)1 O(6)1 + r(6)2 O(6)2 + r(6)3 O(6)3 + : : : ; (1.10)L�us
her and Weisz have 
al
ulated these expansion 
oeÆ
ients at tree level, seereferen
e [9℄. The results are given in Table 1.4.1 The latti
e a
tion 
an now bewritten asSg = 6g2n
(4)(g2) L(4) + Xi=1;3 
(6)i (g2) L(6)i o (1.11)



Chapter 1. INTRODUCTION 10Loop r(4) r(6)1 r(6)2 r(6)3L(4) �14 124 0 0L(6)1 �2 56 0 0L(6)2 �2 �16 16 16L(6)3 �4 16 0 12Table 1.1: The 
oeÆ
ients of the 
ontinuum operators of dimension 4 and 6 inthe 
lassi
al expansion of Wilson loops with 4 and 6 links.From the results in Table 1.4.1 one 
an see, that tree level improvement 
an beobtained by 
hoosing
(4)0 = 53; 
(6)1 = � 112; 
(6)2 = 
(6)3 = 0: (1.12)One 
an also improve the gauge a
tion beyond tree level. This was 
arried out byL�us
her and Weisz in referen
e [12℄. As it turns out, there are only two 
onstraintsone 
an get from demanding improvement of 
ertain on-shell quantities. This isdue to the fa
t that the operator O(6)3 is redundant, as one 
an see from the �eldtransformationA� �! A� + a2 �2X� [D�; F�� ℄: (1.13)One 
an therefore set it to zero without a�e
ting on-shell improvement to makethe simulations easier. Sin
e in this study we want to study the phase diagram at�nite temperature, whi
h at �xed temporal extent N� means large �, we expe
ttree level improvement to suÆ
e.1.4.2 The O(a)-improvement of the fermion a
tionIn order to �nd an O(a) improved fermion a
tion let us �rst enumerate all oper-ators up to dimension �ve.dim3: O3 = � (x) (x)



Chapter 1. INTRODUCTION 11dim4: O4 = � (x) /D (x)dim5: O51 = � (x)(D2 � 12 i���F��) (x)O52 = � (x)12 i���F�� (x)To translate these to the latti
e, we de�ne the following 
ovariant derivatives:Dright�  (x) = 1a [U�(x) (x + �̂)�  (x)℄Dleft�  (x) = 1a [ (x)� U y�(x) (x� �̂)℄DL� (x) = 12[Dright� +Dleft� ℄ (x)(D2�)L (x) = 1a [Dright� �Dleft� ℄ (x)�L (x) = X� (D2�)L (x) (1.14)To dis
retise F��(x) we note that it 
an be obtained from the imaginary part ofthe plaquette. To preserve as mu
h rotational symmetry as possible one averagesover the four possible plaquettes starting at x the ��-plane:F��(x) = 18i �U�(x)U�(x+ �̂)U y�(x+ �̂)U y�(x)+ U�(x)U y�(x+ �̂ � �̂)U y�(x� �̂)U�(x� �̂)+ U y�(x� �̂)U y�(x� �̂ � �̂)U�(x� �̂ � �̂)U�(x� �̂)+ U y�(x� �̂)U�(x� �̂)U�(x� �̂ + �̂)U y�(x)� h:
:℄ : (1.15)With these de�nitions, the latti
e operators 
an be writtenO4L = � (x)
�DL� (x)



Chapter 1. INTRODUCTION 12O5L;1 = � (x)(�L � i2a2���F��) (x)O5L;2 = � (x) i2a2���F�� (x); (1.16)and the latti
e fermion a
tion is given bySf =Xx a�1b0(�;ma)O3L(x) + b1(�;ma)O4L(x) +a b2(�;ma)O5L;1(x) + a b3(�;ma)O5L;2(x): (1.17)Sin
e tree level improvement is 
onsistent with 
lassi
al improvement, requiringthe vanishing of all 
orre
tions to the 
ontinuum a
tion to O(a) in the smalla expansion of the latti
e a
tion gives a tree level Symanzik improved fermiona
tion. This 
ondition requires for the 
oeÆ
ients bi(� = 0; ma)b0(0; ma) = ma; b1(0; ma) = 1; b2(0; ma) = b3(0; ma) = 0; (1.18)i.e. the naive fermion a
tion is tree levelO(a) improved. The next step is to use anisospe
tral transformations to remove the doublers from the physi
al spe
trum.Sin
e the doublers involve high momentum modes we are allowed to 
hange theirproperties. Using an isospe
tral transformation makes sure we do not spoil O(a)improvement as we remove the doublers. The transformation is given by: (x) �!  (x) + �1 /D (x)� (x) �! � (x) + �2 /D � (x); (1.19)It renders the operator O51(x) redundant and one 
an add it with an arbitrary
oeÆ
ient. The 
oeÆ
ient of the operator O52(x) has to be determined perturba-tively, but at tree level its value is b3(0; ma) = 0. The Alpha 
ollaboration haveinvented a way to determine this 
oeÆ
ient nonperturbatively, but the resultswere not yet available when this study was begun. We therefore used the tree
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sw = 1. The a
tion used in this study is hen
e given as S = Sg + Sf ,where Sg and Sf are given in a graphi
al representation below.Sg = 6g2 Xx;�>� 53 �1� 1NReTr ��(x)��16  1� 12NReTr ��(x) + ��(x)!! (1.20)
Sf = 12�Xx;y �	(x)��1� �2X�;� Im ��(x) ����Æx;y� �X� �(1� 
�) Æx+�̂;y �(x) + (1+ 
�) Æx��̂;y �(y)��	(y)(1.21)



Chapter 2The Finite Temperature Phase Diagram of2-
avour QCD2.1 The early understandingThe �rst analysis of the phase stru
ture of latti
e QCD is referen
e [13℄. Kawamotostudied the singularity stru
ture of the 
hiral 
ondensate, be
ause it has the sameradius of 
onvergen
e (in �) as the fermion propagator and 
an easily be extendedto the fermion gauge 
oupled system. He found a singularity in 
 �  � at �
 = 1=4in the strong 
oupling and large N limit, where N is the number of 
olours. Thisvalue is lowered as Ng2 is lowered from in�nity. He also found a singularity at�
 = 1=8 in the weak 
oupling limit, whose value is in
reased as the gauge inter-a
tion is taken into a

ount. From this observation Kawamoto 
onje
tured, thata line of singularities in 
 �  �, 
onne
ting the singularities in the strong and weak
oupling limit, exists. The region where � < �
(�) is the physi
al region. Onthe line �
(�) the pion mass vanishes, and for � > �
(�) the pion mass be
omesimaginary. In the weak 
oupling region also the quark mass vanishes along the
riti
al line withM2� � mq. This is one of the 
onditions to hold for a theory withspontaneous breakdown of 
hiral symmetry. Another 
ondition is the vanishingof the pion-pion s
attering amplitude at zero momentum in the 
hiral limit. Thishowever is not satis�ed on the 
riti
al line in the strong 
oupling limit. Althoughthe 
riti
al line has 
onventionally been interpreted as the line along whi
h atzero temperature 
hiral symmetry is spontaneously broken, Kawamoto's resultsin fa
t indi
ate, that this interpretation is not straightforward.
14



Chapter 2. The Finite Temperature Phase Diagram of 2-
avour QCD 152.2 Aoki's ProposalIn 1984 Aoki 
hallenged this pi
ture for a number of reasons [14℄. If there isa line dividing the � - � plane into two phases, what is the order parameter todistinguish the two phases? How 
an the pion be
ome a ta
hyon, when the a
tionof QCD has physi
al positivity? Is a spontaneous breakdown of 
hiral symmetrypossible with only one 
riti
al line? Aoki went on to propose a new phase diagramfor 1 
avour QCD with Wilson fermions:� There exist 5 
ontinuum limits for four dimensional QCD 
orresponding todi�erent regions in momentum spa
e where di�erent sets of doublers be
omemassless: (i) p = (0; 0; 0; 0), (ii) p = (�=a; 0; 0; 0) or (0; �=a; 0; 0) et
., (iii)p = (�=a; �=a; 0; 0) or p = (�=a; 0; �=a; 0) et
., (iv) p = (�=a; �=a; �=a; 0)or p = (�=a; �=a; 0; �=a) et
. and (v) p = (0; 0; 0; 0). The true 
ontinuumlimit is of 
ourse (i). A pair of 
riti
al lines on whi
h the �-meson massvanishes is asso
iated whith ea
h 
ontinuum limit� There exist regions in the � � � plane, where the 
 � i
5 � = 0 va
uumbe
omes unstable and the true va
uum has 
 � i
5 � 6= 0. The transitionbetween these phases o

urs at the 
riti
al lines mentioned above.� In the strong 
oupling limit only two 
riti
al lines exist where the �-mesonmass vanishes. Therefore no separation of the doublers o

urs.� At intermediate 
oupling, new 
riti
al lines emerge, that separate the �veregions in momentum spa
e.The properties of this phase diagram are drawn from two sour
es. One is the 2dimensional latti
e Gross-Neveu model formulated with the Wilson a
tion in thelarge N limit, where N is the number of 
olours. In this limit one 
an solve the G-Nmodel analyti
ally and �nds the above pi
ture veri�ed. Cal
ulating the pion massnear the 
riti
al point M
 one obtains the PCAC-like relation m2� � (M �M
),without re
ourse to 
hiral symmetry. The other sour
e is strongly 
oupled QCD,also in the large N limit. Cal
ulating the e�e
tive potential in this limit one �nds,
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avour QCD 16that in addition to the 
onventional phase with 
 � i
5 � = 0 there exists a phasewith 
 � i
5 � 6= 0 for 0 � M2 � 4, where M = mqa + 4r = 1=2� is the massparameter. Cal
ulating the pion mass one �nds, that its mass vanishes only atthe transition point. This shows, that the pion is the massless mode 
onne
tedwith the parity breaking phase transition. These results are un
hanged, whenone in
ludes the �rst 
orre
tions in � in the large N limit [15℄. Investigating the
ase of two 
avours again at � = 0 in the large N limit, one �nds two di�erentkinds of va
ua due to an a

idental symmetry of the solution to the saddle pointequation:
 � i
51 � 6= 0 and 
 � i
5�3 � = 0 (2.1)
 � i
51 � = 0 and 
 � i
5�3 � 6= 0 (2.2)The va
uum of Equation (2.1) breaks only parity invarian
e, whereas the va
uumof Equation (2.2) breaks both the 
avour symmetry and the parity invarian
e.The true va
uum 
an be found using the strong 
oupling expansion whi
h removesthe degenera
y between the va
ua. It turns out, that Equation (2.2) is the trueva
uum, i.e. both parity and 
avour symmetry are spontaneously broken forM2 � 4 in the strong 
oupling expansion. Cal
ulating the meson masses one�nds, that the neutral pion �0 be
omes massless at the phase transition, as dothe 
harged pions �� due to 
avour symmetry. The � meson stays massiveat the transition whi
h solves the U(1) problem on the latti
e. In the parity
avour broken phase 2 Goldstone bosons must appear whi
h are the 
hargedpions. However the neutral pion be
omes only massless at the transition point[16℄. The approa
h to the 
riti
al line will be governed by some 
riti
al exponent,so one expe
ts m2� � (�
 � �)2�. Sin
e low energy properties of pions 
an bedes
ribed by an e�e
tive 4-dimensional s
alar �eld theory, one expe
ts the phasetransition to be mean �eld like up to logarithmi
 
orre
tions and therefore � =1=2, reprodu
ing the PCAC relation m2� / mqa, where the quark mass is de�nedas mqa = ( 12�
 � 12�). Using 
hiral ward identities, one 
an de�ne a 
urrent quark
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avour QCD 17mass via [3℄2mWIq � Px;y;thr3 � 
5
3 (x�) � � 
5 (0)iPx;y;th � 
5 (x�) � � 
5 (0)i : (2.3)This quantity is not a tunable parameter and the existen
e of a 
hiral limit isnot ensured. However the above s
enario explains how the theory obtains su
h alimit.2.3 An e�e
tive Lagrangian analysisIn referen
e [17℄ the phase stru
ture of 2-
avour QCD 
lose to the 
ontinuum limitwas studied using an e�e
tive 
ontinuum Lagrangian whose long range behaviour
an be analysed using a 
hiral Lagrangian. The e�e
tive 
ontinuum Lagrangianis the same we en
ountered in the Symanzik improvement programLe� = Lg + � (D= +m) + b1a � i���F�� ; (2.4)where Lg is the gluon Lagrangian and terms of O(a2) have been dropped. Writingdown an e�e
tive 
hiral Lagrangian leads toL� = f 2�4 Tr ����y����+ V� : (2.5)The �rst term is invariant under SU(2)L � SU(2)R 
hiral rotations, as is thee�e
tive 
ontinuum Lagrangian without mass and Pauli term. The se
ond partV� 
ontains the symmetry breaking terms up to se
ond order in m:V� = �
14 Tr �� + �y�+ 
216 �Tr �� + �y�	2 : (2.6)Sin
e the Pauli term transforms under 
hiral rotations in the same way as themass term, its e�e
ts 
an be absorbed into the 
oeÆ
ients 
1 and 
2. Dimensionalanalysis then tells us that
1 � m�3 + a�5 ; 
2 � m2�2 +ma�4 + a2�6 ; (2.7)
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avour QCD 18Where � is an abbreviation for �QCD. As one redu
es the mass at �xed latti
espa
ing, one enters a region where the two 
oeÆ
ients be
ome 
omparable inmagnitude and the 
ompetition between the two terms 
an lead to spontaneousparity and 
avour breaking. For masses m � a�2 dis
retization e�e
ts be
omeimportant and the mass at whi
h 
1 vanishes is shiftet from m = 0 to m0 = 0with m0 = m � a�2. When this shifted mass is of O(a2), i.e. am0 = (a�)3, thesize of the 
oeÆ
ients be
omes 
omparable. Writing� = A+ iB � � with A2 +B2 = 1; (2.8)the potential be
omesV� = �
1A+ 
2A2 ; (2.9)having a minimum/maximum at � = 
1=2
2. Denoting the va
uum state by�0 = A0 + iB0 � �, one sees that a nonzero B0 breaks the 
avour symmetryto U(1). A nonzero B0 
an only o

ur for jA0j less than one. The sign of 
2distinguishes two di�erent s
enarios. For 
2 < 0 the minimum of the potential isattained for A0 = �1. Hen
e 
avour symmetry is not broken, but the pions donot be
ome massless either. For 
2 > 0 the minimum of the potential lies at �,hen
e if j�j > 1 the va
uum is A0 = �1, but for j�j < 1 the va
uum is A0 = �and 
avour symmetry be
omes spontaneously broken. Sin
e � � m0=(a2�3) withm0 = m�a�2, one sees expli
itly, that the Aoki phase has width �m0 � a�m0 �(a�)3. This analysis 
annot predi
t the sign of 
2 and stays essentially unalteredfor the improved 
ase. The sign of 
2 
an however 
hange when one goes to theimproved 
ase, so the existen
e of an Aoki phase for improved Wilson fermionsis an open question.2.4 Appli
ation to �nite temperatureThe appli
ation of these ideas to the phase stru
ture at �nite temperature wasput forward in referen
e [18℄. They de�ned the 
riti
al line at �nite temperature�
(�) by the vanishing of the pion s
reening mass. This de�nition makes 
onta
t
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avour QCD 19with the standard de�nition at zero temperature and is a natural extension to�nite temperature. The question then arises how this line is related to the �nitetemperature transition line �T (�), de�ned for de�nitiveness sake by the peak inthe sus
eptibility of the 
hiral 
ondensate. One would expe
t the two lines tomeet on the following physi
al ground. Moving along the 
riti
al line towardsin
reasing � in
reases the temperature. Sin
e one expe
ts the restoration of
hiral symmetry at high temperature, one should �nd a point where the 
hiral
ondensate drops to zero and the 
orresponding sus
eptibility has a peak, i.e. oneshould 
ross the �T (�) line. Initial simulations failed to �nd 
lear signals of su
ha behaviour. As reviewed in referen
e [19℄ the �nite temperature line runs almostparallel to the 
riti
al line, de�ned by the vanishing of the pion mass at zerotemperature, towards strong 
oupling, raising the question whether the two linesmeet at all. Subsequent simulations determined the 
rossing point by runningalong the zero temperature 
riti
al line towards strong 
oupling until the numberof 
onjugate gradient iterations diverged signaling the appearan
e of a masslessmode, namely the pion, in the spe
trum. Using the one plaquette a
tion for thegluons and the Wilson a
tion for the fermions, the 
rossing point was determinedto lie deep in the strong 
oupling region at �
t = 3:9�4:0. The shift of this 
rossingpoint with N� was studied and it was estimated that N� & 18 would be neededto have the 
rossing point in the week 
oupling region. Another way out is theuse of improved a
tion for the gauge �eld, whi
h is pursued in this study. Aoki,Ukawa and Umemura then analysed the two dimensional Gross-Neveu modelformulated with the Wilson a
tion at �nite temperature. Ex
ept for 
on�nement,this model shares many important features with QCD, as there are asymptoti
freedom, spontaneous breakdown of 
hiral symmetry and its restoration at �nitetemperature. In the large N limit, the pion mass is analyti
ally 
al
ulable andthe result is given in Figure 2.1. The main feature is the fa
t that the three 
uspsretra
t from the weak 
oupling limit for �nite temporal latti
e sizes, forminga 
ontinuous line whi
h shifts toward strong 
oupling as N� de
reases. Theposition of the 
riti
al line obviously depends on N� , but only slightly for largeN� . For QCD the number of 
usps will in
rease to �ve be
ause of the di�erentdimensionality and the line of the �nite temperature transition will appear. To
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Figure 1: Critical line for the lattice Gross-Neveu model on (g;m) plane. Temporallattice size equals Nt = 2; 4; 8; 16 and 1 from inside to outside.
10

Figure 2.1: Criti
al lines for the latti
e Gross-Neveu model on the (g,m) plane.Temporal latti
e sizes are Nt = 2; 4; 6; 16 and 1 from inside to outside. Figuretaken from referen
e [18℄.de�ne a unique point of the 
hiral phase transition the thermal line has to 
rossthe 
riti
al line. The thermal line 
an however not extend into the parity-
avourbreaking phase, sin
e massless pions exist in this phase. Therefore the line �T
annot 
ross the line �
 for �nite N� , but may at most tou
h it. This means, thatthe region 
lose to the 
riti
al line belongs to the low temperature phase evenafter it turns ba
k toward strong 
oupling. This means, that the thermal lineshould extend past the tip of the 
usp to separate the high temperature regionfrom the low temperature region. The absen
e of the 
riti
al line at weak enough
oupling naturally explains that physi
al quantities vary smoothly a
ross the zerotemperature 
riti
al line. This line �
(T = 0) is absent from the point of view ofthe �nite temperature partition fun
tion, i.e. it is not a line of thermodynami
singularities. Another line enters the phase diagram namely the line of vanishing
urrent quark mass de�ned by Equation (2.3). This line extends from the point(�; �) = (1; 18) into the phase diagram. It runs towards the tip of the 
usp of theAoki phase and runs alongside it towards the point (�; �) = (0; 14). This is so,
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Figure 2.2: Phase diagram for 2-
avour QCD with improved Wilson fermions inthe � � � plane.be
ause at zero temperature the 
riti
al line 
oin
ides with the mq = 0 line andthe 
riti
al line at zero temperature smoothly develops into the zero temperature
riti
al line. If the thermal line �T (�) runs past the 
usp of the Aoki phase anddoes not tou
h the Aoki phase, there will be room for a phase transition, probably�rst order, from a 
on�ned phase with positive quark mass to a 
on�ned phasewith negative quark mass, see referen
e [20℄. Creutz also points out, that thethermal line is expe
ted to boun
e ba
k towards weak 
oupling as one 
rosses themq = 0 line, be
ause in the 
ontinuum the sign of the mass term is irrelevant for2-
avour QCD. Sin
e most features of the phase diagram rely on generi
 featuresof Wilson fermions, namely the way doublers are treated at the expense of 
hiralsymmetry, one expe
ts these features to hold when an improved a
tion is used.Beware however the 
aveat mentioned at the end of x(2.3) This is the reasonfor using the Sheikoleslami-Wohlert a
tion for the fermions. We want to studywhether the phase diagram with improved a
tions also exhibits a phase stru
ture
ontaining an Aoki phase.



Chapter 3Simulating Latti
e QCD3.1 Monte Carlo Integration and Markov pro
essesIn a 
omputer simulation of Eu
lidean �eld theory one is interested in expe
tationvalues of operators 
 whi
h depend on some fundamental �eld � whose dynami
is governed by an a
tion S(�). The expe
tation value is then 
al
ulated ash
i = 1Z Z [d�℄e�S(�); (3.1)Where [d�℄ is the path integral measure, Z is the partition fun
tion 
hosen su
hthat h1i = 1. The main idea of Monte Carlo integration is now to generatea sequen
e of �eld 
on�gurations (�1;�1; : : : ;�t; : : : ;�N) ea
h 
hosen from theprobability distributionP (�t)[d�t℄ = 1Z e�S(�)[d�t℄: (3.2)Measuring the observable on ea
h of these 
on�gurations and taking the averagewill giveh
i = limN!1 �
 = limN!1 1N NXt=1 
(�t): (3.3)For large N the distribution of �
 will be Gaussian with standard deviation� = �
=pN , where �
 = qh
2i � h
i2. To 
reate the desired probability dis-tribution one makes use of Markov pro
esses. A Markov pro
ess is a sto
hasti
22
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edure, that given a 
on�guration �i generates a new 
on�guration �f withsome transition probability P (�i ! �f ). The new 
on�guration therefore de-pends only on its prede
essor. A Markov pro
ess is 
alled ergodi
 if and onlyif � = inf�i;�f P (�i ! �f ) > 0 (3.4)Given a probability distribution Q(�) on the spa
e of 
on�gurations, appli
ationof the Markov pro
ess will 
hange this distribution unless it is a �xed point, i.e.Z [d�i℄Q(�i)P (�i ! �f ) = Q(�f ): (3.5)The remarkable property of ergodi
 Markov pro
esses is that for any su
h pro-
ess there exists a unique �xed point Q. The distribution of 
on�gurations will
onverge to this �xed point no matter what the starting 
on�guration was andthis 
onvergen
e is exponential. To 
onstru
t an ergodi
 Markov pro
ess thathas the desired probability distribution Q(�) = e�S(�)=Z as its �xed point, thetransition probability has to satisfy another 
ondition known as detailed balan
e:Q(�i)P (�i ! �f) = P (�f ! �i)Q(�f ): (3.6)It should be noted, that this is a suÆ
ient but not a ne
essary 
ondition for thetransition probability. One simple way of implementing detailed balan
e is theMetropolis algorithm:P (�i ! �f ) = min�1; Q(�f )Q(�i) � (3.7)If the a
tion S(�) is lo
al, we 
an build up an ergodi
 Markov pro
ess by aprodu
t of non ergodi
 steps, involving an update of one degree of freedom ata time. Sin
e the a
tion is lo
al, the evaluation of Q(�f )=Q(�i) at ea
h step is
heap. As soon as the a
tion be
omes nonlo
al, this method be
omes infeasible
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e QCD 24and other methods have to be used. Unfortunately this is exa
tly the 
ase, whenfermions enter the game:Q( � ;  ; U) = 1Z expf�S( � ;  ; U)g [d � ℄[d ℄[dU ℄= 1Z expf�Sg(U)� � M(U) g [d � ℄[d ℄[dU ℄= 1Z det(M(U)) expf�Sg(U)g [dU ℄: (3.8)Integrating out the fermions thus leaves us with an e�e
tive a
tion for the gauge�elds that is highly nonlo
al. How one 
an simulate su
h a system with reasonableeÆ
ien
y is the subje
t of the next se
tion.3.2 Pseudofermions and Hybrid Monte CarloIn any Metropolis a

ept/reje
t step one would have to 
al
ulate the ratio of twodeterminants, whi
h is an operation 
ubi
 in the latti
e volume, regardless of howmany entries of the matrix are 
hanged. One way to 
ir
umvent the evaluationof a determinant is by trading it in for the inverse of a matrix by using a wellknown formula for Gaussian integrals.detM = Z d�d��e���M�1�; (3.9)whi
h applies if the real part of all eigenvalues of M is larger than zero. This isnot true for the fermion matrix of a single 
avour. But we 
an make use of thefollowing property of the fermion matrix of Wilson fermions:
5M
5 =My: (3.10)This implies that the determinant of M is real. Sin
e every additional 
avourof mass degenerate fermions adds another power of the fermion determinant intothe path integral, we 
an use Equation (3.10) to double the number of fermions
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e QCD 25and make Equation (3.9) work:(detM)2 = detMy detM = det(MyM) = Z d�d��e���(MyM)�1�: (3.11)This is the pseudofermion method. Sin
e the pseudofermions appear in a Gaus-sian integral, it is easy to do the Monte Carlo integration of them. Choosing �from a Gaussian distribution P (�) � exp(����) and setting � = My� will en-sure that � has the distribution required by Equation (3.11). What remains is to�nd a Markov pro
ess, that evolves the gauge �elds. The e�e
tive a
tion for thegauge �elds now involves the inverse of the fermion matrix. This matrix be
omesill 
onditioned when there is a massless mode in the spe
trum, i.e. when thepion be
omes massless. This means that even a small 
hange in the gauge �eldswill give rise to a large 
hange of the pseudofermioni
 energy and the a

eptan
erate would be very small. The idea of the Hybrid Monte Carlo (HMC) algorithmis therefore to evolve the system globally in a judi
iously 
hosen way and thende
ide about the a

eptan
e of these 
hanges as a whole [21℄. We introdu
e addi-tional degrees of freedom whi
h are 
anoni
ally 
onjugate momenta to the gaugedegrees of freedom. We de�ne a �
titious HamiltonianH = 12Xx;� Tr �2�(x) + Sg(U) + ��(MyM)�1�: (3.12)Creating �eld 
on�gurations f�; U;�g with a Boltzmann weight given by H,namely Q(�; U;�) � exp(�H) will produ
e the right 
orrelation fun
tions forgauge and fermion �elds, sin
e the �
titious momenta 
an be integrated out. TheHMC algorithm alternates two Markov pro
esses whi
h both have Q(�; U;�) asa �xed point, but neither of whi
h is ergodi
 by itself.The �rst step is a refreshment of the momenta 
hosen from a Gaussian distribu-tion. The se
ond step is to evolve the gauge �elds and momenta, using Hamilton'sequations of motion, along a mole
ular dynami
s traje
tory whi
h keeps the en-ergy H 
onstant. Sin
e one has to dis
retise these equations of motion in orderto integrate Hamiton's equations, one 
an not preserve the energy. Adding a
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e QCD 26Metropolis a

ept/reje
t step at the end of ea
h traje
tory will then ensure de-tailed balan
e. The 
onventional way to derive the equations of motion was givenin referen
e [22℄. To preserve U as an element of SU(N) the equations of motionhave to take the form_U = i�U; (3.13)where � has to be an element of the Lie algebra of SU(N). The equations ofmotion for � are �xed by the requirement that H should stay 
onstant along thetraje
tory. A mathemati
ally more satisfying treatment is given in referen
e [23℄.There the formalism for 
lassi
al me
hani
s on an arbitrary 
ompa
t Lie groupG is developed and applied to the 
ase of HMC. The result is_� = �T ��S�U U� ; (3.14)where T is the proje
tor onto the Lie algebra of G. For the 
ase of SU(N)this amounts to proje
ting out the tra
eless antihermitian part. For the 
ase of2-
avour QCD this will give�S�U = �Sg�U + �� ��U (MyM)�1�= �Sg�U + [(MyM)�1�℄� ��U (MyM)[(MyM)�1�℄: (3.15)The 
omputational bottlene
k is of 
ourse the 
omputation of [(MyM)�1�℄. Todis
retise these equations one has to �nd a s
heme that is both reversible andarea preserving. The simplest one is the Leapfrog s
heme. Evolve U(0) half atime step to U(12dt) usingU(12dt) = U(0) + _U(12dt)dt; (3.16)
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e QCD 27then perform the leapfrog steps�(t+ dt) = �(t) + _�(t+ 12dt)dt (3.17)U(t + 12dt) = U(t� 12dt) + _U(t)dt (3.18)and 
lose the traje
tory by another half step for the U �elds. The detailed 
al
u-lation of the equations of motion for our kind of a
tion are derived in Appendix A.



Chapter 4Numeri
al Results with improved WilsonfermionsThis 
hapter des
ribes the results obtained through numeri
al simulation oftwo 
avour QCD with improved Wilson fermions on latti
es of size 83 � 4 and122 � 24� 4. Using routines to invert the fermion matrix and the 
orrelator 
odewritten by Peter S
hmidt for a quen
hed spe
tros
opy proje
t, a Hybrid MonteCarlo 
ode was set up together with Peter S
hmidt and Burkhard Sturm. This
ode in its �nal version 
omprised 104 routines making up 19700 lines of (
om-mented) 
ode, whi
h ran for about 200000 CPU hours on the Cray T3E at theH�o
hstleistungs Re
hen Zentrum in Jueli
h, Germany.4.1 Overview of resultsBefore we delve into the wealth of data, we want to summarise our �ndings on thephase diagram. Figure 4.1 shows the lo
ation of the thermal line and the 
riti
alline in the �-� plane. For � = 2:8 we have found two � values at whi
h thequark mass vanishes indi
ating the existen
e of the Aoki phase. Furthermore thesystem shows 
on�ned behaviour up to about � = 0:2 when the �nite temperaturetransition slowly sets in. This means that the thermal line runs past the tip ofthe 
usp of the Aoki phase and does not turn ba
k toward weak 
oupling as putforward in referen
e [20℄. In fa
t we see no sign of a se
ond thermal line at large� up to � = 0:33. At � = 3:0 the gap between the two vanishing points of thequark mass is no longer seen and the 
riti
al line almost 
oin
ides with the �nitetemperature transition line. At � = 3:1 one 
rosses the thermal line before the
riti
al line when � is in
reased. We follow both lines up to � = 3:75 observing,28
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Figure 4.1: Results for the lo
ation of the 
riti
al line and thermal line in the �-�plane for two 
avours of improved Wilson fermions.that they stay quite 
lose together, as seen in earlier studies with the standardWilson a
tion. For the thermal line the verti
al bars indi
ate the approximaterange over whi
h the transition takes pla
e. For the 
riti
al line we have ex
eptfor � = 2:8 and 3.1 only data from the small latti
e size, where an a

urateextra
tion of large distan
e behaviour of propagators is not possible. Yet there isstill a pronoun
ed 
hange in the behaviour, when the quark mass 
hanges sign.This information 
an then be used to lo
ate the 
riti
al line. The verti
al barsfor the 
riti
al line are drawn between the points where the quark mass 
hangessign. For � = 2:8 and 3.1, where we have data from the larger latti
e, the errorof the �t result is shown.In the following se
tions we will dis
uss in detail the results that 
orroborate thispi
ture, but before we 
an do this we have to de�ne the observables.
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e we are ultimately interested in the �nite temperature phase transition inthe 
hiral limit of two 
avour QCD, we need a set of observables, that is sensitiveto both the 
hiral and thermal behaviour of the system. The simplest observablesensitive to 
hiral properties is the pion norm de�ned by� = 14N3�N� � tr �M�1
5M�1
5� ; (4.1)whi
h is just the integrated pion propagator. For light quark masses the pionnorm is proportional to the inverse pion mass squared, � � 1=m2�. It 
an there-fore be used on a smaller latti
e to asses the proximity to the 
hiral limit, wherea

urate information on the pion mass is not available.The pion s
reening mass is extra
ted from the exponential de
ay of the spatialpseudos
alar 
orrelator, proje
ted onto zero momentum in all orthogonal dire
-tions h�(z)�(0)i =Xx;y;th � 
5 (x�) � � 
5 (0)i: (4.2)The 
onne
tion between the s
reening mass m and the 
orrelator is given byC(z) = 2A exp(�mNz=2) 
osh(m(Nz=2� z)) (4.3)whi
h is valid for large enough z.Another quantity of prime interest is the quark mass. By a 
areful analysis of
hiral ward identities referen
e [3℄ shows how to suitably de�ne physi
al quantitiesin order to get the 
orre
t 
hiral 
ontinuum limit. Following their pres
ription,we de�ne the quark mass as2mq = ZAPx;y;thr3 � 
5
3 (x�) � � 
5 (0)iPx;y;th � 
5 (x�) � � 
5 (0)i : (4.4)
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onstant of the axial 
urrent, whi
h we set to its treelevel value, whi
h for our normalisation of the fermion �elds is 1=(2�)2. Thisis stri
tly speaking not 
orre
t, but we are mainly interested in the lo
ation ofthe line of vanishing quark mass for whi
h the di�eren
e does not matter. Therenormalisation 
onstant 
an however be obtained from an analysis of three pointfun
tions.In the 
hiral limit of QCD the 
hiral 
ondensate be
omes an order parameterfor the �nite temperature 
hiral phase transition. At low temperature we expe
t
hiral symmetry to be spontaneously broken and therefore the 
hiral 
ondensateto extrapolate to a nonzero value in the 
hiral limit. In the symmetry restoredphase the 
hiral 
ondensate should vanish as the the quark mass goes to zero.For Wilson fermions a properly subtra
ted de�nition of the order parameter hasto be used to 
an
el the 
onta
t terms arising from the Wilson term. The properde�nition was again given in referen
e [3℄:h �  isub = 2mq � ZA � Xx;y;z;th�(x�)�(0)i (4.5)When the quarks are in�nitely heavy, full QCD redu
es to pure gauge theory.Here the de
on�nement phase transition is related to the spontaneous breakdownof the Z(N
) 
enter symmetry. The order parameter for this phase transition isthe Polyakov-loop, whose expe
tation value 
an be related to the partitionfun
tion of a stati
 quark 
oupled to the gauge �elds. The Polyakov loop isde�ned byL = 1N3� X~x tr N�Yt=1 U4(~x; t): (4.6)We have �rst 
arried out a preparatory study on the small latti
e of size 83 � 4to get an idea about the lo
ation of the �nite temperature transition line and thelo
ation of the 
usp of the Aoki phase if it existed. We have used the Polyakovloop and the pion norm to map out the phase diagram. We had also measured therelevant 
orrelators to determine the pion mass and the quark mass, but 
ould
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t 
lear and unambiguous signals from them. We simulated the systemfor � = 2:8; 3:0; 3:1; 3:5 and 3:75 at various values of �. On
e the phase diagramwas approximately known, we used a larger latti
e of 122�24�4 at two � values,namely � = 2:8 and 3:1, to 
orroborate our �ndings, 
he
k �nite size e�e
ts andextra
t pion and quark masses. With hindsight it turned out that to a 
ertainextent one 
ould use the 
al
ulated 
orrelators on the smaller latti
e to extra
tviable information. We will deliberate on this in the appropriate se
tion.4.3 Results for the pion norm
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Figure 4.2: Left: The pion norm as a fun
tion of � on the 83 � 4 latti
e fordi�erent � values. Right: Similarly data from the 122 � 24 � 4 latti
e togetherwith 
orresponding data from the smaller latti
e to asses �nite size e�e
ts. N.B.:note the di�eren
e in s
ale.Figure 4.2 shows the results for the pion norm. We expe
t the pion norm as afun
tion of � to develop a peak that in
reases as we de
rease �. This peak shouldturn into a singularity as one hits the tip of the Aoki phase. Lowering � further,the singularity should split up into two bran
hes and and leave a gap. As we 
ansee from Figure 4.2, one 
an identify this behaviour in our data. At � = 3:75the pion norm does not develop any peak and there is no sign of a proximity tothe Aoki phase. At � = 3:5 the pion norm develops a small peak whose lo
ation
oin
ides with that of the de
on�nement transition, see x(4.4). At � = 3:1 onesees a 
lear signal for a diverging pion norm. As one de
reases � further to
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 0.1859(3) 0.1823(10) 0.1800(5)Table 4.1: Criti
al hopping parameters extra
ted from the pion norm.� = 3:0 the apparent gap between the two bran
hes of the developing divergen
ebe
omes wider. We will argue below, that one 
an identify two 
riti
al lines for� = 2:8, whi
h 
an be understood by the existen
e of Aoki's phase. As mentionedabove one expe
ts the pion norm to be inversely proportional to the squared pionmass. Employing the partial 
onservation of the axial 
urrent the squared pionmass is proportional to the quark mass. For the quark mass one has in turn therelationmq � 12 � 1�
 � 1�� ; (4.7)whi
h is valid as an equality in the weak 
oupling limit where �
 = 1=8. At�nite � one has to use the appropriate value for �
(�) and the proportionality
onstant be
omes unequal a half. One 
an therefore extra
t a �
(�) from �tting1=� linearly in 1/�. The results are shown in Table 4.1; ex
ept for � = 3:0 weused the data from the larger of the two latti
e sizes in the analysis. The �t wasonly performed approa
hing the 
riti
al line from below, be
ause 1=� showed astrong 
urvature when plotted as a fun
tion of 1/� for the larger values of �. Inthe next se
tion we will argue, that for � = 3:1 the data are not 
onsistent withthe proposition that the pion be
omes massless. For � = 3:0 we 
annot de
idethe issue, so we are left with only � = 2:8 where the existen
e of the Aoki phase
an be established.4.4 Results for the Polyakov loopFigure 4.3 shows the results for the Polyakov loop. As one 
an infer from theright plot, the �nite size e�e
ts are not very large for the two �-values wheredata from both latti
es exist. We therefore assume the �nite size e�e
ts for the



Chapter 4. Numeri
al Results with improved Wilson fermions 34

0

0.05

0.1

0.15

0.2

0.25

0.3

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
κ

< |L| >

2.8 on  8
3.0 on  8
3.1 on  8
3.5 on  8

3.75 on  8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.14 0.16 0.18 0.20 0.22 0.24

κ

< |L| >

3.1 on 8
3.1 on 12
3.0 on 8
2.8 on 8
2.8 on 12

Figure 4.3: Left: The Polyakov loop as a fun
tion of � on the 83 � 4 latti
e fordi�erent � values. Right: Similarly data from the 122�24�4 latti
e together with
orresponding data from the smaller latti
e to asses �nite size e�e
ts, verti
al linesare 
riti
al values of � as extra
ted from the pion norm. N.B.: note the di�eren
ein s
ale.other �-values to be small as well and use all data to infer the phase diagram. Asexplained in x(1.1) one expe
ts the 
riti
al temperature of the phase transition tode
rease, when the mass of the quarks is lowered. This means, that the lo
ationof the transition is shifted to larger � for smaller �. This is 
learly exhibited bythe data. For � = 3:75 the transition is quite strong as expe
ted for large quarkmasses where the �rst order phase transition of the pure gauge system is stillimportant. The transition takes pla
e between � = 0:13 and � = 0:15. Thesevalues quoted here are the basis for the verti
al bars given for the thermal line inFigure 4.1. For � = 3:5 the transition is still quite strong taking pla
e between� = 0:155 and � = 0:16. The jump in the value of the Polyakov loop however issmaller than for � = 3:75 as expe
ted. For � = 3:1 the transition is even weakerand happens between � = 0:1725 and � = 0:18. This means that the pion 
annotbe
ome massless at �=0.18 whi
h was the �t result from the pion norm. Thesystem is already in the high temperature regime where the �t would suggestthe pion to be
ome massless. This means that for �=3.1 one 
rosses the thermalline before the 
riti
al line. This will be further supported by the analysis of theresults for the quark mass and the pion mass as presented below. For � = 3:0
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al Results with improved Wilson fermions 35where the �nite temperature phase transition takes pla
e between � = 0:177 and� = 0:185, the point where the �t from the pion norm would predi
t a masslesspion is right where the transition happens. This indi
ates that the 
riti
al lineand the thermal line 
ome very 
lose around � = 3:0. For � = 2:8 there is noproblem with the interpretation, that the pion be
omes massless for some valueof the hopping parameter. Though the Polyakov loop in
reases with � it remainssmall and shows no transition behaviour as one approa
hes the 
riti
al line. Onthe other side of the apparent singularity the Polyakov loop slowly rises andshows transient behavior between � = 0:20 and � = 0:24. This means that thethermal line runs past the tip of the 
usp of the Aoki phase 
ontinuing towardstrong 
oupling. The transition however is weaker and more spread out than forlarger values of �.4.5 Results for the pion mass
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Figure 4.4: Left: Value of the se
ond z-sli
e of the e�e
tive mass plot of the pion
orrelator squared as a fun
tion of 1/� for the 83� 4 latti
e. Right: Fitted pionmass squared as a fun
tion of 1/� from the 122 � 24 � 4 latti
e together withdata from the smaller latti
e as on the leftWe have measured the pion-pion 
orrelator on both latti
e sizes, but only onthe larger latti
e is it possible to extra
t a mass from an exponential �t. Wehave however analysed the 
orrelator also on the smaller latti
e and produ
edan e�e
tive mass plot, i.e. plotting the average ratio of the 
orrelator of two
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onse
utive time sli
es. If we 
ompare the se
ond time sli
e of su
h an e�e
tivemass plot on the smaller latti
e with the �tted mass from the larger latti
e at
orresponding values of � and � we �nd a surprisingly good agreement, as 
anbe seen from the right part of Figure 4.4. We hen
e also plot this quantity asthe pion mass for the other �-values on the smaller latti
e, to see whether theresults �t into the overall pi
ture. We have to keep in mind though, that thesevalues have to be taken with a grain of salt. Let us now dis
uss the pion mass onthe smaller latti
e. For � = 3:75 the pion stays heavy. The pion mass de
reaseswith in
reasing �, but be
omes heavier again on
e we 
ross the transition region.For � = 3:5 this behaviour be
omes even more pronoun
ed, with the minimumvalue of the pion mass o

urring right at the �nite temperature phase transition.Furthermore this minimum value is lower than for � = 3:75 whi
h �ts well withour �nding that the 
riti
al line and the thermal line 
ome 
loser together as onede
reases �. Another interesting feature for this �-value is that the pion aftergetting heavier after the �nite temperature transition be
omes lighter again ateven higher values of �. This seems to indi
ate the proximity to another 
usp ofthe Aoki phase as we expe
t in total �ve 
usps to develop. For � = 3:1 we 
an
ompare the pion mass on the smaller latti
e with the properly extra
ted onefrom the larger latti
e. As one 
an see from Figure 4.4 they agree quite well for�'s in the low temperature phase. In the high temperature phase the agreement isnot so good, whi
h might be explained by the fa
t, that in the high temperaturephase there is stri
tly speaking no pion. This means, that what we measure isin fa
t the propagator of two quarks propagating in the medium. In this 
ase�nite size e�e
ts play an important role. We should hen
e be very 
areful ininterpreting the pion mass data in the high temperature phase. At � = 3:1 we
learly see that the data are not 
ompatible with the assumption that the pionmass be
omes zero. At � = 3:0 the situation is less 
lear 
ut also be
ause we haveno data from the larger latti
e. The minimum value of the pion mass is lowerthan for � = 3:1 but not 
onsistent with zero. For larger �-values we see a similarbehaviour as for � = 3:5, namely the pion mass drops again. Finally at � = 2:8there is eviden
e that the pion be
omes massless. The two bran
hes of the plot
an be extrapolated to yield two di�erent values for �
 whi
h leave a small gap.
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 0.188(1) 0.1859(1)Table 4.2: Results for the two 
riti
al hopping parameters at � = 2:8 extrapolatedfrom the pion mass.The result of a linear extrapolation is shown in Table 4.2. The errors are quitelarge whi
h 
omes from the fa
t, that the data show quite some 
urvature as afun
tion of 1/�. This might be a result of the left out renormalisation fa
tor. Onthe other hand the argument for a linear behaviour of the pion mass squared asa fun
tion of 1/� is drawn from PCAC ideas, whi
h due to Aoki are not reallyappli
able here. We also have no problem that these �-values lie in the range ofthe �nite temperature phase transition as for the larger �-values. We 
on
ludethat for � = 2:8 there exists an Aoki phase whi
h however is very small.4.6 Results for the quark mass
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Figure 4.5: Left: Value of the �fth z-sli
e of the quark mass 
orrelator ratio as afun
tion of 1/� for the 83 � 4 latti
e. Right: Fitted quark mass as a fun
tion of1/� on the 122� 24� 4 latti
e together with data from the smaller latti
e as onthe leftAs for the pion mass one 
an only extra
t the quark mass reliably on the largerlatti
e. Sin
e the ratio of 
orrelation fun
tions that determine the quark mass is
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 0.1853(3) 0.1823(10) 0.1770(3) 0.1625(25) 0.1550(5)Table 4.3: Results for the position of the line of vanishing quark mass as extra
tedfrom the behaviour of the quark mass 
orrelator ratio.to be evaluated for large z, one 
an try to plot the furthest possible point, whi
hon a latti
e with periodi
 boundary 
onditions is the midpoint. It turns out, thatwhen the data of the smaller latti
e are plotted in su
h a way, there exists againbroad agreement with the data from the larger latti
e. One 
an however not takethe left plot of Figure 4.5 at fa
e value. Looking at the 
orrelator ratios them selfone 
an quite 
learly dis
ern a 
orrelator ratio that will on a larger latti
e give apositive quark mass from one that will result in a negative quark mass, see plotone and three of Figure 4.6. But there are also 
orrelator ratios, whi
h we 
allanomalous, that display positive/negative mass behavior, but whose value at the�fth z-sli
e is negative/positive, see plot two and four of Figure 4.6. Be
ause ofthe distinguishable positive/negative mass behaviour we have extra
ted a lo
ationof the 
riti
al line de�ned by the vanishing of the quark mass as the midpointbetween the two points between whi
h the behaviour of the quark mass 
orrelatorratio 
hanges, ex
ept for � = 2:8 and 3:1, where a �t 
ould be performed. Theresults are shown in Table 4.3.
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hiral 
ondensateFrom the measurement of the pion norm and the quark mass we 
an infer the
hiral order parameter. Our results are depi
ted in Figure 4.7 where the 
hiral
ondensate is plotted as a fun
tion of the quark mass. This plot gives further evi-den
e that for � = 2:8 
hiral symmetry is broken as the 
hiral limit is approa
hed.The 
hiral 
ondensate extrapolates to a nonzero inter
ept for this �-value. For� = 3:1 however, the 
hiral 
ondensates shows a strong 
urvature, indi
atingthat it will extrapolate to zero in the zero mass limit, as expe
ted when 
hiralsymmetry is restored.
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Chapter 5SummaryIn this study the phase diagram of 2 
avour QCD with dynami
al fermions wasinvestigated. For the gauge �elds a tree level Symanzik improved a
tion was used.The fermions were simulated in the Wilson formulation also with a tree levelSymanzik improved a
tion, whi
h amounts to adding the so 
alled 
lover term tothe standard Wilson a
tion. This system was studied on two di�erent latti
e sizes,namely 83�4 and 122�24�4. On the smaller latti
e �ve di�erent �-values wereinvestigated to map out the phase diagram. These were � = 2:8; 3:0; 3:1; 3:5; 3:75.For ea
h �-value a varying number of �-values were simulated to �nd the thermaland 
riti
al lines. On
e the phase diagram was known the system was simulatedon the larger latti
e at two �-values � = 2:8 and 3:1 in the region where thepion was be
oming light. For these values, pion and quark masses were extra
tedand �nite volume e�e
ts assessed. It was the aim of this study to investigate thefollowing points:� Does there exist an Aoki phase for the improved Wilson a
tion [18℄?� Does the use of improved a
tions alleviate problems with strong latti
eartifa
ts found in previous studies [6℄?� What happens to the thermal line on
e it 
rosses the line of vanishing quarkmass [20℄?� Can one study the �nite temperature phase transition with Wilson fermionsat light pion masses? 40



Chapter 5. Summary 41At the smallest � we �nd eviden
e for two 
riti
al lines, whi
h are very 
losetogether and indi
ate the existen
e of an Aoki phase for this a
tion. We still�nd, that the thermal line and the 
riti
al line 
ome very 
lose to ea
h other andrun almost parallel toward strong 
oupling. We �nd no anomalies as for examplereported by the MILC 
ollaboration [6℄. The strength of the transition de
reaseswith de
reasing quark mass as expe
ted. Again at the smallest �-value we �nda transition from 
on�ned to de
on�ned behaviour in a regime where the quarkmass is negative. This means on the one hand that the thermal line 
ontinuespast the tip of the 
usp of the Aoki phase toward strong 
oupling and does notturn ba
k toward weak 
oupling as has been proposed. On the other hand thisimplies, that the thermal line 
rosses the 
riti
al line, making it possible to studythe �nite temperature phase transition for light pions.Outlook and future investigations: There are a number of things, thatone would want to elaborate about the phase diagram. The eviden
e for theexisten
e of an Aoki phase is not very strong and quite indire
t. It would beworthwhile to simulate the system at � = 2:8 for the larger �-values on thelarger latti
e to be able to extra
t the quark mass and establish the existen
eof a se
ond 
riti
al line more pre
isely. To this end it would also be usefulto study the system at even smaller �-values, as the width of the Aoki phaseshould in
rease and the signal be
ome 
learer. In the light of the dis
ussion inx(2.3) the existen
e of the Aoki phase for improved Wilson fermions should beestablished more �rmly. Another interesting region is the spa
e between the tipof the 
usp and the point where the thermal line 
rosses the line of vanishingquark mass. Due to the absen
e of the Aoki phase, the pion should not be
omemassless and one expe
ts a �rst order transition a
ross the line of vanishing quarkmass. This phase transition region will be squeezed out between the 
usp of theAoki phase and the �nite temperature transition line in the 
ontinuum limit andmight therefore be 
onsidered unimportant, but it would 
ertainly in
rease ourunderstanding of the theoreti
al issues involved in the QCD phase diagram, if theexisten
e of this phenomenon 
ould be established. The next step, of 
ourse isthe thermodynami
s of QCD with improved Wilson fermions. One is interested



Chapter 5. Summary 42how physi
al observables like pressure and energy density 
hange as a fun
tionof temperature. To determine a temperature s
ale in physi
al units, one hasto do simulations at zero temperature to set the s
ale. Be
ause it turned outthat the simulations were very time 
onsuming with the 
ombination of a
tionswe used, this 
ould not be realized in the present study. Another importantdire
tion for future resear
h is the still open question of the order of the phasetransition for two massless quarks. Simulations with staggered quarks have sofar given puzzling and in
on
lusive results. The thermodynami
s of QCD withWilson fermions is not very developed and this thesis was meant to 
hange this.



Appendix AQuantisation of gauge and fermion �eldsA.1 Quantising the gauge �eldsLatti
e Quantum Chromo Dynami
s is a non-perturbative implementation ofEu
lidean �eld theory using the path integral approa
h a la Feynman. The �nitespa
e time grid serves as a regulator for the theory, that has to be removed asone takes the 
ontinuum limit. As one formulates QCD on a latti
e one is willingto give up e.g. Lorentz invarian
e, but what one is not willing to give up islo
al gauge invarian
e. This has quite pra
ti
al reasons, see e.g. referen
e [24℄,only gauge invarian
e guarantees the equality of the quark-gluon, three-gluon andfour-gluon 
ouplings and the masslessness of the gluons. To formulate a theorywith a lo
al gauge invarian
e, one uses the 
on
ept of 
ovariant derivatives andparallel transporters. A parallel transporter is a mapping from the spa
e of
ontinuous paths on spa
e time into the spa
e of gauge transformations underwhi
h our a
tion shall be lo
ally invariant (e.g. U(1),SU(N),...) with the followingproperties:U(;) = 1 (A.1)where ; denotes the path with zero length, i.e. Cx;x for all x.U(C2 Æ C1) = U(C2)U(C1) (A.2)where C2 Æ C1 denotes the path 
omposed of C1 followed by C2.U(�C) = U(C)�1 (A.3)43



Appendix A. Quantisation of gauge and fermion �elds 44where �C is the path C traversed in the opposite way.Under a lo
al gauge transformation�(x)! �0(x) = ��1(x)�(x)�(y)! �0(y) = ��1(y)�(y) (A.4)a parallel transporter transforms asU(Cy;x)! U 0(Cy;x) = ��1(y)U(Cy;x)�(x): (A.5)Therefore U(Cy;x)�(x) transforms under a gauge transformation like �(y). We
an hen
e 
ompare the �eld at di�erent points using the 
ovariant distan
e�C = U�1(Cy;x)�(y)� �(x); (A.6)whi
h depends of 
ourse on the spe
i�
 path Cy;x. For the spe
i�
 paths C�(t) =x + �̂ � t we 
an de�ne the 
ovariant derivativeD��(x) = limt!0 �C�(t)�(x)t : (A.7)It is obvious from the above de�nition, that the 
ovariant derivative transformsunder gauge transformations as the �eld �(x).If we de�ne the gauge �eld A� asA�(x) = limt!0 1� U(C�(t))t ; (A.8)the 
ovariant derivative is given asD� = �� + A�(x): (A.9)



Appendix A. Quantisation of gauge and fermion �elds 45In order to �nd the transformation law for the gauge �elds, one starts fromEquation (A.8) as the de�ning equation for the in�nitesimal generator and usesthe gauge transformed parallel transporter. This results inA0�(x) = ��1(x)A�(x)�(x)� (���(x))�(x): (A.10)The �eld strength is de�ned as the 
ommutator of two 
ovariant derivatives anddes
ribes the parallel transport around an in�nitesimal parallelogram:F�� = [D�; D�℄ : (A.11)The 
ontinuum a
tion is then given in terms of F�� asSG = � 12g2 Z d4xTrF��F �� (A.12)It is now 
lear how one 
an de�ne a gauge invariant a
tion using parallel trans-porters. In fa
t given a gauge �eld, one 
an re
onstru
t the parallel transportersvia U(C) = P exp�� ZC A�(x)dx�� ; (A.13)where P denotes path ordering of the gauge �elds along C when evaluating theexponential. It is therefore natural to formulate the gauge dynami
s on a latti
ein terms of the parallel transporters. On a hyper
ubi
 latti
e we have to spe
ifythe elementary parallel transporters along the links joining two adja
ent pointsin our latti
e. They will be denoted U�(x), for further notations see Appendix A.The gauge a
tion on the latti
e is formulated in terms of plaquettes, whi
h arethe produ
t of link �elds around an elementary square in the �� � planeU��(x) = U�(x)U�(x+ �̂)U y�(x+ �̂+ �̂)U y�(x+ �̂): (A.14)



Appendix A. Quantisation of gauge and fermion �elds 46The a
tion is then given as a sum over all plaquettes:SG = � Xx;�<��1� 1NReTrU��(x)� forSU(N); (A.15)where � = 2N=g2. If we expand the above a
tion in powers of the latti
e spa
inga we get ba
k the 
ontinuum a
tion up to terms of O(a2), see e.g. referen
e [25℄.To fully des
ribe the quantum system one has to spe
ify the measure on the gaugegroup over whi
h one integrates in the path integral. This measure should respe
tgauge invarian
e for the 
orrelation fun
tions resulting from the path integral tobe gauge invariant. Fortunately for every 
ompa
t group G there exists a uniqueregular Borel probability measure with the desired properties, namely:1. NormalisationZG dU = 1: (A.16)2. Invarian
eZG f(U)dU = ZG f(UV )dU = ZG f(V U)dU for all V 2 G: (A.17)Whi
h satis�esZG f(U)dU = ZG f(U�1)dU: (A.18)This measure is 
alled the Haar measure of G, for an existen
e proof see refer-en
e [26℄. The expe
tation value of an observable O, whi
h is a fun
tion of thegauge �eld fUg, is given byhOi = 1Z Z DUO(fUg) exp(�SG(fUg)) (A.19)Z = Z DU exp(�SG(fUg)) (A.20)DU =Yx;� dU�(x) (A.21)



Appendix A. Quantisation of gauge and fermion �elds 47with dU�(x) being the Haar measure for the link from x to x + �̂.A.2 Quantising the matter �eldsQuantising fermions via the path integral approa
h is far from trivial. It is indeednontrivial to see, that the analogy argument, i.e. use Grassmann variables in thepath integral instead of ordinary ones, indeed gives the right answer. What wewant to show here, is how one 
an express the tra
e over a 
omplete set of statesin the Fo
k spa
e of 
reation and annihilation operators as a fun
tional integralover Grassmann �elds. We start from a set of �eld operators���(x); ��(y) (A.22)satisfying 
anoni
al 
ommutation relations����(x); ��(y)	 = a3
�;�4 Æx;y; (A.23)where a is the latti
e spa
ing and x; y are points on a 
ubi
 latti
e. The va
uumis de�ned byP+�(x)j0i = ��(x)P�j0i = 0 with P� = 12(1� 
4): (A.24)We also introdu
e a Grassmann algebra with elements  �(x); � �(y) with thefollowing anti
ommutation properties� �(x);  �(y)	 = � � �(x); � �(y)	 = � �(x); � �(y)	 = 0: (A.25)These Grassmann �elds in turn 
ommute with all 
reation and annihilation op-erators. We now de�ne Grassmann 
oherent states:j ; � i = exp(a3Xx [ ��(x)P+ (x) + � (x)P��(x)℄) j0i (A.26)h ; � j = h0j exp(a3Xx [ � (x)P+�(x) + ��(x)P� (x)℄) : (A.27)
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tors of the 
reation and annihilation operators with Grassmanneigenvalues, namely:P+�(x)j ; � i = P+ (x)j ; � i��(x)P�j ; � i = � � (x)P�j ; � ih ; � j��(x)P+ = h ; � j � (x)P+h ; � jP��(x) = h ; � j � P� (x): (A.28)These states form a 
omplete set in the sense that1 = Z Y�;xfa3d � �(x)d �(x)g exp(�a3X�;x � �(x) �(x)) j ; � ih ; � j(A.29)is a resolution of the identity.The matrix element of two di�erent 
oherent states is given by:h 0; � 0j ; � i = exp(a3Xx ( � (x)0P+ (x) + � (x)P� (x)0)) : (A.30)We will now use these results to 
al
ulate the partition fun
tionZ = Tr�e��H	 =Xn hnj e��H jni= Xn Z Y�;xfa3d � �(x)d �(x)ge�a3Px � (x) (x) hnj ; � ih ; � je��H jni= Xn Z Y�;xfa3d � �(x)d �(x)ge�a3Px � (x) (x)h ; � je��H jni hnj � ( ; � )i= Z Y�;xfa3d � �(x)d �(x)ge�a3Px � (x) (x)h ; � je��Hj �  ; � i: (A.31)The minus sign arises from 
ommuting the two Grassmann valued matrix ele-ments past ea
h other. It will give rise to antiperiodi
 boundary 
onditions in
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eed from here one splits the time in-terval into N� pie
es of length a0 with N�a0 = � and inserts a 
omplete set ofstates at ea
h intermediate point.Z = limN�!1Trn�e�a0H�No= limN�!1Z N�Yt=1Y�;xfa3d � �(x; t)d �(x; t)ge�a3Px;t � (x;t) (x;t)
 ; � (N� )�� exp(�a0H) �� ; � (N� � 1)� �
 ; � (N� � 1)�� exp(�a0H) �� ; � (N� � 2)� � : : :
 ; � (1)�� exp(�a0H) ��� ; � (N� )� (A.32)The next step is to approximate exp(�a0H) by 1� a0H and evaluate the matrixelements between the 
oherent states. We must now spe
ify the Hamiltonian.We 
hoose the dis
retisation introdu
ed by Wilson:H = Xx a3�: ���(x) �m+ 3ra ��(x)� :� 12a 3Xk=1 ��(x+ k̂)[r + 
k℄�(x) + ��(x� k̂)[r � 
k℄�(x)) ; (A.33)where :: means normal ordering to subtra
t the zero point energy:: ��(x)�(x) := ��(x)P+�(x)� ��(x)(��(x)P�)� (A.34)From the rules in Equation (A.28) one obtains for the matrix elements of a0H:
 ; � (t+ 1)�� a0H �� ; � (t)� = 
 ; � (t+ 1)j ; � (t)� �a0Xx a3��m + 3ra � � � (x; t+ 1)P+ (x; t) + � (x; t)P� (x; t+ 1)�



Appendix A. Quantisation of gauge and fermion �elds 50� 12a 3Xk=1( � (x+ k̂; t+ 1)P+ + � (x + k̂; t)P�)[r + 
k℄(P+ (x; t) + P� (x; t+ 1))+( � (x� k̂; t+ 1)P+ + � (x� k̂; t)P�)[r � 
k℄(P+ (x; t) + P� (x; t+ 1))o(A.35)Together with Equation (A.30) we then arrive at the following expression for thepartition fun
tion:Z = limN�!1Z Y�;x;tfa3d � �(x; t)d �(x; t)g exp�� a3a0Xx;t � 1a0 � (x; t) (x; t)+ �m+ 3ra � � � (x; t+ 1)P+ (x; t) + � (x; t)P� (x; t + 1)�� � � (x; t+ 1)P+ (x; t) + � (x; t� 1)P� (x; t)�� 12a 3Xk=1( � (x+ k̂; t+ 1)P+ + � (x + k̂; t)P�)[r + 
k℄(P+ (x; t) + P� (x; t+ 1))+ ( � (x� k̂; t+ 1)P+ + � (x� k̂; t)P�)[r � 
k℄(P+ (x; t) + P� (x; t+ 1))��(A.36)Denoting the points in the four dimensional latti
e by x, taking equal latti
espa
ings in spa
e and time dire
tions a0 = a and r=1, the integrand 
an be furthersimpli�ed to lead to the well known Wilson fermion a
tion, see referen
e [25℄:Sf = Xx a4n�m + 4a� � (x) (x)� 12a 4X�=1 � (x+ �̂)(1 + 
�) (x) + � (x� �̂)(1� 
�) (x)o (A.37)This is a dis
retised version of the free 
ontinuum Dira
 a
tion. This shows,that to quantise fermions with the path integral approa
h one starts from the
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tion and integrates over 
lassi
al 
on�gurations of Grassmann �elds, i.e. theanalogy argument works. To 
ouple in the gauge �elds one has to make the abovea
tion gauge invariant. This is a
hieved by inserting the appropriate paralleltransporters. The result isSf = Xx a4n�m + 4a� � (x) (x)� 12a 4X�=1 � (x)U�(x)(1� 
�) (x+ �̂) + � (x)U y�(x� �̂)(1 + 
�) (x� �̂)o(A.38)



Appendix BHybrid Monte Carlo equations of motionThis appendix is intended to show the derivation of the equations of motion usedin the Hybrid Monte Carlo simulation. We follow referen
e [22℄. In what followswe use the following 
onventions:tr : 
olour tra
eTr : spinor tra
eTR : spa
e tra
eThe derivation starts from the HMC-HamiltonianH = 12Xx;� tr�2�(x) + Sg + ��(MyM)�1�: (B.39)The ��(x) are momenta 
onjugate to the gauge �elds U�(x). They live in thegroup algebra, i.e. are tra
eless anti-hermitian matri
es. The time-evolution ofthe gauge-�elds takes the form_U�(x) = i��(x)U�(x)_U y�(x) = �iU y�(x)��(x): (B.40)The equations of motion for the 
onjugate momenta are derived from the require-ment, that the above Hamiltonian is 
onstant in Mole
ular-Dynami
s-time. Itwill be shown that the time-derivative of the fermion and gauge 
ontributions to52
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an be written as_S =Xx;� tr[��(x)iF�(x)℄; (B.41)with F�(x) = G�(x)�Gy�(x): (B.42)The 
ondition of 
onstant energy along the MD-traje
tory 
an therefore be re
astinto the following:0 = _H =Xx;� trf��(x)[ _��(x) + iF�(x)℄g: (B.43)This is zero if _��(x) is proportional to the unit matrix. To keep ��(x) tra
eless theremaining proportionality 
onstant is 
hosen as the tra
e of F�(x). The equationsof motion for the 
onjugate momenta are therefore:i _��(x) = G�(x)�Gy�(x)� 13tr �G�(x)�Gy�(x)� : (B.44)B.1 The gluoni
 
ontributionSpelling out the graphi
al representation given in Equation (1.20), the gaugea
tion is given bySg = � Xx;�>� 53 �1� 12N
 tr [U��(x) + U��(x)℄��16 �1� 14N
 tr �U2�1�� (x) + U1�2�� (x) + U1�2�� (x) + U2�1�� (x)�� ;(B.45)where U�;�(x) = U�(x)U�(x+ �̂)U y�(x+ �̂)U y�(x)



Appendix B. Hybrid Monte Carlo equations of motion 54U2�1�;� (x) = U�(x)U�(x+ �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)U1�2�;� (x) = U�(x)U�(x+ �̂)U�(x + �̂+ �̂)U y�(x+ �̂ + �̂)U y� (x+ �̂)U y�(x):(B.46)The �rst observation is, that one 
an rewrite the sum over � > � as a sum over� 6= � and drop half of the terms. The time derivatives of U�;�(x) and U2�1�� (x)are then given by_U�;�(x) = _U�(x)U�(x + �̂)U y�(x + �̂)U y�(x)+ U�(x) _U�(x + �̂)U y�(x + �̂)U y�(x)+ U�(x)U�(x + �̂) _U y�(x + �̂)U y�(x)+ U�(x)U�(x + �̂)U y�(x + �̂) _U y�(x) (B.47)
_U2�1�;� (x) = _U�(x)U�(x+ �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)U�(x) _U�(x+ �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)U�(x)U�(x+ �̂) _U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)U�(x)U�(x+ �̂)U�(x+ �̂+ �̂) _U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)U�(x)U�(x+ �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂) _U y�(x + �̂)U y�(x)U�(x)U�(x+ �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂) _U y�(x)(B.48)The sum over x and � 6= � 
an now be used to 
hange the dummy indi
es ofea
h term. The 
y
li
 property of the tra
e 
an then be used to bring all timederivatives to the front. Finally we make use of Equation (B.40) and write_Sg = � �2N
 Xx;�6=� trhi��(x)U�(x)53nU�(x+ �̂)U y�(x+ �̂)U y�(x)



Appendix B. Hybrid Monte Carlo equations of motion 55+ U y�(x+ �̂� �̂)U y�(x� �̂)U�(x� �̂)� h:
:o� 112trn U�(x+ �̂)U�(x + �̂+ �̂)U y�(x+ �̂+ �̂)U y�(x+ �̂)U y�(x)+ U�(x + �̂)U y�(x + �̂)U y�(x� �̂+ �̂)U y�(x� �̂)U�(x� �̂)+ U�(x+ �̂)U y�(x+ �̂+ �̂� �̂)U y�(x+ �̂� �̂)U y�(x� �̂)U�(x� �̂)+ U y�(x+ �̂� �̂)U y�(x� �̂)U y�(x� �̂� �̂)U y�(x� �̂)U�(x� �̂)+ U�(x + �̂)U�(x+ �̂+ �̂)U y�(x + �̂ + �̂)U y�(x + �̂)U y�(x)+ U y�(x+ �̂� �)U�(x+ �̂� �̂ � �̂)U y�(x� �̂ � �̂)U�(x� �̂ � �̂)U�(x� �̂)� h:
:oi= Xx;� tr�i��(x)(GG� (x)� h:
)	 (B.49)where the sum over the generalized staples is de�ned byGG� (x) = � �2N Xx;� 6=�U�(x)h53nU�(x+ �̂)U y�(x+ �̂)U y�(x)+U y�(x + �̂� �̂)U y�(x� �̂)U�(x� �̂)o�112nU�(x + �̂)U�(x+ �̂+ �̂)U y�(x + �̂+ �̂)U y�(x + �̂)U y�(x)+ U�(x + �̂)U y�(x + �̂)U y�(x� �̂+ �̂)U y�(x� �̂)U�(x� �̂)+ U�(x+ �̂)U y�(x + �̂+ �̂� �̂)U y�(x + �̂� �̂)U y�(x� �̂)U�(x� �̂)+ U y�(x + �̂� �̂)U y�(x� �̂)U y�(x� �̂� �̂)U y�(x� �̂)U�(x� �̂)+ U�(x + �̂)U�(x+ �̂+ �̂)U y�(x+ �̂ + �̂)U y�(x + �̂)U y�(x)+ U y�(x + �̂� �)U�(x+ �̂� �̂ � �̂)U y�(x� �̂ � �̂)U�(x� �̂ � �̂)U�(x� �̂)oi(B.50)
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ontributionIn terms of pseudo fermions the fermioni
 part of the Hamiltonian is given bySf = ��(MyM)�1�; (B.51)taking the derivative with respe
t to time gives_Sf = �� � ddt(MyM)�1 � �= ���(MyM)�1 � ddt(MyM) � (MyM)�1�= �X� � ddt(MyM) �X= �X�� dMydt M+My dMdt �X= �TR Tr tr� dMydt MP + dMdt PMy� ; (B.52)with X(x) = (MyM)�1�(x)P(x; y) = X(x)
X�(y): (B.53)We now spe
ify the form of the fermion matrix:M(x; y) = A(x)Æx;y � � /D(x; y)/D(x; y) = X� U�(x) (1� 
�) Æx+�̂;y + U y�(y) (1 + 
�) Æx��̂;yA(x) = 1� i�2 
SWF��(x)���F��(x) = 18i(Q��(x)�Qy��(x))��� = 12[
�; 
�℄



Appendix B. Hybrid Monte Carlo equations of motion 57Q��(x) = U�;�(x) + U�;��(x) + U��;��(x) + U��;�(x)U�;�(x) = U�(x)U�(x + �̂)U y�(x + �̂)U y�(x)U��(x) = U y�(x� �̂)U y��(x) = U�(x� �̂) (B.54)Be
ause of the linear stru
ture of the fermion matrix the time derivative of thefermion 
ontribution splits up into two parts, whi
h we will now 
al
ulate.B.2.1 The Wilson termThe �rst 
ontribution 
omes from the time derivative of the Wilson term.R1 = �TR Tr trn _DyMP + _DPMyo (B.55)Note that in the time derivative we have to treat U and U y as independent degreesof freedom. The 
ontribution at point x is_/D(x; y) = X� _U�(x) (1� 
�) Æx+�̂;y + _U y�(y) (1 + 
�) Æx��̂;y_/Dy(x; y) = X� _U�(x) (1 + 
�) Æx+�̂;y + _U y�(y) (1� 
�) Æx��̂;y; (B.56)whi
h givesR1 = �Xx;� trn _U�(x) (1 + 
�)MX(x+ �̂)
X�(x)+ _U y�(x� �̂) (1� 
�)MX(x� �̂)
X�(x)+ _U�(x) (1� 
�)X(x+ �̂)
 (MX)�(x)+ _U y�(x� �̂) (1 + 
�)X(x� �̂)
 (MX)�(x)o (B.57)
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an be rewritten asR1 = �Xx;� trn _U�(x)Tr [(1 + 
�)MX(x+ �̂)
X�(x)+ (1� 
�)X(x+ �̂)
X�M(x)� h:
:℄g= Xx;� tr�i��(x)(GW� (x)� h:
)	 (B.58)with GW� (x) = �U�(x)Tr [(1 + 
�)MX(x+ �̂)
X�(x)+ (1� 
�)X(x+ �̂)
X�M(x)℄ (B.59)where we have used Equation (B.40)B.2.2 The 
lover termThe se
ond 
ontribution 
omes from the time derivative of the so 
alled 
loverterm R2 = �TR Tr trn _AMP + _APMyo (B.60)where we have already used the fa
t that A is hermitian. Using Equation (B.54)one getsR2 = TR Tr tr�i�2 
SW _F��(x)��� [MP + PMy℄�= TR Tr trn�
SW16 � _Q��(x)� _Qy��(x)� ��� [MP + PMy℄o= TR Tr trn�
SW16 � _U�;�(x) + _U�;��(x) + _U��;��(x) + _U��;�(x)���� [MP + PMy℄� h:
:o (B.61)
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ontribution of the time derivatives at point x is_U�;�(x) = _U�(x)U�(x + �̂)U y�(x + �̂)U y�(x)+ U�(x) _U�(x + �̂)U y�(x + �̂)U y�(x)+ U�(x)U�(x + �̂) _U y�(x + �̂)U y�(x)+ U�(x)U�(x + �̂)U y�(x + �̂) _U y�(x) (B.62)_U�;��(x) = _U�(x)U y�(x� �̂+ �̂)U y�(x� �̂)U�(x� �̂)+ U�(x) _U y�(x� �̂+ �̂)U y�(x� �̂)U�(x� �̂)+ U�(x)U y�(x� �̂+ �̂) _U y�(x� �̂)U�(x� �̂)+ U�(x)U y�(x� �̂+ �̂)U y�(x� �̂) _U�(x� �̂) (B.63)_U��;��(x) = _U y�(x� �̂)U y�(x� �̂� �̂)U�(x� �̂� �̂)U�(x� �̂)+ U y�(x� �̂) _U y�(x� �̂� �̂)U�(x� �̂� �̂)U�(x� �̂)+ U y�(x� �̂)U y�(x� �̂� �̂) _U�(x� �̂� �̂)U�(x� �̂)+ U y�(x� �̂)U y�(x� �̂� �̂)U�(x� �̂� �̂) _U�(x� �̂) (B.64)_U��;� = _U y� (x� �̂)U�(x� �̂)U�(x + �̂� �̂)U y�(x)+ U y� (x� �̂) _U�(x� �̂)U�(x + �̂� �̂)U y�(x)+ U y� (x� �̂)U�(x� �̂) _U�(x + �̂� �̂)U y�(x)+ U y� (x� �̂)U�(x� �̂)U�(x + �̂� �̂) _U y�(x) (B.65)Changing dummy indi
es one 
an turn all dotted U �elds into _U�(x), one thenuses the 
y
li
ity of the tra
e to bring _U�(x) to the front. Those terms 
ontaining_U y�(x) are ex
hanged for their hermitian 
ounterparts. As it turns out one half ofthe remaining terms is equal to the other half, so only 8 di�erent terms are left,leading toR1 = �
SW8 Xx;� tr _U�(x)nU�(x+ �̂)U y�(x+ �̂)U y�(x)W�(x; �)



Appendix B. Hybrid Monte Carlo equations of motion 60� U y�(x + �̂� �̂)U y�(x� �̂)U�(x� �̂)W�(x; �)+ U�(x+ �̂)U y�(x+ �̂)W�(x + �̂; �)U y� (x)� U y�(x + �̂� �̂)U y�(x� �̂)W�(x� �̂; �)U�(x� �̂)+ U�(x+ �̂)W�(x+ �̂+ �̂; �)U y�(x + �̂)U y�(x)� U y�(x + �̂� �̂)W�(x+ �̂� �̂; �)U y�(x� �̂)U�(x� �̂)+ W�(x+ �̂; �)U�(x+ �̂)U y�(x+ �̂)U y�(x)� W�(x+ �̂; �)U y�(x + �̂� �̂)U y�(x� �̂)U�(x+ �̂)� h:
o= Xx;� tr�i��(x)(GC� (x)� h:
)	 (B.66)where we de�neW�(x; �) = Tr f��;� [(MX)(x)
X�(x) +X(x)
 (MX)�(x)℄g : (B.67)The 
lover 
ontribution to the for
e term is hen
e given byGC� (x) = �
SW8 U�(x)nU�(x + �̂)U y�(x + �̂)U y�(x)W�(x; �)� U y�(x+ �̂� �̂)U y�(x� �̂)U�(x� �̂)W�(x; �)+ U�(x + �̂)U y�(x + �̂)W�(x+ �̂; �)U y�(x)� U y�(x+ �̂� �̂)U y�(x� �̂)W�(x� �̂; �)U�(x� �̂)+ U�(x + �̂)W�(x + �̂+ �̂; �)U y�(x+ �̂)U y�(x)� U y�(x+ �̂� �̂)W�(x + �̂� �̂; �)U y�(x� �̂)U�(x� �̂)+ W�(x + �̂; �)U�(x + �̂)U y�(x + �̂)U y�(x)� W�(x + �̂; �)U y�(x + �̂� �̂)U y�(x� �̂)U�(x + �̂)o; (B.68)where we have used Equation (B.40) again.



Appendix B. Hybrid Monte Carlo equations of motion 61B.3 Putting it all togetherIn this appendix we have shown the validity of Equation (B.41) and Equa-tion (B.42), withG�(x) = GG� (x) +GC� (x) +GW� (x) (B.69)where GG� (x), GW� (x) and GC� (x) are de�ned by Equations (B.50), (B.59) and(B.68) respe
tively. This ends the derivation of the HMC equations of motion.



Appendix CTables of ResultsIn this appendix we 
olle
t in tables all the results previously depi
ted graphi
ally.Ea
h table gives the average values for total a
tion, Polyakov loop, pion norm,pion s
reening mass, quark mass and the average number of iterations used bythe inversion algorithm. For points in the 
on�ned phase this was BiCGstab andin the de
on�ned phase CG.C.1 Results for the 83 � 4 latti
e� � a
tion L Pion norm m� mq # Iterations2.8000 0.1400 0.9652(9) 0.016(1) 20.55(6) 2.060(5) 2.41(1) 33.24(7)2.8000 0.1600 0.9564(4) 0.0257(6) 28.99(6) 1.520(5) 1.027(4) 75.6(1)2.8000 0.1700 0.9477(5) 0.0338(9) 40.3(2) 1.180(7) 0.531(4) 150.6(5)2.8000 0.1750 0.9410(6) 0.041(1) 52.7(4) 0.976(10) 0.323(4) 251(1)2.8000 0.1800 0.931(1) 0.050(1) 87(1) 0.679(7) 0.142(3) 530(6)2.8000 0.1900 0.840(1) 0.053(3) 93(16) 0.50(7) -0.03(3) 983(34)2.8000 0.1950 0.812(4) 0.062(3) 59(3) 1.02(4) -0.09(2) 558(37)2.8000 0.2000 0.7987(7) 0.052(7) 61(3) 1.22(4) -0.19(2) 453(8)2.8000 0.2050 0.789(1) 0.063(2) 53(4) 1.14(5) -0.27(5) 424(15)2.8000 0.2200 0.764(1) 0.093(8) 41(1) 1.44(2) -0.166(6) 325(10)2.8000 0.2400 0.7363(6) 0.155(3) 30.4(8) 1.50(2) -0.196(7) 252(5)Table C.1: Results for � = 2:8
62



Appendix C. Tables of Results 63� � a
tion L Pion norm m� mq # Iterations3.0000 0.1200 0.922(2) 0.0148(5) 16.99(1) 2.507(5) 4.53(2) 23.02(2)3.0000 0.1400 0.9184(4) 0.0176(4) 20.70(2) 2.017(4) 2.268(8) 33.23(3)3.0000 0.1600 0.9047(5) 0.0290(7) 30.04(6) 1.446(6) 0.868(5) 62.6(1)3.0000 0.1700 0.894(1) 0.040(2) 44.9(4) 1.03(1) 0.382(8) 123(2)3.0000 0.1725 0.8869(8) 0.045(1) 52.9(5) 0.919(9) 0.272(7) 230(2)3.0000 0.1750 0.879(2) 0.051(1) 70(1) 0.779(7) 0.179(6) 192(5)3.0000 0.1770 0.862(2) 0.056(4) 96(6) 0.59(3) 0.071(7) 517(35)3.0000 0.1800 0.800(2) 0.075(4) 82(6) 0.53(5) -0.08(3) 611(27)3.0000 0.1825 0.775(1) 0.084(6) 48(3) 0.93(6) -0.13(2) 338(13)3.0000 0.1850 0.764(2) 0.109(7) 47(5) 1.28(8) -0.26(3) 275(18)3.0000 0.1900 0.745(1) 0.111(3) 35(2) 1.51(4) -0.22(3) 228(6)3.0000 0.2000 0.731(2) 0.128(3) 31(1) 1.71(5) -0.21(6) 199(9)3.0000 0.2100 0.714(2) 0.153(5) 29.2(10) 1.73(4) -0.12(2) 157(6)3.0000 0.2300 0.696(1) 0.177(4) 27.5(8) 1.66(3) -0.19(1) 151(2)3.0000 0.2500 0.6786(9) 0.209(2) 24.4(2) 1.60(1) -0.278(7) 155(3)3.0000 0.2700 0.664(1) 0.235(3) 22.0(8) 1.53(1) -0.350(9) 160(3)Table C.2: Results for � = 3:0� � a
tion L Pion norm m� mq # Iterations3.1000 0.1200 0.8979(6) 0.0149(4) 16.997(10) 2.493(4) 4.40(2) 21.00(1)3.1000 0.1400 0.8917(6) 0.0189(7) 20.76(3) 1.995(5) 2.17(1) 36.32(5)3.1000 0.1600 0.8756(8) 0.032(1) 30.5(1) 1.384(7) 0.755(10) 96.5(4)3.1000 0.1700 0.855(1) 0.046(2) 48.4(7) 0.95(1) 0.260(7) 268(4)3.1000 0.1725 0.847(1) 0.052(2) 63(2) 0.75(2) 0.156(10) 318(5)3.1000 0.1750 0.822(1) 0.079(4) 75(5) 0.62(3) 0.06(1) 589(7)3.1000 0.1775 0.757(1) 0.102(7) 47(3) 1.02(5) -0.12(3) 334(14)3.1000 0.1800 0.743(1) 0.115(5) 42(4) 1.22(4) -0.24(4) 259(18)3.1000 0.1900 0.7162(7) 0.152(5) 32(1) 1.70(3) -0.19(4) 162(7)3.1000 0.2000 0.7022(8) 0.167(2) 30(2) 1.80(6) -0.14(2) 143(3)Table C.3: Results for � = 3:1



Appendix C. Tables of Results 64� � a
tion L Pion norm m� mq # Iterations3.5000 0.1200 0.782(3) 0.0167(7) 17.03(1) 2.395(8) 3.77(3) 25.5(1)3.5000 0.1400 0.7671(5) 0.026(1) 21.13(3) 1.832(5) 1.57(1) 42.55(6)3.5000 0.1500 0.748(2) 0.041(3) 25.42(9) 1.444(9) 0.771(6) 71.5(8)3.5000 0.1550 0.729(2) 0.066(3) 28.5(5) 1.23(1) 0.43(1) 111(14)3.5000 0.1600 0.6652(7) 0.193(2) 25.9(5) 1.42(3) -0.04(2) 107(4)3.5000 0.1650 0.6514(10) 0.205(4) 25.1(3) 1.61(4) -0.26(2) 92(3)3.5000 0.1750 0.634(1) 0.228(5) 24.7(3) 1.84(2) -0.269(9) 77(2)3.5000 0.1850 0.6210(8) 0.240(3) 22.9(2) 2.00(3) -0.11(2) 69.0(7)3.5000 0.2000 0.6086(8) 0.256(5) 22.1(1) 2.09(1) 0.032(5) 68.1(6)3.5000 0.2100 0.6009(9) 0.264(3) 22.1(3) 2.06(1) -0.007(4) 68(1)3.5000 0.2300 0.5900(7) 0.284(4) 20.2(1) 1.946(6) -0.160(7) 73.5(7)3.5000 0.2500 0.5802(6) 0.294(2) 19.1(1) 1.819(6) -0.327(7) 82.9(8)3.5000 0.2700 0.5732(5) 0.304(3) 17.6(2) 1.744(7) -0.454(5) 95.2(6)3.5000 0.2900 0.5668(4) 0.319(2) 16.15(7) 1.697(4) -0.514(4) 109.2(9)3.5000 0.3100 0.5614(4) 0.325(1) 14.84(8) 1.681(8) -0.556(4) 125(1)3.5000 0.3300 0.5571(3) 0.330(2) 13.51(7) 1.691(3) -0.580(5) 143.2(6)3.5000 0.3500 0.5538(3) 0.334(2) 12.38(6) 1.697(5) -0.605(3) 165.0(6)Table C.4: Results for � = 3:5� � a
tion L Pion norm m� mq # Iterations3.7500 0.0800 0.6999(5) 0.0180(5) 13.680(6) 3.474(3) 14.00(3) 2.00(1)3.7500 0.1000 0.6939(7) 0.0191(6) 14.95(2) 2.902(6) 4.76(4) 5.96(4)3.7500 0.1100 0.6901(5) 0.021(1) 15.84(2) 2.610(5) 6.89(4) 4.00(1)3.7500 0.1200 0.6838(6) 0.028(1) 17.03(3) 2.325(5) 3.17(2) 4.86(2)3.7500 0.1300 0.6735(6) 0.048(3) 18.67(4) 2.014(4) 1.92(1) 19.73(4)3.7500 0.1400 0.6425(9) 0.162(4) 20.8(1) 1.71(1) 0.94(1) 31.7(3)3.7500 0.1500 0.616(1) 0.238(6) 22.16(10) 1.60(2) 0.221(10) 66(1)3.7500 0.1600 0.598(1) 0.252(5) 22.4(1) 1.70(2) -0.26(1) 66.0(10)Table C.5: Results for � = 3:75



Appendix C. Tables of Results 65C.2 Results for the 122 � 24� 4 latti
e� � a
tion L Pion norm m� mq # Iterations2.8000 0.1650 0.9528(3) 0.0281(5) 33.5(3) 1.35(2) 0.762(2) 25.6(1)2.8000 0.1700 0.9477(4) 0.0340(5) 39.9(5) 1.18(1) 0.527(2) 33.7(1)2.8000 0.1750 0.9420(2) 0.0393(4) 53.0(5) 0.971(9) 0.324(1) 49.9(2)2.8000 0.1775 0.9375(3) 0.0433(6) 67(1) 0.83(2) 0.222(1) 66.0(2)2.8000 0.1800 0.935(1) 0.0458(9) 84(3) 0.69(2) 0.143(1) 94(2)2.8000 0.1825 0.926(1) 0.0549(7) 139(13) 0.530(7) 0.076(2) 168(2)2.8000 0.1835 0.9216(5) 0.0539(7) 219(14) 0.42(4) 0.045(1) 244(4)Table C.6: Results for � = 2:8� � a
tion L Pion norm m� mq # Iterations3.1000 0.1650 0.8697(5) 0.0348(3) 36.7(2) 1.158(6) 0.504(1) 35.0(1)3.1000 0.1700 0.8595(9) 0.0433(6) 49.2(6) 0.914(7) 0.274(1) 56.7(4)3.1000 0.1750 0.8353(8) 0.0621(6) 92(4) 0.559(7) 0.078(2) 129(6)3.1000 0.1755 0.824(1) 0.0732(8) 104(12) 0.54(4) 0.043(2) 447(14)3.1000 0.1775 0.7579(4) 0.105(3) 68(13) 0.98(6) -0.17(1) 382(18)3.1000 0.1785 0.7504(6) 0.109(1) 44(2) 1.10(2) -0.20(1) 334(12)3.1000 0.1800 0.7443(4) 0.111(1) 39(2) 1.29(2) -0.23(2) 277(9)3.1000 0.1850 0.7305(3) 0.120(2) 35(1) 1.47(2) -0.23(1) 196(3)3.1000 0.1900 0.7195(4) 0.130(1) 32.1(9) 1.54(3) -0.202(6) 194(9)3.1000 0.2000 0.7011(3) 0.162(3) 27.7(6) 1.597(6) -0.10(1) 141(4)Table C.7: Results for � = 3:1
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